Sample records for ester-styrene waste forms

  1. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  2. In-situ stabilization of radioactive zirconium swarf

    DOEpatents

    Hess, C.C.

    1999-08-31

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes. 6 figs.

  3. Recycling of engineering plastics from waste electrical and electronic equipments: influence of virgin polycarbonate and impact modifier on the final performance of blends.

    PubMed

    Ramesh, V; Biswal, Manoranjan; Mohanty, Smita; Nayak, Sanjay K

    2014-05-01

    This study is focused on the recovery and recycling of plastics waste, primarily polycarbonate, poly(acrylonitrile-butadiene-styrene) and high impact polystyrene, from end-of-life waste electrical and electronic equipments. Recycling of used polycarbonate, acrylonitrile-butadiene-styrene, polycarbonate/acrylonitrile-butadiene-styrene and acrylonitrile-butadiene-styrene/high impact polystrene material was carried out using material recycling through a melt blending process. An optimized blend composition was formulated to achieve desired properties from different plastics present in the waste electrical and electronic equipments. The toughness of blended plastics was improved with the addition of 10 wt% of virgin polycarbonate and impact modifier (ethylene-acrylic ester-glycidyl methacrylate). The mechanical, thermal, dynamic-mechanical and morphological properties of recycled blend were investigated. Improved properties of blended plastics indicate better miscibility in the presence of a compatibilizer suitable for high-end application.

  4. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. 721.3800 Section 721.3800... Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene oxide adduct. (a... generically as formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

  5. Influence of temperature on styrene emission from a vinyl ester resin thermoset composite material.

    PubMed

    Crawford, Shaun; Lungu, Claudiu T

    2011-08-15

    Composite materials made with vinyl ester resins are lighter, stronger and corrosion resistant compared to most metals, and are increasingly being used as building materials and in public transportation. Styrene monomer is used as both a diluent and strengthener in the production of vinyl ester resin (VER) composites. Some researchers contend that free styrene in VER composites is available to diffuse out of the material into air, perhaps leading to adverse health effects via inhalation exposures in humans, yet there is no known data on styrene emissions from these materials in the literature. In this study, a typical VER composite made with resin containing 38% by weight styrene, reinforced with E-glass fiber and formed using a vacuum assisted resin transfer method was characterized for styrene emissions by environmental test chamber (ETC) methodology. Styrene concentrations in the ETC were measured over a temperature range of 10 to 50 °C. Initial evaporative styrene emissions increase with increasing temperature. There is a nearly linear relationship in the total mass of styrene emitted and emission factor as emissions increase with increasing temperature. Styrene emission factors appear to vary for different materials, which could indicate more complex processes or the influence of material physical properties on emission rates. These results can be used to validate and improve mass transfer emission models for the prediction of volatile organic compound concentrations in indoor environments. Published by Elsevier B.V.

  6. Lignin model compounds as bio-based reactive diluents for liquid molding resins.

    PubMed

    Stanzione, Joseph F; Sadler, Joshua M; La Scala, John J; Wool, Richard P

    2012-07-01

    Lignin is a copious paper and pulping waste product that has the potential to yield valuable, low molecular weight, single aromatic chemicals when strategically depolymerized. The single aromatic lignin model compounds, vanillin, guaiacol, and eugenol, were methacrylated by esterification with methacrylic anhydride and a catalytic amount of 4-dimethylaminopyridine. Methacrylated guaiacol (MG) and methacrylated eugenol (ME) exhibited low viscosities at room temperature (MG: 17 cP and ME: 28 cP). When used as reactive diluents in vinyl ester resins, they produced resin viscosities higher than that of vinyl ester-styrene blends. The relative volatilities of MG (1.05 wt% loss in 18 h) and ME (0.96 wt% loss in 18 h) measured by means of thermogravimetric analysis (TGA) were considerably lower than that of styrene (93.7 wt% loss in 3 h) indicating the potential of these chemicals to be environmentally friendly reactive diluents. Bulk polymerization of MG and ME generated homopolymers with glass transition temperatures (T(g)s) of 92 and 103 °C, respectively. Blends of a standard vinyl ester resin with MG and ME (50 wt % reactive diluent) produced thermosets with T(g)s of 127 and 153 °C, respectively, which are comparable to vinyl ester-styrene resins, thus demonstrating the ability of MG and ME to completely replace styrene as reactive diluents in liquid molding resins without sacrificing cured-resin thermal performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The chemistry of dimethacrylate-styrene networks, and, Development of flame retardant, halogen-free fiber reinforced vinyl ester composites

    NASA Astrophysics Data System (ADS)

    Rosario, Astrid Christa

    One of the major classes of polymer matrix resins under consideration for structural composite applications in the infrastructure and construction industries is vinyl ester resin. Vinyl ester resin is comprised of low molecular weight poly(hydroxyether) oligomers with methacrylate endgroups diluted with styrene monomer. The methacrylate endgroups cure with styrene via free radical copolymerization to yield thermoset networks. The copolymerization behavior of these networks was monitored by Fourier Transform Infrared Spectroscopy (FTIR) at various cure conditions. Reactions of the carbon-carbon double bonds of the methacrylate (943 cm-1) and styrene (910 cm-1 ) were followed independently. Oligomers possessing number average molecular weights of 700 g/mole were studied with systematically increasing levels of styrene. The Mortimer-Tidwell reactivity ratios indicated that at low conversion more styrene was incorporated into the network at lower cure temperatures. The experimental vinyl ester-styrene network compositions deviated significantly from those predicted by the Meyer-Lowry integrated copolymer equation at higher conversion, implying that the reactivity ratios for these networks may change with conversion. The kinetic data were used to provide additional insight into the physical and mechanical properties of these materials. In addition to establishing the copolymerization kinetics of these materials, the development of halogen free fiber reinforced vinyl ester composites exhibiting good flame properties was of interest. Flame retardant vinyl ester resins are used by many industries for applications requiring good thermal resistance. The current flame-retardant technology is dependent on brominated vinyl esters, which generate high levels of smoke and carbon monoxide. A series of halogen free binder systems has been developed and dispersed in the vinyl ester to improve flame retardance. The binder approach enables the vinyl ester resin to maintain its low temperature viscosity so that fabrication of composites via Vacuum Assisted Resin Transfer Molding (VARTM) is possible. The first binder system investigated was a polycaprolactone layered silicate nanocomposite, which was prepared via intercalative polymerization. Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) data indicated a mixed morphology of exfoliated and intercalated structures. The mechanical properties and the normalized peak heat release rates were comparable to the neat vinyl ester resin. Alternative binder systems possessing inherent flame retardance were also investigated. A series of binders comprised of novolac, bisphenol A diphosphate, and montmorillonite clay were developed and dispersed into the vinyl ester matrix. Cone calorimetry showed reductions in the peak heat release rate comparable to the brominated resin. Keywords: dimethacrylate; vinyl ester; network; reactivity ratios; nanocomposites; layered silicates; exfoliated; thermoset matrix resin; flame retardant

  8. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

  9. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... triglycerides or fatty acids derived from the oils listed in paragraph (b)(3)(i) of this section to form esters.... Maleic anhydride adduct of butadiene styrene. Polybutadiene. (iv) Natural fossil resins, as the basic... with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes listed in paragraph (b)(3)(vi...

  10. Synthesis of thermally stable polymers

    NASA Technical Reports Server (NTRS)

    Butler, G. B.

    1978-01-01

    The reaction of bis triazo linediones with divinyl esters and substituted styrenes was investigated. Twenty new polymers were derived via reaction of two previously synthesized bis triazol linediones and four new bis atriazol linediones with eight styrenes. The structure and polymer properties of these thermally stable polymers was examined. The reaction of triazo linediones with enol esters was also considered.

  11. Characterisation of recycled acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil.

    PubMed

    Hirayama, Denise; Saron, Clodoaldo

    2015-06-01

    Polymeric materials constitute a considerable fraction of waste computer equipment and polymers acrylonitrile-butadiene-styrene and high-impact polystyrene are the main thermoplastic polymeric components found in waste computer equipment. Identification, separation and characterisation of additives present in acrylonitrile-butadiene-styrene and high-impact polystyrene are fundamental procedures to mechanical recycling of these polymers. The aim of this study was to evaluate the methods for identification of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment in Brazil, as well as their potential for mechanical recycling. The imprecise utilisation of symbols for identification of the polymers and the presence of additives containing toxic elements in determinate computer devices are some of the difficulties found for recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. However, the considerable performance of mechanical properties of the recycled acrylonitrile-butadiene-styrene and high-impact polystyrene when compared with the virgin materials confirms the potential for mechanical recycling of these polymers. © The Author(s) 2015.

  12. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  13. Poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles as sorbents for the analysis of sodium benzoate in beverages.

    PubMed

    Ji, Shilei; Li, Nan; Qi, Li; Wang, Minglin

    2017-01-01

    In this study, poly(styrene-co-N-methacryloyl-l-phenylalanine methyl ester)-functionalized magnetic nanoparticles were constructed and used as magnetic solid-phase extraction sorbents for analysis of food preservatives in beverages. To prepare the poly(amino acid)-based sorbents, N-methacryloyl-l-phenylalanine methyl ester, and styrene served as the functional monomers and modified onto the magnetic nanoparticles via free radical polymerization. Interestingly, compared with propylparaben and potassium sorbate, the proposed poly(amino acid)-based sorbents showed a good selectivity to sodium benzoate. The adsorption capacity of the sorbents to sodium benzoate was 6.08 ± 0.31 mg/g. Moreover, the fast adsorption equilibrium could be reached within 5 min. Further, the resultant poly(amino acid)-based sorbents were applied in the analysis of sodium benzoate in real beverage samples. The results proved that the proposed magnetic solid-phase extraction sorbents have a great potential for the analysis of preservatives in food samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Molecular analysis on the utilization of oil palm empty fruit bunches fiber as reinforcement for acrylonitrile butadiene styrene biocomposites

    NASA Astrophysics Data System (ADS)

    Hermawan, B.; Nikmatin, S.; Alatas, H.; Sudaryanto; Sukaryo, S. G.

    2017-05-01

    Oil palm empty fruit bunches (OPEFB) was one of the solid waste produced by the palm oil factory and were totally plentiful in biomass. OPEFB fiber used as reinforcement of polymer matrix acrylonitrile butadiene styrene (ABS). The use of FTIR is to see that there is no changes in the molecules of the constituent biocomposite ABS and OPEFB. The reactivity of butadiene and styrene through the double bond- π conjugated system, contributed to the bond reaction with the maleic acid as compatibilizer witch is grafted to the system. It is concluded that the posible grafting reaction occurs by the addition of the MAH to the double bond of the butadiene and styrene. The hydroxyl group of cellulose can interact with this maleic acid to form a bond through the carboxyl group.

  15. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis.

    PubMed

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-09-01

    Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme's application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. These promising results offer scope for further investigation and process scale up, permitting the enzyme's commercial application in a practically feasible and economically agreeable manner.

  16. Bacillus sp. PS35 Lipase-Immobilization on Styrene-Divinyl Benzene Resin and Application in Fatty Acid Methyl Ester Synthesis

    PubMed Central

    Palanisamy, Kanmani; Kuppamuthu, Kumaresan; Jeyaseelan, Aravind

    2015-01-01

    Background Lipase is an enzyme with immense application potential. Ester synthesis by lipase catalysis in organic media is an area of key industrial relevance. Enzymatic preparations with traits that cater to the needs of this function are hence being intensely researched. Objective The objectives of the study were to immobilize the lipase from Bacillus sp. PS35 by cross-linking and adsorption onto styrene-divinyl benzene (Sty-Dvb) hydrophobic resin and to comparatively characterize the free and immobilized lipase preparations. The work also aimed to apply the immobilized lipase for catalysing the fatty acid methyl ester (FAME) synthesis from palm oil and optimize the process parameters for maximizing the yield. Materials and Methods In this study, the purified lipase from Bacillus sp. PS35 was immobilized by adsorption onto styrene-divinyl benzene hydrophobic resin with gluteraldehyde cross-linking. Results The immobilized enzyme showed better pH and temperature stabilities than the free lipase. Organic solvent stability was also enhanced, with the relative activity in the presence of methanol being shifted from 53% to 81%, thereby facilitating the enzyme’s application in fatty acid methyl ester synthesis. It exhibited remarkable storage stability over a 30-day period and after 20 repetitive uses. Cross-linking also reduced enzyme leakage by 49%. The immobilized lipase was then applied for biodiesel production from palm oil. Methanol and oil molar ratio of 5:1, three step methanol additions, and an incubation temperature of 50°C were established to be the ideal conditions favoring the transesterification reaction, resulting in 97% methyl ester yield. Conclusions These promising results offer scope for further investigation and process scale up, permitting the enzyme’s commercial application in a practically feasible and economically agreeable manner. PMID:28959298

  17. Immobilization of organic radioactive and non-radioactive liquid waste in a composite matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkin, Anatoliy; Gelis, Artem V.; Castiglioni, Andrew J.

    A method for immobilizing liquid radioactive waste is provided, the method having the steps of mixing waste with polymer to form a non-liquid waste; contacting the non-liquid waste with a solidifying agent to create a mixture, heating the mixture to cause the polymer, waste, and filler to irreversibly bind in a solid phase, and compressing the solid phase into a monolith. The invention also provides a method for immobilizing liquid radioactive waste containing tritium, the method having the steps of mixing liquid waste with polymer to convert the liquid waste to a non-liquid waste, contacting the non-liquid waste with amore » solidifying agent to create a mixture, heating the mixture to form homogeneous, chemically stable solid phase, and compressing the chemically stable solid phase into a final waste form, wherein the polymer comprises approximately a 9:1 weight ratio mixture of styrene block co-polymers and cross linked co-polymers of acrylamides.« less

  18. Environmentally Friendly Bio-Based Vinyl Ester Resins for Military Composite Structures

    DTIC Science & Technology

    2008-12-01

    composites, fatty acid , vinyl ester 9. Distribution $tatement (requr’iedl lsmanuscript subjectto export control? E ruo I yes Circfe appropriate l tter and...resins is to replace some or all of the styrene with fatty acid -based monomers. These fatty acid vinyl ester resins allow for the formulation of high...validation studies have been performed, showing that the fatty acid -based resins have sufficient, modulus, strength, glass transition temperature, and

  19. Evaluating Waste Charcoal as Potential Rubber Composite Filler

    USDA-ARS?s Scientific Manuscript database

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, charcoal in the form of pyrolyzed agricultural products was evaluated as potential carbon-based filler for rubber composites made with carboxylated styrene-butadiene lat...

  20. Tung oil-based unsaturated co-ester macromonomer for thermosetting polymers: Synergetic synthesis and copolymerization with styrene

    USDA-ARS?s Scientific Manuscript database

    A novel unsaturated co-ester (co-UE) macromonomer containing both maleates and acrylates was synthesized from tung oil (TO) and its chemical structure was characterized by FT-IR, 1H-NMR, 13C-NMR, and gel permeation chromatography (GPC). The monomer was synthesized via a new synergetic modification o...

  1. Demonstration of Military Composites with Low Hazardous Air Pollutant Content

    DTIC Science & Technology

    2006-11-01

    reducing styrene emissions from vinyl ester (VE) resins is to replace some or all of the styrene with fatty acid -based monomers. Fatty acid ...composite production, and painting applications. These trapping devices need to absorb most of the VOC/HAP emissions and then efficiently remove the...device to trap a significant portion of the emissions is cost prohibitive. Secondly, although these devices remove the VOCs/HAPs from the

  2. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  3. Melt processing and property testing of a model system of plastics contained in waste from electrical and electronic equipment.

    PubMed

    Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G

    2015-05-01

    In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.

  4. Organocatalytic atroposelective synthesis of axially chiral styrenes

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng-Cai; Wu, San; Zhou, Qinghai; Chung, Lung Wa; Ye, Liu; Tan, Bin

    2017-05-01

    Axially chiral compounds are widespread in biologically active compounds and are useful chiral ligands or organocatalysts in asymmetric catalysis. It is well-known that styrenes are one of the most abundant and principal feedstocks and thus represent excellent prospective building blocks for chemical synthesis. Driven by the development of atroposelective synthesis of axially chiral styrene derivatives, we discovered herein the asymmetric organocatalytic approach via direct Michael addition reaction of substituted diones/ketone esters/malononitrile to alkynals. The axially chiral styrene compounds were produced with good chemical yields, enantioselectivities and almost complete E/Z-selectivities through a secondary amine-catalysed iminium activation strategy under mild conditions. Such structural motifs are important precursors for further transformations into biologically active compounds and synthetic useful intermediates and may have potential applications in asymmetric synthesis as olefin ligands or organocatalysts.

  5. EVALUATION OF TRICKLE-BED AIR BIOFILTER PERFORMANCE FOR STYRENE REMOVAL

    EPA Science Inventory

    A pilot-scale trickle-bed air biofilter (TBAB) was evaluated for the removal of styrene from a waste gas stream. Six-millimeter (6 mm) Celite pellets (R-635) were used as the biological attachment medium. The operating parameters considered in the study included the styrene vol...

  6. Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design.

    PubMed

    Mo, Yu; Zhao, Lei; Wang, Zhonghui; Chen, Chia-Lung; Tan, Giin-Yu Amy; Wang, Jing-Yuan

    2014-04-01

    A work applied response surface methodology coupled with Box-Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470-505°C, a heating rate of 40°C/min, and a carrier gas flow rate range of 115-140mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Synthesis, characterization and application of lipase-conjugated citric acid-coated magnetic nanoparticles for ester synthesis using waste frying oil.

    PubMed

    Patel, Unisha; Chauhan, Kishor; Gupte, Shilpa

    2018-04-01

    In the present work, magnetic nanoparticles (MNPs) were prepared by chemical precipitation of trivalent and divalent iron ions which were functionalized using citric acid. The bacterial isolate Staphylococcus epidermidis KX781317 was isolated from oil-contaminated site. The isolate produced lipase, which was purified and immobilized on magnetic nanoparticles (MNPs) for ester synthesis from waste frying oil (WFO). The characterization of MNPs employed conventional TEM, XRD and FTIR techniques. TEM analysis of MNPs showed the particle size in the range of 20-50 nm. FTIR spectra revealed the binding of citric acid to Fe 3 O 4 and lipase on citric acid-coated MNPs. The citric acid-coated MNPs and lipase-conjugated citric acid-coated MNPs had similar XRD patterns which indicate MNPs could preserve their magnetic properties. The maximum immobilization efficiency 98.21% of lipase-containing citric acid-coated MNPs was observed at ratio 10:1 of Cit-MNPs:lipase. The pH and temperature optima for lipase conjugated with Cit-MNPs were 7 and 35 °C, respectively. Isobutanol was found to be an effective solvent for ester synthesis and 1:2 ratio of oil:alcohol observed significant for ester formation. The ester formation was determined using TLC and the % yield of ester conversion was calculated. The rate of ester formation is directly proportional to the enzyme load. Formed esters were identified as isobutyl laurate ester and isobutyl myristate ester through GC-MS analysis.

  8. Handbook for Evaluating Ecological Effects of Pollution at DARCOM installations. Volume 2, Essential Background Data. (Installation Environmental Impact Assessment)

    DTIC Science & Technology

    1979-12-01

    Nitrates Sulfur dioxide Xylene Nitrites Oxides of nitrogen Mercaptans "Red Water" Carbon monoxide Chlorine Acids: Ketones Fluorine Hydrochloric Esters...Trichloroethylene Varnishes Methylchloroform Undercoatings Mineral spirits Liquid styrene Naphtha Adhesives Halgenated hydrocarbons Nonmethane hydrocarbons

  9. Reversal of enantioselectivity in the hydroformylation of styrene with [2S,4S-BDPP]Pt(SnCl3)Cl at high temperature arises from a change in the enantioselective-determining step.

    PubMed

    Casey, Charles P; Martins, Susie C; Fagan, Maureen A

    2004-05-05

    Deuterioformylation of styrene catalyzed by [(2S,4S)-BDPP]Pt(SnCl(3))Cl at 39 degrees C gave 3-phenylpropanal (3) and 2-phenylpropanal (2) (n:i = 1.8, 71% ee (S)-2) with deuterium only beta to the aldehyde carbonyl and in the formyl group. Small amounts of deuterium were also found in the internal (2.8%), cis terminal (1.4%), and trans terminal (1.3%) vinyl positions of the recovered styrene. Deuterioformylation of styrene at 98 degrees C gave 3- (3) and 2-phenylpropanal (2) (n:i = 2.3, 10% ee (R)-2) with deuterium both alpha and beta to the aldehyde carbonyl and in the formyl group. Deuterium was also found in the internal (20%), cis terminal (12%), and trans terminal (12%) vinyl positions of the recovered styrene. These deuterioformylation results establish that platinum hydride addition to styrene is largely irreversible at 39 degrees C but reversible at 98 degrees C. Hydroformylation of (E)- and (Z)-beta-deuteriostyrene at 40 degrees C, followed by oxidation of the aldehydes to acids, and subsequent derivitization to the (S)-mandelate esters confirmed that 84% of 2-phenylpropanal (2) arises from platinum hydride addition to the si-face of styrene, while 73% of 3-phenylpropanal (3) arises from platinum hydride addition to the re-face of styrene. At 100 degrees C, the effect of variable H(2) and CO pressure on n:i, % ee, and TOF of hydroformylation of styrene was investigated. The results are consistent with enantioselectivity not being fully determined until the final hydrogenolysis of a platinum acyl intermediate.

  10. Covalently Cross-linked Elastomers with Self-Healing and Malleable Abilities Enabled by Boronic Ester Bonds.

    PubMed

    Chen, Yi; Tang, Zhenghai; Zhang, Xuhui; Liu, Yingjun; Wu, Siwu; Guo, Baochun

    2018-06-26

    Covalently cross-linked rubbers are renowned for their high elasticity that play an indispensable role in various applications including tires, seals, medical implants. Development of self-healing and malleable rubbers is highly desirable as it allows for damage repair and reprocessibility to extend the lifetime and alleviate environmental pollution. Herein, we propose a facile approach to prepare permanently cross-linked yet self-healing and recyclable diene-rubber by programming dynamic boronic ester linkages into the network. The network is synthesized through one-pot thermally initiated thiol-ene "click" reaction between a novel dithiol-containing boronic ester cross-linker and commonly used styrene-butadiene rubber (SBR) without modifying the macromolecular structure. The resulted samples are covalently cross-linked and possess relatively high mechanical strength which can be readily tailored by varying boronic ester content. Owning to the transesterification of boronic ester bonds, the samples can alter network topologies, endowing the materials with self-healing ability and malleability.

  11. Synthesis and characterization of triglyceride based thermosetting polymers

    NASA Astrophysics Data System (ADS)

    Can, Erde

    2005-07-01

    Plant oils, which are found in abundance in all parts of the world and are easily replenished annually, have the potential to replace petroleum as a chemical feedstock for making polymers. Within the past few years, there has been growing interest to use triglycerides as the basic constituent of thermosetting polymers with the necessary rigidity, strength and glass transition temperatures required for engineering applications. Plant oils are not polymerizable in their natural form, however various functional groups that can polymerize can easily be attached to the triglyceride structure making them ideal cross-linking monomers for thermosetting liquid molding resins. Through this research project a number of thermosetting liquid molding resins based on soybean and castor oil, which is a specialty oil with hydroxyls on its fatty acids, have been developed. The triglyceride based monomers were prepared via the malination of the alcoholysis products of soybean and castor oil with various polyols, such as pentaerythritol, glycerol, and Bisphenol A propoxylate. The malinated glycerides were then cured in the presence of a reactive diluent, such as styrene, to form rigid glassy materials with a wide range of properties. In addition to maleate half-esters, methacrylates were also introduced to the glyceride structure via methacrylation of the soybean oil glycerolysis product with methacrylic anhydride. This product, which contains methacrylic acid as by-product, and its blends with styrene also gave rigid materials when cured. The triglyceride based monomers were characterized via conventional spectroscopic techniques. Time resolved FTIR analysis was used to determine the curing kinetics and the final conversions of polymerization of the malinated glyceride-styrene blends. Dynamic Mechanical Analysis (DMA) was used to determine the thermomechanical behavior of these polymers and other mechanical properties were determined via standard mechanical tests. The use of lignin, another renewable resource, as a filler and its effects on the mechanical properties of the polymers based on soybean oil pentaerythritol glyceride maleates and styrene (SOPERMA) was also explored. These novel soybean and castor oil based thermosetting resins show comparable properties to those of commercially successful unsaturated polyester resins and show promise as an alternative to replace these completely petroleum based materials.

  12. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.

    PubMed

    Alexandrino, M; Knief, C; Lipski, A

    2001-10-01

    Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.

  13. Controlling of free radical copolymerization of styrene and maleic anhydride via RAFT process for the preparation of acetaminophen drug conjugates

    NASA Astrophysics Data System (ADS)

    Sütekin, S. Duygu; Atıcı, Ayşe Bakar; Güven, Olgun; Hoffman, Allan S.

    2018-07-01

    The presence of maleic anhydride moiety in styrene-maleic anhydride (SMA) copolymer makes it a versatile substrate for conjugation of drugs. In this study biocompatible styrene-maleic anhydride (SMA) copolymer with alternating structure was synthesized by gamma irradiation at room temperature in the presence of 2-phenyl-2-propyl benzodithioate (PPB). The poly(styrene-alt-maleic anhydride) (poly(St-alt-MA)) with narrow molecular weight distribution (Đ: 1.1-1.3) was prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. The synthesized poly(St-alt-MA) structure was characterized by ATR-FTIR spectroscopy, elemental analysis and 1H NMR spectroscopy and molecular weight and dispersity were determined by size exclusion chromatography (SEC). SMA copolymers were further conjugated with acetaminophen via ester linkage and FT-IR, 1H NMR investigation indicated that the acetaminophen was attached to poly(St-alt-MA). Drug release profile of the polymer-drug conjugate was followed by high performance liquid chromatography (HPLC). The drug-conjugate system was found to follow first order release kinetics with Hixson-Crowell model while drug release mechanism was found as non-Fickian diffusion after testing various kinetic models.

  14. Stereometabolism of ethylbenzene in man: gas chromatographic determination of urinary excreted mandelic acid enantiomers and phenylglyoxylic acid and their relation to the height of occupational exposure.

    PubMed

    Korn, M; Gfrörer, W; Herz, R; Wodarz, I; Wodarz, R

    1992-01-01

    Ethylbenzene is an important industrial solvent and a key substance in styrene production. Ethylbenzene metabolism leads to the formation of mandelic acid, which occurs in two enantiomeric forms, and phenylglyoxylic acid. To decide which enantiomer is preferably formed, 70 urine samples of exposed workers were taken at the end of shifts and--after 3-pentyl ester derivatisation--gas chromatographically analysed. The R/S ratio of mandelic acid enantiomers in urine amounts to 19:1, which means that R-mandelic acid is a major metabolite and S-mandelic acid is one of the minor urinary metabolites of ethylbenzene in man. The R/S ratio is independent of ambient air concentration of ethylbenzene within the investigated range. Compared to an ethylbenzene monoexposure the height of total mandelic acid excretion is decreased in the case of coexposure to other aromatic solvents.

  15. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    PubMed

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  16. Bacterial degradation of styrene in waste gases using a peat filter.

    PubMed

    Arnold, M; Reittu, A; von Wright, A; Martikainen, P J; Suihko, M L

    1997-12-01

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m-3 h-1 (max. 30 g m-3 h-1). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 degrees C, but the styrene removal was still satisfactory at 12 degrees C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the gamma group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view.

  17. Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste.

    PubMed

    Costa, Vinicius Câmara; Aquino, Francisco Wendel Batista; Paranhos, Caio Marcio; Pereira-Filho, Edenir Rodrigues

    2017-12-01

    Due to the continual increase in waste generated from electronic devices, the management of plastics, which represents between 10 and 30% by weight of waste electrical and electronic equipment (WEEE or e-waste), becomes indispensable in terms of environmental and economic impacts. Considering the importance of acrylonitrile-butadiene-styrene (ABS), polycarbonate (PC), and their blends in the electronics and other industries, this study presents a new application of laser-induced breakdown spectroscopy (LIBS) for the fast and direct determination of PC and ABS concentrations in blends of these plastics obtained from samples of e-waste. From the LIBS spectra acquired for the PC/ABS blend, multivariate calibration models were built using partial least squares (PLS) regression. In general, it was possible to infer that the relative errors between the theoretical or reference and predicted values for the spiked samples were lower than 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (where N = 400 ppb). (b) Specific requirements.... (1) Recordkeeping requirements. Requirements as specified in § 721.125 (a), (b), (c), (f), (g), (h... adduct (P-90-364) is subject to reporting under this section for the significant new uses described in...

  19. Analysis of Commercial Unsaturated Polyester Repair Resins

    DTIC Science & Technology

    2009-07-01

    resins utilizing renewable fatty acid -based monomers. 15. SUBJECT TERMS vinyl ester, styrene, fatty acid monomers, HAP, triglycerides 16. SECURITY...criteria for selecting the appropriate repair include whether the component can be removed and whether the back side is accessible. For a typical moderate...field repair, any remaining coating in the repair area is removed by hand sanding or portable tools. Damage is cut out in an appropriate

  20. 40 CFR 721.3800 - Formaldehyde, condensated polyoxyethylene fatty acid, ester with styrenated phenol, ethylene...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... program. Requirements as specified in § 721.72 (a), (b), (c), (d), (f), (g)(3)(ii), and (g)(5). (ii) Release to water. Requirements as specified in § 721.90 (a)(4), (b)(4) and (c)(4) (where N = 400 ppb). (b... oxide adduct (PMN P-90-360) is subject to reporting under this section for the significant new uses...

  1. Pyrolysis of polystyrene - polyphenylene oxide to recover styrene and useful products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of using fast pyrolysis in a carrier gas to convert a polystyrene and polyphenylene oxide plastic waste to a given polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components therein comprising: selecting a first temperature range to cause pyrolysis of given polystyrene and polyphenylene oxide and its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and a support and treating the feed stream with the catalyst to affect acid or base catalyzed reaction pathways to maximize yield or enhance separation of high value monomeric constituent of styrene from polystyrene and polyphenylene oxide in the first temperature range; differentially heating the feed stream at a heat rate within the first temperature range to provide differential pyrolysis for selective recovery of the high value monomeric constituent of styrene from polystyrene and polyphenylene oxide prior to pyrolysis of other plastic components; separating the high value monomer constituent of styrene; selecting a second higher temperature range to cause pyrolysis to a different derived high value product of polyphenylene oxide from the plastic waste and differentially heating the feed stream at the higher temperature range to cause pyrolysis of the plastic into a polyphenylene oxide derived product; and separating the different derived high value polyphenylene oxide product.

  2. A biofilter integrated with gas membrane separation unit for the treatment of fluctuating styrene loads.

    PubMed

    Li, Lin; Lian, Jing; Han, Yunping; Liu, Junxin

    2012-05-01

    Biofiltration for volatile organic compound control in waste gas streams is best operated at steady contaminant loadings. To provide long-term stable operation of a biofilter under adverse contaminant feeding conditions, an integrated bioreactor system with a gas separation membrane module installed after a biofilter was proposed for styrene treatment. Styrene was treated effectively, with average styrene effluent concentrations maintained at less than 50 mg m(-3) and a total removal efficiency of over 96% achieved when the biofiltration column faced fluctuating loads. The maximum elimination capacity of the integrated bioreactor system was 93.8 g m(-3)h(-1), which was higher than that obtained with the biofiltration column alone. The combination of these two processes (microbial and chemical) led to more efficient elimination of styrene and buffering of the fluctuating loads. The factors on gas membrane separation, microbial characteristics in the integrated bioreactor and membrane fouling were also investigated in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  4. Styrene exposure and risk of cancer

    PubMed Central

    Huff, James; Infante, Peter F.

    2011-01-01

    Styrene is widely used in the manufacture of synthetic rubber, resins, polyesters and plastics. Styrene and the primary metabolite styrene-7,8-oxide are genotoxic and carcinogenic. Long-term chemical carcinogenesis bioassays showed that styrene caused lung cancers in several strains of mice and mammary cancers in rats and styrene-7,8-oxide caused tumours of the forestomach in rats and mice and of the liver in mice. Subsequent epidemiologic studies found styrene workers had increased mortality or incidences of lymphohematopoietic cancers (leukaemia or lymphoma or all), with suggestive evidence for pancreatic and esophageal tumours. No adequate human studies are available for styrene-7,8-oxide although this is the primary and active epoxide metabolite of styrene. Both are genotoxic and form DNA adducts in humans. PMID:21724974

  5. A detachable ester bond enables perfect Z-alkylations of olefins for the synthesis of tri- and tetrasubstituted alkenes.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Inoue, Yuki; Ishikawa, Shingo

    2015-06-25

    2-Vinyl-substituted phenol and an alpha-bromoester undergo a tandem esterification-alkylation reaction in the presence of a Cu-amine catalyst system to produce benzene-fused lactone. Z-Alkylated styrene is obtained after hydrolysis of the lactone with perfect selectivity. The simple protocol developed in this work opens a new avenue in the multi-substitution chemistry of alkenes.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlain, S.Z.

    Sterling Chemicals is a large chemical manufacturing company located in Texas City, Texas. Formerly a Monsanto plant, the facility was purchased in 1986 as a leveraged buy out by the Sterling Group of Houston, Texas. Total plant manufacturing area is 243 acres with 20 acres of greenbelt adjacent to the plant. The facility manufactures numerous intermediate chemical products: styrene, acrylonitrile, lactic acid, acetic acid, phthalic anhydride, phthalate esters, tertiary burylamine, and in 1989 began manufacturing sodium cyanide. In the early 1980`s Sterling Chemicals, Inc., in concert with approximately twenty other corporations in America, formed a consortium to address the impendingmore » regulatory changes in the federal Underground Injection Control (UIC) program. Since that time, after numerous successful changes in the UIC regulatory program, the consortium, under the administrative support of the Chemical Manufacturers Association (CMA), had embarked upon an effort to correct a wrong in the way Class I injection wells are reported on the Toxic Release Inventory forms in order to gain public confidence in the EPA and State Regulation of Deepwell Injection.« less

  7. Production of wax esters via microbial oil synthesis from food industry waste and by-product streams.

    PubMed

    Papadaki, Aikaterini; Mallouchos, Athanasios; Efthymiou, Maria-Nefeli; Gardeli, Chryssavgi; Kopsahelis, Nikolaos; Aguieiras, Erika C G; Freire, Denise M G; Papanikolaou, Seraphim; Koutinas, Apostolis A

    2017-12-01

    The production of wax esters using microbial oils was demonstrated in this study. Microbial oils produced from food waste and by-product streams by three oleaginous yeasts were converted into wax esters via enzymatic catalysis. Palm oil was initially used to evaluate the influence of temperature and enzyme activity on wax ester synthesis catalysed by Novozyme 435 and Lipozyme lipases using cetyl, oleyl and behenyl alcohols. The highest conversion yields (up to 79.6%) were achieved using 4U/g of Novozyme 435 at 70°C. Transesterification of microbial oils to behenyl and cetyl esters was achieved at conversion yields up to 87.3% and 69.1%, respectively. Novozyme 435 was efficiently reused for six and three cycles during palm esters and microbial esters synthesis, respectively. The physicochemical properties of microbial oil derived behenyl esters were comparable to natural waxes. Wax esters from microbial oils have potential applications in cosmetics, chemical and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Neural network models for biological waste-gas treatment systems.

    PubMed

    Rene, Eldon R; Estefanía López, M; Veiga, María C; Kennes, Christian

    2011-12-15

    This paper outlines the procedure for developing artificial neural network (ANN) based models for three bioreactor configurations used for waste-gas treatment. The three bioreactor configurations chosen for this modelling work were: biofilter (BF), continuous stirred tank bioreactor (CSTB) and monolith bioreactor (MB). Using styrene as the model pollutant, this paper also serves as a general database of information pertaining to the bioreactor operation and important factors affecting gas-phase styrene removal in these biological systems. Biological waste-gas treatment systems are considered to be both advantageous and economically effective in treating a stream of polluted air containing low to moderate concentrations of the target contaminant, over a rather wide range of gas-flow rates. The bioreactors were inoculated with the fungus Sporothrix variecibatus, and their performances were evaluated at different empty bed residence times (EBRT), and at different inlet styrene concentrations (C(i)). The experimental data from these bioreactors were modelled to predict the bioreactors performance in terms of their removal efficiency (RE, %), by adequate training and testing of a three-layered back propagation neural network (input layer-hidden layer-output layer). Two models (BIOF1 and BIOF2) were developed for the BF with different combinations of easily measurable BF parameters as the inputs, that is concentration (gm(-3)), unit flow (h(-1)) and pressure drop (cm of H(2)O). The model developed for the CSTB used two inputs (concentration and unit flow), while the model for the MB had three inputs (concentration, G/L (gas/liquid) ratio, and pressure drop). Sensitivity analysis in the form of absolute average sensitivity (AAS) was performed for all the developed ANN models to ascertain the importance of the different input parameters, and to assess their direct effect on the bioreactors performance. The performance of the models was estimated by the regression coefficient values (R(2)) for the test data set. The results obtained from this modelling work can be useful for obtaining important relationships between different bioreactor parameters and for estimating their safe operating regimes. Copyright © 2011. Published by Elsevier B.V.

  9. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.

    PubMed

    Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk

    2017-04-01

    The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.

  10. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    NASA Astrophysics Data System (ADS)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.

  11. Characterisation and materials flow management for waste electrical and electronic equipment plastics from German dismantling centres.

    PubMed

    Arends, Dagmar; Schlummer, Martin; Mäurer, Andreas; Markowski, Jens; Wagenknecht, Udo

    2015-09-01

    Waste electrical and electronic equipment is a complex waste stream and treatment options that work for one waste category or product may not be appropriate for others. A comprehensive case study has been performed for plastic-rich fractions that are treated in German dismantling centres. Plastics from TVs, monitors and printers and small household appliances have been characterised extensively. Based on the characterisation results, state-of-the-art treatment technologies have been combined to design an optimised recycling and upgrade process for each input fraction. High-impact polystyrene from TV casings that complies with the European directive on the restriction of hazardous substances (RoHS) was produced by applying continuous density separation with yields of about 60%. Valuable acrylonitrile butadiene styrene/polycarbonate can be extracted from monitor and printer casings by near-infrared-based sorting. Polyolefins and/or a halogen-free fraction of mixed styrenics can be sorted out by density separation from monitors and printers and small household appliances. Emerging separation technologies are discussed to improve recycling results. © The Author(s) 2015.

  12. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  13. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  14. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  15. Effect of the spectral emission energy of various UV sources on photochemical curing of unsaturated oligomeric ester coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skubin, V.K.; Sazonov, A.P.; Torgonenko, V.A.

    1988-11-10

    In this paper, using the example of unsaturated oligomeric esters, the effect of UV radiation of various domestic sources on the rate of curing of coatings is investigated. For the investigations a 60% styrene solution of PN-15 grade unsaturated oligomeric ester based on an equimolar ratio of maleic anhydride and oxypropylated diphenylenepropene was used. Isobutyl ether of benzoin served as the photoinitiator. The following lamps were used as radiation sources: electrodeless high-frequency lamps of continuous action with additions of mercury, cadmium, and phosphorus; a DRKS-500 mercury-xenon-arc lamp; and a DRT-1000 tubular mercury-arc lamp. When choosing UV sources to increase themore » efficiency of photochemical decay of the initiator and the rate of curing of the coating it is necessary first of all to be guided by the distribution of the spectral energy of the lamp radiation and the UV absorption spectrum of the photoinitiator.« less

  16. Microwave assisted pyrolysis of halogenated plastics recovered from waste computers.

    PubMed

    Rosi, Luca; Bartoli, Mattia; Frediani, Marco

    2018-03-01

    Microwave Assisted Pyrolysis (MAP) of the plastic fraction of Waste from Electric and Electronic Equipment (WEEE) from end-life computers was run with different absorbers and set-ups in a multimode batch reactor. A large amount of various different liquid fractions (up to 76.6wt%) were formed together with a remarkable reduction of the solid residue (up to 14.2wt%). The liquid fractions were characterized using the following different techniques: FT-IR ATR, 1 H NMR and a quantitative GC-MS analysis. The liquid fractions showed low density and viscosity, together with a high concentration of useful chemicals such as styrene (up to 117.7mg/mL), xylenes (up to 25.6mg/mL for p-xylene) whereas halogenated compounds were absent or present in a very low amounts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Control of gas contaminants in air streams through biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, T.; Lackey, L.

    1996-11-01

    According to the National Institute for Occupational Safety and Health (NIOSH), the maximum styrene concentration allowed in the work place is 50 ppm for up to a 10-hour work day during a 40-hour work week. The US EPA has classified styrene as one of the 189 hazardous air pollutants listed under Title 3 of the Clean Air Act Amendments to be reduced by a factor of 90% by the year 2000. Significant quantities of styrene are emitted to the atmosphere each year by boat manufacturers. A typical fiberglass boat manufacturing facility can emit over 273 metric tons/year of styrene. Themore » concentration of styrene in the industrial exhaust gas ranges from 20 to 100 ppmv. Such dilute, high volume organically tainted air streams can make conventional abatement technologies such as thermal incineration, adsorption, or absorption technically incompetent or prohibitively expensive. An efficient, innovative, and economical means of remediating styrene vapors would be of value to industries and to the environment. Biofilter technology depends on microorganisms that are immobilized on the packing material in a solid phase reactor to remove or degrade environmentally undesirable compounds contaminating gas streams. The technology is especially successful for treating large volumes of air containing low concentrations of contaminants. The objective of this study was to investigate the feasibility of using biofiltration to treat waste gas streams containing styrene and to determine the critical design and operating parameters for such a system.« less

  18. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  19. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  20. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  1. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  2. Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1995-01-01

    A process of pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons.

  3. Successful Initial Development of Styrene Substitutes and Suppressants for Vinyl Ester Resin Formulations

    DTIC Science & Technology

    2003-08-01

    into a separatory funnel. Distilled water was added to remove the acid from the ether phase. The layers were allowed to separate, and the water layer...The reaction mixtures were removed from the heat 2 hr after the last acrylic acid aliquot was added. The acrylated oils were purified via ether... remove inhibitor and any unreacted acid , the reaction mixture was ether extracted (25). The mixture was dissolved in diethyl ether and poured into a

  4. Transesterification reaction of the fat originated from solid waste of the leather industry.

    PubMed

    Işler, Asli; Sundu, Serap; Tüter, Melek; Karaosmanoğlu, Filiz

    2010-12-01

    The leather industry is an industry which generates a large amount of solid and liquid wastes. Most of the solid wastes originate from the pre-tanning processes while half of it comes from the fleshing step. Raw fleshing wastes which mainly consist of protein and fat have almost no recovery option and the disposal is costly. This study outlines the possibility of using the fleshing waste as an oil source for transesterification reaction. The effect of oil/alcohol molar ratio, the amount of catalyst and temperature on ester production was individually investigated and optimum reaction conditions were determined. The fuel properties of the ester product were also studied according to the EN 14214 standard. Cold filter plugging point and oxidation stability have to be improved in order to use the ester product as an alternative fuel candidate. Besides, this product can be used as a feedstock in lubricant production or cosmetic industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Effects of simulant mixed waste on EPDM and butyl rubber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; andmore » (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.« less

  7. Ultrapyrolytic upgrading of plastic wastes and plastics/heavy oil mixtures to valuable light gas products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovett, S.; Berruti, F.; Behie, L.A.

    1997-11-01

    Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95more » wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.« less

  8. Radiation crosslinking of styrene-butadiene rubber containing waste tire rubber and polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama

    2015-01-01

    The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.

  9. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25 °C) and reaction time of 110 min and 30 mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43 mg KOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Stormwater chemical contamination caused by cured-in-place pipe (CIPP) infrastructure rehabilitation activities.

    PubMed

    Tabor, Matthew L; Newman, Derrick; Whelton, Andrew J

    2014-09-16

    Cured-in-place pipe (CIPP) is becoming a popular U.S. stormwater culvert rehabilitation method. Several State transportation agencies have reported that CIPP activities can release styrene into stormwater, but no other contaminants have been monitored. CIPP's stormwater contamination potential and that of its condensate waste was characterized. Condensate completely dissolved Daphnia magna within 24 h. Condensate pH was 6.2 and its chemical oxygen demand (COD) level was 36,000 ppm. D. magna mortality (100%) occurred in 48 h, even when condensate was diluted by a factor of 10,000 and styrene was present at a magnitude less than its LC50. Condensate and stormwater contained numerous carcinogenic solvents used in resin synthesis, endocrine disrupting contaminants such as plasticizers, and initiator degradation products. For 35 days, COD levels at the culvert outlets and downstream ranged from 100 to 375 ppm and styrene was 0.01 to 7.4 ppm. Although contaminant levels generally reduced with time, styrene levels were greatest 50 ft downstream, not at the culvert outlet. Cured CIPP extraction tests confirmed that numerous contaminants other than styrene were released into the environment and their persistence and toxicity should be investigated. More effective contaminant containment and cleaner installation processes must be developed to protect the environment.

  11. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  12. Laboratory simulations of the mixed solvent extraction recovery of dominate polymers in electronic waste.

    PubMed

    Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang

    2017-11-01

    The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sequential pyrolysis of plastic to recover polystyrene, HCl and terephthalic acid

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1995-11-07

    A process is described for pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene, HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. 83 figs.

  14. Combining ZnO/microwave treatment for changing wettability of WEEE styrene plastics (ABS and HIPS) and their selective separation by froth flotation

    NASA Astrophysics Data System (ADS)

    Thanh Truc, Nguyen Thi; Lee, Byeong-Kyu

    2017-10-01

    This study reports a simple froth flotation method to separate plastic wastes of acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS) after initial hydrophilization by coating the plastics with ZnO and microwave treatment. ABS and HIPS are typical styrene-based WEEE plastics having similar density and hydrophobicity, which hinders their separation for recycling. After coating with ZnO, 2-min microwave treatment rearranged the ABS surface and thus changed its molecular mobility and increased its hydrophilicity. The combined ZnO coating/microwave treatment facilitated the selective separation of ABS and HIPS with 100% and 95.2% recovery and 95.4% and 100% purity in froth flotation, respectively. The combination of ZnO coating-microwave treatment and froth flotation can be utilized as a selective ABS/HIPS separation technique for improved recycling of WEEE plastics.

  15. Synchrotron-based FTIR microspectroscopy for the mapping of photo-oxidation and additives in acrylonitrile-butadiene-styrene model samples and historical objects.

    PubMed

    Saviello, Daniela; Pouyet, Emeline; Toniolo, Lucia; Cotte, Marine; Nevin, Austin

    2014-09-16

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-μFTIR) was used to map photo-oxidative degradation of acrylonitrile-butadiene-styrene (ABS) and to investigate the presence and the migration of additives in historical samples from important Italian design objects. High resolution (3×3 μm(2)) molecular maps were obtained by FTIR microspectroscopy in transmission mode, using a new method for the preparation of polymer thin sections. The depth of photo-oxidation in samples was evaluated and accompanied by the formation of ketones, aldehydes, esters, and unsaturated carbonyl compounds. This study demonstrates selective surface oxidation and a probable passivation of material against further degradation. In polymer fragments from design objects made of ABS from the 1960s, UV-stabilizers were detected and mapped, and microscopic inclusions of proteinaceous material were identified and mapped for the first time. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effect of reaction temperature on biodiesel production from waste cooking oil using lipase as biocatalyst

    NASA Astrophysics Data System (ADS)

    Istiningrum, Reni Banowati; Aprianto, Toni; Pamungkas, Febria Lutfi Udin

    2017-12-01

    This study aims to determine the effect of temperature on conversion of biodiesel from waste cooking oil enzymatically using lipase extracted from rice bran. The feedstock was simulated waste cooking oil and lipase enzyme was extracted with buffer pH variation. The enzyme activity was titrimetrically determined and the optimum pH buffer was used to study the effect of temperature on the transesterification reaction. Temperature effects were assessed in the range of 45-60 °C and the content of methyl esters in biodiesel was determined by GC-MS. The reaction temperature significantly influences the transesterification reaction with optimum biodiesel conversion occurred at 55 °C with methyl ester content of 81.19%. The methyl ester composition in the resulting biodiesel is methyl palmitate, methyl oleate and methyl stearate.

  17. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    PubMed Central

    Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente

    2017-01-01

    A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542

  18. Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Stevens, Mark; Wool, Richard

    2003-03-01

    The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.

  19. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  20. Formation of styrene dependent on fermentation management during wheat beer production.

    PubMed

    Schwarz, Katrin J; Stübner, René; Methner, Frank-Jürgen

    2012-10-15

    Styrene is formed by the thermal decarboxylation of cinnamic acid during wort boiling or by enzymatic decarboxylation during fermentation. The enzymatic reactions proceed in parallel to the decarboxylation of ferulic- and p-cumaric acid to 4-vinylguaiacol and 4-vinylphenol by the same decarboxylase enzyme. However, the formation of styrene occurs much faster and all available cinnamic acid in wort was converted completely within a few hours. Moreover, the comparison of various manufacturing parameters shows that a higher fermentation temperature of 25 °C compared to 16 °C and an open fermentation management lead to a rapid decrease of styrene. This allows minimising the content of styrene in beer while maintaining the typical wheat beer flavours. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorio, H.; Bibeau, L.; Heitz, M.

    2000-05-01

    The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly asmore » ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each nutrient solution.« less

  2. Separation of polycarbonate and acrylonitrile-butadiene-styrene waste plastics by froth flotation combined with ammonia pretreatment.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Liu, Qun; Fu, Jian-Gang; Liu, You-Nian

    2014-12-01

    The objective of this research is flotation separation of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) waste plastics combined with ammonia pretreatment. The PC and ABS plastics show similar hydrophobicity, and ammonia treatment changes selectively floatability of PC plastic while ABS is insensitive to ammonia treatment. The contact angle measurement indicates the dropping of flotation recovery of PC is ascribed to a decline of contact angle. X-ray photoelectron spectroscopy demonstrates reactions occur on PC surface, which makes PC surface more hydrophilic. Separation of PC and ABS waste plastics was conducted based on the flotation behavior of single plastic. At different temperatures, PC and ABS mixtures were separated efficiently through froth flotation with ammonia pretreatment for different time (13 min at 23 °C, 18 min at 18 °C and 30 min at 23 °C). For both PC and ABS, the purity and recovery is more than 95.31% and 95.35%, respectively; the purity of PC and ABS is up to 99.72% and 99.23%, respectively. PC and ABS mixtures with different particle sizes were separated effectively, implying that ammonia treatment possesses superior applicability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Halonium ion-assisted deiodination of styrene-based vicinal iodohydrins followed by rearrangement through phenyl migration.

    PubMed

    Agrawal, Manoj K; Ghosh, Pushpito K

    2009-10-16

    Acid activation of bromate/bromide couple at 0-10 degrees C was found to trigger the deiodination of styrene-based vicinal iodohydrins. Violet coloration of the organic layer was ascribed to formation of IBr. Deiodination was followed by phenyl migration and deprotonation leading to formation of phenyl acetone and 2-phenylpropanal in good yields from 1-iodo-2-phenylpropan-2-ol and 2-iodo-1-phenylpropan-1-ol, respectively. Phenyl acetaldehyde--which was obtained in 92% GC yield from styrene iodohydrin--was also presumably formed in analogous manner. NBS and HOCl too were effective for transformation of styrene iodohydrin into phenyl acetaldehyde.

  4. Hydrothermal carbonization of typical components of municipal solid waste for deriving hydrochars and their combustion behavior.

    PubMed

    Lin, Yousheng; Ma, Xiaoqian; Peng, Xiaowei; Yu, Zhaosheng

    2017-11-01

    In this work, five typical components were employed as representative pseudo-components to indirectly complete previous established simulation system during hydrothermal carbonization (HTC) of municipal solid waste. The fuel characteristics and combustion behavior of HTC-derived hydrochars were evaluated. Results clearly illustrated that the energy ranks of hydrochars were upgraded after HTC. For paper and wood, superior combustion performances of their hydrochars could achieve under suitable conditions. While for food, none positive enrichments on combustion loss rate were observed for hydrochars due to its high solubilization and decomposition under hot compressed water. It was noteworthy that a new weight loss peak was detected for paper and food, suggesting that new compounds were formed. For rubber, the HTC process made the properties of styrene butadiene rubber more close to natural rubber. Therefore, the first peak of hydrochars became significantly intense. While for plastic, only physical changes of polypropylene and polyethylene were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Provisional Peer-Reviewed Toxicity Values for Styrene-Acrylonitrile (San) Trimer

    EPA Science Inventory

    Provisional Peer-Reviewed Toxicity Values (PPRTV) assessments are developed for use by the Agency’s Office of Land and Emergency Management (OLEM) to support informed decisions in the Superfund program and at hazardous waste sites when a values is not available in the Integrated ...

  6. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  7. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  8. Structure and Ligand Binding Properties of the Epoxidase Component of Styrene Monooxygenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukaegbu, Uchechi E.; Kantz, Auric; Beaton, Michelle

    2010-07-23

    Styrene monooxygenase (SMO) is a two-component flavoprotein monooxygenase that transforms styrene to styrene oxide in the first step of the styrene catabolic and detoxification pathway of Pseudomonas putida S12. The crystal structure of the N-terminally histidine-tagged epoxidase component of this system, NSMOA, determined to 2.3 {angstrom} resolution, indicates the enzyme exists as a homodimer in which each monomer forms two distinct domains. The overall architecture is most similar to that of p-hydroxybenzoate hydroxylase (PHBH), although there are some significant differences in secondary structure. Structural comparisons suggest that a large cavity open to the surface forms the FAD binding site. Atmore » the base of this pocket is another cavity that likely represents the styrene binding site. Flavin binding and redox equilibria are tightly coupled such that reduced FAD binds apo NSMOA {approx}8000 times more tightly than the oxidized coenzyme. Equilibrium fluorescence and isothermal titration calorimetry data using benzene as a substrate analogue indicate that the oxidized flavin and substrate analogue binding equilibria of NSMOA are linked such that the binding affinity of each is increased by 60-fold when the enzyme is saturated with the other. A much weaker {approx}2-fold positive cooperative interaction is observed for the linked binding equilibria of benzene and reduced FAD. The low affinity of the substrate analogue for the reduced FAD complex of NSMOA is consistent with a preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene, identifying the apoenzyme structure as the key catalytic resting state of NSMOA poised to bind reduced FAD and initiate the oxygen reaction.« less

  9. Liquid-liquid phase separation in dilute solutions of poly(styrene sulfonate) with multivalent cations: Phase diagrams, chain morphology, and impact of temperature

    NASA Astrophysics Data System (ADS)

    Hansch, Markus; Hämisch, Benjamin; Schweins, Ralf; Prévost, Sylvain; Huber, Klaus

    2018-01-01

    The dilute solution behavior of sodium poly(styrene sulfonate) is studied in the presence of trivalent Al3+ and bivalent Ba2+ cations at various levels of excess NaCl. The study evaluates the phase behavior and the morphology of the polyelectrolyte chains with increasing extent of decoration with the Al3+ and Ba2+ cations and analyses the effect of temperature on these decorated chains. The phase behavior is presented in the form of the cation concentration versus the respective poly(styrene sulfonate) concentration, recorded at the onset of precipitation. Whereas poly(styrene sulfonate) with Al3+ exhibits a linear phase boundary, denoted as the "threshold line," which increases with increasing poly(styrene sulfonate) concentration, Ba2+ cations show a threshold line which is independent of the poly(styrene sulfonate) concentration. An additional re-entrant phase, at considerably higher cation content than those of the threshold lines, is observed with Al3+ cations but not with Ba2+ cations. The threshold line and the re-entrant phase boundary form parts of the liquid-liquid phase boundary observed at the limit of low polymer concentration. The dimensions of the polyelectrolyte chains shrink considerably while approaching the respective threshold lines on increase of the Al3+ and Ba2+ cation content. However, subtle differences occur between the morphological transformation induced by Al3+ and Ba2+. Most strikingly, coils decorated with Al3+ respond very differently to temperature variations than coils decorated with Ba2+ do. As the temperature increases, the poly(styrene sulfonate) chains decrease their size in the presence of Al3+ cations but increase in size in the presence of Ba2+ cations.

  10. Intriguing Morphology Evolution from Noncrosslinked Poly(tert-butyl acrylate) Seeds with Polar Functional Groups in Soap-Free Emulsion Polymerization of Styrene.

    PubMed

    Wang, Lu; Pan, Mingwang; Song, Shaofeng; Zhu, Lei; Yuan, Jinfeng; Liu, Gang

    2016-08-09

    Herein, we demonstrate a facile approach to prepare anisotropic poly(tert-butyl acrylate)/polystyrene (PtBA/PS) composite particles with controllable morphologies by soap-free seeded emulsion polymerization (SSEP). In the first step, noncrosslinked PtBA seeds with self-stabilizing polar functional groups (e.g., ester groups and radicals) are synthesized by soap-free emulsion polymerization. During the subsequent SSEP of styrene (St), PS bulges are nucleated on the PtBA seeds due to the microphase separation confined in the latex particles. The morphology evolution of PtBA/PS composite particles is tailored by varying the monomer/seed feed ratio, polymerization time, and polymerization temperature. Many intriguing morphologies, including hamburger-like, litchi-like, mushroom-like, strawberry-like, bowl-like, and snowman-like, have been acquired for PtBA/PS composite particles. The polar groups on the PtBA seed surface greatly influence the formation and further merging of PS/St bulges during the polymerization. A possible formation mechanism is proposed on the basis of experimental results. These complex composite particles are promising for applications in superhydrophobic coatings.

  11. The role of CO 2 as a soft oxidant for dehydrogenation of ethylbenzene to styrene over a high-surface-area ceria catalyst

    DOE PAGES

    Zhang, Li; Wu, Zili; Nelson, Nicholas; ...

    2015-09-22

    Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. A template assisted method was used to synthesize the high-surface-area ceria. The interactions between ethylbenzene, styrene and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ Diffuse Reflectance Infrared and Raman spectroscopy. Not only did CO2 as an oxidant favor the higher yield of styrene, but it also inhibited the deposition of coke during the ethylbenzene ODHmore » reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: Ethylbenzene is first dehydrogenated to styrene with H2 formed simultaneously, and then CO2 reacts with H2 via the reverse water gas shift. The styrene produced can easily polymerize to form polystyrene, a key intermediate for coke formation. In the absence of CO2, the polystyrene transforms into graphite-like coke at temperatures above 500 °C, which leads to catalyst deactivation. While in the presence of CO2, the coke deposition can be effectively removed via oxidation with CO2.« less

  12. 40 CFR 80.1101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fuel” includes cellulosic biomass ethanol, waste derived ethanol, biodiesel (mono-alkyl ester), non... the calendar year) does not exceed 75,000 barrels. (h) Biodiesel (mono-alkyl ester) means a motor... Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels.” ASTM D-6751-07 is incorporated...

  13. 40 CFR 80.1101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel” includes cellulosic biomass ethanol, waste derived ethanol, biodiesel (mono-alkyl ester), non... the calendar year) does not exceed 75,000 barrels. (h) Biodiesel (mono-alkyl ester) means a motor... Specification for Biodiesel Fuel Blendstock (B100) for Middle Distillate Fuels.” ASTM D-6751-07 is incorporated...

  14. Utilization of low-ash biochar to partially replace carbon black in SBR composites

    USDA-ARS?s Scientific Manuscript database

    A biochar made from woody waste feedstock with low ash content was blended with carbon black as filler for styrene-butadiene rubber. At 10% total filler concentration (w/w), composites made from 25 or 50% biochar showed improved tensile strength, elongation, and toughness compared to similar composi...

  15. Occurrence of brominated flame retardants in black thermo cups and selected kitchen utensils purchased on the European market.

    PubMed

    Samsonek, J; Puype, F

    2013-01-01

    In order to screen for the presence of a recycled polymer waste stream from waste electric and electronic equipment (WEEE), a market survey was conducted on black plastic food-contact articles (FCA). An analytical method was applied combining X-ray fluorescence spectrometry (XRF) with thermal desorption gas chromatography coupled with mass spectrometry (thermal desorption GC-MS). Firstly, XRF spectrometry was applied to distinguish bromine-positive samples. Secondly, bromine-positive samples were submitted for identification by thermal desorption GC-MS. Generally, the bromine-positive samples contained mainly technical decabromodiphenyl ether (decaBDE). Newer types of BFRs such as tetrabromobisphenol A (TBBPA), tetrabromobisphenol A bis(2,3-dibromopropyl), ether (TBBPA-BDBPE) and decabromodiphenylethane (DBDPE), replacing the polybrominated diphenyleters (PBDEs) and polybrominated diphenyls (PBBs), were also identified. In none of the tested samples were PBBs or hexabromocyclododecane (HBCD) found. Polymer identification was carried out using Fourier-transformed infrared spectroscopy measurement (FTIR) on all samples. The results indicate that polypropylene-polyethylene copolymers (PP-PE) and mainly styrene-based food-contact materials, such as acrylonitrile-butadiene-styrene (ABS) have the highest risk of containing BFRs.

  16. Waste water from citrus processing as a source of hesperidin by concentration on styrene-divinylbenzene resin.

    PubMed

    Di Mauro, A; Fallico, B; Passerini, A; Maccarone, E

    2000-06-01

    This paper describes a procedure for recovering hesperidin from the waste water of orange juice processing, namely, yellow water, by concentration of diluted extracts on styrene-divinylbenzene resin. Turbid raw material flowing out from centrifuges of essential oil separation contains considerable amount of hesperidin ( approximately 1 g/L) mainly associated with solid particles. Yellow water was treated with calcium hydroxide until pH 12 to solubilize hesperidin, filtered, neutralized at pH 6, and loaded on resin up to saturation. Desorption with 10% ethanol aqueous solutions at different NaOH concentrations (0.23-0.92 M) assured high concentration of hesperidin in selected fractions (10-78 g/L), from which it precipitated in high yield and purity immediately after acidification at pH 5. Best results were obtained using 0.46 M NaOH as eluent: 71.5% of the adsorbed hesperidin was desorbed in 300 mL, with an overall 64% yield of isolated product at 95.4% purity (HPLC). These experiments can constitute a useful starting point for an industrial application.

  17. Synthesis of methyl ester sulfonate surfactant from crude palm oil as an active substance of laundry liquid detergent

    NASA Astrophysics Data System (ADS)

    Slamet, Ibadurrohman, Muhammad; Wulandari, Pangiastika Putri

    2017-11-01

    Liquid detergent with combination of MES surfactant and TiO2 nanoparticles to remove and degrade the dirt in the form of methylene blue and produce waste with the lowest surfactant residual concentration has been done. The formation of MES is carried out by esterification and transesterification of crude palm oil, sulfonation, refining, and neutralization. The photocatalyst TiO2 nanoparticles is added as an additive to improve surfactant performance in removing dirt and degrading organic compounds. MES formation is performed by varying the mole ratio of the reactants in the esterification and transesterification reactions, and the mole ratios between methyl esters and NaHSO3 during the sulfonation reaction. Variations of MES surfactant and TiO2 nanoparticles compositions were performed to obtain detergent stability. Data analysis technique in this research is characterization of methyl ester, MES surfactant, and detergent using UV-Vis spectrophotometer instrument, FTIR, GC-MS, and LC-MS. The optimum conditions in the esterification and transesterification process were each mole ratio of 1: 6 between CPO and methanol based on the highest conversion, 99%. The optimum condition of the sulfonation process is the 1: 1.5 mole ratio between methyl ester and NaHSO3 based on the lowest surface tension value, which is about 36 dyne/cm.

  18. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  19. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    PubMed Central

    Jouffroy, Matthieu; Gramage-Doria, Rafael; Sémeril, David; Oberhauser, Werner; Toupet, Loïc

    2014-01-01

    Summary The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2. PMID:25383109

  20. Chemical compatibility screening test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.

    1997-12-01

    A program for evaluating packaging components that may be used in transporting mixed-waste forms has been developed and the first phase has been completed. This effort involved the screening of ten plastic materials in four simulant mixed-waste types. These plastics were butadiene-acrylonitrile copolymer rubber, cross-linked polyethylene (XLPE), epichlorohydrin rubber, ethylene-propylene rubber (EPDM), fluorocarbon (Viton or Kel-F), polytetrafluoroethylene, high-density polyethylene (HDPE), isobutylene-isoprene copolymer rubber (butyl), polypropylene, and styrene-butadiene rubber (SBR). The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) amore » mixture of ketones. The testing protocol involved exposing the respective materials to 286,000 rads of gamma radiation followed by 14-day exposures to the waste types at 60{degrees}C. The seal materials were tested using vapor transport rate (VTR) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criterion of 0.9 g/hr/m{sup 2} for VTR and a specific gravity change of 10% was used. Based on this work, it was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. For specific gravity testing of liner materials, the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE offered the greatest resistance to the combination of radiation and chemicals.« less

  1. DISPERSION POLYMERIZATION OF STYRENE IN SUPERCRITICAL CARBON DIOXIDE UTILIZING RANDOM COPOLYMERS INCLUDING FLUORINATED ACRYLATE FOR PREPARING MICRON-SIZE POLYSTYRENE PARTICLES. (R826115)

    EPA Science Inventory

    The dispersion polymerization of styrene in supercritical CO2 utilizing CO2-philic random copolymers was investigated. The resulting high yield of polystyrene particles in the micron-size range was formed using various random copolymers as stabilizers. The p...

  2. Molecular mechanisms of action of styrene toxicity in blood plasma and liver.

    PubMed

    Niaz, Kamal; Mabqool, Faheem; Khan, Fazlullah; Ismail Hassan, Fatima; Baeeri, Maryam; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Gholami, Mahdi; Abdollahi, Mohammad

    2017-10-01

    Styrene is an aromatic colorless hydrocarbon available in liquid form and highly volatile. In its pure form, it gives a sweet smell. The primary source of exposure in the environment is from plastic materials, rubber industries, packaging materials, insulations, and fiber glass and carpet industry. Natural sources of styrene include: few metabolites in plants which are transferred through food chain. The current study was designed to evaluate styrene toxicity, including: superoxide dismutase (SOD) and protein carbonyl, oxidative stress, glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GP), and phosphoenolpyruvate carboxykinase (PEPCK) activities, adenosine triphosphate (ATP) to adenosine diphosphate (ADP) ratio, and changes in gene expressions such as glutamate dehydrogenase 1 (GLUD1), glucose transporter 2 (GLUT2), and glucokinase (GCK) in the rat liver tissue. For this purpose, styrene was dissolved in corn oil and was administered via gavage, at doses 250, 500, 1000, 1500, 2000, mg/kg/day per mL and control (corn oil) to each rat with one day off in a week, for 42 days. Plasma SOD and protein carbonyl of plasma were significantly up-regulated in 1000, 1500, and 2000 mg/kg/day styrene administrated groups (P < .001). In addition, styrene caused an increase in lipid peroxidation (LPO) and reactive oxygen species (ROS) in the dose-dependent manners in liver tissue (P < .001). Furthermore, the ferrous reducing antioxidant power (FRAP) and total thiol molecules (TTM) in styrene-treated groups were significantly decreased in liver tissue (P < .001) with increasing doses. In treated rats, styrene significantly increased G6Pase activity (P < .001) and down-regulated GP activity (P < .001) as compared to the control group. The PEPCK activity was significantly raised in a dose-dependent manner (P < .001). The ATP/ADP ratio of live cells was significantly raised by increasing the dose (P < .001). There was significantly an up-regulation of GLUD1 and GCK at 2000 mg/kg group (P < .01) and a down-regulation for GLUT2 at the same dose. While in the rest of group, GLUT2 showed up-regulation of relative fold change. By targeting genes such as GLUD1, GLUT2, and GCK, disruption of hepatic gluconeogenesis, glycogenolysis, and insulin secretory functions are obvious. The present study illustrates that induction of oxidative stress followed by changes in G6Pase, GP, and PEPCK activities and the genes responsible for glucose metabolism are the mechanisms of styrene's action in the liver. © 2017 Wiley Periodicals, Inc.

  3. Removal of benzene, toluene, xylene and styrene by biotrickling filters and identification of their interactions

    PubMed Central

    Li, Enze; Li, Jianjun; Zeng, Peiyuan; Feng, Rongfang; Xu, Meiying

    2018-01-01

    Biotrickling filters (BTFs) are becoming very potential means to purify waste gases containing multiple VOC components, but the removal of the waste gases by BTF has been a major challenge due to the extremely complicated interactions among the components. Four biotrickling filters packed with polyurethane foam were employed to identify the interactions among four aromatic compounds (benzene, toluene, xylene and styrene). The elimination capacities obtained at 90% of removal efficiency for individual toluene, styrene and xylene were 297.02, 225.27 and 180.75 g/m3h, respectively. No obvious removal for benzene was observed at the inlet loading rates ranging from 20 to 450 g/m3h. The total elimination capacities for binary gases significantly decreased in all biotrickling filters. However, the removal of benzene was enhanced in the presence of other gases. The removal capacities of ternary and quaternary gases were further largely lowered. High-throughput sequencing results revealed that microbial communities changed greatly with the composition of gases, from which we found that: all samples were dominated either by the genus Achromobacter or the Burkholderia. Different gaseous combination enriched or inhibited some microbial species. Group I includes samples of BTFs treating single and binary gases and was dominated by the genus Achromobacter, with little Burkholderia inside. Group II includes the rest of the samples taken from BTFs domesticated with ternary and quaternary gases, and was dominated by the genus Burkholderia, with little Achromobacter detected. These genera were highly associated with the biodegradation of benzene series in BTFs. PMID:29293540

  4. Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst.

    PubMed

    Olutoye, M A; Lee, S C; Hameed, B H

    2011-12-01

    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. We report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We also find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates thatmore » block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. We can achieve significant improvements in yield by operating at higher temperatures, which render the site-blocking acrylates unstable.« less

  6. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    DOE PAGES

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; ...

    2016-03-18

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. We report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We also find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates thatmore » block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. We can achieve significant improvements in yield by operating at higher temperatures, which render the site-blocking acrylates unstable.« less

  7. Bioremediation of cooking oil waste using lipases from wastes

    PubMed Central

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  8. Bioremediation of cooking oil waste using lipases from wastes.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  9. Lignin-based monomers: Utilization in high-performance polymers and the effects of their structures on polymer properties

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph F., III

    With the uncertainty of petroleum reserves and future crude oil prices, lignocellulosic biomass is becoming an increasingly valuable resource for the sustainable development of fuels, chemicals, and materials, including vinyl ester resins (VERs). Petroleum-based VERs are used to produce polymer composites for a wide variety of commercial applications. Although possessing relatively high moduli, strengths, and glass transition temperatures, commercial VERs typically contain high concentrations of a reactive diluent, such as styrene. However, these reactive diluents are often considered hazardous air pollutants (HAPs), volatile organic compounds (VOCs), and anticipated carcinogens. Moreover, bisphenol-A, which has gained considerable attention due to potential associated health-related issues, is utilized as a precursor in the synthesis of VERs. A green chemistry and engineering approach in the development of new VERs and renewable reactive diluents that are based on lignin is presented in this dissertation. Lignin, which is currently an abundant, renewable waste product of the paper and pulping industry, is primarily burned as a low value fuel. However, lignin has the potential to be a low cost feedstock in future lignocellulosic biorefineries that could yield highly valuable aromatic chemicals (lignin model compounds, LMCs) when strategically depolymerized. The incorporation of aromaticity in a resin's chemical structure is known to improve overall polymer composite performance and the high aromatic content found in lignin is ideal for novel resin development. Highlighted in this dissertation are three projects: (1) the synthesis and characterization of a lignin-based bio-oil resin/reactive diluent, (2) the use of functionalized LMCs as styrene replacements in VERs, and (3) the synthesis and characterization of a vanillin-based resin. Through the use of traditional and new polymer theory coupled with spectroscopic, thermal, and mechanical techniques, structure-property relationships are identified and related to polymer performance. These findings have important implications for the optimization and design of polymer composites that are based on sustainable resources and processes, are petroleum-independent, and have reduced toxicity with beneficial environmental impacts. In addition, these findings provide the incentive for continued investment in using lignin as a respected materials' feedstock. Lastly, several lignin-related research opportunities of scientific and commercial interest are recommended.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Li; Wu, Zili; Nelson, Nicholas

    Catalytic performance and the nature of surface adsorbates were investigated for high-surface-area ceria during ethylbenzene oxidative dehydrogenation (ODH) reaction using CO2 as a soft oxidant. A template assisted method was used to synthesize the high-surface-area ceria. The interactions between ethylbenzene, styrene and CO2 on the surface of ceria and the role of CO2 for the ethylbenzene ODH reaction have been investigated in detail by using activity test, in situ Diffuse Reflectance Infrared and Raman spectroscopy. Not only did CO2 as an oxidant favor the higher yield of styrene, but it also inhibited the deposition of coke during the ethylbenzene ODHmore » reaction. Ethylbenzene ODH reaction over ceria followed a two-step pathway: Ethylbenzene is first dehydrogenated to styrene with H2 formed simultaneously, and then CO2 reacts with H2 via the reverse water gas shift. The styrene produced can easily polymerize to form polystyrene, a key intermediate for coke formation. In the absence of CO2, the polystyrene transforms into graphite-like coke at temperatures above 500 °C, which leads to catalyst deactivation. While in the presence of CO2, the coke deposition can be effectively removed via oxidation with CO2.« less

  11. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  12. Improved Photoinduced Fluorogenic Alkene-Tetrazole Reaction for Protein Labeling.

    PubMed

    Shang, Xin; Lai, Rui; Song, Xi; Li, Hui; Niu, Wei; Guo, Jiantao

    2017-11-15

    The 1,3-dipolar cycloaddition reaction between an alkene and a tetrazole represents one elegant and rare example of fluorophore-forming bioorthogonal chemistry. This is an attractive reaction for imaging applications in live cells that requires less intensive washing steps and/or needs spatiotemporal resolutions. In the present work, as an effort to improve the fluorogenic property of the alkene-tetrazole reaction, an aromatic alkene (styrene) was investigated as the dipolarophile. Over 30-fold improvement in quantum yield of the reaction product was achieved in aqueous solution. According to our mechanistic studies, the observed improvement is likely due to an insufficient protonation of the styrene-tetrazole reaction product. This finding provides useful guidance to the future design of alkene-tetrazole reactions for biological studies. Fluorogenic protein labeling using the styrene-tetrazole reaction was demonstrated both in vitro and in vivo. This was realized by the genetic incorporation of an unnatural amino acid containing the styrene moiety. It is anticipated that the combination of styrene with different tetrazole derivatives can generally improve and broaden the application of alkene-tetrazole chemistry in real-time imaging in live cells.

  13. Synthesis and photooxidation of styrene copolymer bearing camphorquinone pendant groups

    PubMed Central

    Moszner, Norbert; Lukáč, Ivan

    2012-01-01

    Summary (±)-10-Methacryloyloxycamphorquinone (MCQ) was synthesized from (±)-10-camphorsulfonic acid either by a known seven-step synthetic route or by a novel, shorter five-step synthetic route. MCQ was copolymerized with styrene (S) and the photochemical behavior of the copolymer MCQ/S was compared with that of a formerly studied copolymer of styrene with monomers containing the benzil (BZ) moiety (another 1,2-dicarbonyl). Irradiation (λ > 380 nm) of aerated films of styrene copolymers with monomers containing the BZ moiety leads to the insertion of two oxygen atoms between the carbonyl groups of BZ and to the formation of benzoyl peroxide (BP) as pendant groups on the polymer backbone. An equivalent irradiation of MCQ/S led mainly to the insertion of only one oxygen atom between the carbonyl groups of camphorquinone (CQ) and to the formation of camphoric anhydride (11) covalently bound to the polymer backbone. While the decomposition of pendant BP groups formed in irradiated films of styrene copolymers with pendant BZ groups leads to crosslinking, only small molecular-weight changes in irradiated MCQ/S were observed. PMID:22509202

  14. Styrene Oxide Isomerase of Rhodococcus opacus 1CP, a Highly Stable and Considerably Active Enzyme

    PubMed Central

    Gröning, Janosch A. D.; Tischler, Dirk; Kaschabek, Stefan R.; Schlömann, Michael

    2012-01-01

    Styrene oxide isomerase (SOI) is involved in peripheral styrene catabolism of bacteria and converts styrene oxide to phenylacetaldehyde. Here, we report on the identification, enrichment, and biochemical characterization of a novel representative from the actinobacterium Rhodococcus opacus 1CP. The enzyme, which is strongly induced during growth on styrene, was shown to be membrane integrated, and a convenient procedure was developed to highly enrich the protein in active form from the wild-type host. A specific activity of about 370 U mg−1 represents the highest activity reported for this enzyme class so far. This, in combination with a wide pH and temperature tolerance, the independence from cofactors, and the ability to convert a spectrum of substituted styrene oxides, makes a biocatalytic application imaginable. First, semipreparative conversions were performed from which up to 760 μmol of the pure phenylacetaldehyde could be obtained from 130 U of enriched SOI. Product concentrations of up to 76 mM were achieved. However, due to the high chemical reactivity of the aldehyde function, SOI was shown to be the subject of an irreversible product inhibition. A half-life of 15 min was determined at a phenylacetaldehyde concentration of about 55 mM, indicating substantial limitations of applicability and the need to modify the process. PMID:22504818

  15. Sustainability of Recycled ABS and PA6 by Banana Fiber Reinforcement: Thermal, Mechanical and Morphological Properties

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder; Kumar, Ranvijay; Ranjan, Nishant

    2018-01-01

    In the present study efforts have been made to prepare functional prototypes with improved thermal, mechanical and morphological properties from polymeric waste for sustainability. The primary recycled acrylonitrile butadiene styrene (ABS) and polyamide 6 (PA6) has been selected as matrix material with bio-degradable and bio-compatible banana fibers (BF) as reinforcement. The blend (in form of feed stock filament wire) of ABS/PA6 and BF was prepared in house by conventional twin screw extrusion (TSE) process. Finally feed stock filament of ABS/PA6 reinforced with BF was put to run on open source fused deposition modelling based three dimensional printer (without any change in hardware/software of the system) for printing of functional prototypes with improved thermal/mechanical/morphological properties. The results are supported by photomicrographs, thermographs and mechanical testing.

  16. High-Speed Photorefractive Response Capability in Triphenylamine Polymer-Based Composites

    NASA Astrophysics Data System (ADS)

    Tsujimura, Sho; Kinashi, Kenji; Sakai, Wataru; Tsutsumi, Naoto

    2012-06-01

    We present here the poly(4-diphenylamino)styrene (PDAS)-based photorefractive composites with a high-speed response time. PDAS was synthesized as a photoconductive polymer and photorefractive polymeric composite (PPC) films by using triphenylamine (TPA) (or ethylcarbazole, ECZ), 4-homopiperidino-2-fluorobenzylidene malononitrile (FDCST), and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were investigated. The photorefractive quantities of the PDAS-based PPCs were determined by a degenerate four-wave mixing (DFWM) technique. Additionally, the holographic images were recorded through an appropriate PDAS-based PPC. Those holographic images clearly reconstruct the original motion with high-speed quality. The present approach provides a promising candidate for the future application of dynamic holographic displays.

  17. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    PubMed

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  18. Direct evidence for the gas phase thermal polymerization of styrene. Determination of the initiation mechanism and structures of the early oligomers by ion mobility.

    PubMed

    Alsharaeh, Edreese H; Ibrahim, Yehia M; El-Shall, M Samy

    2005-05-04

    We present here direct evidence for the thermal self-initiated polymerization of styrene in the gas phase and establish that the initiation process proceeds via essentially the same mechanism (the Mayo mechanism) as in condensed phase polymerization. Furthermore, we provide structural identifications of the dimers and trimers formed in the gas phase.

  19. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China.

    PubMed

    Wan, Weining; Zhang, Shuzhen; Huang, Honglin; Wu, Tong

    2016-07-01

    This study for the first time reported the occurrence, distribution and concentrations of organophosphate esters (OPEs) in soils caused by plastic waste treatment, as well as their influence on OPE accumulation in wheat (Triticum aestivum L.). Eight OPEs were detected with the total concentrations of 38-1250 ng/g dry weight in the soils from the treatment sites, and tributoxyethyl phosphate and tri(2-chloroethyl) phosphate present as the dominant OPEs. There were similar distribution patterns of OPEs and significant correlations between the total OPE concentrations in the soils from the plastic waste treatment sites with those in the nearby farmlands (P < 0.005), indicating that plastic waste treatment caused the OPE contamination of farmland soils. The uptake and translocation of OPEs by wheat were determined, with OPEs of high hydrophobicity more easily taken up from soils and OPEs with low hydrophobicity more liable to be translocated acropetally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Separation of polycarbonate and acrylonitrile–butadiene–styrene waste plastics by froth flotation combined with ammonia pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chong-qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, Qun

    Highlights: • Ammonia treatment changes selectively floatability of PC. • The effects of ammonia on PC were investigated through contact angle and XPS. • Reactions between ammonia and PC surface make PC more hydrophilic. • PC and ABS mixtures with different particle sizes were separated effectively. - Abstract: The objective of this research is flotation separation of polycarbonate (PC) and acrylonitrile–butadiene–styrene (ABS) waste plastics combined with ammonia pretreatment. The PC and ABS plastics show similar hydrophobicity, and ammonia treatment changes selectively floatability of PC plastic while ABS is insensitive to ammonia treatment. The contact angle measurement indicates the dropping ofmore » flotation recovery of PC is ascribed to a decline of contact angle. X-ray photoelectron spectroscopy demonstrates reactions occur on PC surface, which makes PC surface more hydrophilic. Separation of PC and ABS waste plastics was conducted based on the flotation behavior of single plastic. At different temperatures, PC and ABS mixtures were separated efficiently through froth flotation with ammonia pretreatment for different time (13 min at 23 °C, 18 min at 18 °C and 30 min at 23 °C). For both PC and ABS, the purity and recovery is more than 95.31% and 95.35%, respectively; the purity of PC and ABS is up to 99.72% and 99.23%, respectively. PC and ABS mixtures with different particle sizes were separated effectively, implying that ammonia treatment possesses superior applicability.« less

  1. Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Wang, Zhigang; Hu, Hongjiu; Liang, Yuguang; Wang, Mengyang

    2009-07-01

    Chromium-containing mesoporous silica material Cr-MSU-1 was synthesized using lauryl alcohol-polyoxyethylene (23) ether as templating agent under the neutral pH condition by two-step method. The sample was characterized by XRD, TEM, FT-IR, UV-Vis, ESR, ICP-AES and N 2 adsorption. Its catalytic performance for oxidation of styrene was studied. Effects of the solvent used, the styrene/H 2O 2 mole ratio and the reaction temperature and time on the oxidation of styrene over the Cr-MSU-1 catalyst were examined. The results indicate that Cr ions have been successfully incorporated into the framework of MSU-1 and the Cr-MSU-1 material has a uniform worm-like holes mesoporous structure. After Cr-MSU-1 is calcined, most of Cr 3+ is oxidized to Cr 5+ and Cr 6+ in tetrahedral coordination and no extra-framework Cr 2O 3 is formed. The Cr-MSU-1 catalyst is highly active for the selective oxidation of styrene and the main reaction products over Cr-MSU-1 are benzaldehyde and phenylacetaldehyde. Its catalytic performance remains stable within five repeated runs and no leaching is noticed for this chromium-based catalyst.

  2. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Strategy for Nonmigrating Plasticized PVC Modified with Mannich base of Waste Cooking Oil Methyl Ester.

    PubMed

    Jia, Puyou; Zhang, Meng; Hu, Lihong; Song, Fei; Feng, Guodong; Zhou, Yonghong

    2018-01-25

    The waste cooking oil (WCO) production from the catering industry and food processing industry causes serious environmental, economic and social problems. However, WCO can be used for the preparation of fine chemicals such as internal plasticizer. With this aim, this work is focused on preparing internal plasticizer by using WCO and determining technical viability of non-migration poly (vinyl chloride) (PVC) materials. The mannich base of waste cooking oil methyl ester (WCOME) was synthesized from WCO via esterification, interesterification and mannich reaction, which was used to produce self-plasticization PVC materials as an internal plasticizer. The results showed that the PVC was plasticized effectively. Self-plasticization PVC films showed no migration in n-hexane, but 15.7% of dioctyl phthalate (DOP) leached from DOP/PVC(50/50) system into n-hexane. These findings transformed the traditional plastic processing technology and obtained cleaner production of no migration plasticizer from WCO.

  4. Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces

    PubMed Central

    Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.

    2012-01-01

    We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region between copolymer blocks in triblock copolymers providing control over the interfacial interactions in our nanoscale phase-separated materials independent of molecular weight and block constituents. Additionally, we show the ability to retain a desirous and complex multiply-continuous network structure (alternating gyroid) in our dual-tapered triblock material. PMID:23066522

  5. Selectivity switch for nitrogen functionalization of styrene on Au(1 1 1)

    NASA Astrophysics Data System (ADS)

    Deng, Xingyi; Friend, Cynthia M.

    2008-03-01

    Functionalization of styrene to form N-containing hydrocarbons, e.g. 2-phenylaziridine, benzonitrile, and benzyl nitrile, is achieved by reaction with adsorbed NH a and N a on Au(1 1 1). Electron-induced decomposition of condensed NH 3 was used to produce NH a, N a and H a on Au(1 1 1) at 110 K. The selectivity of the reactions is strongly dependent on the relative concentrations of the surface species. The addition of NH to styrene results in the production of 2-phenylaziridine, whereas adsorbed N and H atoms lead to the formation of nitriles benzonitrile and benzyl nitrile and, respectively, ethylbenzene. This work clearly establishes the utility of Au for promoting functionalization of olefins with nitrogen.

  6. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants.

    PubMed

    Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F

    2013-01-01

    In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Method of making a cyanate ester foam

    DOEpatents

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  8. Role of CO2 in the oxy-dehydrogenation of ethylbenzene to styrene on the CeO2(111) surface

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Xia; Feng, Jie; Li, Wen-Ying; Li, Xiao-Hong; Wiltowski, Tomasz; Ge, Qing-Feng

    2018-01-01

    The role of CO2 in the ethylbenzene oxy-dehydrogenation to styrene on the CeO2(111) surface was thoroughly investigated by the density functional theory (DFT) calculations. Results show that the first Csbnd H bond of ethylbenzene is activated via the oxo-insertion with a barrier of 1.70 eV, resulting in a 2-phenylethyl species and an H atom adsorbed on two-adjacent-lattice oxygen. The H adatom forms a hydroxyl-like species (denoted as O*H). The subsequent dehydrogenation to styrene can be assisted by either the next lattice oxygen (pathway R1) or the O*H species (pathway R2). The two pathways have almost the same activation energy (0.84 eV for R1 and 0.85 eV for R2), forming a new O*H and desorbing a H2O molecule while leaving an oxygen vacancy on the surface, respectively. In the presence of CO2, it will react with O*H through the reverse water gas shift reaction with an activation barrier of 0.98 eV and reaction energy of 0.30 eV. The reverse water gas shift reaction helps to clear the H adatoms from the lattice oxygen, thereby competing with styrene formation via pathway R2. However, the activation energy following the reverse water gas shift mechanism is 0.13 eV higher than that of styrene formation via pathway R2. Therefore, the formation of oxygen vacancy cannot be inhibited, while CO2 can react with the surface oxygen vacancy to produce CO with a high activation energy of 2.10 eV.

  9. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  10. Production of Mahua Oil Ethyl Ester (MOEE) and its Performance test on four stroke single cylinder VCR engine

    NASA Astrophysics Data System (ADS)

    Soudagar, Manzoor Elahi M.; Kittur, Prasanna; Parmar, Fulchand; Batakatti, Sachin; Kulkarni, Prasad; Kallannavar, Vinayak

    2017-08-01

    Biodiesel is a substitute for gasoline that is produced from vegetable oils and animal fats. It has gained popularity due to depleting fossil fuel resources, its renewable character and comparable combustion properties to diesel fuel. Biodiesel is formed from non-edible oils, edible oils, tallow, animal fats and waste cooked oils. Biodiesels are monoalkyl esters of elongated chain fatty acids. Biodiesel can be a viable choice for satisfying long term energy requirements if they are managed proficiently. The method of the transesterification shows how the reaction occurs and advances. In this study, biodiesel is produced from Madhuca indica seeds commonly known as Mahua by using transesterification process using a low capacity pressure reactor and by-product of transesterification is glycerol, which is used in preparation of soaps. Mahua Oil Ethyl Ester (MOEE) was produced from the Mahua oil and is mixed with diesel to get different ratios of blends. MOEE was tested in a 4-stroke single cylinder VCR diesel engine. The study was extended to understand the effect of biodiesel blend magnitude on the performance of engine parameters like, brake thermal efficiency, brake power and fuel properties like flash point, cloud point, kinematic viscosity, calorific value, cetane number and density were studied.

  11. The influences of ammonia on aerosol formation in the ozonolysis of styrene: roles of Criegee intermediate reactions

    PubMed Central

    Ma, Qiao; Lin, Xiaoxiao; Yang, Chengqiang; Long, Bo; Zhang, Weijun

    2018-01-01

    The influences of ammonia (NH3) on secondary organic aerosol (SOA) formation from ozonolysis of styrene have been investigated using chamber experiments and quantum chemical calculations. With the value of [O3]0/[styrene]0 ratios between 2 and 4, chamber experiments were carried out without NH3 or under different [NH3]/[styrene]0 ratios. The chamber experiments reveal that the addition of NH3 led to significant decrease of SOA yield. The overall SOA yield decreased with the [NH3]0/[styrene]0 increasing. In addition, the addition of NH3 at the beginning of the reaction or several hours after the reaction occurs had obviously different influence on the yield of SOA. Gas phase reactions of Criegee intermediates (CIs) with aldehydes and NH3 were studied in detail by theoretical methods to probe into the mechanisms behind these phenomena. The calculated results showed that 3,5-diphenyl-1,2,4-trioxolane, a secondary ozonide formed through the reactions of C6H5ĊHOO· with C6H5CHO, could make important contribution to the aerosol composition. The addition of excess NH3 may compete with aldehydes, decreasing the secondary ozonide yield to some extent and thus affect the SOA formation. PMID:29892406

  12. Microbial formation of esters.

    PubMed

    Park, Yong Cheol; Shaffer, Catherine Emily Horton; Bennett, George N

    2009-11-01

    Small aliphatic esters are important natural flavor and fragrance compounds and have numerous uses as solvents and as chemical intermediates. Besides the chemical or lipase-catalyzed formation of esters from alcohols and organic acids, small volatile esters are made by several biochemical routes in microbes. This short review will cover the biosynthesis of esters from acyl-CoA and alcohol condensation, from oxidation of hemiacetals formed from aldehydes and alcohols, and from the insertion of oxygen adjacent to the carbonyl group in a straight chain or cyclic ketone by Baeyer-Villiger monooxygenases. The physiological role of the ester-forming reactions can allow degradation of ketones for use as a carbon source and may play a role in detoxification of aldehydes or recycling cofactors. The enzymes catalyzing each of these processes have been isolated and characterized, and a number of genes encoding the proteins from various microbes have been cloned and functionally expressed. The use of these ester-forming organisms or recombinant organisms expressing the appropriate genes as biocatalysts in biotechnology to make specific esters and chiral lactones has been studied in recent years.

  13. Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water.

    PubMed

    Özer, Elif Tümay; Osman, Bilgen; Yazıcı, Tuğçe

    2017-06-02

    The aim of this study was to investigate the usability of newly synthesized dummy molecularly imprinted microbeads (DMIMs) as a solid phase extraction (SPE) material to determine six phthalate esters (PEs) in water by GC-MS analysis. Diethyl phthalate (DEP) was used as a dummy template to prepare poly(ethylene glycol dimethacrylate N-methacryloyl-l-tryptophan methyl ester) [PEMATrp)] DMIMs by using suspension polymerization. The PEMATrp DMIMs were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Firstly, the adsorption capacities of the DMIMs prepared in different template molecule (DEP) to functional monomer (MATrp) ratios were investigated by using DEP solutions in the concentration range of 1-500mg/L at pH 3.0. Styrene and vanillic acid were used to evaluate the selectivity of the prepared DMIMs towards the template molecule (DEP). Then, the best analytical conditions were investigated for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) in aqueous media by using the PEMATrp DMIMs as SPE material. Validation experiments showed that the PEMATrp DMIMs-SPE method had good linearity at 12.5-250.0μg/L (0.988-0.999), good precision (1.2-5.9%), and limits of detection in a range of 0.31-0.41μg/L. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Simultaneous determination of the styrene unit content and assessment of molecular weight of triblock copolymers in adhesives by a size exclusion chromatography method.

    PubMed

    Wang, Mingfang; Wang, Yuerong; Luo, Pei; Zhang, Hongyang; Zhang, Min; Hu, Ping

    2017-10-01

    The content of styrene units in nonhydrogenated and hydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers significantly influences product performance. A size exclusion chromatography method was developed to determine the average styrene content of triblock copolymers blended with tackifier in adhesives. A complete separation of the triblock copolymer from the other additives was realized with size exclusion chromatography. The peak area ratio of the UV and refraction index signals of the copolymers at the same effective elution volume was correlated to the average styrene unit content using nuclear magnetic resonance spectroscopy with commercial copolymers as standards. The obtained calibration curves showed good linearity for both the hydrogenated and nonhydrogenated styrene-butadiene-styrene and styrene-isoprene-styrene triblock copolymers (r = 0.974 for styrene contents of 19.3-46.3% for nonhydrogenated ones and r = 0.970 for the styrene contents of 23-58.2% for hydrogenated ones). For copolymer blends, the developed method provided more accurate average styrene unit contents than nuclear magnetic resonance spectroscopy provided. These results were validated using two known copolymer blends consisting of either styrene-isoprene-styrene or hydrogenated styrene-butadiene-styrene and a hydrocarbon tackifying resin as well as an unknown adhesive with styrene-butadiene-styrene and an aromatic tackifying resin. The methodology can be readily applied to styrene-containing polymers in blends such as poly(acrylonitrile-butadiene styrene). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Surface monolayers of well-defined amphiphilic block copolymer composed of poly(acrylic acid) or poly(oxyethylene) and poly(styrene). Interpolymer complexation at the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki

    1990-01-01

    Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.

  16. Investigation of Proton Conductivity of Cation-Exchanged, Sulfonated Poly(b-Styrene-b-Isobutylene-b-Styrene) Membranes

    DTIC Science & Technology

    2009-09-01

    solvents. Similar behavior was observed for Nafion -117 (also a polymer with ionic SO3H clusters) by other researchers (14). Results shown in this...pattern was only valid for ionic S-SIBS membranes exchanged with cations; neither acid form of SIBS-97-H nor Nafion -117 fell on this line. In order...10  vi INTENTIONALLY LEFT BLANK. 1 1. Introduction Research in ionic polymers has been gaining popularity in the scientific community

  17. PERFORMANCE ENHANCEMENT OF COMPRESSION MOLDED KENAF FIBER REINFORCED VINYL ESTER COMPOSITES THROUGH RESIN ADDITIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin

    2010-05-17

    Plant-based bio-fiber has the potential to achieve weight and cost savings over glass fiber in automotive polymer composites if moisture stability and fiber-resin compatibility issues can be solved. This paper describes the compression molding of 50vol% 2 inch random nonwoven mat kenaf fiber vinyl ester composites with and without chemical resin additives intended to improve moisture stability and resin compatibility. The 2wt% addition of n-undecanoyl chloride or 10-undecenoyl chloride to the styrene-based resin prior to molding of the kenaf composites was observed to decrease the 24hr, 25oC moisture uptake of the molded panels by more than 50%. The tensile stiffnessmore » and flexural stiffness of the soaked panels containing these additives were seen to increase by more than 30% and 70%, respectively, relative to panels made with no additives. While ‘dry’ panel (50% relative humidity at 25oC) strengths did not significantly change in the presence of the additives, tensile strength was observed to increase by more than 40% and flexural strength more than doubled for the soaked panels.« less

  18. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.

    PubMed

    Adrados, A; de Marco, I; Caballero, B M; López, A; Laresgoiti, M F; Torres, A

    2012-05-01

    Pyrolysis may be an alternative for the reclamation of rejected streams of waste from sorting plants where packing and packaging plastic waste is separated and classified. These rejected streams consist of many different materials (e.g., polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), acrylonitrile butadiene styrene (ABS), aluminum, tetra-brik, and film) for which an attempt at complete separation is not technically possible or economically viable, and they are typically sent to landfills or incinerators. For this study, a simulated plastic mixture and a real waste sample from a sorting plant were pyrolyzed using a non-stirred semi-batch reactor. Red mud, a byproduct of the aluminum industry, was used as a catalyst. Despite the fact that the samples had a similar volume of material, there were noteworthy differences in the pyrolysis yields. The real waste sample resulted, after pyrolysis, in higher gas and solid yields and consequently produced less liquid. There were also significant differences noted in the compositions of the compared pyrolysis products. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials.

    PubMed

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-08-26

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials.

  20. Investigation on Using SBS and Active Carbon Filler to Reduce the VOC Emission from Bituminous Materials

    PubMed Central

    Cui, Peiqiang; Wu, Shaopeng; Li, Fuzhou; Xiao, Yue; Zhang, Honghua

    2014-01-01

    Bituminous materials are playing a vital role in pavement design and the roofing industry because of outstanding properties. Unfortunately, bituminous materials will release volatile organic compounds (VOC), making them non-environmentally friendly. Therefore, technologies that can be used to decrease the VOC emission are urgently required. In this research, the VOC emission and material behaviors were analyzed and compared to investigate the possibility of adding styrene butadiene styrene (SBS) and active carbon filler into bituminous materials to develop environmentally-friendly materials. Thermal gravimetric analysis-mass spectrometry (TG-MS) and ultraviolet-visible spectroscopy testing (UV-Vis) were employed to characterize the VOC emission process. Temperature sweep testing and frequency sweep testing were conducted to evaluate the rheological properties of bituminous materials. Research results indicated that the combined introduction of 4 wt% styrene butadiene styrene (SBS) and 4 wt% active carbon filler cannot only significantly lower the VOC emission speed and amount, but also improve the deformation resistance behavior at a higher temperature. SBS and active carbon filler can be used to reduce the VOC emission form bituminous materials. PMID:28788181

  1. Super-enhanced particle nucleation in styrene emulsion polymerization in the presence of sodium styrene sulfonate.

    PubMed

    Farias-Cepeda, Lorena; Herrera-Ordonez, Jorge; Hernandez-Martinez, Angel R; Estevez, Miriam; Rosales-Marines, Lucero

    2017-08-15

    The styrene (St) emulsion polymerization using Aerosol MA80 as surfactant and in the presence of sodium styrene sulfonate (NaSS) was studied. The effect of NaSS content was assessed using MA80 concentrations below and at the critical micellar concentration. It was found that at the higher NaSS and MA80 contents, the number of particles (N) reaches a maximum of the order of 10 17 particles/cm 3 water, a huge value that has never been reported. In this work an explanation for this super-enhanced particle nucleation phenomenon is proposed. Such hypothesis is based on the role of St-NaSS oligomers formed in the aqueous phase and their synergy with MA80 molecules to provide colloidal stability to the system. The proposal seems to be consistent with the experimental data obtained for the evolution of monomer conversion, N, particles size distribution and the wideness of this latter as well as with a theoretical estimation of the N. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Reinforcement of SBR/waste rubber powder vulcanizate with in situ generated zinc dimethacrylate

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Cheng, B. K.; Zhang, X.; Jia, D. M.

    2016-07-01

    Methyl acrylic acid/zinc oxide (MAA/ZnO) was introduced to modify styrene- butadiene rubber/waste rubber powder (SBR/WRP) composites by blending. The enhanced mechanical properties and processing ability were presumably originated from improved compatibility and interfacial interaction between WRP and the SBR matrix by the in situ polymerization of zinc dimethacrylate (ZDMA). A refined interface of the modified SBR/WRP composite was observed by scanning electron microscopy. The formation of ZDMA significantly increased the ionic bond content in the vulcanizate, resulting in exceptional mechanical performance. The comprehensive mechanical properties including tensile strength, tear strength and dynamic heat-building performance reached optimum values with 16 phr MAA.

  3. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  4. Engineered catalytic biofilms for continuous large scale production of n-octanol and (S)-styrene oxide.

    PubMed

    Gross, Rainer; Buehler, Katja; Schmid, Andreas

    2013-02-01

    This study evaluates the technical feasibility of biofilm-based biotransformations at an industrial scale by theoretically designing a process employing membrane fiber modules as being used in the chemical industry and compares the respective process parameters to classical stirred-tank studies. To our knowledge, catalytic biofilm processes for fine chemicals production have so far not been reported on a technical scale. As model reactions, we applied the previously studied asymmetric styrene epoxidation employing Pseudomonas sp. strain VLB120ΔC biofilms and the here-described selective alkane hydroxylation. Using the non-heme iron containing alkane hydroxylase system (AlkBGT) from P. putida Gpo1 in the recombinant P. putida PpS81 pBT10 biofilm, we were able to continuously produce 1-octanol from octane with a maximal productivity of 1.3 g L ⁻¹(aq) day⁻¹ in a single tube micro reactor. For a possible industrial application, a cylindrical membrane fiber module packed with 84,000 polypropylene fibers is proposed. Based on the here presented calculations, 59 membrane fiber modules (of 0.9 m diameter and 2 m length) would be feasible to realize a production process of 1,000 tons/year for styrene oxide. Moreover, the product yield on carbon can at least be doubled and over 400-fold less biomass waste would be generated compared to classical stirred-tank reactor processes. For the octanol process, instead, further intensification in biological activity and/or surface membrane enlargement is required to reach production scale. By taking into consideration challenges such as biomass growth control and maintaining a constant biological activity, this study shows that a biofilm process at an industrial scale for the production of fine chemicals is a sustainable alternative in terms of product yield and biomass waste production. Copyright © 2012 Wiley Periodicals, Inc.

  5. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.

    PubMed

    Hindryawati, Noor; Maniam, Gaanty Pragas

    2015-01-01

    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Statistical optimization for lipase production from solid waste of vegetable oil industry.

    PubMed

    Sahoo, Rajesh Kumar; Kumar, Mohit; Mohanty, Swati; Sawyer, Matthew; Rahman, Pattanathu K S M; Sukla, Lala Behari; Subudhi, Enketeswara

    2018-04-21

    The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693 mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.

  7. Process Window for Direct Recycling of Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and Electronic Equipment Waste.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2017-01-01

    The aim of this paper is to assess recycling process window of ABS (Acrylonitrile-Butadiene-Styrene) and HIPS (High impact Polystyrene) from WEEE (waste from electrical and electronic equipment) through a final properties/structure screening study on their blends. Main motivation is to evaluate which amount of one plastic WEEE can be included into the other at least keeping their properties. In this sense, a wider margin of error during sorting could be admitted to obtain recycling materials with similar technological application of recycled ABS and HIPS by themselves. Results are discussed in terms of final blend structure, focusing in the interaction, within blends, of copolymers phases and fillers presents in WEEE. The comparative analysis of mechanical performance and morphology of HIPS/ABS blends indicates that the addition of 50wt% HIPS to ABS even improves 50% the elongation at break maintaining the strength. On the opposite, HIPS maintains its properties with 20wt% of ABS added. This study allows enlarging composition process window of recycling plastic WEEE for similar applications. This could be a sustainable way to improve benefit of e-scrap with low costs and easy processability. In consequence, social interest in the recycling of this kind of plastic scrap could be encourage from either ecological or economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure.

    PubMed

    Koga, Tomoyuki; Aso, Eri; Higashi, Nobuyuki

    2016-11-29

    Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser) ester -b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.

  9. Kinetics and mechanism of styrene epoxidation by chlorite: role of chlorine dioxide.

    PubMed

    Leigh, Jessica K; Rajput, Jonathan; Richardson, David E

    2014-07-07

    An investigation of the kinetics and mechanism for epoxidation of styrene and para-substituted styrenes by chlorite at 25 °C in the pH range of 5-6 is described. The proposed mechanism in water and water/acetonitrile includes seven oxidation states of chlorine (-I, 0, I, II, III, IV, and V) to account for the observed kinetics and product distributions. The model provides an unusually detailed quantitative mechanism for the complex reactions that occur in mixtures of chlorine species and organic substrates, particularly when the strong oxidant chlorite is employed. Kinetic control of the reaction is achieved by the addition of chlorine dioxide to the reaction mixture, thereby eliminating a substantial induction period observed when chlorite is used alone. The epoxidation agent is identified as chlorine dioxide, which is continually formed by the reaction of chlorite with hypochlorous acid that results from ClO produced by the epoxidation reaction. The overall stoichiometry is the result of two competing chain reactions in which the reactive intermediate ClO reacts with either chlorine dioxide or chlorite ion to produce hypochlorous acid and chlorate or chloride, respectively. At high chlorite ion concentrations, HOCl is rapidly eliminated by reaction with chlorite, minimizing side reactions between HOCl and Cl2 with the starting material. Epoxide selectivity (>90% under optimal conditions) is accurately predicted by the kinetic model. The model rate constant for direct reaction of styrene with ClO2(aq) to produce epoxide is (1.16 ± 0.07) × 10(-2) M(-1) s(-1) for 60:40 water/acetonitrile with 0.20 M acetate buffer. Rate constants for para substituted styrenes (R = -SO3(-), -OMe, -Me, -Cl, -H, and -NO2) with ClO2 were determined. The results support the radical addition/elimination mechanism originally proposed by Kolar and Lindgren to account for the formation of styrene oxide in the reaction of styrene with chlorine dioxide.

  10. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization.

    PubMed

    Vazquez, Yamila V; Barbosa, Silvia E

    2016-07-01

    Plastic waste from electrical and electronic equipment (WEEE) grows up exponentially fast in the last two decades. Either consumption increase of technological products, like cellphones or computers, or the short lifetime of this products contributes to this rise generating an accumulation of specific plastic materials such ABS (Acrylonitrile-Butadiene-Styrene), HIPS (High impact Polystyrene), PC (Polycarbonate), among others. All of they can be recycled by themselves. However, to separate them by type is neither easy nor economically viable, then an alternative is recycling them together as a blend. Taking into account that could be a deterioration in final properties, to enhance phase adhesion and add value to a new plastic WEEE blend a compatibilization is needed. In this work, a systematical study of different compatibilizers for blends of HIPS and ABS from WEEE was performed. A screening analysis was carried out by adding two different compatibilizer concentration (2wt% and 20wt%) on a HIPS/ABS physical blend 80/20 proportion from plastic e-waste. Three copolymers were selected as possible compatibilizers by their possible affinity with initial plastic WEEE. A complete characterization of each WEEE was performed and compatibilization efficiency was evaluated by comparing either mechanical or morphological blends aspects. Considering blends analyzed in this work, the best performance was achieved by using 2% of styrene-acrylonitrile rubber, obtaining a compatibilized blend with double ultimate strength and modulus respect to the physical blend, and also improve mechanical properties of initial WEEE plastics. The proposed way is a promise route to improve benefit of e-scrap with sustainable, low costs and easy handling process. Consequently, social recycling interest will be encouraged by both ecological and economical points of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    Methods and systems for making dibasic esters and/or dibasic acids using metathesis are generally disclosed. In some embodiments, the methods comprise reacting a terminal olefin ester with an internal olefin ester in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In some embodiments, the terminal olefin ester or the internal olefin ester are derived from a renewable feedstock, such as a natural oil feedstock. In some such embodiments, the natural oil feedstock, or a transesterified derivative thereof, is metathesized to make the terminal olefin ester or the internal olefin ester.

  12. Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5'-amp with n-acetylaminoacyl imidazolides - Implications regarding the origin of protein synthesis

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, Nalinie S. M. D.; Lacey, James C., Jr.

    1992-01-01

    Procedure for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikh et al. (1970) and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2', 3' esters are formed in addition to the monoesters. However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5'-AMP and discuss the relevance of the findings to the origin of protein synthesis.

  13. Confirmation of monod model for biofiltration of styrene vapors from waste flue gas.

    PubMed

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; Aslhashemi, Ahmad

    2012-01-01

    The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution.

  14. Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners.

    PubMed

    Ruan, Jujun; Qin, Baojia; Huang, Jiaxin

    2018-05-31

    Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe 3 O 4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Investigation of styrene in the liver perfusion/cell culture system. No indication of styrene-7,8-oxide as the principal mutagenic metabolite produced by the intact rat liver.

    PubMed

    Beije, B; Jenssen, D

    1982-03-01

    Mutagenic effect of styrene and styrene-7,8-oxide was studied with the isolated perfused rat liver as metabolizing system and Chinese hamster V79 cells as genetic target cells. Styrene-7,8-oxide which is mutagenic per se was rapidly metabolized by the perfused rat liver. Thus no mutagenic effect was detected neither in the perfusion medium nor in the bile. However when styrene was added to the perfusion system, an increase in V79 mutants was observed regardless of where in the circulating perfusion medium the V79 cells were placed: the same effect was obtained with V79 cells close to the liver as well as at a distance from the liver. No mutagenic effect was observed in the bile. Simultaneous analysis of the styrene-7,8-oxide concentration in the perfusion medium, suggest that this metabolite is not the cause of the mutagenic effect observed during perfusion with styrene. The effect of the two test compounds on some liver functions was also studied. Both styrene and styrene-7,8-oxide changed the bile flow without affecting bile acid secretion: styrene caused a reduction in bile flow as compared to control perfusions and styrene-7,8-oxide increased the bile flow. Styrene, but not styrene-7,8-oxide, reduced gluconeogenesis from lactate. Styrene had no effect on the liver's capacity to incorporate amino acids into plasma proteins, whereas styrene-7,8-oxide reduced the amino acid incorporation. The microsomal cytochrome P-450 content was not affected by the two test compounds. No alteration in microsomal N- and C-oxygenation of N,N-dimethylaniline (DMA) was observed with styrene-7,8-oxide or the lower styrene dose used (240 mumol), whereas the higher styrene concentration (480 mumol) reduced N-oxygenation and thus also the total DNA metabolism. It is suggested that the results on styrene and styrene-7,8-oxide found here using the liver perfusion/cell culture system mimic the metabolism expected to be found in the intact animal, thus indicating that styrene-7,8-oxide is not the principal mutagenic metabolite of styrene in vivo.

  16. Structure-toxicity relationship study of para-halogenated styrene analogues in CYP2E1 transgenic cells

    PubMed Central

    Chung, Jou-Ku; Shen, Shuijie; Jiang, Zhiteng; Yuan, Wei; Zheng, Jiang

    2012-01-01

    Styrene is one of the most important industrial intermediates consumed in the world and is mainly used as a monomer for reinforced plastics and rubber. Styrene has been found to be hepatotoxic and pneumotoxic in humans and experimental animals. The toxicity of styrene is suggested to be metabolism-dependent. Styrene-7,8-oxide has been considered as the major metabolite responsible for styrene-induced cytotoxicity. The objective of the study was to investigate the correlation between cytotoxicity of styrene and chemical and biochemical properties of the vinyl group of styrene by development of structure activity relationships (SAR). 4-Fluorostyrene, 4-chlorostyrene and 4-bromostyrene were selected for the SAR study. Cytotoxicity of styrene and the halogenated styrene derivatives with an order of 4-bromostyrene > 4-chlorostyrene > 4-fluorostyrene ≈ styrene was observed in CYP2E1 transgenic cells. Similar orders in the efficiency of the metabolism of styrene and the halogenated styrene analogues to their oxides and in the electrophilicity of the corresponding oxides were observed. Additionally, the order of the potency of cellular glutathione depletion and the degree of protein adduction induced by styrene and the halogenated styrenes were consistent with that of their cytotoxicities. The wild-type cells were less susceptible to the toxicity of the corresponding model compounds than CYP2E1 cells. The present study provided insight into the roles of the biochemical and chemical properties of styrene in its cytotoxicity. PMID:22366341

  17. Comparison of DNA-Reactive Metabolites from Nitrosamine and Styrene Using Voltammetric DNA/Microsomes Sensors

    PubMed Central

    Krishnan, Sadagopan; Bajrami, Besnik; Mani, Vigneshwaran; Pan, Shenmin; Rusling, James F.

    2012-01-01

    Voltammetric sensors made with films of polyions, double-stranded DNA and liver microsomes adsorbed layer-by-layer onto pyrolytic graphite electrodes were evaluated for reactive metabolite screening. This approach features simple, inexpensive screening without enzyme purification for applications in drug or environmental chemical development. Cytochrome P450 enzymes (CYPs) in the liver microsomes were activated by an NADPH regenerating system or by electrolysis to metabolize model carcinogenic compounds nitrosamine and styrene. Reactive metabolites formed in the films were trapped as adducts with nucleobases on DNA. The DNA damage was detected by square-wave voltammetry (SWV) using Ru(bpy)32+ as a DNA-oxidation catalyst. These sensors showed a larger rate of increase in signal vs. reaction time for a highly toxic nitrosamine than for the moderately toxic styrene due to more rapid reactive metabolite-DNA adduct formation. Results were consistent with reported in vivo TD50 data for the formation of liver tumors in rats. Analogous polyion/ liver microsome films prepared on 500 nm silica nanoparticles (nanoreactors) and reacted with nitrosamine or styrene, provided LC-MS or GC analyses of metabolite formation rates that correlated well with sensor response. PMID:23100998

  18. Synthesis and characterization of ester and amide derivatives of titanium(IV) carboxymethylphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melánová, Klára, E-mail: klara.melanova@upce.cz; Beneš, Ludvík; Trchová, Miroslava

    2013-06-15

    A set of layered ester and amide derivatives of titanium(IV) carboxymethylphosphonate was prepared by solvothermal treatment of amorphous titanium(IV) carboxymethylphosphonate with corresponding 1-alkanols, 1,ω-alkanediols, 1-aminoalkanes, 1,ω-diaminoalkanes and 1,ω-amino alcohols and characterized by powder X-ray diffraction, IR spectroscopy and thermogravimetric analysis. Whereas alkyl chains with one functional group form bilayers tilted to the layers, 1,ω-diaminoalkanes and most of 1,ω-alkanediols form bridges connecting the adjacent layers. In the case of amino alcohols, the alkyl chains form bilayer and either hydroxyl or amino group is used for bonding. This simple method for the synthesis of ester and amide derivatives does not require preparationmore » of acid chloride derivative as a precursor or pre-intercalation with alkylamines and can be used also for the preparation of ester and amide derivatives of titanium carboxyethylphosphonate and zirconium carboxymethylphosphonate. - Graphical abstract: Ester and amide derivatives of layered titanium carboxymethylphosphonate were prepared by solvothermal treatment of amorphous solid with alkanol or alkylamine. - Highlights: • Ester and amide derivatives of titanium carboxymethylphosphonate. • Solvothermal treatment of amorphous solid with alkanol or alkylamine. • Ester and amide formation confirmed by IR spectroscopy.« less

  19. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  20. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  1. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty acids. (a) Product. Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or...

  2. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes

    PubMed Central

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-01

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 (CYP) enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e. styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. Dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes, relative to that in the wild-type mouse lung microsomes. However, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knock–out and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed similar susceptibility to lung toxicity of styrene as the wild-type animals. However, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene. PMID:24320693

  3. Metabolism of styrene to styrene oxide and vinylphenols in cytochrome P450 2F2- and P450 2E1-knockout mouse liver and lung microsomes.

    PubMed

    Shen, Shuijie; Li, Lei; Ding, Xinxin; Zheng, Jiang

    2014-01-21

    Pulmonary toxicity of styrene is initiated by cytochromes P450-dependent metabolic activation. P450 2E1 and P450 2F2 are considered to be two main cytochrome P450 enzymes responsible for styrene metabolism in mice. The objective of the current study was to determine the correlation between the formation of styrene metabolites (i.e., styrene oxide and 4-vinylphenol) and pulmonary toxicity of styrene, using Cyp2e1- and Cyp2f2-null mouse models. A dramatic decrease in the formation of styrene glycol and 4-vinylphenol was found in Cyp2f2-null mouse lung microsomes relative to that in the wild-type mouse lung microsomes; however, no significant difference in the production of the styrene metabolites was observed between lung microsomes obtained from Cyp2e1-null and the wild-type mice. The knockout and wild-type mice were treated with styrene (6.0 mmol/kg, ip), and cell counts and LDH activity in bronchoalveolar lavage fluids were monitored to evaluate the pulmonary toxicity induced by styrene. Cyp2e1-null mice displayed a susceptibility to lung toxicity of styrene similar to that of the wild-type animals; however, Cyp2f2-null mice were resistant to styrene-induced pulmonary toxicity. In conclusion, both P450 2E1 and P450 2F2 are responsible for the metabolic activation of styrene. The latter enzyme plays an important role in styrene-induced pulmonary toxicity. Both styrene oxide and 4-vinylphenol are suggested to participate in the development of lung injury induced by styrene.

  4. 40 CFR 721.5310 - Neononanoic acid, ethenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with the most current version of the American Society for Testing and Materials (ASTM) F739... control technology does not apply. Instead, if the waste stream containing the substance will be treated...

  5. 40 CFR 721.4215 - Hexanedioic acid, diethenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in accordance with the most current version of the American Society for Testing and Materials (ASTM... control technology does not apply. Instead, if the waste stream containing the substance will be treated...

  6. 40 CFR 721.4215 - Hexanedioic acid, diethenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in accordance with the most current version of the American Society for Testing and Materials (ASTM... control technology does not apply. Instead, if the waste stream containing the substance will be treated...

  7. 40 CFR 721.5310 - Neononanoic acid, ethenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with the most current version of the American Society for Testing and Materials (ASTM) F739... control technology does not apply. Instead, if the waste stream containing the substance will be treated...

  8. Speciation and quantification of vapor phases in soy biodiesel and waste cooking oil biodiesel.

    PubMed

    Peng, Chiung-Yu; Lan, Cheng-Hang; Dai, Yu-Tung

    2006-12-01

    This study characterizes the compositions of two biodiesel vapors, soy biodiesel and waste cooking oil biodiesel, to provide a comprehensive understanding of biodiesels. Vapor phases were sampled by purging oil vapors through thermal desorption tubes which were then analyzed by the thermal desorption/GC/MS system. The results show that the compounds of biodiesel vapors can be divided into four groups. They include methyl esters (the main biodiesel components), oxygenated chemicals, alkanes and alkenes, and aromatics. The first two chemical groups are only found in biodiesel vapors, not in the diesel vapor emissions. The percentages of mean concentrations for methyl esters, oxygenated chemicals, alkanes and alkenes, and aromatics are 66.1%, 22.8%, 4.8% and 6.4%, respectively for soy biodiesel, and 35.8%, 35.9%, 27.9% and 0.3%, respectively for waste cooking oil biodiesel at a temperature of 25+/-2 degrees C. These results show that biodiesels have fewer chemicals and lower concentrations in vapor phase than petroleum diesel, and the total emission rates are between one-sixteenth and one-sixth of that of diesel emission, corresponding to fuel evaporative emissions of loading losses of between 106 microg l(-1) and 283 microg l(-1). Although diesels generate more vapor phase emissions, biodiesels still generate considerable amount of vapor emissions, particularly the emissions from methyl esters and oxygenated chemicals. These two chemical groups are more reactive than alkanes and aromatics. Therefore, speciation and quantification of biodiesel vapor phases are important.

  9. Macroscopic Modeling of A3B15A3 Triblock Copolymers in B Solvent

    DTIC Science & Technology

    2010-11-01

    matrix composed of the midblock (2). Some examples of TPEs are poly[styrene-butadiene-styrene] (SBS), poly[styrene- isoprene -styrene] (SIS), poly[styrene...92. 19. Hadziioannou, G.; Skoulios, A. Molecular Weight Dependence of Lamellar Structure in Styrene Isoprene Two- and Three-block Copolymers...Microphase Seperation in Styrene- Isoprene Block Copolymers. Macromolecules 1994, 27. 42. Mckay, K. W.; Gros, W. A.; Diehl, C. F. The Influence of

  10. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.

    PubMed

    Toda, Hiroshi; Itoh, Nobuya

    2012-01-01

    Styrene metabolism genes were isolated from styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10. Strain ST-5 had a gene cluster containing four open reading frames which encoded styrene degradation enzymes. The genes showed high similarity to styABCD of Pseudomonas sp. Y2. On the other hand, strain ST-10 had only two genes which encoded styrene monooxygenase and flavin oxidoreductase (styAB). Escherichia coli transformants possessing the sty genes of strains ST-5 and ST-10 produced (S)-styrene oxide from styrene, indicating that these genes function as styrene degradation enzymes. Metabolite analysis by resting-cell reaction with gas chromatography-mass spectrometry revealed that strain ST-5 converts styrene to phenylacetaldehyde via styrene oxide by styrene oxide isomerase (styC) reaction. On the other hand, strain ST-10 lacked this enzyme, and thus accumulated styrene oxide as an intermediate. HPLC analysis showed that styrene oxide was spontaneously isomerized to phenylacetaldehyde by chemical reaction. The produced phenylacetaldehyde was converted to phenylacetic acid (PAA) in strain ST-10 as well as in strain ST-5. Furthermore, phenylacetic acid was converted to phenylacetyl-CoA by the catalysis of phenylacetate-CoA ligase in strains ST-5 and ST-10. This study proposes possible styrene metabolism pathways in Rhodococcus sp. strains ST-5 and ST-10. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Effect of Raw Material, Pressing and Glycosidase on the Volatile Compound Composition of Wine Made From Goji Berries.

    PubMed

    Yuan, Guanshen; Ren, Jie; Ouyang, Xiaoyu; Wang, Liying; Wang, Mengze; Shen, Xiaodong; Zhang, Bolin; Zhu, Baoqing

    2016-10-02

    This study investigated the effect of raw material, pressing, and glycosidase on the aromatic profile of goji berry wine. The free-run and the pressed juice of dried and fresh goji berries were used for wine production, whereas glycosidase was applied to wine after fermentation. Dried goji berry fermented wine exhibited much stronger fruity, floral, caramel, and herbaceous odors due to higher levels of esters, β-ionone and methionol. However, fresh berry fermented wine possessed stronger chemical notes due to higher levels of 4-ethylphenol. Pressing treatment reduced the fruity and caramel odors in these fermented wines, and fresh berry free-run juice fermented wine exhibited the least floral aroma. Glycosidase addition did not alter the aromatic composition of wines. The principal component analysis indicated that goji raw material played a primary role in differentiating the aromatic profiles of the wines due to the difference on the content of 20 esters, nine benzenes, eight aldehydes/ketones, three acids, two alcohols and six other volatiles. The content differences on isopentyl alcohol, styrene, benzyl alcohol, 1-octanol, ( E )-5-decen-1-ol, 1-hexanol, and β-cyclocitral resulted in the segregation of the wines with and without the pressing treatment, especially for fresh berry fermented wine.

  12. New process for production of fermented black table olives using selected autochthonous microbial resources

    PubMed Central

    Tufariello, Maria; Durante, Miriana; Ramires, Francesca A.; Grieco, Francesco; Tommasi, Luca; Perbellini, Ezio; Falco, Vittorio; Tasioula-Margari, Maria; Logrieco, Antonio F.; Mita, Giovanni; Bleve, Gianluca

    2015-01-01

    Table olives represent one important fermented product in Europe and, in the world, their demand is constantly increasing. At the present time, no systems are available to control black table olives spontaneous fermentation by the Greek method. During this study, a new protocol for the production of black table olives belonging to two Italian (Cellina di Nardò and Leccino) and two Greek (Kalamàta and Conservolea) cultivars has been developed: for each table olive cultivar, starter-driven fermentations were performed inoculating, firstly, one selected autochthonous yeast starter and, subsequently, one selected autochthonous LAB starter. All starters formulation were able to dominate fermentation process. The olive fermentation was monitored using specific chemical descriptors able to identify a first stage (30 days) mainly characterized by aldehydes; a second period (60 days) mainly characterized by higher alcohols, styrene and terpenes; a third fermentation stage represented by acetate esters, esters and acids. A significant decrease of fermentation time (from 8 to 12 months to a maximum of 3 months) and an significant improvement in organoleptic characteristics of the final product were obtained. This study, for the first time, describes the employment of selected autochthonous microbial resources optimized to mimic the microbial evolution already recorded during spontaneous fermentations. PMID:26441932

  13. Determination of physiochemical properties of palm oil methyl ester catalyzed by waste cockle shells

    NASA Astrophysics Data System (ADS)

    Nasir, Nurul Fitriah; Latif, Noradila Abdul; Bakar, Sharifah Adzila Syed Abu; Rahman, Mohd Nasrull Abdul; Selamat, Siti Norhidayah; Nasharudin, Nurul Nadirah

    2017-04-01

    Waste cockle shell can be used as a source of calcium oxide (CaO) in catalyzing a transesterification reaction to produce biodiesel or fatty acid methyl ester (FAME). This aim of this paper is to determine the physicochemical properties of (FAME) which utilize waste cockle shells in the transesterification reaction process. In this study, the catalyst was prepared using high temperature furnace (700°C) for 4 h. The molar ratio of methanol to oil was fixed at 9:1 and the reaction temperature and catalyst concentration were varied from 65 -70 °C, and 10-30 wt. %, respectively for transesterification reaction. The reaction time was also fixed at 3 h. The analyzed physicochemical properties were density, viscosity, flash point and net heat of combustion. The results obtained from the analysis found that reaction temperature 65°C with 30% of catalyst concentration has produced the physical properties of FAME that comply the biodiesel standards. The results suggest that reaction temperature and catalyst concentration have influence on the value of physicochemical properties of FAME produced.

  14. Pollution characteristics of volatile organic compounds, polycyclic aromatic hydrocarbons and phthalate esters emitted from plastic wastes recycling granulation plants in Xingtan Town, South China

    NASA Astrophysics Data System (ADS)

    Huang, De-Yin; Zhou, Shun-Gui; Hong, Wei; Feng, Wei-Feng; Tao, Liang

    2013-06-01

    With the aim to investigate the main pollution characteristics of exhaust gases emitted from plastic waste recycling granulation plants, mainly volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) were analyzed in Xingtan Town, the largest distribution center of plastic waste recycling in China. Both inside and outside the plants, the total concentrations of volatile monocyclic aromatic hydrocarbons (MAHs), PAHs and PAEs ranged from 2000 to 3000 μg m-3, 450 to 1200 ng m-3, and 200 to 1200 ng m-3, respectively. Their concentration levels inside the plants were higher than those outside the plants, and PAHs and PAEs were mainly distributed in the gas-phase. Notably, highly toxic benzo[a]pyrene (BaP) could be detected inside the plants, and harmful PAEs could be detected not only inside but also outside the plants, although PAEs are non-volatile. The exhaust gas composition and concentration were related to the plastic feedstock and granulation temperature.

  15. Condensation of anhydrides or dicarboxylic acids with compounds containing active methylene groups. Part 1: Condensation of phthalic anhydride with acetoacetic and malonic ester

    NASA Technical Reports Server (NTRS)

    Oshkaya, V. P.; Vanag, G. Y.

    1985-01-01

    Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Casey J.; Hassan Beyzavi, M.; Klet, Rachel C.

    Reaction of styrene oxide with sodium cyanoborohydride and a catalytic amount of Hf-NU-1000 yields the anti-Markovnikov product, 2-phenylethanol, with over 98% regioselectivity. On the other hand, propylene oxide is ring opened in a Markovnikov fashion to form 2-propanol with 95% regioselectivity. Both styrene oxide and propylene oxide failed to react with sodium cyanoborohydride without the addition of Hf-NU-1000 indicative of the crucial role of Hf-NU-1000 as a catalyst in this reaction. To the best of our knowledge, this is the first report of the use of a metal-organic framework material as a catalyst for ring-opening of epoxides with hydrides.

  17. Surface Science and the Advancement of Direct Olefin Epoxidation A Perspective on the Article, ‘‘Partial Oxidation of Higher Olefins on Ag(111) and Ag(110): Conversion of Styrene to Styrene Oxide, Benzene, and Benzoic Acid’’, by Andreas Klust and Robert J. Madix.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barteau, Mark A.

    2006-10-04

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Few reactions are as conceptually simple or as devilishly difficult as the epoxidation of ethylene to form ethylene oxide:

  18. Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT

    NASA Astrophysics Data System (ADS)

    Volynets, N. I.; Poddubskaya, O. G.; Demidenko, M. I.; Lyubimov, A. G.; Kuzhir, P. P.; Suslyaev, V. I.; Pletnev, M. A.; Zicans, Janis

    2017-08-01

    Mechanical and thermogravimetric properties of polymer composite materials with various concentrations of multiwalled carbon nanotubes effectively shielding radiation in the radio frequency (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges are studied. As a matrix, widely available polymeric materials, such as polyvinyl acetate and styrene-acrylate, were used in the form of dispersions. From the analysis of the obtained experimental data, it was shown that the introduction of carbon nanotubes into the polymer matrix makes it possible to increase mechanical properties and thermal stability of composite materials.

  19. High-Speed Coating Method for Photovoltaic Textiles with Closed-Type Die Coater

    NASA Astrophysics Data System (ADS)

    Imai, Takahiko; Shibayama, Norihisa; Takamatsu, Seiichi; Shiraishi, Kenji; Marumoto, Kazuhiro; Itoh, Toshihiro

    2013-06-01

    We developed a closed-type die-coating method to fabricate thin films for electronic devices. We succeeded in the die-coating of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) water dispersions and regioregular poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) solution to fabricate thin films of these organic materials with extremely high speeds of 5 and 20 m/min, respectively. The film thicknesses were evaluated by cross-sectional scanning electron microscopy (SEM). The deviations of the film thicknesses from our target values were less than 5%. We fabricated Al/P3HT:PCBM/PEDOT:PSS/indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) textiles as an example of an application of the method, and the photovoltaic characteristic of the devices was confirmed.

  20. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accordance with the most current version of the American Society for Testing and Materials (ASTM) F739... control technology does not apply. Instead, if the waste stream containing the substance will be treated...

  1. 40 CFR 721.4250 - Hexanoic acid, 2-ethyl-, ethenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accordance with the most current version of the American Society for Testing and Materials (ASTM) F739... control technology does not apply. Instead, if the waste stream containing the substance will be treated...

  2. Detection of Bacillus and Stenotrophomonas species growing in an organic acid and endocrine-disrupting chemical-rich environment of distillery spent wash and its phytotoxicity.

    PubMed

    Chandra, Ram; Kumar, Vineet

    2017-01-01

    Sugarcane molasses-based distillery spent wash (DSW) is well known for its toxicity and complex mixture of various recalcitrant organic pollutants with acidic pH, but the chemical nature of these pollutants is unknown. This study revealed the presence of toxic organic acids (butanedioic acid bis(TMS)ester; 2-hydroxysocaproic acid; benzenepropanoic acid, α-[(TMS)oxy], TMS ester; vanillylpropionic acid, bis(TMS)), and other recalcitrant organic pollutants (2-furancarboxylic acid, 5-[[(TMS)oxy] methyl], TMS ester; benzoic acid 3-methoxy-4-[(TMS)oxy], TMS ester; and tricarballylic acid 3TMS), which are listed as endocrine-disrupting chemicals. In addition, several major heavy metals were detected, including Fe (163.947), Mn (4.556), Zn (2.487), and Ni (1.175 mg l -1 ). Bacterial community analysis by restriction fragment length polymorphism revealed that Bacillus and Stenotrophomonas were dominant autochthonous bacterial communities belonging to the phylum Firmicutes and γ-Proteobacteria, respectively. The presence of Bacillus and Stenotrophomonas species in highly acidic environments indicated its broad range adaptation. These findings indicated that these autochthonous bacterial communities were pioneer taxa for in situ remediation of this hazardous waste during ecological succession. Further, phytotoxicity assay of DSW with Phaseolus mungo L. and Triticum aestivum revealed that T. aestivum was more sensitive than P. mungo L. in the seed germination test. The results of this study may be useful for monitoring and toxicity assessment of sugarcane molasses-based distillery waste at disposal sites.

  3. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  4. Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity.

    PubMed

    Lian, Jieni; McKenna, Rebekah; Rover, Marjorie R; Nielsen, David R; Wen, Zhiyou; Jarboe, Laura R

    2016-05-01

    Fermentative production of styrene from glucose has been previously demonstrated in Escherichia coli. Here, we demonstrate the production of styrene from the sugars derived from lignocellulosic biomass depolymerized by fast pyrolysis. A previously engineered styrene-producing strain was further engineered for utilization of the anhydrosugar levoglucosan via expression of levoglucosan kinase. The resulting strain produced 240 ± 3 mg L(-1) styrene from pure levoglucosan, similar to the 251 ± 3 mg L(-1) produced from glucose. When provided at a concentration of 5 g L(-1), pyrolytic sugars supported styrene production at titers similar to those from pure sugars, demonstrating the feasibility of producing this important industrial chemical from biomass-derived sugars. However, the toxicity of contaminant compounds in the biomass-derived sugars and styrene itself limit further gains in production. Styrene toxicity is generally believed to be due to membrane damage. Contrary to this prevailing wisdom, our quantitative assessment during challenge with up to 200 mg L(-1) of exogenously provided styrene showed little change in membrane integrity; membrane disruption was observed only during styrene production. Membrane fluidity was also quantified during styrene production, but no changes were observed relative to the non-producing control strain. This observation that styrene production is much more damaging to the membrane integrity than challenge with exogenously supplied styrene provides insight into the mechanism of styrene toxicity and emphasizes the importance of verifying proposed toxicity mechanisms during production instead of relying upon results obtained during exogenous challenge.

  5. Increased production of wax esters in transgenic tobacco plants by expression of a fatty acid reductase:wax synthase gene fusion.

    PubMed

    Aslan, Selcuk; Hofvander, Per; Dutta, Paresh; Sun, Chuanxin; Sitbon, Folke

    2015-12-01

    Wax esters are hydrophobic lipids consisting of a fatty acid moiety linked to a fatty alcohol with an ester bond. Plant-derived wax esters are today of particular concern for their potential as cost-effective and sustainable sources of lubricants. However, this aspect is hampered by the fact that the level of wax esters in plants generally is too low to allow commercial exploitation. To investigate whether wax ester biosynthesis can be increased in plants using transgenic approaches, we have here exploited a fusion between two bacterial genes together encoding a single wax ester-forming enzyme, and targeted the resulting protein to chloroplasts in stably transformed tobacco (Nicotiana benthamiana) plants. Compared to wild-type controls, transgenic plants showed both in leaves and stems a significant increase in the total level of wax esters, being eight-fold at the whole plant level. The profiles of fatty acid methyl ester and fatty alcohol in wax esters were related, and C16 and C18 molecules constituted predominant forms. Strong transformants displayed certain developmental aberrations, such as stunted growth and chlorotic leaves and stems. These negative effects were associated with an accumulation of fatty alcohols, suggesting that an adequate balance between formation and esterification of fatty alcohols is crucial for a high wax ester production. The results show that wax ester engineering in transgenic plants is feasible, and suggest that higher yields may become achieved in the near future.

  6. N-Heterocyclic carbene-catalyzed direct cross-aza-benzoin reaction: Efficient synthesis of α-amino-β-keto esters.

    PubMed

    Uno, Takuya; Kobayashi, Yusuke; Takemoto, Yoshiji

    2012-01-01

    An efficient catalytic synthesis of α-amino-β-keto esters has been newly developed. Cross-coupling of various aldehydes with α-imino ester, catalyzed by N-heterocyclic carbene, leads chemoselectively to α-amino-β-keto esters in moderate to good yields with high atom efficiency. The reaction mechanism is discussed, and it is proposed that the α-amino-β-keto esters are formed under thermodynamic control.

  7. CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors.

    PubMed

    Cruzan, G; Bus, J; Hotchkiss, J; Harkema, J; Banton, M; Sarang, S

    2012-02-01

    Styrene induces lung tumors in mice but not in rats. Although metabolism of styrene to 7,8-styrene oxide (SO) by CYP2E1 has been suggested as a mediator of styrene toxicity, lung toxicity is not attenuated in CYP2E1 knockout mice. However, styrene and/or SO metabolism by mouse lung Clara cell-localized CYP2F2 to ring-oxidized cytotoxic metabolite(s) has been postulated as a key metabolic gateway responsible for both lung toxicity and possible tumorigenicity. To test this hypothesis, the lung toxicity of styrene and SO was evaluated in C57BL/6 (WT) and CYP2F2⁻/⁻ knockout mice treated with styrene (400 mg/kg/day, gavage, or 200 or 400 mg/kg/day, ip) or S- or R-SO (200 mg/kg/day, ip) for 5 days. Styrene treated WT mice displayed significant necrosis and exfoliation of Clara cells, and cumulative BrdU-labeling index of S-phase cells was markedly increased in terminal bronchioles of WT mice exposed to styrene or S- or RSO. In contrast, Clara and terminal bronchiole cell toxicity was not observed in CYP2F2⁻/⁻ mice exposed to either styrene or SO. This study clearly demonstrates that the mouse lung toxicity of both styrene and SO is critically dependent on metabolism by CYP2F2. Importantly, the human isoform of CYP2F, CYP2F1, is expressed at much lower levels and likely does not catalyze significant styrene metabolism, supporting the hypothesis that styrene-induced mouse lung tumors may not quantitatively, or possibly qualitatively, predict lung tumor potential in humans. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Vitamin E Nicotinate

    PubMed Central

    Duncan, Kimbell R.; Suzuki, Yuichiro J.

    2017-01-01

    Vitamin E refers to a family of compounds that function as lipid-soluble antioxidants capable of preventing lipid peroxidation. Naturally occurring forms of vitamin E include tocopherols and tocotrienols. Vitamin E in dietary supplements and fortified foods is often an esterified form of α-tocopherol, the most common esters being acetate and succinate. The vitamin E esters are hydrolyzed and converted into free α-tocopherol prior to absorption in the intestinal tract. Because its functions are relevant to many chronic diseases, vitamin E has been extensively studied in respect to a variety of diseases as well as cosmetic applications. The forms of vitamin E most studied are natural α-tocopherol and the esters α-tocopheryl acetate and α-tocopheryl succinate. A small number of studies include or focus on another ester form, α-tocopheryl nicotinate, an ester of vitamin E and niacin. Some of these studies raise the possibility of differences in metabolism and in efficacy between vitamin E nicotinate and other forms of vitamin E. Recently, through metabolomics studies, we identified that α-tocopheryl nicotinate occurs endogenously in the heart and that its level is dramatically decreased in heart failure, indicating the possible biological importance of this vitamin E ester. Since knowledge about vitamin E nicotinate is not readily available in the literature, the purpose of this review is to summarize and evaluate published reports, specifically with respect to α-tocopheryl nicotinate with an emphasis on the differences from natural α-tocopherol or α-tocopheryl acetate. PMID:28335380

  9. Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials.

    PubMed

    Puig, Julieta; Dell' Erba, Ignacio E; Schroeder, Walter F; Hoppe, Cristina E; Williams, Roberto J J

    2017-03-29

    Alkyl chains of β-hydroxyesters synthesized by the capping of terminal epoxy groups of diglycidylether of bisphenol A (DGEBA) with palmitic (C16), stearic (C18), or behenic (C22) fatty acids self-assemble forming a crystalline phase. Above a particular concentration solutions of these esters in a variety of solvents led to supramolecular (physical) gels below the crystallization temperature of alkyl chains. A form-stable phase change material (FS-PCM) was obtained by blending the ester derived from behenic acid with eicosane. A blend containing 20 wt % ester was stable as a gel up to 53 °C and exhibited a heat storage capacity of 161 J/g, absorbed during the melting of eicosane at 37 °C. Thermally reversible light scattering (TRLS) films were obtained by visible-light photopolymerization of poly(ethylene glycol) dimethacrylate-ester blends (50 wt %) in the gel state at room temperature. The reaction was very fast and not inhibited by oxygen. TRLS films consisted of a cross-linked methacrylic network interpenetrated by the supramolecular network formed by the esters. Above the melting temperature of crystallites formed by alkyl chains, the film was transparent due to the matching between refractive indices of the methacrylic network and the amorphous ester. Below the crystallization temperature, the film was opaque because of light dispersion produced by the organic crystallites uniformly dispersed in the material. Of high significance for application was the fact that the contrast ratio did not depend on heating and cooling rates.

  10. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Confirmation of Monod Model for Biofiltration of Styrene Vapors from Waste Flue Gas

    PubMed Central

    Dehghanzadeh, Reza; Roshani, Babak; Asadi, Mahzar; Fahiminia, Mohammad; AslHashemi, Ahmad

    2012-01-01

    Background: The objective of this research was to investigate the kinetic behavior of the biofil¬tration process for the removal of styrene. Methods: A three stage compost based biofilter was inoculated with thickened activated sludge. The reaction order rate constants were obtained from continuous experiments and used as the specific growth rate for the Monod equation. Results: The measured concentration profiles show a linear dependence on the bed height in the biofilter at higher loadings, such as 75 and 45 g m-3 h-1. This is the condition of reaction limitation for a reaction with zero-order kinetics. From the experimental data, maximum elimination capac¬ity (ECmax) was estimated to be 44, 40 and 26 g m-3 h-1 at empty bed retention times (EBRTs) of 120, 60 and 30 s, respectively. However, at lower loadings, the measured concentration profile of the biofilter is one of exponential increase, which is the condition of both reaction and diffusion limitations for a reaction with zero-order kinetics. Maximum elimination capacities found from the experimental results were the same as Monod model predictions. Both the experimental re¬sults and the model predictions showed the influence of EBRT on the removal rate of styrene, particularly for the highest loading rate. Conclusion: In terms of the practical applications of the proposed models have the advantage of being simpler than Monod kinetics and Monod kinetics requires a numerical solution. PMID:24688940

  12. Predictors of occupational exposure to styrene and styrene-7,8-oxide in the reinforced plastics industry.

    PubMed

    Serdar, B; Tornero-Velez, R; Echeverria, D; Nylander-French, L A; Kupper, L L; Rappaport, S M

    2006-10-01

    To identify demographic and work related factors that predict blood levels of styrene and styrene-7,8-oxide (SO) in the fibreglass reinforced plastics (FRP) industry. Personal breathing-zone air samples and whole blood samples were collected repeatedly from 328 reinforced plastics workers in the Unuted States between 1996 and 1999. Styrene and its major metabolite SO were measured in these samples. Multivariable linear regression analyses were applied to the subject-specific levels to explain the variation in exposure and biomarker levels. Exposure levels of styrene were approximately 500-fold higher than those of SO. Exposure levels of styrene and SO varied greatly among the types of products manufactured, with an 11-fold range of median air levels among categories for styrene and a 23-fold range for SO. Even after stratification by job title, median exposures of styrene and SO among laminators varied 14- and 31-fold across product categories. Furthermore, the relative proportions of exposures to styrene and SO varied among product categories. Multivariable regression analyses explained 70% and 63% of the variation in air levels of styrene and SO, respectively, and 72% and 34% of the variation in blood levels of styrene and SO, respectively. Overall, air levels of styrene and SO appear to have decreased substantially in this industry over the last 10-20 years in the US and were greatest among workers with the least seniority. As levels of styrene and SO in air and blood varied among product categories in the FRP industry, use of job title as a surrogate for exposure can introduce unpredictable measurement errors and can confound the relation between exposure and health outcomes in epidemiology studies. Also, inverse relations between the intensity of exposure to styrene and SO and years on the job suggest that younger workers with little seniority are typically exposed to higher levels of styrene and SO than their coworkers.

  13. Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining.

    PubMed

    Šmidrkal, Jan; Tesařová, Markéta; Hrádková, Iveta; Berčíková, Markéta; Adamčíková, Aneta; Filip, Vladimír

    2016-11-15

    3-MCPD esters are contaminants that can form during refining of vegetable oils in the deodorization step. It was experimentally shown that their content in the vegetable oil depends on the acid value of the vegetable oil and the chloride content. 3-MCPD esters form approximately 2-5 times faster from diacylglycerols than from monoacylglycerols. It has been proved that the higher fatty acids content in the oil caused higher 3-MCPD esters content in the deodorization step. Neutralization of free fatty acids in the vegetable oil before the deodorization step by alkaline carbonates or hydrogen carbonates can completely suppress the formation of 3-MCPD esters. Potassium salts are more effective than sodium salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    PubMed

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  17. Experimental design and analysis of activators regenerated by electron transfer-atom transfer radical polymerization experimental conditions for grafting sodium styrene sulfonate from titanium substrates.

    PubMed

    Foster, Rami N; Johansson, Patrik K; Tom, Nicole R; Koelsch, Patrick; Castner, David G

    2015-09-01

    A 2 4 factorial design was used to optimize the activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) grafting of sodium styrene sulfonate (NaSS) films from trichlorosilane/10-undecen-1-yl 2-bromo-2-methylpropionate (ester ClSi) functionalized titanium substrates. The process variables explored were: (1) ATRP initiator surface functionalization reaction time; (2) grafting reaction time; (3) CuBr 2 concentration; and (4) reducing agent (vitamin C) concentration. All samples were characterized using x-ray photoelectron spectroscopy (XPS). Two statistical methods were used to analyze the results: (1) analysis of variance with [Formula: see text], using average [Formula: see text] XPS atomic percent as the response; and (2) principal component analysis using a peak list compiled from all the XPS composition results. Through this analysis combined with follow-up studies, the following conclusions are reached: (1) ATRP-initiator surface functionalization reaction times have no discernable effect on NaSS film quality; (2) minimum (≤24 h for this system) grafting reaction times should be used on titanium substrates since NaSS film quality decreased and variability increased with increasing reaction times; (3) minimum (≤0.5 mg cm -2 for this system) CuBr 2 concentrations should be used to graft thicker NaSS films; and (4) no deleterious effects were detected with increasing vitamin C concentration.

  18. 75 FR 11986 - Public Comments for Multilateral Negotiations in the World Trade Organization on Expansion of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... its salt, ester or hydrate form; or chemical intermediates intended for the manufacture of... salt, ester or hydrate forms of an INN active ingredient should state a rationale for the nomination...

  19. Molecular and morphological characterization of midblock-sulfonated styrenic triblock copolymers

    DOE PAGES

    Mineart, Kenneth P.; Ryan, Justin J.; Lee, Byeongdu; ...

    2017-01-11

    Midblock-sulfonated triblock copolymers afford a desirable opportunity to generate network-forming amphiphilic materials that are suitable for use in a wide range of emerging technologies as fuel-cell, water-desalination, ion-exchange, photovoltaic, or electroactive membranes. Employing a previously reported synthetic strategy wherein poly( p- tert-butylstyrene) remains unreactive, we have selectively sulfonated the styrenic midblock of a poly( p- tert-butylstyrene- b-styrene- b- p- tert- butylstyrene) (TST) triblock copolymer to different extents. Comparison of the resulting sulfonated copolymers with results from our prior study provides favorable quantitative agreement and suggests that a shortened reaction time is advantageous. An ongoing challenge regarding the morphological development ofmore » charged block copolymers is the competition between microphase separation of the incompatible blocks and physical cross-linking of ionic clusters, with the latter often hindering the former. Here, we expose the sulfonated TST copolymers to solvent-vapor annealing to promote nanostructural refinement. Furthermore, the effect of such annealing on morphological characteristics, as well as on molecular free volume, is explored.« less

  20. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  1. Characterization of Jamaican agro-industrial wastes. Part II, fatty acid profiling using HPLC: precolumn derivatization with phenacyl bromide.

    PubMed

    Bailey-Shaw, Y A; Golden, K D; Pearson, A G M; Porter, R B R

    2012-09-01

    This paper describes the determination of fatty acid composition of coffee, citrus and rum distillery wastes using reversed-phase high-performance liquid chromatography (RP-HPLC). Lipid extracts of the waste samples are derivatized with phenacyl bromide and their phenacyl esters are separated on a C8 reversed-phase column by using continuous gradient elution with water and acetonitrile. The presence of saturated and unsaturated fatty acids in quantifiable amounts in the examined wastes, as well as the high percentage recoveries, are clear indications that these wastes have potential value as inexpensive sources of lipids. The HPLC procedures described here could be adopted for further analysis of materials of this nature.

  2. Wax ester profiling of seed oil by nano-electrospray ionization tandem mass spectrometry

    PubMed Central

    2013-01-01

    Background Wax esters are highly hydrophobic neutral lipids that are major constituents of the cutin and suberin layer. Moreover they have favorable properties as a commodity for industrial applications. Through transgenic expression of wax ester biosynthetic genes in oilseed crops, it is possible to achieve high level accumulation of defined wax ester compositions within the seed oil to provide a sustainable source for such high value lipids. The fatty alcohol moiety of the wax esters is formed from plant-endogenous acyl-CoAs by the action of fatty acyl reductases (FAR). In a second step the fatty alcohol is condensed with acyl-CoA by a wax synthase (WS) to form a wax ester. In order to evaluate the specificity of wax ester biosynthesis, analytical methods are needed that provide detailed wax ester profiles from complex lipid extracts. Results We present a direct infusion ESI-tandem MS method that allows the semi-quantitative determination of wax ester compositions from complex lipid mixtures covering 784 even chain molecular species. The definition of calibration prototype groups that combine wax esters according to their fragmentation behavior enables fast quantitative analysis by applying multiple reaction monitoring. This provides a tool to analyze wax layer composition or determine whether seeds accumulate a desired wax ester profile. Besides the profiling method, we provide general information on wax ester analysis by the systematic definition of wax ester prototypes according to their collision-induced dissociation spectra. We applied the developed method for wax ester profiling of the well characterized jojoba seed oil and compared the profile with wax ester-accumulating Arabidopsis thaliana expressing the wax ester biosynthetic genes MaFAR and ScWS. Conclusions We developed a fast profiling method for wax ester analysis on the molecular species level. This method is suitable to screen large numbers of transgenic plants as well as other wax ester samples like cuticular lipid extracts to gain an overview on the molecular species composition. We confirm previous results from APCI-MS and GC-MS analysis, which showed that fragmentation patterns are highly dependent on the double bond distribution between the fatty alcohol and the fatty acid part of the wax ester. PMID:23829499

  3. Detection of OH on photolysis of styrene oxide at 193 nm in gas phase

    NASA Astrophysics Data System (ADS)

    Kumar, Awadhesh; SenGupta, Sumana; Pushpa, K. K.; Naik, P. D.; Bajaj, P. N.

    2006-10-01

    Photodissociation of styrene oxide at 193 nm in gas phase generates OH, as detected by laser-induced fluorescence technique. Under similar conditions, OH was not observed from ethylene and propylene oxides, primarily because of their low absorption cross-sections at 193 nm. Mechanism of OH formation involves first opening of the three-membered ring from the ground electronic state via cleavage of either of two C sbnd O bonds, followed by isomerization to enolic forms of phenylacetaldehyde and acetophenone, and finally scission of the C sbnd OH bond of enols. Ab initio molecular orbital calculations support the proposed mechanism.

  4. Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells

    NASA Astrophysics Data System (ADS)

    Hilal, Muhammad; Han, Jeong In

    2018-06-01

    This is the first study that described how the interface interactions of graphene oxide (GO) with poly(3-hexylthiophene): 3'H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3'-butanoic acid 3'-phenyl methyl ester (PCBM) and with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) are influencing the stability and performance of poly(3-hexylthiophene): poly(3-hexylthiophene) (P3HT) (P3HT:PCBM)-based organic solar cell. The interface functionalization of these carrier-transporting layers was confirmed by XRD pattern, XPS analysis, and Raman spectroscopy. These interfaces chemical bond formation helped to firmly attach the GO layer with PCBM and PEDOT:PSS layers, forming a strong barrier against water molecule absorption and also provided an easy pathway for fast transfer of free carriers between P3HT:PCBM layer and metal electrodes via the backbone of the conjugated GO sheets. Because of these interface interactions, the device fabricated with PCBM/GO composite as an electron transport layer and GO/PEDOT:PSS composite as hole transport layer demonstrated a remarkable improvement in the value of power conversion efficiency (5.34%) and reproducibility with a high degree of control over the environmental stability (600 h). This study is paving a way for a new technique to further improve the stability and PCE for the commercialization of OSCs.

  5. A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.

    PubMed

    Zheng, Yan; Bai, Jiarui; Xu, Jingna; Li, Xiayang; Zhang, Yimin

    2018-02-01

    Classification of plastics is important in the recycling industry. A plastic identification model in the near infrared spectroscopy wavelength range 1000-2500 nm is proposed for the characterization and sorting of waste plastics using acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The model is built by the feature wavelengths of standard samples applying the principle component analysis (PCA), and the accuracy, property and cross-validation of the model were analyzed. The model just contains a simple equation, center of mass coordinates, and radial distance, with which it is easy to develop classification and sorting software. A hyperspectral imaging system (HIS) with the identification model verified its practical application by using the unknown plastics. Results showed that the identification accuracy of unknown samples is 100%. All results suggested that the discrimination model was potential to an on-line characterization and sorting platform of waste plastics based on HIS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Occupational Styrene Exposure on Auditory Function Among Adults: A Systematic Review of Selected Workers.

    PubMed

    Pleban, Francis T; Oketope, Olutosin; Shrestha, Laxmi

    2017-12-01

    A review study was conducted to examine the adverse effects of styrene, styrene mixtures, or styrene and/or styrene mixtures and noise on the auditory system in humans employed in occupational settings. The search included peer-reviewed articles published in English language involving human volunteers spanning a 25-year period (1990-2015). Studies included peer review journals, case-control studies, and case reports. Animal studies were excluded. An initial search identified 40 studies. After screening for inclusion, 13 studies were retrieved for full journal detail examination and review. As a whole, the results range from no to mild associations between styrene exposure and auditory dysfunction, noting relatively small sample sizes. However, four studies investigating styrene with other organic solvent mixtures and noise suggested combined exposures to both styrene organic solvent mixtures may be more ototoxic than exposure to noise alone. There is little literature examining the effect of styrene on auditory functioning in humans. Nonetheless, findings suggest public health professionals and policy makers should be made aware of the future research needs pertaining to hearing impairment and ototoxicity from styrene. It is recommended that chronic styrene-exposed individuals be routinely evaluated with a comprehensive audiological test battery to detect early signs of auditory dysfunction.

  7. Molecular and enzymatic characterization of alkaline lipase from Bacillus amyloliquefaciens E1PA isolated from lipid-rich food waste.

    PubMed

    Saengsanga, Thanakorn; Siripornadulsil, Wilailak; Siripornadulsil, Surasak

    2016-01-01

    Bacillus amyloliquefaciens E1PA is a lipase-producing strain that was originally isolated from lipid-rich food waste, and the production of its lipase was found to be induced by vegetable oils. The E1PA lipase was successfully expressed and secreted in a heterologous Escherichia coli host and was ultimately purified. The conserved pentapeptide motif Ala-His-Ser-Met-Gly was observed at positions 108-112. The purified recombinant lipase was stable over a pH range of 4.0-11.0 at 40 °C and exhibited maximal activity at pH 10. The recombinant E1PA lipase hydrolyzed a wide range of acyl esters (C4-C18). However, the highest activity (3.5 units mg(-1)) was observed when the p-nitrophenyl ester of myristate (C14) was used as a substrate. Compared to the lipases produced by Bacillus spp., the E1PA lipase displayed a structural molecular mass excluding the leader sequence (19.22 kDa) and a pI (9.82) that were similar to those reported for B. amyloliquefaciens lipases and lipase subfamily I.4 but that were quite distinct from those of lipase subfamily I.5 (approximately 43 kDa, pI 6). These results suggested that Bacillus lipases are closely related. Although the recombinant E1PA lipase digested only certain oils, the wild-type E1PA lipase degraded a variety of oils, including blended and re-used cooking oils. The recombinant and wild-type forms of the E1PA lipase were able to digest heterogeneous lipid-rich food waste at similar levels; this result suggests that this lipase can function even when it solely consists of its structural enzyme component. The enzyme exhibited lipid hydrolysis ability as either an intracellular domain of the recombinant protein or an extracellular domain secreted by the E1PA strain. However, the recombinant lipase showed higher activity than the wild-type E1PA lipase, indicating that the recombinant protein from E. coli possessed effective lipase activity. Thus, the inducible alkaline E1PA lipase exhibited the ability to act on a broad spectrum of substrates, and the effective form produced in the heterogeneous host can be further developed for several applications, such as biodiesel production and lipase production. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Catalytic pyrolysis of model compounds and waste cooking oil for production of light olefins over La/ZSM-5 catalysts

    NASA Astrophysics Data System (ADS)

    Li, F. W.; Ding, S. L.; Li, L.; Gao, C.; Zhong, Z.; Wang, S. X.; Li, Z. X.

    2016-08-01

    Waste cooking oil (WCO) and its model compounds (oleic acid and methyl laurate) are catalytically pyrolyzed in a fixed-bed reactor over La modified ZSM-5 catalysts (La/ZSM-5) aiming for production of C2-C4 light olefins. The LaO content in catalysts was set at 0, 2, 6, 10 and 14 wt%. The gas and liquid products are analyzed. The La/ZSM-5 catalyst with 6% LaO showed higher selectivity to light olefins when WCO and methyl laurate were pyrolyzed, and olefin content was 26% for WCO and 21% for methyl laurate. The catalyst with 10% LaO showed high selectivity to light olefins (28.5%) when oleic acid was pyrolyzed. The liquid products from WCO and model compounds mainly contain esters and aromatic hydrocarbons. More esters were observed in liquid products from methyl laurate and WCO pyrolysis, indicating that it is more difficult to pyrolyze esters and WCO than oleic acid. The coked catalysts were analyzed by temperature-programmed oxidation. The result shows that graphite is the main component of coke. The conversion of WCO to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals.

  9. Enzymatic synthesis of ethyl esters from waste oil using mixtures of lipases in a plug-flow packed-bed continuous reactor.

    PubMed

    Kathiele Poppe, Jakeline; Matte, Carla Roberta; Olave de Freitas, Vitória; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Záchia Ayub, Marco Antônio

    2018-04-30

    This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed-bed continuous reactor, using mixtures of immobilized lipases (combi-lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions were studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi-lipase composition: 40% of TLL, 35% of CALB, and 25% of RML), and soybean oil (combi-lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert-butanol as solvent, and the flow rate of 0.08 mL min -1 . The combi-lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of approximately 50%, with average productivity of 1.94 g ethyl esters g substrate -1 h -1 , regardless of the type of oil in use. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  10. Gravity packaging final waste recovery based on gravity separation and chemical imaging control.

    PubMed

    Bonifazi, Giuseppe; Serranti, Silvia; Potenza, Fabio; Luciani, Valentina; Di Maio, Francesco

    2017-02-01

    Plastic polymers are characterized by a high calorific value. Post-consumer plastic waste can be thus considered, in many cases, as a typical secondary solid fuels according to the European Commission directive on End of Waste (EoW). In Europe the practice of incineration is considered one of the solutions for waste disposal waste, for energy recovery and, as a consequence, for the reduction of waste sent to landfill. A full characterization of these products represents the first step to profitably and correctly utilize them. Several techniques have been investigated in this paper in order to separate and characterize post-consumer plastic packaging waste fulfilling the previous goals, that is: gravity separation (i.e. Reflux Classifier), FT-IR spectroscopy, NIR HyperSpectralImaging (HSI) based techniques and calorimetric test. The study demonstrated as the proposed separation technique and the HyperSpectral NIR Imaging approach allow to separate and recognize the different polymers (i.e. PolyVinyl Chloride (PVC), PolyStyrene (PS), PolyEthylene (PE), PoliEtilene Tereftalato (PET), PolyPropylene (PP)) in order to maximize the removal of the PVC fraction from plastic waste and to perform the full quality control of the resulting products, can be profitably utilized to set up analytical/control strategies finalized to obtain a low content of PVC in the final Solid Recovered Fuel (SRF), thus enhancing SRF quality, increasing its value and reducing the "final waste". Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Occupational asthma in the furniture industry: is it due to styrene?

    PubMed

    Oner, Ferda; Mungan, Dilşad; Numanoglu, Numan; Demirel, Yavuz

    2004-01-01

    Styrene, a volatile monomer, has been reported as a cause of occupational asthma in a few case reports. The aim of this study was to investigate the risk for asthma in relation to exposure to styrene in a large number of workers. A total of 47 workers with a history of exposure to styrene were included in the study. To establish whether asthma was present, each patient underwent a clinical interview, pulmonary function testing and bronchial challenge with methacholine. Specific bronchial challenges with styrene and serial peak expiratory flow (PEF) measurement at home and at work were carried out in subjects with a diagnosis of asthma to evaluate the relationship between their asthma and exposure to styrene in the workplace. Among the 47 subjects, 5 workers had given a history of work-related symptoms, and 3 of them had a positive methacholine challenge test. Specific bronchial challenges with styrene and serial PEF measurement were subsequently carried out in these 3 subjects. Although provocation tests with styrene were negative in the 3 workers, 1 worker had PEF rate records compatible with occupational asthma. We established one patient with occupational asthma from a group of people who have excessive styrene exposure. This finding may be suggestive but is not conclusive about the causative role of styrene in occupational asthma. Since styrene is a frequently used substance in the furniture industry, it is worth performing further studies to investigate the relationship between styrene and occupational asthma. Copyright 2004 S. Karger AG, Basel

  12. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    NASA Astrophysics Data System (ADS)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  13. The styrene-maleic acid copolymer: a versatile tool in membrane research.

    PubMed

    Dörr, Jonas M; Scheidelaar, Stefan; Koorengevel, Martijn C; Dominguez, Juan J; Schäfer, Marre; van Walree, Cornelis A; Killian, J Antoinette

    2016-01-01

    A new and promising tool in membrane research is the detergent-free solubilization of membrane proteins by styrene-maleic acid copolymers (SMAs). These amphipathic molecules are able to solubilize lipid bilayers in the form of nanodiscs that are bounded by the polymer. Thus, membrane proteins can be directly extracted from cells in a water-soluble form while conserving a patch of native membrane around them. In this review article, we briefly discuss current methods of membrane protein solubilization and stabilization. We then zoom in on SMAs, describe their physico-chemical properties, and discuss their membrane-solubilizing effect. This is followed by an overview of studies in which SMA has been used to isolate and investigate membrane proteins. Finally, potential future applications of the methodology are discussed for structural and functional studies on membrane proteins in a near-native environment and for characterizing protein-lipid and protein-protein interactions.

  14. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  15. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  16. Characterization and storage stability of astaxanthin esters, fatty acid profile and α-tocopherol of lipid extract from shrimp (L. vannamei) waste with potential applications as food ingredient.

    PubMed

    Gómez-Estaca, J; Calvo, M M; Álvarez-Acero, I; Montero, P; Gómez-Guillén, M C

    2017-02-01

    In this work a lipid extract from shrimp waste was obtained and characterized. The most abundant fatty acids found were C16:0, C18:2n6c, C18:1n9c, C22:6n3, and C20:5n3. The extract contained all-trans-astaxanthin, two cis-astaxanthin isomers, 5 astaxanthin monoesters, and 10 astaxanthin diesters (7±1mg astaxanthin/g). C22:6n3 and C20:5n3 were the most frequent fatty acids in the esterified forms. Appreciable amounts of α-tocopherol and cholesterol were also found (126±11mg/g and 65±1mg/g, respectively). Little lipid oxidation was observed after 120days of storage at room temperature, revealed by a slight reduction of ω-3 fatty acids, but neither accumulation of TBARS nor formation of oxidized cholesterol forms was found. This is attributed to the antioxidant effect of astaxanthin and α-tocopherol, as their concentrations decreased as storage continued. The lipid extract obtained has interesting applications as food ingredient, owing to the coloring capacity and the presence of healthy components. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods.

  18. Ototoxic effects of occupational exposure to styrene and co-exposure to styrene and noise.

    PubMed

    Sliwińska-Kowalska, Mariola; Zamyslowska-Szmytke, Ewa; Szymczak, Wieslaw; Kotylo, Piotr; Fiszer, Marta; Wesolowski, Wiktor; Pawlaczyk-Luszczynska, Malgorzata

    2003-01-01

    Ototoxicity of styrene and the synergistic action of styrene and noise have been shown in rats. The respective data in humans are scarce and equivocal. This study evaluated the effects of occupational exposure to styrene and combined exposures to styrene and noise on hearing. The study group, comprised of 290-yacht yard and plastic factory workers, was exposed to a mixture of organic solvents, having styrene as its main compound. The reference group, totaling 223 subjects, included (1) white-collar workers, exposed neither to solvents nor noise and (2) metal factory workers, exposed exclusively to noise. All subjects were assessed by means of a detailed questionnaire and underwent otorhinolaryngological and audiometric examinations. Multiple logistic regression analysis revealed almost a 4-fold (or 3.9; 95% CI = 2.4-6.2) increase in the odds of developing hearing loss related to styrene exposure. The factors adjusted for were: age, gender, current occupational exposure to noise, and exposure to noise in the past. In cases of the combined exposures to styrene and noise, the odds ratios were two to three times higher than the respective values for styrene-only and noise-only exposed subjects. The mean hearing thresholds--adjusted for age, gender, and exposure to noise--were significantly higher in the solvent-exposed group than in the unexposed reference group at all frequencies tested. A positive linear relationship existed between an averaged working life exposure to styrene concentration and a hearing threshold at the frequencies of 6 and 8 kHz. This study provides the epidemiological evidence that occupational exposure to styrene is related to an increased risk of hearing loss. Combined exposures to noise and styrene seem to be more ototoxic than exposure to noise alone.

  19. Liquid Crystalline Thermosets from Ester, Ester-Imide, and Ester-Amide Oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodornus J. (Inventor); Weiser, Erik S. (Inventor); SaintClair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,OOO grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end- capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  20. Liquid crystalline thermosets from ester, ester-imide, and ester-amide oligomers

    NASA Technical Reports Server (NTRS)

    Dingemans, Theodorous J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2005-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. These properties make the end-capped liquid crystal oligomers highly processable by a variety of melt process shape forming and blending techniques including film extrusion, fiber spinning, reactive injection molding (RIM), resin transfer molding (RTM), resin film injection (RFI), powder molding, pultrusion, injection molding, blow molding, plasma spraying and thermo-forming. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures. The resulting thermosets display many properties that are superior to their non-end-capped high molecular weight analogs.

  1. Predictors of occupational exposure to styrene and styrene‐7,8‐oxide in the reinforced plastics industry

    PubMed Central

    Serdar, B; Tornero‐Velez, R; Echeverria, D; Nylander‐French, L A; Kupper, L L; Rappaport, S M

    2006-01-01

    Objective To identify demographic and work related factors that predict blood levels of styrene and styrene‐7,8‐oxide (SO) in the fibreglass reinforced plastics (FRP) industry. Methods Personal breathing‐zone air samples and whole blood samples were collected repeatedly from 328 reinforced plastics workers in the Unuted States between 1996 and 1999. Styrene and its major metabolite SO were measured in these samples. Multivariable linear regression analyses were applied to the subject‐specific levels to explain the variation in exposure and biomarker levels. Results Exposure levels of styrene were approximately 500‐fold higher than those of SO. Exposure levels of styrene and SO varied greatly among the types of products manufactured, with an 11‐fold range of median air levels among categories for styrene and a 23‐fold range for SO. Even after stratification by job title, median exposures of styrene and SO among laminators varied 14‐ and 31‐fold across product categories. Furthermore, the relative proportions of exposures to styrene and SO varied among product categories. Multivariable regression analyses explained 70% and 63% of the variation in air levels of styrene and SO, respectively, and 72% and 34% of the variation in blood levels of styrene and SO, respectively. Overall, air levels of styrene and SO appear to have decreased substantially in this industry over the last 10–20 years in the US and were greatest among workers with the least seniority. Conclusions As levels of styrene and SO in air and blood varied among product categories in the FRP industry, use of job title as a surrogate for exposure can introduce unpredictable measurement errors and can confound the relation between exposure and health outcomes in epidemiology studies. Also, inverse relations between the intensity of exposure to styrene and SO and years on the job suggest that younger workers with little seniority are typically exposed to higher levels of styrene and SO than their coworkers. PMID:16757507

  2. Peripheral substitution of pheophorbides and bacteriopheophorbides to promote inclusion into inert carrier systems for PDT

    NASA Astrophysics Data System (ADS)

    Roehrs, Susanne; Ruebner-Heuermann, Anja; Hartwich, G.; Scheer, H.; Moser, Joerg G.

    1996-01-01

    Pheophorbide a ethyl ester, pyropheophorbide a ethyl ester, and bacteriopheophorbide ethyl ester were substituted in 31-position with tert.butyl phenoxy or tert.butyl benzoic acid ester groups resp. in order to enhance affinity to (beta) -cyclodextrin dimers which form inclusion complexes with these photosensitizing drugs. This is a first step to construct inert transport complexes in order to photosensitize specifically cancer cells.

  3. Additive manufacturing of short and mixed fibre-reinforced polymer

    DOEpatents

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  4. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence of a third phase attributed to PIB chains near the PS domain interface which experience reduced mobility due to their firm attachment to the hard PS domain. The relative amount of this phase decreased in samples with larger PS blocks, while the temperature of the associated transition increased. Tensile testing showed increased tensile strength but decreased elongation at break with larger PS blocks. DMA of the ionomers indicated improved dynamic modulus at temperatures above 100spcirc$C. Tensile testing of the ionomers indicated slight improvements in tensile strength with little loss in elongation at break. PS-PIB-PS block copolymer ionomer (BCP01, center block molecular weight = 53,000 g/mole; 25.5 wt % polystyrene, 4.7% sulfonation of phenyl units, 100% neutralized with KOH) was compounded with various organic and inorganic acid salts of 2-ethylhexyl-p-dimethyl aminobenzoate (ODAB) to explore the efficacy of these compounds as ionic plasticizers. (Abstract shortened by UMI.)

  5. Company-level, semi-quantitative assessment of occupational styrene exposure when individual data are not available.

    PubMed

    Kolstad, Henrik A; Sønderskov, Jette; Burstyn, Igor

    2005-03-01

    In epidemiological research, self-reported information about determinants and levels of occupational exposures is difficult to obtain, especially if the disease under study has a high mortality rate or follow-up has exceeded several years. In this paper, we present a semi-quantitative exposure assessment strategy for nested case-control studies of styrene exposure among workers of the Danish reinforced plastics industry when no information on job title, task or other indicators of individual exposure were readily available from cases and controls. The strategy takes advantage of the variability in styrene exposure level and styrene exposure probability across companies. The study comprised 1522 cases of selected malignancies and neurodegenerative diseases and controls employed in 230 reinforced plastics companies and other related industries. Between 1960 and 1996, 3057 measurements of styrene exposure level obtained from 191 companies, were identified. Mixed effects models were used to estimate expected styrene exposure levels by production characteristics for all companies. Styrene exposure probability within each company was estimated for all but three cases and controls from the fraction of laminators, which was reported by a sample of 945 living colleagues of the cases and controls and by employers and dealers of plastic raw materials. The estimates were validated from a subset of 427 living cases and controls that reported their own work as laminators in the industry. We computed styrene exposure scores that integrated estimated styrene exposure level and styrene exposure probability. Product (boats), process (hand and spray lamination) and calendar year period were the major determinants of styrene exposure level. Within-company styrene exposure variability increased by calendar year and was accounted for when computing the styrene exposure scores. Exposure probability estimates based on colleagues' reports showed the highest predictive values in the validation test, which also indicated that up to 67% of the workers were correctly classified into a styrene-exposed job. Styrene exposure scores declined about 10-fold from the 1960s-1990s. This exposure assessment approach may be justified in other industries, and especially in industries dominated by small companies with simple exposure conditions.

  6. Studies on the Simultaneous Formation of Aroma-Active and Toxicologically Relevant Vinyl Aromatics from Free Phenolic Acids during Wheat Beer Brewing.

    PubMed

    Langos, Daniel; Granvogl, Michael

    2016-03-23

    During the brewing process of wheat beer, the desired aroma-active vinyl aromatics 2-methoxy-4-vinylphenol and 4-vinylphenol as well as the undesired and toxicologically relevant styrene are formed from their respective precursors, free ferulic acid, p-coumaric acid, and cinnamic acid, deriving from the malts. Analysis of eight commercial wheat beers revealed high concentrations of 2-methoxy-4-vinylphenol and 4-vinylphenol always in parallel with high concentrations of styrene or low concentrations of the odorants in parallel with low styrene concentrations, suggesting a similar pathway. To better understand the formation of these vinyl aromatics, each process step of wheat beer brewing and the use of different strains of Saccharomyces cerevisiae were evaluated. During wort boiling, only a moderate decarboxylation of free phenolic acids and formation of desired and undesired vinyl aromatics were monitored due to the thermal treatment. In contrast, this reaction mainly occurred enzymatically catalyzed during fermentation with S. cerevisiae strain W68 with normal Pof(+) activity (phenolic off-flavor) resulting in a wheat beer eliciting the typical aroma requested by consumers due to high concentrations of 2-methoxy-4-vinylphenol (1790 μg/L) and 4-vinylphenol (937 μg/L). Unfortunately, also a high concentration of undesired styrene (28.3 μg/L) was observed. Using a special S. cerevisiae strain without Pof(+) activity resulted in a significant styrene reduction (

  7. Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos.

    PubMed

    Watkins, Avery L; Landis, Clark R

    2010-08-04

    Gas pressure influences the regioselectivity and enantioselectivity of aryl alkene hydroformylation as catalyzed by rhodium complexes of the BisDiazaphos ligand. Deuterioformylation of styrene at 80 degrees C results in extensive deuterium incorporation into the terminal position of the recovered styrene. This result establishes that rhodium hydride addition to form a branched alkyl rhodium occurs reversibly. The independent effect of carbon monoxide and hydrogen partial pressures on regioselectivity and enantioselectivity were measured. From 40 to 120 psi, both regioisomer (b:l) and enantiomer (R:S) ratios are proportional to the carbon monoxide partial pressure but approximately independent of the hydrogen pressure. The absolute rate for linear aldehyde formation was found to be inhibited by carbon monoxide pressure, whereas the rate for branched aldehyde formation is independent of CO pressure up to 80 psi; above 80 psi one observes the onset of inhibition. The carbon monoxide dependence of the rate and enantioselectivity for branched aldehyde indicates that the rate of production of (S)-2-phenyl propanal is inhibited by CO pressure, while the formation rate of the major enantiomer, (R)-2-phenyl propanal, is approximately independent of CO pressure. Hydroformylation of alpha-deuteriostyrene at 80 degrees C followed by conversion to (S)-2-benzyl-4-nitrobutanal reveals that 83% of the 2-phenylpropanal resulted from rhodium hydride addition to the re face of styrene, and 83% of the 3-phenylpropanal resulted from rhodium hydride addition to the si face of styrene. On the basis of these results, kinetic and steric/electronic models for the determination of regioselectivity and enantioselectivity are proposed.

  8. Construction of chiral ligand exchange capillary electrochromatography for d,l-amino acids enantioseparation and its application in glutaminase kinetics study.

    PubMed

    Zhao, Liping; Qiao, Juan; Zhang, Ke; Li, Dan; Zhang, Hongyi; Qi, Li

    2018-05-04

    A chiral ligand exchange capillary electrochromatography (CLE-CEC) protocol was designed and implemented for d,l-amino acids enantioseparation with poly(maleic anhydride-styrene-methacryloyl-l-arginine methyl ester) as the coating. The block copolymer was synthesized through the reversible addition fragmentation chain transfer reaction. In the constructed CLE-CEC system, poly (methacryloyl-l-arginine methyl ester) moiety of the block copolymer played the role as the immobilized chiral ligand and Zn (II) was used as the central ion. Key factors, including pH of buffer solution, ratio of Zn (II) to ligands, the mass ratio of monomers in the block copolymer, which affect the enantioresolution were investigated. Comparing with the bare capillary, the CLE-CEC enantioresolution was enhanced greatly with the coating one. 5 Pairs of d,l-amino acids enantiomers obtained baseline separation with 5 pairs partly separated. The mechanism of enhancement enantioresolution of the developed CLE-CEC system was explored briefly. Further, good linearities were achieved in the range of 25.0 μM-5.0 mM for quantitative analysis of d-glutamine (r 2  = 0.997) and l-glutamine (r 2  = 0.991). Moreover, the proposed CLE-CEC assay was successfully applied in the kinetics study of glutaminase by using l-glutamine as the substrate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...

  10. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...

  11. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...

  12. 21 CFR 175.300 - Resinous and polymeric coatings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... paragraph (b)(3)(i) of this section to form esters with: Butylene glycol. Ethylene glycol. Pentaerythritol...) Natural fossil resins, as the basic resin: Copal. Damar. Elemi. Gilsonite. Glycerol ester of damar, copal... section) modified by reaction with: Maleic anhydride. o-, m-, and p-substituted phenol-form-alde-hydes...

  13. Bio-generated succinic acid esters in lubricant applications

    USDA-ARS?s Scientific Manuscript database

    Succinic acid is a biodegradable natural product mainly produced industrially from petroleum-based maleic anhydride. It is a platform material for many industrial chemicals. Recent work has generated succinic acid by fermentation of Physaria fendleri press cake, an otherwise waste agricultural bypro...

  14. Stereoselective Formation of Trisubstituted Vinyl Boronate Esters by the Acid-Mediated Elimination of α-Hydroxyboronate Esters

    PubMed Central

    2015-01-01

    The copper-catalyzed diboration of ketones followed by an acid-catalyzed elimination leads to the formation of 1,1-disubstituted and trisubstituted vinyl boronate esters with moderate to good yields and selectivity. Addition of tosic acid to the crude diboration products provides the corresponding vinyl boronate esters upon elimination. The trisubstituted vinyl boronate esters are formed as the (Z)-olefin isomer, which was established by subjecting the products to a Suzuki–Miyaura coupling reaction to obtain alkenes of known geometry. PMID:24915498

  15. Kinetics of styrene in workers from a plastics industry after controlled exposure: a comparison with subjects not previously exposed.

    PubMed Central

    Löf, A; Lundgren, E; Nordqvist, M B

    1986-01-01

    Eight male workers from a glass reinforced plastics industry were experimentally exposed for 2 hours to 2.84 mmol/m3 (296 mg/m3) styrene during light physical exercise (50 W). About 63% of the amount supplied (4.6 mmol styrene) was taken up in the body. The arterial blood concentration of styrene reached a relatively stable level of 15 mumol/l at the end of exposure which was about 70% of the blood concentration in a group of volunteers with no previous exposure to solvents. The apparent blood clearance was significantly higher in the occupationally exposed subjects 2.01/h X kg compared with 1.51/h X kg. Contrary to the relatively stable level of styrene at the end of exposure the concentration of non-conjugated styrene glycol increased throughout the exposure and reached about 3 mumol/l in both groups. Like styrene, the non-conjugated styrene glycol seemed to be eliminated faster from the occupationally exposed workers. The blood concentration of styrene-7,8-oxide was low and seldom exceeded the detection limit of 0.02 mumol/l. The results show that long term exposure in a glass reinforced plastics industry may facilitate the metabolism of styrene. PMID:3730303

  16. A multicenter study on the audiometric findings of styrene-exposed workers.

    PubMed

    Morata, Thais C; Sliwinska-Kowalska, Mariola; Johnson, Ann-Christin; Starck, Jukka; Pawlas, Krystyna; Zamyslowska-Szmytke, Ewa; Nylen, Per; Toppila, Esko; Krieg, Edward; Pawlas, Natalia; Prasher, Deepak

    2011-10-01

    The objective of this study was to evaluate hearing loss among workers exposed to styrene, alone or with noise. This cross-sectional study was conducted as part of NoiseChem, a European Commission 5th Framework Programme research project, by occupational health institutes in Finland, Sweden, and Poland. Participants' ages ranged from 18-72 years (n = 1620 workers). Participants exposed to styrene, alone or with noise, were from reinforced fiberglass products manufacturing plants (n = 862). Comparison groups were comprised of workers noise-exposed (n = 400) or controls (n = 358). Current styrene exposures ranged from 0 to 309 mg/m(3), while mean current noise levels ranged from 70-84 dB(A). Hearing thresholds of styrene-exposed participants were compared with Annexes A and B from ANSI S3.44, 1996. The audiometric thresholds of styrene exposed workers were significantly poorer than those in published standards. Age, gender, and styrene exposure met the significance level criterion in the multiple logistic regression for the binary outcome 'hearing loss' (P = 0.0000). Exposure to noise (<85 dBA p = 0.0001; ≥85 dB(A) p = 0.0192) interacted significantly with styrene exposure. Occupational exposure to styrene is a risk factor for hearing loss, and styrene-exposed workers should be included in hearing loss prevention programs.

  17. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty... edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized as safe...

  18. 21 CFR 582.4101 - Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4101 Section 582.4101 Food and... Diacetyl tartaric acid esters of mono- and diglycerides of edible fats or oils, or edible fat-forming fatty... edible fat-forming fatty acids. (b) Conditions of use. This substance is generally recognized as safe...

  19. 75 FR 9438 - Americas Styrenics, LLC-Marietta Plant a Subsidiary of Americas Styrenics, LLLC Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... workers of the subject firm. The workers are engaged in the production of styrene monomer and polystyrene... increased customer imports of styrene monomer and polystyrene pellets. The amended notice applicable to TA-W...

  20. A novel self-embrittling strippable coating for radioactive decontamination based on silicone modified styrene-acrylic emulsion

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Jianhui; Zheng, Li; Li, Jian; Cui, Can; Lv, Linmei

    2017-03-01

    Silicone modified styrene-acrylic emulsion and butyl acrylate were used as a main film-forming agent and an additive respectively to synthesize a self-embrittling strippable coating. The doping mass-ratio of butyl acrylate was adjusted at 0, 5%, 10%, 15%, 20%, and the results indicated the optimized doping ratio was 10%. Ca(OH)2 was used to promote the coating film self-embrittling at a moderate doping mass-ratio of 20%. The synthesized coating’s coefficients of α and β decontamination on concrete, marble, glass and stainless steel surfaces were both greater than 85%, which indicated the synthesized coating is a promising cleaner for radioactive decontamination.

  1. A two-color fluorogenic carbene complex for tagging olefins via metathesis reaction

    NASA Astrophysics Data System (ADS)

    Wirtz, Marcel; Grüter, Andreas; Heib, Florian; Huch, Volker; Zapp, Josef; Herten, Dirk-Peter; Schmitt, Michael; Jung, Gregor

    2015-12-01

    We describe a fluorogenic ruthenium (II) carbene complex in which the chromophore is directly connected to the metal center. The compound introduces a boron dipyrromethene (BODIPY) moiety into target double bonds by metathesis. Tagging of terminal double bonds is demonstrated on immobilized styrene units on a glass surface. We also show that two compounds with distinguishable fluorescence properties are formed in the model reaction with styrene. The outcome of the metathesis reaction is characterized by 19F-NMR, optical spectroscopy, and, finally, single-molecule trajectories. This labeling scheme, in our perception, is of particular interest in the fields of interfacial science and biorthogonal ligation in combination with super-resolution imaging.

  2. Methods of refining natural oils, and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  3. Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites

    DTIC Science & Technology

    2016-05-01

    composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene- ethylene ...styrene- ethylene /butylene-styrene (SEBS):mineral oil composites that were developed as a brain tissue surrogate at ARL. Finally, we would like to...allowing us to use solid samples and create a model for brain damage. To this end, we used styrene- ethylene /butylene-styrene (SEBS) as the matrix to

  4. CASE-COHORT STUDY OF STYRENE EXPOSURE AND ISCHEMIC HEART DISEASE INVESTIGATORS

    EPA Science Inventory

    Investigators examined workers exposed to styrene while working in styrene-butadiene polymer manufacturing plants between 1943 and 1982. Workers who had died from ischemic heart disease were compared to a subgroup of all men employed in two styrene-butadiene polymer manufac...

  5. Research on the 2nd generation biofuel BIOXDIESEL in aspects of emission of toxic substances in exhaust gases

    NASA Astrophysics Data System (ADS)

    Struś, M. S.; Poprawski, W.; Rewolte, M.

    2016-09-01

    This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.

  6. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  7. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  8. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  9. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  10. Two-dimensional phase separated structures of block copolymers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  11. Establishing an integrated databank for plastic manufacturers and converters in Kuwait.

    PubMed

    Al-Salem, S M

    2009-01-01

    During the past decade, plastic solid waste (PSW) has increased drastically in the state of Kuwait, amounting to 13% of the waste load. Most ends up in landfills with only a minor percentage being recycled. In this study, a databank was established to include plastic manufacturers and converters in Kuwait. The aim was to assess the amount of plastic waste being generated from a number of sources. Types, quantities, and recycling information were gathered and fed into the databank. Kuwait was divided into five sectors to ease data gathering. A total of 37 companies and agencies related to plastic were integrated into the work, as well as information from a previously established databank for plastic waste bags. It was noted that most converters of plastic use in-house recycling schemes. Grades of polyethylene and polypropylene, as well as aliginic acid, polyacetals, and poly-styrene, are all considered major imports in the Arabian Gulf market, and especially in Kuwait. These grades possess an import value in excess of 20 million US dollars per year. The conclusions from this study could be used in neighboring countries in order to reduce PSW generated from the region.

  12. Cooperative effects for CYP2E1 differ between styrene and its metabolites

    PubMed Central

    Hartman, Jessica H.; Boysen, Gunnar; Miller, Grover P.

    2014-01-01

    Cooperative interactions are frequently observed in the metabolism of drugs and pollutants by cytochrome P450s; nevertheless, the molecular determinants for cooperativity remain elusive. Previously, we demonstrated that steady-state styrene metabolism by CYP2E1 exhibits positive cooperativity.We hypothesized that styrene metabolites have lower affinity than styrene toward CYP2E1 and limited ability to induce cooperative effects during metabolism. To test the hypothesis, we determined the potency and mechanism of inhibition for styrene and its metabolites toward oxidation of 4-nitrophenol using CYP2E1 Supersomes® and human liver microsomes.Styrene inhibited the reaction through a mixed cooperative mechanism with high affinity for the catalytic site (67 μM) and lower affinity for the cooperative site (1100 μM), while increasing substrate turnover at high concentrations. Styrene oxide and 4-vinylphenol possessed similar affinity for CYP2E1. Styrene oxide behaved cooperatively like styrene, but 4-vinylphenol decreased turnover at high concentrations. Styrene glycol was a very poor competitive inhibitor. Among all compounds, there was a positive correlation with binding and hydrophobicity.Taken together, these findings for CYP2E1 further validate contributions of cooperative mechanisms to metabolic processes, demonstrate the role of molecular structure on those mechanisms and underscore the potential for heterotropic cooperative effects between different compounds. PMID:23327532

  13. Based on an analysis of mode of action, styrene-induced mouse lung tumors are not a human cancer concern.

    PubMed

    Cruzan, George; Bus, James S; Andersen, Melvin E; Carlson, Gary P; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie

    2018-06-01

    Based on 13 chronic studies, styrene exposure causes lung tumors in mice, but no tumor increases in other organs in mice or rats. Extensive research into the mode of action demonstrates the key events and human relevance. Key events are: metabolism of styrene by CYP2F2 in mouse lung club cells to ring-oxidized metabolites; changes in gene expression for metabolism of lipids and lipoproteins, cell cycle and mitotic M-M/G1 phases; cytotoxicity and mitogenesis in club cells; and progression to preneoplastic/neoplastic lesions in lung. Although styrene-7,8-oxide (SO) is a common genotoxic styrene metabolite in in vitro studies, the data clearly demonstrate that SO is not the proximate toxicant and that styrene does not induce a genotoxic mode of action. Based on complete attenuation of styrene short-term and chronic toxicity in CYP2F2 knockout mice and similar attenuation in CYP2F1 (humanized) transgenic mice, limited metabolism of styrene in human lung by CYP2F1, 2 + orders of magnitude lower SO levels in human lung compared to mouse lung, and lack of styrene-related increase in lung cancer in humans, styrene does not present a risk of cancer to humans. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Treatment of industrial exhaust gases by a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Hołub, Marcin; Jõgi, Indrek; Sikk, Martin

    2016-08-01

    Volatile organic compounds (VOCs) in industrial exhaust gases were treated by a dielectric barrier discharge (DBD) operated with two different mobile power supplies. Together with the plasma source various gas diagnostics were used, namely fourier transform infrared (FTIR) spectroscopy, flame ionization detector (FID) and GC-MS. The analysis revealed that some exhaust gases consist of a rather complex mixture of hydrocarbons and inorganic compounds and also vary in pollutants concentration and flow rate. Thus, analysis of removal efficiencies and byproduct concentrations is more demanding than under laboratory conditions. This contribution presents the experimental apparatus used under the harsh conditions of industrial exhaust systems as well as the mobile power source used. Selected results obtained in a shale oil processing plant, a polymer concrete production facility and a yacht hull factory are discussed. In the case of total volatile organic compounds in oil processing units, up to 60% were removed at input energy of 21-37 J/L when the concentrations were below 500 mg/m3. In the yacht hull factory up to 74% of styrene and methanol were removed at specific input energies around 300 J/L. In the polymer concrete production site 195 ppm of styrene were decomposed with the consumption of 1.8 kJ/L. These results demonstrate the feasibility of plasma assisted methods for treatment of VOCs in the investigated production processes but additional analysis is needed to improve the energy efficiency. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  15. [Studies on the industrial styrene poisoning (Part X). Determination of styrene in biological materials by gas chromatography (author's transl)].

    PubMed

    Teramoto, K; Horiguchi, S

    1980-09-01

    For monitoring solvents exposure, it is useful to determine not only metabolites of the solvents in urine but also the solvents themselves in blood and tissues. In a series of studies on the industrial styrene poisoning, we have been determining styrene in blood and other tissues as occasion calls. Our examination of the method is presented in this report. The outline on the method is as follows: Aliquots of 0.5g of tissues being added 5 ml of n-hexane are homogenized by a high-speed homogenizer (Polytoron) for 10 to 30 seconds and the filtrates containing extracts are analyzed for styrene by gas chromatography. The linearity was ascertained from the calibration curve obtained by adding the known quantities of styrene (4, 10, 20, 40, 100 ppm) to the blood, liver and adipose tissues of rats. Rates of recoveries of styrene from the above tissues were 92 to 101 per cent. Reproducibility of this method was examined by repeating determinations of styrene in the blood, liver and adipose tissues of rats exposed to 500 ppm styrene for 4 hours, the coefficients of variation being 2.8 to 14.0 per cent. There was an approximately linear relationship between the styrene concentration (0 to 1,000 ppm) of the exposed air and those in the blood of exposed rats. We conclude that our simple and rapid method is applicable to determination of solvents other than styrene in organs and tissues by combining suitable solvents for extraction and packings of gas chromatography.

  16. Occupational styrene exposure induces stress-responsive genes involved in cytoprotective and cytotoxic activities.

    PubMed

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure.

  17. 21 CFR 177.1810 - Styrene block polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  18. 21 CFR 177.1810 - Styrene block polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  19. 21 CFR 177.1810 - Styrene block polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  20. 21 CFR 177.1810 - Styrene block polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Styrene block polymers. 177.1810 Section 177.1810...) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene block polymers identified in paragraph (a...

  1. 21 CFR 177.1810 - Styrene block polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Styrene block polymers. 177.1810 Section 177.1810... FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1810 Styrene block polymers. The styrene...

  2. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs P-97-143/144...

  3. POTENTIAL FOR REDUCING STYRENE EXPOSURES FROM COPIED PAPER THROUGH USE OF LOW-EMITTING TONERS

    EPA Science Inventory

    The paper reports results of tests, conducted using 53-L chambers to determine styrene emission rates from freshly copied paper produced on a single photocopier using two toners manufactured for the copier having different styrene contents. Copied-paper styrene emissions with bot...

  4. The Iodochlorination of Styrene: An Experiment that Makes a Difference

    ERIC Educational Resources Information Center

    Amiet, R. Gary; Urban, Sylvia

    2008-01-01

    The iodochlorination of styrene, involving the addition of iodine monochloride to styrene, followed by the sodium methoxide-initiated dehydrohalogenation of the product results in a variable mixture of substituted styrenes by way of various substitution and elimination reaction mechanisms. As a result individual results are obtained for each…

  5. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  6. Dynamic Response of Acrylonitrile Butadiene Styrene Under Impact Loading (Open Access)

    DTIC Science & Technology

    2016-03-16

    of contraction and expansion was observed as the impact load was applied. Thismultistage deformation behavior may be attributable to the ring formed ...ABS fabricated by FDM. Results of the experimental characterization show that rasters formed parallel to the loading direction fabricated in the... formed using a solid ABS block to determine the mechanical property at various strain rates (Fig. 1). Through the analysis of the solid ABS, a linear

  7. Structure and Mechanism of Styrene Monooxygenase Reductase: New Insight into the FAD–Transfer Reaction†

    PubMed Central

    Morrison, Eliot; Kantz, Auric; Gassner, George T.; Sazinsky, Matthew H.

    2013-01-01

    The two–component flavoprotein styrene monooxygenase (SMO) from Pseudomonas putida S12 catalyzes the NADH– and FAD–dependent epoxidation of styrene to styrene oxide. In this study we investigate the mechanism of flavin reduction and transfer from the reductase (SMOB) to epoxidase (NSMOA) component and report our findings in light of the 2.2–Å crystal structure of SMOB. Upon rapidly mixing with NADH, SMOB forms an NADH→FADox charge–transfer intermediate and catalyzes a hydride–transfer reaction from NADH to FAD, with a rate constant of 49.1 ± 1.4 s−1, in a step that is coupled to the rapid dissociation of NAD+. Electrochemical and equilibrium–binding studies indicate that NSMOA binds FADhq ~13–times more tightly than SMOB, which supports a vectoral transfer of FADhq from the reductase to the epoxidase. After binding to NSMOA, FADhq rapidly reacts with molecular oxygen to form a stable C(4a)–hydroperoxide intermediate. The half–life of apoSMOB generated in the FAD–transfer reaction is increased ~21–fold, supporting the model of a protein–protein interaction between apoSMOB and NSMOA with the peroxide intermediate. The mechanisms of FAD–dissociation and transport from SMOB to NSMOA were probed by monitoring the competitive reduction of cytochrome c in the presence and absence of pyridine nucleotides. Based on these studies, we propose a model in which reduced FAD binds to SMOB in equilibrium between an unreactive, sequestered state (S–state) and more reactive, transfer state (T–state). Dissociation of NAD+ after the hydride transfer–reaction transiently populates the T–state, promoting the transfer of FADhq to NSMOA. The binding of pyridine nucleotides to SMOB–FADhq shifts the FADhq–binding equilibrium from the T–state to the S–state. Additionally, the 2.2–Å crystal structure of SMOB–FADox reported in this work is discussed in light of the pyridine nucleotide–gated flavin–transfer and electron–transfer reactions. PMID:23909369

  8. The structure of a one-electron oxidized Mn(iii)-bis(phenolate)dipyrrin radical complex and oxidation catalysis control via ligand-centered redox activity.

    PubMed

    Lecarme, Laureline; Chiang, Linus; Moutet, Jules; Leconte, Nicolas; Philouze, Christian; Jarjayes, Olivier; Storr, Tim; Thomas, Fabrice

    2016-10-18

    The tetradentate ligand dppH3, which features a half-porphyrin and two electron-rich phenol moieties, was prepared and chelated to manganese. The mononuclear Mn(iii)-dipyrrophenolate complex 1 was structurally characterized. The metal ion lies in a square pyramidal environment, the apical position being occupied by a methanol molecule. Complex 1 displays two reversible oxidation waves at 0.00 V and 0.47 V vs. Fc + /Fc, which are assigned to ligand-centered processes. The one-electron oxidized species 1+ SbF6- was crystallized, showing an octahedral Mn(iii) center with two water molecules coordinated at both apical positions. The bond distance analysis and DFT calculations disclose that the radical is delocalized over the whole aromatic framework. Complex 1+ SbF6- exhibits an S tot = 3/2 spin state due to the antiferromagnetic coupling between Mn(iii) and the ligand radical. The zero field splitting parameters are D = 1.6 cm -1 , E/D = 0.18(1), g ⊥ = 1.99 and g ∥ = 1.98. The dication 12+ is an integer spin system, which is assigned to a doubly oxidized ligand coordinated to a Mn(iii) metal center. Both 1 and 1+ SbF6- catalyze styrene oxidation in the presence of PhIO, but the nature of the main reaction product is different. Styrene oxide is the main reaction product when using 1, but phenylacetaldehyde is formed predominantly when using 1+ SbF6-. We examined the ability of complex 1+ SbF6- to catalyze the isomerization of styrene oxide and found that it is an efficient catalyst for the anti-Markovnikov opening of styrene oxide. The formation of phenylacetaldehyde from styrene therefore proceeds in a tandem E-I (epoxidation-isomerization) mechanism in the case of 1+ SbF6-. This is the first evidence of control of the reactivity for styrene oxidation by changing the oxidation state of a catalyst based on a redox-active ligand.

  9. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    NASA Astrophysics Data System (ADS)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  10. Identification of sulfur-containing impurities in biodiesel produced from brown grease

    USDA-ARS?s Scientific Manuscript database

    Crude biodiesel (Fatty Acid Methyl Esters (FAME)) has been produced from brown grease lipids (BGLs) and subjected to purification by wiped film evaporation (WFE). FAME from waste grease usually contains higher concentrations of sulfur (S) than allowed to meet specified quality standards for biodies...

  11. Characterization of Shrimp Oil from Pandalus borealis by High Performance Liquid Chromatography and High Resolution Mass Spectrometry.

    PubMed

    Jiao, Guangling; Hui, Joseph P M; Burton, Ian W; Thibault, Marie-Hélène; Pelletier, Claude; Boudreau, Josée; Tchoukanova, Nadia; Subramanian, Balaji; Djaoued, Yahia; Ewart, Stephen; Gagnon, Jacques; Ewart, Kathryn Vanya; Zhang, Junzeng

    2015-06-18

    Northern shrimp (Pandalus borealis) oil, which is rich in omega-3 fatty acids, was recovered from the cooking water of shrimp processing facilities. The oil contains significant amounts of omega-3 fatty acids in triglyceride form, along with substantial long-chain monounsaturated fatty acids (MUFAs). It also features natural isomeric forms of astaxanthin, a nutritional carotenoid, which gives the oil a brilliant red color. As part of our efforts in developing value added products from waste streams of the seafood processing industry, we present in this paper a comprehensive characterization of the triacylglycerols (TAGs) and astaxanthin esters that predominate in the shrimp oil by using HPLC-HRMS and MS/MS, as well as 13C-NMR. This approach, in combination with FAME analysis, offers direct characterization of fatty acid molecules in their intact forms, including the distribution of regioisomers in TAGs. The information is important for the standardization and quality control, as well as for differentiation of composition features of shrimp oil, which could be sold as an ingredient in health supplements and functional foods.

  12. Characterization of Shrimp Oil from Pandalus borealis by High Performance Liquid Chromatography and High Resolution Mass Spectrometry

    PubMed Central

    Jiao, Guangling; Hui, Joseph P. M.; Burton, Ian W.; Thibault, Marie-Hélène; Pelletier, Claude; Boudreau, Josée; Tchoukanova, Nadia; Subramanian, Balaji; Djaoued, Yahia; Ewart, Stephen; Gagnon, Jacques; Ewart, Kathryn Vanya; Zhang, Junzeng

    2015-01-01

    Northern shrimp (Pandalus borealis) oil, which is rich in omega-3 fatty acids, was recovered from the cooking water of shrimp processing facilities. The oil contains significant amounts of omega-3 fatty acids in triglyceride form, along with substantial long-chain monounsaturated fatty acids (MUFAs). It also features natural isomeric forms of astaxanthin, a nutritional carotenoid, which gives the oil a brilliant red color. As part of our efforts in developing value added products from waste streams of the seafood processing industry, we present in this paper a comprehensive characterization of the triacylglycerols (TAGs) and astaxanthin esters that predominate in the shrimp oil by using HPLC-HRMS and MS/MS, as well as 13C-NMR. This approach, in combination with FAME analysis, offers direct characterization of fatty acid molecules in their intact forms, including the distribution of regioisomers in TAGs. The information is important for the standardization and quality control, as well as for differentiation of composition features of shrimp oil, which could be sold as an ingredient in health supplements and functional foods. PMID:26096274

  13. Self-assembly modes of glycyrrhetinic acid esters in view of the crystal packing of related triterpene molecules.

    PubMed

    Langer, Dominik; Wicher, Barbara; Szczołko, Wojciech; Gdaniec, Maria; Tykarska, Ewa

    2016-08-01

    The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.

  14. Substrate specificity of xenobiotic metabolizing esterases in the liver of two catfish species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, R.G.; Huang, T.L.; Obih, P.O.

    1994-12-31

    The preliminary studies were conducted on the characterization of substrate specificity in the liver microsomes and cytosol of two catfish species, Ictalurus punctatus and Ictalurus natalie. A series of five esters of p-nitrophenol were used as calorimetric substrates to assay the carboxylesterases. The substrate specificity of liver microsomal and cytosolic carboxylesterases were remarkably different from each other. The valerate ester of p-nitrophenol was most rapidly hydrolyzed by the microsomal carboxylesterases, whereas the prioponate ester was the best substrate for cytosolic carboxylesterases. The Ictalurus natalie catfish species were obtained from the Devil Swamp site of the Mississippi River Basin which ismore » known to be heavily contaminated with toxic and hazardous industrial wastes. These results will be discussed in relation to the responses of xenobiotic metabolizing esterases to environmental pollutants and their possible use as biomarkers.« less

  15. Leaching of styrene and other aromatic compounds in drinking water from PS bottles.

    PubMed

    Ahmad, Maqbool; Bajahlan, Ahmad S

    2007-01-01

    Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 microg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 microg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.

  16. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  17. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast.

    PubMed

    Pires, Eduardo J; Teixeira, José A; Brányik, Tomás; Vicente, António A

    2014-03-01

    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.

  18. Comparison of mouse strains for susceptibility to styrene-induced hepatotoxicity and pneumotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, G.P.

    1997-10-01

    Styrene is known to cause both hepatotoxicity and pneumotoxicity in mice. Strain differences have been reported by other investigators suggesting that Swiss mice are less susceptible than non-Swiss mice to styrene-induced liver damage. In this study, All and C57BL16 mice were found to be similar to non-Swiss albino (NSA) mice in susceptibility whereas CD-1 (Swiss) mice were more resistant to hepatotoxicity as assessed by serum sorbitol dehydrogenase levels and pneumotoxicity as determined by gamma-glutamyltranspeptidase and lactate dehydrogenase measurements in bronchoalveolar ravage fluid. Styrene was hepatotoxic in CD-1 mice treated with pyridine to induce CYP2E1. CYP2E1 apoprotein levels and p-nitrophenol hydroxylasemore » activities in control and pyridine-induced mice were similar in the two strains. Hepatic and pulmonary microsomal preparations from both strains metabolized styrene to styrene oxide at similar rates. CD-1 mice were as susceptible as the NSA mice to the effects of styrene oxide. The data suggest that there are no differences in the bioactivation of styrene to styrene oxide or innate susceptibility to the active metabolite that would account for the differences between the CD-1 and NSA mice. 26 refs., 6 tabs.« less

  19. Microbial production of the aromatic building-blocks (S)-styrene oxide and (R)-1,2-phenylethanediol from renewable resources.

    PubMed

    McKenna, Rebekah; Pugh, Shawn; Thompson, Brian; Nielsen, David R

    2013-12-01

    (S)-Styrene oxide and (R)-1,2-phenylethanediol are chiral aromatic molecular building blocks used commonly as precursors to pharmaceuticals and other specialty chemicals. Two pathways have been engineered in Escherichia coli for their individual biosynthesis directly from glucose. The novel pathways each constitute extensions of the previously engineered styrene pathway, developed by co-expressing either styrene monooxygenase (SMO) or styrene dioxygenase (SDO) to convert styrene to (S)-styrene oxide and (R)-1,2-phenylethanediol, respectively. StyAB from Pseudomonas putida S12 was determined to be the most effective SMO. SDO activity was achieved using NahAaAbAcAd of Pseudomonas sp. NCIB 9816-4, a naphthalene dioxygenase with known broad substrate specificity. Production of phenylalanine, the precursor to both pathways, was systematically enhanced through a number of mutations, most notably via deletion of tyrA and over-expression of tktA. As a result, (R)-1,2-phenylethanediol reached titers as high as 1.23 g/L, and at 1.32 g/L (S)-styrene oxide titers already approach their toxicity limit. As with other aromatics, product toxicity was strongly correlated with a model of membrane accumulation and disruption. This study additionally demonstrates that greater flux through the styrene pathway can be achieved if its toxicity is addressed, as achieved in this case by reacting styrene to less toxic products. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pulmonary function and oxidative stress in workers exposed to styrene in plastic factory: occupational hazards in styrene-exposed plastic factory workers.

    PubMed

    Sati, Prakash Chandra; Khaliq, Farah; Vaney, Neelam; Ahmed, Tanzeel; Tripathi, Ashok K; Banerjee, Basu Dev

    2011-11-01

    Styrene is a volatile organic compound used in factories for synthesis of plastic products. The pneumotoxicity of styrene in experimental animals is known. The aim of the present study was to study the effect of styrene on lung function and oxidative stress in occupationally exposed workers in plastic factory. Thirty-four male workers, between 18 and 40 years of age, exposed to styrene for atleast 8 hours a day for more than a year were studied, while 30 age- and sex-matched healthy subjects not exposed to styrene served as controls. Assessment of lung functions showed a statistically significant reduction (p < 0.05) in most of the lung volumes, capacities (FVC, FEV(1), VC, ERV, IRV, and IC) and flow rates (PEFR, MEF(75%), and MVV) in the study group (workers) as compared to controls. Malondialdehyde (MDA) was observed to be significantly high (p < 0.05) while ferric-reducing ability of plasma (FRAP) was significantly low (p < 0.05) in styrene-exposed subjects. Reduced glutathione (GSH) level was significantly depleted in exposed subjects as compared to control group. The mean value of serum cytochrome c in styrene-exposed subjects was found to be 1.1 ng/ml (0.89-1.89) while in control its levels were under detection limit (0.05 ng/ml). It shows that styrene inhalation by workers leads to increased level of oxidative stress, which is supposed to be the cause of lung damage.

  1. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    PubMed Central

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  2. Transesterification of waste cooking oil by an organic solvent-tolerant alkaline lipase from Streptomyces sp. CS273.

    PubMed

    Mander, Poonam; Yoo, Hah-Young; Kim, Seung Wook; Choi, Yun Hee; Cho, Seung Sik; Yoo, Jin Cheol

    2014-02-01

    The aim of this present study was to produce a microbial enzyme that can potentially be utilized for the enzymatic transesterification of waste cooking oil. To that end, an extracellular lipase was isolated and purified from the culture broth of Streptomyces sp. CS273. The molecular mass of purified lipase was estimated to be 36.55 kDa by SDS PAGE. The optimum lipolytic activity was obtained at alkaline pH 8.0 to 8.5 and temperature 40 °C, while the enzyme was stable in the pH range 7.0 ∼ 9.0 and at temperature ≤40 °C. The lipase showed highest hydrolytic activity towards p-nitrophenyl myristate (C14). The lipase activity was enhanced by several salts and detergents including NaCl, MnSo₄, and deoxy cholic acid, while phenylmethylsulfonyl fluoride at concentration 10 mM inhibited the activity. The lipase showed tolerance towards different organic solvents including ethanol and methanol which are commonly used in transesterification reactions to displace alcohol from triglycerides (ester) contained in renewable resources to yield fatty acid alkyl esters known as biodiesel. Applicability of the lipase in transesterification of waste cooking oil was confirmed by gas chromatography mass spectrometry analysis.

  3. Enhancement of lipase catalyzed-fatty acid methyl esters production from waste activated bleaching earth by nullification of lipase inhibitors.

    PubMed

    Dwiarti, Lies; Ali, Ehsan; Park, Enoch Y

    2010-01-01

    This study sought to identify inhibitory factors of lipase catalyzed-fatty acid methyl esters (FAME) production from waste activated bleaching earth (wABE). During the vegetable oil refinery process, activated bleaching earth (ABE) is used for removing the impure compounds, but adsorbs vegetable oil up to 35-40% as on a weight basis, and then the wABE is discarded as waste material. The impurities were extracted from the wABE with methanol and evaluated by infra-red (IR) spectroscopy, which revealed that some were chlorophyll-plant pigments. The chlorophylls inhibited the lipase during FAME conversion from wABE. The inhibition by a mixture of chlorophyll a and b was found to be competitive. The inhibition of the enzymatic hydrolysis of waste vegetable oil contained in wABE by chlorophyll a alone was competitive, while the inhibition by chlorophyll b alone was non-competitive. Furthermore, the addition of a small amount of alkali nullified this inhibitory effect and accelerated the FAME production rate. When 0.9% KOH (w/w wABE) was added to the transesterification reaction with only 0.05% lipase (w/w wABE), the maximum FAME production rate improved 120-fold, as compared to that without the addition of KOH. The alkali-combined lipase significantly enhanced the FAME production rate from wABE, in spite of the presence of the plant pigments, and even when a lower amount of lipase was used as a catalyst.

  4. Styrene-butadiene-styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities.

    PubMed

    Song, Yihu; Xu, Chunfeng; Zheng, Qiang

    2014-04-21

    We report a facile kinetic strategy in combination with styrene-butadiene-styrene (SBS) copolymer compatibilizers for preparing carbon black (CB) filled immiscible polypropylene (PP)/polystyrene (PS) (1/1) blends with finely tuned morphologies and show the important role of location and migration of CB nanoparticles in determining the electrical conductivity and rheological behaviour of the composites. A novel method of mixing a SBS/CB (5/3) masterbatch with the polymers allowed producing composites with CB aggregates dispersed partially in the unfavorable PP phase and partially in the PP side of the interface to exhibit diverse phase connectivity and electrical conductivity depending on the compounding sequences. A cocontinuous morphology with CB enrichment along the interface was formed in the composite prepared by mixing the SBS/CB masterbatch with the premixed PP/PS blend, giving rise to a highest electrical conductivity and dynamic moduli at low frequencies. On the other hand, mixing the masterbatch with one and then with another polymer yielded droplet (PS)-in-matrix (filled PP) composites. The composites underwent phase coalescence and CB redistribution accompanied by marked dynamic electrical conduction and modulus percolations as a function of time during thermal annealing at 180 °C. The composites with the initial droplet-in-matrix morphology progressed anomalously into the cocontinuous morphology, reflecting a common mechanism being fairly nonspecific for understanding the processing of filled multicomponent composites with tailored performances of general concern.

  5. Potential treatments to reduce phorbol esters levels in jatropha seed cake for improving the value added product.

    PubMed

    Sadubthummarak, Umapron; Parkpian, Preeda; Ruchirawat, Mathuros; Kongchum, Manoch; Delaune, R D

    2013-01-01

    Jatropha seed cake contains high amounts of protein and other nutrients, however it has a drawback due to toxic compounds. The aim of this study was to investigate the methods applied to detoxify the main toxin, phorbol esters in jatropha seed cake, to a safe and acceptable level by maintaining the nutritional values. Phorbol esters are tetracyclic diterpenoids-polycyclic compounds that are known as tumor promoters and hence exhibited the toxicity within a broad range of species. Mismanagement of the jatropha waste from jatropha oil industries would lead to contamination of the environment, affecting living organisms and human health through the food chain, so several methods were tested for reducing the toxicity of the seed cake. The results from this investigation showed that heat treatments at either 120°C or 220°C for 1 hour and then mixing with adsorbing bentonite (10%), nanoparticles of zinc oxide (100 μg/g) plus NaHCO3 at 4%, followed by a 4-week incubation period yielded the best final product. The remaining phorbol esters concentration (0.05-0.04 mg/g) from this treatment was less than that reported for the nontoxic jatropha varieties (0.11-0.27 mg/g). Nutritional values of the seed cake after treatment remained at the same levels found in the control group and these values were crude protein (20.47-21.40 + 0.17-0.25%), crude lipid (14.27-14.68 + 0.13-0.14%) and crude fiber (27.33-29.67 + 0.58%). A cytotoxicity test conducted using L929 and normal human dermal fibroblast cell lines confirmed that most of the toxic compounds, especially phorbol esters, were shown as completely eliminated. The results suggested that the detoxification of phorbol esters residues in the jatropha seed cake was possible while it also retained nutritional values. Therefore, the methods to detoxify phorbol esters are necessary to minimize the toxicity of jatropha seed cake. Further, it is essential to reduce the possible environmental impacts that may be generated throughout the jatropha waste-handling process. However additional tests such as digestibility as well as acceptability of the treated jatropha seed cake should be conducted using both in vivo and in vitro studies before recommending the jatropha seed cake as a source of renewable animal feed and other value-added products.

  6. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  7. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  8. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  9. 40 CFR 721.7020 - Distillates (petroleum), C(3-6), polymers with styrene and mixed terpenes (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...), polymers with styrene and mixed terpenes (generic name). 721.7020 Section 721.7020 Protection of...), C(3-6), polymers with styrene and mixed terpenes (generic name). (a) Chemical substance and...), polymers with styrene and mixed terpenes (PMN P-89-676) is subject to reporting under this section for the...

  10. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets.

    PubMed

    McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios

    2017-09-20

    The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

  11. Synthesis and amphiphilic properties of decanoyl esters of tri- and tetraethylene glycol.

    PubMed

    Zhu, Ying; Molinier, Valérie; Queste, Sébastien; Aubry, Jean-Marie

    2007-08-15

    Well-defined decanoyl triethylene glycol ester and decanoyl tetraethylene glycol ester were synthesized and compared to their ether counterparts (C(10)E(4) and C(10)E(3)). Their physicochemical properties i.e. critical micelle concentrations (CMC), cloud points, and equilibrium surface tensions were determined. Binary water-surfactant phase behavior was also studied by polarized optical microscopy. The stability of the ester bond was determined by investigating alkaline hydrolysis of the compounds. It was found that CMC, cloud point and equilibrium surface tension are roughly the same for corresponding ethers and esters. In the binary diagram, the esters form only lamellar phases, the area of which is smaller than that of the ether counterparts. These different behaviors can be related to the modification of the molecular conformation induced by the replacement of the ether group by the ester group.

  12. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    PubMed

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  13. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity.

    PubMed

    Brundiek, Henrike; Saß, Stefan; Evitt, Andrew; Kourist, Robert; Bornscheuer, Uwe T

    2012-04-01

    The Ustilago maydis lipase UM03410 belongs to the mostly unexplored Candida antarctica lipase (CAL-A) subfamily. The two lipases with [corrected] the highest identity are a lipase from Sporisorium reilianum and the prototypic CAL-A. In contrast to the other CAL-A-type lipases, this hypothetical U. maydis lipase is annotated to possess a prolonged N-terminus of unknown function. Here, we show for the first time the recombinant expression of two versions of lipase UM03410: the full-length form (lipUMf) and an Nterminally truncated form (lipUMs). For comparison to the prototype, the expression of recombinant CAL-A in E. coli was investigated. Although both forms of lipase UM03410 could be expressed functionally in E. coli, the N-terminally truncated form (lipUMs) demonstrated significantly higher activities towards p-nitrophenyl esters. The functional expression of the N-terminally truncated lipase was further optimized by the appropriate choice of the E. coli strain, lowering the cultivation temperature to 20 °C and enrichment of the cultivation medium with glucose. Primary characteristics of the recombinant lipase are its pH optimum in the range of 6.5-7.0 and its temperature optimum at 55 °C. As is typical for lipases, lipUM03410 shows preference for long chain fatty acid esters with myristic acid ester (C14:0 ester) being the most preferred one.More importantly, lipUMs exhibits an inherent preference for C18:1Δ9 trans and C18:1Δ11 trans-fatty acid esters similar to CAL-A. Therefore, the short form of this U. maydis lipase is the only other currently known lipase with a distinct trans-fatty acid selectivity.

  14. Charcoal byproducts as potential styrene-butadiene rubber composte filler

    USDA-ARS?s Scientific Manuscript database

    Carbon black, a byproduct of the petroleum industry, is the world's most predominant filler for rubber composites. In this study, various renewable charcoals in the form of pyrolyzed agricultural byproducts were evaluted as potential carbon-based filler for rubber composites made with carboxylated s...

  15. Industrial wastes as a promising renewable source for production of microbial lipid and direct transesterification of the lipid into biodiesel.

    PubMed

    Cheirsilp, Benjamas; Louhasakul, Yasmi

    2013-08-01

    Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  17. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  18. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  19. Oleoyl and linoleoyl esters of fumonisin B1 are differently produced by Fusarium verticillioides on maize and rice based media.

    PubMed

    Falavigna, C; Lazzaro, I; Galaverna, G; Dall'Asta, C; Battilani, P

    2016-01-18

    Fatty acid esters of fumonisins, namely oleoyl- and linoleoyl esters of fumonisin B1 (EFB1OA and EFB1LA, respectively), are modified forms of fumonisins whose formation and occurrence have been reported so far in naturally infected maize and in artificially inoculated rice. There is a lack of knowledge about the mechanism of formation, mainly in relation to the role played by the substrate. Therefore, in this work we studied the dynamics of accumulation of the toxin and its esters, together with their precursor, in maize and rice based media inoculated with different strains of F. verticillioides and incubated at 25 °C for 7-45 days. The production pattern of FB1 and its modified forms was significantly influenced by growth media, reaching a higher concentration in cornmeal compared to rice based medium. Similarly, cornmeal was more supportive for the conversion of FB1 by considering the esterification rate, with a prevalence of linoleoyl esters compared to oleoyl esters resembling the OA/LA rate in both media. The conversion of FB1 into fatty acid esters was also shown as strain-related. Results, thus, strongly support the hypothesis that fatty acid esters of FB1 are produced by the fungus itself at a late stage of growth, or at a certain point of FB1 accumulation in the medium, using fatty acids from the substrate.

  20. Plastic wastes as modifiers of the thermoplasticity of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.A. Diez; C. Barriocanal; R. Alvarez

    2005-12-01

    Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base componentmore » of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.« less

  1. The possible participation of esters as well as amides in prebiotic polymers.

    NASA Technical Reports Server (NTRS)

    Rich, A.

    1971-01-01

    Demonstration that alpha-hydroxy acids may have participated in the formation of prebiological polymers in a manner similar to the participation of alpha-amino acids. Ex periments are described which indicate that the system for forming peptide bonds in present-day biological organisms is equally competent in forming ester and polyester bonds. In particular, the experiments described are directed toward answering questions regarding the action of peptidyl transferase in ester formation. Also, an attempt is made to determine whether a complete protein synthetic system can operate with transfer RNA molecules which have alpha-hydroxyl acids attached to them instead of alpha-amino acids, using both synthetic and natural mRNA. The ability of ribosomal peptidyl transferase to catalyze the formation of an ester bond as well as its normal product, the peptide bond, is demonstrated.

  2. Influence of ester-modified lipids on bilayer structure.

    PubMed

    Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B

    2013-11-19

    Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.

  3. The Effect of Acetone Amount Ratio as Co-Solvent to Methanol in Transesterification Reaction of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Julianto, T. S.; Nurlestari, R.

    2018-04-01

    The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.

  4. Enzymatic conversion of waste cooking oils into alternative fuel--biodiesel.

    PubMed

    Chen, Guanyi; Ying, Ming; Li, Weizhun

    2006-01-01

    Production of biodiesel from pure oils through chemical conversion may not be applicable to waste oils/fats. Therefore, enzymatic conversion using immobilized lipase based on Rhizopus orzyae is considered in this article. This article studies this technological process, focusing on optimization of several process parameters, including the molar ratio of methanol to waste oils, biocatalyst load, and adding method, reaction temperature, and water content. The results indicate that methanol/oils ratio of 4, immobilized lipase/oils of 30 wt% and 40 degrees C are suitable for waste oils under 1 atm. The irreversible inactivation of the lipase is presumed and a stepwise addition of methanol to reduce inactivation of immobilized lipases is proposed. Under the optimum conditions the yield of methyl esters is around 88-90%.

  5. Abatement of styrene waste gas emission by biofilter and biotrickling filter: comparison of packing materials and inoculation procedures.

    PubMed

    Pérez, M C; Álvarez-Hornos, F J; Portune, K; Gabaldón, C

    2015-01-01

    The removal of styrene was studied using two biofilters packed with peat and coconut fibre (BF1-P and BF2-C, respectively) and one biotrickling filter (BTF) packed with plastic rings. Two inoculation procedures were applied: an enriched culture with strain Pseudomonas putida CECT 324 for BFs and activated sludge from a municipal wastewater treatment plant for the BTF. Inlet loads (ILs) between 10 and 45 g m(-3) h(-1) and empty bed residence times (EBRTs) from 30 to 120 s were applied. At inlet concentrations ranging between 200 and 400 mg Nm(-3), removal efficiencies between 70 % and 95 % were obtained in the three bioreactors. Maximum elimination capacities (ECs) of 81 and 39 g m(-3) h(-1) were obtained for the BF1-P and BF2-C, respectively (IL of 173 g m(-3) h(-1) and EBRT of 60 s in BF1-P; IL of 89 g m(-3) h(-1) and EBRT of 90 s in BF2-C). A maximum EC of 52 g m(-3) h(-1) was obtained for the BTF (IL of 116 g m(-3) h(-1), EBRT of 45 s). Problems regarding high pressure drop appeared in the peat BF, whereas drying episodes occurred in the coconut fibre BF. DGGE revealed that the pure culture used for BF inoculation was not detected by day 105. Although two different inoculation procedures were applied, similar styrene removal at the end of the experiments was observed. The use as inoculum of activated sludge from municipal wastewater treatment plant appears a more feasible option.

  6. Non-Malignant Respiratory Disease Among Workers in Industries Using Styrene—A Review of the Evidence

    PubMed Central

    Nett, Randall J.; Cox-Ganser, Jean M.; Hubbs, Ann F.; Ruder, Avima M.; Cummings, Kristin J.; Huang, Yuh-Chin T.; Kreiss, Kathleen

    2017-01-01

    Background Asthma and obliterative bronchiolitis (OB) cases have occurred among styrene-exposed workers. We aimed to investigate styrene as a risk factor for non-malignant respiratory disease (NMRD). Methods From a literature review, we identified case reports and assessed cross-sectional and mortality studies for strength of evidence of positive association (i.e., strong, intermediate, suggestive, none) between styrene exposure and NMRD-related morbidity and mortality. Results We analyzed 55 articles and two unpublished case reports. Ten OB cases and eight asthma cases were identified. Six (75%) asthma cases had abnormal styrene inhalation challenges. Thirteen (87%) of 15 cross-sectional studies and 12 (50%) of 24 mortality studies provided at least suggestive evidence that styrene was associated with NMRD-related morbidity or mortality. Six (66%) of nine mortality studies assessing chronic obstructive pulmonary disease-related mortality indicated excess mortality. Conclusions Available evidence suggests styrene exposure is a potential risk factor for NMRD. Additional studies of styrene-exposed workers are warranted. PMID:28079275

  7. Biofiltration of air contaminated by styrene vapors on inorganic filtering media: an experimental study.

    PubMed

    St-Pierre, Marie-Claude Dion; Avalos Ramirez, Antonio; Heitz, Michèle

    2009-05-01

    This paper presents a study on the biofiltration of styrene by using two inorganic filtering materials. The effects of styrene inlet load and nitrogen concentration present in the nutrient solution on biofilter performance were studied. The styrene inlet concentration was varied from 65 to 1115 parts per million by volume (ppmv), whereas the contaminated airflow rate was fixed at 1 m3/hr. The nitrogen concentration in nutrient solution was varied from 1 to 4 gN/L. The maximum elimination capacity obtained was 105 g/m3-hr, which corresponded to a removal efficiency of 80% for a styrene inlet load of 130 g/m3-hr. This study shows that the nitrogen content in the nutrient solution affects the removal rate of styrene, with an optimal nitrogen concentration of 3 gN/L. The performance comparison between two different inorganic bed types was undertaken and a comparative study on biofiltration of two aromatic compounds, styrene and toluene, is also presented.

  8. Styrene-Associated Health Outcomes at a Windblade Manufacturing Plant

    PubMed Central

    McCague, Anna-Binney; Cox-Ganser, Jean M.; Harney, Joshua M.; Alwis, K. Udeni; Blount, Benjamin C.; Cummings, Kristin J.; Edwards, Nicole; Kreiss, Kathleen

    2015-01-01

    Background Health risks of using styrene to manufacture windblades for the green energy sector are unknown. Methods Using data collected from 355 (73%) current windblade workers and regression analysis, we investigated associations between health outcomes and styrene exposure estimates derived from urinary styrene metabolites. Results The median current styrene exposure was 53.6 mg/g creatinine (interquartile range: 19.5–94.4). Color blindness in men and women (standardized morbidity ratios 2.3 and 16.6, respectively) was not associated with exposure estimates, but was the type previously reported with styrene. Visual contrast sensitivity decreased and chest tightness increased (odds ratio 2.9) with increasing current exposure. Decreases in spirometric parameters and FeNO, and increases in the odds of wheeze and asthma-like symptoms (odds ratios 1.3 and 1.2, respectively) occurred with increasing cumulative exposure. Conclusions Despite styrene exposures below the recommended 400 mg/g creatinine, visual and respiratory effects indicate the need for additional preventative measures in this industry. PMID:26305283

  9. Dimer esters in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity

    NASA Astrophysics Data System (ADS)

    Kristensen, K.; Cui, T.; Zhang, H.; Gold, A.; Glasius, M.; Surratt, J. D.

    2013-12-01

    The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to that from OH-initiated oxidation in the presence of initially high NO conditions. However, no effect of RH on SOA mass was evident. Ozone (O3)-initiated oxidation of α-pinene in the presence of ammonium sulfate (AS) seed coated with organic aerosol from OH-initiated oxidation of α-pinene showed reduced nucleation compared to ozonolysis in the presence of pure AS seed aerosol. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), with a focus on the formation of carboxylic acids and high-molecular weight dimer esters. A total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12% of the total α-pinene SOA mass. OH-initiated oxidation of α-pinene in the presence of nitrogen oxides (NOx) resulted in the formation of highly oxidized carboxylic acids, such as 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and diaterpenylic acid acetate (DTAA). The formation of dimer esters was observed only in SOA produced from the ozonolysis of α-pinene in the absence of NOx, with increased concentrations by a~factor of two at higher RH (50-90%) relative to lower RH (30-50%). The increased formation of dimer esters correlates with an observed increase in new particle formation at higher RH due to nucleation. Increased aerosol acidity was found to have a negligible effect on the formation of the dimer esters. SOA mass yield did not influence the chemical composition of SOA formed from α-pinene ozonolysis with respect to carboxylic acids and dimer esters. The results support the formation of the high-molecular weight dimer esters through gas-phase reactions of the stabilized Criegee Intermediate (sCI) formed from the ozonolysis of α-pinene. The high molecular weight and polar nature of dimer esters formed in the gas-phase may explain increased particle number concentration as a~result of homogenous nucleation. Since three of these dimer esters (i.e., pinyl-diaterpenyl ester (MW 358), pinyl-diaterebyl ester (MW 344) and pinonyl-pinyl ester (MW 368)) have been observed in both laboratory-generated and ambient fine organic aerosol samples, we conclude that the dimer esters observed in this study can be used as tracers for the O3-initiated oxidation of α-pinene, and are therefore indicative of enhanced anthropogenic activities, and that the high molecular weight and low volatility esters result in homogenous nucleation under laboratory conditions, increasing the particle number concentration.

  10. Methods of refining natural oils and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  11. Biodiesel production via the transesterification of soybean oil using waste starfish (Asterina pectinifera).

    PubMed

    Jo, Yong Beom; Park, Sung Hoon; Jeon, Jong-Ki; Ko, Chang Hyun; Ryu, Changkook; Park, Young-Kwon

    2013-07-01

    Calcined waste starfish was used as a base catalyst for the production of biodiesel from soybean oil for the first time. A batch reactor was used for the transesterification reaction. The thermal characteristics and crystal structures of the waste starfish were investigated by thermo-gravimetric analysis and X-ray diffraction. The biodiesel yield was determined by measuring the content of fatty acid methyl esters (FAME). The calcination temperature appeared to be a very important parameter affecting the catalytic activity. The starfish-derived catalyst calcined at 750 °C or higher exhibited high activity for the transesterification reaction. The FAME content increased with increasing catalyst dose and methanol-over-oil ratio.

  12. Encapsulating fatty acid esters of bioactive compounds in starch

    NASA Astrophysics Data System (ADS)

    Lay Ma, Ursula Vanesa

    Interest in the use of many bioactive compounds in foods is growing in large part because of the apparent health benefits of these molecules. However, many of these compounds can be easily degraded during processing, storage, or their passage through the gastrointestinal tract before reaching the target site. In addition, they can be bitter, acrid, or astringent, which may negatively affect the sensory properties of the product. Encapsulation of these molecules may increase their stability during processing, storage, and in the gastrointestinal tract, while providing controlled release properties. The ability of amylose to form inclusion complexes and spherulites while entrapping certain compounds has been suggested as a potential method for encapsulation of certain molecules. However, complex formation and spherulitic crystallization are greatly affected by the type of inclusion molecules, type of starch, and processing conditions. The objectives of the present investigation were to: (a) study the effect of amylose, amylopectin, and intermediate material on spherulite formation and its microstructure; (b) investigate the formation of amylose and high amylose starch inclusion complexes with ascorbyl palmitate, retinyl palmitate, and phytosterol esters; (c) evaluate the ability of spherulites to form in the presence of fatty acid esters and to entrap ascorbyl palmitate, retinyl palmitate, and phytosterol esters; and (d) evaluate the effect of processing conditions on spherulite formation and fatty acid ester entrapment. Higher ratios of linear to branched molecules resulted in the formation of more and rounder spherulites with higher heat stability. In addition to the presence of branches, it appears that spherulitic crystallization is also affected by other factors, such as degree of branching, chain length, and chain length distribution. Amylose and Hylon VII starch formed inclusion complexes with fatty acid esters of ascorbic acid, retinol, or phytosterols. However, only retinyl palmitate formed a complex with amylopectin. In general, ascorbyl palmitate resulted in the highest complexation, followed by retinyl palmitate and phytosterol ester. The presence of native lipids in Hylon VII starch did not inhibit complex formation. On the contrary, native lipids appear to increase the complexation yield and thermal stability of the starch-fatty acid ester inclusion complexes, possibly due to the formation of ternary complexes. From the three fatty acid esters studied, only ascorbyl palmitate was entrapped in starch spherulites. Various structures including round spherulites, various sizes of torus-shape spherulites, non-spherulitic birefringent and non-birefringent particles, "balloon" morphologies, and gel-like material were formed depending on processing conditions. However, only the torus-shape spherulites, and some non-spherulitic birefringent and non-birefringent particles showed ascorbyl palmitate entrapment. The % yield of the precipitate increased with higher % of added Hylon VII, and decreased with higher heating temperature and faster cooling rates. The amount of entrapped ascorbyl palmitate in the starch precipitate seems to be governed by the amount of this compound added during processing. This study showed that starch can form inclusion complexes with fatty acid esters which may be used for the delivery of certain bioactive molecules. In addition, encapsulation of fatty acid esters in starch spherulites may be a good potential delivery system for water soluble bioactive molecules. However, further research is necessary to gain a better understanding of the type of molecules that can be entrapped in starch spherulites, and the factors affecting spherulitic crystallization and bioactive compound entrapment.

  13. Rapid biodiesel synthesis from waste pepper seeds without lipid isolation step.

    PubMed

    Lee, Jechan; Kim, Jieun; Ok, Yong Sik; Kwon, Eilhann E

    2017-09-01

    In situ transformation of lipid in waste pepper seeds into biodiesel (i.e., fatty acid methyl esters: FAMEs) via thermally-induced transmethylation on silica was mainly investigated in this study. This study reported that waste pepper seeds contained 26.9wt% of lipid and that 94.1% of the total lipid in waste pepper seeds could be converted into biodiesel without lipid extraction step for only ∼1min reaction time. This study also suggested that the optimal temperature for in situ transmethylation was identified as 390°C. Moreover, comparison of in situ process via the conventional transmethylation catalyzed by H 2 SO 4 showed that the introduced biodiesel conversion in this study had a higher tolerance against impurities, thereby being technically feasible. The in situ biodiesel production from other oil-bearing food wastes can be studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improved natural rubber composites reinforced with a complex filler network of biobased nanoparticles and ionomer

    USDA-ARS?s Scientific Manuscript database

    Biobased rubber composites are renewable and sustainable. Significant improvement in modulus of rubber composite reinforced with hydrophilic filler was achieved with the inclusion of ionomers. Soy particles aided with ionomer, carboxylated styrene-butadiene (CSB), formed a strong complex filler netw...

  15. Reinforcement effect of soy protein/carbohydrate ratio in styrene-butadiene polymer

    USDA-ARS?s Scientific Manuscript database

    Soy protein and carbohydrate at different ratios were blended with latex to form composites. The variation of protein to carbohydrate ratio has a sifnificant effect on the composite properties and the results from dynamic mechanical method showed a substantial reinforcement effect. The composites ...

  16. Antioxidant efficacy of feruloyl glycerols in model membranes

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid and its esters are known to be effective antioxidants. Ethyl ferulate was biocatalytically transesterified with triacylglycerols and long chain alcohols to form a series of lipid-based feruloyl esters: feruloylglycerol, diferuloylglycerol, feruloyldiacylglycerol, diferuloylacylglycerol...

  17. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    PubMed

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon styrene substituted biscoumarin treatment to MDA-MB-231 cells. Our results showed that styrene substituted biscoumarin downregulated BCL-2 gene expression and upregulated BAX gene expression to trigger apoptotic process. Styrene substituted biscoumarin could induce apoptosis through intrinsic mitochondrial pathway in breast cancer cell lines, particularly in MDA-MB-231. Our data suggest that styrene substituted biscoumarin may act as a potential chemotherapeutic agent against breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mung bean nuclease: mode of action and specificity vs synthetic esters of 3′-nucleotides

    PubMed Central

    Kole, R.; Sierakowska, Halina; Szemplińska, Halina; Shugar, D.

    1974-01-01

    Mung bean nuclease hydrolyzes synthetic esters of 3′-nucleotides to nucleosides and phosphate esters; esters of 2′-nucleotides, and 2′→ 5′ internucleotide linkages, are resistant. Esters of ribonucleotides are cleaved at 100-fold the rate for deoxyribonucleotides, the increased rate being due to presence of the 2′-hydroxyl and not to differences in conformation. Introduction of a 5′-substituent leads to a 3-fold increase in rate. The rates of hydrolysis vary up to 10-fold with the nature of the base, in the order adenine > hypoxanthine > uracil; and up to 6-fold with the nature of the ester radical. This form of cleavage of esters of 3′-nucleotides is also characteristic for nuclease-3′-nucleotidase activities from potato tubers and wheat, suggesting that one type of enzyme is responsible for all these activities. PMID:10793750

  19. Effect of styrene exposure on plasma parameters, molecular mechanisms and gene expression in rat model islet cells.

    PubMed

    Niaz, Kamal; Hassan, Fatima Ismail; Mabqool, Faheem; Khan, Fazlullah; Momtaz, Saeideh; Baeeri, Maryam; Navaei-Nigjeh, Mona; Rahimifard, Mahban; Abdollahi, Mohammad

    2017-09-01

    Styrene is an aromatic hydrocarbon compound present in the environment and have primary exposure through plastic industry. The current study was designed to evaluate styrene-induced toxicity parameters in rat plasma fasting blood glucose (FBG) level, oral glucose tolerance, insulin secretion, oxidative stress, and inflammatory cytokines in cellular and molecular levels. Styrene was dissolved in corn oil and administered at different doses (250, 500, 1000, 1500, 2000mg/kg/day and control) to each rat, for 42days. In treated groups, styrene significantly increased fasting blood glucose, plasma insulin (p<0.001) and glucose tolerance. Glucose tolerance, insulin resistance and hyperglycemia were found to be the main consequences correlating gene expression of islet cells. Styrene caused a significant enhancement of oxidative stress markers (p<0.001) and inflammatory cytokines in a dose and concentration-dependent manner in plasma (p<0.001). Moreover, the activities of caspase-3 and -9 of the islet cells were significantly up-regulated by this compound at 1500 and 2000mg/kg/day styrene administrated groups (p<0.001). The relative fold change of GLUD1 was downregulated (p<0.05) and upregulated at 1500 and 2000mg/kg, respectively (p<0.01). The relative fold changes of GLUT2 were down regulated at 250 and 1000mg/kg and up regulated in 500, 1500 and 2000mg/kg doses of styrene (p<0.01). The expression level of GCK indicated a significant upregulation at 250mg/kg and downregulation of relative fold changes in the remaining doses of styrene, except for no change at 2000mg/kg of styrene for GCK. Targeting genes (GLUD1, GLUT2 and GCK) of the pancreatic islet cells in styrene exposed groups, disrupted gluconeogenesis, glycogenolysis pathways and insulin secretory functions. The present study illustrated that fasting blood glucose, insulin pathway, oxidative balance, inflammatory cytokines, cell viability and responsible genes of glucose metabolism are susceptible to styrene, which consequently lead to other abnormalities in various organs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis of TMP-ester biolubricant basestock from palm stearin fatty acids

    NASA Astrophysics Data System (ADS)

    Fadzel, Fatimatuzzahraa Mohd; Salimon, Jumat; Derawi, Darfizzi

    2018-04-01

    A potential biolubricant; TMP-ester was produced via esterification of fatty acids (FA) from palm stearin (PS) with trimethylolpropane (TMP). The synthesis was conducted at four conditions; temperature, time, molar ratio of FA:TMP and H2SO4 as catalyst (by percent based on the weight of FA and TMP) that are 150 °C, 2 hours, 4:1 and 1% of H2SO4 respectively. The composition of ester produced was determined using gas chromatography (GC-FID). The presence of ester group was confirmed by the means of FTIR by the existence of strong carboxyl band of ester, v(C=O) at 1746cm-1 and 1H and 13C NMR spectroscopy shows the chemical shift, δ of ester, C=O at 2.27-2.31 ppm and 173.45 ppm accordingly. From the esterification reaction, 95% product of TMP-ester was formed. The thermal and oxidative stability of TMP-ester is 200°C.

  1. Asymmetric homologation of boronic esters bearing azido and silyloxy substituents.

    PubMed

    Singh, R P; Matteson, D S

    2000-10-06

    In the asymmetric homologation of boronic esters with a (dihalomethyl)lithium, substituents that can bind metal cations tend to interfere. Accordingly, we undertook the introduction of weakly basic oxygen and nitrogen substituents into boronic esters in order to maximize the efficiency of multistep syntheses utilizing this chemistry. Silyloxy boronic esters cannot be made efficiently by direct substitution, but a (hydroxymethyl)boronic ester has been silylated in the usual manner. Conversion of alpha-halo boronic esters to alpha-azido boronic esters has been carried out with sodium azide and a tetrabutylammonium salt as phase-transfer catalyst in a two-phase system with water and either nitromethane or ethyl acetate. These are safer solvents than the previously used dichloromethane, which can form an explosive byproduct with azide ion. Boronic esters containing silyloxy or alkoxy and azido substituents have been shown to react efficiently with (dihalomethyl)lithiums, resulting in efficient asymmetric insertion of the halomethyl group into the carbon-boron bond.

  2. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of linermore » materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.« less

  3. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  4. Trends in Occupational Exposure to Styrene in the European Glass Fibre-Reinforced Plastics Industry

    PubMed Central

    Van Rooij, J. G. M.; Kasper, A.; Triebig, G.; Werner, P.; Kromhout, H.

    2008-01-01

    Aim: This study presents temporal trends of styrene exposure for workers in the European glass fibre-reinforced plastics (GRP) industry during the period 1966–2002. Methods: Data of personal styrene exposure measurements were retrieved from reports, databases and peer-reviewed papers. Only sources with descriptive statistics of personal measurements were accepted. The styrene exposure data cover personal air samples and biological monitoring data, that is, urinary styrene metabolites (mandelic acid and/or phenylglyoxylic acid) and styrene in blood. Means of series of measurements were categorized by year, country, production process, job and sampling strategy. Linear mixed models were used to identify temporal trends and factors affecting exposure levels. Results: Personal exposure measurements were available from 60 reports providing data on 24145 1–8-h time-weighted average shift personal air samples. Available data of biological exposure indicators included measurements of mandelic acid in post-shift urine (6361 urine samples being analysed). Trend analyses of the available styrene exposure data showed that the average styrene concentration in the breathing zone of open-mould workers in the European GRP industry has decreased on average by 5.3% per year during the period 1966–1990 and by only 0.4% annually in the period after 1990. The highest exposures were measured in Southern Europe and the lowest exposures in Northern Europe with Central Europe in between. Biological indicators of styrene (mandelic acid in post-shift urine) showed a somewhat steeper decline (8.9%), most likely because urine samples were collected in companies that showed a stronger decrease of styrene exposure in air than GRP companies where no biological measurements were carried out. PMID:18550625

  5. Biomonitoring for Exposure Assessment to Styrene in the Fibreglass Reinforced Plastic Industry: Determinants and Interferents.

    PubMed

    Bonanni, Rossana Claudia; Gatto, Maria Pia; Paci, Enrico; Gordiani, Andrea; Gherardi, Monica; Tranfo, Giovanna

    2015-10-01

    Fifty-eight workers exposed to styrene were monitored in four fibreglass reinforced plastic industries of Central Italy. The aim of the study was to explore the factors that can influence the levels of styrene exposure biomarkers of the workers and the aspects that might interfere with the exposure assessment measures, such as the co-exposure to acetone. Personal monitoring of professional exposure to airborne styrene and acetone was carried out by Radiello samplers and GC/MS analysis. Biological monitoring was performed by the determination of urinary metabolites, mandelic (MA), and phenylglyoxylic (PGA) acids with HPLC/MS/MS and unmetabolized styrene in saliva and venous blood by HS/GC/MS. The median values of the four sites ranged between 24.1 to 94.0mg m(-3) and 7.3 to 331.1mg g(-1) creatinine for airborne styrene and MA + PGA, respectively. A good linear correlation was found between styrene in air and its urinary metabolites (r = 0.854). The median value for airborne styrene was found to exceed the (Threshold Limit Value - Time Weighted Average) of 85 mg m(-3) in one site for all the workers and in two if only moulders are considered. The multiple linear regression model showed that the determinants of urinary MA + PGA excretion were the type of process, workers' tasks, level of acetone co-exposure, and the use of respiratory protection devices. Data show that the simultaneous exposure to acetone modify the styrene metabolism with a reduction in the levels of (MA + PGA) excreted. A significant linear log-correlation was found between salivary levels of styrene and blood concentration (r = 0.746) sampled at the same t x time. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  6. The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes.

    PubMed

    Holdway, Douglas A

    2002-03-01

    A review of the acute and chronic effects of produced formation water (PFW), drilling fluids (muds) including oil-based cutting muds, water-based cutting muds, ester-based cutting muds and chemical additives, and crude oils associated with offshore oil and gas production was undertaken in relation to both temperate and tropical marine ecological processes. The main environmental effects are summarized, often in tabular form. Generally, the temporal and spatial scales of these studies, along with the large levels of inherent variation in natural environments, have precluded our ability to predict the potential long-term environmental impacts of the offshore oil and gas production industry. A series of critical questions regarding the environmental effects of the offshore oil and gas production industry that still remain unanswered are provided for future consideration.

  7. Microbial distribution in the Environmental Control and Life Support System water recovery test conducted at NASA, MSFC

    NASA Technical Reports Server (NTRS)

    Gauthier, J. J.; Roman, M. C.; Kilgore, B. A.; Huff, T. L.; Obenhuber, D. C.; Terrell, D. W.; Wilson, M. E.; Jackson, N. E.

    1991-01-01

    NASA/MSFC is developing a physical/chemical treatment system to reclaim wastewater for reuse on Space Station Freedom (SSF). Integrated testing of hygiene and potable water subsystems assessed the capability to reclaim water to SSF specifications. The test was conducted from May through July 1990 with a total of 47 days of system test operation. Water samples were analyzed using standard cultural methods employing membrane filtration and spread plate techniques and epifluorescence microscopy. Fatty acid methyl ester and biochemical profiles were used for microbial identification. Analysis of waste and product water produced by the subsystems demonstrated the effective reduction of viable microbial populations greater than 8.0E + 06 colony forming units (CFU) per 100 mL to an average of 5 CFU/100 mL prior to distribution into storage tanks.

  8. Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles.

    PubMed

    Zou, Hua; Wu, Shishan; Shen, Jian

    2008-09-16

    This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".

  9. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  10. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-{kappa}B activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke

    2008-09-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-{kappa}B) signalling pathway in human lung epithelial cells (A549).more » The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-{kappa}B activity. An inhibitor of NF-{kappa}B, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-{kappa}B signalling pathway by styrene is mediated via a redox-sensitive mechanism.« less

  11. Data of continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces

    PubMed Central

    Yeh, Chin-Chen; Muduli, Saradaprasan; Peng, I-Chia; Lu, Yi-Tung; Ling, Qing-Dong; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Kumar, S. Suresh; Murugan, Kadarkarai; Chen, Da-Chung; Lee, Hsin-chung; Chang, Yung; Higuchi, Akon

    2016-01-01

    This data article contains two figures and one table supporting the research article entitled: “Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface” [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol methacrylate) to prepare thermoresponsive surface. XPS spectra show the nitrogen peak of the polystyrene surface coated with poly(styrene-co-acrylic acid) grafted with oligovitronectin. The surface coating density analyzed from sorption of poly(styrene-co-acrylic acid) grafted with oligovitronectin by UV–vis spectroscopy is also presented. PMID:26909373

  12. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuelmore » supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.« less

  13. A kinetic study on the Novozyme 435-catalyzed esterification of free fatty acids with octanol to produce octyl esters.

    PubMed

    Chowdhury, Avisha; Mitra, Debarati

    2015-01-01

    Octyl esters can serve as an important class of biolubricant components replacing their mineral oil counterparts. The purpose of the current work was to investigate the enzymatic esterification reaction of free fatty acids (FFA, from waste cooking oil) with octanol in a solvent-free system using a commercial lipase Novozyme 435. It was found that the esterificaton reaction followed the Ping-pong bi-bi kinetics with no inhibition by substrates or products within the studied concentration range. The maximum reaction rate was estimated to be 0.041 mol L(-1) g(-1) h(-1) . Additionally, the stability of Novozyme 435 in the current reaction system was studied by determining its activity and final conversion of FFA to esters after 12 successive utilizations. Novozyme 435 exhibited almost 100% enzyme activity up to 7 cycles of reaction and gradually decreased (by 5%) thereafter. The kinetic parameters evaluated from the study shall assist in the design of reactors for large-scale production of octyl esters from a cheap biomass source. The enzyme reusability data can further facilitate mass production by curtailing the cost of expensive enzyme consumption. © 2015 American Institute of Chemical Engineers.

  14. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines

    PubMed Central

    Pfister, Kai F.; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J.

    2017-01-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering. PMID:28630908

  15. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    PubMed

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  16. Thermal properties and nanodispersion behavior of synthesized β-sitosteryl acyl esters: a structure-activity relationship study.

    PubMed

    Panpipat, Worawan; Dong, Mingdong; Xu, Xuebing; Guo, Zheng

    2013-10-01

    The efficiency (dose response) of cholesterol-lowering effect of phytosterols in humans depends on their chemical forms (derived or non-derived) and formulation methods in a delivery system. With a series of synthesized β-sitosteryl fatty acid esters (C2:0-C18:0 and C18:1-C18:3), this work examined their thermal properties and applications in preparation of nanodispersion with β-sitosterol as a comparison. Inspection of the melting point (Tm) and the heat of fusion (ΔH) of β-sitosteryl fatty acid esters and the chain length and unsaturation degree of fatty acyl moiety revealed a pronounced structure-property relationship. The nanodispersions prepared with β-sitosterol and β-sitosteryl saturated fatty acid (SFA) esters displayed different particle size distribution patterns (polymodal vs bimodal), mean diameter (115 nm vs less than 100 nm), and polydispersity index (PDI) (0.50 vs 0.23-0.38). β-sitosteryl unsaturated fatty acid (USFA) esters showed a distinctly different dispersion behavior to form nanoemulsions, rather than nanodispersions, with more homogeneous particle size distribution (monomodal, mean diameter 27-63 nm and PDI 0.18-0.25). The nanodispersion of β-sitosteryl medium chain SFA ester (C14:0) demonstrated a best storage stability. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. New analytical method for the determination of styrene oligomers formed from polystyrene decomposition and its application at the coastlines of the North-West Pacific ocean.

    PubMed

    Saido, Katsuhiko; Koizumi, Koshiro; Sato, Hideto; Ogawa, Naoto; Kwon, Bum Gun; Chung, Seon-Yong; Kusui, Takashi; Nishimura, Masahiko; Kodera, Yoichi

    2014-03-01

    The pollution caused by plastic debris is an environmental problem with increasing concern in the oceans. Among the plastic polymers, polystyrene (PS) is one of the most problematic plastics due to the direct public health risk associated with their dispersion, as well as the numerous adverse environmental impacts which arise both directly from the plastics and from their degradation products. Little is known about their potential distribution characteristics throughout the oceans. For the first time, we report here on the regional distribution of styrene monomer (SM), styrene dimers (SD; 2,4-diphenyl-1-butene, SD1; 1,3-diphenyl propane, SD2), and styrene trimer (2,4,6-triphenyl-1-hexene: ST1), as products of PS decomposition determined from samples of sand and seawater from the shorelines of the North-West Pacific ocean. In order to quantitatively determine SM, SD (=SD1+SD2), and ST1, a new analytical method was developed. The detection limit was 3.3 μg L(-1), based on a signal-to-noise ratio of three, which was well-suited to quantify levels of SM, SD, and ST1 in samples. Surprisingly, the concentrations of SM, SD, and ST1 in sand samples from the shorelines were consistently greater than those in seawater samples from the same location. The results of this study suggest that SM, SD, and ST1 can be widely dispersed throughout the North-West Pacific oceans. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma.

    PubMed

    Pinchuk, Leonard; Riss, Isabelle; Batlle, Juan F; Kato, Yasushi P; Martin, John B; Arrieta, Esdras; Palmberg, Paul; Parrish, Richard K; Weber, Bruce A; Kwon, Yongmoon; Parel, Jean-Marie

    2017-01-01

    Glaucoma is the second leading cause of blindness with ∼70 million people worldwide who are blind from this disease. The currently practiced trabeculectomy surgery, the gold standard treatment used to stop the progression of vision loss, is rather draconian, traumatic to the patient and requires much surgical skill to perform. This article summarizes the more than 10-year development path of a novel device called the InnFocus MicroShunt®, which is a minimally invasive glaucoma drainage micro-tube used to shunt aqueous humor from the anterior chamber of the eye to a flap formed under the conjunctiva and Tenon's Capsule. The safety and clinical performance of this device approaches that of trabeculectomy. The impetus to develop this device stemmed from the invention of a new biomaterial called poly(styrene-block-isobutylene-block-styrene), or "SIBS." SIBS is ultra-stable with virtually no foreign body reaction in the body, which manifests in the eye as clinically insignificant inflammation and capsule formation. The quest for an easier, safer, and more effective method of treating glaucoma led to the marriage of SIBS with this glaucoma drainage micro-tube. This article summarizes the development of SIBS and the subsequent three iterations of design and four clinical trials that drove the one-year qualified success rate of the device from 43% to 100%. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 211-221, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  19. Utilization of biocatalysts in cellulose waste minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, J.; Evans, B.R.

    1996-09-01

    Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually,more » approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.« less

  20. Tuning the nature and stability of self-assemblies formed by ester benzene 1,3,5-tricarboxamides: the crucial role played by the substituents.

    PubMed

    Desmarchelier, Alaric; Alvarenga, Bruno Giordano; Caumes, Xavier; Dubreucq, Ludovic; Troufflard, Claire; Tessier, Martine; Vanthuyne, Nicolas; Idé, Julien; Maistriaux, Thomas; Beljonne, David; Brocorens, Patrick; Lazzaroni, Roberto; Raynal, Matthieu; Bouteiller, Laurent

    2016-09-20

    As the benzene 1,3,5-tricarboxamide (BTA) moiety is commonly used as the central assembling unit for the construction of functionalized supramolecular architectures, strategies to tailor the nature and stability of BTA assemblies are needed. The assembly properties of a library of structurally simple BTAs derived from amino dodecyl esters (ester BTAs, 13 members) have been studied, either in the bulk or in cyclohexane solutions, by means of a series of analytical methods (NMR, DSC, POM, FT-IR, UV-Vis, CD, ITC, high-sensitivity DSC, SANS). Two types of hydrogen-bonded species have been identified and characterized: the expected amide-bonded helical rods (or stacks) that are structurally similar to those formed by BTAs with simple alkyl side chains (alkyl BTAs), and ester-bonded dimers in which the BTAs are connected by means of hydrogen bonds linking the amide N-H and the ester C[double bond, length as m-dash]O. MM/MD calculations coupled with simulations of CD spectra allow for the precise determination of the molecular arrangement and of the hydrogen bond pattern of these dimers. Our study points out the crucial influence of the substituent attached on the amino-ester α-carbon on the relative stability of the rod-like versus dimeric assemblies. By varying this substituent, one can precisely tune the nature of the dominant hydrogen-bonded species (stacks or dimers) in the neat compounds and in cyclohexane over a wide range of temperatures and concentrations. In the neat BTAs, stacks are stable up to 213 °C and dimers above 180 °C whilst in cyclohexane stacks form at c* > 3 × 10 -5 M at 20 °C and dimers are stable up to 80 °C at 7 × 10 -6 M. Ester BTAs that assemble into stacks form a liquid-crystalline phase and yield gels or viscous solutions in cyclohexane, demonstrating the importance of controlling the structure of these assemblies. Our systematic study of these structurally similar ester BTAs also allows for a better understanding of how a single atom or moiety can impact the nature and stability of BTA aggregates, which is of importance for the future development of functionalized BTA supramolecular polymers.

  1. Theoretical Study on Free Fatty Acid Elimination Mechanism for Waste Cooking Oils to Biodiesel over Acid Catalyst.

    PubMed

    Wang, Kai; Zhang, Xiaochao; Zhang, Jilong; Zhang, Zhiqiang; Fan, Caimei; Han, Peide

    2016-05-01

    A theoretical investigation on the esterification mechanism of free fatty acid (FFA) in waste cooking oils (WCOs) has been carried out using DMol(3) module based on the density functional theory (DFT). Three potential pathways of FFA esterification reaction are designed to achieve the formation of fatty acid methyl ester (FAME), and calculated results show that the energy barrier can be efficiently reduced from 88.597kcal/mol to 15.318kcal/mol by acid catalyst. The molar enthalpy changes (ΔrHm°) of designed pathways are negative, indicating that FFA esterification reaction is an exothermic process. The obtained favorable energy pathway is: H(+) firstly activates FFA, then the intermediate combines with methanol to form a tetrahedral structure, and finally, producing FAME after removing a water molecule. The rate-determining step is the combination of the activated FFA with methanol, and the activation energy is about 11.513kcal/mol at 298.15K. Our results should provide basic and reliable theoretical data for further understanding the elimination mechanism of FFA over acid catalyst in the conversion of WCOs to biodiesel products. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. REDUCING STYRENE EMISSIONS FROM SPRAYED FILLED RESINS

    EPA Science Inventory

    Styrene emissions are coming under increasing study as the U.S. Environmental Protection Agency (EPA) develops maximum achievable control technology standards. During the manufacture of fiber-reinforced plastics/composites products, styrene, a volatile organic compound and a haz...

  3. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Using graphene/styrene-isoprene-styrene copolymer composite thin film as a flexible microstrip antenna for the detection of heptane vapors

    NASA Astrophysics Data System (ADS)

    Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel

    2018-03-01

    Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.

  5. Proton exchange membranes prepared by grafting of styrene/divinylbenzene into crosslinked PTFE membranes

    NASA Astrophysics Data System (ADS)

    Li, Jingye; Ichizuri, Shogo; Asano, Saneto; Mutou, Fumihiro; Ikeda, Shigetoshi; Iida, Minoru; Miura, Takaharu; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2005-07-01

    Thin PTFE membranes were prepared by coating the PTFE dispersion onto the aluminum films. Thus the thin crosslinked PTFE (RX-PTFE) membranes were obtained by means of electron beam irradiation above the melting temperature of PTFE under oxygen-free atmosphere. The RX-PTFE membranes were pre-irradiated and grafted by styrene with or without divinylbenzene (DVB) in liquid phase. The existence of DVB accelerated the initial grafting rate. The styrene grafted RX-PTFE membranes are white colored, on the other hand, the styrene/DVB grafted RX-PTFE membranes are colorless. The proton exchange membranes (PEMs) were obtained by sulfonating the grafted membranes using chlorosulfonic acid. The ion exchange capacity (IEC) values of the PEMs ranging from 1.5 to 2.8 meq/g were obtained. The PEMs made from the styrene/DVB grafted membranes showed higher chemical stability than those of the styrene grafted membranes under oxidative circumstance.

  6. Fundamental Characterization of the Micellar Self-Assembly of Sophorolipid Esters.

    PubMed

    Koh, Amanda; Todd, Katherine; Sherbourne, Ezekiel; Gross, Richard A

    2017-06-13

    Surfactants are ubiquitous constituents of commercial and biological systems that function based on complex structure-dependent interactions. Sophorolipid (SL) n-alkyl esters (SL-esters) comprise a group of modified naturally derived glycolipids from Candida bombicola. Herein, micellar self-assembly behavior as a function of SL-ester chain length was studied. Surface tensions as low as 31.2 mN/m and critical micelle concentrations (CMCs) as low as 1.1 μM were attained for diacetylated SL-decyl ester (dASL-DE) and SL-octyl ester, respectively. For deacetylated SL-esters, CMC values reach a lower limit at SL-ester chains above n-butyl (SL-BE, 1-3 μM). This behavior of SL-esters with increasing hydrophobic tail length is unlike other known surfactants. Diffusion-ordered spectroscopy (DOSY) and T 1 relaxation NMR experiments indicate this behavior is due to a change in intramolecular interactions, which impedes the self-assembly of SL-esters with chain lengths above SL-BE. This hypothesis is supported by micellar thermodynamics where a disruption in trends occurs at n-alkyl ester chain lengths above those of SL-BE and SL-hexyl ester (SL-HE). Diacetylated (dA) SL-esters exhibit an even more unusual trend in that CMC increases from 1.75 to 815 μM for SL-ester chain lengths of dASL-BE and dASL-DE, respectively. Foaming studies, performed to reveal the macroscopic implications of SL-ester micellar behavior, show that the observed instability in foams formed using SL-esters are due to coalescence, which highlights the importance of understanding intermicellar interactions. This work reveals that SL-esters are an important new family of green high-performing surfactants with unique structure-property relationships that can be tuned to optimize micellar characteristics.

  7. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Deficient tyrosine phosphorylation of c-Cbl and associated proteins in phorbol ester-resistant EL4 mouse thymoma cells.

    PubMed

    Luo, X; Sando, J J

    1997-05-02

    Two tyrosine phosphoproteins in phorbol ester-sensitive EL4 (S-EL4) mouse thymoma cells have been identified as the p120 c-Cbl protooncogene product and the p85 subunit of phosphatidylinositol 3-kinase. Tyrosine phosphorylation of p120 and p85 increased rapidly after phorbol ester stimulation. Phorbol ester-resistant EL4 (R-EL4) cells expressed comparable amounts of c-Cbl and phosphatidylinositol 3-kinase protein but greatly diminished tyrosine phosphorylation. Co-immunoprecipitation experiments revealed complexes of c-Cbl with p85, and of p85 with the tyrosine kinase Lck in phorbol ester-stimulated S-EL4 but not in unstimulated S-EL4 or in R-EL4 cells. In vitro binding of c-Cbl with Lck SH2 or SH3 domains was detected in both S-EL4 and R-EL4 cells, suggesting that c-Cbl, p85, and Lck may form a ternary complex. In vitro kinase assays revealed phosphorylation of p85 by Lck only in phorbol ester-stimulated S-EL4 cells. Collectively, these results suggest that Cbl-p85 and Lck-p85 complexes may form in unstimulated S-EL4 and R-EL4 cells but were not detected due to absence of tyrosine phosphorylation of p85. Greatly decreased tyrosine phosphorylation of c-Cbl and p85 in the complexes may contribute to the failure of R-EL4 cells to respond to phorbol ester.

  9. 21 CFR 177.1050 - Acrylonitrile/styrene copoly-mer modified with butadiene/styrene elastomer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... parts by weight of a grafted rubber consisting of (i) 8-12 parts of butadiene/styrene elastomer... limitations are determined by an infrared spectro-photo-metric method titled “Infrared Spectro-photo-metric...

  10. Evaluate styrene production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagopian, C.R.; Lewis, P.J.; McDonald, J.J.

    1983-02-01

    Improvements and innovations in styrene production since 1966 are outlined. Rigorous process models are attributed to the changes. Such models are used to evaluate the effects of changing raw material costs, utility costs, and available catalyst choices. The process model can also evaluate the best operating configuration and catalyst choice for a plant. All specified innovations are incorporated in the Mobil/Badger ethylbenzene and the Cosden/Badger styrene processes (both of which are schematicized). Badger's training programs are reviewed. Badger's Styrenics Business Team converts information into plant design basis. A reaction model with input derived from isothermal and adiabatic pilot plant unitsmore » is at the heart of complete computer simulation of ethylbenzene and styrene processes.« less

  11. Occupational styrene exposure for twelve product categories in the reinforced-plastics industry.

    PubMed

    Lemasters, G K; Carson, A; Samuels, S J

    1985-08-01

    Approximately 1500 occupational styrene exposure values from 28 reinforced-plastic manufacturers were collected retrospectively from companies and state and federal agencies. This report describes the major types of manufacturing processes within the reinforced-plastics industry and reports on the availability, collection and analysis of historical exposure information. Average exposure to styrene in most open-mold companies (24-82 ppm) was generally 2-3 times the exposure in press-mold companies (11-26 ppm). Manufacturers of smaller boats had mean styrene exposures of 82 ppm as compared to 37 ppm for yacht companies. There was considerable overlap in styrene exposure among job titles classified as directly exposed within open- and press-mold processing.

  12. Biosynthesis of (R)-phenyl-1,2-ethanediol from racemic styrene oxide by using bacterial and marine fish epoxide hydrolases.

    PubMed

    Kim, Hee Sook; Lee, Ok Kyung; Hwang, Seungha; Kim, Beum Jun; Lee, Eun Yeol

    2008-01-01

    Enantio-convergent hydrolysis of racemic styrene oxides was achieved to prepare enantiopure (R)-phenyl-1,2-ethanediol by using two recombinant epoxide hydrolases (EHs) of a bacterium, Caulobacter crescentus, and a marine fish, Mugil cephalus. The recombinant C. crescentus EH primarily attacked the benzylic carbon of (S)-styrene oxide, while the M. cephalus EH preferentially attacked the terminal carbon of (R)-styrene oxide, thus leading to the formation of (R)-phenyl-1,2-ethanediol as the main product. (R)-Phenyl-1,2-ethanediol was obtained with 90% enantiomeric excess and yield as high as 94% from 50 mM racemic styrene oxides in a one-pot process.

  13. 3D-Printed Millimeter Wave Structures

    DTIC Science & Technology

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  14. Origin of estradiol fatty acid esters in human ovarian follicular fluid.

    PubMed

    Pahuja, S L; Kim, A H; Lee, G; Hochberg, R B

    1995-03-01

    The estradiol fatty acid esters are the most potent of the naturally occurring steroidal estrogens. These esters are present predominantly in fat, where they are sequestered until they are hydrolyzed by esterases. Thus they act as a preformed reservoir of estradiol. We have previously shown that ovarian follicular fluid from patients undergoing gonadotropin stimulation contains very high amounts of estradiol fatty acid esters (approximately 10(-7) M). The source of these esters is unknown. They can be formed by esterification of estradiol in the follicular fluid by lecithin:cholesterol acyltransferase (LCAT), or in the ovary by an acyl coenzyme A:acyltransferase. In order to determine which of these enzymatic processes is the source of the estradiol esters in the follicular fluid, we incubated [3H]estradiol with follicular fluid and cells isolated from human ovarian follicular fluid and characterized the fatty acid composition of the [3H]estradiol esters biosynthesized in each. In addition, we characterized the endogenous estradiol fatty acid esters in the follicular fluid and compared them to the biosynthetic esters. The fatty acid composition of the endogenous esters was different than those synthesized by the cellular acyl coenzyme A:acyltransferase, and the same as the esters synthesized by LCAT, demonstrating that the esters are produced in situ in the follicular fluid. Although the role of these estradiol esters in the ovary is not known, given their remarkable estrogenic potency it is highly probable that they have an important physiological role.

  15. Degradation Studies of a Trimethylolpropane Triheptanoate Lubricant Basestock

    DTIC Science & Technology

    1977-12-01

    primary dibasic acids : azelaic , adipic, glutaric, and sebacic. From this and subsequent investigations, a dibasic acid ester evolved which has been...Rotating Cylinder Deposition Rig-Parts List 13 2 Analysis for Parent Alcohols in (1-76-5 25 3 Analysis for Parent Acids in 0-76-5 27 4 Gas...formulations: (1) dibasic acid esters formed via esterification of dibasic fatty acids and monohydric alcohols, and (2) neopentyl polyol esters of monobasic

  16. Hydroxycinnamoyl Glucose and Tartrate Esters and Their Role in the Formation of Ethylphenols in Wine.

    PubMed

    Hixson, Josh L; Hayasaka, Yoji; Curtin, Christopher D; Sefton, Mark A; Taylor, Dennis K

    2016-12-14

    Synthesized p-coumaroyl and feruloyl l-tartrate esters were submitted to Brettanomyces bruxellensis strains AWRI 1499, AWRI 1608, and AWRI 1613 to assess their role as precursors to ethylphenols in wine. No evolution of ethylphenols was observed. Additionally, p-coumaroyl and feruloyl glucose were synthesized and submitted to B. bruxellensis AWRI 1499, which yielded both 4-ethylphenol and 4-ethylguaiacol. Unexpected chemical transformations of the hydroxycinnamoyl glucose esters during preparation were investigated to prevent these in subsequent synthetic attempts. Photoisomerization gave an isomeric mixture containing the trans-esters and undesired cis-esters, and acyl migration resulted in a mixture of the desired 1-O-β-ester and two additional migrated forms, the 2-O-α- and 6-O-α-esters. Theoretical studies indicated that the photoisomerization was facilitated by deprotonation of the phenol, and acyl migration is favored during acidic, nonaqueous handling. Preliminary LC-MS/MS studies observed the migrated hydroxycinnamoyl glucose esters in wine and allowed for identification of feruloyl glucose in red wine for the first time.

  17. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers.

    PubMed

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-11-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m³) and high (above 50 mg/m³)) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R=-0.38, p=0.001); SSBs were also significantly higher in men (p=0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34±1.00 SSB/10⁹ Da), followed by high exposure group (0.72±0.81 SSB/10⁹ Da) and controls (0.65±0.82 SSB/10⁹ Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p<0.001) and positively with SSBs (p<0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p<0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. CYP2E1 Metabolism of Styrene Involves Allostery

    PubMed Central

    Hartman, Jessica H.; Boysen, Gunnar

    2012-01-01

    We are the first to report allosterism during styrene oxidation by recombinant CYP2E1 and human liver microsomes. At low styrene concentrations, oxidation is inefficient because of weak binding to CYP2E1 (Ks = 830 μM). A second styrene molecule then binds CYP2E1 with higher affinity (Kss = 110 μM) and significantly improves oxidation to achieve a kcat of 6.3 nmol · min−1 · nmol CYP2E1−1. The transition between these metabolic cycles coincides with reported styrene concentrations in blood from exposed workers; thus, this CYP2E1 mechanism may be relevant in vivo. Scaled modeling of the in vitro-positive allosteric mechanism for styrene metabolism to its in vivo clearance led to significant deviations from the traditional model based on Michaelis-Menten kinetics. Low styrene levels were notably much less toxic than generally assumed. We interrogated the allosteric mechanism using the CYP2E1-specific inhibitor and drug 4-methylpyrazole, which we have shown binds two CYP2E1 sites. From the current studies, styrene was a positive allosteric effector on 4-methylpyrazole binding, based on a 10-fold increase in 4-methylpyrazole binding affinity from Ki 0.51 to Ksi 0.043 μM. The inhibitor was a negative allosteric effector on styrene oxidation, because kcat decreased 6-fold to 0.98 nmol · min−1 · nmol CYP2E1−1. Consequently, mixtures of styrene and other molecules can induce allosteric effects on binding and metabolism by CYP2E1 and thus mitigate the efficiency of their metabolism and corresponding effects on human health. Taken together, our elucidation of mechanisms for these allosteric reactions provides a powerful tool for further investigating the complexities of CYP2E1 metabolism of drugs and pollutants. PMID:22807108

  19. Depletion by styrene of glutathione in plasma and bronchioalveolar lavage fluid of non-Swiss albino (NSA) mice.

    PubMed

    Carlson, Gary P

    2010-01-01

    Styrene is a widely used chemical, but it is known to produce lung and liver damage in mice. This may be related to oxidative stress associated with the decrease in the levels of reduced glutathione (GSH) in the target tissues. The purpose of this study was to investigate the effect of styrene and its primary metabolites R-styrene oxide (R-SO) and S-styrene oxide (S-SO) on GSH levels in the lung lumen, as determined by amounts of GSH in bronchioalveolar lavage fluid (BALF) and in plasma. When non-Swiss albino (NSA) mice were administered styrene (600 mg/kg, ip), there was a significant fall in GSH levels in both BALF and plasma within 3 h. These returned to control levels by 12 h. The active metabolite R-SO (300 mg/kg, ip) also produced significant decreases in GSH in both BALF and plasma, but S-SO was without marked effect. Since GSH is a principal antioxidant in the lung epithelial lining fluid, this fall due to styrene may exert a significant influence on the ability of the lung to buffer oxidative damage.

  20. Evaluation of pollution prevention options to reduce styrene emissions from fiber-reinforced plastic open molding processes.

    PubMed

    Nunez, C M; Ramsey, G H; Kong, E J; Bahner, M A; Wright, R S; Clayton, C A; Baskir, J N

    1999-03-01

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To meet this need, the U.S. Environmental Protection Agency's (EPA) Air Pollution Prevention and Control Division, working in collaboration with Research Triangle Institute, measured styrene emissions for several of these P2 options. In addition, the emission factors calculated from these test results were compared with the existing EPA emission factors for gel coat sprayup and resin applications. Results show that styrene emissions can be reduced by up to 52% by using controlled spraying (i.e., reducing overspray), low-styrene and styrene-suppressed materials, and nonatomizing application equipment. Also, calculated emission factors were 1.6-2.5 times greater than the mid-range EPA emission factors for the corresponding gel coat and resin application. These results indicate that facilities using existing EPA emission factors to estimate emissions in open molding processes are likely to underestimate actual emissions. Facilities should investigate the applicability and feasibility of these P2 options to reduce their styrene emissions.

  1. Densified waste form and method for forming

    DOEpatents

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  2. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  3. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  4. EVALUATION OF STYRENE EMISSIONS FROM A SHOWER STALL/BATHTUB MANUFACTURING FACILITY

    EPA Science Inventory

    The report gives results of emissions measurements carried out at a representative facility (Eljer Plumbingware in Wilson, NC) that manufactures polyester-resin-reinforced shower stalls and bathtubs by spraying styrene-based resins onto molds in vented, open, spray booths. Styren...

  5. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  6. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  7. 40 CFR 721.10151 - Modified styrene, divinylbenzene polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10151 Section 721.10151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10151 Modified styrene, divinylbenzene polymer (generic). (a) Chemical... as modified styrene, divinylbenzene polymer (PMN P-07-642) is subject to reporting under this section...

  8. Immobilization of long-lived radionuclides in carbon matrices produced with the use of polyimide binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulakhatov, Murat; Bartenev, Sergey; Firsin, Nikolai

    Available in abstract form only. Full text of publication follows: Conditions for immobilization of long-lived radionuclides {sup 99}Tc, {sup 129}I and {sup 241}Am in carbon matrices were investigated by using their chemical analogs. Stable isotopes of rhenium, iodine and europium were used as chemical analogs of {sup 99}Tc, {sup 129}I and {sup 241}Am, respectively. It is shown that the carbon matrices incorporating the above elements can be produced by carbonization of composites with ITA-31 polyimide binder of the following composition: equal molar ratio between dianhydride of 3,3/,4,4/-benzophenone-tetracarboxylic acid and tetraacetyl derivative of 4,4/-diaminodiphenyl ester, radionuclide being investigated or its chemicalmore » analog and carbon fabric as reinforcing component. The elements under investigation were used both in the form of salts or oxides and in the form of their complexes with ion-exchange resins. The produced composites were carbonized in inert gas (argon) or in vacuum. The physical-chemical properties of the samples were studied. It was revealed that the resultant matrices meet the requirements imposed on waste storage and final disposal. (authors)« less

  9. Oxygen-Controlled Catalysis by Vitamin B12 -TiO2 : Formation of Esters and Amides from Trichlorinated Organic Compounds by Photoirradiation.

    PubMed

    Shimakoshi, Hisashi; Hisaeda, Yoshio

    2015-12-14

    An oxygen switch in catalysis of the cobalamin derivative (B12 )-TiO2 hybrid catalyst for the dechlorination of trichlorinated organic compounds has been developed. The covalently bound B12 on the TiO2 surface transformed trichlorinated organic compounds into an ester and amide by UV light irradiation under mild conditions (in air at room temperature), while dichlorostilbenes (E and Z forms) were formed in nitrogen from benzotrichloride. A benzoyl chloride was formed as an intermediate of the ester and amide, which was detected by GC-MS. The substrate scope of the synthetic strategy is demonstrated with a range of various trichlorinated organic compounds. A photo-duet reaction utilizing the hole and conduction band electron of TiO2 in B12 -TiO2 for the amide formation was also developed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Mechanical properties of melt-processed polymer blend of amorphous corn flour composite filler and styrene-butadiene rubber

    USDA-ARS?s Scientific Manuscript database

    The corn flour composite fillers were prepared by blending corn flour with rubber latex, dried, and cryogenically ground into powders, which were then melt-blended with rubber polymers in an internal mixer to form composites with enhanced mechanical properties. The composites prepared with melt-blen...

  11. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    PubMed

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  12. Degree of Mechanochemical Devulcanization of Model Styrene-Butadiene Rubber Compounds Containing Different Amount of Poly-, Di- and Monosulphidic Bonds

    NASA Astrophysics Data System (ADS)

    Sangari, Samra; Anita, Hill; Dumitru, Pavel

    2004-03-01

    There have been significant attempts to devulcanize waste elastomers to facilitate reusing these valuable resources in applications requiring the unique properties of rubber. The difficulty in recycling of elastomers has traditionally been with devulcanizing the elastomer without comprising its properties due to degradation of main chains. This research aimed to devulcanize model styrene-butadiene rubber (SBR) compounds, which had various amounts of poly-, di- and monosulfidic crosslinks using a mechanochemical process. Three model compounds were prepared using SBR using a laboratory two-roll mill. They were then vulcanized in a compression molding press at 140r C. The prepared vulcanized compounds were then ground and devulcanized in an internal mixer using a chemical mixture at a constant rotor speed and temperature. The crosslink density of the compounds before and after the devulcanization was calculated using volume-swelling measurements. The obtained data was used to establish the correlation between crosslink density of the compounds and the degree of devulcanization. The results showed that mechanochemical devulcanization caused a significant decrease in the crosslink density of the compounds by breaking the sulfidic linkages. The break up of polysulfidic crosslinks was predominant, meaning that mechanochemical process selectively affected different types of crosslinks.

  13. Antimony leaching in plastics from waste electrical and electronic equipment (WEEE) with various acids and gamma irradiation.

    PubMed

    Tostar, Sandra; Stenvall, Erik; Boldizar, Antal; Foreman, Mark R St J

    2013-06-01

    There has been a recent interest in antimony since the availability in readily mined areas is decreasing compared to the amounts used. It is important in many applications such as flame retardants and in the production of polyester, which can trigger an investigation of the leachability of antimony from plastics using different acids. In this paper, different types of acids are tested for their ability to leach antimony from a discarded computer housing, made of poly(acrylonitrile butadiene styrene), which is a common plastic type used in electrical and electronic equipment. The acid solutions included sodium hydrogen tartrate (0.5M) dissolved in either dimethyl sulfoxide or water (at ca. 23°C and heated to ca. 105°C). The metal content after leaching was determined by inductively coupled plasma optical emission spectroscopy. The most efficient leaching medium was the heated solution of sodium hydrogen tartrate in dimethyl sulfoxide, which leached almost half of the antimony from the poly(acrylonitrile butadiene styrene). Gamma irradiation, which is proposed to improve the mechanical properties in plastics, was used here to investigate the influence of antimony leaching ability. No significant change in the amount of leached antimony could be observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study.

    PubMed

    Thangsunan, Patcharapong; Tateing, Suriya; Hannongbua, Supa; Suree, Nuttee

    2016-07-01

    Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators.

  15. Densified waste form and method for forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less

  16. Separation of mixed waste plastics via magnetic levitation.

    PubMed

    Zhao, Peng; Xie, Jun; Gu, Fu; Sharmin, Nusrat; Hall, Philip; Fu, Jianzhong

    2018-06-01

    Separation becomes a bottleneck of dealing with the enormous stream of waste plastics, as most of the extant methods can only handle binary mixtures. In this paper, a novel method that based on magnetic levitation was proposed for separating multiple mixed plastics. Six types of plastics, i.e., polypropylene (PP), acrylonitrile butadiene styrene (ABS), polyamide 6 (PA6), polycarbonate (PC), polyethylene terephthalate (PET), and polytetrafluoroethylene (PTFE), were used to simulate the mixed waste plastics. The samples were mixed and immersed into paramagnetic medium that placed into a magnetic levitation configuration with two identical NdFeB magnets with like-poles facing each other, and Fourier transform infrared (FTIR) spectroscopy was employed to verify the separation outputs. Unlike any conventional separation methods such as froth flotation and hydrocyclone, this method is not limited by particle sizes, as mixtures of different size fractions reached their respective equilibrium positions in the initial tests. The two-stage separation tests demonstrated that the plastics can be completely separated with purities reached 100%. The method has the potential to be industrialised into an economically-viable and environmentally-friendly mass production procedure, since quantitative correlations are determined, and the paramagnetic medium can be reused indefinitely. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. EFFECTS OF DOPAMINERGIC DRUGS ON WORKING AND REFERENCE MEMORY IN RATS

    EPA Science Inventory

    Occupational exposure to styrene monomer has been associated with cognitive dysfunction in humans, and changes in dopaminergic function have been suggested to underly effects of repeated exposure to styrene monomer in animals. his study was designed to determine whether styrene a...

  18. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  19. Osmium (VI) complexes of the 3', 5'-dinucleoside monophosphates, ApU and UpA.

    PubMed

    Daniel, F B; Behrman, E J

    1976-02-10

    The dinucleoside monophosphates, ApU and UpA, react with potassium osmate (VI) and 2,2'-bipyridyl to form the corresponding oxo-osmium (VI) bipyridyl sugar ester in which the osmate group is bonded to the terminal 2',3'-glycol. Osmium (VIII) tetroxide and 2,2'-bipyridyl react with the dinucleosides to form the corresponding oxo-osmium (VI) bipyridyl heterocyclic esters which result from addition of the tetroxide to the 5,6-double bond of the uracil residue. Although capable of transesterification reactions, these heterocyclic esters are exceptionally stable toward exchange reactions in solution. No apparent exchange was observed after 1 month. This reaction thus seems promising for single-site osmium labeling in polynucleotides.

  20. Purification and substrate specificity of polymorphic forms of esterase D from human erythrocytes.

    PubMed Central

    Scott, E M; Wright, R C

    1978-01-01

    Esterase D (EsD), purified from human erythrocytes and tested with a variety of substrates, hydrolyzed only triacetin, tributyrin, and certain soluble aryl esters of aliphatic acids. Esters of 4-methylumbelliferone were easily the best substrates. When the three genetically different isozymes were compared, the less common forms, EsD 2 and EsD 2-1, were less stable than EsD 1. With some substrates, the Michaelis constant of the EsD 2 form differed from that of the EsD 1 form. The EsD 2-1 hybrid form was usually, but not invariably, intermediate in properties. The physiologic significance of the genetic variability of this enzyme is unknown. PMID:623100

  1. Gradient structure-induced temperature responsiveness in styrene/methyl methacrylate gradient copolymers micelles.

    PubMed

    Zheng, Chao; Huang, Haiying; He, Tianbai

    2014-02-01

    In this work, micelles are formed by gradient copolymer of styrene and methyl methacrylate in acetone-water mixture and their temperature responsiveness is investigated in a narrow range near room temperature. Three different kinds of structural transitions could be induced by temperature: unimers to micelle transition, shrinkage/stretching of micelles, and morphological transition from spherical micelles to vesicles. In addition, a model analysis on the interface of gradient copolymer micelle is made to better understand these phenomena. It is found that both position and composition of the interface could alter in response to the change in temperature. According to the experiments and model analysis, it is proposed that temperature responsiveness might be an intrinsic and universal property of gradient copolymer micelles, which only originates from the gradient structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    PubMed Central

    Chaiyut, Nattawut; Worawanitchaphong, Phatsakon

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  3. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation.

    PubMed

    Singhania, Reeta Rani; Patel, Anil Kumar; Christophe, Gwendoline; Fontanille, Pierre; Larroche, Christian

    2013-10-01

    VFAs can be obtained from lignocellulosic agro-industrial wastes, sludge, and various biodegradable organic wastes as key intermediates through dark fermentation processes and synthesized through chemical route also. They are building blocks of several organic compounds viz. alcohol, aldehyde, ketones, esters and olefins. These can serve as alternate carbon source for microbial biolipid, biohydrogen, microbial fuel cells productions, methanisation, and for denitrification. Organic wastes are the substrate for VFA platform that is of zero or even negative cost, giving VFA as intermediate product but their separation from the fermentation broth is still a challenge; however, several separation technologies have been developed, membrane separation being the most suitable one. These aspects will be reviewed and results obtained during anaerobic treatment of slaughterhouse wastes with further utilisation of volatile fatty acids for yeast cultivation have been discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  5. ADDENDUM TO ASSESSMENT OF STYRENE EMISSION CONTROLS FOR FRP/C AND BOAT BUILDING INDUSTRIES

    EPA Science Inventory

    This report is an addendum to a 1996 report, Assessment of Styrene Emission Controls for FRP/C and Boat Building Industries. It presents additional evaluation of the biological treatment of styrene emissions, Dow Chemical Company's Sorbathene solvent vapor recovery system, Occupa...

  6. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  7. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  9. 21 CFR 177.1830 - Styrene-methyl methacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1830 Styrene-methyl methacrylate copolymers. Styrene-methyl... intended for use in contact with food, subject to the provisions of this section. (a) For the purpose of...

  10. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  11. Chromatographic, NMR and vibrational spectroscopic investigations of astaxanthin esters: application to "Astaxanthin-rich shrimp oil" obtained from processing of Nordic shrimps.

    PubMed

    Subramanian, B; Thibault, M-H; Djaoued, Y; Pelletier, C; Touaibia, M; Tchoukanova, N

    2015-11-07

    Astaxanthin (ASTX) is a keto carotenoid, which possesses a non-polar linear central conjugated chain and polar β-ionone rings with ketone and hydroxyl groups at the extreme ends. It is well known as a super anti-oxidant, and recent clinical studies have established its nutritional benefits. Although it occurs in several forms, including free molecule, crystalline, aggregates and various geometrical isomers, in nature it exists primarily in the form of esters. Marine animals accumulate ASTX from primary sources such as algae. Nordic shrimps (P. borealis), which are harvested widely in the Atlantic Ocean, form a major source of astaxanthin esters. "Astaxanthin-rich shrimp oil" was developed as a novel product in a shrimp processing plant in Eastern Canada. A compositional analysis of the shrimp oil was performed, with a view to possibly use it as a nutraceutical product for humans and animals. Astaxanthin-rich shrimp oil contains 50% MUFAs and 22% PUFAs, of which 20% are omega-3. In addition, the shrimp oil contains interesting amounts of EPA and DHA, with 10%/w and 8%/w, respectively. Astaxanthin concentrations varied between 400 and 1000 ppm, depending on the harvesting season of the shrimp. Astaxanthin and its esters were isolated from the oil and analysed by NMR, FTIR and Micro-Raman spectroscopy. Astaxanthin mono- and diesters were synthesized and used as standards for the analysis of astaxanthin-rich shrimp oil. NMR and vibrational spectroscopy techniques were successfully used for the rapid characterization of monoesters and diesters of astaxanthin. Raman spectroscopy provided important intermolecular interactions present in the esterified forms of astaxanthin molecules. Also discussed in this paper is the use of NMR, FTIR and Micro-Raman spectroscopy for the detection of astaxanthin esters in shrimp oil.

  12. Styrene-spaced copolymers including anthraquinone and β-O-4 lignin model units: synthesis, characterization and reactivity under alkaline pulping conditions.

    PubMed

    Megiatto, Jackson D; Cazeils, Emmanuel; Ham-Pichavant, Frédérique; Grelier, Stéphane; Gardrat, Christian; Castellan, Alain

    2012-05-14

    A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.

  13. Reversible Inter- and Intramolecular Carbon-Hydrogen Activation, Hydrogen Addition, and Catalysis by the Unsaturated Complex Pt(IPr)(SnBu(t)3)(H).

    PubMed

    Koppaka, Anjaneyulu; Captain, Burjor

    2016-03-21

    The complex Pt(IPr)(SnBu(t)3)(H) (1) was obtained from the reaction of Pt(COD)2 with Bu(t)3SnH and IPr [IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Complex 1 undergoes exchange reactions with deuterated solvents (C6D6, toluene-d8, and CD2Cl2), where the hydride ligand and the methyl hydrogen atoms on the isopropyl group of the IPr ligand have been replaced by deuterium atoms. Complex 1 reacts with H2 gas reversibly at room temperature to yield the complex Pt(IPr)(SnBu(t)3)(H)3 (2). Complex 2 also undergoes exchange reactions with deuterated solvents as in 1 to deuterate the hydride ligands and the methyl hydrogen atoms on the isopropyl group of the IPr ligand. Complex 1 catalyzes the hydrogenation of styrene to ethylbenzene at room temperature. The reaction of 1 with 1 equiv of styrene at -20 °C yields the η(2)-coordinated product Pt(IPr)(SnBu(t)3)(η(2)-CH2CHPh)(H) (3), and with 2 equiv of styrene, it forms Pt(IPr)(η(2)-CH2CHPh)2 (4).

  14. Estrogenic activities of chemicals related to food contact plastics and rubbers tested by the yeast two-hybrid assay.

    PubMed

    Ogawa, Yuko; Kawamura, Yoko; Wakui, Chiseko; Mutsuga, Motoh; Nishimura, Tetsuji; Tanamoto, Kenichi

    2006-04-01

    Food contact plastics and rubbers possibly contain many kinds of chemicals such as monomers, oligomers, additives, degradation products of polymers and additives, and impurities. Among them, bisphenol A, nonylphenol, benzylbutyl phthalate, styrene oligomers and hydroxylated benzophenones have been reported to possess estrogenic activities. In this study, other chemicals related to food contact plastics and rubbers, and their metabolites induced by the S9-mixture were tested for their estrogenic activities using the yeast two-hybrid assay. Among the 150 chemicals, 10 chemicals such as bis(4-hydroxyphenyl) methane, 4-cyclohexylphenol, 4-phenylphenol, 4,4'-isopropylidenediphenol alkylphosphite, two type of styrenated phenol (including mono type), tris(nonylphenyl) phosphite, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxybenzophenone and 2,4-diphenyl-4-methyl-1-pentene, their metabolites and the metabolites of 6 other chemicals, such as 2-(phenylmethyl) phenol, styrenated phenol (di and tri type), 1-(N-phenylamino)naphthalene, 4-tert-butylphenylsalicylate, nonylphenol ethoxylates and 2-methyl-6-tert-butylphenol, displayed estrogenic activities. All of them contained a phenol group in their chemical structures or formed one easily by hydrolysis or metabolism. However, most of the chemicals related to food contact plastics and rubbers, and their metabolites did not show any estrogenicity.

  15. Isoprene-styrene copolymer elastomer and tetrahydrofurfuryl methacrylate mixtures for soft prosthetic applications.

    PubMed

    Nazhat, S N; Parker, S; Patel, M P; Braden, M

    2001-09-01

    Novel elastomer/methacrylate systems have been developed for potential soft prosthetic applications. Mixtures of varying compositions of an isoprene-styrene copolymer elastomer and tetrahydrofurfuryl methacrylate (SIS/THFMA) formed one-gel systems and were heat cured with a peroxide initiator. The blends were characterised in terms of sorption in deionised water and simulated body fluids (SBF), tensile properties and viscoelastic parameters of storage modulus and tan delta, as well as glass transition temperatures using dynamic mechanical analysis (DMA). DMA data gave two distinct peaks in tan delta, a lower temperature transition due to the isoprene phase in SIS and one at high temperature thought to be a combination of THFMA and the styrene phase in SIS. The tensile data showed a clear phase inversion within the mid range compositions changing from plastic to elastomeric behaviour. The sorption studies in deionised water showed a two stage uptake with an initial Fickian region that was linear to t 1/2 followed by a droplet growth/clustering system. The slope of the linear region was dependent on the composition ratio. The extent of overall uptake was osmotically dependent as all materials equilibrated at a much lower uptake in SBF. The diffusion coefficients were found to be concentration dependent.

  16. Photodissociation of Gaseous Ions Formed by Laser Desorption.

    DTIC Science & Technology

    1986-09-20

    produced by separate pathways from the (M-I)- ion or from consecutive photodissociations. Hesperidin : In the negative ion LD mass spectrum of this compound...an ion of m/z r𔃼 was produced from the sodium salt of hesperidin phosphoric acid ester. This ion was observed to dissociate by loss of the attached...Experimental conditions are same as in the top spectrum. Figure 8. Top. Negative ions formed by laser desorption from Na-salt of hesperidin phosphoric acid ester

  17. Photooxidation of mixed aryl and biarylphosphines.

    PubMed

    Zhang, Dong; Celaje, Jeff A; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias

    2010-07-02

    Arylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems. Phosphinate ester formation is increased at high temperature, while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald's recent conformational model for the aerobic oxidation of dialkylbiarylphosphines.

  18. Carotenoids in Fish. XXXII. Content of carotenoids in eggs utilized in the form of caviar.

    PubMed

    Czeczuga, B

    1982-01-01

    The author has investigated the carotenoids in the eggs utilized in form of caviar of 4 species of fishes. By means of columnar and thin-layer chromatography, the following carotenoids were found to be present: beta-carotene, beta-cryptoxanthin, echinenone, canthaxanthin, lutein, tunaxanthin, isozeaxanthin, zeaxanthin, salmoxanthin, adobixanthin, adonixanthin ester, astaxanthin and astaxanthin ester. The total carotenoid varied from 0.229 (Th. chlacogramma) to 1.669 microgram/g fresh weight (O. nerka).

  19. Potential of fecal waste for the production of biomethane, bioethanol and biodiesel.

    PubMed

    Gomaa, Mohamed A; Abed, Raeid M M

    2017-07-10

    Fecal waste is an environmental burden that requires proper disposal, which ultimately becomes also an economic burden. Because fecal waste is nutrient-rich and contains a diverse methanogenic community, it has been utilized to produce biomethane via anaerobic digestion. Carbohydrates and lipids in fecal waste could reach up to 50% of the dry weight, which also suggests a potential as a feedstock for bioethanol and biodiesel production. We measured biomethane production from fecal waste of cows, chickens, goats and humans and compared the microbial community composition before and after anaerobic digestion. We also compared the fecal waste for cellulase production, saccharification and fermentation to produce bioethanol and for lipid content and fatty acid profiles to produce biodiesel. All fecal waste produced biomethane, with the highest yield of 433.4±77.1ml CH 4 /g VS from cow fecal waste. Production of bioethanol was achieved from all samples, with chicken fecal waste yielding as high as 1.6±0.25g/l. Sludge samples exhibited the highest extractable portion of lipids (20.9±0.08wt%) and conversion to fatty acid methyl esters (11.94wt%). Utilization of fecal waste for the production of biofuels is environmentally and economically beneficial. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regulatory link between steryl ester formation and hydrolysis in the yeast Saccharomyces cerevisiae.

    PubMed

    Ploier, Birgit; Korber, Martina; Schmidt, Claudia; Koch, Barbara; Leitner, Erich; Daum, Günther

    2015-07-01

    Steryl esters and triacylglycerols are the major storage lipids of the yeast Saccharomyces cerevisiae. Steryl esters are formed in the endoplasmic reticulum by the two acyl-CoA:sterol acyltransferases Are1p and Are2p, whereas steryl ester hydrolysis is catalyzed by the three steryl ester hydrolases Yeh1p, Yeh2p and Tgl1p. To shed light on the regulatory link between steryl ester formation and hydrolysis in the maintenance of cellular sterol and free fatty acid levels we employed yeast mutants which lacked the enzymes catalyzing the degradation of steryl esters. These studies revealed feedback regulation of steryl ester formation by steryl ester hydrolysis although in a Δtgl1Δyeh1Δyeh2 triple mutant the gene expression levels of ARE1 and ARE2 as well as protein levels and stability of Are1p and Are2p were not altered. Nevertheless, the capacity of the triple mutant to synthesize steryl esters was significantly reduced as shown by in vitro and in vivo labeling of lipids with [(14)C]oleic acid and [(14)C]acetate. Enzymatic analysis revealed that inhibition of steryl ester formation occurred at the enzyme level. As the amounts and the formation of sterols and fatty acids were also decreased in the triple mutant we concluded that defects in steryl ester hydrolysis also caused feedback inhibition on the formation of sterols and fatty acids which serve as precursors for steryl ester formation. In summary, this study demonstrates a regulatory link within the steryl ester metabolic network which contributes to non-polar lipid homeostasis in yeast cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Predominant 1,2-insertion of styrene in the Pd-catalyzed alternating copolymerization with carbon monoxide.

    PubMed

    Nozaki, K; Komaki, H; Kawashima, Y; Hiyama, T; Matsubara, T

    2001-01-31

    The regioselectivity of styrene insertion to an acyl-Pd bond was studied by NMR in (i) a stoichiomeric reaction and (ii) a copolymerization with CO. In the stoichiometric reaction of styrene with [(CH(3)CO)Pd(CH(3)CN)[(R,S)-BINAPHOS

  2. AN EMPIRICAL MODEL TO PREDICT STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTICS FABRICATION PROCESSES

    EPA Science Inventory

    Styrene is a designated hazardous air pollutant, per the 1990 Clean Air Act Amendments. It is also a tropospheric ozone precursor. Fiber-reinforced plastics (FRP) fabrication is the primary source of anthropogenic styrene emissions in the United States. This paper describes an em...

  3. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 1. FINAL REPORT

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced
    plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emission...

  4. EVALUATION OF POLLUTION PREVENTION TECHNIQUES TO REDUCE STYRENE EMISSIONS FROM OPEN CONTACT MOLDING PROCESSES - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study to evaluate several pollution prevention techniques that could be used to reduce styrene emissions from open molding processes in the fiberglass-reinforced plastics/composites (FRP/C) and fiberglass boat building industries. Styrene emissions u...

  5. POTENTIAL FOR REDUCING INDOOR STYRENE EXPOSURE FROM COPIED PAPER THROUGH USE OF LOW-EMITTING TONERS

    EPA Science Inventory

    Tests were conducted, using 53-L dynamic chambers, to determine airborne styrene emission rates over time from freshly copied paper. Copies were produced on a single photocopier, using two toners manufactured for this copier but having different styrene contents. The resulting em...

  6. Computational Design of Biomimetic Gels With Properties of Human Tissues

    DTIC Science & Technology

    2008-12-01

    poly(styrene-block- isoprene -block-styrene) copolymer or SIS in the I-selective solvent has been chosen as a model triblock copolymer for this study...our model. A A B B B RC Fig. 2. Schematic representation of A1B3A1 triblock copolymer mapped on DPD model. Poly(styrene-block- isoprene -block...Pa making G 2.25 times higher for c changes from 0.16 to 0.33 (density of styrene and isoprene blocks are taken to be 1.04 and 0.913 g/cm3

  7. Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents.

    PubMed

    Lirio, Stephen; Fu, Chung-Wei; Lin, Jhih-Yun; Hsu, Meng-Ju; Huang, Hsi-Ya

    2016-07-13

    In this study, the application of different activated carbon-polymer (AC-polymer) monoliths as adsorbents for the solid-phase microextraction (SPME) of phthalate esters (PAEs) in water sample were investigated. The activated carbon (AC) was embedded in organic polymers, poly(butyl methacrylate-co-ethylene dimethacrylate) (poly(BMA-EDMA)) or poly(styrene-co-divinylbenzene) (poly(STY-DVB)), via a 5-min microwave-assisted or a 15-min water bath heating polymerization. Preliminary investigation on the performance of the native poly(BMA-EDMA) and poly(STY-DVB) demonstrated remarkable adsorption efficiencies for PAEs. However, due to the strong hydrophobic, π-π, and hydrogen bonding interactions between the analytes and polymers, low extraction recoveries were achieved. In contrast, the presence of AC in native polymers not only enhanced the adsorption efficiencies but also assisted the PAE desorption, especially for AC-poly(STY-DVB) with extraction recovery ranged of 76.2-99.3%. Under the optimized conditions, the extraction recoveries for intra-, inter-day and column-to-column were in the range of 76.5-100.8% (<3.7% RSDs), 77.2-97.6% (<5.6% RSDs) and 75.5-99.7% (<6.2% RSDs), respectively. The developed AC-poly(STY-DVB) monolithic column showed good mechanical stability, which can be reused for more than 30 extraction times without any significant loss in the extraction recoveries of PAEs. The AC-poly(STY-DVB) monolithic column was successfully applied in SPME of PAEs in water sample with extraction recovery ranged of 78.8%-104.6% (<5.5% RSDs). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Film-forming properties of castor oil polyol ester blends in elastohydrodynamic conditions

    USDA-ARS?s Scientific Manuscript database

    The viscosities and elastohydrodynamic (EHD) film thickness properties of binary blends of castor oil with polyol esters were determined experimentally. Predicted blend viscosity was calculated from the viscosity of the pure blend components. Measured viscosity values were closer to the values pre...

  9. URINARY METABOLITES OF DI-N-OCTYL PHTHALATE IN RATS

    EPA Science Inventory

    Di-n-octyl phthalate (DnOP) is a plasticizer used in polyvinyl chloride plastics, cellulose esters, and polystyrene resins. The metabolism of DnOP results in the hydrolysis of one ester linkage to produce mono-n-octyl phthalate (MnOP), which subsequently metabolizes to form oxida...

  10. Corrosion-Related Consequences of Biodiesel in Contact with Natural Seawater

    DTIC Science & Technology

    2010-03-01

    petroleum diesel, biodiesel contains no sulfur. In the U.S. the term “biodiesel” is standardized as fatty acid methyl ester ( FAME ). Biodiesel content is...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 to methyl (or ethyl) esters with a process known as transesterification.4 The transesterification...biodegradation of the vegetable methyl esters in agitated San Francisco Bay water was less than 4 days at 17 °C.4,22 The highest corrosion rates

  11. Oxyphosphorus-containing polymers as binders for battery cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Russell Clayton; Mullin, Scott Allen; Eitouni, Hany Basam

    A class of polymeric phosphorous esters can be used as binders for battery cathodes. Metal salts can be added to the polymers to provide ionic conductivity. The polymeric phosphorous esters can be formulated with other polymers either as mixtures or as copolymers to provide additional desirable properties. Examples of such properties include even higher ionic conductivity and improved mechanical properties. Furthermore, cathodes that include the polymeric phosphorous esters can be assembled with a polymeric electrolyte separator and an anode to form a complete battery.

  12. A novel step towards immobilization of biocatalyst using agro waste and its application for ester synthesis.

    PubMed

    Tomke, Prerana D; Rathod, Virendra K

    2018-05-04

    This work explains the utilization of agro-waste (coconut and peanut shell) to produce mesoporous activated carbon which further utilized as a support material for lipase immobilization (Candida antarctica B, CALB). Various parameters affecting the binding of enzyme to activated carbon with high surface area (1603 m 2  g -1 ) were optimized. Maximum 200 μg g -1 CALB has been loaded at 40 °C and pH 6.8 in 12 h by using glutaraldehyde as a cross-linker. The operational parameters such as pH (5.8-8.8) and temperature (30-70 °C) were optimized for free and immobilized form of lipase. In thermal stability (50-70 °C) study, immobilization of enzyme showed 2.35 folds increased half-life with respect to free enzyme. The samples, before and after immobilization, were characterized by specific surface area, FT-IR, SEM, XRD. This immobilized lipase was successfully used for the synthesis of cinnamyl acetate by transesterification reaction producing 94% conversion in 60 min. Catalytic efficiency (58 ± 1.08) was seen to be retained for more than five consecutive cycles of chemical reaction for repeated applications. Sequential results towards activity retention were obtained upto 30 days of storability study. In the context, this process constitutes a clean route for the development of sustainable biocatalysts from agro waste, capable of applications in various area. Copyright © 2017. Published by Elsevier B.V.

  13. Utilization of waste crab shell (Scylla serrata) as a catalyst in palm olein transesterification.

    PubMed

    Boey, Peng-Lim; Maniam, Gaanty Pragas; Hamid, Shafida Abd

    2009-01-01

    Aquaculture activity has increased the population of crab, hence increasing the generation of related wastes, particularly the shell. In addition, the number of molting process in crabs compounds further the amount of waste shell generated. As such, in the present work, the application of the waste crab shell as a source of CaO in transesterification of palm olein to biodiesel (methyl ester) was investigated. Preliminary XRD results revealed that thermally activated crab shell contains mainly CaO. Parametric study has been investigated and optimal conditions were found to be methanol/oil mass ratio, 0.5:1; catalyst amount, 4 wt. %; and reaction temperature, 338 K. As compared to laboratory CaO, the catalyst from waste crab shell performs well, thus creating another low-cost catalyst source for producing biodiesel as well as adding value to the waste crab shell. Reusability of crab shell CaO has also been studied and the outcome confirmed that the catalyst is capable to be reutilized up to 11 times, without any major deterioration.

  14. Enzymatic Synthesis of Glyserol-Coconut Oil Fatty Acid and Glycerol-Decanoic Acis Ester as Emulsifier and Antimicrobial Agents Using Candida rugosa Lipase EC 3.1.1.3

    NASA Astrophysics Data System (ADS)

    Handayani, Sri; Putri, Ayu Tanissa Tamara; Setiasih, Siswati; Hudiyono, Sumi

    2018-01-01

    In this research, enzymatic esterification was carried out between glycerol and fatty acid from coconut oil and decanoic acid using n-hexane as solvent. In this reaction Candida rugosa lipase was used as biocatalyst. Optimization esterification reaction was carried out for parameter of the substrate ratio. The mmol ratio between fatty acid and glycerol were used are 1:1, 1:2, 1:3, and 1: 4. The highest conversion percentage obtained at the mole ratio of 1: 4 with the value of 78.5% for the glycerol-decanoic acid ester and 55.4% for the glycerol coconut oil fatty acid ester. Esterification products were characterized by FT-IR. The FT-IR spectrum showed that the ester bond was formed as indicated by the wave number 1750-1739 cm-1. The esterification products were then examined by simple emulsion test and was proved to be an emulsifier. The glycerol-coconut oil fatty acid ester produced higher stability emulsion compare with glycerol decanoic ester. The antimicrobial activity assay using disc diffusion method showed that both glycerol-coconut oil fatty acid ester and glycerol-decanoic ester had the ability inhibiting the growth of Propionibacterium acnes and Staphylococcus epidermidis. Glycerol-decanoic ester shows higher antimicrobial activity than glycerol-coconut oil fatty acid ester.

  15. Simultaneous analysis of free phytosterols/phytostanols and intact phytosteryl/phytostanyl fatty acid and phenolic acid esters in cereals.

    PubMed

    Esche, Rebecca; Barnsteiner, Andreas; Scholz, Birgit; Engel, Karl-Heinz

    2012-05-30

    An approach based on solid-phase extraction for the effective separation of free phytosterols/phytostanols and phytosteryl/phytostanyl fatty acid and phenolic acid esters from cereal lipids was developed. The ester conjugates were analyzed in their intact form by means of capillary gas chromatography. Besides free sterols and stanols, up to 33 different fatty acid and phenolic acid esters were identified in four different cereal grains via gas chromatography-mass spectrometry. The majority (52-57%) of the sterols and stanols were present as fatty acid esters. The highest levels of all three sterol and stanol classes based on dry matter of ground kernels were determined in corn, whereas the oil extract of rye was 1.7 and 1.6 times richer in fatty acid esters and free sterols/stanols than the corn oil. The results showed that there are considerable differences in the sterols/stanols and their ester profiles and contents obtained from corn compared to rye, wheat, and spelt. The proposed method is useful for the quantification of a wide range of free phytosterols/phytostanols and intact phytosteryl/phytostanyl esters to characterize different types of grain.

  16. Responses of conventional and molecular biomarkers in turbot Scophthalmus maximus exposed to heavy fuel oil no. 6 and styrene.

    PubMed

    Ruiz, Pamela; Ortiz-Zarragoitia, Maren; Orbea, Amaia; Theron, Michael; Le Floch, Stéphane; Cajaraville, Miren P

    2012-07-15

    Several accidental spills in European coastal areas have resulted in the release of different toxic compounds into the marine environment, such as heavy fuel oil type no. 6 in the "Erika" and "Prestige" oil spills and the highly toxic styrene after the loss of the "Ievoli Sun". There is a clear need to develop tools that might allow assessing the biological impact of these accidental spills on aquatic organisms. The aim of the present study was to determine the short-term effects and recovery after exposure of juvenile fish (Scophthalmus maximus) to heavy fuel oil no. 6 and styrene by using a battery of molecular, cell and tissue level biomarkers. Turbots were exposed to styrene for 7 days and to the diluted soluble fraction of the oil (10%) for 14 days, and then allowed to recover in clean seawater for the same time periods. cyp1a1 transcript was overexpressed in turbots after 3 and 14 days of exposure to heavy fuel oil, whereas ahr transcription was not modulated after heavy fuel oil and styrene exposure. pparα transcription level was significantly up-regulated after 3 days of treatment with styrene. Liver activity of peroxisomal acyl-CoA oxidase (AOX) was significantly induced after 14 days of oil exposure, but it was not affected by styrene. Hepatocyte lysosomal membrane stability (LMS) was significantly reduced after exposure to both treatments, indicating that the tested compounds significantly impaired fish health. Both AOX and LMS values returned to control levels after the recovery period. No differences in gamete development were observed between fuel- or styrene- exposed fish and control fish, and vitellogenin plasma levels were low, suggesting no xenoestrogenic effects of fuel oil or styrene. While styrene did not cause any increase in the prevalence of liver histopathological alterations, prevalence of extensive cell vacuolization increased after exposure to heavy fuel oil for 14 days. In conclusion, the suite of selected biomarkers proved to be useful to determine the early impact of and recovery from exposure to tested compounds in turbot. Copyright © 2012. Published by Elsevier B.V.

  17. A Solvent-Free Baeyer-Villiger Lactonization for the Undergraduate Organic Laboratory: Synthesis of Gamma-T-Butyl-Epsilon-Caprolactone

    ERIC Educational Resources Information Center

    Esteb, John J.; Hohman, Nathan J.; Schlamandinger, Diana E.; Wilson, Anne M.

    2005-01-01

    The solvent-free or solid-state reaction systems like the Baeyer-Villiger rearrangement have become popular in the synthetic organic community and viable option for undergraduate laboratory series to reduce waste and cost and simplify reaction process. The reaction is an efficient method to transform ketones to esters and lactones.

  18. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and consumer activities. Requirements as specified in § 721.80 (l) and (q). (iv) Release to water...)(4), if the waste stream containing the PMN substance will be treated using biological treatment (activated sludge or equivalent) plus clarification, then the amount of PMN substance reasonably likely to be...

  19. Occupational exposure to styrene in the fibreglass reinforced plastic industry: comparison between two different manufacturing processes.

    PubMed

    Tranfo, Giovanna; Gherardi, Monica; Paci, E; Gatto, Mariapia; Gordiani, A; Caporossi, Lidia; Capanna, Silvia; Sisto, Renata; Papaleo, B; Fiumalbi, Carla; Garofani, Patrizia

    2012-01-01

    Styrene is used in manufacturing fiberglass reinforced plastics: and occupational exposure was related to neurotoxicology and genotoxicity. The sum of the metabolites mandelic and phenylglyoxylic acids is the ACGIH biomarker for occupational exposure with a BEI of 400 mg/g of creatinine in end shift urine corresponding to a airborne styrene concentration of 85 mg/m3. There are two main molding processes, open and closed, the last more effective at controlling worker's styrene exposure. To compare the open molding process to the compression of fiber reinforced resin foils, a kind of closed molding, monitoring the styrene exposure of workers in two production sites (A and B). Environmental Monitoring was carried out by Radiello samplers and Biological Monitoring by means of the determination of MA and PGA with HPLC/MS/MS in 10 workers at Site A and 14 at Site B. The median values for styrene exposure resulted 31.1 mg/m3 for Site A and 24.4 mg/m for Site B, while the medians for the sum of the two metabolites in the end shift urine were 86.7 e 33.8 mg/g creatinine respectively. There is a significant linear correlation between personal styrene exposure and the excretion of styrene metabolites (R = 0.74). As expected the exposure markers of the workers of the two production sites resulted higher in the open process. The analytical results of both environmental and biological monitoring were all below the occupational exposure limits, confirming the efficacy of the protective devices.

  20. Stabilized unsaturated polyesters

    NASA Technical Reports Server (NTRS)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  1. Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils.

    PubMed

    Tiong, Soon Huat; Saparin, Norliza; Teh, Huey Fang; Ng, Theresa Lee Mei; Md Zain, Mohd Zairey Bin; Neoh, Bee Keat; Md Noor, Ahmadilfitri; Tan, Chin Ping; Lai, Oi Ming; Appleton, David Ross

    2018-01-31

    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.

  2. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts.

    PubMed

    Miandad, R; Barakat, M A; Rehan, M; Aburiazaiza, A S; Ismail, I M I; Nizami, A S

    2017-11-01

    This study aims to examine the catalytic pyrolysis of various plastic wastes in the presence of natural and synthetic zeolite catalysts. A small pilot scale reactor was commissioned to carry out the catalytic pyrolysis of polystyrene (PS), polypropylene (PP), polyethylene (PE) and their mixtures in different ratios at 450°C and 75min. PS plastic waste resulted in the highest liquid oil yield of 54% using natural zeolite and 50% using synthetic zeolite catalysts. Mixing of PS with other plastic wastes lowered the liquid oil yield whereas all mixtures of PP and PE resulted in higher liquid oil yield than the individual plastic feedstocks using both catalysts. The GC-MS analysis revealed that the pyrolysis liquid oils from all samples mainly consisted of aromatic hydrocarbons with a few aliphatic hydrocarbon compounds. The types and amounts of different compounds present in liquid oils vary with some common compounds such as styrene, ethylbenzene, benzene, azulene, naphthalene, and toluene. The FT-IR data also confirmed that liquid oil contained mostly aromatic compounds with some alkanes, alkenes and small amounts of phenol group. The produced liquid oils have high heating values (HHV) of 40.2-45MJ/kg, which are similar to conventional diesel. The liquid oil has potential to be used as an alternative source of energy or fuel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkalinemore » pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.« less

  4. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonakou, E.V.; Kalogiannis, K.G.; Stephanidis, S.D.

    Highlights: • Thermal and catalytic pyrolysis is a powerful method for recycling of WEEEs. • Liquid products obtained from the pyrolysis of PC or HIPS found in waste CDs are very different. • Mainly phenols are obtained from pyrolysis PC based wastes while aromatics from HIPS. • Use of MgO catalyst increases the amount of phenols from CD recycling compared to ZSM-5. • Use of MgO or ZSM-5 catalysts reduces the amount of styrene recovered from HIPS. - Abstract: Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or variousmore » useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.« less

  5. Letter to the Editor: Styrene-producing microbes in food-stuff

    USDA-ARS?s Scientific Manuscript database

    An article was published in Journal of Food Science, August 2009 (Vol. 74, Nr 6) entitled “Natural formation of styrene by cinnamon mold flora”. In the article, the authors reported on the production of styrene from several fungi typically found on cinnamon, and used cinnamic acid and similar analog...

  6. Solvent effect on post-irradiation grafting of styrene onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) films

    NASA Astrophysics Data System (ADS)

    Napoleão Geraldes, Adriana; Augusto Zen, Heloísa; Ribeiro, Geise; Fernandes Parra, Duclerc; Benévolo Lugão, Ademar

    2013-03-01

    Radiation-induced grafting of styrene onto ETFE films in different solvent was investigated after simultaneous irradiation (in post-irradiation condition) using a 60Co source. Grafting of styrene followed by sulfonation onto poly(ethylene-alt-tetrafluoroethylene) (ETFE) are currently studied for synthesis of ion exchange membranes. The ETFE films were immersed in styrene/toluene, styrene/methanol and styrene/isopropyl alcohol and irradiated at 20 and 100 kGy doses at room temperature. The post-irradiation time was established at 14 day and the grafting degree was evaluated. The grafted films were sulfonated using chlorosulfonic acid and 1,2-dichloroethane 20:80 (v/v) at room temperature for 5 h. The degree of grafting (DOG) was determined gravimetrically and physical or chemical changes were evaluated by differential scanning calorimeter analysis (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The ion exchange capacity (IEC) values showed the best performance of sulfonation for ETFE membranes grafted in toluene solvent. Surface images of the grafted films by SEM technique have presented a strong effect of the solvents on the films morphology.

  7. Photooxidation of Mixed Aryl and Biarylphosphines

    PubMed Central

    Zhang, Dong; Celaje, Jeff A.; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias

    2010-01-01

    Aryl phosphines and dialkylbiaryl phosphines react with singlet oxygen to form phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiaryl phosphines migration of the alkyl group occurs. Dialkylbiaryl phosphines also yield arene epoxides, especially in electron rich systems. Phosphinate ester formation is increased at high temperature while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald’s recent conformational model for the aerobic oxidation of dialkylbiaryl phosphines. PMID:20527907

  8. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptablemore » for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF« less

  9. A health risk benchmark for the neurologic effects of styrene: comparison with NOAEL/LOAEL approach.

    PubMed

    Rabovsky, J; Fowles, J; Hill, M D; Lewis, D C

    2001-02-01

    Benchmark dose (BMD) analysis was used to estimate an inhalation benchmark concentration for styrene neurotoxicity. Quantal data on neuropsychologic test results from styrene-exposed workers [Mutti et al. (1984). American Journal of Industrial Medicine, 5, 275-286] were used to quantify neurotoxicity, defined as the percent of tested workers who responded abnormally to > or = 1, > or = 2, or > or = 3 out of a battery of eight tests. Exposure was based on previously published results on mean urinary mandelic- and phenylglyoxylic acid levels in the workers, converted to air styrene levels (15, 44, 74, or 115 ppm). Nonstyrene-exposed workers from the same region served as a control group. Maximum-likelihood estimates (MLEs) and BMDs at 5 and 10% response levels of the exposed population were obtained from log-normal analysis of the quantal data. The highest MLE was 9 ppm (BMD = 4 ppm) styrene and represents abnormal responses to > or = 3 tests by 10% of the exposed population. The most health-protective MLE was 2 ppm styrene (BMD = 0.3 ppm) and represents abnormal responses to > or = 1 test by 5% of the exposed population. A no observed adverse effect level/lowest observed adverse effect level (NOAEL/LOAEL) analysis of the same quantal data showed workers in all styrene exposure groups responded abnormally to > or = 1, > or = 2, or > or = 3 tests, compared to controls, and the LOAEL was 15 ppm. A comparison of the BMD and NOAEL/LOAEL analyses suggests that at air styrene levels below the LOAEL, a segment of the worker population may be adversely affected. The benchmark approach will be useful for styrene noncancer risk assessment purposes by providing a more accurate estimate of potential risk that should, in turn, help to reduce the uncertainty that is a common problem in setting exposure levels.

  10. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was moremore » beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.« less

  11. Calcium oxide supported gold nanoparticles as catalysts for the selective epoxidation of styrene by t-butyl hydroperoxide.

    PubMed

    Dumbre, Deepa K; Choudhary, Vasant R; Patil, Nilesh S; Uphade, Balu S; Bhargava, Suresh K

    2014-02-01

    Gold nanoparticles are deposited on basic CaO supports as catalysts for the selective conversion of styrene into styrene oxide. Synthetic methods, gold loading and calcination temperatures are varied to permit an understanding of their influence on gold nanoparticle size, the presence of cationic gold species and the nature of interaction between the gold nanoparticles and the CaO support. Based on these studies, optimal conditions are designed to make the Au/CaO catalyst efficient for the selective epoxidation of styrene. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Photoactuation behavior of styrene-b-isoprene-b-styrene filled with covalently modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mosnáček, Jaroslav; Ilčíková, Markéta; Chorvát, Dušan; Czaniková, Klaudia; Krupa, Igor

    2012-07-01

    Styrene-b-isoprene-b-styrene (Kraton) was used as polymer matrix for preparation of multiwall carbon nanotubes (MWCNT) based nanocomposites. In order to suppress aggregation of the he carbon nanotubes and to improve the interations with the Kraton matrix, the MWCNT were modified with cholesteryl molecules and/or polystyrene chains. The effect of the modification on the composite materials was evaluated by using DMTA. The nanocomposite materials were thermoformed to achieve Braille text elements and their elastic response to light (photoactuation) was tested by atomic force microscopy in a contact mode.

  13. An acute study on the relative gastro-intestinal absorption of a novel form of calcium ascorbate.

    PubMed

    Bush, M J; Verlangieri, A J

    1987-07-01

    Several functions of L-ascorbic acid (vitamin C) have been suggested in addition to its role in the prevention of scurvy. Consequently, a controversy has arisen over the daily intake of the vitamin which will afford maximum benefits. Rapid cellular uptake and delayed renal excretion of ascorbic acid would be conducive to providing optimum cellular concentration for biochemical activity. ESTER-C (patent pending), a complex consisting of L-ascorbic acid and Ca++, has been recently developed by Inter-Cal Corporation (421 Miller Road, Prescott, AZ 86301). It has been proposed that the structure of ESTER-C may render it more readily absorbed and less rapidly excreted than the acid or salt form of the vitamin. To test this hypothesis, ESTER-C and L-ascorbic acid were administered to two groups of rats. Blood was sampled at 20, 40, 80, 160 and 240 minutes and plasma analyzed for ascorbic acid. As urine appeared in collection cups, it was tested qualitatively for the presence of ascorbic acid. The plasma concentration of ascorbic acid was higher in ESTER-C treated rats at 20, 40 and 80 minutes than in rats given L-ascorbic acid. Ascorbic acid was detected in the urine of animals administered ESTER-C later than in those treated with L-ascorbic acid. These results support the hypothesis that ESTER-C is absorbed more readily and excreted less rapidly than L-ascorbic acid.

  14. Ecotoxicity hazard assessment of styrene.

    PubMed

    Cushman, J R; Rausina, G A; Cruzan, G; Gilbert, J; Williams, E; Harrass, M C; Sousa, J V; Putt, A E; Garvey, N A; St Laurent, J P; Hoberg, J R; Machado, M W

    1997-07-01

    The ecotoxicity of styrene was evaluated in acute toxicity studies of fathead minnows (Pimephales promelas), daphnids (Daphnia magna), amphipods (Hyalella azteca), and freshwater green algae (Selenastrum capricornutum), and a subacute toxicity study of earthworms (Eisenia fostida). Stable exposure levels were maintained in the studies with fathead minnows, daphnids, and amphipods using sealed, flowthrough, serial dilution systems and test vessels. The algae were evaluated in a sealed, static system. The earthworms were exposed in artificial soil which was renewed after 7 days. Styrene concentrations in water and soil were analyzed by gas chromatography with flame ionization detection following extraction into hexane. Test results are based on measured concentrations. Styrene was moderately toxic to fathead minnows, daphnids, and amphipods: fathead minnow: LC50 (96 hr), 10 mg/liter, and NOEC, 4.0 mg/liter; daphnids: EC50 (48 hr), 4.7 mg/liter, and NOEC, 1.9 mg/liter; amphipods: LC50 (96 hr), 9.5 mg/liter, and NOEC, 4.1 mg/liter. Styrene was highly toxic to green algae: EC50 (96 hr), 0.72 mg/liter, and NOEC, 0.063 mg/liter; these effects were found to be algistatic rather than algicidal. Styrene was slightly toxic to earthworms: LC50 (14 days), 120 mg/kg, and NOEC, 44 mg/kg. There was no indication of a concern for chronic toxicity based on these studies. Styrene's potential impact on aquatic and soil environments is significantly mitigated by its volatility and biodegradability.

  15. Estrogenic reduction of styrene monomer degraded by Phanerochaete chrysosporium KFRI 20742.

    PubMed

    Lee, Jae-Won; Lee, Soo-Min; Hong, Eui-Ju; Jeung, Eui-Bae; Kang, Ha-Young; Kim, Myung-Kil; Choi, In-Gyu

    2006-04-01

    The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99% during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.

  16. Ternary borate-nucleoside complex stabilization by Ribonuclease A demonstrates phosphate mimicry

    PubMed Central

    Gabel, Scott A.; London, Robert E.

    2010-01-01

    Phosphate esters play a central role in cellular energetics, biochemical activation, signal transduction and conformational switching. The structural homology of the borate anion with phosphate, combined with its ability to spontaneously esterify hydroxyl groups, suggested that phosphate-ester recognition sites on proteins might exhibit significant affinity for non-enzymatically formed borate esters. 11B NMR studies and activity measurements on ribonuclease A in the presence of borate and several cytidine analogs demonstrate the formation of a stable ternary RNase A•3′-deoxycytidine-2′-borate ternary complex that mimics the complex formed between RNase A and a 2′-cytidine monophosphate (2′-CMP) inhibitor. Alternatively, no slowly exchanging borate resonance is observed for a ternary RNase A, borate, 2′-deoxycytidine mixture, demonstrating the critical importance of the 2′-hydroxyl group for complex formation. Titration of the ternary complex with 2′-CMP shows that it can displace the bound borate ester with a binding constant that is close to the reported inhibition constant of RNase A by 2′CMP. RNase A binding of a cyclic cytidine-2′,3′-borate ester, which is a structural homolog of the cytidine-2′,3′-cyclic phosphate substrate, could also be demonstrated. The apparent dissociation constant for the cytidine-2′,3′-borate•RNase A complex is 0.8 mM, which compares with a Michaelis constant of 11 mM for cCMP at pH 7, indicating considerably stronger binding. However, the value is 1000-fold larger than the reported dissociation constant of the RNase A complex with uridine-vanadate. These results are consistent with recent reports suggesting that in situ formation of borate esters that mimic the corresponding phosphate esters support enzyme catalysis. PMID:17957392

  17. Fully convergent chemical synthesis of ester insulin: determination of the high resolution X-ray structure by racemic protein crystallography.

    PubMed

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P; Phillips, Nelson B; Weiss, Michael A; Kent, Stephen B H

    2013-02-27

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.

  18. Fully Convergent Chemical Synthesis of Ester Insulin: Determination of the High Resolution X-ray Structure by Racemic Protein Crystallography

    PubMed Central

    Avital-Shmilovici, Michal; Mandal, Kalyaneswar; Gates, Zachary P.; Phillips, Nelson B.; Weiss, Michael A.; Kent, Stephen B.H.

    2013-01-01

    Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described ‘ester insulin’ – a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond – as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e. [AspB10, LysB28, ProB29]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed. PMID:23343390

  19. Porous Polystyrene Monoliths and Microparticles Prepared from Core Cross-linked Star (CCS) Polymers-Stabilized Emulsions.

    PubMed

    Chen, Qijing; Shi, Ting; Han, Fei; Li, Zihan; Lin, Chao; Zhao, Peng

    2017-08-17

    A hydrophobic CCS polymer of poly(benzyl methacrylate) (PBzMA) was prepared in toluene by reversible addition-fragmentation chain transfer (RAFT)-mediated dispersion polymerization. The CCS polymer, with poly(benzyl methacrylate) as the arm and crosslinked N, N'-bis(acryloyl)cystamine (BAC) as the core, was confirmed by characterization with gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. Three kinds of oils (toluene, anisole and styrene) were chosen to study the emulsification properties of PBzMA CCS polymer. The oils can be emulsified by CCS polymer to form water-in-oil (w/o) emulsions. Moreover, w/o high internal phase emulsions (HIPEs) can be obtained with the increase of toluene and styrene volume fractions from 75% to 80%. Porous polystyrene monolith and microparticles were prepared from the emulsion templates and characterized by the scanning electronic microscopy (SEM). With the internal phase volume fraction increased, open-pore porous monolith was obtained.

  20. Response of cells on surface-induced nanopatterns: fibroblasts and mesenchymal progenitor cells.

    PubMed

    Khor, Hwei Ling; Kuan, Yujun; Kukula, Hildegard; Tamada, Kaoru; Knoll, Wolfgang; Moeller, Martin; Hutmacher, Dietmar W

    2007-05-01

    Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns.

  1. Direct Synthesis of Polymer Nanotubes by Aqueous Dispersion Polymerization of a Cyclodextrin/Styrene Complex.

    PubMed

    Chen, Xi; Liu, Lei; Huo, Meng; Zeng, Min; Peng, Liao; Feng, Anchao; Wang, Xiaosong; Yuan, Jinying

    2017-12-22

    A one-step synthesis of nanotubes by RAFT dispersion polymerization of cyclodextrin/styrene (CD/St) complexes directly in water is presented. The resulted amphiphilic PEG-b-PS diblock copolymers self-assemble in situ into nanoparticles with various morphologies. Spheres, worms, lamellae, and nanotubes were controllably obtained. Because of the complexation, the swelling degree of polystyrene (PS) blocks by free St is limited, resulting in limited mobility of PS chains. Consequently, kinetically trapped lamellae and nanotubes were obtained instead of spherical vesicles. During the formation of nanotubes, small vesicles first formed at the ends of the tape-like lamellae, then grew and fused into nanotubes with a limited chain rearrangement. The introduction of a host-guest interaction based on CDs enables the aqueous dispersion polymerization of water-immiscible monomers, and produces kinetically trapped nanostructures, which could be a powerful technique for nanomaterials synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  3. A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 × Tg-AD mouse model of Alzheimer disease.

    PubMed

    Hensley, Kenneth; Gabbita, S Prasad; Venkova, Kalina; Hristov, Alexandar; Johnson, Ming F; Eslami, Pirooz; Harris-White, Marni E

    2013-10-01

    Lanthionine ketimine ([LK] 3,4-dihydro-2H-1,4-thiazine-3,5-dicarboxylic acid) is the archetype for a family of naturally occurring brain sulfur amino acid metabolites, the physiologic function of which is unknown. Lanthionine ketimine and its synthetic derivatives have recently demonstrated neurotrophic, neuroprotective, and antineuroinflammatory properties in vitro through a proposed mechanism involving the microtubule-associated protein collapsin response mediator protein 2. Therefore, studies were undertaken to test the effects of a bioavailable LK ester in the 3 × Tg-AD mouse model of Alzheimer disease. Lanthionine ketimine ester treatment substantially diminished cognitive decline and brain amyloid-β (Aβ) peptide deposition and phospho-Tau accumulation in 3 × Tg-AD mice and also reduced the density of Iba1-positive microglia. Furthermore, LK ester treatment altered collapsin response mediator protein 2 phosphorylation. These findings suggest that LK may not be a metabolic waste but rather a purposeful neurochemical, the synthetic derivatives of which constitute a new class of experimental therapeutics for Alzheimer disease and related entities.

  4. Mortality among styrene-exposed workers in the reinforced plastic boatbuilding industry.

    PubMed

    Ruder, Avima M; Meyers, Alysha R; Bertke, Stephen J

    2016-02-01

    We updated mortality through 2011 for 5203 boat-building workers potentially exposed to styrene, and analysed mortality among 1678 employed a year or more between 1959 and 1978. The a priori hypotheses: excess leukaemia and lymphoma would be found. Standardised mortality ratios (SMRs) and 95% CIs and standardised rate ratios (SRRs) used Washington State rates and a person-years analysis programme, LTAS.NET. The SRR analysis compared outcomes among tertiles of estimated cumulative potential styrene exposure. Overall, 598 deaths (SMR=0.96, CI 0.89 to 1.04) included excess lung (SMR=1.23, CI 0.95 to 1.56) and ovarian cancer (SMR 3.08, CI 1.00 to 7.19), and chronic obstructive pulmonary disease (COPD) (SMR=1.15, CI 0.81 to 1.58). Among 580 workers with potential high-styrene exposure, COPD mortality increased 2-fold (SMR=2.02, CI 1.08 to 3.46). COPD was more pronounced among those with potential high-styrene exposure. However, no outcome was related to estimated cumulative styrene exposure, and there was no change when latency was taken into account. We found no excess leukaemia or lymphoma mortality. As in most occupational cohort studies, lack of information on lifestyle factors or other employment was a substantial limitation although we excluded from the analyses those (n=3525) who worked <1 year. Unanticipated excess ovarian cancer mortality could be a chance finding. Comparing subcohorts with potential high-styrene and low-styrene exposure, COPD mortality SRR was elevated while lung cancer SRR was not, suggesting that smoking was not the only cause for excess COPD mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Roles of oxyanions in promoting the partial oxidation of styrene on Ag(110): nitrate, carbonate, sulfite, and sulfate.

    PubMed

    Zhou, Ling; Madix, Robert J

    2010-11-02

    The promotion roles of nitrate, carbonate, sulfite, and sulfate in oxidation of styrene on Ag(110) have been studied by means of temperature-programmed reaction spectroscopy (TPRS) and X-ray photoelectron spectroscopy (XPS). While isolated nitrate leads only to the secondary oxidation of styrene, a surface co-covered by nitrate, oxygen, and 0.1 ML cesium promotes a low-temperature epoxidation pathway. XPS indicates that adsorbed surface oxygen is the oxidant in this selective reaction pathway, and, though it affects the reactivity of the surface oxygen, nitrate is a spectator. Carbonate acts as an oxygen transfer agent and exhibits similar reactivity and selectivity as an oxidant for styrene as does atomic oxygen on Ag(110). The reactivities of sulfite and sulfate are strongly dependent on their surface structures, the c(6 × 2) sulfite showing the capacity to transfer oxygen to styrene.

  6. Identification and characterization of epoxide hydrolase activity of polycyclic aromatic hydrocarbon-degrading bacteria for biocatalytic resolution of racemic styrene oxide and styrene oxide derivatives.

    PubMed

    Woo, Jung-Hee; Kwon, Tae-Hyung; Kim, Jun-Tae; Kim, Choong-Gon; Lee, Eun Yeol

    2013-04-01

    A novel epoxide hydrolase (EHase) from polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was identified and characterized. EHase activity was identified in four strains of PAH-degrading bacteria isolated from commercial gasoline and oil-contaminated sediment based on their growth on styrene oxide and its derivatives, such as 2,3- and 4-chlorostyrene oxides, as a sole carbon source. Gordonia sp. H37 exhibited high enantioselective hydrolysis activity for 4-chlorostyrene oxide with an enantiomeric ratio of 27. Gordonia sp. H37 preferentially hydrolyzed the (R)-enantiomer of styrene oxide derivatives resulting in the preparation of a (S)-enantiomer with enantiomeric excess greater than 99.9 %. The enantioselective EHase activity was identified and characterized in various PAH-degrading bacteria, and whole cell Gordonia sp. H37 was employed as a biocatalyst for preparing enantiopure (S)-styrene oxide derivatives.

  7. Stereoselective formation of a cholesterol ester conjugate from fenvalerate by mouse microsomal carboxyesterase(s).

    PubMed

    Miyamoto, J; Kaneko, H; Takamatsu, Y

    1986-06-01

    In accordance with in vivo findings, of the four chiral isomers of fenvalerate (S-5602 Sumicidin, Pydrin, [RS]-alpha-cyano-3-phenoxybenzyl [RS]-2-(4-chlorophenyl)isovalerate), only the [2R, alpha S]-isomer (B-isomer) yielded cholesteryl [2R]-2-(4-chlorophenyl)isovalerate (CPIA-cholesterol ester) in the in vitro study using several tissue homogenates of mice, rats, dogs, and monkeys. There were species differences in the extent of CPIA-cholesterol-ester formation, with mouse tissues showing relatively higher activity than those of other animals. The kidney, brain, and spleen of mice showed relatively higher capacities to form this ester compared to other tissues, and the enzyme activity was mainly localized in microsomal fractions. The CPIA-cholesterol ester did not seem to be produced by three known biosynthetic pathways of endogenous cholesterol esters--acyl-CoA:cholesterol O-acyltransferase (ACAT), lecithin:cholesterol O-acyltransferase (LCAT), and cholesterol esterase. Carboxyesterase(s) of mouse kidney microsomes solubilized by digitonin hydrolyzed only the B alpha-isomer of fenvalerate, yielding CPIA, whereas they yielded the corresponding cholesterol ester in the presence of artificial liposomes containing cholesterol. Thus, it appears that the stereoselective formation of the CPIA-cholesterol ester results from the stereoselective formation of the CPIA-carboxyesterase complex only from the B alpha-isomer, which subsequently undergoes cleavage by cholesterol to yield the CPIA-cholesterol ester.

  8. Retinol esterification in bovine retinal pigment epithelium: reversibility of lecithin:retinol acyltransferase.

    PubMed Central

    Saari, J C; Bredberg, D L; Farrell, D F

    1993-01-01

    Esterification of all-trans-retinol is a key reaction of the vertebrate visual cycle, since it produces an insoluble, relatively non-toxic, form of the vitamin for storage and supplies substrate for the isomerization reaction. CoA-dependent and -independent pathways have been described for retinol esterification in retinal pigment epithelium (RPE). The CoA-independent reaction, catalysed by lecithin:retinol acyltransferase (LRAT) was examined in more detail in this study. Addition of retinol to RPE microsomes results in a burst of retinyl ester synthesis, followed by a rapid apparent cessation of the reaction. However, [3H]retinol, added when retinyl ester synthesis has apparently ceased, is rapidly incorporated into retinyl ester without a net increase in the amount of ester. The specific radioactivities of [3H]retinol and [3H]retinyl ester reach the same value. [14C]Palmitate from palmitoyl-CoA is incorporated into preexisting retinyl ester in the absence of net ester synthesis, too. These exchange reactions suggest that the reaction has reached equilibrium at the plateau of the progress curve and that only the accumulation of retinyl ester, and not its synthesis, has stopped during this phase of the reaction. Studies with geometrical isomers of retinol revealed that the rate of exchange of all-trans-retinol with all-trans-retinyl esters was about 6 times more rapid than exchange of 11-cis-retinol with 11-cis-retinyl ester. This is the first demonstration of the reversibility of LRAT and the first example of stereospecificity of retinyl ester synthesis in the visual system. Reversal of the LRAT reaction could contribute to the mobilization of 11-cis-retinol from 11-cis-retinyl ester pools. Images Figure 3 PMID:8489497

  9. Analysis of methyloxime derivatives of intact esters of testosterone and boldenone in equine plasma using ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Gray, Bobby P; Teale, Phil; Pearce, Clive M

    2011-04-01

    Analysis of equine plasma samples to detect the abuse of anabolic steroids can be complicated when the parent steroid is endogenous to the animal. Anabolic steroids are usually administered intramuscularly as synthetic esters and therefore detection of the exogenous esters provides unequivocal proof of illegal administration. An ultra high performance liquid chromatography tandem mass spectrometric (UPLC-MSMS) method for the analysis of esters of testosterone (propionate, phenylpropionate, isocaproate, and decanoate) and boldenone (undecylenate) in equine plasma has been developed. Esters were extracted from equine plasma using a mixture of hexane and ethyl acetate and treated with methoxyamine hydrochloride to form methyloxime derivatives. Metenolone enanthate was used as an internal standard. After chromatographic separation, the derivatized steroid esters were quantified using selected reaction monitoring (SRM). The limit of detection for all of the steroid esters, based on a signal to noise ratio (S/N) of 3:1, was 1-3 pg/mL. The lower limit of quantification (LLOQ) for the all of the steroid esters was 5 pg/mL when 2 mL of plasma was extracted. Recovery of the steroid esters was 85-97% for all esters except for testosterone decanoate which was recovered at 62%. The intra-day coefficient of variation (CV) for the analysis of plasma quality control (QC) samples was less than 9.2% at 40 pg/mL and less than 6.0% at 400 pg/mL. The developed assay was used to successfully confirm the presence of intact testosterone esters in equine plasma samples following intramuscular injection of Durateston® (mixed testosterone esters). Copyright © 2011 John Wiley & Sons, Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.I. Zherebtsov; A.I. Moiseev

    Changes in the group and individual compositions of the wax fractions of bitumen in the course of brown coal methylation were studied. With the use of IR and NMR spectroscopy and chromatography-mass spectrometry, it was found that the esters of methylated coal waxes consisted of the native esters of fatty acids and the methyl esters of these acids formed as a result of an alkylation treatment. Esterification and transesterification were predominant among the reactions of aliphatic fraction components. A positive effect of methanol alkylation on an increase in the yield of the aliphatic fractions was found.

  11. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    PubMed

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethane)s

    PubMed Central

    Hayashi, Hiroto; Yanagishita, Yoshio; Matsumura, Shuichi

    2011-01-01

    Novel poly(ester-urethane)s were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and α,ω-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethane)s. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethane)s synthesized in this study showed higher Tm, Young’s modulus and tensile strength values. PMID:22016604

  13. Purifying contaminated water

    DOEpatents

    Daughton, Christian G.

    1983-01-01

    Process for removing biorefractory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic, acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  14. Alternate Energy Research and Technology Challenges in the New Millennium

    DTIC Science & Technology

    2010-09-01

    Methyl Ester (FAME) Hydro-treating (Hydrogen) Green diesel Multiple Biomass (Municipal Waste) Biomass to Liquid (BTL Gasification ) (formation...the depletion The Coming Oil Crisis, Colin J. Campbell 10
 • Conservation / Efficiency -- not enough Renewables • Biomass ...candidates for Navy / DOD) 11
 Biomass : A Potential Renewable Energy Source 12
 • The oldest known energy source since the discovery of fire

  15. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    DOE PAGES

    Alexandratos, Spiro D.; Zhu, Xiaoping

    2017-08-18

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greatermore » than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm -1 while the monoethyl ester resins have the band shifted to 1230 cm -1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm -1. Of the polymers studied, monoprotic pentaerythritol has the highest metal ion affinities.« less

  16. The Effect of Hydrogen Bonding in Enhancing the Ionic Affinities of Immobilized Monoprotic Phosphate Ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandratos, Spiro D.; Zhu, Xiaoping

    Environmental remediation requires ion-selective polymers that operate under a wide range of solution conditions. In one example, removal of trivalent and divalent metal ions from waste streams resulting from mining operations before they enter the environment requires treatment at acidic pH. The monoethyl ester phosphate ligands developed in this report operate from acidic solutions. They have been prepared on polystyrene-bound ethylene glycol, glycerol, and pentaerythritol, and it is found that intra-ligand hydrogen bonding affects their metal ion affinities. The affinity for a set of trivalent (Fe(III), Al(III), La(III), and Lu(III)) and divalent (Pb(II), Cd(II), Cu(II), and Zn(II)) ions is greatermore » than that of corresponding neutral diethyl esters and phosphonic acid. In an earlier study, hydrogen bonding was found important in determining the metal ion affinities of immobilized phosphorylated polyol diethyl ester coordinating ligands; their Fourier transform infrared (FTIR) band shifts indicated that the basicity of the phosphoryl oxygen increased by hydrogen bonding to auxiliary –OH groups on the neighboring polyol. The same mechanism is operative with the monoprotic resins along with hydrogen bonding to the P–OH acid site. This is reflected in the FTIR spectra: the neutral phosphate diethyl ester resins have the P=O band at 1265 cm -1 while the monoethyl ester resins have the band shifted to 1230 cm -1; hydrogen bonding is further indicated by the broadness of this region down to 900 cm -1. Of the polymers studied, monoprotic pentaerythritol has the highest metal ion affinities.« less

  17. Synthesis of a highly dispersed CuO catalyst on CoAl-HT for the epoxidation of styrene.

    PubMed

    Hu, Rui; Yang, Pengfei; Pan, Yongning; Li, Yunpeng; He, Yufei; Feng, Junting; Li, Dianqing

    2017-10-10

    A highly dispersed CuO catalyst was prepared by the deposition-precipitation method and evaluated for the catalytic epoxidation of styrene with tert-butyl hydroperoxide (TBHP) as the oxidant under solvent acetonitrile conditions. Compared with MgAl hydrotalcite (MgAl-HT)-, MgO-, TiO 2 -, C-, and MCM-22-supported catalysts, CuO/CoAl-HT exhibited preferable activity and selectivity towards styrene oxide (72% selectivity at 99.5% styrene conversion) due to its high dispersion of CuO and surface area of Cu. The improved dispersion of CuO/CoAl-HT could be ascribed to the nature of HT support, especially the synergistic effect of acidic and basic sites on the surface, which facilitated the formation of highly dispersed CuO species. A structure-performance relationship study indicated that copper(ii) in CuO was the active site for the epoxidation and oxidation of styrene, and that Cu II of rich electronic density favored the improvement of selectivity of styrene oxide. Based on these results, a reaction mechanism was proposed. Moreover, the preferred catalytic performance of CuO/CoAl-HT could be maintained in five reused cycles.

  18. Investigations into the feasibility of routine ultra high performance liquid chromatography-tandem mass spectrometry analysis of equine hair samples for detecting the misuse of anabolic steroids, anabolic steroid esters and related compounds.

    PubMed

    Gray, Bobby P; Viljanto, Marjaana; Bright, Jane; Pearce, Clive; Maynard, Steve

    2013-07-17

    The detection of the abuse of anabolic steroids in equine sport is complicated by the endogenous nature of some of the abused steroids, such as testosterone and nandrolone. These steroids are commonly administered as intramuscular injections of esterified forms of the steroid, which prolongs their effects and improves bioavailability over oral dosing. The successful detection of an intact anabolic steroid ester therefore provides unequivocal proof of an illegal administration, as esterified forms are not found endogenously. Detection of intact anabolic steroid esters is possible in plasma samples but not, to date, in the traditional doping control matrix of urine. The analysis of equine mane hair for the detection of anabolic steroid esters has the potential to greatly extend the time period over which detection of abuse can be monitored. Equine mane hair samples were incubated in 0.1M phosphate buffer (pH 9.5) before anabolic steroids (testosterone, nandrolone, boldenone, trenbolone and stanozolol), anabolic steroid esters (esters of testosterone, nandrolone, boldenone and trenbolone) and associated compounds (fluticasone propionate and esters of hydroxyprogesterone) were extracted by liquid-liquid extraction with a mix of hexane and ethyl acetate (7:3, v:v). Further sample clean up by solid phase extraction was followed by derivatisation with methoxylamine HCL and analysis by UHPLC-MS/MS. Initial method development was performed on a representative suite of four testosterone esters (propionate, phenylpropionate, isocaproate and decanoate) and the method was later extended to include a further 18 compounds. The applicability of the method was demonstrated by the analysis of mane hair samples collected following the intramuscular administration of 500 mg of Durateston(®) (mixed testosterone esters) to a Thoroughbred mare (560 kg). The method was subsequently used to successfully detect boldenone undecylenate and stanozolol in hair samples collected following suspicious screening findings from post-race urine samples. The use of segmental analysis to potentially provide additional information on the timing of administration was also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Experimental investigation of the auto-ignition characteristics of oxygenated reference fuel compounds

    NASA Astrophysics Data System (ADS)

    Walton, Stephen Michael

    The increased use of biofuels presents an opportunity to improve combustion performance while simultaneously reducing greenhouse gases and pollutant emissions. This work focused on improving the fundamental understanding of the auto-ignition chemistry of oxygenated reference fuel compounds. A systematic study of the effects of ester structure on ignition chemistry was performed using the University of Michigan Rapid Compression Facility. The ignition properties of the ester compounds were investigated over a broad range of pressures (P=5-20 atm) and temperatures (T=850-1150 K) which are directly relevant to advanced combustion engine strategies. Ignition delay times for five esters were determined using the RCF. The esters were selected to systematically consider the chemical structure of the compounds. Three esters were saturated: methyl butanoate, butyl methanoate, and ethyl propanoate; and two were unsaturated: methyl crotonate and methyl trans-3-hexenoate. The unsaturated esters were more reactive than their saturated counterparts, with the largest unsaturated ester, methyl trans-3-hexenoate having the highest reactivity. Two isomers of the saturated esters, butyl methanoate and ethyl propanoate, were more reactive than the isomer methyl butanoate. The results are explained if we assume that butyl methanoate and ethyl propanoate form intermediate ring structures which decompose more rapidly than esters such as methyl butanoate, which do not form ring structures. Modeling studies of the reaction chemistry were conducted for methyl butanoate and ethyl propanoate, for which detailed mechanisms were available in the literature. The new experimental data indicated that literature rate coefficients for some of the methyl butanoate/HO2 reactions were too fast. Modifying these within the theoretical uncertainties for the reaction rates, led to excellent agreement between the model predictions and the experimental data. Comparison of the modeling results with the intermediates measured during methyl butanoate ignition indicated that pathways leading to the formation of small hydrocarbons are relatively well represented in the reaction mechanism. The results of this work provide archival benchmark data for improved understanding of the dominant reaction pathways and species controlling the auto-ignition of oxygenated reference fuel compounds. These data also provide a path for continued development of chemical kinetic models to optimize practical combustion systems.

  20. RECOVERY OF LACTIC ACID FROM AMERICAN CRYSTAL SUGAR COMPANY WASTEWATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel J. Stepan; Edwin S. Olson; Richard E. Shockey

    2001-04-30

    This project has shown that the recovery of several valuable lactic acid products is both technically feasible and economically viable. One of the original objectives of this project was to recover lactic acid. However, the presence of a variety of indigenous bacteria in the wastewater stream and technical issues related to recovery and purification have resulted in the production of lactic acid esters. These esters could by hydrolyzed to lactic acid, but only with unacceptable product losses that would be economically prohibitive. The developed process is projected to produce approximately 200,000 lb per day of lactate esters from wastewater atmore » a single factory at costs that compete with conventional solvents. The lactate esters are good solvents for polymers and resins and could replace acetone, methyl ethyl ketone, MIBK, and other polar solvents used in the polymer industry. Because of their low volatility and viscosity-lowering properties, they will be especially useful for inks for jet printers, alkyl resins, and high-solid paints. Owing to their efficiency in dissolving salts and flux as well as oils and sealants, lactate esters can be used in cleaning circuit boards and machine and engine parts. Unlike conventional solvents, lactate esters exhibit low toxicity, are biodegradable, and are not hazardous air pollutants. Another application for lactate esters is in the production of plasticizers. Severe health problems have been attributed to widely used phthalate ester plasticizers. The U.S. Department of Agriculture showed that replacement of these with inexpensive lactate esters is feasible, owing to their superior polymer compatibility properties. A very large market is projected for polymers prepared from lactic acid. These are called polylactides and are a type of polyester. Thermoplastics of this type have a variety of uses, including moldings, fibers, films, and packaging of both manufactured goods and food products. Polylactides form tough, orientable, self-supporting thin films and have, therefore, been used for adhesives, safety glass, and finishes. If the bacterial culture produces the L-lactic acid enanatiomer form exclusively, the L-lactide prepared from this form can be used for making polymers with good fiber-forming properties. We have not currently achieved the exclusive production of L-lactate in our efforts. However, markets in films and structural shapes are available for polymers and copolymers prepared from the mixed D,L-lactide forms that result from processing the D,L-lactic acid obtained from fermentation such as that occurring naturally in sugar beet wastewater. These materials are slowly biodegraded to harmless compounds in the environment, and they burn with a clean blue flame when incinerated. These materials represent excellent opportunities for utilization of the D,L-lactic mixture produced from natural fermentation of the ACS flume water. Esters can be converted into a lactide, and the alcohol released from the ester can be recycled with no net consumption of the alcohol. Lactide intermediates could be produced locally and shipped to polymer producers elsewhere. The polymer and copolymer markets are extremely large, and the role of lactides in these markets is continuously expanding. The overall process can be readily integrated into existing factory wastewater operations. There are several environmental benefits that would be realized at the factories with incorporation of the lactate recovery process. The process reduces the organic loading to the existing wastewater treatment system that should result in enhanced operability with respect to both solids handling and treated-water quality. A higher-quality treated water will also help reduce odor levels from holding ponds. Several water reuse opportunities are probable, depending on the quality of treated water from the FT process.« less

  1. A Case of Occupational Asthma in a Plastic Injection Process Worker

    PubMed Central

    2013-01-01

    Objectives We report a case of death due to asthma attack in a plastic injection process worker with a history of asthma. Methods To assess task relevance, personal history including occupational history and medical records were reviewed. Samples of the substances utilized in the injection process were collected by visiting the patient’s workplace. The work environment with the actual process was reproduced in the laboratory, and the released substances were evaluated. Results The medical records confirmed that the patient’s conventional asthma was in remission. The analysis of the resins discharged from the injection process simulation revealed styrene, which causes occupational asthma, and benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, and octadecyl ester. Even though it was not the case in the present study, various harmful substances capable of inducing asthma such as formaldehyde, acrolein, and acetic acid are released during resin processing. Conclusion A worker was likely to occur occupational asthma as a result of the exposure to the harmful substances generated during the plastic injection process. PMID:24472161

  2. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, Delbert E.

    1998-01-01

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

  3. Iron phosphate compositions for containment of hazardous metal waste

    DOEpatents

    Day, D.E.

    1998-05-12

    An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

  4. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for engineering S. cerevisiae strains toward high-level and sustainable biodiesel production.

  5. Cancer mortality in an international cohort of reinforced plastics workers exposed to styrene: a reanalysis.

    PubMed

    Loomis, Dana; Guha, Neela; Kogevinas, Manolis; Fontana, Vincenzo; Gennaro, Valerio; Kolstad, Henrik A; McElvenny, Damien Martin; Sallmén, Markku; Saracci, Rodolfo

    2018-04-17

    To investigate the carcinogenicity of styrene by reanalysing data from a previous international cohort study of workers in the reinforced plastics industry. Mortality from cancers of prior interest was analysed with more detailed consideration of exposure-response relations and an updated classification of leukaemias and lymphomas in data from a previous international cohort study of 37 021 reinforced plastics workers exposed to airborne styrene. Increased mortality from non-Hodgkin's lymphoma (NHL) was associated with the mean level of exposure to styrene in air (relative risk (RR) 2.31, 95% CI 1.29 to 4.12 per 100 ppm), but not with cumulative styrene exposure. Similar associations with mean exposure were observed for the oesophagus (RR 2.44, 95% CI 1.11 to 5.36 per 100 ppm) and pancreas (RR 1.89, 95% CI 1.17 to 3.09). Oesophageal cancer mortality was also associated with cumulative styrene exposure lagged 20 years (RR 1.16, 95% CI 1.03 to 1.31). No other cancer, including lung cancer, was associated with any indicator of styrene exposure. This reanalysis does not substantially change the conclusions of the original study with respect to NHL or lung cancer but new evidence concerning cancers of the oesophagus and pancreas merits further investigation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Synthesis of palm oil fatty acid and trimethylolpropane based ester for biolubricant base stocks

    NASA Astrophysics Data System (ADS)

    Nor, Nurazira Mohd; Derawi, Darfizzi; Salimon, Jumat

    2018-04-01

    RBD palm oil become one of the interesting renewable resources in biolubricant application. However, palm oil cannot be used directly as lubricant due to some performance limitations such as thermal and oxidative stability. This drawback can be overcome by chemical modification through esterification with polyhydric alcohol such as trimethylolpropane (TMP). The synthesis of ester was carried out via esterification of palm oil fatty acid (POFA) with TMP in the presence of 2% sulphuric acid as catalyst at 150 °C for 5 hours. Gas Chromatography equipped with a Flame Ionization Detector (GC-FID) was used to determine the percentage composition of POTMP ester. The structure confirmation of POTMP ester was proven by Fourier Transformation Infra-Red (FTIR), proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) spectroscopy analysis. The result showed that POTMP ester has successfully synthesized with 97.7% composition of triesters (TE), proved by GC chromatogram. Presence of ester group also evidenced by 1H NMR at 2.27-2.30 ppm and 13C NMR at 173.52-173.54 ppm. The percentage yield of POTMP ester produced was 82% and exist in liquid form at room temperature.

  7. Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.

    PubMed

    Hammond, Duane; Garcia, Alberto; Feng, H Amy

    2011-07-01

    A utility-scale wind turbine blade manufacturing plant requested assistance from the National Institute for Occupational Safety and Health (NIOSH) in controlling worker exposures to styrene at a plant that produced 37 and 42 m long fiber-reinforced wind turbine blades. The plant requested NIOSH assistance because previous air sampling conducted by the company indicated concerns about peak styrene concentrations when workers entered the confined space inside of the wind turbine blade. NIOSH researchers conducted two site visits and collected personal breathing zone and area air samples while workers performed the wind turbine blade manufacturing tasks of vacuum-assisted resin transfer molding (VARTM), gelcoating, glue wiping, and installing the safety platform. All samples were collected during the course of normal employee work activities and analyzed for styrene using NIOSH Method 1501. All sampling was task based since full-shift sampling from a prior Occupational Safety and Health Administration (OSHA) compliance inspection did not show any exposures to styrene above the OSHA permissible exposure limit. During the initial NIOSH site visit, 67 personal breathing zone and 18 area air samples were collected while workers performed tasks of VARTM, gelcoating, glue wipe, and installation of a safety platform. After the initial site visit, the company made changes to the glue wipe task that eliminated the need for workers to enter the confined space inside of the wind turbine blade. During the follow-up site visit, 12 personal breathing zone and 8 area air samples were collected from workers performing the modified glue wipe task. During the initial site visit, the geometric means of the personal breathing zone styrene air samples were 1.8 p.p.m. (n = 21) for workers performing the VARTM task, 68 p.p.m. (n = 5) for workers installing a safety platform, and 340 p.p.m. (n = 14) for workers performing the glue wipe task, where n is the number of workers sampled for a given mean result. Gelcoating workers included job categories of millers, gelcoat machine operators, and gelcoaters. Geometric mean personal breathing zone styrene air samples were 150 p.p.m. (n = 6) for millers, 87 p.p.m. (n = 2) for the gelcoat machine operators, and 66 p.p.m. (n = 19) for gelcoaters. The geometric mean of the personal breathing zone styrene air samples from the glue wipe task measured during the follow-up site visit was 31 p.p.m. (n = 12). The closed molding VARTM process was very effective at controlling worker exposures to styrene. Personal breathing zone styrene air samples were reduced by an order of magnitude after changes were made to the glue wipe task. The company used chemical substitution to eliminate styrene exposure during the installation of the safety platform. Recommendations were provided to reduce styrene concentrations during gelcoating.

  8. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    PubMed

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (<50 wt%), but formed disordered structures at relatively high OP-POSS contents (>50 wt%).

  9. Development of molecularly imprinted polymer in porous film format for binding of phenol and alkylphenols from water.

    PubMed

    Gryshchenko, Andriy O; Bottaro, Christina S

    2014-01-20

    Molecularly imprinted polymers (MIPs) were fabricated on glass slides with a "sandwich" technique giving ~20 µm thick films. Methanol/water as a solvent, and polyethyleneglycol and polyvinylacetate as solvent modifiers, were used to give a porous morphology, which was studied with scanning electron microscopy and gravimetric analysis. Various MIPs were synthesized through non-covalent imprinting with phenol as the template; itaconic acid, 4-vinylpyridine, and styrene as monomers; ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and pentaerythritol triacrylate (PETA) as cross-linkers. Binding and imprinting properties of the MIPs were evaluated based on phenol adsorption isotherms. Since phenol has only one weakly acidic hydroxyl group and lacks unique structural characteristics necessary for binding specificity, the preparation of selective MIPs was challenging. The recognition of phenol via hydrogen bonding is suppressed in water, while hydrophobic interactions, though promoted, are not specific enough for highly-selective phenol recognition. Nevertheless, the styrene-PETA MIP gave modest imprinting effects, which were higher at lower concentrations (Imprinting Factor (IF) = 1.16 at 0.5 mg·L(-1)). The isotherm was of a Freundlich type over 0.1-40 mg·L(-1) and there was broad cross-reactivity towards other structurally similar phenols. This shows that phenol MIPs or simple adsorbents can be developed based on styrene for hydrophobic binding, and PETA to form a tighter, hydrophilic network.

  10. Effects of para-substituents of styrene derivatives on their chemical reactivity on platinum nanoparticle surfaces.

    PubMed

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Lu, Jia-En; Bonny, Lewis W; Chen, Shaowei

    2016-06-09

    Stable platinum nanoparticles were successfully prepared by the self-assembly of para-substituted styrene derivatives onto the platinum surfaces as a result of platinum-catalyzed dehydrogenation and transformation of the vinyl groups to the acetylene ones, forming platinum-vinylidene/-acetylide interfacial bonds. Transmission electron microscopic measurements showed that the nanoparticles were well dispersed without apparent aggregation, suggesting sufficient protection of the nanoparticles by the organic capping ligands, and the average core diameter was estimated to be 2.0 ± 0.3 nm, 1.3 ± 0.2 nm, and 1.1 ± 0.2 nm for the nanoparticles capped with 4-tert-butylstyrene, 4-methoxystyrene, and 4-(trifluoromethyl)styrene, respectively, as a result of the decreasing rate of dehydrogenation with the increasing Taft (polar) constant of the para-substituents. Importantly, the resulting nanoparticles exhibited unique photoluminescence, where an increase of the Hammett constant of the para-substituents corresponded to a blue-shift of the photoluminescence emission, suggesting an enlargement of the HOMO-LUMO band gap of the nanoparticle-bound acetylene moieties. Furthermore, the resulting nanoparticles exhibited apparent electrocatalytic activity towards oxygen reduction in acidic media, with the best performance among the series of samples observed with the 4-tert-butylstyrene-capped nanoparticles due to an optimal combination of the nanoparticle core size and ligand effects on the bonding interactions between platinum and oxygen species.

  11. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and unsaturated esters, which have been observed in methyl ester's oxidation products. The oxidation of methyl stearate, methyl oleate and methyl linoleate produces 16, 28 and 34 types of carbonyl compounds, respectively. The unsaturated methyl ester forms more carbonyl compounds compared to the saturated methyl ester, which indicates the formation of carbonyl compounds might be more related to the unsaturated carbon bond rather than the methyl ester group. Good agreement between results for total carbon (TC) generally has been found, but the organic and elemental carbon (OC and EC) fractions determined by different methods often disagree. Lack of reference materials has impeded progress on method standardization and understanding method biases. As part of this dissertation, uniform carbon distribution for the filter sets is prepared by using a simply aerosol generation and collection method. The relative standard deviations for the mean TC, OC, and EC results reported by the seven laboratories were below 10%, 11% and 12% (respectively). The method of filter generation is generally applicable and reproducible. Depending on the application, different filter loadings and types of OC materials can be employed. Matched filter sets prepared by this approach can be used for determining the accuracy of various OC-EC methods and thereby contribute to method standardization.

  12. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  13. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  14. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  15. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  16. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    PubMed

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. High Molecular Weight Dimer Esters in α-Pinene Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Cui, Tianqu; Zhang, Haofei; Gold, Avram; Glasius, Marianne; Surratt, Jason D.

    2014-05-01

    Monoterpenes, such as α-pinene, constitute an important group of biogenic volatile organic compounds (BVOC). Once emitted into the atmosphere α-pinene is removed by oxidization by the hydroxyl radical (OH), reactions with ozone (O3), and with nitrate radicals (NO3) resulting in the formation of first-generation oxidation products, such as semi-volatile carboxylic acids. In addition, higher molecular weight dimer esters originating from the oxidation of α-pinene have been observed in both laboratory-generated and ambient secondary organic aerosols (SOA). While recent studies suggest that the dimers are formed through esterification between carboxylic acids in the particle phase, the formation mechanism of the dimer esters is still ambiguous. In this work, we present the results of a series of smog chamber experiments to assess the formation of dimer esters formed from the oxidation of α-pinene. Experiments were conducted in the University of North Carolina (UNC) dual outdoor smog chamber facility to investigate the effect of oxidant species (OH versus O3), relative humidity (RH), and seed aerosol acidity in order to obtain a better understanding of the conditions leading to the formation of the dimer esters and how these parameters may affect the formation and chemical composition of SOA. The chemical composition of α-pinene SOA was investigated by ultra-performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-Q-TOFMS), and a total of eight carboxylic acids and four dimer esters were identified, constituting between 8 and 12 % of the total α-pinene SOA mass.

  18. Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae.

    PubMed

    Chua, Jian-Yong; Lu, Yuyun; Liu, Shao-Quan

    2017-12-04

    Soy whey is a liquid waste stream generated from tofu and soy protein manufacturing, and is commonly disposed of into the drainage system in food industry. Instead of disposing of soy whey as a waste, it could be used to produce alcoholic beverages. This study investigated the feasibility of converting soy whey into soy alcoholic beverage using four commercial Saccharomyces cerevisiae strains as a zero-waste approach to tackle the soy whey disposal issue. The four Saccharomyces yeasts grew by approximately 2logCFU/mL and produced approximately 7-8% (v/v) of ethanol. Isoflavone glucosides were hydrolyzed and transformed into isoflavone aglycones, increasing the antioxidant capacity. New aroma-active volatiles, especially esters and higher alcohols, were produced and imparted fruity and floral notes to the soy alcoholic beverage. Therefore, alcoholic fermentation would serve as a solution toward zero-waste manufacturing by biotransforming soy whey into a world's first novel functional alcoholic beverage naturally enriched with free isoflavones. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites

    DOE PAGES

    Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.

    2018-05-02

    Here, we report the utilization of a melt-stable lignin waste-stream from biorefineries as a renewable feedstock, with acrylonitrile-butadiene rubber and acrylonitrile-butadiene-styrene (ABS) polymer to synthesize a renewable matrix having excellent 3D-printability. While the initial low melt viscosity of the dispersed lignin phase induces local thermo-rheological relaxation facilitating the composite's melt flow, thermal crosslinking in both lignin and rubber phases as well as at the lignin-rubber interface decreases the molecular mobility. Consequently, interfacial diffusion and the resulting adhesion between deposited layers is decreased. However, addition of 10 wt.% of discontinuous carbon fibers (CFs) within the green composites not only significantly enhancesmore » the material performance but also lowers the degree of chemical crosslinking formed in the matrix during melt-phase synthesis. Furthermore, abundant functional groups including hydroxyl (from lignin) and nitrile (from rubber and ABS) allow combinations of hydrogen bonded structures where CFs play a critical bridging role between the deposited layers. As a result, a highly interfused printed structure with 100% improved inter-layer adhesion strength was obtained. This research offers a route toward utilizing lignin for replacement of petroleum-based thermoplastics used in additive manufacturing and methods to enhance printability of the materials with exceptional mechanical performance.« less

  20. A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.

    Here, we report the utilization of a melt-stable lignin waste-stream from biorefineries as a renewable feedstock, with acrylonitrile-butadiene rubber and acrylonitrile-butadiene-styrene (ABS) polymer to synthesize a renewable matrix having excellent 3D-printability. While the initial low melt viscosity of the dispersed lignin phase induces local thermo-rheological relaxation facilitating the composite's melt flow, thermal crosslinking in both lignin and rubber phases as well as at the lignin-rubber interface decreases the molecular mobility. Consequently, interfacial diffusion and the resulting adhesion between deposited layers is decreased. However, addition of 10 wt.% of discontinuous carbon fibers (CFs) within the green composites not only significantly enhancesmore » the material performance but also lowers the degree of chemical crosslinking formed in the matrix during melt-phase synthesis. Furthermore, abundant functional groups including hydroxyl (from lignin) and nitrile (from rubber and ABS) allow combinations of hydrogen bonded structures where CFs play a critical bridging role between the deposited layers. As a result, a highly interfused printed structure with 100% improved inter-layer adhesion strength was obtained. This research offers a route toward utilizing lignin for replacement of petroleum-based thermoplastics used in additive manufacturing and methods to enhance printability of the materials with exceptional mechanical performance.« less

  1. Glycidyl fatty acid esters in refined edible oils: A review on formation, occurrence, analysis, and elimination methods

    USDA-ARS?s Scientific Manuscript database

    Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oil, are mainly formed during the deodorization step in the oil refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they hydrolyze into t...

  2. Asymmetric NHC-catalyzed redox α-amination of α-aroyloxyaldehydes.

    PubMed

    Taylor, James E; Daniels, David S B; Smith, Andrew D

    2013-12-06

    Asymmetric α-amination through an N-heterocyclic carbene (NHC)-catalyzed redox reaction of α-aroyloxyaldehydes with N-aryl-N-aroyldiazenes to form α-hydrazino esters with high enantioselectivity (up to 99% ee) is reported. The hydrazide products are readily converted into enantioenriched N-aryl amino esters through samarium(II) iodide mediated N-N bond cleavage.

  3. Analysis of testosterone fatty acid esters in the digestive gland of mussels by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Guercia, Cesare; Cianciullo, Piergiorgio; Porte, Cinta

    2017-07-01

    Several studies have indicated that up to 70% of the total steroids detected in molluscs are in the esterified form and that pollutants, by modifying the esterification of steroids with fatty acids, might act as endocrine disrupters. However, despite the strong physiological significance of this process, there is almost no information on which fatty acids form the steroid esters and how this process is modulated. This study (a) investigates the formation of fatty acid esters of testosterone in digestive gland microsomal fractions of the mussel Mytilus galloprovincialis incubated with either palmitoly-CoA or CoA and ATP, and (b) assesses whether the endocrine disruptor tributyltin (TBT) interferes with the esterification of testosterone. Analysis of testosterone esters was performed by liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). When microsomal fractions were incubated with testosterone and palmitoly-CoA, the formation of testosterone palmitate was detected. However, when microsomes were incubated with CoA and ATP, and no exogenous activated fatty acid was added, the synthesis of 16:0, 16:1, 20:5 and 22:6 testosterone esters was observed. The presence of 100µM TBT in the incubation mixture did not significantly alter the esterification of testosterone. These results evidence the conjugation of testosterone with the most abundant fatty acids in the digestive gland microsomal fraction of mussels. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant. © 2011 American Chemical Society

  5. The effect of Maillard reaction products and yeast strain on the synthesis of key higher alcohols and esters in beer fermentations.

    PubMed

    Dack, Rachael E; Black, Gary W; Koutsidis, Georgios; Usher, St John

    2017-10-01

    The effect of Maillard reaction products (MRPs), formed during the production of dark malts, on the synthesis of higher alcohols and esters in beer fermentations was investigated by headspace solid-phase microextraction GC-MS. Higher alcohol levels were significantly (p<0.05) higher in dark malt fermentations, while the synthesis of esters was inhibited, due to possible suppression of enzyme activity and/or gene expression linked to ester synthesis. Yeast strain also affected flavour synthesis with Saccharomyces cerevisiae strain A01 producing considerably lower levels of higher alcohols and esters than S288c and L04. S288c produced approximately double the higher alcohol levels and around twenty times more esters compared to L04. Further investigations into malt type-yeast strain interactions in relation to flavour development are required to gain better understanding of flavour synthesis that could assist in the development of new products and reduce R&D costs for the industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Volatile profiles of members of the USDA Geneva Malus Core Collection: utility in evaluation of a hypothesized biosynthetic pathway for esters derived from 2-methylbutanoate and 2-methylbutan-1-ol.

    PubMed

    Sugimoto, Nobuko; Forsline, Philip; Beaudry, Randolph

    2015-02-25

    The volatile ester and alcohol profiles of ripening apple fruit from 184 germplasm lines in the USDA Malus Germplasm Repository at the New York Agricultural Experiment Station in Geneva, NY, USA, were evaluated. Cluster analysis suggested biochemical relationships exist between several ester classes. A strong linkage was revealed between 2-methylbutanoate, propanoate, and butanoate esters, suggesting the influence of the recently proposed "citramalic acid pathway" in apple fruit. Those lines with a high content of esters formed from 2-methylbutan-1-ol and 2-methylbutanoate (2MB) relative to straight-chain (SC) esters (high 2MB/SC ratio) exhibited a marked increase in isoleucine and citramalic acid during ripening, but those lines with a low content did not. Thus, the data were consistent with the existence of the hypothesized citramalic acid pathway and suggest that the Geneva Malus Germplasm Repository, appropriately used, could be helpful in expanding our understanding of mechanisms for fruit volatile synthesis and other aspects of secondary metabolism.

  7. Simultaneous production of oil enriched in ω-3 polyunsaturated fatty acids and biodiesel from fish wastes.

    PubMed

    Enascuta, Cristina Emanuela; Stepan, Emil; Bolocan, Ion; Bombos, Dorin; Calin, Catalina; Oprescu, Elena-Emilia; Lavric, Vasile

    2018-05-01

    The waste resulted from fish processing industries are discarded into the environment around the world, causing environmental pollution. The main problem of fish oil extracted from waste is the high content in free fatty acids (FFA) which decrease the yield in fatty acids esters during transesterification reactions. Therefore, to correct the fish-oil properties, a new environmentally friendly heterogeneous superacid catalyst (SO 4 2- /SnO 2 -ZrO 2 ) was tested in the esterification reaction of FFA with ethanol. The catalyst was characterized by different techniques (XRD, FT-IR, FT-IR of adsorbed pyridine, BET, SEM-EDX, TGA and acidity measurements). The reaction was found to follow a Langmuir-Hinshelwood (L-H) dual-site mechanism with the novelty that both Brönsted and Lewis acid centers participate equally in the esterification reaction. The pre-treated oil was subjected to transesterification reaction with ethanol over a heterogeneous base catalyst and then, the saturated and unsaturated fractions of fatty acid ethyl esters (FAEE) were separated using a vacuum rectification unit with falling film. The saturated content can be used as biofuel, while the unsaturated FAEE are further transesterified with glycerol in order to obtain oil with high content in polyunsaturated fatty acids (PUFA). A detailed study of the intrinsic kinetic process at the surface of the superacid catalyst and a thorough mathematical model of the fixed bed reactor were written and validated by an experimental program, designed according to the D-optimal methodology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Phthalate esters contamination in soil and plants on agricultural land near an electronic waste recycling site.

    PubMed

    Ma, Ting Ting; Christie, Peter; Luo, Yong Ming; Teng, Ying

    2013-08-01

    The accumulation of phthalic acid esters (PAEs) in soil and plants in agricultural land near an electronic waste recycling site in east China has become a great threat to the neighboring environmental quality and human health. Soil and plant samples collected from land under different utilization, including fallow plots, vegetable plots, plots with alfalfa (Medicago sativa L.) as green manure, fallow plots under long-term flooding and fallow plots under alternating wet and dry periods, together with plant samples from relative plots were analyzed for six PAE compounds nominated as prior pollutants by USEPA. In the determined samples, the concentrations of six target PAE pollutants ranged from 0.31-2.39 mg/kg in soil to 1.81-5.77 mg/kg in various plants (dry weight/DW), and their bioconcentration factors (BCFs) ranged from 5.8 to 17.9. Health risk assessments were conducted on target PAEs, known as typical environmental estrogen analogs, based on their accumulation in the edible parts of vegetables. Preliminary risk assessment to human health from soil and daily vegetable intake indicated that DEHP may present a high-exposure risk on all ages of the population in the area by soil ingestion or vegetable consumption. The potential damage that the target PAE compounds may pose to human health should be taken into account in further comprehensive risk assessments in e-waste recycling sites areas. Moreover, alfalfa removed substantial amounts of PAEs from the soil, and its use can be considered a good strategy for in situ remediation of PAEs.

  9. Controlled production of Camembert-type cheeses. Part II. Changes in the concentration of the more volatile compounds.

    PubMed

    Leclercq-Perlat, Marie-Noëlle; Latrille, Eric; Corrieu, Georges; Spinnler, Henry-Eric

    2004-08-01

    Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, M.S.; Nieuwland, J.C.; Lith, C. van

    Holzindustie Bruchsal (HIB) was required to treat moderate levels of styrene emissions from their plastic dashboard manufacturing process. After evaluating many types of control technologies, HIB decided to install a Bioton biofiltration system from Monsanto Enviro-Chem Systems Inc. (MEC). After the installation of the Bioton biofilter, HIB and MEC learned that large amounts of butylacetate were also present in the off-gas stream. The presence of butylacetate was found to have inhibitory effects on the removal of styrene. Therefore, MEC performed a series of pilot and laboratory studies to determine if a bacteria strain could be identified that would be capablemore » of removing styrene in the presence of butylacetate. It was found that a specific bacteria strain was capable of achieving high levels of styrene removal without inhibition from butylacetate in laboratory and pilot testing. This strain was inoculated into the full scale system. After acclimation, the full scale inoculation produced a consortium of bacteria that biologically removed the styrene from the dashboard manufacturing process in the presence of butylacetate.« less

  11. Comparing in situ removal strategies for improving styrene bioproduction.

    PubMed

    McKenna, Rebekah; Moya, Luis; McDaniel, Matthew; Nielsen, David R

    2015-01-01

    As an important conventional monomer compound, the biological production of styrene carries significant promise with respect to creating novel sustainable materials. Since end-product toxicity presently limits styrene production by previously engineered Escherichia coli, in situ product removal by both solvent extraction and gas stripping were explored as process-based strategies for circumventing its inhibitory effects. In solvent extraction, the addition of bis(2-ethylhexyl)phthalate offered the greatest productivity enhancement, allowing net volumetric production of 836 ± 64 mg/L to be reached, representing a 320 % improvement over single-phase cultures. Gas stripping rates, meanwhile, were controlled by rates of bioreactor agitation and, to a greater extent, aeration. A periodic gas stripping protocol ultimately enabled up to 561 ± 15 mg/L styrene to be attained. Lastly, by relieving the effects of styrene toxicity, new insight was gained regarding subsequent factors limiting its biosynthesis in E. coli and strategies for future strain improvement are discussed.

  12. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    PubMed

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be responsible for speed degradation of compounds by accommodation of them in inner part of aggregates.

  13. Biofiltration of mixtures of gas-phase styrene and acetone with the fungus Sporothrix variecibatus.

    PubMed

    Rene, Eldon R; Spačková, Radka; Veiga, María C; Kennes, Christian

    2010-12-15

    The biodegradation performance of a biofilter, inoculated with the fungus Sporothrix variecibatus, to treat gas-phase styrene and acetone mixtures under steady-state and transient conditions was evaluated. Experiments were carried out by varying the gas-flow rates (0.05-0.4m(3)h(-1)), leading to empty bed residence times as low as 17.1s, and by changing the concentrations of gas-phase styrene (0.01-6.3 g m(-3)) and acetone (0.01-8.9 g m(-3)). The total elimination capacities were as high as 360 g m(-3)h(-1), with nearly 97.5% removal of styrene and 75.6% for acetone. The biodegradation of acetone was inhibited by the presence of styrene, while styrene removal was affected only slightly by the presence of acetone. During transient-state experiments, increasing the overall pollutant load by almost 3-fold, i.e., from 220 to 600 g m(-3)h(-1), resulted in a sudden drop of removal efficiency (>90-70%), but still high elimination capacities were maintained. Periodic microscopic observations revealed that the originally inoculated Sporothrix sp. remained present in the reactor and actively dominant in the biofilm. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Susceptibility of linear and nonlinear otoacoustic emission components to low-dose styrene exposure.

    PubMed

    Tognola, G; Chiaramello, E; Sisto, R; Moleti, A

    2015-03-01

    To investigate potential susceptibility of active cochlear mechanisms to low-level styrene exposure by comparing TEOAEs in workers and controls. Two advanced analysis techniques were applied to detect sub-clinical changes in linear and nonlinear cochlear mechanisms of OAE generation: the wavelet transform to decompose TEOAEs into time-frequency components and extract signal-to-noise ratio and latency of each component, and the bispectrum to detect and extract nonlinear TEOAE contributions as quadratic frequency couplings (QFCs). Two cohorts of workers were examined: subjects exposed exclusively to styrene (N = 9), and subjects exposed to styrene and noise (N = 6). The control group was perfectly matched by age and sex to the exposed group. Exposed subjects showed significantly lowered SNR in TEOAE components at mid-to-high frequencies (above 1.6 kHz) and a shift of QFC distribution towards lower frequencies than controls. No systematic differences were observed in latency. Low-level styrene exposure may have induced a modification of cochlear functionality as concerns linear and nonlinear OAE generation mechanisms. The lack of change in latency seems to suggest that the OAE components, where generation region and latency are tightly coupled, may not have been affected by styrene and noise exposure levels considered here.

  15. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield.

    PubMed

    Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.

  16. Cancer Incidence in Workers Exposed to Styrene in the Danish-reinforced Plastics Industry, 1968-2012.

    PubMed

    Christensen, Mette Skovgaard; Hansen, Johnni; Ramlau-Hansen, Cecilia Høst; Toft, Gunnar; Kolstad, Henrik

    2017-03-01

    Occupational exposure to styrene is widespread and has been suggested to be carcinogenic. The aim of this study was to investigate whether occupational exposure to styrene increases the risk of cancer, in particular lymphohematopoietic cancers. We established a study population of 72,292 workers employed in 443 small and medium-sized companies producing reinforced plastics 1964-2007 by utilizing several national registries, expert assessment, and worker survey data. We identified incident cancer cases from 1968 to 2012 in the national Danish cancer registry and computed standardized incidence rate ratios (SIRs) with 95% confidence intervals (95% CI) based on national rates. Increasing SIRs of Hodgkin lymphoma, myeloid leukemia, and cancer of nasal cavities and sinuses were inconsistently associated with increasing duration of employment, early year of first employment, or styrene exposure probability. No such trends were observed for cancer of the esophagus, pancreas, lung, kidney, or urinary bladder, which have previously been associated with styrene exposure. Lung cancer showed an overall increased risk that decreased by duration of employment. Occupational styrene exposure may be associated with Hodgkin lymphoma, myeloid leukemia, and cancer of nasal cavities and sinuses. Further studies are needed to evaluate if the observed associations are likely to be causal.

  17. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  18. Plasticization effect of triacetin on structure and properties of starch ester film.

    PubMed

    Zhu, Jie; Li, Xiaoxi; Huang, Chen; Chen, Ling; Li, Lin

    2013-05-15

    The aim of this work was to evaluate the plasticizing effect of triacetin on the structure and properties of starch ester film and further establish the structure-property relationships. The presence of triacetin resulted in multiple structure changes of the film. The mobility of macromolecular chain was increased to form scattered crystallite during the film formation process. The amorphous region was enlarged to contain more triacetin squeezed from crystalline region. The plasticization of triacetin and restriction of crystallite oppositely influenced the mobility of macromolecular chains in different regions. The thermal stability of triacetin changed along with its fluctuant interaction with macromolecules. Comparatively, the enhanced ether bond and the restriction from crystalline regions on the mobility of the amorphous chain consequently improved the thermal stability of the film matrix. The interaction between triacetin and starch ester was essential to film forming but unexpectedly lowered the triacetin stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Gas Phase Reactivity of Carboxylates with N-Hydroxysuccinimide Esters

    PubMed Central

    Peng, Zhou; McGee, William M.; Bu, Jiexun; Barefoot, Nathan Z.; McLuckey, Scott A.

    2015-01-01

    N-hydroxysuccinimide (NHS) esters have been used for gas phase conjugation reactions with peptides at nucleophilic sites, such as primary amines (N-terminus, ε-amine of lysine) or guanidines, by forming amide bonds through a nucleophilic attack on the carbonyl carbon. The carboxylate has recently been found to also be a reactive nucleophile capable of initiating a similar nucleophilic attack to form a labile anhydride bond. The fragile bond is easily cleaved, resulting in an oxygen transfer from the carboxylate-containing species to the reagent, nominally observed as a water transfer. This reactivity is shown for both peptides and non-peptidic species. Reagents isotopically labeled with O18 were used to confirm reactivity. This constitutes an example of distinct differences in reactivity of carboxylates between the gas-phase, where they are shown to be reactive, and the solution-phase, where they are not regarded as reactive with NHS esters. PMID:25338221

  20. Long-term operation of submerged membrane bioreactor (MBR) for the treatment of synthetic wastewater containing styrene as volatile organic compound (VOC): Effect of hydraulic retention time (HRT).

    PubMed

    Fallah, N; Bonakdarpour, B; Nasernejad, B; Alavi Moghadam, M R

    2010-06-15

    In this study, the membrane bioreactor (MBR) was utilized to remove styrene from a synthetic wastewater having a chemical oxygen demand (COD) and styrene concentration of 1500 mg/L and 50 mg/L, respectively. At two hydraulic retention times (HRTs) of 24 h and 18 h, the MBR was operated for a period in excess of 100 days. The HRT effects were studied and it was found out that the removal efficiency of COD and styrene for both HRTs was consistently higher than 99%. Unlike conventional activated sludge processes (CASPs), no styrene was detected in the exhaust air, which meant that biodegradation was the major styrene removal mechanism at both HRTs. The transmembrane pressure (TMP) profile during the operation of the MBR showed a fairly low and constant TMP up to day 70, after which, the TMP showed a dramatic rise, as a result of the occurrence of severe membrane fouling. It was thought that an increase in styrene loading rate, when HRT was reduced to 18 h, resulted in the release of extracellular polymeric substance (EPS) from the bacterial cells, which in turn was responsible for the rise in soluble microbial product (SMP) and sludge deflocculation. The severe fouling observed during operation of MBR at HRT of 18 h was attributed to the rise in SMP concentrations and decrease in mean floc size and increase in the proportion of small particles in the activated sludge. Copyright 2010 Elsevier B.V. All rights reserved.

Top