Popp, Kristin L; McDermott, William; Hughes, Julie M; Baxter, Stephanie A; Stovitz, Steven D; Petit, Moira A
2017-01-01
To determine differences in bone geometry, estimates of bone strength, muscle size and bone strength relative to load, in women runners with and without a history of stress fracture. We recruited 32 competitive distance runners aged 18-35, with (SFX, n=16) or without (NSFX, n=16) a history of stress fracture for this case-control study. Peripheral quantitative computed tomography (pQCT) was used to assess volumetric bone mineral density (vBMD, mg/mm 3 ), total (ToA) and cortical (CtA) bone areas (mm 2 ), and estimated compressive bone strength (bone strength index; BSI, mg/mm 4 ) at the distal tibia. ToA, CtA, cortical vBMD, and estimated strength (section modulus; Zp, mm 3 and strength strain index; SSIp, mm 3 ) were measured at six cortical sites along the tibia. Mean active peak vertical (pkZ) ground reaction forces (GRFs), assessed from a fatigue run on an instrumented treadmill, were used in conjunction with pQCT measurements to estimate bone strength relative to load (mm 2 /N∗kg -1 ) at all cortical sites. SSIp and Zp were 9-11% lower in the SFX group at mid-shaft of the tibia, while ToA and vBMD did not differ between groups at any measurement site. The SFX group had 11-17% lower bone strength relative to mean pkZ GRFs (p<0.05). These findings indicate that estimated bone strength at the mid-tibia and mean pkZ GRFs are lower in runners with a history of stress fracture. Bone strength relative to load is also lower in this same region suggesting that strength deficits in the middle 1/3 of the tibia and altered gait biomechanics may predispose an individual to stress fracture. Copyright © 2016. Published by Elsevier Inc.
Nishiyama, K K; Macdonald, H M; Hanley, D A; Boyd, S K
2013-05-01
High-resolution peripheral quantitative computed tomography (HR-pQCT) measurements of distal radius and tibia bone microarchitecture and finite element (FE) estimates of bone strength performed well at classifying postmenopausal women with and without previous fracture. The HR-pQCT measurements outperformed dual energy x-ray absorptiometry (DXA) at classifying forearm fractures and fractures at other skeletal sites. Areal bone mineral density (aBMD) is the primary measurement used to assess osteoporosis and fracture risk; however, it does not take into account bone microarchitecture, which also contributes to bone strength. Thus, our objective was to determine if bone microarchitecture measured with HR-pQCT and FE estimates of bone strength could classify women with and without low-trauma fractures. We used HR-pQCT to assess bone microarchitecture at the distal radius and tibia in 44 postmenopausal women with a history of low-trauma fracture and 88 age-matched controls from the Calgary cohort of the Canadian Multicentre Osteoporosis Study (CaMos) study. We estimated bone strength using FE analysis and simulated distal radius aBMD from the HR-pQCT scans. Femoral neck (FN) and lumbar spine (LS) aBMD were measured with DXA. We used support vector machines (SVM) and a tenfold cross-validation to classify the fracture cases and controls and to determine accuracy. The combination of HR-pQCT measures of microarchitecture and FE estimates of bone strength had the highest area under the receiver operating characteristic (ROC) curve of 0.82 when classifying forearm fractures compared to an area under the curve (AUC) of 0.71 from DXA-derived aBMD of the forearm and 0.63 from FN and spine DXA. For all fracture types, FE estimates of bone strength at the forearm alone resulted in an AUC of 0.69. Models based on HR-pQCT measurements of bone microarchitecture and estimates of bone strength performed better than DXA-derived aBMD at classifying women with and without prior fracture. In future, these models may improve prediction of individuals at risk of low-trauma fracture.
Bone geometry, strength, and muscle size in runners with a history of stress fracture.
Popp, Kristin L; Hughes, Julie M; Smock, Amanda J; Novotny, Susan A; Stovitz, Steven D; Koehler, Scott M; Petit, Moira A
2009-12-01
Our primary aim was to explore differences in estimates of tibial bone strength, in female runners with and without a history of stress fractures. Our secondary aim was to explore differences in bone geometry, volumetric density, and muscle size that may explain bone strength outcomes. A total of 39 competitive distance runners aged 18-35 yr, with (SFX, n = 19) or without (NSFX, n = 20) a history of stress fracture were recruited for this cross-sectional study. Peripheral quantitative computed tomography (XCT 3000; Orthometrix, White Plains, NY) was used to assess volumetric bone mineral density (vBMD, mg x mm(-3)), bone area (ToA, mm(2)), and estimated compressive bone strength (bone strength index (BSI) = ToA x total volumetric density (ToD(2))) at the distal tibia (4%). Total (ToA, mm(2)) and cortical (CoA, mm(2)) bone area, cortical vBMD, and estimated bending strength (strength-strain index (SSIp), mm(3)) were measured at the 15%, 25%, 33%, 45%, 50%, and 66% sites. Muscle cross-sectional area (MCSA) was measured at the 50% and 66% sites. Participants in the SFX group had significantly smaller (7%-8%) CoA at the 45%, 50%, and 66% sites (P
Shape Optimization of Bone-Bonding Subperiosteal Devices with Finite Element Analysis.
Ogasawara, Takeshi; Uezono, Masayoshi; Takakuda, Kazuo; Kikuchi, Masanori; Suzuki, Shoichi; Moriyama, Keiji
2017-01-01
Subperiosteal bone-bonding devices have been proposed for less invasive treatments in orthodontics. The device is osseointegrated onto a bone surface without fixation screws and is expected to rapidly attain a bone-bonding strength that successfully meets clinical performance. Hence, the device's optimum shape for rapid and strong bone bonding was examined in this study by finite element analyses. First, a stress analysis was performed for a circular rod device with an orthodontic force parallel to the bone surface, and the estimate of the bone-bonding strength based on the bone fracture criterion was verified with the results of an animal experiment. In total, four cross-sectional rod geometries were investigated: circular (Cr), elliptical (El), semicircular (Sc), and rectangular (Rc). By changing the height of the newly formed bone to mimic the progression of new bone formation, the estimation of the bone-bonding strength was repeated for each geometry. The rod with the Rc cross section exhibited the best performance, followed by those with the Sc, El, and Cr cross sections, from the aspects of the rapid acquisition of strength and the strength itself. Thus, the rectangular cross section is the best for rod-like subperiosteal devices for rapid bone bonding.
Bone microarchitecture and estimated bone strength in men with active acromegaly.
Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A
2017-11-01
Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P < 0.0001), cortical thickness ( P = 0.0038), cortical pore volume ( P < 0.0001) and cortical porosity ( P = 0.0008), but lower trabecular bone density ( P = 0.0010) compared to controls. At the tibia, patients with acromegaly had lower trabecular bone density ( P = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.
Han, Guiyuan; Chen, Yu-Ming; Huang, Hua; Chen, Zhanyong; Jing, Lipeng; Xiao, Su-Mei
2017-04-24
This study investigated the relationships of fat mass (FM) and lean mass (LM) with estimated hip bone strength in Chinese men aged 50-80 years (median value: 62.0 years). A cross-sectional study including 889 men was conducted in Guangzhou, China. Body composition and hip bone parameters were generated by dual-energy X-ray absorptiometry (DXA). The relationships of the LM index (LMI) and the FM index (FMI) with bone phenotypes were detected by generalised additive models and multiple linear regression. The associations between the FMI and the bone variables in LMI tertiles were further analysed. The FMI possessed a linear relationship with greater estimated hip bone strength after adjustment for the potential confounders ( p < 0.05). Linear relationships were also observed for the LMI with most bone phenotypes, except for the cross-sectional area ( p < 0.05). The contribution of the LMI (4.0%-12.8%) was greater than that of the FMI (2.0%-5.7%). The associations between the FMI and bone phenotypes became weaker after controlling for LMI. Further analyses showed that estimated bone strength ascended with FMI in the lowest LMI tertile ( p < 0.05), but not in the subgroups with a higher LMI. This study suggested that LM played a critical role in bone health in middle-aged and elderly Chinese men, and that the maintenance of adequate FM could help to promote bone acquisition in relatively thin men.
Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A
2015-10-01
Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.
Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M
2018-02-01
Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and mechanical strength (R 2 =0.747 and 0.736 respectively). When respective structural parameters were incorporated to BV/TV, multiple regression analysis indicated that none of the μCT histomorphometric parameters could improve the prediction of mechanical stiffness and strength, while for UTTS, adding TTMP to BV/TV increased the prediction of mechanical stiffness to R 2 =0.711 and strength to R 2 =0.827. It is therefore envisaged that UTTS may have the ability to estimate BV/TV along with providing an improved prediction of osteoporotic fracture risk, within routine clinical practice in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Determinants of the mechanical properties of bones
NASA Technical Reports Server (NTRS)
Martin, R. B.
1991-01-01
The mechanical properties of bones are governed by the same principles as those of man-made load-bearing structures, but the organism is able to adapt its bone structure to changes in skeletal loading. In this overview of the determinants of the strength and stiffness of bone, a continuum approach has been taken, in which the behavior of a macroscopic structure depends on its shape and size, and on the mechanical properties of the material within. The latter are assumed to depend on the composition (porosity and mineralization) and organization (trabecular or cortical bone architecture, collagen fiber orientation, fatigue damage) of the bone. The effects of each of these factors are reviewed. Also, the possible means of non-invasively estimating the strength or other mechanical properties of a bone are reviewed, including quantitative computed tomography, photon absorptiometry, and ultrasonic measurements. The best estimates of strength have been obtained with photon absorptiometry and computed tomography, which at best are capable of accounting for 90% of the strength variability in a simple in vitro test, but results from different laboratories have been highly variable.
Hansen, Stinus; Gudex, Claire; Åhrberg, Fabian; Brixen, Kim; Voss, Anne
2014-12-01
Patients with systemic lupus erythematosus (SLE) have an increased risk of fracture. We used high resolution peripheral quantitative computed tomography (HR-pQCT) to measure bone geometry, volumetric bone mineral density (vBMD), cortical and trabecular microarchitecture and estimated bone strength by finite element analysis (FEA) at the distal radius and tibia to assess bone characteristics beyond BMD that may contribute to the increased risk of fracture. Thirty-three Caucasian women with SLE (median age 48, range 21-64 years) and 99 controls (median age 45, range 21-64 years) were studied. Groups were comparable in radius regarding geometry and vBMD, but SLE patients had lower trabecular number (-7%, p < 0.05), higher trabecular separation (13%, p < 0.05) and lower FEA-estimated failure load compared to controls (-10%, p < 0.05). In tibia, SLE patients had lower total vBMD (-11%, p < 0.01), cortical area (-14%, p < 0.001) and cortical thickness (-16%, p < 0.001) and higher trabecular area (8%, p < 0.05). In subgroup analyses of the premenopausal participants (SLE n = 21, controls n = 63), SLE patients had significantly lower trabecular bone volume fraction [(BV/TV); -17%, p < 0.01], trabecular number (-9%, p < 0.01), trabecular thickness (-9%, p < 0.05) and higher trabecular separation (13%, p < 0.01) and trabecular network inhomogeneity (14%, p < 0.05) in radius along with lower BV/TV (-15%, p < 0.01) and higher trabecular separation (11%, p < 0.05) in tibia. FEA-estimated bone strength was lower in both radius (-11%, p < 0.01) and tibia (-10%, p < 0.05). In conclusion, Caucasian women with SLE compared to controls had fewer and more widely separated trabeculae and lower estimated bone strength in radius and lower total vBMD, cortical area and thickness in tibia.
A method for vibrational assessment of cortical bone
NASA Astrophysics Data System (ADS)
Song, Yan; Gunaratne, Gemunu H.
2006-09-01
Large bones from many anatomical locations of the human skeleton consist of an outer shaft (cortex) surrounding a highly porous internal region (trabecular bone) whose structure is reminiscent of a disordered cubic network. Age related degradation of cortical and trabecular bone takes different forms. Trabecular bone weakens primarily by loss of connectivity of the porous network, and recent studies have shown that vibrational response can be used to obtain reliable estimates for loss of its strength. In contrast, cortical bone degrades via the accumulation of long fractures and changes in the level of mineralization of the bone tissue. In this paper, we model cortical bone by an initially solid specimen with uniform density to which long fractures are introduced; we find that, as in the case of trabecular bone, vibrational assessment provides more reliable estimates of residual strength in cortical bone than is possible using measurements of density or porosity.
Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G
2012-04-01
Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.
2015-01-01
Background Bone fragility is increased in patients with type 2 diabetes mellitus (T2DM), but a useful method to estimate bone fragility in T2DM patients is lacking because bone mineral density alone is not sufficient to assess the risk of fracture. This study investigated the association between prevalent vertebral fractures (VFs) and the vertebral strength index estimated by the quantitative computed tomography-based nonlinear finite element method (QCT-based nonlinear FEM) using multi-detector computed tomography (MDCT) for clinical practice use. Research Design and Methods A cross-sectional observational study was conducted on 54 postmenopausal women and 92 men over 50 years of age, all of whom had T2DM. The vertebral strength index was compared in patients with and without VFs confirmed by spinal radiographs. A standard FEM procedure was performed with the application of known parameters for the bone material properties obtained from nondiabetic subjects. Results A total of 20 women (37.0%) and 39 men (42.4%) with VFs were identified. The vertebral strength index was significantly higher in the men than in the women (P<0.01). Multiple regression analysis demonstrated that the vertebral strength index was significantly and positively correlated with the spinal bone mineral density (BMD) and inversely associated with age in both genders. There were no significant differences in the parameters, including the vertebral strength index, between patients with and without VFs. Logistic regression analysis adjusted for age, spine BMD, BMI, HbA1c, and duration of T2DM did not indicate a significant relationship between the vertebral strength index and the presence of VFs. Conclusion The vertebral strength index calculated by QCT-based nonlinear FEM using material property parameters obtained from nondiabetic subjects, whose risk of fracture is lower than that of T2DM patients, was not significantly associated with bone fragility in patients with T2DM. This discordance may indirectly suggest that patients with T2DM have deteriorated bone material compared with nondiabetic subjects, a potential cause of bone fragility in T2DM patients. PMID:26642210
Insights into the effects of tensile and compressive loadings on human femur bone.
Havaldar, Raviraj; Pilli, S C; Putti, B B
2014-01-01
Fragile fractures are most likely manifestations of fatigue damage that develop under repetitive loading conditions. Numerous microcracks disperse throughout the bone with the tensile and compressive loads. In this study, tensile and compressive load tests are performed on specimens of both the genders within 19 to 83 years of age and the failure strength is estimated. Fifty five human femur cortical samples are tested. They are divided into various age groups ranging from 19-83 years. Mechanical tests are performed on an Instron 3366 universal testing machine, according to American Society for Testing and Materials International (ASTM) standards. The results show that stress induced in the bone tissue depends on age and gender. It is observed that both tensile and compression strengths reduces as age advances. Compressive strength is more than tensile strength in both the genders. The compression and tensile strength of human femur cortical bone is estimated for both male and female subjecting in the age group of 19-83 years. The fracture toughness increases till 35 years in male and 30 years in female and reduces there after. Mechanical properties of bone are age and gender dependent.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Truskowski, P.
2010-01-01
This slide presentation reviews the concerns that astronauts in long duration flights might have a greater risk of bone fracture as they age than the general population. A panel of experts was convened to review the information and recommend mechanisms to monitor the health of bones in astronauts. The use of Quantitative Computed Tomography (QCT) scans for risk surveillance to detect the clinical trigger and to inform countermeasure evaluation is reviewed. An added benefit of QCT is that it facilitates an individualized estimation of bone strength by Finite Element Modeling (FEM), that can inform approaches for bone rehabilitation. The use of FEM is reviewed as a process that arrives at a composite number to estimate bone strength, because it integrates multiple factors.
Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone
Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.
2015-01-01
In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688
Age-related changes in the fracture resistance of male Fischer F344 rat bone.
Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S
2016-02-01
In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue. Published by Elsevier Inc.
Virtual estimates of fastening strength for pedicle screw implantation procedures
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Camp, Jon J.; Augustine, Kurt E.; Huddleston, Paul M.; Robb, Richard A.; Holmes, David R.
2014-03-01
Traditional 2D images provide limited use for accurate planning of spine interventions, mainly due to the complex 3D anatomy of the spine and close proximity of nerve bundles and vascular structures that must be avoided during the procedure. Our previously developed clinician-friendly platform for spine surgery planning takes advantage of 3D pre-operative images, to enable oblique reformatting and 3D rendering of individual or multiple vertebrae, interactive templating, and placement of virtual pedicle implants. Here we extend the capabilities of the planning platform and demonstrate how the virtual templating approach not only assists with the selection of the optimal implant size and trajectory, but can also be augmented to provide surrogate estimates of the fastening strength of the implanted pedicle screws based on implant dimension and bone mineral density of the displaced bone substrate. According to the failure theories, each screw withstands a maximum holding power that is directly proportional to the screw diameter (D), the length of the in-bone segm,ent of the screw (L), and the density (i.e., bone mineral density) of the pedicle body. In this application, voxel intensity is used as a surrogate measure of the bone mineral density (BMD) of the pedicle body segment displaced by the screw. We conducted an initial assessment of the developed platform using retrospective pre- and post-operative clinical 3D CT data from four patients who underwent spine surgery, consisting of a total of 26 pedicle screws implanted in the lumbar spine. The Fastening Strength of the planned implants was directly assessed by estimating the intensity - area product across the pedicle volume displaced by the virtually implanted screw. For post-operative assessment, each vertebra was registered to its homologous counterpart in the pre-operative image using an intensity-based rigid registration followed by manual adjustment. Following registration, the Fastening Strength was computed for each displaced bone segment. According to our preliminary clinical study, a comparison between Fastening Strength, displaced bone volume and mean voxel intensity showed similar results (p < 0.1) between the virtually templated plans and the post-operative outcome following the traditional clinical approach. This study has demonstrated the feasibility of the platform in providing estimates the pedicle screw fastening strength via virtual implantation, given the intrinsic vertebral geometry and bone mineral density, enabling the selection of the optimal implant dimension adn trajectory for improved strength.
Karasik, David; Demissie, Serkalem; Lu, Darlene; Broe, Kerry E; Boyd, Steven K; Liu, Ching-Ti; Hsu, Yi-Hsiang; Bouxsein, Mary L; Kiel, Douglas P
2017-11-01
Genetic factors contribute to the risk of bone fractures, partly because of effects on bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) estimates bone strength using micro-finite element analysis (µFEA). The goal of this study was to investigate if the bone failure load estimated by HR-pQCT-based µFEA is heritable and to what extent it shares genetic regulation with areal bone mineral density (aBMD). Bone microarchitecture was measured by HR-pQCT at the ultradistal tibia and ultradistal radius in adults from the Framingham Heart Study (n = 1087, mean age 72 years; 57% women). Radial and tibial failure load in compression were estimated by µFEA. Femoral neck (FN) and ultradistal forearm (UD) aBMD were measured by dual-energy X-ray absorptiometry (DXA). Heritability (h 2 ) of failure load and aBMD and genetic correlations between them was estimated adjusting for covariates (age and sex). Failure load values at the non-weight-bearing ultradistal radius and at the weight-bearing ultradistal tibia were highly correlated (r = 0.906; p < 0.001). Estimates of h 2 adjusted for covariates were 0.522 for the radius and 0.497 for the tibia. Additional adjustment for height did not impact on the h 2 results, but adjustment for aBMD at the UD and FN somewhat decreased h 2 point estimates: 0.222 and 0.380 for radius and tibia, respectively. In bivariate analysis, there was a high phenotypic and genetic correlation between covariate-adjusted failure load at the radius and UD aBMD (ρ P = 0.826, ρ G = 0.954, respectively), whereas environmental correlations were lower (ρ E = 0.696), all highly significant (p < 0.001). Similar correlations were observed between tibial failure load and femoral neck aBMD (ρ P = 0.577, ρ G = 0.703, both p < 0.001; ρ E = 0.432, p < 0.05). These data from adult members of families from a population-based cohort suggest that bone strength of distal extremities estimated by micro-finite element analysis is heritable and shares some genetic composition with areal BMD, regardless of the skeletal site. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Feiveson, A. H.
2014-01-01
This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an applicant for astronaut candidacy, b) Qualify an astronaut for a long-duration (LD) mission, c) Qualify a veteran LD astronaut for a second LD mission, and d) Establish a non-permissible, minimum hip strength following a given mission architecture. This abstract will present the FE-based standards accepted by the FE Strength Task Group for its recommendation to HHC in January 2015.
Licata, Angelo A
2015-07-01
Bone loss due to weightlessness is a significant concern for astronauts' mission safety and health upon return to Earth. This problem is monitored with bone densitometry (DXA), the clinical tool used to assess skeletal strength. DXA has served clinicians well in assessing fracture risk and has been particularly useful in diagnosing osteoporosis in the elderly postmenopausal population for which it was originally developed. Over the past 1-2 decades, however, paradoxical and contradictory findings have emerged when this technology was widely employed in caring for diverse populations unlike those for which it was developed. Although DXA was originally considered the surrogate marker for bone strength, it is now considered one part of a constellation of factors-described collectively as bone quality-that makes bone strong and resists fracturing, independent of bone density. These characteristics are beyond the capability of routine DXA to identify, and as a result, DXA can be a poor prognosticator of bone health in many clinical scenarios. New clinical tools are emerging to make measurement of bone strength more accurate. This article reviews the historical timeline of bone density measurement (dual X-ray absorptiometry), expands upon the clinical observations that modified the relationship of DXA and bone strength, discusses some of the new clinical tools to predict fracture risk, and highlights the challenges DXA poses in the assessment of fracture risk in astronauts.
Estimating the strength of bone using linear response
NASA Astrophysics Data System (ADS)
Gunaratne, Gemunu H.
2002-12-01
Accurate diagnostic tools are required for effective management of osteoporosis; one method to identify additional diagnostics is to search for observable consequences of bone loss. An analysis of a model system is used to show that weakening of a bone is accompanied by a reduction of the fraction of the bone that participates in load transmission. On the basis of this observation, it is argued that the ratio Γ of linear responses of a network to dc and high-frequency ac driving can be used as a surrogate for their strength. Protocols needed to obtain Γ for bone samples are discussed.
Alterations of bone microstructure and strength in end-stage renal failure.
Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R
2013-05-01
End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.
Accelerated bone loss in older men: Effects on bone microarchitecture and strength.
Cauley, J A; Burghardt, A J; Harrison, S L; Cawthon, P M; Schwartz, A V; Connor, E Barrett; Ensrud, Kristine E; Langsetmo, Lisa; Majumdar, S; Orwoll, E
2018-05-11
Accelerated bone loss (ABL) shown on routine dual-energy X-ray absorptiometry (DXA) may be accompanied by microarchitectural changes, increased cortical porosity and lower bone strength. To test this hypothesis, we performed a cross-sectional study and used high resolution peripheral quantitative computed tomography (HR-pQCT) scans (SCANCO, Inc., Switzerland) to measure estimated bone strength and microarchitecture in the distal radius and distal and diaphyseal tibia. We studied 1628 men who attended the Year 14 exam of the Osteoporotic Fractures in Men (MrOS) study. We retrospectively characterized areal (a) bone mineral density (BMD) change from the Year 7 to Year 14 exam in 3 categories: "accelerated" >10% loss at either the total hip or femoral neck, (N = 299, 18.4%); "expected" loss, <10%, (N = 1061, 65.2%) and "maintained" BMD, ≥0%, (N = 268, 16.5%). The ABL cutoff was a safety alert established for MrOS. We used regression models to calculate adjusted mean HR-pQCT parameters in men with ABL, expected loss or maintained BMD. Men who experienced ABL were older and had a lower body mass index and aBMD and experienced greater weight loss compared to other men. Total volumetric BMD and trabecular and cortical volumetric BMD were lower in men with ABL compared to the expected or maintained group. Men with ABL had significantly lower trabecular bone volume fraction (BV/TV), fewer trabeculae and greater trabecular separation at both the distal radius and tibia than men with expected loss or who maintained aBMD, all p trend <0.001. Men with ABL had lower cortical thickness and lower estimated bone strength but there was no difference in cortical porosity except at the tibia diaphyseal site In summary, men with ABL have lower estimated bone strength, poorer trabecular microarchitecture and thinner cortices than men without ABL but have similar cortical porosity. These impairments may lead to an increased risk of fracture. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J
2003-09-01
High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.
Physical activity, but not sedentary time, influences bone strength in late adolescence.
Tan, Vina Ps; Macdonald, Heather M; Gabel, Leigh; McKay, Heather A
2018-03-20
Physical activity is essential for optimal bone strength accrual, but we know little about interactions between physical activity, sedentary time, and bone outcomes in older adolescents. Physical activity (by accelerometer and self-report) positively predicted bone strength and the distal and midshaft tibia in 15-year-old boys and girls. Lean body mass mediated the relationship between physical activity and bone strength in adolescents. To examine the influence of physical activity (PA) and sedentary time on bone strength, structure, and density in older adolescents. We used peripheral quantitative computed tomography to estimate bone strength at the distal tibia (8% site; bone strength index, BSI) and tibial midshaft (50% site; polar strength strain index, SSI p ) in adolescent boys (n = 86; 15.3 ± 0.4 years) and girls (n = 106; 15.3 ± 0.4 years). Using accelerometers (GT1M, Actigraph), we measured moderate-to-vigorous PA (MVPA Accel ), vigorous PA (VPA Accel ), and sedentary time in addition to self-reported MVPA (MVPA PAQ-A ) and impact PA (ImpactPA PAQ-A ). We examined relations between PA and sedentary time and bone outcomes, adjusting for ethnicity, maturity, tibial length, and total body lean mass. At the distal tibia, MVPA Accel and VPA Accel positively predicted BSI (explained 6-7% of the variance, p < 0.05). After adjusting for lean mass, only VPA Accel explained residual variance in BSI. At the tibial midshaft, MVPA Accel , but not VPA Accel , positively predicted SSI p (explained 3% of the variance, p = 0.01). Lean mass attenuated this association. MVPA PAQ-A and ImpactPA PAQ-A also positively predicted BSI and SSI p (explained 2-4% of the variance, p < 0.05), but only ImpactPA PAQ-A explained residual variance in BSI after accounting for lean mass. Sedentary time did not independently predict bone strength at either site. Greater tibial bone strength in active adolescents is mediated, in part, by lean mass. Despite spending most of their day in sedentary pursuits, adolescents' bone strength was not negatively influenced by sedentary time.
Hyperlipidemia affects multiscale structure and strength of murine femur.
Ascenzi, Maria-Grazia; Lutz, Andre; Du, Xia; Klimecky, Laureen; Kawas, Neal; Hourany, Talia; Jahng, Joelle; Chin, Jesse; Tintut, Yin; Nackenhors, Udo; Keyak, Joyce
2014-07-18
To improve bone strength prediction beyond limitations of assessment founded solely on the bone mineral component, we investigated the effect of hyperlipidemia, present in more than 40% of osteoporotic patients, on multiscale structure of murine bone. Our overarching purpose is to estimate bone strength accurately, to facilitate mitigating fracture morbidity and mortality in patients. Because (i) orientation of collagen type I affects, independently of degree of mineralization, cortical bone׳s micro-structural strength; and, (ii) hyperlipidemia affects collagen orientation and μCT volumetric tissue mineral density (vTMD) in murine cortical bone, we have constructed the first multiscale finite element (mFE), mouse-specific femoral model to study the effect of collagen orientation and vTMD on strength in Ldlr(-/-), a mouse model of hyperlipidemia, and its control wild type, on either high fat diet or normal diet. Each µCT scan-based mFE model included either element-specific elastic orthotropic properties calculated from collagen orientation and vTMD (collagen-density model) by experimentally validated formulation, or usual element-specific elastic isotropic material properties dependent on vTMD-only (density-only model). We found that collagen orientation, assessed by circularly polarized light and confocal microscopies, and vTMD, differed among groups and that microindentation results strongly correlate with elastic modulus of collagen-density models (r(2)=0.85, p=10(-5)). Collagen-density models yielded (1) larger strains, and therefore lower strength, in simulations of 3-point bending and physiological loading; and (2) higher correlation between mFE-predicted strength and 3-point bending experimental strength, than density-only models. This novel method supports ongoing translational research to achieve the as yet elusive goal of accurate bone strength prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jammy, Guru Rajesh; Boudreau, Robert M; Singh, Tushar; Sharma, Pawan Kumar; Ensrud, Kristine; Zmuda, Joseph M; Reddy, P S; Newman, Anne B; Cauley, Jane A
2018-05-22
Peripheral quantitative computed tomography (pQCT) provides biomechanical estimates of bone strength. Rural South Indian men have reduced biomechanical indices of bone strength compared to US Caucasian and Afro-Caribbean men. This suggests an underlying higher risk of osteoporotic fractures and greater future fracture burden among the rural South Indian men. Geographical and racial comparisons of bone mineral density (BMD) have largely focused on DXA measures of areal BMD. In contrast, peripheral quantitative computed tomography (pQCT) measures volumetric BMD (vBMD), bone structural geometry and provides estimates of biomechanical strength. To further understand potential geographical and racial differences in skeletal health, we compared pQCT measures among US Caucasian, Afro-Caribbean, and rural South Indian men. We studied men aged ≥ 60 years enrolled in the Mobility and Independent Living among Elders Study (MILES) in rural south India (N = 245), Osteoporotic Fractures in Men Study (MrOS) in the US (N = 1148), and the Tobago Bone Health Study (N = 828). The BMI (kg/m 2 ) of rural South Indian men (21.6) was significantly lower compared to the US Caucasians (28) and Afro-Caribbean men (26.9). Adjusting for age, height, body weight, and grip strength; rural South Indian men compared to US Caucasians had significantly lower trabecular vBMD [- 1.3 to - 1.5 standard deviation (SD)], cortical thickness [- 0.8 to - 1.2 SD]; significantly higher endosteal circumference [0.5 to 0.8 SD]; but similar cortical vBMD. Afro-Caribbean men compared to US Caucasians had similar trabecular vBMD but significantly higher cortical vBMD [0.9 to 1.2 SD], SSIp [0.2 to 1.4 SD], and tibial endosteal circumference [1 SD], CONCLUSIONS: In comparison to US Caucasians, rural South Indian men have reduced bone strength (lower trabecular vBMD) and Afro-Caribbean men have greater bone strength (higher cortical vBMD). These results suggest an underlying higher risk of osteoporotic fractures and greater future fracture burden among rural South Indian men.
Biomechanical monitoring of healing bone based on acoustic emission technology.
Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu
2002-09-01
Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.
Varela, Aurore; Chouinard, Luc; Lesage, Elisabeth; Guldberg, Robert; Smith, Susan Y; Kostenuik, Paul J; Hattersley, Gary
2017-02-01
Abaloparatide is a novel 34 amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor 1 (PTHR1) signaling pathway. The effects of 12months of abaloparatide treatment on bone mass, bone strength and bone quality was assessed in osteopenic ovariectomized (OVX) rats. SD rats were subjected to OVX or sham surgery at 6months of age and left untreated for 3months to allow OVX-induced bone loss. Eighteen OVX rats were sacrificed after this bone depletion period, and the remaining OVX rats received daily s.c. injections of vehicle (n=18) or abaloparatide at 1, 5 or 25μg/kg/d (n=18/dose level) for 12months. Sham controls (n=18) received vehicle daily. Bone changes were assessed by DXA and pQCT after 0, 3, 6 or 12months of treatment, and destructive biomechanical testing was conducted at month 12 to assess bone strength and bone quality. Abaloparatide dose-dependently increased bone mass at the lumbar spine and at the proximal and diaphyseal regions of the tibia and femur. pQCT revealed that increased cortical bone volume at the tibia was a result of periosteal expansion and endocortical bone apposition. Abaloparatide dose-dependently increased structural strength of L4-L5 vertebral bodies, the femur diaphysis, and the femur neck. Increments in peak load for lumbar spine and the femur diaphysis of abaloparatide-treated rats persisted even after adjusting for treatment-related increments in BMC, and estimated material properties were maintained or increased at the femur diaphysis with abaloparatide. The abaloparatide groups also exhibited significant and positive correlations between bone mass and bone strength at these sites. These data indicate that gains in cortical and trabecular bone mass with abaloparatide are accompanied by and correlated with improvements in bone strength, resulting in maintenance or improvement in bone quality. Thus, this study demonstrated that long-term daily administration of abaloparatide to osteopenic OVX rats led to dose-dependent improvements in bone mass, geometry and strength. Copyright © 2016. Published by Elsevier Inc.
Mechanical response tissue analyzer for estimating bone strength
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony
1991-01-01
One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.
Bone architecture and strength in the growing skeleton: the role of sedentary time.
Gabel, Leigh; McKay, Heather A; Nettlefold, Lindsay; Race, Douglas; Macdonald, Heather M
2015-02-01
Today's youths spend close to 60% of their waking hours in sedentary activities; however, we know little about the potentially deleterious effects of sedentary time on bone health during this key period of growth and development. Thus, our objective was to determine whether sedentary time is associated with bone architecture, mineral density, and strength in children, adolescents, and young adults. We used high-resolution peripheral quantitative computed tomography (Scanco Medical) to measure bone architecture (trabecular and cortical microstructure and bone macrostructure) and cortical and total bone mineral density (BMD) at the distal tibia (8% site) in 154 males and 174 females (9-20 yr) who were participants in the University of British Columbia Healthy Bones III study. We applied finite element analysis to high-resolution peripheral quantitative computed tomography scans to estimate bone strength. We assessed self-reported screen time in all participants using a questionnaire and sedentary time (volume and patterns) in a subsample of participants with valid accelerometry data (89 males and 117 females; ActiGraph GT1M). We fit sex-specific univariate multivariable regression models, controlling for muscle cross-sectional area, limb length, maturity, ethnicity, dietary calcium, and physical activity. We did not observe independent effect of screen time on bone architecture, BMD, or strength in either sex (P > 0.05). Likewise, when adjusted for muscle cross-sectional area, limb length, maturity, ethnicity, dietary calcium, and physical activity, accelerometry-derived volume of sedentary time and breaks in bouts of sedentary time were not a determinant of bone architecture, BMD, or strength in either sex (P > 0.05). Further study is warranted to determine whether the lack of association between sedentary time and bone architecture, BMD, and strength at the distal tibia is also present at other skeletal sites.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Truszkowski, P.
2010-01-01
DXA measurement of areal bone mineral density [aBMD,g/cm2] is required by NASA for assessing skeletal integrity in astronauts. Due to the abundance of population-based data that correlate hip and spine BMDs to fragility fractures, BMD is widely applied as a predictor of fractures in the general aging population. In contrast, QCT is primarily a research technology that measures three-dimensional , volumetric BMD (vBMD,mg/cm3) of bone and is therefore capable of differentiating between cortical and trabecular components. Additionally, when combined with Finite Element Modeling [FEM], a computational tool, QCT data can be used to estimate the whole bone strength of the hip [FE strength] for a specific load vector. A recent report demonstrated that aBMD failed to correlate with incurred changes in FE strength (for fall and stance loading) by astronauts over typical 180-day ISS (International Space Station) missions. While there are no current guidelines for using QCT data in clinical practice, QCT increases the understanding of how bone structure and mineral content are affected by spaceflight and recovery on Earth. In order to understand/promote/consider the use of QCT, NASA convened a panel of clinicians specializing in osteoporosis. After reviewing the available, albeit limited, medical and research information from long-duration astronauts (e.g., data from DXA, QCT, FEM, biochemistry analyses, medical records and in-flight exercise performance) the panelists were charged with recommending how current and future research data and analyses could inform clinical and operational decisions. The Panel recommended that clinical bone tests on astronauts should include QCT (hip and lumbar spine) for occupational risk surveillance and for the estimation of whole hip bone strength as derived by FEM. FE strength will provide an improved index that NASA could use to select astronauts of optimal bone health for extended duration missions, for repeat missions or for specific mission operations.
Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.
2017-01-01
Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412
Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation.
Campbell, Graeme Michael; Glüer, Claus-C
2017-07-01
Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.
Mid-humerus adaptation in fast pitch softballers and the impact of throwing mechanics
Bogenschutz, Elizabeth D.; Smith, Heather D.; Warden, Stuart J.
2011-01-01
Purpose Throwing is a vigorous activity that generates large internal loads. There is limited evidence of the effect of these loads on bone adaptation. The aim of this study was to investigate the: 1) magnitude of bone adaptation within the midshaft humerus of female fast-pitch softball players and 2) influence of throwing mechanics (windmill vs. overhand throwing) on the magnitude of adaptation. Methods Midshaft humeral bone mass, structure and estimated strength were assessed via peripheral quantitative computed tomography in fast-pitch softball players (throwers; n=15) and matched controls (controls; n=15). The effect of throwing was examined by comparing dominant-to-nondominant differences in throwers to controls, while the influence of mechanics was determined by comparing dominant-to-nondominant differences in throwers who primarily play as pitcher (windmill thrower), catcher (overhand thrower) or fielder (overhand thrower). Results Throwers had greater dominant-to-nondominant difference in midshaft humeral bone mass, structure and estimated strength relative to controls (all P<0.05). The largest effect was for estimated torsional strength with throwers having a mean dominant-to-nondominant difference of 22.5% (range, 6.7% to 43.9%) compared to 4.4% (range, -8.3% to 17.5%) in controls (P<0.001). Throwing mechanics appeared to influence the magnitude of skeletal adaptation, with overhand throwers having more than double dominant-to-nondominant difference in midshaft humeral bone mass, structure and estimated strength than windmill throwers (all P<0.05). Conclusion Throwing induces substantial skeletal adaptation at the midshaft humerus of the dominant upper extremity. Throwing mechanics appears to the influence the magnitude of adaptation as catchers and fielders (overhand throwers) had twice as much adaptation as pitchers (windmill throwers). The latter finding may have implications for skeletal injury risk at the midshaft humerus in throwing athletes. PMID:21311354
Lang, T.; Boonen, S.; Cummings, S.; Delmas, P. D.; Cauley, J. A.; Horowitz, Z.; Kerzberg, E.; Bianchi, G.; Kendler, D.; Leung, P.; Man, Z.; Mesenbrink, P.; Eriksen, E. F.; Black, D. M.
2016-01-01
Summary Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength. Introduction To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength. Methods In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated. Results Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p<0.01) and QCT (5.7%, p<0.0001). Between-treatment differences were significant for trabecular spine (p=0.0017) [non-parametric test], trabecular trochanter (10.7%, p<0.0001), total hip (10.8%, p<0.0001), and compressive strength indices at femoral neck (8.6%, p=0.0001), and trochanter (14.1%, p<0.0001). Conclusions Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength. PMID:19802508
Gibbs, Jenna C; Giangregorio, Lora M; Wong, Andy K O; Josse, Robert G; Cheung, Angela M
2017-10-01
The purpose of this cross-sectional study was to determine how appendicular lean mass index (ALMI), and whole body lean (LMI) and fat mass indices (FMI) associate with estimated bone strength outcomes at the distal radius and tibia in adults aged 40 years and older. Dual energy X-ray absorptiometry (DXA) scans were performed to determine body composition, including whole body lean and fat mass, and appendicular lean mass. ALMI (appendicular lean mass/height 2 ), LMI (lean tissue mass/height 2 ) and FMI (fat mass/height 2 ) were calculated. High-resolution peripheral quantitative computed tomography (HRpQCT) scans were performed to assess bone structural properties at the distal radius and tibia. Using finite element analysis, failure load (N), stiffness (N/mm), ultimate stress (MPa), and cortical-to-trabecular load ratio were estimated from HRpQCT scans. The associations between body composition (ALMI, LMI, FMI) and estimated bone strength were examined using bivariate and multivariable linear regression analyses adjusting for age, sex, and other confounding variables. In 197 participants (127 women; mean±SD, age: 69.5±10.3y, body mass index: 27.95±4.95kg/m 2 , ALMI: 7.31±1.31kg/m 2 ), ALMI and LMI were significantly associated with failure load at the distal radius and tibia (explained 39%-48% of the variance) and remained significant after adjusting for confounding variables and multiple testing (R 2 =0.586-0.645, p<0.001). ALMI, LMI, and FMI did not have significant associations with ultimate stress in our multivariable models. FMI was significantly associated with cortical-to-trabecular load ratio at the distal radius and tibia (explained 6%-12% of the variance) and remained significant after adjusting for confounders and multiple testing (R 2 =0.208-0.243, p<0.001). FMI was no longer significantly associated with failure load after adjusting for confounders. These findings suggest that ALMI and LMI are important determinants of estimated bone strength, particularly failure load, at the distal radius and tibia, and may contribute to preservation of bone strength in middle-to-late adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.
Gabel, Leigh; Macdonald, Heather M.; McKay, Heather A.
2016-01-01
Sex differences in bone strength and fracture risk are well-documented. However, we know little about bone strength accrual during growth and adaptations in bone microstructure, density and geometry that accompany gains in bone strength. Thus, our objectives are to 1) describe growth related adaptations in bone microarchitecture, geometry, density and strength at the distal tibia and radius in boys and girls; 2) compare differences in adaptations in bone microarchitecture, geometry, density and strength between boys and girls. We used HR-pQCT at the distal tibia (8% site) and radius (7% site) in 184 boys and 209 girls (9–20y at baseline). We aligned boys and girls on a common maturational landmark (age at peak height velocity; APHV) and fit a mixed effects model to these longitudinal data. Importantly, boys demonstrated 28–63% greater estimated bone strength across 12 years of longitudinal growth. Boys demonstrated 28–80% more porous cortices compared with girls at both sites across all biological ages, except at the radius at 9 years post-APHV. However, cortical density was similar between boys and girls at all ages at both sites, except at 9 years post-APHV at the tibia when girls’ values were 2% greater than boys’. Boys demonstrated 13–48% greater cortical and total bone area across growth. Load-to-strength ratio was 26–27% lower in boys at all ages, indicating lower risk of distal forearm fracture compared with girls. Contrary to previous HR-pQCT studies that did not align boys and girls at the same biological age, we did not observe sex differences in Ct.BMD. Boys’ superior bone size and strength compared with girls may confer them a protective advantage. However, boys’ consistently more porous cortices may contribute to boys’ higher fracture incidence during adolescence. Large prospective studies using HR-pQCT that target boys and girls who have sustained a fracture are needed to verify this. PMID:27556581
Hung, V W Y; Zhu, T Y; Cheung, W-H; Fong, T-N; Yu, F W P; Hung, L-K; Leung, K-S; Cheng, J C Y; Lam, T-P; Qin, L
2015-06-01
In a cohort of 393 Chinese women, by using high-resolution peripheral quantitative computed tomography (HR-pQCT), we found that significant cortical bone loss occurred after midlife. Prominent increase in cortical porosity began at the fifth decade but reached a plateau before the sixth decade. Trabecular bone loss was already evident in young adulthood and continued throughout life. This study aimed to investigate age-related differences in volumetric bone mineral density (vBMD), microarchitecture, and estimated bone strength at peripheral skeleton in Chinese female population. In a cross-sectional cohort of 393 Chinese women aged 20-90 years, we obtained vBMD, microarchtecture, and micro-finite element-derived bone strength at distal radius and tibia using HR-pQCT. The largest predictive age-related difference was found for cortical porosity (Ct.Po) which showed over four-fold and two-fold differences at distal radius and tibia, respectively, over the adulthood. At both sites, cortical bone area, vBMD, and thickness showed significant quadratic association with age with significant decrease beginning after midlife. Change of Ct.Po became more prominent between age of 50 and 57 (0.26 %/year at distal radius, 0.54 %/year at distal tibia, both p ≤ 0.001) but thereafter, reached a plateau (0.015 and 0.028 %/year, both p > 0.05). In contrast, trabecular vBMD and microarchitecture showed linear association with age with significant deterioration observed throughout adulthood. Estimated age of peak was around age of 20 for trabecular vBMD and microarchitecture and Ct.Po and age of 40 for cortical vBMD and microarchitecture. Estimated stiffness and failure load peaked at mid-30s at the distal radius and at age 20 at distal tibia. Age-related differences in vBMD and microarchitecture in Chinese women differed by bone compartments. Significant cortical bone loss occurred after midlife. Prominent increase in Ct.Po began at the fifth decade but appeared to be arrested before the sixth decade. Loss of trabecular bone was already evident in young adulthood and continued throughout life.
Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan
2013-01-01
Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.
Whitney, Daniel G; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F; Slade, Jill M; Pohlig, Ryan T; Modlesky, Christopher M
2017-01-01
Nonambulatory children with severe cerebral palsy (CP) have underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Ambulatory children with mild spastic CP and typically developing children (4 to 11years; 12/group) were compared. Magnetic resonance imaging was used to estimate cortical bone, bone marrow and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Accelerometer-based activity monitors worn on the ankle were used to assess physical activity. There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44%) than controls (both p<0.05). Children with CP also had lower cortical bone volume (30%), cortical bone width in the posterior (16%) and medial (32%) portions of the shaft, total bone width in the medial-lateral direction (15%), Z in the medial-lateral direction (34%), J (39%) and muscle volume (39%), and higher bone marrow fat concentration (82.1±1.8% vs. 80.5±1.9%), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0±8.0% vs. 16.1±3.3%) than controls (all p<0.05). When tibia length was statistically controlled, all group differences in bone architecture, bone strength, muscle volume and fat infiltration estimates, except posterior cortical bone width, were still present (all p<0.05). Furthermore, a higher intermuscular AT volume in children with CP compared to controls emerged (p<0.05). Ambulatory children with mild spastic CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically developing children. Whether the deficit in the musculoskeletal system of children with CP is associated with higher chronic disease risk and whether the deficit can be mitigated requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.
Investigation of methods for estimating hand bone dimensions using X-ray hand anthropometric data.
Kong, Yong-Ku; Freivalds, Andris; Kim, Dae-Min; Chang, Joonho
2017-06-01
This study examined two conversion methods, M1 and M2, to predict finger/phalange bone lengths based on finger/phalange surface lengths. Forty-one Korean college students (25 males and 16 females) were recruited and their finger/phalange surface lengths, bone lengths and grip strengths were measured using a vernier caliper, an X-ray generator and a double-handle force measurement system, respectively. M1 and M2 were defined as formulas able to estimate finger/phalange bone lengths based on one dimension (i.e., surface hand length) and four finger dimensions (surface finger lengths), respectively. As a result of conversion, the estimation errors by M1 presented mean 1.22 mm, which was smaller than those (1.29 mm) by M2. The bone lengths estimated by M1 (mean r = 0.81) presented higher correlations with the measured bone lengths than those estimated by M2 (0.79). Thus, the M1 method was recommended in the present study, based on conversion simplicity and accuracy.
Okazaki, Narihiro; Burghardt, Andrew J; Chiba, Ko; Schafer, Anne L; Majumdar, Sharmila
2016-12-01
The primary objective of this study was to analyze the relationships between bone microstructure and strength, and male osteoporosis risk factors including age, body mass index, serum 25-hydroxyvitamin D level, and testosterone level. A secondary objective was to compare microstructural and strength parameters between men with normal, low, and osteoporosis-range areal bone mineral density (aBMD). Seventy-eight healthy male volunteers (mean age 62.4 ± 7.8 years, range 50-84 years) were recruited. The participants underwent dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultra-distal radius and tibia. From the HR-pQCT images, volumetric bone mineral density (BMD) and cortical and trabecular bone microstructure were evaluated, and bone strength and cortical load fraction (Ct.LF) were estimated using micro-finite element analysis (μFEA). Age was more strongly correlated with bone microstructure than other risk factors. Age had significant positive correlations with cortical porosity at both ultra-distal radius and tibia ( r = 0.36, p = 0.001, and r = 0.47, p < 0.001, respectively). At the tibia, age was negatively correlated with cortical BMD, whereas it was positively correlated with trabecular BMD. In μFEA, age was negatively correlated with Ct.LF, although not with bone strength. Compared with men with normal aBMD, men with low or osteoporosis-range aBMD had significantly poor trabecular bone microstructure and lower bone strength at the both sites, while there was no significant difference in cortical bone. Cortical bone microstructure was negatively affected by aging, and there was a suggestion that the influence of aging may be particularly important at the weight-bearing sites.
Fazeli, Pouneh K; Faje, Alexander T; Cross, Ela J; Lee, Hang; Rosen, Clifford J; Bouxsein, Mary L; Klibanski, Anne
2015-08-01
Anorexia nervosa (AN) is a psychiatric disorder characterized by self-induced starvation and low body weight. Women with AN have impaired bone formation, low bone mass and an increased risk of fracture. FGF-21 is a hormone secreted by the liver in starvation and FGF-21 transgenic mice have significant bone loss due to an uncoupling of bone resorption and bone formation. We hypothesized that FGF-21 may contribute to the low bone mass state of AN. We studied 46 women: 20 with AN (median age [interquartile range]: 27.5 [25, 30.75] years) and 26 normal-weight controls (NWC) of similar age (25 [24, 28.5] years). We investigated associations between serum FGF-21 and 1) aBMD measured by dual energy X-ray absorptiometry, 2) parameters of bone microarchitecture in the distal radius and tibia measured by high-resolution peripheral quantitative CT and 3) bone strength, estimated by microfinite element analysis. FGF-21 levels were similar in AN and NWC (AN: 33.1 [18.1, 117.0] pg/ml vs. NWC: 57.4 [23.8, 107.1] pg/ml; p = 0.54). There was a significant inverse association between log FGF-21 and trabecular number in the radius in both AN (R = -0.57, p < 0.01) and NWC (R=-0.53, p < 0.01) and a significant positive association between log FGF-21 and trabecular separation in the radius in AN (R = 0.50, p < 0.03) and NWC (R = 0.52, p < 0.01). Estimates of radial bone strength were inversely associated with log FGF-21 in AN (R = -0.50, p < 0.03 for both stiffness and failure load). There were no associations between FGF-21 and aBMD, cortical parameters or tibial parameters in the AN or NWC groups. FGF-21 may be an important determinant of trabecular skeletal homeostasis in AN. Copyright © 2015 Elsevier Inc. All rights reserved.
Modelling dental implant extraction by pullout and torque procedures.
Rittel, D; Dorogoy, A; Shemtov-Yona, K
2017-07-01
Dental implants extraction, achieved either by applying torque or pullout force, is used to estimate the bone-implant interfacial strength. A detailed description of the mechanical and physical aspects of the extraction process in the literature is still missing. This paper presents 3D nonlinear dynamic finite element simulations of a commercial implant extraction process from the mandible bone. Emphasis is put on the typical load-displacement and torque-angle relationships for various types of cortical and trabecular bone strengths. The simulations also study of the influence of the osseointegration level on those relationships. This is done by simulating implant extraction right after insertion when interfacial frictional contact exists between the implant and bone, and long after insertion, assuming that the implant is fully bonded to the bone. The model does not include a separate representation and model of the interfacial layer for which available data is limited. The obtained relationships show that the higher the strength of the trabecular bone the higher the peak extraction force, while for application of torque, it is the cortical bone which might dictate the peak torque value. Information on the relative strength contrast of the cortical and trabecular components, as well as the progressive nature of the damage evolution, can be revealed from the obtained relations. It is shown that full osseointegration might multiply the peak and average load values by a factor 3-12 although the calculated work of extraction varies only by a factor of 1.5. From a quantitative point of view, it is suggested that, as an alternative to reporting peak load or torque values, an average value derived from the extraction work be used to better characterize the bone-implant interfacial strength. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
NASA Astrophysics Data System (ADS)
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2013-11-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone's mechanical strength and structural parameters, i.e., bulk Young's modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young's modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone's structural integrity.
Whitney, Daniel G.; Singh, Harshvardhan; Miller, Freeman; Barbe, Mary F.; Slade, Jill M.; Pohlig, Ryan T.; Modlesky, Christopher M.
2016-01-01
Introduction Nonambulatory children with severe cerebral palsy (CP) have an underdeveloped bone architecture, low bone strength and a high degree of fat infiltration in the lower extremity musculature. The present study aims to determine if such a profile exists in ambulatory children with mild CP and if excess fat infiltration extends into the bone marrow. Materials and methods Ambulatory children with mild spastic CP and typically developing children (4 to 11 years; 12/group) were tested. Magnetic resonance imaging was used to estimate cortical, medullary and total bone volume and width, bone strength [i.e., section modulus (Z) and polar moment of inertia (J)], and bone marrow fat concentration in the midtibia, and muscle volume, intermuscular, subfascial, and subcutaneous adipose tissue (AT) volume and intramuscular fat concentration in the midleg. Physical activity monitors worn on the ankle were used to assess physical activity. Results There were no group differences in age, height, body mass, body mass percentile, BMI, BMI percentile or tibia length, but children with CP had lower height percentile (19th vs. 50th percentile) and total physical activity counts (44 %) than controls (both p < 0.05). Children with CP also had lower cortical volume (30 %), cortical width in the posterior (16 %) and medial (32 %) portion of the shaft, total bone width in the medial-lateral direction (15 %), Z in the medial-lateral direction (34 %), J (39 %) and muscle volume (39 %), and higher bone marrow fat concentration (82.1 ± 1.8 % vs. 80.5 ± 1.9 %), subfascial AT volume (3.3 fold) and intramuscular fat concentration (25.0 ± 8.0 % vs. 16.1 ± 3.3 %) than controls (all p < 0.05). When tibia length was statistically controlled, all group differences in bone architecture, bone strength, muscle volume and fat infiltration estimates, except posterior cortical width, were still present (all p < 0.05). Furthermore, a higher intermuscular AT volume in children with CP compared to controls emerged (p < 0.05). Conclusions Ambulatory children with mild CP exhibit an underdeveloped bone architecture and low bone strength in the midtibia and a greater infiltration of fat in the bone marrow and surrounding musculature compared to typically developing children. Whether the deficit in the musculoskeletal system of children with CP is associated with higher chronic disease risk and whether the deficit can be mitigated requires further investigation. PMID:27732905
Vilayphiou, Nicolas; Boutroy, Stephanie; Sornay-Rendu, Elisabeth; Van Rietbergen, Bert; Chapurlat, Roland
2016-02-01
The high resolution peripheral computed tomography (HR-pQCT) technique has seen recent developments with regard to the assessment of cortical porosity. In this study, we investigated the role of cortical porosity on bone strength in a large cohort of women. The distal radius and distal tibia were scanned by HR-pQCT. We assessed bone strength by estimating the failure load by microfinite element analysis (μFEA), with isotropic and homogeneous material properties. We built a multivariate model to predict it, using a few microarchitecture variables including cortical porosity. Among 857 Caucasian women analyzed with μFEA, we found that cortical and trabecular properties, along with the failure load, impaired slightly with advancing age in premenopausal women, the correlations with age being modest, with |rage| ranging from 0.14 to 0.38. After the onset of the menopause, those relationships with age were stronger for most parameters at both sites, with |rage| ranging from 0.10 to 0.64, notably for cortical porosity and failure load, which were markedly deteriorated with increasing age. Our multivariate model using microarchitecture parameters revealed that cortical porosity played a significant role in bone strength prediction, with semipartial r(2)=0.22 only at the tibia in postmenopausal women. In conclusion, in our large cohort of women, we observed a small decline of bone strength at the tibia before the onset of menopause. We also found an age-related increase of cortical porosity at both scanned sites in premenopausal women. In postmenopausal women, the relatively high increase of cortical porosity accounted for the decline in bone strength only at the tibia. Copyright © 2015 Elsevier Inc. All rights reserved.
Mallinson, Rebecca J; Williams, Nancy I; Gibbs, Jenna C; Koehler, Karsten; Allaway, Heather C M; Southmayd, Emily; De Souza, Mary Jane
2016-07-01
Menstrual status, both past and current, has been established as an important determinant of bone mineral density (BMD) in young exercising women. However, little is known regarding the association between the cumulative effect of menstrual status and indices of bone health beyond BMD, such as bone geometry and estimated bone strength. This study explores the association between cumulative menstrual status and indices of bone health assessed using dual-energy x-ray absorptiometry (DXA), including femoral neck geometry and strength and areal BMD (aBMD), in exercising women. 101 exercising women (22.0±0.4years, BMI 21.0±0.2kg/m(2), 520±40min/week of self-reported exercise) participated in this cross-sectional study. Women were divided into three groups as follows based on their self-reported current and past menstrual status: 1) current and past regular menstrual cycles (C+P-R) (n=23), 2) current and past irregular menstrual cycles (C+P-IR) (n=56), 3) and current or past irregular cycles (C/P-RIR) (n=22). Current menstrual status was confirmed using daily urinary metabolites of reproductive hormones. DXA was used to assess estimates of femoral neck geometry and strength from hip strength analysis (HSA), aBMD, and body composition. Cross-sectional moment of inertia (CSMI), cross-sectional area (CSA), strength index (SI), diameter, and section modulus (Z) were calculated at the femoral neck. Low CSMI, CSA, SI, diameter, and Z were operationally defined as values below the median. Areal BMD (g/cm(2)) and Z-scores were determined at the lumbar spine, femoral neck, and total hip. Low BMD was defined as a Z-score<-1.0. Chi-square tests and multivariable logistic regression were performed to compare the prevalence and determine the odds, respectively, of low bone geometry, strength, and aBMD among groups. Cumulative menstrual status was identified as a significant predictor of low femoral neck CSMI (p=0.005), CSA (p≤0.024), and diameter (p=0.042) after controlling for confounding variables. C+P-IR or C/P-RIR were four to eight times more likely to exhibit low femoral neck CSMI or CSA when compared with C+P-R. Lumbar spine aBMD and Z-score were lower in C+P-IR when compared with C+P-R (p≤0.003). A significant association between menstrual group and low aBMD was observed at the lumbar spine (p=0.006) but not at the femoral neck or total hip (p>0.05). However, after controlling for confounding variables, cumulative menstrual status was not a significant predictor of low aBMD. In exercising women, the cumulative effect of current and past menstrual irregularity appears to be an important predictor of lower estimates of femoral neck geometry, as observed by smaller CSMI and CSA, which may serve as an another means, beyond BMD, by which menstrual irregularity compromises bone strength. As such, evaluation of both current and past menstrual status is recommended to determine potential risk for relatively small bone geometry at the femoral neck. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluating the relationship between muscle and bone modeling response in older adults.
Reider, Lisa; Beck, Thomas; Alley, Dawn; Miller, Ram; Shardell, Michelle; Schumacher, John; Magaziner, Jay; Cawthon, Peggy M; Barbour, Kamil E; Cauley, Jane A; Harris, Tamara
2016-09-01
Bone modeling, the process that continually adjusts bone strength in response to prevalent muscle-loading forces throughout an individual's lifespan, may play an important role in bone fragility with age. Femoral stress, an index of bone modeling response, can be estimated using measurements of DXA derived bone geometry and loading information incorporated into an engineering model. Assuming that individuals have adapted to habitual muscle loading forces, greater stresses indicate a diminished response and a weaker bone. The purpose of this paper was to evaluate the associations of lean mass and muscle strength with the femoral stress measure generated from the engineering model and to examine the extent to which lean mass and muscle strength account for variation in femoral stress among 2539 healthy older adults participating in the Health ABC study using linear regression. Mean femoral stress was higher in women (9.51, SD=1.85Mpa) than in men (8.02, SD=1.43Mpa). Percent lean mass explained more of the variation in femoral stress than did knee strength adjusted for body size (R(2)=0.187 vs. 0.055 in men; R(2)=0.237 vs. 0.095 in women). In models adjusted for potential confounders, for every percent increase in lean mass, mean femoral stress was 0.121Mpa lower (95% CI: -0.138, -0.104; p<0.001) in men and 0.139Mpa lower (95% CI: -0.158, -0.121; p<0.001) in women. The inverse association of femoral stress with lean mass and with knee strength did not differ by category of BMI. Results from this study provide insight into bone modeling differences as measured by femoral stress among older men and women and indicate that lean mass may capture elements of bone's response to load. Copyright © 2016 Elsevier Inc. All rights reserved.
Duff, Whitney R D; Chilibeck, Philip D; Candow, Darren G; Gordon, Julianne J; Mason, Riley S; Taylor-Gjevre, Regina; Nair, Bindu; Szafron, Michael; Baxter-Jones, Adam; Zello, Gordon A; Kontulainen, Saija A
2017-04-01
Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.
Ramírez-Villada, Jhon F; León-Ariza, Henry H; Argüello-Gutiérrez, Yenny P; Porras-Ramírez, Keyla A
2016-01-01
Osteoporosis is characterised by loss of bone mass and deterioration of bone tissue microarchitecture that leads to fragility related to the risk of fractures. The aim of the study is to analyse the effects of a training program based on explosive movements and impact, assessed in a swimming pool, on body composition, explosive strength and bone mineral density in women over 60 years old. A total of 35 healthy physically active women (60±4.19 years) were divided into a training pool group using multi jumps (JG) and a control group (CG). JG trained for 24 weeks, 3 times a week, an hour and a half per session. Body composition testing, explosive strength, and bone mineral density were assessed before and after the program. There were differences in the explosive force (JG vs CG=P<.05 to .001) and the estimated power (JG vs CG=P<.05 to .002) between JG vs CG, with significant increases in JG. There were no significant differences in the percentage of fat and lean mass, bone mineral density lumbar and femoral between groups, although slightly significant increases in bone mineral density lumbar and femoral could be seen in JG after program implementation (JG pre-test vs JG post- test=P<.05). The training program with impact and explosive movements assessed in a pool induces gains in muscle strength and power with slight adaptations in body mass index in women over 60 years. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.
Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound
Qin, Yi-Xian; Lin, Wei; Mittra, Erik; Xia, Yi; Cheng, Jiqi; Judex, Stefan; Rubin, Clint; Müller, Ralph
2012-01-01
Microgravity induced bone loss represents a critical health problem in astronauts, particularly occurred in weight-supporting skeleton, which leads to osteopenia and increase of fracture risk. Lack of suitable evaluation modality makes it difficult for monitoring skeletal status in long term space mission and increases potential risk of complication. Such disuse osteopenia and osteoporosis compromise trabecular bone density, and architectural and mechanical properties. While X-ray based imaging would not be practical in space, quantitative ultrasound may provide advantages to characterize bone density and strength through wave propagation in complex trabecular structure. This study used a scanning confocal acoustic diagnostic and navigation system (SCAN) to evaluate trabecular bone quality in 60 cubic trabecular samples harvested from adult sheep. Ultrasound image based SCAN measurements in structural and strength properties were validated by μCT and compressive mechanical testing. This result indicated a moderately strong negative correlations observed between broadband ultrasonic attenuation (BUA) and μCT-determined bone volume fraction (BV/TV, R2=0.53). Strong correlations were observed between ultrasound velocity (UV) and bone’s mechanical strength and structural parameters, i.e., bulk Young’s modulus (R2=0.67) and BV/TV (R2=0.85). The predictions for bone density and mechanical strength were significantly improved by using a linear combination of both BUA and UV, yielding R2=0.92 for BV/TV and R2=0.71 for bulk Young’s modulus. These results imply that quantitative ultrasound can characterize trabecular structural and mechanical properties through measurements of particular ultrasound parameters, and potentially provide an excellent estimation for bone’s structural integrity. PMID:23976803
Barak, Meir Max; Black, Margaret Arielle
2018-02-01
Trabecular bone structure is crucial to normal mechanical behavior of bones. Studies have shown that osteoporosis negatively affects trabecular bone structure, mainly by reducing bone volume fraction (BV/TV) and thus increasing fracture risk. One major limitation in assessing and quantifying the effect of this structural deterioration is that no two trabecular structures are identical. Thus, when we compare a group of healthy bones against a different group of bones that experienced resorption (i.e. decreased BV/TV) we only discover an "average" mechanical effect. It is impossible to quantify the mechanical effect of individual structural deterioration for each sample, simply because we never have the same sample in both states (intact and deteriorated structure). 3D printing is a new technology that can assist in overcoming this issue. Here we report a preliminary study that compares a healthy 3D printed trabecular bone model with the same model after bone resorption was simulated. Since the deteriorated structural bone model is derived from the healthy one, it is possible to directly estimate (percentage wise) the decrease of tissue stiffness and strength as a result of bone resorption for this specific structure. Our results demonstrate that a relatively small decrease in BV/TV (about 8%) leads to a dramatic decrease in structural strength (24%) and structural stiffness (17%), (P < 0.01). Structural strength decreased from an average of 9.14 ± 2.85MPa to 6.97 ± 2.44MPa, while structural stiffness decreased from an average of 282.5 ± 63.4N/mm to 233.8 ± 51.2N/mm. This study demonstrates that 3D printing is a novel and valuable tool for quantifying the effect of structural deterioration on the mechanical properties of trabecular bone. In the future, this approach may help us attain better personal fracture risk assessments by CT scanning, 3D printing and mechanically testing individual bone replicas from patients suffering excessive bone resorption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bachmann, Katherine N.; Schorr, Melanie; Bruno, Alexander G.; Bredella, Miriam A.; Lawson, Elizabeth A.; Gill, Corey M.; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V.; Slattery, Meghan; Eddy, Kamryn T.; Ebrahimi, Seda; Koman, Stuart L.; Greenblatt, James M.; Keane, Robert J.; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L.; Klibanski, Anne
2017-01-01
Context: Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including “atypical” AN [body mass index (BMI) ≥18.5 kg/m2]. Objective: To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum Design: Cross-sectional observational study Setting: Clinical research center Participants: 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Measures: Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA) Results: Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Conclusions: Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. PMID:27732336
Bachmann, Katherine N; Schorr, Melanie; Bruno, Alexander G; Bredella, Miriam A; Lawson, Elizabeth A; Gill, Corey M; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V; Slattery, Meghan; Eddy, Kamryn T; Ebrahimi, Seda; Koman, Stuart L; Greenblatt, James M; Keane, Robert J; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L; Klibanski, Anne; Miller, Karen K
2017-01-01
Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including "atypical" AN [body mass index (BMI) ≥18.5 kg/m2]. To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum. Cross-sectional observational study. Clinical research center. 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA). Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. Copyright © 2017 by the Endocrine Society
Influence of Screw Length and Bone Thickness on the Stability of Temporary Implants
Fernandes, Daniel Jogaib; Elias, Carlos Nelson; Ruellas, Antônio Carlos de Oliveira
2015-01-01
The purpose of this work was to study the influence of screw length and bone thickness on the stability of temporary implants. A total of 96 self-drilling temporary screws with two different lengths were inserted into polyurethane blocks (n = 66), bovine femurs (n = 18) and rabbit tibia (n = 12) with different cortical thicknesses (1 to 8 mm). Screws insertion in polyurethane blocks was assisted by a universal testing machine, torque peaks were collected by a digital torquemeter and bone thickness was monitored by micro-CT. The results showed that the insertion torque was significantly increased with the thickness of cortical bone from polyurethane (p < 0.0001), bovine (p = 0.0035) and rabbit (p < 0.05) sources. Cancellous bone improved significantly the mechanical implant stability. Insertion torque and insertion strength was successfully moduled by equations, based on the cortical/cancellous bone behavior. Based on the results, insertion torque and bone strength can be estimate in order to prevent failure of the cortical layer during temporary screw placement. The stability provided by a cortical thickness of 2 or 1 mm coupled to cancellous bone was deemed sufficient for temporary implants stability. PMID:28793582
Burt, L A; Ducher, G; Naughton, G A; Courteix, D; Greene, D A
2013-12-01
Musculoskeletal development of the upper limbs during exposure to weight-bearing loading is under-researched during early pubescent growth. The purpose was to assess the changes in upper body musculoskeletal strength in young girls following 6 months of non-elite gymnastics participation. Eighty-four girls, 6-12 years were divided into groups based on gymnastics participation: high-training (HGYM, 6-16 hr/wk), low-training (LGYM, 1-5 hr/wk), and non-gymnasts (NONGYM). Volumetric BMD, bone geometry, estimated bone strength and muscle size were assessed at the non-dominant forearm (4% and 66% radius and ulna) with pQCT. DXA assessed aBMD and body composition. Tests for explosive power, muscle strength, and endurance were also performed. Interaction effects were observed in all variables at the 4% radius. At the 66% ulna, HGYM and LGYM had greater bone mass, size and bone strength than NONGYM, furthermore a dose-response relationship was observed at this location. Body composition was better for HGYM than LGYM and NONGYM, however muscle function was better for HGYM and LGYM than NONGYM. The greatest changes were obtained with more than one gymnastics class per week. Separating gymnastics participation-related changes from those associated with normal growth and development remains difficult, particularly at the 4% radius.
Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.
Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina
2006-01-01
Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.
High Resolution Peripheral Quantitative Computed Tomography for Assessment of Bone Quality
NASA Astrophysics Data System (ADS)
Kazakia, Galateia
2014-03-01
The study of bone quality is motivated by the high morbidity, mortality, and societal cost of skeletal fractures. Over 10 million people are diagnosed with osteoporosis in the US alone, suffering 1.5 million osteoporotic fractures and costing the health care system over 17 billion annually. Accurate assessment of fracture risk is necessary to ensure that pharmacological and other interventions are appropriately administered. Currently, areal bone mineral density (aBMD) based on 2D dual-energy X-ray absorptiometry (DXA) is used to determine osteoporotic status and predict fracture risk. Though aBMD is a significant predictor of fracture risk, it does not completely explain bone strength or fracture incidence. The major limitation of aBMD is the lack of 3D information, which is necessary to distinguish between cortical and trabecular bone and to quantify bone geometry and microarchitecture. High resolution peripheral quantitative computed tomography (HR-pQCT) enables in vivo assessment of volumetric BMD within specific bone compartments as well as quantification of geometric and microarchitectural measures of bone quality. HR-pQCT studies have documented that trabecular bone microstructure alterations are associated with fracture risk independent of aBMD.... Cortical bone microstructure - specifically porosity - is a major determinant of strength, stiffness, and fracture toughness of cortical tissue and may further explain the aBMD-independent effect of age on bone fragility and fracture risk. The application of finite element analysis (FEA) to HR-pQCT data permits estimation of patient-specific bone strength, shown to be associated with fracture incidence independent of aBMD. This talk will describe the HR-pQCT scanner, established metrics of bone quality derived from HR-pQCT data, and novel analyses of bone quality currently in development. Cross-sectional and longitudinal HR-pQCT studies investigating the impact of aging, disease, injury, gender, race, and therapeutics on bone quality will be discussed.
Vertebral body bone strength: the contribution of individual trabecular element morphology.
Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L
2012-07-01
Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.
Petit, Moira A; Beck, Thomas J; Hughes, Julie M; Lin, Hung-Mo; Bentley, Christy; Lloyd, Tom
2008-01-01
The effect of weight gain in late adolescence on bone is not clear. Young women who consistently gained weight (n = 23) from 17 to 22 yr of age had increased BMD but a lack of subperiosteal expansion compared with stable weight peers (n = 48). Bone strength increased appropriately for lean mass in both groups but decreased relative to body weight in weight gainers, suggesting increased bone fragility in weight gainers. Introduction Weight gain leading to obesity often starts in adolescence, yet little is known about its effects on bone. We used longitudinal data to examine the effects of weight gain in late adolescence (from 17 to 22 yr of age) on proximal femur BMD, geometry, and estimates of bending strength. Materials and Methods Participants were classified as either weight gainers (WG, n = 23) or stable weight (SW, n = 48) using a random coefficients model. Weight gainers had positive increases in weight (p < 0.05) at each clinic visit from age 17 onward. Proximal femur DXA scans (Hologic QDR 2000) taken annually from 17 to 22 yr of age were analyzed for areal BMD (g/cm2), subperiosteal width (cm), and bone cross-sectional area (CSA) at the proximal femoral shaft. Cortical thickness was measured, and section modulus (Z, cm3) was calculated as a measure of bone bending strength. Total body lean (g) and fat (g) mass were measured from DXA total body scans. Results Over ages 17–22, height remained stable in both groups. Weight remained static in the SW group but increased 14% on average in the WG group (p < 0.05). After controlling for age 17 baseline values, WG had higher BMD (+2.6%), thicker cortices (+3.6%), and greater bone CSA (+2.3%). Increased BMD did not translate to greater increases in bone bending strength (Z). The SW group achieved similar gains in Z by greater subperiosteal expansion. Bone strength index (SI = Z/height) normalized for body weight remained constant in the SW group but decreased significantly in the WG group. In contrast, SI normalized to lean mass did not change over time in either group. Other variables including physical activity, nutrition, and hormone levels (estradiol, testosterone, cortisol) did not differ significantly between groups. Conclusions These data suggest that weight gain in late adolescence may inhibit the periosteal expansion known to normally occur throughout life in long bones, resulting in decreased bone strength relative to body weight. PMID:17937533
Düppe, H; Gärdsell, P; Johnell, O; Nilsson, B E; Ringsberg, K
1997-04-01
The aim of this population-based study was to find out whether differences in levels of physical activity have an influence on bone mass quantity and whether quadriceps muscle strength is a reliable determinant of bone mass. Included were 175 men and 157 women, aged 15-42 years. Bone mineral density (BMD) was measured at various sites by dual X-ray absorptiometry (DXA) and single photon absorptiometry (SPA). Muscle strength was assessed using an isokinetic muscle force meter. A questionnaire was used to estimate the level of physical activity. We found a positive correlation between physical activity and BMD for boys at the distal forearm and for girls at the trochanter (age group 15-16 years). Active men (age group 21-42 years) had up to 9% higher BMD levels at the hip than those who were less active. Quadriceps muscle torque was not an independent predictor of BMD. Our data suggest that a higher level of physical activity-within the limits of a "normal life style"-may have a positive effect on BMD in the proximal femur of young adults, which in turn may lessen the subsequent risk of fracture.
Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D
2013-06-01
Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. Copyright © 2013 American Society for Bone and Mineral Research.
NASA Technical Reports Server (NTRS)
Cameron, J. R.
1972-01-01
The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.
Effects of dose reduction on bone strength prediction using finite element analysis
NASA Astrophysics Data System (ADS)
Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas
2016-12-01
This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2 = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.
Bone microarchitecture in adolescent boys with autism spectrum disorder.
Neumeyer, Ann M; Cano Sokoloff, Natalia; McDonnell, Erin; Macklin, Eric A; McDougle, Christopher J; Misra, Madhusmita
2017-04-01
Boys with autism spectrum disorder (ASD) have lower areal bone mineral density (aBMD) than typically developing controls (TDC). Studies of volumetric BMD (vBMD) and bone microarchitecture provide information about fracture risk beyond that provided by aBMD but are currently lacking in ASD. To assess ultradistal radius and distal tibia vBMD, bone microarchitecture and strength estimates in adolescent boys with ASD compared to TDC. Cross-sectional study of 34 boys (16 ASD, 18 TDC) that assessed (i) aBMD at the whole body (WB), WB less head (WBLH), hip and spine using dual X-ray absorptiometry (DXA), (ii) vBMD and bone microarchitecture at the ultradistal radius and distal tibia using high-resolution peripheral quantitative CT (HRpQCT), and (iii) bone strength estimates (stiffness and failure load) using micro-finite element analysis (FEA). We controlled for age in all groupwise comparisons of HRpQCT and FEA measures. Activity questionnaires, food records, physical exam, and fasting levels of 25(OH) vitamin D and bone markers (C-terminal collagen crosslinks and N-terminal telopeptide (CTX and NTX) for bone resorption, N-terminal propeptide of Type 1 procollagen (P1NP) for bone formation) were obtained. ASD participants were slightly younger than TDC participants (13.6 vs. 14.2years, p=0.44). Tanner stage, height Z-scores and fasting serum bone marker levels did not differ between groups. ASD participants had higher BMI Z-scores, percent body fat, IGF-1 Z-scores, and lower lean mass and aBMD Z-scores than TDC at the WB, WBLH, and femoral neck (P<0.1). At the radius, ASD participants had lower trabecular thickness (0.063 vs. 0.070mm, p=0.004), compressive stiffness (56.7 vs. 69.7kN/mm, p=0.030) and failure load (3.0 vs. 3.7kN, p=0.031) than TDC. ASD participants also had 61% smaller cortical area (6.6 vs. 16.4mm 2 , p=0.051) and thickness (0.08 vs. 0.22mm, p=0.054) compared to TDC. At the tibia, ASD participants had lower compressive stiffness (183 vs. 210kN/mm, p=0.048) and failure load (9.4 vs. 10.8kN, p=0.043) and 23% smaller cortical area (60.3 vs. 81.5mm 2 , p=0.078) compared to TDC. A lower proportion of ASD participants were categorized as "very physically active" (20% vs. 72%, p=0.005). Differences in physical activity, calcium intake and IGF-1 responsiveness may contribute to group differences in stiffness and failure load. Bone microarchitectural parameters are impaired in ASD, with reductions in bone strength estimates (stiffness and failure load) at the ultradistal radius and distal tibia. This may result from lower physical activity and calcium intake, and decreased IGF-1 responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.
Hetherington-Rauth, Megan; Bea, Jennifer W; Blew, Robert M; Funk, Janet L; Hingle, Melanie D; Lee, Vinson R; Roe, Denise J; Wheeler, Mark D; Lohman, Timothy G; Going, Scott B
2018-05-22
With the high prevalence of childhood obesity, especially among Hispanic children, understanding how body weight and its components of lean and fat mass affect bone development is important, given that the amount of bone mineral accrued during childhood can determine osteoporosis risk later in life. The aim of this study was to assess the independent contributions of lean and fat mass on volumetric bone mineral density (vBMD), geometry, and strength in both weight-bearing and non-weight-bearing bones of Hispanic and non-Hispanic girls. Bone vBMD, geometry, and strength were assessed at the 20% distal femur, the 4% and 66% distal tibia, and the 66% distal radius of the non-dominant limb of 326, 9- to 12-year-old girls using peripheral quantitative computed tomography (pQCT). Total body lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). Multiple linear regression was used to assess the independent relationships of fat and lean mass with pQCT bone measures while adjusting for relevant confounders. Potential interactions between ethnicity and both fat and lean mass were also tested. Lean mass was a significant positive contributor to all bone outcomes (p < 0.05) with the exception of vBMD at diaphyseal sites. Fat mass was a significant contributor to bone strength at weight bearing sites, but did not significantly contribute to bone strength at the non-weight bearing radius and was negatively associated with radius cortical content and thickness. Bone measures did not significantly differ between Hispanic and non-Hispanic girls, although there was a significant interaction between ethnicity and fat mass with total bone area at the femur (p = 0.02) and 66% tibia (p = 0.005) as well as bone strength at the femur (p = 0.03). Lean mass is the main determinant of bone strength for appendicular skeletal sites. Fat mass contributes to bone strength in the weight-bearing skeleton but does not add to bone strength in non-weight-bearing locations and may potentially be detrimental. Bone vBMD, geometry, and strength did not differ between Hispanic and non-Hispanic girls; fat mass may be a stronger contributor to bone strength in weight-bearing bones of Hispanic girls compared to non-Hispanic. Copyright © 2018. Published by Elsevier Inc.
Altai, Zainab; Viceconti, Marco; Offiah, Amaka C; Li, Xinshan
2018-03-10
Fractures of bone account 25% of all paediatric injuries (Cooper et al. in J Bone Miner Res 19:1976-1981, 2004. https://doi.org/10.1359/JBMR.040902 ). These can be broadly categorised into accidental or inflicted injuries. The current clinical approach to distinguish between these two is based on the clinician's judgment, which can be subjective. Furthermore, there is a lack of studies on paediatric bone to provide evidence-based information on bone strength, mainly due to the difficulties of obtaining paediatric bone samples. There is a need to investigate the behaviour of children's bones under external loading. Such data will critically enhance our understanding of injury tolerance of paediatric bones under various loading conditions, related to injuries, such as bending and torsional loads. The aim of this study is therefore to investigate the response of paediatric femora under two types of loading conditions, bending and torsion, using a CT-based finite element approach, and to determine a relationship between bone strength and age/body mass of the child. Thirty post-mortem CT scans of children aged between 0 and 3 years old were used in this study. Two different boundary conditions were defined to represent four-point bending and pure torsional loads. The principal strain criterion was used to estimate the failure moment for both loading conditions. The results showed that failure moment of the bone increases with the age and mass of the child. The predicted failure moment for bending, external and internal torsions were 0.8-27.9, 1.0-31.4 and 1.0-30.7 Nm, respectively. To the authors' knowledge, this is the first report on infant bone strength in relation to age/mass using models developed from modern medical images. This technology may in future help advance the design of child, car restrain system, and more accurate computer models of children.
Vivekanandhan, Sapthagirivasan; Subramaniam, Janarthanam; Mariamichael, Anburajan
2016-10-01
Hip fractures due to osteoporosis are increasing progressively across the globe. It is also difficult for those fractured patients to undergo dual-energy X-ray absorptiometry scans due to its complicated protocol and its associated cost. The utilisation of computed tomography for the fracture treatment has become common in the clinical practice. It would be helpful for orthopaedic clinicians, if they could get some additional information related to bone strength for better treatment planning. The aim of our study was to develop an automated system to segment the femoral neck region, extract the cortical and trabecular bone parameters, and assess the bone strength using an isotropic volume construction from clinical computed tomography images. The right hip computed tomography and right femur dual-energy X-ray absorptiometry measurements were taken from 50 south-Indian females aged 30-80 years. Each computed tomography image volume was re-constructed to form isotropic volumes. An automated system by incorporating active contour models was used to segment the neck region. A minimum distance boundary method was applied to isolate the cortical and trabecular bone components. The trabecular bone was enhanced and segmented using trabecular enrichment approach. The cortical and trabecular bone features were extracted and statistically compared with dual-energy X-ray absorptiometry measured femur neck bone mineral density. The extracted bone measures demonstrated a significant correlation with neck bone mineral density (r > 0.7, p < 0.001). The inclusion of cortical measures, along with the trabecular measures extracted after isotropic volume construction and trabecular enrichment approach procedures, resulted in better estimation of bone strength. The findings suggest that the proposed system using the clinical computed tomography images scanned with low dose could eventually be helpful in osteoporosis diagnosis and its treatment planning. © IMechE 2016.
Kontulainen, Saija; Sievänen, Harri; Kannus, Pekka; Pasanen, Matti; Vuori, Ilkka
2002-12-01
Bone characteristics of the humeral shaft and distal radius were measured from 64 female tennis and squash players and their 27 age-, height-, and weight-matched controls with peripheral quantitative tomography (pQCT) and DXA. The players were divided into two groups according to the starting age of their tennis or squash training (either before or after menarche) to examine the possible differences in the loading-induced changes in bone structure and volumetric density. The used pQCT variables were bone mineral content (BMC), total cross-sectional area (TotA) of bone, cross-sectional area of the marrow cavity (CavA) and that of the cortical bone (CoA), cortical wall thickness (CWT), volumetric density of the cortical bone (CoD) and trabecular bone (TrD), and torsional bone strength index (BSIt) for the shaft, and compressional bone strength index (BSIc) for the bone end. These bone strength indices were compared with the DXA-derived areal bone mineral density (aBMD) to assess how well the latter represents the effect of mechanical loading on apparent bone strength. At the humeral shaft, the loaded arm's greater BMC (an average 19% side-to-side difference in young starters and 9% in old starters) was caused by an enlarged cortex (CoA; side-to-side differences 20% and 9%, respectively). The loaded humerus seemed to have grown periosteally (the CavA did not differ between the sites) leading to 26% and 11% side-to-side BSIt difference in the young and old starters, respectively. CoD was equal between the arms (-1% difference in both player groups). The side-to-side differences in the young starters' BMC, CoA, TotA, CWT, and BSIt were 8-22% higher than those of the controls and 8-14% higher than those of the old starters. Old starters' BMC, CoA, and BSIt side-to-side differences were 6-7% greater than those in the controls. The DXA-derived side-to-side aBMD difference was 7% greater in young starters compared with that of the old starters and 14% compared with that in controls, whereas the difference between old starters and controls was 6%, in favor of the former. All these between-group differences were statistically significant. At the distal radius, the player groups differed significantly from controls in the side-to-side BMC, TrD, and aBMD differences only; the young starters' BMC difference was 9% greater, TrD and aBMD differences were 5% greater than those in the controls, and the old starters' TrD and aBMD differences were both 7% greater than those in the controls. In summary, in both of the female player groups the structural adaptation of the humeral shaft to long-term loading seemed to be achievedthrough periosteal enlargement of the bone cortex although this adaptation was clearly better in the young starters. Exercise-induced cortical enlargement was not so clear at the distal radius (a trabecular bone site), and the study suggested that at long bone ends also the TrD could be a modifiable factor to build a stronger bone structure. The conventional DXA-based aBMD measurement detected the intergroup differences in the exercise-induced bone gains, although, measuring two dimensions of bone only, it seemed to underestimate the effect of exercise on the apparent bone strength, especially if the playing had been started during the growing years.
Prevalence of Poor Bone Quality in Women Undergoing Spinal Fusion Using Biomechanical-CT Analysis.
Burch, Shane; Feldstein, Michael; Hoffmann, Paul F; Keaveny, Tony M
2016-02-01
Retrospective, cross-sectional analysis of vertebral bone quality in spine-fusion patients at a single medical center. To characterize the prevalence of osteoporosis and fragile bone strength in a spine-fusion population of women with an age range of 50 years to 70 years. Fragile bone strength is defined as the level of vertebral strength below which a patient is at as high a risk of future vertebral fracture as a patient having bone density-defined osteoporosis. Poor bone quality--defined here as the presence of either osteoporosis or fragile bone strength--is a risk factor for spine-fusion patients that often goes undetected but can now be assessed preoperatively by additional postprocessing of computed tomography (CT) scans originally ordered for perioperative clinical assessment. Utilizing such perioperative CT scans for a cohort of 98 women (age range: 51-70 yr) about to undergo spine fusion, we retrospectively used a phantomless calibration technique and biomechanical-CT postprocessing analysis to measure vertebral trabecular bone mineral density (BMD) (in mg/cm³) and by nonlinear finite element analysis, vertebral compressive strength (in Newtons, N) in the L1 or L2 vertebra. Preestablished validated threshold values were used to define the presence of osteoporosis (trabecular BMD of 80 mg/cm³ or lower) and fragile bone strength (vertebral strength of 4500 N or lower). Fourteen percent of the women tested positive for osteoporosis, 27% tested positive for fragile bone strength, and 29% were classified as having poor bone quality (either osteoporosis or fragile bone strength). Over this narrow age range, neither BMD nor vertebral strength were significantly correlated with age, weight, height, or body mass index (P values 0.14-0.97 for BMD; 0.13-0.51 for strength). Poor bone quality appears to be common in women between ages 50 years and 70 years undergoing spinal fusion surgery. 3.
Kopperdahl, David L.; Aspelund, Thor; Hoffmann, Paul F.; Sigurdsson, Sigurdur; Siggeirsdottir, Kristin; Harris, Tamara B.; Gudnason, Vilmundur; Keaveny, Tony M.
2013-01-01
Finite element analysis of computed tomography (CT) scans provides non-invasive estimates of bone strength at the spine and hip. To further validate such estimates clinically, we performed a five-year case-control study of 1110 women and men over age 65 from the AGES-Reykjavik cohort (case = incident spine or hip fracture; control = no incident spine or hip fracture, respectively). From the baseline CT scans, we measured femoral and vertebral strength, as well as bone mineral density (BMD) at the hip (areal BMD only) and lumbar spine (trabecular volumetric BMD only). We found that, for incident radiographically-confirmed spine fractures (n=167), the age-adjusted odds ratio for vertebral strength was significant for women (2.8, 95% CI: 1.8–4.3) and men (2.2, 95% CI: 1.5–3.2), and for men, remained significant (p=0.01) independent of vertebral trabecular volumetric BMD. For incident hip fractures (n=171), the age-adjusted odds ratio for femoral strength was significant for women (4.2, 95% CI: 2.6–6.9) and men (3.5, 95% CI: 2.3–5.3) and remained significant after adjusting for femoral neck areal BMD in women and for total hip areal BMD in both sexes; fracture classification improved for women by combining femoral strength with femoral neck areal BMD (p=0.002). For both sexes, the probabilities of spine and hip fractures were similarly high at the BMD-based interventional thresholds for osteoporosis and at corresponding pre-established thresholds for “fragile bone strength” (spine: women ≤ 4,500 N, men ≤ 6,500 N; hip: women ≤ 3,000 N, men ≤ 3,500 N). Since it is well established that individuals over age 65 who have osteoporosis at the hip or spine by BMD criteria should be considered at high risk of fracture, these results indicate that individuals who have “fragile bone strength” at the hip or spine should also be considered at high risk of fracture. PMID:23956027
Silva, Matthew J.; Brodt, Michael D.; Lynch, Michelle A.; McKenzie, Jennifer A.; Tanouye, Kristi M.; Nyman, Jeffry S.; Wang, Xiaodu
2009-01-01
People with diabetes have increased risk of fracture disproportionate to BMD, suggesting reduced material strength (quality). We quantified the skeletal effects of type 1 diabetes in the rat. Fischer 344 and Sprague-Dawley rats (12 wk of age) were injected with either vehicle (Control) or streptozotocin (Diabetic). Forelimbs were scanned at 0, 4, 8, and 12 wk using pQCT. Rats were killed after 12 wk. We observed progressive osteopenia in diabetic rats. Trabecular osteopenia was caused by bone loss: volumetric BMD decreased progressively with time in diabetic rats but was constant in controls. Cortical osteopenia was caused by premature arrest of cortical expansion: cortical area did not increase after 4–8 wk in diabetic rats but continued to increase in controls. Postmortem μCT showed a 60% reduction in proximal tibial trabecular BV/TV in diabetic versus control rats, whereas moments of inertia of the ulnar and femoral diaphysis were reduced ∼30%. Monotonic bending tests indicated that ulna and femora from diabetic animals were ∼25% less stiff and strong versus controls. Estimates of material properties indicated no changes in elastic modulus or ultimate stress but modest (∼10%) declines in yield stress for diabetic bone. These changes were associated with a ∼50% increase in the nonenzymatic collagen cross-link pentosidine. Last, cyclic testing showed diminished fatigue life in diabetic bones at the structural (force) level but not at the material (stress) level. In summary, type 1 diabetes, left untreated, causes trabecular bone loss and a reduction in diaphyseal growth. Diabetic bone has greatly increased nonenzymatic collagen cross-links but only modestly reduced material properties. The loss of whole bone strength under both monotonic and fatigue loading is attributed mainly to reduced bone size. PMID:19338453
Herrmann, Diana; Buck, Christoph; Sioen, Isabelle; Kouride, Yiannis; Marild, Staffan; Molnár, Dénes; Mouratidou, Theodora; Pitsiladis, Yannis; Russo, Paola; Veidebaum, Toomas; Ahrens, Wolfgang
2015-09-17
Physical activity (PA), weight-bearing exercises (WBE) and muscle strength contribute to skeletal development, while sedentary behaviour (SB) adversely affects bone health. Previous studies examined the isolated effect of PA, SB or muscle strength on bone health, which was usually assessed by x-ray methods, in children. Little is known about the combined effects of these factors on bone stiffness (SI) assessed by quantitative ultrasound. We investigated the joint association of PA, SB and muscle strength on SI in children. In 1512 preschool (2- < 6 years) and 2953 school children (6-10 years), data on calcaneal SI as well as on accelerometer-based sedentary time (SED), light (LPA), moderate (MPA) and vigorous PA (VPA) were available. Parents reported sports (WBE versus no WBE), leisure time PA and screen time of their children. Jumping distance and handgrip strength served as indicators for muscle strength. The association of PA, SB and muscle strength with SI was estimated by multivariate linear regression, stratified by age group. Models were adjusted for age, sex, country, fat-free mass, daylight duration, consumption of dairy products and PA, or respectively SB. Mean SI was similar in preschool (79.5 ± 15.0) and school children (81.3 ± 12.1). In both age groups, an additional 10 min/day in MPA or VPA increased the SI on average by 1 or 2%, respectively (p ≤ .05). The negative association of SED with SI decreased after controlling for MVPA. LPA was not associated with SI. Furthermore, participation in WBE led to a 3 and 2% higher SI in preschool (p = 0.003) and school children (p < .001), respectively. Although muscle strength significantly contributed to SI, it did not affect the associations of PA with SI. In contrast to objectively assessed PA, reported leisure time PA and screen time showed no remarkable association with SI. This study suggests that already an additional 10 min/day of MPA or VPA or the participation in WBE may result in a relevant increase in SI in children, taking muscle strength and SB into account. Our results support the importance of assessing accelerometer-based PA in large-scale studies. This may be important when deriving dose-response relationships between PA and bone health in children.
Joshi, R.N.; Safadi, F.F.; Barbe, M.F.; Carpio-Cano, Fe Del; Popoff, S.N.; Yingling, V.R.
2013-01-01
Hypothalamic amenorrhea and energy restriction during puberty affect peak bone mass accrual. One hypothesis suggests energy restriction alters hypothalamic function resulting in suppressed estradiol levels leading to bone loss. However, both positive and negative results have been reported regarding energy restriction and bone strength. Therefore, the purpose of this study was to investigate energy restriction and hypothalamic suppression during pubertal onset on bone mechanical strength and the osteogenic capacity of bone marrow-derived cells in two models: female rats treated with gonadotropin releasing hormone antagonists (GnRH-a) or 30% energy restriction. At 23 days of age, female Sprague Dawley rats were assigned to three groups: control group (C, n=10), GnRH-a group (n=10), and Energy Restriction (ER, n=12) group. GnRH-a animals received daily injections for 27 days. The animals in the ER group received 70% of the control animals’ intake. After sacrifice (50 days of age), body weight, uterine and muscle weights were measured. Bone marrow-derived stromal cells were cultured and assayed for proliferation and differentiation into osteoblasts. Outcome measures included bone strength, bone histomorphometry and architecture, serum IGF-1 and osteocalcin. GnRH-a suppressed uterine weight, decreased osteoblast proliferation, bone strength, trabecular bone volume and architecture compared to control. Elevated serum IGF-1 and osteocalcin levels and body weight were found. The ER model had an increase in osteoblast proliferation compared to the GnRH-a group, similar bone strength relative to body weight and increased trabecular bone volume in the lumbar spine compared to control. The ER animals were smaller but had developed bone strength sufficient for their size. In contrast, suppressed estradiol via hypothalamic suppression resulted in bone strength deficits and trabecular bone volume loss. In summary, our results support the hypothesis that during periods of nutritional stress the increased vertebral bone volume may be an adaptive mechanism to store mineral which differs from suppressed estradiol resulting from hypothalamic suppression. PMID:21807131
2017-10-01
Award Number: W81XWH-16-1-0763 TITLE: Increasing Bone Mass and Bone Strength in Individuals with Chronic Spinal Cord Injury: Maximizing Response...TYPE Annual 3. DATES COVERED (From - To) 30 Sep 2016-29 Sep 2017 5a. CONTRACT NUMBER Increasing Bone Mass and Bone Strength in Individuals with...DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Rapid bone loss is a universal
Szulc, Pawel; Beck, Tom J; Marchand, François; Delmas, Pierre D
2005-05-01
In 796 men, 50-85 years of age, decreased relative skeletal muscle mass index was associated with narrower bones, thinner cortices, and a consequent decreased bending strength (lower section modulus), as well as with impaired balance and an increased risk of falls. In men, appendicular skeletal muscle mass (ASM) is correlated positively with BMC and areal BMD (aBMD). In elderly men, low muscle mass and strength (sarcopenia) is associated with difficulties in daily living activities. The aim of this study was to evaluate if ASM is correlated with bone size, mechanical properties of bones, balance, and risk of falls in elderly men. This study used 796 men, 50-85 years of age, belonging to the MINOS cohort. Lifestyle factors were evaluated by standardized questionnaires. Estimates of mechanical bone properties were derived from aBMD measured by DXA. ASM was estimated by DXA. The relative skeletal muscle mass index (RASM) was calculated as ASM/(body height)(2.3). After adjustment for age, body size, tobacco smoking, professional physical activity, and 17beta-estradiol concentration, RASM was correlated positively with BMC, aBMD, external diameter, and cortical thickness (r = 0.17-0.34, p < 0.0001) but not with volumetric BMD. Consequently, RASM was correlated with section modulus (r = 0.29-0.39, p < 0.0001). Men in the lowest quartile of RASM had section modulus of femoral neck and distal radius lower by 12-18% in comparison with men in the highest quartile of RASM. In contrast, bone width was not correlated with fat mass, reflecting the load of body weight (except for L(3)), which suggests that the muscular strain may exert a direct stimulatory effect on periosteal apposition. After adjustment for confounding variables, a decrease in RASM was associated with increased risk of falls and of inability to accomplish clinical tests of muscle strength, static balance, and dynamic balance (odds ratio per 1 SD decrease in RASM, 1.31-2.23; p < 0.05-0.001). In elderly men, decreased RASM is associated with narrower bones and thinner cortices, which results in a lower bending strength. Low RASM is associated with impaired balance and with an increased risk of falls in elderly men. It remains to be studied whether low RASM is associated with decreased periosteal apposition and with increased fracture risk in elderly men, and whether the difference in skeletal muscle mass between men and women contributes to the between-sex difference in fracture incidence.
Stathopoulos, K.D.; Zoubos, A.B.; Papaioannou, N.A.; Mastrokalos, D.; Galanos, A.; Papagelopoulos, P.J.; Skarantavos, G.
2016-01-01
Menopause constitutes a significant cause of bone loss, and it is currently debated whether bone mass is preserved or begins to decline substantially before that time in women. We used pQCT of the tibia to estimate differences of bone mineral mass, bone geometry and derived strength between premenopausal and postmenopausal Caucasian women of different age-groups per decade of age (20-79y). For each individual, we assessed total, trabecular and cortical bone mineral content (BMC, mg) and volumetric bone mineral density (BMD, mg/cm3); total and cortical cross-sectional areas (CSA, mm2); periosteal circumference (PERI_C, mm); endosteal circumference (ENDO_C, mm); mean cortical thickness (CRT_THK, mm); and Stress-Strain Index (SSI). Comparisons were made both between premenopausal (N=84) and postmenopausal (N=231) women as distinct groups, and among women of the different age-groups. Our results indicated that premenopausal women had significantly higher trabecular and cortical BMC and vBMD, with higher cortical CSA, CRT_THK and SSI than postmenopausal women. Moreover, significant differences of trabecular but not cortical BMC, vBMD or SSI were found between women of the younger (<48y) age-groups. PERI_C, ENDO_C displayed lower values in the 20-29y group and higher values in the 70-79y group, denoting significant differences of bone geometry with aging. PMID:27282455
In vivo assessment of forearm bone mass and ulnar bending stiffness in healthy men
NASA Technical Reports Server (NTRS)
Myburgh, K. H.; Zhou, L. J.; Steele, C. R.; Arnaud, S.; Marcus, R.
1992-01-01
The cross-sectional bending stiffness EI of the ulna was measured in vivo by mechanical resistance tissue analysis (MRTA) in 90 men aged 19-89 years. MRTA measures the impedance response of low-frequency vibrations to determine EI, which is a reflection of elastic modulus E and moment of inertia I for the whole ulna. EI was compared to conventional estimates of bone mineral content (BMC), bone width (BW), and BMC/BW, which were all measured by single-photon absorptiometry. Results obtained from the nondominant ulna indicate that BW increases (r = 0.27, p = 0.01) and ulnar BMC/BW decreases (r = -0.31, p < or = 0.005) with age. Neither BMC nor EI declined with age. The single best predictor of EI was BW (r2 = 0.47, p = 0.0001), and further small but significant contributions were made by BMC (r2 = 0.53, p = 0.0001) and grip strength (r2 = 0.55, p = 0.0001). These results suggest that the resistance of older men to forearm fracture is related to age-associated changes in the moment of inertia achieved by redistributing bone mineral farther from the bending axis. We conclude that the in vivo assessment of bone geometry offers important insights to the comprehensive evaluation of bone strength.
Increased cortical area and thickness in the distal radius in subjects with SHOX-gene mutation.
Frederiksen, A L; Hansen, S; Brixen, K; Frost, M
2014-12-01
Short-stature homeobox (SHOX) gene haploinsufficiency may cause skeletal dysplasia including Léri-Weill Dyschondrosteosis (LWD), a clinical entity characterised by the triad of low height, mesomelic disproportion and Madelung's deformity of the wrist. Bone microarchitecture and estimated strength in adult SHOX mutation carriers have not been examined. Twenty-two subjects with a SHOX mutation including 7 males and 15 females with a median age of 38.8 [21.1-52.2] years were recruited from five unrelated families. The control group consisted of 22 healthy subjects matched on age and sex. Bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry. Bone geometry, volumetric density, microarchitecture and finite element estimated (FEA) bone strength were measured using high-resolution peripheral quantitative computed tomography (HR-pQCT). A full region of interest (ROI) image analysis and height-matched ROI analyses adjusting for differences in body height between the two groups were performed. Areal BMD and T-scores showed no significant differences between cases and controls. Total radius area was smaller in cases than controls (207 [176-263] vs. 273 [226-298] mm, p<0.01). Radius cortical bone area (74 ± 20 vs. 58 ± 17 mm(2), p=0.01) and thickness (1.16 ± 0.30 vs. 0.84 ± 0.26 mm, p<0.01) as well as total density (428 ± 99 vs. 328 ± 72 mg/cm(3), p<0.01) were higher in SHOX mutation carriers compared to controls. Radius trabecular bone area (119 [103-192] vs. 202 [168-247] mm(2), p<0.01) and trabecular number (1.61 [1.46-2.07] vs. 1.89 [1.73-2.08] mm(-1), p=0.01) were smaller in SHOX mutation carriers. Tibia trabecular thickness was lower in cases (0.067 ± 0.012 vs. 0.076 ± 0.012 mm, p=0.01). These results remained significant after adjustment for differences in body height and when restricting analyses to females. There were no differences in BMD, radius and tibia cortical porosity or FEA failure load between groups. A segment of cortical bone defect was identified in the distal radius adjacent to ulna in five unrelated SHOX mutation carriers. Subjects with a SHOX mutation presented with a different bone geometry in radius and tibia while there were no differences in BMD or failure load compared to controls, suggesting that mutations in SHOX gene may have an impact on bone microarchitecture albeit not bone strength. Copyright © 2014 Elsevier Inc. All rights reserved.
Kontulainen, Saija; Sievänen, Harri; Kannus, Pekka; Pasanen, Matti; Vuori, Ilkka
2003-02-01
Bone characteristics of the humeral shaft and distal radius were measured from 64 female tennis and squash players and their 27 age-, height-, and weight-matched controls with peripheral quantitative tomography (pQCT) and dual energy X-ray absorptiometry (DXA). The players were divided into two groups according to the starting age of their tennis or squash training (either before or after menarche) to examine the possible differences in the loading-induced changes in bone structure and volumetric density. The following pQCT variables were used: bone mineral content, total cross-sectional area of bone (TotA), cross-sectional area of the marrow cavity (CavA) and that of the cortical bone (CoA), cortical wall thickness (CWT), volumetric density of the cortical bone (CoD) and trabecular bone (TrD), and torsional bone strength index for the shaft (BSIt) and compressional bone strength index for the bone end (BSIc). These bone strength indices were compared with the DXA-derived areal bone mineral density (aBMD) to assess how well the latter represents the effect of mechanical loading on apparent bone strength. At the humeral shaft, the loaded arm's greater bone mineral content (an average 19% side-to-side difference in young starters and 9% in old starters), was caused by an enlarged cortex (CoA; side-to-side differences 20% and 9%, respectively). The loaded humerus seemed to have grown periosteally (the CavA did not differ between the sites), leading to 26% and 11% side-to-side BSIt differences in the young and old starters, respectively. CoD was equal between the arms (-1% difference in both player groups). The side-to-side differences in the young starters' bone mineral content, CoA, TotA, CWT, and BSIt were 8-22% higher than those of the controls and 8-14% higher than those of the old starters. Old starters' bone mineral content, CoA, and BSIt side-to-side differences were 6-7% greater than those in the controls. The DXA-derived side-to-side aBMD difference was 7% greater in young starters compared with that of the old starters and 14% compared with that in controls, whereas the difference between old starters and controls was 6%, in favor of the former. All these between-group differences were statistically significant. At the distal radius, the player groups differed significantly from controls in the side-to-side bone mineral content, TrD, and aBMD differences only: the young starters' bone mineral content difference was 9% greater, TrD and aBMD differences were 5% greater than those in the controls, and the old starters' TrD and aBMD differences were both 7% greater than those in the controls. In summary, in both of the female player groups, the structural adaptation of the humeral shaft to long-term loading seemed to be achieved through periosteal enlargement of the bone cortex, although this adaptation was clearly better in the young starters. Exercise-induced cortical enlargement was not so clear at the distal radius (a trabecular bone site), and the study suggested that at long bone ends, the trabecular density could be a modifiable factor to built a stronger bone structure. Conventional DXA-based aBMD measurement detected the intergroup differences in the exercise-induced bone gains, although, because it measured two dimensions of bone only, it seemed to underestimate the effect of exercise on the apparent bone strength, especially if the playing had been started during the growing years.
USDA-ARS?s Scientific Manuscript database
Soy isoflavones exert inconsistent bone density preserving effects, but the bone strength preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength ...
Bonding strength of alkyl-2-cyanoacrylates to bone in vitro.
Kilpikari, J; Lapinsuo, M; Törmälä, P; Pätiälä, H; Rokkanen, P
1986-10-01
This study measured the bonding strength between alkyl-2-cyanoacrylates and bone, and examined how treatment of the bone surface with acid, and prolonged exposure to moisture, affected this strength. The initial strength of all cyanoacrylates was high (9.6-11.2 N/mm2). In long-term experiments under water, n- and i-butylcyanoacrylates lost their strength at a far slower rate than ethylcyanoacrylates. However, the butylcyanoacrylates also showed a decrease of 15% in strength after three weeks. Pretreatment of the bone surface with acid did not have a marked effect on bonding strength, although SEM investigation revealed that the acid treatment had increased the porosity of the bone surface. A study of the fracture surface proved that the adhesive film tended to loosen or break after 3 to 6 weeks under water. The decrease in the bonding strength was probably due to the degradation of the adhesive film in water which loosened mechanical bonds between the bone and adhesive. Considering clinical use it would be necessary to achieve better long-term strength.
Bozzini, Clarisa; Champin, Graciela; Alippi, Rosa M; Bozzini, Carlos E
2015-04-01
Long-term glucocorticoid administration to growing rats induces osteopenia and alterations in the biomechanical behavior of the bone. This study was performed to estimate the effects of dexamethasone (DTX), a synthetic steroid with predominant glucocorticoid activity, on the biomechanical properties of the mandible of rats during the growth phase, as assessed by bending test and peripheral quantitative computed tomographic (pQCT) analysis. The data obtained by the two methods will provide more precise information when analyzed together than separately. Female rats aged 23 d (n=7) received 500μg.kg-1 per day of DXT for 4 weeks. At the end of the treatment period, their body weight and body length were 51.3% and 20.6% lower, respectively, than controls. Hemimandible weight and area (an index of mandibular size) were 27.3% and 9.7% lower, respectively. The right hemimandible of each animal was subjected to a mechanical 3-point bending test. Significant weakening of the bone, as shown by a correlative impairment of strength and stiffness, was observed in experimental rats. Bone density and cross-sectional area were measured by pQCT. Cross-sectional, cortical and trabecular areas were reduced by 20% to 30% in the DTX group, as were other cortical parameters, including the bone density, mineral content and cross-sectional moment of inertia. The "bone strength index" (BSI, the product of the pQCT-assessed xCSMI and vCtBMD) was 56% lower in treated rats, which compares well with the 54% and 52% reduction observed in mandibular strength and stiffness determined through the bending test. Data suggest that the corticosteroid exerts a combined, negative action on bone geometry (mass and architecture) and volumetric bone mineral density of cortical bone, which would express independent effects on both cellular (material quality) and tissue (cross-sectional design) levels of biological organization of the skeleton in the species.
Macdonald, Heather M; Kontulainen, Saija A; Mackelvie-O'Brien, Kerry J; Petit, Moira A; Janssen, Patricia; Khan, Karim M; McKay, Heather A
2005-06-01
During growth, bone strength is conferred through subtle adaptations in bone mass and geometry in response to muscle forces. Few studies have examined the changes in bone geometry, strength and the bone-muscle strength relationship across maturity in boys and girls. Our aims were to describe (i) 20-month changes in bone geometry and strength at the tibial midshaft across three maturity groups of boys and girls, (ii) differences in these adaptations between sexes at the same approximate level of maturity and (iii) the bone-muscle strength relationship across maturity groups of boys and girls and between sexes. We used peripheral quantitative computed tomography (pQCT, Stratec XCT-2000) to measure change in total bone cross-sectional area (ToA, mm(2)), cortical area (CoA, mm(2)), average cortical thickness (C.Th., mm), section modulus (mm(3)) and muscle cross-sectional area (mm(2)) at the tibial midshaft (50% site) in 128 EARLY-, PERI- and POST-pubertal girls (n = 69, 11.9 +/- 0.6 years) and boys (n = 59, 12.0 +/- 0.6 years) across 20 months. We also calculated two bone-muscle strength indices (BMSI) for compression (CoA/MCSA) and bending [strength index/MCSA; where strength index = Z / (tibial length / 2)]. EARLY boys and girls had smaller ToA at baseline than same sex PERI or POST participants. There were no sex differences in ToA or CoA at baseline; however, boys increased both parameters significantly more than girls in every maturity group (8.5-11.1%, P < 0.01). These changes in bone geometry conferred greater gains in bone strength for boys compared with girls in each maturity group (13.8-15.6%, P < 0.01). Baseline BMSIs did not differ between sexes for EARLY and PERI groups, whereas BMSIs were significantly higher for POST boys compared with POST girls (P < 0.05). BMSIs decreased for EARLY and PERI girls (-7.4-(-1.1%)) whereas the ratios remained stable for EARLY and PERI boys (-0.6-2.5%). This sex difference in BMSI change was due to a relatively greater increase in CoA among EARLY and PERI boys compared with same-maturity girls. BMSIs remained stable in POST girls and decreased in POST boys due to relatively greater gains in MCSA. This study provides novel longitudinal descriptions of the maturity- and sex-specific changes in bone geometry, strength and bone-muscle strength indices.
Enhanced bone screw fixation with biodegradable bone cement in osteoporotic bone model.
Juvonen, Tiina; Koistinen, Arto; Kröger, Heikki; Lappalainen, Reijo
2012-09-27
The purpose of this study was to study the potential of novel biodegradable PCL bone cement to improve bone screw fixation strength in osteoporotic bone. The biomechanical properties of bone cement (ε-polycaprolactone, PCL) and fixation strength were studied using biomechanical tests and bone screws fixed in an osteoporotic bone model. Removal torques and pullout strengths were assessed for cortical, self-tapping, and cancellous screws inserted in the osteoporotic bone model (polyurethane foam blocks with polycarbonate plate) with and without PCL bone cement. Open cell and cellular rigid foam blocks with a density of 0.12 g/cm3 were used in this model. Removal torques were significantly (more than six-fold) improved with bone cement for cancellous screws. Furthermore, the bone cement improved pullout strengths three to 12 times over depending on the screw and model material. Biodegradable bone cement turned out to be a very potential material to stabilize screw fixation in osteoporotic bone. The results warrant further research before safe clinical use, especially to clarify clinically relevant factors using real osteoporotic bone under human body conditions and dynamic fatigue testing for long-term performance.
2011-01-01
Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634
Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul
2011-03-21
Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.
Michalski, Andrew S; Edwards, W Brent; Boyd, Steven K
2017-10-17
Quantitative computed tomography has been posed as an alternative imaging modality to investigate osteoporosis. We examined the influence of computed tomography convolution back-projection reconstruction kernels on the analysis of bone quantity and estimated mechanical properties in the proximal femur. Eighteen computed tomography scans of the proximal femur were reconstructed using both a standard smoothing reconstruction kernel and a bone-sharpening reconstruction kernel. Following phantom-based density calibration, we calculated typical bone quantity outcomes of integral volumetric bone mineral density, bone volume, and bone mineral content. Additionally, we performed finite element analysis in a standard sideways fall on the hip loading configuration. Significant differences for all outcome measures, except integral bone volume, were observed between the 2 reconstruction kernels. Volumetric bone mineral density measured using images reconstructed by the standard kernel was significantly lower (6.7%, p < 0.001) when compared with images reconstructed using the bone-sharpening kernel. Furthermore, the whole-bone stiffness and the failure load measured in images reconstructed by the standard kernel were significantly lower (16.5%, p < 0.001, and 18.2%, p < 0.001, respectively) when compared with the image reconstructed by the bone-sharpening kernel. These data suggest that for future quantitative computed tomography studies, a standardized reconstruction kernel will maximize reproducibility, independent of the use of a quantitative calibration phantom. Copyright © 2017 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Predicting bone strength with ultrasonic guided waves
Bochud, Nicolas; Vallet, Quentin; Minonzio, Jean-Gabriel; Laugier, Pascal
2017-01-01
Recent bone quantitative ultrasound approaches exploit the multimode waveguide response of long bones for assessing properties such as cortical thickness and stiffness. Clinical applications remain, however, challenging, as the impact of soft tissue on guided waves characteristics is not fully understood yet. In particular, it must be clarified whether soft tissue must be incorporated in waveguide models needed to infer reliable cortical bone properties. We hypothesize that an inverse procedure using a free plate model can be applied to retrieve the thickness and stiffness of cortical bone from experimental data. This approach is first validated on a series of laboratory-controlled measurements performed on assemblies of bone- and soft tissue mimicking phantoms and then on in vivo measurements. The accuracy of the estimates is evaluated by comparison with reference values. To further support our hypothesis, these estimates are subsequently inserted into a bilayer model to test its accuracy. Our results show that the free plate model allows retrieving reliable waveguide properties, despite the presence of soft tissue. They also suggest that the more sophisticated bilayer model, although it is more precise to predict experimental data in the forward problem, could turn out to be hardly manageable for solving the inverse problem. PMID:28256568
Adult bone strength of children from single-parent families: the Midlife in the United States Study.
Crandall, C J; Karlamangla, A S; Merkin, S S; Binkley, N; Carr, D; Greendale, G A; Seeman, T E
2015-03-01
Bone health may be negatively impacted by childhood socio-environmental circumstances. We examined the independent associations of single-parent childhood and parental death or divorce in childhood with adult bone strength indices. Longer exposure to a single-parent household in childhood was associated with lower bone strength in adulthood. Because peak bone mass is acquired during childhood, bone health may be negatively impacted by childhood socio-environmental disadvantage. The goal of this study was to determine whether being raised in a single-parent household is associated with lower bone strength in adulthood. Using dual-energy X-ray absorptiometry data from 708 participants (mean age 57 years) in the Midlife in the United States Biomarker Project, we examined the independent associations of composite indices of femoral neck bone strength relative to load (in three failure modes: compression, bending, and impact) in adulthood with the experience of single-parent childhood and parental death or divorce in childhood. After adjustment for gender, race, menopause transition stage, age, and body mass index, each additional year of single-parent childhood was associated with 0.02 to 0.03 SD lower indices of adult femoral neck strength. In those with 9-16 years of single-parent childhood, the compression strength index was 0.41 SD lower, bending strength index was 0.31 SD lower, and impact strength index was 0.25 SD lower (all p values < 0.05). In contrast, parental death or divorce during childhood was not by itself independently associated with adult bone strength indices. The magnitudes of these associations were unaltered by additional adjustment for lifestyle factors and socioeconomic status in childhood and adulthood. Independent of parental death or divorce, growing up in a single-parent household is associated with lower femoral neck bone strength in adulthood, and this association is not entirely explained by childhood or adult socioeconomic conditions or lifestyle choices.
High-strength mineralized collagen artificial bone
NASA Astrophysics Data System (ADS)
Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai
2014-03-01
Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.
Nagel, Katrin; Bishop, Nicholas E; Schlegel, Ulf J; Püschel, Klaus; Morlock, Michael M
2017-02-01
The strength of the cement-bone interface in tibial component fixation depends on the morphology of the cement mantle. The purpose of this study was to identify thresholds of cement morphology parameters to maximize fixation strength using a minimum amount of cement. Twenty-three cadaveric tibiae were analyzed that had been implanted with tibial trays in previous studies and for which the pull-out strength of the tray had been measured. Specimens were separated into a group failing at the cement-bone interface (INTERFACE) and one failing in the bulk bone (BULK). Maximum pull-out strength corresponds to the ultimate strength of the bulk bone if the cement-bone interface is sufficiently strong. 3D models of the cement mantle in situ were reconstructed from computed tomography scans. The influences of bone mineral density and 6 cement morphology parameters (reflecting cement penetration, bone-cement interface, cement volume) on pull-out strength of the BULK group were determined using multiple regression analysis. The threshold of each parameter for classification of the specimens into either group was determined using receiver operating characteristic analysis. Cement penetration exceeding a mean of 1.1 mm or with a maximum of 5.6 mm exclusively categorized all BULK bone failure specimens. Failure strength of BULK failure specimens increased with bone mineral density (R 2 = 0.67, P < .001) but was independent of the cement morphology parameters. To maximize fixation strength, a mean cement penetration depth of at least 1.1 mm should be achieved during tibial tray cementing. Copyright © 2016 Elsevier Inc. All rights reserved.
Whole bone mechanics and bone quality.
Cole, Jacqueline H; van der Meulen, Marjolein C H
2011-08-01
The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.
Liu, X. Sherry; Wang, Ji; Zhou, Bin; Stein, Emily; Shi, Xiutao; Adams, Mark; Shane, Elizabeth; Guo, X. Edward
2013-01-01
While high-resolution peripheral quantitative computed tomography (HR-pQCT) has advanced clinical assessment of trabecular bone microstructure, nonlinear microstructural finite element (μFE) prediction of yield strength by HR-pQCT voxel model is impractical for clinical use due to its prohibitively high computational costs. The goal of this study was to develop an efficient HR-pQCT-based plate and rod (PR) modeling technique to fill the unmet clinical need for fast bone strength estimation. By using individual trabecula segmentation (ITS) technique to segment the trabecular structure into individual plates and rods, a patient-specific PR model was implemented by modeling each trabecular plate with multiple shell elements and each rod with a beam element. To validate this modeling technique, predictions by HR-pQCT PR model were compared with those of the registered high resolution μCT voxel model of 19 trabecular sub-volumes from human cadaveric tibiae samples. Both Young’s modulus and yield strength of HR-pQCT PR models strongly correlated with those of μCT voxel models (r2=0.91 and 0.86). Notably, the HR-pQCT PR models achieved major reductions in element number (>40-fold) and CPU time (>1,200-fold). Then, we applied PR model μFE analysis to HR-pQCT images of 60 postmenopausal women with (n=30) and without (n=30) a history of vertebral fracture. HR-pQCT PR model revealed significantly lower Young’s modulus and yield strength at the radius and tibia in fracture subjects compared to controls. Moreover, these mechanical measurements remained significantly lower in fracture subjects at both sites after adjustment for aBMD T-score at the ultradistal radius or total hip. In conclusion, we validated a novel HR-pQCT PR model of human trabecular bone against μCT voxel models and demonstrated its ability to discriminate vertebral fracture status in postmenopausal women. This accurate nonlinear μFE prediction of HR-pQCT PR model, which requires only seconds of desktop computer time, has tremendous promise for clinical assessment of bone strength. PMID:23456922
Jameson, John; Smith, Peter; Harris, Gerald
2015-01-01
Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. PMID:24928496
Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald
2014-09-01
Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.
Endocrine Consequences of Anorexia Nervosa
Misra, Madhusmita; Klibanski, Anne
2014-01-01
Summary Anorexia nervosa (AN) is prevalent in adolescents and young adults, and endocrine changes include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1), relative hypercortisolemia, decreases in leptin, insulin, amylin and incretins, and increases in ghrelin, PYY and adiponectin. These changes in turn have deleterious effects on bone, and may affect neurocognition, anxiety, depression and eating disorder psychopathology. Low bone density is particularly concerning; clinical fractures occur and changes in both bone microarchitecture and strength estimates have been reported. Recovery causes improvement of many, but not all, hormonal changes, and deficits in bone accrual may persist despite recovery. Physiologic, primarily transdermal, estrogen replacement increases bone density in adolescents, although catch-up is incomplete. In adults, oral estrogen co-administered with rhIGF-1 in one study, and bisphosphonates in another increased bone density, though not to normal. More studies are necessary to determine the optimal therapeutic approach in AN. PMID:24731664
Obstacles in the optimization of bone health outcomes in the female athlete triad.
Ducher, Gaele; Turner, Anne I; Kukuljan, Sonja; Pantano, Kathleen J; Carlson, Jennifer L; Williams, Nancy I; De Souza, Mary Jane
2011-07-01
Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the 'female athlete triad'. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture. This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging. Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.
Mechanical torque measurement for in vivo quantification of bone strength in the proximal femur.
Mueller, Marc Andreas; Hengg, Clemens; Hirschmann, Michael; Schmid, Denise; Sprecher, Christoph; Audigé, Laurent; Suhm, Norbert
2012-10-01
Bone strength determines fracture risk and fixation strength of osteosynthesis implants. In vivo, bone strength is currently measured indirectly by quantifying bone mineral density (BMD) which is however only one determinant of the bone's biomechanical competence besides the bone's macro- and micro-architecture and tissue related parameters. We have developed a measurement principle (DensiProbe™ Hip) for direct, mechanical quantification of bone strength within the proximal femur upon hip fracture fixation. Previous cadaver tests indicated a close correlation between DensiProbe™ Hip measurements, 3D micro-CT analysis and biomechanical indicators of bone strength. The goal of this study was to correlate DensiProbe™ Hip measurements with areal bone mineral density (BMD). Forty-three hip fracture patients were included in this study. Intraoperatively, DensiProbe™ Hip was inserted to the subsequent hip screw tip position within the femoral head. Peak torque to breakaway of local cancellous bone was registered. Thirty-seven patients underwent areal BMD measurements of the contralateral proximal femur. Failure of fixation was assessed radio graphically 6 and 12 weeks postoperatively. Peak torque and femoral neck BMD showed significant correlations (R=0.60, P=0.0001). In regression analysis, areal BMD explained 46% of femoral neck BMD variance in a quadratic relationship. Throughout the 12-week follow-up period, no failure of fixation was observed. DensiProbe™ Hip may capture variations of bone strength beyond areal BMD which are currently difficult to measure in vivo. A multicenter study will clarify if peak torque predicts fixation failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bone strength in pure bending: bearing of geometric and material properties.
Winter, Werner
2008-01-01
Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.
Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women.
Shanbhogue, Vikram V; Finkelstein, Joel S; Bouxsein, Mary L; Yu, Elaine W
2016-08-01
The clinical consequences of insulin resistance and hyperinsulinemia on bone remain largely unknown. The objective of the study was to evaluate the effect of insulin resistance on peripheral bone geometry, volumetric bone mineral density (vBMD), bone microarchitecture, and estimated bone strength. This cross-sectional study included 146 postmenopausal, nondiabetic Caucasian women (mean age 60.3 ± 2.7 y) who were participating in the Study of Women's Health Across the Nation. There were no interventions. High-resolution peripheral quantitative computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose were measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), with higher values indicating greater insulin resistance. There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness, and cortical thickness at the radius and tibia. These relationships remained, even after adjusting for body weight and other potential covariates (eg, time since menopause, cigarette smoking, physical activity, prior use of osteoporosis medications or glucocorticoids). In nondiabetic, postmenopausal women, insulin resistance was associated with smaller bone size, greater volumetric bone mineral density, and generally favorable bone microarchitecture at weight-bearing and nonweight-bearing skeletal sites. These associations were independent of body weight and other potential covariates, suggesting that hyperinsulinemia directly affects bone structure independent of obesity and may explain, in part, the higher trabecular bone density and favorable trabecular microarchitecture seen in individuals with type 2 diabetes mellitus.
Peak bone strength is influenced by calcium intake in growing rats.
Viguet-Carrin, S; Hoppler, M; Membrez Scalfo, F; Vuichoud, J; Vigo, M; Offord, E A; Ammann, P
2014-11-01
In this study we investigated the effect of supplementing the diet of the growing male rat with different levels of calcium (from low to higher than recommended intakes at constant Ca/P ratio), on multiple factors (bone mass, strength, size, geometry, material properties, turnover) influencing bone strength during the bone accrual period. Rats, age 28days were supplemented for 4weeks with high Ca (1.2%), adequate Ca (0.5%) or low Ca level (0.2%). Bone metabolism and structural parameters were measured. No changes in body weight or food intake were observed among the groups. As anticipated, compared to the adequate Ca intake, low-Ca intake had a detrimental impact on bone growth (33.63 vs. 33.68mm), bone strength (-19.7% for failure load), bone architecture (-58% for BV/TV) and peak bone mass accrual (-29% for BMD) due to the hormonal disruption implied in Ca metabolism. In contrast, novel, surprising results were observed in that higher than adequate Ca intake resulted in improved peak bone strength (106 vs. 184N/mm for the stiffness and 61 vs. 89N for the failure load) and bone material properties (467 vs. 514mPa for tissue hardness) but these effects were not accompanied by changes in bone mass, size, microarchitecture or bone turnover. Hormonal factors, IGF-I and bone modeling were also evaluated. Compared to the adequate level of Ca, IGF-I level was significantly lower in the low-Ca intake group and significantly higher in the high-Ca intake group. No detrimental effects of high Ca were observed on bone modeling (assessed by histomorphometry and bone markers), at least in this short-term intervention. In conclusion, the decrease in failure load in the low calcium group can be explained by the change in bone geometry and bone mass parameters. Thus, improvements in mechanical properties can be explained by the improved quality of intrinsic bone tissue as shown by nanoindentation. These results suggest that supplemental Ca may be beneficial for the attainment of peak bone strength and that multiple factors linked to bone mass and strength should be taken into account when setting dietary levels of adequate mineral intake to support optimal peak bone mass acquisition. Copyright © 2014 Elsevier Inc. All rights reserved.
How tough is bone? Application of elastic-plastic fracture mechanics to bone.
Yan, Jiahau; Mecholsky, John J; Clifton, Kari B
2007-02-01
Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is a better technique in estimating the toughness of bone.
Ip, Victoria; Toth, Zacharie; Chibnall, John; McBride-Gagyi, Sarah
2016-01-01
Introduction Mouse models are used frequently to study effects of bone diseases and genetic determinates of bone strength. Murine bones have an intracortical band of woven bone that is not present in human bones. This band is not obvious under brightfield imaging and not typically analyzed. Due to the band’s morphology and location it has been theorized to be remnant bone from early in life. Furthermore, lamellar and woven bone are well known to have differing mechanical strengths. The purpose of this study was to determine (i) if the band is from early life and (ii) if the woven bone or calcified cartilage contained within the band affect whole bone strength. Woven Bone Origin Studies In twelve to fourteen week old mice, doxycycline was used to label bone formed prior to 3 weeks old. Doxycycline labeling and woven bone patterns on contralateral femora matched well and encompassed an almost identical cross-sectional area. Also, we highlight for the first time in mice the presence of calcified cartilage exclusively within the band. However, calcified cartilage could not be identified on high resolution cone-beam microCT scans when examined visually or by thresholding methods. Mechanical Strength Studies Subsequently, three-point bending was used to analyze the effects of woven bone and calcified cartilage on whole bone mechanics in a cohort of male and female six and 13 week old Balb/C mice. Three-point bending outcomes were correlated with structural and compositional measures using multivariate linear regression. Woven bone composed a higher percent of young bones than older bones. However, calcified cartilage in older bones was twice that of younger bones, which was similar when normalized by area. Area and/or tissue mineral density accounted for >75% of variation for most strength outcomes. Percent calcified cartilage added significant predictive power to maximal force and bending stress. Calcified cartilage and woven bone could have more influence in genetic models where calcified cartilage percent is double our highest value. PMID:27829059
Fractography of human intact long bone by bending.
Kimura, T; Ogawa, K; Kamiya, M
1977-05-27
Human intact tibiae were tested using the static bending method to learn about the relationship between the fracture surface and the failure mode. The bending test was applied to test pieces and to whole bones. The fracture surface was observed by scanning electron microscopy. The bone fracture is closely related to the architecture of the bone substance, especially to the direction of the Haversian canals and the lamellae. The failure mode and the sequence of the break line of the bone can be found out by the observation on the fracture surface. Hardly any crushing effects caused by the compressive force is seen. The mechanical properties of the fractured bone can be estimated to some extend by considering the direction of the break line and the failure mode. The strength calculated by the simple beam formula for elastic materials can not be obtained directly because of the plastic deformation of the bone. The results of the tensile test may be applied to the fracture using the static bending moment.
3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer
NASA Astrophysics Data System (ADS)
Ma, Hongshi; Li, Tao; Huan, Zhiguang; Zhang, Meng; Yang, Zezheng; Wang, Jinwu; Chang, Jiang; Wu, Chengtie
2018-04-01
The challenges in bone tumor therapy are how to repair the large bone defects induced by surgery and kill all possible residual tumor cells. Compared to cancellous bone defect regeneration, cortical bone defect regeneration has a higher demand for bone substitute materials. To the best of our knowledge, there are currently few bifunctional biomaterials with an ultra-high strength for both tumor therapy and cortical bone regeneration. Here, we designed Fe-CaSiO3 composite scaffolds (30CS) via 3D printing technique. First, the 30CS composite scaffolds possessed a high compressive strength that provided sufficient mechanical support in bone cortical defects; second, synergistic photothermal and ROS therapies achieved an enhanced tumor therapeutic effect in vitro and in vivo. Finally, the presence of CaSiO3 in the composite scaffolds improved the degradation performance, stimulated the proliferation and differentiation of rBMSCs, and further promoted bone formation in vivo. Such 30CS scaffolds with a high compressive strength can function as versatile and efficient biomaterials for the future regeneration of cortical bone defects and the treatment of bone cancer.
The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density
Jin, A.; Cobb, J.; Hansen, U.; Bhattacharya, R.; Reinhard, C.; Vo, N.; Atwood, R.; Li, J.; Karunaratne, A.; Wiles, C.
2017-01-01
Objectives Bisphosphonates (BP) are the first-line treatment for preventing fragility fractures. However, concern regarding their efficacy is growing because bisphosphonate is associated with over-suppression of remodelling and accumulation of microcracks. While dual-energy X-ray absorptiometry (DXA) scanning may show a gain in bone density, the impact of this class of drug on mechanical properties remains unclear. We therefore sought to quantify the mechanical strength of bone treated with BP (oral alendronate), and correlate data with the microarchitecture and density of microcracks in comparison with untreated controls. Methods Trabecular bone from hip fracture patients treated with BP (n = 10) was compared with naïve fractured (n = 14) and non-fractured controls (n = 6). Trabecular cores were synchrotron scanned and micro-CT scanned for microstructural analysis, including quantification of bone volume fraction, microarchitecture and microcracks. The specimens were then mechanically tested in compression. Results BP bone was 28% lower in strength than untreated hip fracture bone, and 48% lower in strength than non-fractured control bone (4.6 MPa vs 6.4 MPa vs 8.9 MPa). BP-treated bone had 24% more microcracks than naïve fractured bone and 51% more than non-fractured control (8.12/cm2 vs 6.55/cm2 vs 5.25/cm2). BP and naïve fracture bone exhibited similar trabecular microarchitecture, with significantly lower bone volume fraction and connectivity than non-fractured controls. Conclusion BP therapy had no detectable mechanical benefit in the specimens examined. Instead, its use was associated with substantially reduced bone strength. This low strength may be due to the greater accumulation of microcracks and a lack of any discernible improvement in bone volume or microarchitecture. This preliminary study suggests that the clinical impact of BP-induced microcrack accumulation may be significant. Cite this article: A. Jin, J. Cobb, U. Hansen, R. Bhattacharya, C. Reinhard, N. Vo, R. Atwood, J. Li, A. Karunaratne, C. Wiles, R. Abel. The effect of long-term bisphosphonate therapy on trabecular bone strength and microcrack density. Bone Joint Res 2017;6:602–609. DOI: 10.1302/2046-3758.610.BJR-2016-0321.R1. PMID:29066534
NASA Astrophysics Data System (ADS)
Shrivastava, Pragya; Dalai, Sridhar; Sudera, Prerna; Sivam, Santosh Param; Vijayalakshmi, S.; Sharma, Pratibha
2013-02-01
With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO2 70 mol%, CaO 26 mol % and P2O5 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulated Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.
Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang
2017-09-01
Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2 = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2 = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2 = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.
Friedman, Michael A.; Bailey, Alyssa M.; Rondon, Matthew J.; McNerny, Erin M.; Sahar, Nadder D.; Kohn, David H.
2016-01-01
Exercise has long-lasting benefits to bone health that may help prevent fractures by increasing bone mass, bone strength, and tissue quality. Long-term exercise of 6–12 weeks in rodents increases bone mass and bone strength. However, in growing mice, a short-term exercise program of 3 weeks can limit increases in bone mass and structural strength, compared to non-exercised controls. Short-term exercise can, however, increase tissue strength, suggesting that exercise may create competition for minerals that favors initially improving tissue-level properties over structural-level properties. It was therefore hypothesized that adding calcium and phosphorus supplements to the diet may prevent decreases in bone mass and structural strength during a short-term exercise program, while leading to greater bone mass and structural strength than exercise alone after a long-term exercise program. A short-term exercise experiment was done for 3 weeks, and a long-term exercise experiment was done for 8 weeks. For each experiment, male 16-week old C57BL/6 mice were assigned to 4 weight-matched groups–exercise and non-exercise groups fed a control or mineral-supplemented diet. Exercise consisted of treadmill running at 12 m/min, 30 min/day for 7 days/week. After 3 weeks, exercised mice fed the supplemented diet had significantly increased tibial tissue mineral content (TMC) and cross-sectional area over exercised mice fed the control diet. After 8 weeks, tibial TMC, cross-sectional area, yield force, and ultimate force were greater from the combined treatments than from either exercise or supplemented diet alone. Serum markers of bone formation (PINP) and resorption (CTX) were both decreased by exercise on day 2. In exercised mice, day 2 PINP was significantly positively correlated with day 2 serum Ca, a correlation that was weaker and negative in non-exercised mice. Increasing dietary mineral consumption during an exercise program increases bone mass after 3 weeks and increases structural strength after 8 weeks, making bones best able to resist fracture. PMID:27008546
Effect of insertion torque on bone screw pullout strength.
Lawson, K J; Brems, J
2001-05-01
The effect of insertion torque on the holding strength of 4.5-mm ASIF/AO cortical bone screws was studied in vitro. Screw holding strength was determined using an Instron materials testing machine (Bristol, United Kingdom) on 55 lamb femora and 30 human tibiocortical bone sections. Holding strength was defined as tensile stress at pullout with rapid loading to construct failure. Different insertion torques were tested, normalizing to the thickness of cortical bone specimen engaged. These represented low, intermediate, high, and thread-damaging insertion torque. All screws inserted with thread-damaging torque and single cortex engaging screws inserted to high torque tightening moments showed diminished holding strength. This loss of strength amounted to 40%-50% less than screws inserted with less torque.
Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.
1996-01-01
Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Increased Cortical Porosity in Type-2 Diabetic Postmenopausal Women with Fragility Fractures
Patsch, Janina M.; Burghardt, Andrew J.; Yap, Samuel P.; Baum, Thomas; Schwartz, Ann V.; Joseph, Gabby B.; Link, Thomas M.
2012-01-01
The primary goal of this study was to assess peripheral bone microarchitecture and strength in diabetic postmenopausal women with fragility fractures (DMFx) and to compare them with diabetic women without fracture (DM). Secondary goals were to assess differences in non-diabetic women with (Fx) and without fragility fractures (Co) and in women with (DM) and without diabetes (Co). Eighty women (mean age 61.3±5.7 yrs) were recruited into these groups (n=20 per group). Participants underwent DXA and high-resolution peripheral quantitative computed tomography (HR-pQCT) of the ultradistal and distal radius and tibia. In the HR-pQCT images volumetric bone mineral density, cortical and trabecular structure measures, including cortical porosity, were calculated. Bone strength was estimated using micro-finite element analysis (μFEA). Differential strength estimates were obtained with and without open cortical pores. At the ultradistal and distal tibia, DMFx had greater intracortical pore volume (+52.6%, p=0.009; +95.4%, p=0.020), relative porosity (+58.1%; p=0.005; +87.9%, p=0.011) and endocortical bone surface (+10.9%, p=0.031; +11.5%, 0.019) than DM. At the distal radius DMFx had 4.7-fold greater relative porosity (p=0.000) than DM. At the ultradistal radius, intracortical pore volume was significantly higher in DMFx than DM (+67.8%, p=0.018). DMFx also displayed larger trabecular heterogeneity (ultradistal radius; +36.8%, p=0.035), and lower total and cortical BMD (ultradistal tibia: −12.6%, p=0.031; −6.8%, p=0.011) than DM. DMFx exhibited significantly higher pore-related deficits in stiffness, failure load and cortical load fraction at the ultradistal and distal tibia, and the distal radius than DM. Comparing non-diabetic Fx and Co, we only found a non-significant trend with increase in pore volume (+38.9%, p=0.060) at the ultradistal radius. The results of our study suggest that severe deficits in cortical bone quality are responsible for fragility fractures in postmenopausal diabetic women. PMID:22991256
Quantifying Bone–relevant Activity and its Relation to Bone Strength in Girls
Farr, Joshua N.; Lee, Vinson R.; Blew, Robert M.; Lohman, Timothy G.; Going, Scott B.
2011-01-01
Physical activity (PA) is critical for maximizing bone development during growth. However, there is no consensus on how well existing PA measurement tools predict bone strength. PURPOSE Compare four methods of quantifying physical activity (PA) (pedometer, 3-day physical activity recall (3DPAR), bone-specific physical activity questionnaire (BPAQ), and past year physical activity questionnaire (PYPAQ)), in young girls and evaluate their ability to predict indices of bone strength. METHODS 329 girls aged 8–13 years completed a pedometer assessment, the 3DPAR, the BPAQ, and a modified PYPAQ. Peripheral quantitative computed tomography (pQCT) was used to assess bone strength index (BSI) at metaphyseal (4% distal femur and tibia) sites and strength-strain index (SSI) at diaphyseal (femur = 20%, tibia = 66%) sites of the non-dominant leg. Correlations and hierarchical multiple regression were used to assess relationships among PA measures and indices of bone strength. RESULTS After adjustment for maturity, correlations between PA measures and indices of bone strength were positive, although low (r = 0.01–0.20). Regression models that included covariates (maturity, body mass, leg length, and ethnicity) and PA variables showed that PYPAQ score was significantly (P < 0.05) associated with BSI and SSI at all sites and explained more variance in BSI and SSI than any other PA measure. Pedometer steps were significantly (P < 0.05) associated with metaphyseal femur and tibia BSI and 3DPAR score was significantly (P < 0.05) associated with metaphyseal femur BSI. BPAQ score was not significantly (P > 0.05) associated with BSI or SSI at any sites. CONCLUSION A modified PYPAQ that accounts for the duration, frequency, and load of PA predicted indices of bone strength better than other PA measures. PMID:20631644
Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes.
Ackerman, Kathryn E; Cano Sokoloff, Natalia; DE Nardo Maffazioli, Giovana; Clarke, Hannah M; Lee, Hang; Misra, Madhusmita
2015-08-01
This study was aimed to compare fracture prevalence in oligoamenorrheic athletes (AA), eumenorrheic athletes (EA), and nonathletes (NA) and determine relationships with bone density, structure, and strength estimates. One hundred seventy-five females (100 AA, 35 EA, and 40 NA) 14-25 yr old were studied. Lifetime fracture history was obtained through participant interviews. Areal bone mineral density (BMD) was assessed by DXA at the spine, hip, and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (P ≤ 0.001). Bone mineral density Z-scores were lower in AA versus EA at the total hip, femoral neck, spine, and whole body (P ≤ 0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%; P ≤ 0.001), largely driven by stress fractures in AA versus EA and NA (32% vs 5.9% vs 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, volumetric BMD (vBMD) of outer trabecular region in radius and tibia, and trabecular thickness of the radius (P ≤ 0.05). In AA, those who had two or more stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness, and failure load at radius; and lower stiffness and failure load at tibia versus those with fewer than two stress fractures (P ≤ 0.05). Weight-bearing athletic activity increases BMD but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes.
Measures of Relative Dentary Strength in Rancho La Brea Smilodon fatalis over Time
Cervantes, Kassaundra S.; Meachen, Julie A.
2016-01-01
The late Pleistocene megafaunal extinction of approximately 12,000 years ago, included the demise of Smilodon fatalis, a hypercarnivore from the Rancho La Brea deposits, which has been studied across time by looking at different deposits or pits to determine morphological size and shape changes and trends during this time. To better understand functional aspects of these changes, this study focused on a measure of jaw strength over time, which can give an indication of morphological changes within the jaw that cannot be seen using surface morphometrics. By radiographing dentaries, cortical bone can be seen, which provides an estimate of resistance to bending forces while biting, and can be measured and used as an indicator of jaw strength. Measurements were taken at repeatable locations on the dentary of the depth of the cortical bone, and of a standardized measure of cortical bone, which allows for the comparison between different individuals. Specimens included those of five different pits ranging from about 37 Kybp to 13 Kybp (just before the extinction of S. fatalis). No significant difference was found in the depth of jaws at any of the measurement points from any of the pits. However, significant differences were found in both the actual thickness of cortical bone, and the standardized thickness of cortical bone at the lower P4 between pit 13 (which had the lowest amount of bone) and pit 61/67 (which had the highest). These conclusions support other studies that have shown that individuals in pit 13 were under physiological and perhaps dietary stress, which may be reflected in the deposition of cortical bone, while the opposite trend is seen in the individuals in pit 61/67. Our results further support findings suggesting Smilodon did not appear to be morphologically most vulnerable right before its extinction. PMID:27598462
Virtual stress testing of fracture stability in soldiers with severely comminuted tibial fractures.
Petfield, Joseph L; Hayeck, Garry T; Kopperdahl, David L; Nesti, Leon J; Keaveny, Tony M; Hsu, Joseph R
2017-04-01
Virtual stress testing (VST) provides a non-invasive estimate of the strength of a healing bone through a biomechanical analysis of a patient's computed tomography (CT) scan. We asked whether VST could improve management of patients who had a tibia fracture treated with external fixation. In a retrospective case-control study of 65 soldier-patients who had tibia fractures treated with an external fixator, we performed VST utilizing CT scans acquired prior to fixator removal. The strength of the healing bone and the amount of tissue damage after application of an overload were computed for various virtual loading cases. Logistic regression identified computed outcomes with the strongest association to clinical events related to nonunion within 2 months after fixator removal. Clinical events (n = 9) were associated with a low tibial strength for compression loading (p < 0.05, AUC = 0.74) or a low proportion of failed cortical bone tissue for torsional loading (p < 0.005, AUC = 0.84). Using post-hoc thresholds of a compressive strength of four times body-weight and a proportional of failed cortical bone tissue of 5%, the test identified all nine patients who failed clinically (100% sensitivity; 40.9% positive predictive value) and over three fourths of those (43 of 56) who progressed to successful healing (76.8% specificity; 100% negative predictive value). In this study, VST identified all patients who progressed to full, uneventful union after fixator removal; thus, we conclude that this new test has the potential to provide a quantitative, objective means of identifying tibia-fracture patients who can safely resume weight bearing. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:805-811, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Kato, Shoyo; Noma, Yuichi; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi
2016-01-01
Increasing calcium (Ca) intake is important for female athletes with a risk of weak bone caused by inadequate food intake. The aim of the present study was to examine the preventive effect of Ca supplementation on low bone strength in young female athletes with inadequate food intake, using the rats as an experimental model. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), voluntary running exercise and 30% food restriction group (EX-FR), and a voluntary running exercise, 30% food-restricted and high-Ca diet group (EX-FR+Ca). To Ca supplementation, we used 1.2% Ca diet as "high-Ca diet" that contains two-fold Ca of normal Ca diet. The experiment lasted for 12 weeks. As a result, the energy availability, internal organ weight, bone strength, bone mineral density, and Ca absorption in the EX-FR group were significantly lower than those in the EX group. The bone strength and Ca absorption in the EX-FR+Ca group were significantly higher than those in the EX-FR group. However, the bone strength in the EX-FR+Ca group did not reach that in the EX group. These results suggested that Ca supplementation had a positive effect on bone strength, but the effect was not sufficient to prevent lower bone strength caused by food restriction in young female athletes.
Adenovirus 36, Adiposity, and Bone Strength in Late-Adolescent Females
Laing, Emma M; Tripp, Ralph A; Pollock, Norman K; Baile, Clifton A; Della-Fera, Mary Anne; Rayalam, Srujana; Tompkins, Stephen M; Keys, Deborah A; Lewis, Richard D
2017-01-01
Adenovirus 36 (Ad36) is the only adenovirus to date that has been linked with obesity in humans. Our previous studies in late-adolescent females suggest that excess weight in the form of fat mass is associated with lower cortical bone strength. The purpose of this study was to assess the relationship between Ad36-specific antibodies, adiposity, and bone strength in our sample of late-adolescent females. A cross-sectional study of 115 females aged 18 to 19 years was performed. Participants were classified according to adiposity by dual-energy X-ray absorptiometry (body fat percentage as normal-fat [<32% body fat; n=93] or high-fat [≥ 32% body fat; n=22]), and according to the presence of Ad36-specific neutralizing antibodies. Peripheral quantitative computed tomography measured bone parameters at the 4% (trabecular bone) and 20% (cortical bone) site, and muscle cross-sectional area (MCSA) at the 66% site, from the distal metaphyses of the radius and the tibia. Bone strength was determined from volumetric bone mineral density and bone geometry to calculate bone strength index (BSI; trabecular site) and polar strength–strain index (SSI; cortical site). After adjustment for MCSA and limb length, radial SSI was lower in Ad36+ versus Ad36− subjects from the high-fat group (p<0.03), but not the normal-fat group. No significant differences were observed between groups in tibial SSI or BSI. These data support an association of adiposity and cortical bone strength at the radius with the presence of neutralizing antibodies to Ad36 in late-adolescent females. PMID:23296755
Bouxsein, Mary L; Szulc, Pawel; Munoz, Fracoise; Thrall, Erica; Sornay-Rendu, Elizabeth; Delmas, Pierre D
2007-06-01
We compared trochanteric soft tissue thickness, femoral aBMD, and the ratio of fall force to femoral strength (i.e., factor of risk) in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Reduced trochanteric soft tissue thickness, low femoral aBMD, and increased ratio of fall force to femoral strength (i.e., factor of risk) were associated with increased risk of hip fracture. The contribution of trochanteric soft tissue thickness to hip fracture risk is incompletely understood. A biomechanical approach to assessing hip fracture risk that compares forces applied to the hip during a sideways fall to femoral strength may by improved by incorporating the force-attenuating effects of trochanteric soft tissues. We determined the relationship between femoral areal BMD (aBMD) and femoral failure load in 49 human cadaveric specimens, 53-99 yr of age. We compared femoral aBMD, trochanteric soft tissue thickness, and the ratio of fall forces to bone strength (i.e., the factor of risk for hip fracture, phi), before and after accounting for the force-attenuating properties of trochanteric soft tissue in 21 postmenopausal women with incident hip fracture and 42 age-matched controls. Femoral aBMD correlated strongly with femoral failure load (r2 = 0.73-0.83). Age, height, and weight did not differ; however, women with hip fracture had lower total femur aBMD (OR = 2.06; 95% CI, 1.19-3.56) and trochanteric soft tissue thickness (OR = 1.82; 95% CI, 1.01, 3.31). Incorporation of trochanteric soft tissue thickness measurements reduced the estimates of fall forces by approximately 50%. After accounting for force-attenuating properties of trochanteric soft tissue, the ratio of fall forces to femoral strength was 50% higher in cases than controls (0.92 +/- 0.44 versus 0.65 +/- 0.50, respectively; p = 0.04). It is possible to compute a biomechanically based estimate of hip fracture risk by combining estimates of femoral strength based on an empirical relationship between femoral aBMD and bone strength in cadaveric femora, along with estimates of loads applied to the hip during a sideways fall that account for thickness of trochanteric soft tissues. Our findings suggest that trochanteric soft tissue thickness may influence hip fracture risk by attenuating forces applied to the femur during a sideways fall and provide rationale for developing improved measurements of trochanteric soft tissue and for studying a larger cohort to determine whether trochanteric soft tissue thickness contributes to hip fracture risk independently of aBMD.
Macdonald, H M; Kontulainen, S A; Petit, M A; Beck, T J; Khan, K M; McKay, H A
2008-10-01
The effects of physical activity on bone strength acquisition during growth are not well understood. In our cluster randomized trial, we found that participation in a novel school-based physical activity program enhanced bone strength acquisition and bone mass accrual by 2-5% at the femoral neck in girls; however, these benefits depended on teacher compliance with intervention delivery. Our intervention also enhanced bone mass accrual by 2-4% at the lumbar spine and total body in boys. We investigated the effects of a novel school-based physical activity program on femoral neck (FN) bone strength and mass in children aged 9-11 yrs. We used hip structure analysis to compare 16-month changes in FN bone strength, geometry and bone mineral content (BMC) between 293 children who participated in Action Schools! BC (AS! BC) and 117 controls. We assessed proximal femur (PF), lumbar spine (LS) and total body (TB) BMC using DXA. We compared change in bone outcomes between groups using linear regression accounting for the random school effect and select covariates. Change in FN strength (section modulus, Z), cross-sectional area (CSA), subperiosteal width and BMC was similar between control and intervention boys, but intervention boys had greater gains in BMC at the LS (+2.7%, p = 0.05) and TB (+1.7%, p = 0.03) than controls. For girls, change in FN-Z tended to be greater (+3.5%, p = 0.1) for intervention girls than controls. The difference in change increased to 5.4% (p = 0.05) in a per-protocol analysis that included girls whose teachers reported 80% compliance. AS! BC benefits bone strength and mass in school-aged children; however, our findings highlight the importance of accounting for teacher compliance in classroom-based physical activity interventions.
Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando
2016-07-01
Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD.
Influence of Exercise and Training on Critical Stages of Bone Growth and Development.
Klentrou, Panagiota
2016-05-01
Although osteoporosis is considered a geriatric disease, factors affecting bone strength are most influential during child growth and development. This article reviews what is known and still unclear in terms of bone growth, development and adaptation relative to physical activity before and during puberty. Bone is responsive to certain exercise protocols early in puberty and less so in postpubertal years, where bone strength, rather than bone mass, being the outcome of interest. Mechanical loading and high impact exercise promote bone strength. Intense training before and during puberty, however, may negatively affect bone development. Future research should focus on increasing our mechanistic understanding of the manner by which diverse physical stressors alter the integrity of bone. Longitudinal studies that examine the extent to which muscle and bone are comodulated by growth in children are also recommended.
Shi, Lijie; Sánchez-Guijo, Alberto; Hartmann, Michaela F; Schönau, Eckhard; Esche, Jonas; Wudy, Stefan A; Remer, Thomas
2015-02-01
Whether higher production of glucocorticoids (GCs) within the physiological range may already be affecting bone status in healthy children is unknown. Because dietary protein intake affects both bone and GCs, we examined the association of urinary measures of glucocorticoid status and cortical bone in healthy non-obese children, after particularly controlling for protein intake. Proximal forearm bone parameters were measured by peripheral quantitative computed tomography (pQCT). Subjects studied (n = 175, 87 males, aged 6 to 18 years) had two 24-hour urine samples collected: the first sample at 1 year before bone measurement, and the second sample at the time of bone measurement. Major urinary GC metabolites were measured by mass spectrometry and summed to assess daily adrenal GC secretion (∑C21). Urinary free cortisol (UFF) and cortisone (UFE) were summed to assess potentially bioactive free GCs (UFF + UFE). After controlling for several covariates and especially urinary nitrogen (the biomarker of protein intake) cortisol secretion ∑C21 was inversely associated with all analyzed pQCT measures of bone quality. ∑C21 also predicted a higher endosteal and lower periosteal circumference, explaining both a smaller cortical area and (together with lower BMD) a lower strength-strain-index (SSI). UFF + UFE, UFE itself, and a urinary metabolite-estimate of 11beta-hydroxysteroid dehydrogenase type1 (11beta-HSD1) activity showed corresponding reciprocal associations (p < 0.05) with BMD and bone mineral content, but not with SSI and bone geometry variables. In conclusion, higher GC levels, even within the physiological range, appear to exert negative influences on bone modeling and remodeling already during growth. Our physiological data also suggest a relevant role of cortisone as the direct source for intracrine-generated cortisol by bone cell 11beta-HSD1. © 2014 American Society for Bone and Mineral Research.
Hsu, Jui-Ting; Fuh, Lih-Jyh; Tu, Ming-Gene; Li, Yu-Fen; Chen, Kuan-Ting; Huang, Heng-Li
2013-04-01
This study investigated how the primary stability of a dental implant as measured by the insertion torque value (ITV), Periotest value (PTV), and implant stability quotient (ISQ) is affected by varying thicknesses of cortical bone and strengths of trabecular bone using synthetic bone models. Four synthetic cortical shells (with thicknesses of 0, 1, 2, and 3 mm) were attached to four cellular rigid polyurethane foams (with elastic moduli of 137, 47.5, 23, and 12.4 MPa) and one open-cell rigid polyurethane foam which mimic the osteoporotic bone (with an elastic modulus 6.5 MPa), to represent the jawbones with various cortical bone thicknesses and strengths of trabecular bone. A total of 60 bone specimens accompanied with implants was examined by a torque meter, Osstell resonance frequency analyzer, and Periotest electronic device. All data were statistically analyzed by two-way analysis of variance. In addition, second-order nonlinear regression was utilized to assess the correlations of the primary implant stability with the four cortex thicknesses and five strengths of trabecular bone. ITV, ISQ, and PTV differed significantly (p < .05) and were strongly correlated with the thickness of cortical bone (R(2) > 0.9) and the elastic modulus of trabecular bone (R(2) = 0.74-0.99). The initial stability at the time of implant placement is influenced by both the cortical bone thickness and the strength of trabecular bone; however, these factors are mostly nonlinearly correlated with ITV, PTV, and ISQ. Using ITV and PTV seems more suitable for identifying the primary implant stability in osteoporotic bone with a thin cortex. © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Chang, Katarina L.; Pennline, James A.
2013-01-01
During long-duration missions at the International Space Station, astronauts experience weightlessness leading to skeletal unloading. Unloading causes a lack of a mechanical stimulus that triggers bone cellular units to remove mass from the skeleton. A mathematical system of the cellular dynamics predicts theoretical changes to volume fractions and ash fraction in response to temporal variations in skeletal loading. No current model uses image technology to gather information about a skeletal site s initial properties to calculate bone remodeling changes and then to compare predicted bone strengths with the initial strength. The goal of this study is to use quantitative computed tomography (QCT) in conjunction with a computational model of the bone remodeling process to establish initial bone properties to predict changes in bone mechanics during bone loss and recovery with finite element (FE) modeling. Input parameters for the remodeling model include bone volume fraction and ash fraction, which are both computed from the QCT images. A non-destructive approach to measure ash fraction is also derived. Voxel-based finite element models (FEM) created from QCTs provide initial evaluation of bone strength. Bone volume fraction and ash fraction outputs from the computational model predict changes to the elastic modulus of bone via a two-parameter equation. The modulus captures the effect of bone remodeling and functions as the key to evaluate of changes in strength. Application of this time-dependent modulus to FEMs and composite beam theory enables an assessment of bone mechanics during recovery. Prediction of bone strength is not only important for astronauts, but is also pertinent to millions of patients with osteoporosis and low bone density.
Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.
1996-03-12
The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.
Association Between Insulin Resistance and Bone Structure in Nondiabetic Postmenopausal Women
Finkelstein, Joel S.; Bouxsein, Mary L.; Yu, Elaine W.
2016-01-01
Context: The clinical consequences of insulin resistance and hyperinsulinemia on bone remain largely unknown. Objective: The objective of the study was to evaluate the effect of insulin resistance on peripheral bone geometry, volumetric bone mineral density (vBMD), bone microarchitecture, and estimated bone strength. Design, Setting, and Participants: This cross-sectional study included 146 postmenopausal, nondiabetic Caucasian women (mean age 60.3 ± 2.7 y) who were participating in the Study of Women's Health Across the Nation. Interventions: There were no interventions. Main Outcome Measures: High-resolution peripheral quantitative computed tomography was used to assess bone density and microstructure at the distal radius and tibia. Fasting insulin and glucose were measured and insulin resistance was estimated using homeostasis model assessment of insulin resistance (HOMA-IR), with higher values indicating greater insulin resistance. Results: There was a negative association between HOMA-IR and bone size and a positive association between HOMA-IR and total vBMD, trabecular vBMD, trabecular thickness, and cortical thickness at the radius and tibia. These relationships remained, even after adjusting for body weight and other potential covariates (eg, time since menopause, cigarette smoking, physical activity, prior use of osteoporosis medications or glucocorticoids). Conclusions: In nondiabetic, postmenopausal women, insulin resistance was associated with smaller bone size, greater volumetric bone mineral density, and generally favorable bone microarchitecture at weight-bearing and nonweight-bearing skeletal sites. These associations were independent of body weight and other potential covariates, suggesting that hyperinsulinemia directly affects bone structure independent of obesity and may explain, in part, the higher trabecular bone density and favorable trabecular microarchitecture seen in individuals with type 2 diabetes mellitus. PMID:27243136
Farr, Joshua N.; Chen, Zhao; Lisse, Jeffrey R.; Lohman, Timothy G.; Going, Scott B.
2010-01-01
Understanding the influence of total body fat mass (TBFM) on bone during the peri-pubertal years is critical for the development of future interventions aimed at improving bone strength and reducing fracture risk. Thus, we evaluated the relationship of TBFM to volumetric bone mineral density (vBMD), geometry, and strength at metaphyseal and diaphyseal sites of the femur and tibia of young girls. Data from 396 girls aged 8–13 years from the “Jump-In: Building Better Bones” study were analyzed. Bone parameters were assessed using peripheral quantitative computed tomography (pQCT) at the 4% and 20% distal femur and 4% and 66% distal tibia of the non-dominant leg. Bone parameters at the 4% sites included trabecular vBMD, periosteal circumference, and bone strength index (BSI), while at the 20% femur and 66% tibia, parameters included cortical vBMD, periosteal circumference, and strength-strain index (SSI). Multiple linear regression analyses were used to assess associations between bone parameters and TBFM, controlling for muscle cross-sectional area (MCSA). Regression analyses were then repeated with maturity, bone length, physical activity, and ethnicity as additional covariates. Analysis of covariance (ANCOVA) was used to compare bone parameters among tertiles of TBFM. In regression models with TBFM and MCSA, associations between TBFM and bone parameters at all sites were not significant. TBFM explained very little variance in all bone parameters (0.2–2.3%). In contrast, MCSA was strongly related (p < 0.001) to all bone parameters, except cortical vBMD. The addition of maturity, bone length, physical activity, and ethnicity did not alter the relationship between TBFM and bone parameters. With bone parameters expressed relative to total body mass, ANCOVA showed that all outcomes were significantly (p < 0.001) greater in the lowest compared to the middle and highest tertiles of TBFM. Although TBFM is correlated with femur and tibia vBMD, periosteal circumference, and strength in young girls, this relationship is significantly attenuated after adjustment for MCSA. Nevertheless, girls with higher TBFM relative to body mass have markedly diminished vBMD, geometry, and bone strength at metaphyseal and diaphyseal sites of the femur and tibia. PMID:20060079
Simulated weightlessness and synbiotic diet effects on rat bone mechanical strength
NASA Astrophysics Data System (ADS)
Sarper, Hüseyin; Blanton, Cynthia; DePalma, Jude; Melnykov, Igor V.; Gabaldón, Annette M.
2014-10-01
This paper reports results on exposure to simulated weightlessness that leads to a rapid decrease in bone mineral density known as spaceflight osteopenia by evaluating the effectiveness of dietary supplementation with synbiotics to counteract the effects of skeletal unloading. Forty adult male rats were studied under four different conditions in a 2 × 2 factorial design with main effects of diet (synbiotic and control) and weight condition (unloaded and control). Hindlimb unloading was performed at all times for 14 days followed by 14 days of recovery (reambulation). The synbiotic diet contained probiotic strains Lactobacillus acidophilus and Lactococcus lactis lactis and prebiotic fructooligosaccharide. This paper also reports on the development of a desktop three-point bending device to measure the mechanical strength of bones from rats subjected to simulated weightlessness. The importance of quantifying bone resistance to breakage is critical when examining the effectiveness of interventions against osteopenia resulting from skeletal unloading, such as astronauts experience, disuse or disease. Mechanical strength indices provide information beyond measures of bone density and microarchitecture that enhance the overall assessment of a treatment's potency. In this study we used a newly constructed three-point bending device to measure the mechanical strength of femur and tibia bones from hindlimb-unloaded rats fed an experimental synbiotic diet enriched with probiotics and fermentable fiber. Two calculated outputs for each sample were Young's modulus of elasticity and fracture stress. Bone major elements (calcium, magnesium, and phosphorous) were quantified using ICP-MS analysis. Hindlimb unloading was associated with a significant loss of strength in the femur, and with significant reductions in major bone elements. The synbiotic diet did not protect against these unloading effects. Tibia strength and major elements were not reduced by hindlimb unloading, as was the case for femur, but tibia bone strength was negatively affected by the synbiotic diet. Thus, unexpectedly, the synbiotic diet was associated with null or detrimental effects on bone strength.
Bone strength and athletic ability in hominids: Ardipithecus ramidus to Homo sapiens
NASA Astrophysics Data System (ADS)
Lee, S. A.
2013-03-01
The ability of the femur to resist bending stresses is determined by its midlength cross-sectional geometry, its length and the elastic properties of the mineral part of the bone. The animal's athletic ability, determined by a ``bone strength index,'' is limited by this femoral bending strength in relation to the loads on the femur. This analysis is applied to the fossil record for Homo sapiens, Homo neanderthalensis, Homo erectus, Homo habilis, Australopithecus afarensis and Ardipithecus ramidus. Evidence that the femoral bone strength index of modern Homo sapiens has weakened over the last 50,000 years is found.
Drilling resistance: A method to investigate bone quality.
Lughmani, Waqas A; Farukh, Farukh; Bouazza-Marouf, Kaddour; Ali, Hassan
2017-01-01
Bone drilling is a major part of orthopaedic surgery performed during the internal fixation of fractured bones. At present, information related to drilling force, drilling torque, rate of drill-bit penetration and drill-bit rotational speed is not available to orthopaedic surgeons, clinicians and researchers as bone drilling is performed manually. This study demonstrates that bone drilling force data if recorded in-vivo, during the repair of bone fractures, can provide information about the quality of the bone. To understand the variability and anisotropic behaviour of cortical bone tissue, specimens cut from three anatomic positions of pig and bovine were investigated at the same drilling speed and feed rate. The experimental results showed that the drilling force does not only vary from one animal bone to another, but also vary within the same bone due to its changing microstructure. Drilling force does not give a direct indication of bone quality; therefore it has been correlated with screw pull-out force to provide a realistic estimation of the bone quality. A significantly high value of correlation (r2 = 0.93 for pig bones and r2 = 0.88 for bovine bones) between maximum drilling force and normalised screw pull-out strength was found. The results show that drilling data can be used to indicate bone quality during orthopaedic surgery.
Zavadovskaia, V D; Popov, V P; Akbasheva, O E; Grigor'ev, E G; Druzhinina, T V
2014-01-01
To show the capabilities of ultrasound monitoring to assess consolidation processes in fractures of long tubular bones in the use of bioactive material-containing implants. Eighty-two (45.1%) patients whose bone fragments had been fixed with bioactive material-coated plates and 100 (54.9%) patients with bioinert material-coated ones were examined. Consolidation changes were estimated by ultrasound and X-ray studies 2, 4, 6, and 12 months after surgery. Bone metabolic changes were determined by US osteometry 2 months following surgery. Ultrasound data were compared with the biochemical markers: C-terminal telopeptide (CrossLaps) and osteocalcin. Ultrasound monitoring of the rates of consolidation and the time course of changes in bone strength versus the biochemical markers established the positive effect of bioactiveplates on the process of consolidation in fractures of tubular bones and made it possible to consider local osteopenic syndrome to be a prognostically favorable sign of timely callus formation.
Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes
Ackerman, Kathryn E.; Cano Sokoloff, Natalia; Maffazioli, Giovana De Nardo; Clarke, Hannah; Lee, Hang; Misra, Madhusmita
2014-01-01
Introduction To compare fracture prevalence in oligo-amenorrheic athletes (AA), eumenorrheic athletes (EA), and non-athletes (NA) and determine relationships with bone density, structure and strength estimates. Methods 175 females (100 AA, 35 EA, and 40 NA) 14–25 yo were studied. Lifetime fracture history was obtained through participant interviews. Areal BMD was assessed by DXA at the spine, hip and whole body (WB). Bone structure was assessed by HRpQCT at the radius and tibia, and strength by finite element analysis. Results AA, EA, and NA did not differ in age, sexual maturity, or height. AA had lower BMI, and older menarchal age than EA and NA (p≤0.001). BMD Z-scores were lower in AA vs. EA at the total hip, femoral neck, spine, and whole body (p≤0.001). Lifetime fracture risk was higher in AA than EA and NA (47%, 25.7%, 12.5%, p≤0.001), largely driven by stress fractures in AA vs. EA and NA (32% vs. 5.9% vs. 0%). In AA, those who fractured had lower lumbar and WB BMD Z-scores, vBMD of outer trabecular region in radius and tibia, and trabecular thickness of the radius (p≤0.05). In AA, those who had 2 stress fractures had lower lumbar and WB BMD Z-scores, total cross-sectional area, trabecular vBMD, stiffness and failure load at radius; and lower stiffness and failure load at tibia versus those with <2 stress fracture (p≤0.05). Conclusion Weight-bearing athletic activity increases BMD, but may increase stress fracture risk in those with menstrual dysfunction. Bone microarchitecture and strength differences are more pronounced in AA with multiple stress fractures. This is the first study to examine fractures in relation to bone structure in adolescent female athletes. PMID:25397605
Popp, Kristin L; Hughes, Julie M; Martinez-Betancourt, Adriana; Scott, Matthew; Turkington, Victoria; Caksa, Signe; Guerriere, Katelyn I; Ackerman, Kathryn E; Xu, Chun; Unnikrishnan, Ginu; Reifman, Jaques; Bouxsein, Mary L
2017-10-01
Lower rates of fracture in both Blacks compared to Whites, and men compared to women are not completely explained by differences in bone mineral density (BMD). Prior evidence suggests that more favorable cortical bone microarchitecture may contribute to reduced fracture rates in older Black compared to White women, however it is not known whether these differences are established in young adulthood or develop during aging. Moreover, prior studies using high-resolution pQCT (HR-pQCT) have reported outcomes from a fixed-scan location, which may confound sex- and race/ethnicity-related differences in bone structure. We determined differences in bone mass, microarchitecture and strength between young adult Black and White men and women. We enrolled 185 young adult (24.2±3.4yrs) women (n=51 Black, n=50 White) and men (n=34 Black, n=50 White) in this cross-sectional study. We used dual-energy X-ray absorptiometry (DXA) to determine areal BMD (aBMD) at the femoral neck (FN), total hip (TH) and lumbar spine (LS), as well as HR-pQCT to assess bone microarchitecture and failure load by micro-finite element analysis (μFEA) at the distal tibia (4% of tibial length). We used two-way ANOVA to compare bone outcomes, adjusted for age, height, weight and physical activity. The effect of race/ethnicity on bone outcomes did not differ by sex, and the effect of sex on bone outcomes did not differ by race/ethnicty. After adjusting for covariates, Blacks had significantly greater FN, TH and LS aBMD compared to Whites (p<0.05 for all). Blacks also had greater cortical area, vBMD, and thickness, and lower cortical porosity, with greater trabecular thickness and total vBMD compared to Whites. μFEA-estimated FL was significantly higher among Blacks compared to Whites. Men had significantly greater total vBMD, trabecular thickness and cortical area and thickness, but greater cortical porosity than women, the net effects being a higher failure load in men than women. These findings demonstrate that more favorable bone microarchitecture in Blacks compared to Whites and in men compared to women is established by young adulthood. Advantageous bone strength among Blacks and men likely contributes to their lower risk of fractures throughout life compared to their White and women counterparts. Copyright © 2017 Elsevier Inc. All rights reserved.
Nawathe, Shashank; Juillard, Frédéric; Keaveny, Tony M.
2015-01-01
The role of tissue-level post-yield behavior on the apparent-level strength of trabecular bone is a potentially important aspect of bone quality. To gain insight into this issue, we compared the apparent-level strength of trabecular bone for the hypothetical cases of fully brittle versus fully ductile failure behavior of the trabecular tissue. Twenty human cadaver trabecular bone specimens (5 mm cube; BV/TV = 6–36%) were scanned with micro-CT to create 3D finite element models (22-micron element size). For each model, apparent-level strength was computed assuming either fully brittle (fracture with no tissue ductility) or fully ductile (yield with no tissue fracture) tissue-level behaviors. We found that the apparent-level ultimate strength for the brittle behavior was only about half the value of the apparent-level 0.2%-offset yield strength for the ductile behavior, and the ratio of these brittle to ductile strengths was almost constant (mean ± SD = 0.56 ± 0.02; n=20; R2 = 0.99 between the two measures). As a result of this small variation, although the ratio of brittle to ductile strengths was positively correlated with the bone volume fraction (R2=0.44, p=0.01) and structure model index (SMI, R2=0.58, p<0.01), these effects were small. Mechanistically, the fully ductile behavior resulted in a much higher apparent-level strength because in this case about 16-fold more tissue was required to fail than for the fully brittle behavior; also, there was more tensile- than compressive-mode of failure at the tissue level for the fully brittle behavior. We conclude that, in theory, the apparent-level strength behavior of human trabecular bone can vary appreciably depending on whether the tissue fails in a fully ductile versus fully brittle manner, and this effect is largely constant despite appreciable variations in bone volume fraction and microarchitecture. PMID:23497799
[Toward an anthropometric diagnosis of osteopenia and a biochemical diagnosis of osteoporoses].
Cointry, Gustavo R; Capozza, Ricardo F; Ferretti, Jose L; Frost, Harold M
2003-01-01
The current (metabolic) conception of bone-weakening diseases regards bone strength as determined by a systemically-controlled "mineralized mass" which grows until it reaches a peak and then is lost at individually-specific rates. This concept disregards bone biomechanics. Skeletons are structures, it reaches of which depends on the stiffness and the spatial distribution rather than the volume of the calcified material. Rather than allowing a systemic regulation of their "mass" as a way to optimize their strength, bones autocontrol their stiffness by orienting bone formation and destruction as locally determined by the directional sensing, by osteocytes, of the strains caused by mechanical usage (gravity, muscle contractions). Bone mass and strength are just side products of that control. Endocrine-metabolic systems modulate non-directionally the work of bone cells as required for achieving a mineral equilibrium, despite the biomechanical controls, and can determine osteopenias and osteoporoses. Osteoporoses are not "intense osteopenias" (as per the current WHO's conception) but "osteopenic bone fragilities" (as recently stated by the NIH). The diagnosis of osteopenia is an anthropometric problem that can be solved densitometrically; but that of bone fragility is a biomechanical matter that requires evaluation of bone material's stiffness and distribution by other means ("resistometry"). For therapeutic purposes, osteopenias and osteoporoses should be also evaluated according to the relationship between bone mass or strength and muscle mass or strength in order to distinguish between "mechanical" (disuse) and "metabolic" etiologies (intrinsic bone lesion, or systemic disequilibrium), in which the bone/muscle proportionality tends to remain normal or to deteriorate, respectively.
Bone's mechanostat: a 2003 update.
Frost, Harold M
2003-12-01
The still-evolving mechanostat hypothesis for bones inserts tissue-level realities into the former knowledge gap between bone's organ-level and cell-level realities. It concerns load-bearing bones in postnatal free-living bony vertebrates, physiologic bone loading, and how bones adapt their strength to the mechanical loads on them. Voluntary mechanical usage determines most of the postnatal strength of healthy bones in ways that minimize nontraumatic fractures and create a bone-strength safety factor. The mechanostat hypothesis predicts 32 things that occur, including the gross anatomical bone abnormalities in osteogenesis imperfecta; it distinguishes postnatal situations from baseline conditions at birth; it distinguishes bones that carry typical voluntary loads from bones that have other chief functions; and it distinguishes traumatic from nontraumatic fractures. It provides functional definitions of mechanical bone competence, bone quality, osteopenias, and osteoporoses. It includes permissive hormonal and other effects on bones, a marrow mediator mechanism, some limitations of clinical densitometry, a cause of bone "mass" plateaus during treatment, an "adaptational lag" in some children, and some vibration effects on bones. The mechanostat hypothesis may have analogs in nonosseous skeletal organs as well. Copyright 2003 Wiley-Liss, Inc.
Osteoporosis: Are we measuring what we intend to measure? In search of the ideal bone strength study
NASA Astrophysics Data System (ADS)
de Riese, Cornelia
2006-02-01
In 1991 the World Health Organization (WHO) defined osteoporosis as a "loss of bone mass and micro architectural deterioration of the skeleton leading to increased risk of fracture." 1,2 Since microarchitecture can not be measured directly, a panel of the WHO recommended that the diagnosis be made according to a quantifiable surrogate marker, calcium mineral, in bone. Subsequently in 1994, the definition focused on the actual bone "density," giving densitometric technology a central place in establishing the diagnosis of osteoporosis. 3,4 But soon it became obvious that there was only limited correlation between bone mineral density (BMD) and actual occurrence of fractures and that decreases in bone mass account for only about 50% of the deterioration of bone strength with aging. In other words only about 60% of bone strength is related to BMD. 5 Recent developments in bone research have shown that bone mineral density in itself is not sufficient to accurately predict fracture risk. Bone is composed of inorganic calcium apatite crystals that mineralize an organic type I collagen matrix. The degree of mineralization, the properties of the collagen matrix, crystal size, trabecular orientation, special distribution of the different components and many more factors are all impacting bone strength. 6-14 Human cadaver studies have confirmed the correlation between bone density and bone. 26 strength. 5,15-20 Changes in cancellous bone morphology appear to lead to a disproportionate decrease in bone strength. 21-26 When postmenopausal women are stratified by age, obvious differences between BMD and actual fracture risk are observed. 24 Felsenberg eloquently summarizes what he calls the "Bone Quality Framework." In great detail he talks about the geometry and micro- architecture of bone and how the different components are related to functional stability. 27 Are our current testing modalities appropriately addressing these structural factors? Are we keeping in mind that in screening for osteoporosis the key variable is fragility, not bone density itself? All currently FDA approved and commercially available equipments for the evaluation of bone status claim that they - at least indirectly - assess the biological fracture risk. This review summarizes an extensive current literature research covering FDA approved as well as experimental devices for the evaluation of bone. The pros and cons of the different techniques are discussed in the context of diagnostic accuracies and practical implications.
Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Arsuaga, Juan Luis
2018-04-01
The recovery to date of three complete and five partial femora, seven complete tibiae, and four complete fibulae from the Atapuerca Sima de los Huesos site provides an opportunity to analyze the biomechanical cross-sectional properties in this Middle Pleistocene population and to compare them with those of other fossil hominins and recent modern humans. We have performed direct comparisons of the cross-sectional geometric parameters and reduced major axis (RMA) regression lines among different samples. We have determined that Atapuerca Sima de los Huesos (SH) fossils have significantly thicker cortices than those of recent modern humans for the three leg bones at all diaphyseal levels, except that of the femur at 35% of biomechanical length. The SH bones are similar to those of Neandertals and Middle Pleistocene humans and different from Homo sapiens in their diaphyseal cross-sectional shape and strength parameters. When standardized by estimated body size, both the SH and Neandertal leg bones have in general greater strength than those of H. sapiens from the early modern (EMH), Upper Paleolithic (UP), and recent populations (RH). The Sima de los Huesos human leg bones have, in general terms, an ancestral pattern similar to that of Pleistocene humans and differing from H. sapiens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Objectively measured physical activity and bone strength in 9-year-old boys and girls.
Sardinha, Luís B; Baptista, Fátima; Ekelund, Ulf
2008-09-01
The purpose of this work was to analyze the relationship between intensity and duration of physical activity and composite indices of femoral neck strength and bone-mineral content of the femoral neck, lumbar spine, and total body. Physical activity was assessed by accelerometry in 143 girls and 150 boys (mean age: 9.7 years). Measurement of bone-mineral content, femoral neck bone-mineral density, femoral neck width, hip axis length, and total body fat-free mass was performed with dual-energy radiograph absorptiometry. Compressive [(bone-mineral density x femoral neck width/weight)] and bending strength [(bone-mineral density x femoral neck width(2))/(hip axis length x weight)] express the forces that the femoral neck has to withstand in weight bearing, whereas impact strength [(bone-mineral density x femoral neck width x hip axis length)/(height x weight)] expresses the energy that the femoral neck has to absorb in an impact from standing height. Analysis of covariance (fat-free mass and age adjusted) showed differences between boys and girls of approximately 9% for compressive, 10% for bending, and 9% for impact strength. Stepwise regression analysis using time spent at sedentary, light, moderate, and vigorous physical activity as predictors revealed that vigorous physical activity explained 5% to 9% of femoral neck strength variable variance in both genders, except for bending strength in boys, and approximately 1% to 3% of total body and femoral neck bone-mineral content variance. Vigorous physical activity was then used to categorize boys and girls into quartiles. Pairwise comparison indicated that boys in the third and fourth quartiles (accumulation of >26 minutes/day) demonstrated higher compressive (11%-12%), bending (10%), and impact (14%) strength than boys in the first quartile. In girls, comparison revealed a difference between the fourth (accumulation of >25 minutes/day) and first quartiles for bending strength (11%). We did not observe any relationship between physical activity and lumbar spine strength. Femoral neck strength is higher in boys than girls. Vigorous intensity emerged as the main physical activity predictor of femoral neck strength but did not explain gender differences. Daily vigorous physical activity for at least approximately 25 minutes seems to improve femoral neck bone health in children.
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100–150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1–10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications. PMID:26782020
NASA Astrophysics Data System (ADS)
Roohani-Esfahani, Seyed-Iman; Newman, Peter; Zreiqat, Hala
2016-01-01
A challenge in regenerating large bone defects under load is to create scaffolds with large and interconnected pores while providing a compressive strength comparable to cortical bone (100-150 MPa). Here we design a novel hexagonal architecture for a glass-ceramic scaffold to fabricate an anisotropic, highly porous three dimensional scaffolds with a compressive strength of 110 MPa. Scaffolds with hexagonal design demonstrated a high fatigue resistance (1,000,000 cycles at 1-10 MPa compressive cyclic load), failure reliability and flexural strength (30 MPa) compared with those for conventional architecture. The obtained strength is 150 times greater than values reported for polymeric and composite scaffolds and 5 times greater than reported values for ceramic and glass scaffolds at similar porosity. These scaffolds open avenues for treatment of load bearing bone defects in orthopaedic, dental and maxillofacial applications.
Bone strength and athletic ability in hominids: Ardipithecus ramidus to Homo sapiens
NASA Astrophysics Data System (ADS)
Lee, Scott
2012-10-01
A methodology for the evaluation of the athletic ability of animals based on the strength of their femur and their body mass is developed. The ability of the femur to resist bending stresses is determined by its midlength cross-sectional geometry, its length and the elastic properties of the mineral part of the bone. The animal's athletic ability, determined by a ``bone strength index,'' is limited by this femoral bending strength in relation to the loads on the femur. This analysis is applied to the fossil record for Homo sapiens, Homo neanderthalensis, Homo erectus, Homo habilis, Australopithecus afarensis and Ardipithecus ramidus. Evidence that the femoral bone strength index of modern Homo sapiens has weakened over the last 50,000 years is found.
Belavý, Daniel L; Armbrecht, Gabriele; Blenk, Tilo; Bock, Oliver; Börst, Hendrikje; Kocakaya, Emine; Luhn, Franziska; Rantalainen, Timo; Rawer, Rainer; Tomasius, Frederike; Willnecker, Johannes; Felsenberg, Dieter
2016-02-01
We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD. Copyright © 2015 Elsevier Inc. All rights reserved.
Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.
Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L
2016-01-01
Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.
High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading
NASA Technical Reports Server (NTRS)
Liang, Michael T. C.
1998-01-01
It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P
2011-10-01
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 μm and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 ± 22 MPa) comparable with that of human cortical bone (100-150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50-90%). The strength is ~100-times that of polymer scaffolds and 4-5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. Published by Elsevier Ltd.
Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.
2011-01-01
The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606
Adult Bone Strength of Children from Single-Parent Families: The Midlife in the U.S. Study
Crandall, Carolyn J.; Karlamangla, Arun S.; Merkin, Sharon Stein; Binkley, Neil; Carr, Deborah; Greendale, Gail A.; Seeman, Teresa E.
2015-01-01
Purpose Because peak bone mass is acquired during childhood, bone health may be negatively impacted by childhood socio-environmental disadvantage. The goal of this study was to determine whether being raised in a single-parent household is associated with lower bone strength in adulthood. Methods Using dual-energy x-ray absorptiometry data from 708 participants (mean age 57 years) in the Midlife in the United States Biomarker Project, we examined the independent associations of composite indices of femoral neck bone strength relative to load (in three failure modes: compression, bending, and impact) in adulthood with the experience of single-parent childhood and parental death or divorce in childhood. Results After adjustment for gender, race, menopause transition stage, age, and body mass index, each additional year of single-parent childhood was associated with 0.02 to 0.03 SD lower indices of adult femoral neck strength. In those with 9-16 years of single-parent childhood, the compression strength index was 0.41 SD lower, bending strength index was 0.31 SD lower, and impact strength index was 0.25 SD lower (all p-values < 0.05). In contrast, parental death or divorce during childhood was not by itself independently associated with adult bone strength indices. The magnitudes of these associations were unaltered by additional adjustment for lifestyle factors and socioeconomic status in childhood and adulthood. Conclusions Independent of parental death or divorce, growing up in a single-parent household is associated with lower femoral neck bone strength in adulthood, and this association is not entirely explained by childhood or adult socioeconomic conditions or lifestyle choices. PMID:25510582
Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics.
Dowthwaite, J N; Scerpella, T A
2011-01-01
Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON): were compared with girls exposed to gymnastics during growth (EX/GYM: ), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts' bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM: vs. NON: , adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Sixteen postmenarcheal EX/GYM: (age 16.7 years; gynecological age 3.4 years) and 13 NON: (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM: exhibited greater CSA and bone strength indices than NON; EX/GYM: exhibited 79% larger intramedullary CSA than NON: (p < 0.05). EX/GYM: had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM: demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking.
Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics
Scerpella, T. A.
2011-01-01
Summary Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON) were compared with girls exposed to gymnastics during growth (EX/GYM), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Introduction Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts’ bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Methods Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM vs. NON, adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Results Sixteen postmenarcheal EX/GYM (age 16.7 years; gynecological age 3.4 years) and 13 NON (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM exhibited greater CSA and bone strength indices than NON; EX/GYM exhibited 79% larger intramedullary CSA than NON (p<0.05). EX/GYM had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Conclusions Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking. PMID:20419293
Variability of the pullout strength of cancellous bone screws with cement augmentation.
Procter, P; Bennani, P; Brown, C J; Arnoldi, J; Pioletti, D P; Larsson, S
2015-06-01
Orthopaedic surgeons often face clinical situations where improved screw holding power in cancellous bone is needed. Injectable calcium phosphate cements are one option to enhance fixation. Paired screw pullout tests were undertaken in which human cadaver bone was augmented with calcium phosphate cement. A finite element model was used to investigate sensitivity to screw positional placement. Statistical analysis of the data concluded that the pullout strength was generally increased by cement augmentation in the in vitro human cadaver tests. However, when comparing the individual paired samples there were surprising results with lower strength than anticipated after augmentation, in apparent contradiction to the generally expected conclusion. Investigation using the finite element model showed that these strength reductions could be accounted for by small screw positional changes. A change of 0.5mm might result in predicted pullout force changes of up to 28%. Small changes in screw position might lead to significant changes in pullout strength sufficient to explain the lower than expected individual pullout values in augmented cancellous bone. Consequently whilst the addition of cement at a position of low strength would increase the pullout strength at that point, it might not reach the pullout strength of the un-augmented paired test site. However, the overall effect of cement augmentation produces a significant improvement at whatever point in the bone the screw is placed. The use of polymeric bone-substitute materials for tests may not reveal the natural variation encountered in tests using real bone structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Qiang; Baino, Francesco; Pugno, Nicola M; Vitale-Brovarone, Chiara
2013-04-01
A new approach based on the concepts of quantized fracture mechanics (QFM) is presented and discussed in this paper to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic scaffolds mimicking the architecture of cancellous bone, to ceramic substrates. The innovative application of glass-derived scaffolds as trabecular-like coatings is proposed in order to enhance the osteointegration of prosthetic ceramic devices. The scaffolds, prepared by polymeric sponge replication, are joined to alumina substrates by a dense glass-ceramic coating (interlayer) and the so-obtained 3-layer constructs are investigated from micro-structural, morphological and mechanical viewpoints. In particular, the fracture strengths of three different crack propagation modes, i.e. glass-derived scaffold fracture, interface delamination or mixed fracture, are predicted in agreement with those of experimental mechanical tests. The approach proposed in this work could have interesting applications towards an ever more rational design of bone tissue engineering biomaterials and coatings, in view of the optimization of their mechanical properties for making them actually suitable for clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Insulin resistance and bone strength: findings from the study of midlife in the United States.
Srikanthan, Preethi; Crandall, Carolyn J; Miller-Martinez, Dana; Seeman, Teresa E; Greendale, Gail A; Binkley, Neil; Karlamangla, Arun S
2014-04-01
Although several studies have noted increased fracture risk in individuals with type 2 diabetes mellitus (T2DM), the pathophysiologic mechanisms underlying this association are not known. We hypothesize that insulin resistance (the key pathology in T2DM) negatively influences bone remodeling and leads to reduced bone strength. Data for this study came from 717 participants in the Biomarker Project of the Midlife in the United States Study (MIDUS II). The homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from fasting morning blood glucose and insulin levels. Projected 2D (areal) bone mineral density (BMD) was measured in the lumbar spine and left hip using dual-energy X-ray absorptiometry (DXA). Femoral neck axis length and width were measured from the hip DXA scans, and combined with BMD and body weight and height to create composite indices of femoral neck strength relative to load in three different failure modes: compression, bending, and impact. We used multiple linear regressions to examine the relationship between HOMA-IR and bone strength, adjusted for age, gender, race/ethnicity, menopausal transition stage (in women), and study site. Greater HOMA-IR was associated with lower values of all three composite indices of femoral neck strength relative to load, but was not associated with BMD in the femoral neck. Every doubling of HOMA-IR was associated with a 0.34 to 0.40 SD decrement in the strength indices (p<0.001). On their own, higher levels of fasting insulin (but not of glucose) were independently associated with lower bone strength. Our study confirms that greater insulin resistance is related to lower femoral neck strength relative to load. Further, we note that hyperinsulinemia, rather than hyperglycemia, underlies this relationship. Although cross-sectional associations do not prove causality, our findings do suggest that insulin resistance and in particular, hyperinsulinemia, may negatively affect bone strength relative to load. © 2014 American Society for Bone and Mineral Research.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-10-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.
THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES
Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil
2016-01-01
In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors. PMID:28042512
Ireland, Alex; Muthuri, Stella; Rittweger, Joern; Adams, Judith E; Ward, Kate A; Kuh, Diana; Cooper, Rachel
2017-06-01
Later age at onset of independent walking is associated with lower leg bone strength in childhood and adolescence. However, it is unknown whether these associations persist into older age or whether they are evident at axial (central) or upper limb sites. Therefore, we examined walking age obtained at age 2 years and bone outcomes obtained by dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT) scans at ages 60 to 64 years in a nationally representative cohort study of British people, the MRC National Survey of Health and Development. It was hypothesized that later walking age would be associated with lower bone strength at all sites. Later independent walking age was associated with lower height-adjusted hip (standardized regression coefficients with 95% confidence interval [CI] -0.179 [-0.251 to -0.107]), spine (-0.157 [-0.232 to -0.082]), and distal radius (-0.159 [-0.245 to -0.073]) bone mineral content (BMC, indicating bone compressive strength) in men (all p < 0.001). Adjustment for covariates partially attenuated these associations, primarily because of lower lean mass and adolescent sporting ability in later walkers. These associations were also evident for a number of hip geometric parameters (including cross-sectional moment of inertia [CSMI], indicating bone bending/torsional strength) assessed by hip structural analysis (HSA) from DXA scans. Similar height-adjusted associations were also observed in women for several hip, spine, and upper limb outcomes, although adjustment for fat or lean mass led to complete attenuation for most outcomes, with the exception of femoral shaft CSMI and spine bone area (BA). In conclusion, later independent walking age appears to have a lifelong association with bone strength across multiple skeletal sites in men. These effects may result from direct effects of early life loading on bone growth and mediation by adult body composition. Results suggest that late walking age may represent a novel risk factor for subsequent low bone strength. Existing interventions effective in hastening walking age may have positive effects on bone across life. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume
2016-06-01
Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. Copyright © 2016 Elsevier Inc. All rights reserved.
Morita, Yusuke; Yamasaki, Kenichi; Hattori, Koji
2010-10-01
It is difficult to quantitatively evaluate adhesive strength between an implant and the neighboring bone using animal experiments, because the degree of fixation of an implant depends on differences between individuals and the clearance between the material and the bone resulting from surgical technique. A system was designed in which rat bone marrow cells were used to quantitatively evaluate the adhesion between titanium alloy plates and bone plates in vitro. Three kinds of surface treatment were used: a sand-blasted surface, a titanium-sprayed surface and a titanium-sprayed surface coated with hydroxyapatite. Bone marrow cells obtained from rat femora were seeded on the titanium alloy plates, and the cells were cultured between the titanium alloy plates and the bone plates sliced from porcine ilium for 2 weeks. After cultivation, adhesive strength was measured using a tensile test, after which DNA amount and Alkaline phosphatase activity were measured. The seeded cells accelerated adhesion of the titanium alloy plate to the bone plate. Adhesive strength of the titanium-sprayed surface was lower than that of the sand-blasted surface because of lower initial contact area, although there was no difference in Alkaline phosphatase activity between two surface treatments. A hydroxyapatite coating enhanced adhesive strength between the titanium alloy palate and the bone plate, as well as enhancing osteogenic differentiation of bone marrow cells. It is believed that this novel experimental method can be used to simultaneously evaluate the osteogenic differentiation and the adhesive strength of an implant during in vitro cultivation. 2010 Elsevier Ltd. All rights reserved.
Määttä, M.; Macdonald, H. M.; Mulpuri, K.
2016-01-01
Summary Forearm fractures are common during growth. We studied bone strength in youth with a recent forearm fracture. In girls, suboptimal bone strength was associated with fractures. In boys, poor balance and physical inactivity may lead to fractures. Prospective studies will confirm these relationships and identify targets for prevention strategies. Introduction The etiology of pediatric forearm fractures is unclear. Thus, we examined distal radius bone strength, microstructure, and density in children and adolescents with a recent low- or moderate-energy forearm fracture and those without forearm fractures. Methods We assessed the non-dominant (controls) and non-fractured (cases) distal radius (7 % site) using high-resolution peripheral quantitative computed tomography (HR-pQCT) (Scanco Medical AG) in 270 participants (girls: cases n=47, controls n=61 and boys: cases n=88, controls n=74) aged 8–16 years. We assessed standard anthropometry, maturity, body composition (dual energy X-ray absorptiometry (DXA), Hologic QDR 4500 W) physical activity, and balance. We fit sex-specific logistic regression models for each bone outcome adjusting for maturity, ethnicity, height, and percent body fat. Results In girls, impaired bone strength (failure load, ultimate stress) and a high load-to-strength ratio were associated with low-energy fractures (odds ratios (OR) 2.8–4.3). Low total bone mineral density (Tt.BMD), bone volume ratio, trabecular thickness, and cortical BMD and thickness were also associated with low-energy fractures (ORs 2.0–7.0). In boys, low Tt.BMD, but not bone strength, was associated with low-energy fractures (OR=1.8). Boys with low-energy fractures had poor balance and higher percent body fat compared with controls (p<0.05). Boys with fractures (both types) were less active than controls (p<0.05). Conclusions Forearm fracture etiology appears to be sex-specific. In girls, deficits in bone strength are associated with fractures. In boys, a combination of poor balance, excess body fat, and low physical activity may lead to fractures. Prospective studies are needed to confirm these relationships and clarify targets for prevention strategies. PMID:25572041
Calcium phosphate compatible bone cement: Characterization, bonding properties and tissue response
NASA Astrophysics Data System (ADS)
Roemhildt, Maria Lynn
A novel, inorganic, bone cement, containing calcium phosphate, developed for implant fixation was evaluated. Setting properties were determined over a range of temperatures. The flow of the cement was greatly increased by application of vibration. Changes in the cement during hydration and aging were evaluated. Compressive strength of the cement over time was studied under simulated physiological conditions from 1 hour to 1 year after setting. After 1 day, this cement had equivalent compressive strength to commercially used PMMA cement. The strength was found to increase over 1 month and high strength was maintained up to 1 year. The shear strength of the cement-metal interface was studied in vitro using a pull-out test. Prepared specimens were stored under physiological conditions and tested at 4 hours, 24 hours, and 60 days. Comparable interfacial shear strength values were found at 4 hours, 24 hours and 60 days for the experimental cement and were not significantly different from values obtained for PMMA cement. In vivo tissue response was evaluated after cement implantation in the femoral medullary canal in canines. Tissue response and bonding at the cement-bone interface were evaluated at 2, 6, and 12 weeks. Cortical bone was found in direct contact with the OC-cement and was healthy. The strength of the cement-bone interface, measured using a push-out test, was significantly higher for the experimental cement than for commercial PMMA bone cement.
Varghese, Vicky; Krishnan, Venkatesh; Saravana Kumar, Gurunathan
2018-06-01
A biomechanical study. A new biomechanical model of the vertebra has been developed that accounts for the inhomogeneity of bone and the contribution of the pedicle toward the holding strength of a pedicle screw. Pullout strength studies are typically carried out on rigid polyurethane foams that represent the homogeneous vertebral framework of the spine. However, the contribution of the pedicle region, which contributes to the inhomogeneity in this framework, has not been considered in previous investigations. Therefore, we propose a new biomechanical model that can account for the vertebral inhomogeneity, especially the contribution of the pedicles toward the pullout strength of the pedicle screw. A bilayer foam model was developed by joining two foams representing the pedicle and the vertebra. The results of the pullout strength tests performed on the foam models were compared with those from the tests performed on the cadaver lumbar vertebra. Significant differences ( p <0.05) were observed between the pullout strength of the pedicle screw in extremely osteoporotic (0.18±0.11 kN), osteoporotic (0.37±0.14 kN), and normal (0.97±0.4 kN) cadaver vertebra. In the monolayer model, significant differences ( p <0.05) were observed in pullout strength between extremely osteoporotic (0.3±0.02 kN), osteoporotic (0.65±0.12 kN), and normal (0.99±0.04 kN) bone model. However, the bilayer foam model exhibited no significant differences ( p >0.05) in the pullout strength of pedicle screws between osteoporotic (0.85±0.08 kN) and extremely osteoporotic bone models (0.94±0.08 kN), but there was a significant difference ( p <0.05) between osteoporotic (0.94±0.08 kN) and normal bone models (1.19±0.05 kN). There were no significant differences ( p >0.05) in pullout strength between cadaver and bilayer foam model in normal bones. The new synthetic bone model that reflects the contribution of the pedicles to the pullout strength of the pedicle screws could provide a more efficacious means of testing pedicle-screw pullout strength. The bilayer model can match the pullout strength value of normal lumbar vertebra bone whereas the monolayer foam model was able to match that of the extremely osteoporotic lumbar vertebra.
Shahnazari, M; Lang, D H; Fosmire, G J; Sharkey, N A; Mitchell, A D; Leach, R M
2007-03-01
Genetic selection for rapid body growth in broiler chickens has resulted in adverse effects on the skeletal system exemplified by a higher rate of cortical fractures in leg bones. Strontium (Sr) has been reported to have beneficial effects on bone formation and strength. We supplemented the diet of 300-day-old chicks with increasing dosages of Sr (0%, 0.12%, or 0.24%) to study the capacity of the element to improve bone quality and mechanical integrity. Treatment with Sr increased cortical bone volume and reduced bone porosity as measured by micro-computed tomography. The higher level of Sr significantly reduced bone Ca content (34.7%) relative to controls (37.2%), suggesting that Sr replaced some of the Ca in bone. Material properties determined by the three-point bending test showed that bone in the Sr-treated groups withstood greater deformation prior to fracture. Load to failure and ultimate stress were similar across groups. Our results indicate that Sr treatment in rapidly growing chickens induced positive effects on bone volume but did not improve the breaking strength of long bones.
Ogawa, Koko; Hori, Masayuki; Takao, Ryoko; Sakurada, Toyozo
2005-01-01
We examined the combined effects of elcatonin (ECT) and alendronate (ALN) on bone mass, architecture, and strength in ovariectomized (OVX) rats. Fifty female Sprague Dawley rats, aged 13 weeks, were divided into Sham, OVX, OVX+ECT, OVX+ALN, and OVX+ECT+ALN groups (n = 10). Immediately after ovariectomy, ECT was administered at a dose of 15 units (U)/kg three times a week, and ALN was administered daily at a dose of 2.0 microg/kg, subcutaneously for 12 weeks. The three-dimensional architecture of the bone in the distal femoral metaphysis was analyzed using a microfocus X-ray computed tomography system (microCT), and bone strength was measured using a material-testing machine. Trabecular bone volume (BV/TV) and number (Tb.N) were significantly greater in the OVX+ECT and OVX+ALN groups than in the OVX group. In the OVX+ECT+ALN group, BV/TV and Tb.N were significantly greater when compared with those in the OVX+ECT and OVX+ALN groups. Trabecular thickness (Tb.Th) was significantly greater in the OVX+ECT+ALN group than in the OVX+ALN group. With regard to bone strength, the compression strength in the femoral metaphysis was significantly lower in the OVX group than in the Sham group. The reduction of compression strength was slightly lower in the OVX+ECT and OVX+ALN groups. In the OVX+ECT+ALN group, the compression strength in the femoral metaphysis significantly increased when compared with the OVX and OVX+ECT groups. These results suggest that the combined treatment of ECT and ALN does not alter the individual effects of each drug and that it exerts an additive effect on trabecular architecture and bone strength in OVX rats.
Danielson, Michelle E.; Beck, Thomas J.; Karlamangla, Arun S.; Greendale, Gail A.; Atkinson, Elizabeth J.; Lian, Yinjuan; Khaled, Alia S.; Keaveny, Tony M.; Kopperdahl, David; Ruppert, Kristine; Greenspan, Susan; Vuga, Marike; Cauley, Jane A.
2013-01-01
Purpose Simple 2-dimensional (2D) analyses of bone strength can be done with dual energy x-ray absorptiometry (DXA) data and applied to large data sets. We compared 2D analyses to 3-dimensional (3D) finite element analyses (FEA) based on quantitative computed tomography (QCT) data. Methods 213 women participating in the Study of Women’s Health across the Nation (SWAN) received hip DXA and QCT scans. DXA BMD and femoral neck diameter and axis length were used to estimate geometry for composite bending (BSI) and compressive strength (CSI) indices. These and comparable indices computed by Hip Structure Analysis (HSA) on the same DXA data were compared to indices using QCT geometry. Simple 2D engineering simulations of a fall impacting on the greater trochanter were generated using HSA and QCT femoral neck geometry; these estimates were benchmarked to a 3D FEA of fall impact. Results DXA-derived CSI and BSI computed from BMD and by HSA correlated well with each other (R= 0.92 and 0.70) and with QCT-derived indices (R= 0.83–0.85 and 0.65–0.72). The 2D strength estimate using HSA geometry correlated well with that from QCT (R=0.76) and with the 3D FEA estimate (R=0.56). Conclusions Femoral neck geometry computed by HSA from DXA data corresponds well enough to that from QCT for an analysis of load stress in the larger SWAN data set. Geometry derived from BMD data performed nearly as well. Proximal femur breaking strength estimated from 2D DXA data is not as well correlated with that derived by a 3D FEA using QCT data. PMID:22810918
Donner, D G; Elliott, G E; Beck, B R; Forwood, M R; Du Toit, E F
2016-03-01
In males, visceral obesity and androgen deficiency often present together and result in harmful effects on bone. Our findings show that both factors are independently associated with adverse effects on femoral bone structure and strength, and trenbolone protects rats from diet-induced visceral obesity and consequently normalises femoral bone structural strength. In light of the rapidly increasing incidence of obesity and osteoporosis globally, and recent conjecture regarding the effects of visceral adiposity and testosterone deficiency on bone health, we investigated the effects of increased visceral adipose tissue (VAT) mass on femoral bone mineral density (BMD), structure and strength in normal weight rats with testosterone deficiency. Male Wistar rats (n = 50) were fed either standard rat chow (CTRL, n = 10) or a high-fat/high-sugar diet (HF/HS, n = 40). Following 8 weeks of feeding, rats underwent sham surgery (CTRL, n = 10; HF/HS, n = 10) or orchiectomy (HF/HS + ORX, n = 30). Following a 4-week recovery period, mini-osmotic pumps containing either vehicle (CTRL, n = 10; HF/HS, n = 10; HF/HS + ORX, n = 10), 2.0 mg kg day(-1), testosterone (HF/HS + ORX + TEST, n = 10) or 2.0 mg kg day(-1) trenbolone (HF/HS + ORX + TREN, n = 10) were implanted for 8 weeks of treatment. Dual-energy X-ray absorptiometry and three-point bending tests were used to assess bone mass, structure and strength of femora. Diet-induced visceral obesity resulted in decreased bone mineral area (BMA) and content (BMC) and impaired femoral stiffness and strength. Orchiectomy further impaired BMA, BMC and BMD and reduced energy to failure in viscerally obese animals. Both TEST and TREN treatment restored BMA, BMC, BMD and energy to failure. Only TREN reduced visceral adiposity and improved femoral stiffness and strength. Findings support a role for both visceral adiposity and testosterone deficiency as independent risk factors for femoral osteoporosis, adverse bone geometry and impaired bone strength in male rats. Trenbolone may be a more effective candidate for androgen replacement therapy than testosterone in viscerally obese testosterone-deficient males.
Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman
2016-01-01
Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength. PMID:27983628
Laudermilk, Monica J.; Manore, Melinda M.; Thomson, Cynthia A.; Houtkooper, Linda B.; Farr, Joshua N.; Going, Scott B.
2012-01-01
Background The extent to which nutrient intake may influence bone structure and strength during maximum rates of skeletal growth remains uncertain. Objective To examine the relationship of dietary intake of micronutrients and bone macro-architectural structure in young girls. Design This cross-sectional analysis included baseline data from 363 4th and 6th grade girls enrolled in the Jump-In study. Nutrient intake was assessed using the Harvard Youth/Adolescent Food Frequency Questionnaire. Volumetric BMD (vBMD), bone geometry and strength were measured by peripheral quantitative computed tomography (pQCT). Correlations and regression modeling assessed relations between usual nutrient intake and bone parameters. Results In 4th grade girls, metaphyseal and diaphyseal area and circumferences, and diaphyseal strength were associated with vitamin C intake (r = 0.15–0.19; p<0.05). Zinc intake was correlated with diaphyseal vBMD (r = 0.15–0.16; p<0.05). Using multiple linear regression to adjust for important covariates, we observed significant independent associations for vitamin C and zinc with bone parameters. For every mg/d of vitamin C intake trabecular area increased by 11%, cortical strength improved by 14%; and periosteal and endosteal circumferences increased by 5% and 8.6%, respectively. For every mg/d of zinc intake, cortical vBMD increased by <1%. No significant associations were observed in 6th-grade girls. Conclusion Results of this study suggests that vitamin C and zinc intake are positively associated with objective measures of bone geometry, size and strength in 4th-grade girls. This indicates potential differences in micronutrient and bone associations at various age-associated stages of bone maturation perhaps indicative of competing hormonal influences. PMID:23076447
Chin, Kok-Yong; Gengatharan, Dhivakaran; Mohd Nasru, Fadlin Sakina; Khairussam, Rehan Amalia; Ern, Sherlyn Lai Hui; Aminuddin, Siti Aina Wahidah; Ima-Nirwana, Soelaiman
2016-12-14
Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content ( p < 0.05) but it did not affect femoral biomechanical strength ( p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.
Enhanced tendon-to-bone repair through adhesive films.
Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros
2018-04-01
Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold. Experiments using idealized and clinically-relevant repairs validated these models. This work demonstrates an opportunity to dramatically improve tendon-to-bone repair strength using adhesive films with appropriate material properties. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Percutaneous osteoplasty with a bone marrow nail for fractures of long bones: experimental study.
Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio; Cao, Guang; Sahara, Shinya; Tanihata, Hirohiko; Takasaka, Isao; Minamiguchi, Hiroyuki; Nakai, Tomoki
2010-09-01
To develop percutaneous osteoplasty with the use of a bone marrow nail for fixation of long-bone fractures, and to evaluate its feasibility and safety in vivo and in vitro. Six long bones in three healthy swine were used in the in vivo study. Acrylic cement was injected through an 11-gauge bone biopsy needle and a catheter into a covered metallic stent placed within the long bone, creating a bone marrow nail. In the in vitro study, we determined the bending, tug, and compression strengths of the acrylic cement nails 9 cm long and 8 mm in diameter (N = 10). The bending strength of the artificially fractured bones (N = 6) restored with the bone marrow nail and cement augmentation was then compared with that of normal long bones (N = 6). Percutaneous osteoplasty with a bone marrow nail was successfully achieved within 1 hour for all swine. After osteoplasty, all swine regained the ability to run until they were euthanized. Blood tests and pathologic findings showed no adverse effects. The mean bending, tug, and compression strengths of the nail were 91.4 N/mm(2) (range, 75.0-114.1 N/mm(2)), 20.9 N/mm(2) (range, 6.6-30.4 N/mm(2)), and 103.0 N/mm(2) (range, 96.3-110.0 N/mm(2)), respectively. The bending strength ratio of artificially fractured bones restored with bone marrow nail and cement augmentation to normal long bone was 0.32. Percutaneous osteoplasty with use of a bone marrow nail and cement augmentation appears to have potential in treating fractures of non-weight-bearing long bones. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Transcutaneous Raman Spectroscopy of Bone
NASA Astrophysics Data System (ADS)
Maher, Jason R.
Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral differences in murine bone.
Alippi, Rosa M; Picasso, Emilio; Huygens, Patricia; Bozzini, Carlos E; Bozzini, Clarisa
2012-01-01
This study compares the effects of feeding growing rats with increasing concentrations of casein (C) and wheat gluten (G), proteins that show different biological qualities, on the morphometrical and biomechanical properties of the femoral diaphysis. Female rats were fed with one of ten diets containing different concentrations (5-30%) of C and G between the 30th and 90th days of life (Control=C-20%). Biomechanical structural properties of the right femur middiaphysis were estimated using a 3-point bending mechanical test with calculation of some indicators of bone material properties. Body weight and length were affected by treatments, values being highest in rats fed the C-20% diet. G diets affected negatively both parameters. Changes in cross-sectional geometry (mid-diaphyseal cross-sectional and cortical areas, femoral volume, and rectangular moment of inertia) were positively related to the C content of the diet, while they were severely and negatively affected by G diets. Similar behaviors were observed in the bone structural properties (fracture load, yielding load, diaphyseal stiffness and elastic energy absorption). When values of strength and stiffness were normalized for body weight, the differences disappeared. The bone material quality indicators (elastic modulus, yielding stress, elastic energy absorption/volume) did not differ significantly among all studied groups. Femoral calcium concentration in ashes was not significantly different among groups. The clear differences in strength and stiffness of bone beams induced by dietary protein concentration and quality seemed to be the result of an induced subnormal gain in bone structural properties as a consequence of a correlative subnormal gain in bone growth and mass, yet not in bone material properties. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.
Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
Erani, Paolo; Baleani, Massimiliano
2018-02-01
To ensure stability of proximal femoral fractures, the hip screw must firmly engage into the femoral head. Some studies suggested that screw holding power into trabecular bone could be evaluated, intraoperatively, through measurement of screw insertion torque. However, those studies used synthetic bone, instead of trabecular bone, as host material or they did not evaluate accuracy of predictions. We determined prediction accuracy, also assessing the impact of screw design and host material. We measured, under highly-repeatable experimental conditions, disregarding clinical procedure complexities, insertion torque and pullout strength of four screw designs, both in 120 synthetic and 80 trabecular bone specimens of variable density. For both host materials, we calculated the root-mean-square error and the mean-absolute-percentage error of predictions based on the best fitting model of torque-pullout data, in both single-screw and merged dataset. Predictions based on screw-specific regression models were the most accurate. Host material impacts on prediction accuracy: the replacement of synthetic with trabecular bone decreased both root-mean-square errors, from 0.54 ÷ 0.76 kN to 0.21 ÷ 0.40 kN, and mean-absolute-percentage errors, from 14 ÷ 21% to 10 ÷ 12%. However, holding power predicted on low insertion torque remained inaccurate, with errors up to 40% for torques below 1 Nm. In poor-quality trabecular bone, tissue inhomogeneities likely affect pullout strength and insertion torque to different extents, limiting the predictive power of the latter. This bias decreases when the screw engages good-quality bone. Under this condition, predictions become more accurate although this result must be confirmed by close in-vitro simulation of the clinical procedure. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Biomechanics Behind Extreme Osteophagy in Tyrannosaurus rex.
Gignac, Paul M; Erickson, Gregory M
2017-05-17
Most carnivorous mammals can pulverize skeletal elements by generating tooth pressures between occluding teeth that exceed cortical bone shear strength, thereby permitting access to marrow and phosphatic salts. Conversely, carnivorous reptiles have non-occluding dentitions that engender negligible bone damage during feeding. As a result, most reptilian predators can only consume bones in their entirety. Nevertheless, North American tyrannosaurids, including the giant (13 metres [m]) theropod dinosaur Tyrannosaurus rex stand out for habitually biting deeply into bones, pulverizing and digesting them. How this mammal-like capacity was possible, absent dental occlusion, is unknown. Here we analyzed T. rex feeding behaviour from trace evidence, estimated bite forces and tooth pressures, and studied tooth-bone contacts to provide the answer. We show that bone pulverization was made possible through a combination of: (1) prodigious bite forces (8,526-34,522 newtons [N]) and tooth pressures (718-2,974 megapascals [MPa]) promoting crack propagation in bones, (2) tooth form and dental arcade configurations that concentrated shear stresses, and (3) repetitive, localized biting. Collectively, these capacities and behaviors allowed T. rex to finely fragment bones and more fully exploit large dinosaur carcasses for sustenance relative to competing carnivores.
Berahmani, Sanaz; Janssen, Dennis; van Kessel, Sal; Wolfson, David; de Waal Malefijt, Maarten; Buma, Pieter; Verdonschot, Nico
2015-02-01
Initial fixation of press-fit implants depends on interference fit, surface morphology, and bone material properties. To understand the biomechanical effect of each factor and their interactions, the pull-out strength of seven types of CoCrMo tapered implants, with four different interference fits, three different surface morphologies (low, medium and high roughness), and at two time points (0 and 30 min) were tested in trabecular bone with varying density. The effect of interference fit on pull-out strength depended on the surface morphology and time. In contrast with our expectations, samples with a higher roughness had a lower pull-out strength. We found a similar magnitude of bone damage for the different surface morphologies, but the type of damage was different, with bone compaction versus bone abrasion for low and high frictional surfaces, respectively. This explains a reduced sensitivity of fixation strength to bone mineral density in the latter group. In addition, a reduction in fixation strength after a waiting period only occurred for the low frictional specimens. Our study demonstrates that it is essential to evaluate the interplay between different factors and emphasizes the importance of testing in natural bone in order to optimize the initial stability of press-fit implants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mapping the natural variation in whole bone stiffness and strength across skeletal sites.
Schlecht, Stephen H; Bigelow, Erin M R; Jepsen, Karl J
2014-10-01
Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this 'complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p<0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7-2.3 times less stiff and strong in men and 1.3-2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility. Copyright © 2014 Elsevier Inc. All rights reserved.
Mapping the natural variation in whole bone stiffness and strength across skeletal sites
Schlecht, Stephen H.; Bigelow, Erin M.R.; Jepsen, Karl J.
2016-01-01
Traits of the skeletal system are coordinately adjusted to establish mechanical homeostasis in response to genetic and environmental factors. Prior work demonstrated that this `complex adaptive' process is not perfect, revealing a two-fold difference in whole bone stiffness of the tibia across a population. Robustness (specifically, total cross-sectional area relative to length) varies widely across skeletal sites and between sexes. However, it is unknown whether the natural variation in whole bone stiffness and strength also varies across skeletal sites and between men and women. We tested the hypotheses that: 1) all major long bones of the appendicular skeleton demonstrate inherent, systemic constraints in the degree to which morphological and compositional traits can be adjusted for a given robustness; and 2) these traits covary in a predictable manner independent of body size and robustness. We assessed the functional relationships among robustness, cortical area (Ct.Ar), cortical tissue mineral density (Ct.TMD), and bone strength index (BSI) across the long bones of the upper and lower limbs of 115 adult men and women. All bones showed a significant (p < 0.001) positive regression between BSI and robustness after adjusting for body size, with slender bones being 1.7–2.3 times less stiff and strong in men and 1.3–2.8 times less stiff and strong in women compared to robust bones. Our findings are the first to document the natural inter-individual variation in whole bone stiffness and strength that exist within populations and that is predictable based on skeletal robustness for all major long bones. Documenting and further understanding this natural variation in strength may be critical for differentially diagnosing and treating skeletal fragility. PMID:24999223
Wang, Ching-Jen; Yang, Kuender D; Wang, Feng-Sheng; Hsu, Chia-Chen; Chen, Hsiang-Ho
2004-01-01
Shock wave treatment is believed to improve bone healing after fracture. The purpose of this study was to evaluate the effect of shock wave treatment on bone mass and bone strength after fracture of the femur in a rabbit model. A standardized closed fracture of the right femur was created with a three-point bending method in 24 New Zealand white rabbits. Animals were randomly divided into three groups: (1) control (no shock wave treatment), (2) low-energy (shock wave treatment at 0.18 mJ/mm2 energy flux density with 2000 impulses), and (3) high-energy (shock wave treatment at 0.47 mJ/mm2 energy flux density with 4000 impulses). Bone mass (bone mineral density (BMD), callus formation, ash and calcium contents) and bone strength (peak load, peak stress and modulus of elasticity) were assessed at 12 and 24 weeks after shock wave treatment. While the BMD values of the high-energy group were significantly higher than the control group (P = 0.021), the BMD values between the low-energy and control groups were not statistically significant (P = 0.358). The high-energy group showed significantly more callus formation (P < 0.001), higher ash content (P < 0.001) and calcium content (P = 0.003) than the control and low-energy groups. With regard to bone strength, the high-energy group showed significantly higher peak load (P = 0.012), peak stress (P = 0.015) and modulus of elasticity (P = 0.011) than the low-energy and control groups. Overall, the effect of shock wave treatment on bone mass and bone strength appears to be dose dependent in acute fracture healing in rabbits.
Fine Mapping of Bone Structure and Strength QTLs in Heterogeneous Stock Rat
Alam, Imranul; Koller, Daniel L.; Cañete, Toni; Blázquez, Gloria; Mont-Cardona, Carme; López-Aumatell, Regina; Martínez-Membrives, Esther; Díaz-Morán, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Stridh, Pernilla; Diez, Margarita; Olsson, Tomas; Johannesson, Martina; Baud, Amelie; Econs, Michael J.; Foroud, Tatiana
2015-01-01
We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3 × 10−6). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis. PMID:26297441
Lee, David C; Varela, Aurore; Kostenuik, Paul J; Ominsky, Michael S; Keaveny, Tony M
2016-08-01
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Varghese, Vicky; Saravana Kumar, Gurunathan; Krishnan, Venkatesh
2017-02-01
Pedicle screws are widely used for the treatment of spinal instability by spine fusion. Screw loosening is a major problem of spine fusion, contributing to delayed patient recovery. The present study aimed to understand the factor and interaction effects of density, insertion depth and insertion angle on pedicle screw pull out strength and insertion torque. A pull out study was carried out on rigid polyurethane foam blocks representing osteoporotic to normal bone densities according to the ASTM-1839 standard. It was found that density contributes most to pullout strength and insertion torque. The interaction effect is significant (p < 0.05) and contributes 8% to pull out strength. Axial pullout strength was 34% lower than angled pull out strength in the osteoporotic bone model. Insertion angle had no significant effect (p > 0.05) on insertion torque. Pullout strength and insertion torque had no significant correlation (p > 0.05) in the case of the extremely osteoporotic bone model. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Sreenivasan, D; Watson, M; Callon, K; Dray, M; Das, R; Grey, A; Cornish, J; Fernandez, J
2013-12-01
In this study we evaluate the influence of low-dose fluoride treatment on 23 patient biopsies. Computational finite element (FE) models of each biopsy were subjected to a range of loads including compression, shear and torsion. The modelling framework was validated against three 3D printed models with known material properties subjected to compression till failure using an Instron machine. The primary outcomes from this study were that mechanical strength was not significantly correlated to low-dose (<10 mg/day) of fluoride levels (one-way ANOVA, P-values of 0.78, 0.69 and 0.62 for compression, shear and torsion, respectively). However, when bulk bone material properties were derived from DXA bone mineral density (BMD) from each patient's proximal femur a non-significant linear decline in mechanical strength with increase in fluoride was predicted. When the same material property was used for all bones (to evaluate bone architecture influence) then mechanical strength showed a characteristic concave upwards trend, consistent with the variation of micro CT derived percentage bone volume (BV/TV). The secondary outcomes from this study were that in compression, BV/TV was observed to be a strong surrogate measure for mechanical strength (R(2) = 0.83), while bone surface density (R(2)=0.6), trabecular thickness (R(2) = 0.5) and intersection surface (R(2) = 0.6) also explained the variation of mechanical strength well. However, trabecular separation and trabecular number were mildly correlated with mechanical strength (R(2) of 0.31 and 0.35, respectively). Compression was the loading mode most strongly correlated to micro CT indices. Material properties adapted from the proximal femur reduced the CT index correlations by up to 58% indicating that bulk density from a near proximity is a poor representation of specific localised density. Substituting the 3D micro CT indices with 2D histomorphometric data decreased correlations by at least 33% indicating that structural identification on a plane is not representative of the full 3D architecture necessary for a complete bone strength analysis. The presented computational framework may be used to assess the roles that bone architecture and loading modes play in bone quality, and which micro CT indices are good surrogate measures for mechanical strength. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Pawlak, Dariusz; Domaniewski, Tomasz; Znorko, Beata; Oksztulska-Kolanek, Ewa; Lipowicz, Paweł; Doroszko, Michał; Karbowska, Malgorzata; Pawlak, Krystyna
2017-12-01
Chronic kidney disease (CKD) results in decreased bone strength. Serotonin (5-HT) is one of the critical regulators of bone health, fulfilling distinct functions depending on its synthesis site: brain-derived serotonin (BDS) favors osteoblast proliferation, whereas gut-derived serotonin (GDS) inhibits it. We assessed the role of BDS and peripheral leptin in the regulation of bone metabolism and strength in young rats with 5/6 nephrectomy. BDS synthesis was accelerated during CKD progression. Decreased peripheral leptin in CKD rats was inversely related to BDS content in the hypothalamus, brainstem and frontal cortex. Serotonin in these brain regions affected bone strength and metabolism in the studied animals. The direct effect of circulating leptin on bone was not shown in uremia. At the molecular level, there was an inverse association between elevated GDS and the expression of cAMP responsive element-binding protein (Creb) gene in bone of CKD animals. In contrast, increased expression of activating transcription factor 4 (Atf4) was shown, which was associated with GDS-dependent transcription factor 1 (Foxo1), clock gene - Cry-1, cell cycle genes: c-Myc, cyclins, and osteoblast differentiation genes. These results identified a previously unknown molecular pathway, by which elevated GDS can shift in Foxo1 target genes from Creb to Atf4-dependent response, disrupting the leptin-BDS - dependent gene pathway in the bone of uremic rats. Thus, in the condition of CKD the effect of BDS and GDS on bone metabolism and strength can't be distinguished. Copyright © 2017 Elsevier Inc. All rights reserved.
Rianon, N J; Lang, T F; Sigurdsson, G; Eiriksdottir, G; Sigurdsson, S; Garcia, M; Pajala, S; Koster, A; Yu, B; Selwyn, B J; Taylor, W C; Kapadia, A S; Gudnason, V; Launer, L J; Harris, T B
2012-09-01
We examined if lifelong physical activity is important for maintaining bone strength in the elderly. Associations of quantitative computerized tomography-acquired bone measures (vertebral and femoral) and self-reported physical activity in mid-life (mean age, 50 years), in old age (≥65 years), and throughout life (recalled during old age) were investigated in 2,110 men and 2,682 women in the AGES-Reykjavik Study. Results conclude lifelong physical activity with continuation into old age (≥65 years) best maintains better bone health later in life. Skeletal loading is thought to modulate the loss of bone in later life, and physical activity is a chief means of affecting bone strength by skeletal loading. Despite much discussion regarding lifelong versus early adulthood physical activity for preventing bone loss later in life, inconsistency still exists regarding how to maintain bone mass later in life (≥65 years). We examined if lifelong physical activity is important for maintaining bone strength in the elderly. The associations of quantitative computerized tomography-acquired vertebral and femoral bone measures and self-reported physical activity in mid-life (mean age, 50 years), in old age (≥65 years), and throughout life (recalled during old age) were investigated in 2,110 men and 2,682 women in the AGES-Reykjavik Study. Our findings conclude that lifelong physical activity with continuation into old age (≥65 years) best maintains better bone health in the elderly.
Watkins, Marcus P.; Norris, Jin Yi; Grimston, Susan K.; Zhang, Xiaowen; Phipps, Roger J.; Ebetino, Frank H.; Civitelli, Roberto
2012-01-01
The gap junction protein, connexin43 (Cx43) controls both bone formation and osteoclastogenesis via osteoblasts and/or osteocytes. Cx43 has also been proposed to mediate an anti-apoptotic effect of bisphosphonates, potent inhibitors of bone resorption. We studied whether bisphosphonates are effective in protecting mice with a conditional Cx43 gene deletion in osteoblasts and osteocytes (cKO) from the consequences of ovariectomy on bone mass and strength. Ovariectomy resulted in rapid loss of trabecular bone followed by a slight recovery in wild type (WT) mice, and a similar degree of trabecular bone loss, albeit slightly delayed, occurred in cKO mice. Treatment with either risedronate (20µg/kg) or alendronate (40µg/kg) prevented ovariectomy-induced bone loss in both genotypes. In basal conditions, bones of cKO mice have larger marrow area, higher endocortical osteoclast number, and lower cortical thickness and strength relative to WT. Ovariectomy increased endocortical osteoclast number in WT but not in cKO mice. Both bisphosphonates prevented these increases in WT mice, and normalized endocortical osteoclast number, cortical thickness and bone strength in cKO mice. Thus, lack of osteoblast/osteocyte Cx43 does not alter bisphosphonate action on bone mass and strength in estrogen deficiency. These results support the notion that one of the main functions of Cx43 in cortical bone is to restrain osteoblast and/or osteocytes from inducing osteoclastogenesis at the endocortical surface. PMID:22750450
The BPAQ: a bone-specific physical activity assessment instrument.
Weeks, B K; Beck, B R
2008-11-01
A newly developed bone-specific physical activity questionnaire (BPAQ) was compared with other common measures of physical activity for its ability to predict parameters of bone strength in healthy, young adults. The BPAQ predicted indices of bone strength at clinically relevant sites in both men and women, while other measures did not. Only certain types of physical activity (PA) are notably osteogenic. Most methods to quantify levels of PA fail to account for bone relevant loading. Our aim was to examine the ability of several methods of PA assessment and a new bone-specific measure to predict parameters of bone strength in healthy adults. We recruited 40 men and women (mean age 24.5). Subjects completed the modifiable activity questionnaire, Bouchard 3-day activity record, a recently published bone loading history questionnaire (BLHQ), and wore a pedometer for 14 days. We also administered our bone-specific physical activity questionnaire (BPAQ). Calcaneal broadband ultrasound attenuation (BUA) (QUS-2, Quidel) and densitometric measures (XR-36, Norland) were examined. Multiple regression and correlation analyses were performed on the data. The current activity component of BPAQ was a significant predictor of variance in femoral neck bone mineral density (BMD), lumbar spine BMD, and whole body BMD (R(2) = 0.36-0.68, p < 0.01) for men, while the past activity component of BPAQ predicted calcaneal BUA (R(2) = 0.48, p = 0.001) for women. The BPAQ predicted indices of bone strength at skeletal sites at risk of osteoporotic fracture while other PA measurement tools did not.
Musculoskeletal phenotype through the life course: the role of nutrition.
Ward, Kate
2012-02-01
This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.
Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.
Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald
2017-11-07
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brochu, Alice B.W.; Matthys, Oriane B.; Craig, Stephen L.; Reichert, William M.
2014-01-01
The tissue adhesive 2-octyl cyanoacrylate (OCA) was encapsulated in polyurethane microshells and incorporated into bone cement to form a catalyst free, self-healing bone cement comprised of all clinically approved components. The bending strength, modulus, and fatigue lifetime were investigated in accordance with ASTM and ISO standards for the testing of PMMA bone cement. The bending strength of bone cement specimens decreased with increasing wt% capsules content for capsules without or with OCA, with specimens of < 5 wt% capsule content showing minimal effect. In contrast, bone cement bending modulus was insensitive to capsule content. Load controlled fatigue testing was performed in air at room temperature on capsule free bone cement (0 wt%), bone cement with 5 wt% OCA-free capsules (5 wt% No OCA), and 5 wt% OCA-containing capsules (5 wt% OCA). Specimens were tested at a frequency of 5 Hz at maximum stresses of 90%, 80%, 70% and 50% of each specimen's bending strength until failure. The 5 wt% OCA exhibited significant self-healing at 70% and 50% of its reference strength (p < 0.05). Fatigue testing of all three specimen types in air at 22 MPa (50% of reference strength of the 5 wt% OCA specimens) showed that the cycles to failure of OCA-containing specimens was increased by two-fold compared to the OCA-free and capsule-free specimens. This study represents the first demonstration of dynamic, catalyst-free self-healing in a biomaterial formulation. PMID:24825796
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Pragya; Dalai, Sridhar; Vijayalakshmi, S.
With an increasing demand of biocompatible bone substitutes for the treatment of bone diseases and bone tissue regeneration, bioactive glass composites are being tested to improvise the osteoconductive as well as osteoinductive properties. Nanobioactive glass (nBG) composites, having composition of SiO{sub 2} 70 mol%, CaO 26 mol % and P{sub 2}O{sub 5} 4 mol% were prepared by Freeze drying method using PEG-PPG-PEG co-polymer. Polymer addition improves the mechanical strength and porosity of the scaffold of nBG. Nano Bioactive glass composites upon implantation undergo specific reactions leading to the formation of crystalline hydroxyapatite (HA). This is tested in vitro using Simulatedmore » Body Fluid (SBF). This high strength hydroxyapatite (HA) layer acts as osteoconductive in cellular environment, by acting as mineral base of bones, onto which new bone cells proliferate leading to new bone formation. Strength of the nBG composites as well as HA is in the range of cortical and cancellous bone, thus proving significant for bone tissue regeneration substitutes.« less
Farr, Joshua N.; Blew, Robert M.; Lee, Vinson R.; Lohman, Timothy G.; Going, Scott B.
2011-01-01
Purpose This study evaluated the associations of physical activity (PA) duration, frequency, load, and their interaction (total PA score = duration × frequency × load) with volumetric bone mineral density, geometry, and indices of bone strength in young girls. Methods 465 girls (aged 8–13 years) completed a past year physical activity questionnaire (PYPAQ) which inquires about the frequency (days/week) and duration (average minutes/session) of leisure-time PA and sports. Load (peak strain score) values were assigned to each activity based on ground reaction forces. Peripheral quantitative computed tomography was used to assess bone parameters at metaphyseal and diaphyseal sites of the femur and tibia of the non-dominant leg. Results Correlations across all skeletal sites between PA duration, frequency, load and periosteal circumference (PC), bone strength index (BSI), and strength-strain index (SSI) were significant (p ≤ 0.05), although low (0.10–0.17). A 2.7–3.7% greater PC across all skeletal sites was associated with a high compared to a low PYPAQ score. Also, a high PYPAQ score was associated with greater BSI (6.5–8.7%) at metaphyseal sites and SSI (7.5–8.1%) at diaphyseal sites of the femur and tibia. The effect of a low PYPAQ score on bone geometric parameters and strength was greater than a high PYPAQ score. Conclusions PA duration, frequency, and load were all associated with bone geometry and strength, although their independent influences were modest and site specific. Low levels of PA may compromise bone development whereas high levels have only a small benefit over more average levels. PMID:20694457
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
2016-10-01
6 and 12 months during the first year; participants are re-randomized after 12 months with subsequent data collection at 18 and 24 months. Currently...bone mass, bone strength, osteoporosis, zoledronic acid 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME...and bone markers will be obtained at baseline, 3 months, 6 months, 12 months, 18 months and 24 months. KEYWORDS: spinal cord
NASA Astrophysics Data System (ADS)
Vasilić, B.; Ladinsky, G. A.; Saha, P. K.; Wehrli, F. W.
2006-03-01
Osteoporosis is the cause of over 1.5 million bone fractures annually. Most of these fractures occur in sites rich in trabecular bone, a complex network of bony struts and plates found throughout the skeleton. The three-dimensional structure of the trabecular bone network significantly determines mechanical strength and thus fracture resistance. Here we present a data acquisition and processing system that allows efficient noninvasive assessment of trabecular bone structure through a "virtual bone biopsy". High-resolution MR images are acquired from which the trabecular bone network is extracted by estimating the partial bone occupancy of each voxel. A heuristic voxel subdivision increases the effective resolution of the bone volume fraction map and serves a basis for subsequent analysis of topological and orientational parameters. Semi-automated registration and segmentation ensure selection of the same anatomical location in subjects imaged at different time points during treatment. It is shown with excerpts from an ongoing clinical study of early post-menopausal women, that significant reduction in network connectivity occurs in the control group while the structural integrity is maintained in the hormone replacement group. The system described should be suited for large-scale studies designed to evaluate the efficacy of therapeutic intervention in subjects with metabolic bone disease.
Hunt, Janet R; Hunt, Curtiss D; Zito, Carol Ann; Idso, Joseph P; Johnson, LuAnn K
2008-08-01
Although calcium (Ca) supplementation increases bone density, the increase is small and the effect on bone strength and fracture risk is uncertain. To investigate if bone mass, morphology, and biomechanical properties are affected by deficient to copious dietary Ca concentrations, the long bones (tibia and femur) of growing female Sprague-Dawley rats (8/group) were assessed after 13 wk of consuming 1, 2, 3, 4, 5, 6, or 7 g Ca/kg of a modified AIN-93G diet. Dietary phosphorous (P) and vitamin D remained constant at recommended concentrations. The assessment included mineralization, density, biomechanical properties of breaking by a 3-point flexure test, and morphological properties by microcomputed topography scanning of trabecular bone of the proximal tibia metaphysis. Dietary treatment did not affect food intake, weight gain, renal and muscle Ca concentrations, and bone hydroxyproline. All bone parameters measured were significantly impaired by Ca deficiency in rats fed the diet containing 1 g Ca/kg. Modest impairments occurred with some parameters (bone density, biomechanical bending moment, modulus of elasticity, and stress) in rats fed 2 g Ca/kg, but all parameters stabilized between 2 and 3 g/kg diet, with no differences between 3 and 7 g/kg. The results suggest that a threshold response in bone Ca retention or bone mass at approximately 2.5 g Ca/kg diet is associated with similar threshold responses in bone breaking strength and related biomechanics as well as trabecular structural properties. There was no evidence of a relative P deficiency or of improved or impaired bone strength and structure as Ca intakes increased beyond those needed to maximize bone density.
Sex differences in parameters of bone strength in new recruits: beyond bone density.
Evans, Rachel K; Negus, Charles; Antczak, Amanda J; Yanovich, Ran; Israeli, Eran; Moran, Daniel S
2008-11-01
Stress fracture (SF) injuries in new recruits have long been attributed to low bone mineral density (BMD). Low areal BMD assessed using two-dimensional dual-energy x-ray absorptiometry imaging, however, reflects structural density and is affected by smaller measures of bone geometry. Recent studies support a relationship between bone size and SF and indicate that slender bones are more susceptible to damage under identical loading conditions. Peripheral quantitative computed tomography (pQCT) is a three-dimensional imaging tool that provides measures of tissue density and geometry parameters of the tibia, a common site of SF. To evaluate sex differences in parameters of volumetric BMD (vBMD), geometry, and strength of the tibia in new recruits using a novel pQCT image analysis procedure. pQCT images were obtained from 128 healthy men and women (20 male, 108 female, aged 18-21 yr) entering a 4-month gender-integrated combat training program in the Israeli Defense Forces. Tibial scans taken at sites 4% (trabecular bone), 38%, and 66% (cortical bone) from the distal end plate were analyzed using MATLAB to assess whole-bone and regional parameters. Measures included vBMD, geometry (diameter, area, cortical thickness, and canal radius), and strength (moments of inertia and bone strength and slenderness indices). With the exception of normalized canal radius, which did not differ between sexes, all measures of bone geometry (P < 0.0001) and strength (P < 0.0001 to P = 0.07) were greater in men. Women exhibited 2.7% to 3.0% greater cortical vBMD than men, whereas trabecular vBMD was 8.4% lower in women (P < 0.001). These differences remained significant after adjusting for body size. Sex differences in bone geometry and mineralization of the tibia may contribute to a decreased ability to withstand the demands imposed by novel, repetitive exercise in untrained individuals entering recruit training.
A Flexible Method for Producing F.E.M. Analysis of Bone Using Open-Source Software
NASA Technical Reports Server (NTRS)
Boppana, Abhishektha; Sefcik, Ryan; Myers, Jerry G.; Lewandowski, Beth
2016-01-01
Individuals who experience decreases in load-bearing bone densities can be subject to a higher risk of bone fracture during daily activity. Astronauts may lose up to nine percent of their load-bearing bone density for every month they spend in space [1]. Because of this, specialized countermeasures reduce percent loss in bone density and reduce fracture risk upon returning to Earth. Astronauts will typically not be at risk for fracture during spaceflight, because of the lesser loads experienced in microgravity conditions. However, once back on Earth, astronauts have an increased risk for bone fracture as a result of weakened bone and return to 1G conditions [2]. It is therefore important to understand the significance of any bone density loss in addition to developing exercises in an attempt to limit losses in bone strength. NASA seeks to develop a deeper understanding of fracture risk through the development of a computational bone strength model to assess the bone fracture risk of astronauts pre-flight and post-flight. This study addresses the several key processes needed to develop such strength analyses using medical image processing and finite element modeling.
Hayashi, K; Inadome, T; Tsumura, H; Nakashima, Y; Sugioka, Y
1994-11-01
We have investigated the bone-implant interface shear strength of hydroxyapatite (HA)-coated Ti-6Al-4V (HA-coating A) (roughness average, Ra = 3.4 +/- 0.5 microns) and HA-coated Ti-6Al-4V with a rougher surface (HA-coating B) (Ra = 8.4 +/- 1.8 microns). There was no significant difference between HA-coating A and HA-coating B implants with respect to the bone-implant interface shear strength as determined in push-out tests using the transcortical model in adult dogs. The bone-implant interface shear strength of bead-coated porous Ti-6Al-4V was significantly greater than that of both HA-coating A and HA-coating B implants. The failure site, as determined by scanning electron microscopy, was the coating-substrate interface, not the coating-bone interface. This indicates a need to protect the HA coating from the direct shear forces. HA coating enhances early bone growth into the porous surface of the implant. Long-term fixation should depend on bone anchoring to this porous surface. Hydroxyapatite coatings must be developed which do not obstruct the pores of the surface of the implant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, M. B.; Carballido-Gamio, J.; Fritscher, K.
2009-11-15
Purpose: Texture analysis of femur radiographs may serve as a potential low cost technique to predict osteoporotic fracture risk and has received considerable attention in the past years. A further application of this technique may be the measurement of the quality of specific bone compartments to provide useful information for treatment of bone fractures. Two challenges of texture analysis are the selection of the best suitable texture measure and reproducible placement of regions of interest (ROIs). The goal of this in vitro study was to automatically place ROIs in radiographs of proximal femur specimens and to calculate correlations between variousmore » different texture analysis methods and the femurs' anchorage strength. Methods: Radiographs were obtained from 14 femoral specimens and bone mineral density (BMD) was measured in the femoral neck. Biomechanical testing was performed to assess the anchorage strength in terms of failure load, breakaway torque, and number of cycles. Images were segmented using a framework that is based on the usage of level sets and statistical in-shape models. Five ROIs were automatically placed in the head, upper and lower neck, trochanteric, and shaft compartment in an atlas subject. All other subjects were registered rigidly, affinely, and nonlinearly, and the resulting transformation was used to map the five ROIs onto the individual femora. Results: In each ROI, texture features were extracted using gray level co-occurence matrices (GLCM), third-order GLCM, morphological gradients (MGs), Minkowski dimensions (MDs), Minkowski functionals (MFs), Gaussian Markov random fields, and scaling index method (SIM). Coefficients of determination for each texture feature with parameters of anchorage strength were computed. In a stepwise multiregression analysis, the most predictive parameters were identified in different models. Texture features were highly correlated with anchorage strength estimated by the failure load of up to R{sup 2}=0.61 (MF and MG features, p<0.01) and were partially independent of BMD. The correlations were dependent on the choice of the ROI and the texture measure. The best predictive multiregression model for failure load R{sub adj}{sup 2}=0.86 (p<0.001) included a set of recently developed texture methods (MF and SIM) but excluded bone mineral density and commonly used texture measures. Conclusions: The results suggest that texture information contained in trabecular bone structure visualized on radiographs may predict whether an implant anchorage can be used and may determine the local bone quality from preoperative radiographs.« less
Design variables for mechanical properties of bone tissue scaffolds.
Howk, Daniel; Chu, Tien-Min G
2006-01-01
The reconstruction of segmental defect in long bone is a clinical challenge. Multiple surgeries are typically required to restore the structure and function of the affected defect site. In order to overcome this defect a biodegradable bone tissue engineering scaffold is used. This scaffold acts as a carrier of proteins and growth factors, while also supporting the load that the bone would normally sustain, until the natural bone can regenerate in its place. Work was done to optimize an existing solid free-form scaffold design. The goal of the optimization was to increase the porosity of the scaffold while maintaining the strength of a previously-tested prototype design. With this in mind, eight new designs were created. These designs were drawn using CAD software and then through the use of finite element analysis the theoretical ultimate compressive strength of each design was obtained. Each scaffold design was constructed by casting a thermal-curable poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) suspension into wax molds fabricated on inkjet printing rapid prototyping machine. The constructs were then experimentally tested by applying a uniaxial compressive load. The theoretical and experimental values of ultimate compressive strength and specific strength of each design were compared. Theoretically, the best scaffold design produced from this work improved upon the current design by increasing the porosity by 46% and also increasing the ultimate compressive strength by 27%. The experimental data was found to match the theoretical strength in four designs, but deviate from the theoretical strength in five designs. The reasons for the deviations and their relation to the rapid prototyping manufacturing technique were discussed. The results of this work show that it is possible to increase the porosity and strength of a bone tissue engineering scaffold through simple iterations in architectural design.
Yoon, Sung-Hee; Chen, Jinghan; Grynpas, Marc D; Mitchell, Jane
2016-09-01
Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate. Copyright © 2016. Published by Elsevier Inc.
Mineralisation and mechanical strength of the glenoid cavity subchondral bone plate.
Kraljević, Marko; Zumstein, Valentin; Wirz, Dieter; Hügli, Rolf; Müller-Gerbl, Magdalena
2011-12-01
Failures in total shoulder replacements are often due to aseptic loosening of the glenoid component; the subchondral bone plate is an important factor governing primary fixation of implant materials. Therefore, we investigated characteristic mineralisation patterns of the subchondral bone plate, which demonstrate long-term stress on articular surfaces, age-related changes, postsurgical biomechanical situations and regions of fixation. Using computed tomography osteo-absorptiometry (CT-OAM), these distribution patterns can be demonstrated in vivo. The aim of this study was to investigate the relationship between subchondral bone-plate mineralisation measured with CT-OAM and the mechanical strength measured by indentation. A total of 32 cadaverous glenoid cavities were evaluated by CT-OAM and indentation testing. Linear regression was used to compare mineralisation and strength of the subchondral bone plate. Results showed two patterns of mineralisation distribution. Twenty-eight cavities were related to bicentric distribution pattern and four showed a single maximum. The correlation coefficient between CT-OAM density and subchondral bone-plate strength was determined to be between 0.62 and 0.96 (P < 0.02). Long-term stress affects not only the subchondral but also the underlying cancellous bone. It therefore can be assumed that mineralisation patterns of the subchondral bone plate continue in cancellous bone. Areas of high density could serve as anchoring locations for orthopaedic implants in resurfacing the glenoid cavity.
Jakeman, Steven A; Henry, Courtney N; Martin, Berdine R; McCabe, George P; McCabe, Linda D; Jackson, George S; Peacock, Munro; Weaver, Connie M
2016-09-01
Dietary soluble corn fiber (SCF) significantly improves calcium absorption in adolescents and the bone strength and architecture in rodent models. In this study, we aimed to determine the skeletal benefits of SCF in postmenopausal women. We used our novel technology of determining bone calcium retention by following the urinary appearance of (41)Ca, a rare long-lived radioisotope, from prelabeled bone to rapidly and sensitively evaluate the effectiveness of SCF in reducing bone loss. A randomized-order, crossover, double-blinded trial was performed in 14 healthy postmenopausal women to compare doses of 0, 10, and 20 g fiber from SCF/d for 50 d. A dose-response effect was shown with 10 and 20 g fiber from SCF/d, whereby bone calcium retention was improved by 4.8% (P < 0.05) and 7% (P < 0.04), respectively. The bone turnover biomarkers N-terminal telopeptide and osteocalcin were not changed by the interventions; however, a significant increase in bone-specific alkaline phosphatase, which is a bone-formation marker, was detected between 0 and 20 g fiber from SCF/d (8%; P = 0.035). Daily SCF consumption significantly increased bone calcium retention in postmenopausal women, which improved the bone calcium balance by an estimated 50 mg/d. This study was registered at clinicaltrials.gov as NCT02416947. © 2016 American Society for Nutrition.
Does maximum torque mean optimal pullout strength of screws?
Tankard, Sara E; Mears, Simon C; Marsland, Daniel; Langdale, Evan R; Belkoff, Stephen M
2013-04-01
To determine the relationship between insertion torque and pullout strength of 3.5-mm-diameter cortical screws in cadaveric humeri with different bone mineral densities (BMDs). Five pairs of human humeri from each of 3 BMD groups (normal, osteopenic, and osteoporotic) were used. Holes were drilled in each humerus, and maximum insertion torque (T(max)) was measured by tightening a screw until stripping occurred. In the remaining holes, screws were tightened to 50%, 70%, or 90% of the T(max). A servohydraulic testing machine pulled each screw out at 1 mm/s while resulting force and axial displacement were recorded at 10 Hz. The authors checked for an effect of insertion torque (percent T(max)) on pullout strength using a general linearized and latent mixed model (Stata10), controlling for cortical thickness and BMD (T-score). Pullout strength for normal and osteoporotic bone was greatest for screws inserted to 50% T(max) and was significantly greater than that at T(max) but not significantly different from that at 70% or 90% T(max). For osteopenic bone, pullout strength was greatest at 70% peak torque, but it was not significantly different from the pullout strength at the 50% or 90% T(max) levels. Tightening screws beyond 50% T(max) does not increase pullout strength of the screw and may place bone at risk for damage that might result in loss of fixation. Even after adjusting for bone thickness and density, there is no clear relationship between pullout strength and screw torque.
A poisson process model for hip fracture risk.
Schechner, Zvi; Luo, Gangming; Kaufman, Jonathan J; Siffert, Robert S
2010-08-01
The primary method for assessing fracture risk in osteoporosis relies primarily on measurement of bone mass. Estimation of fracture risk is most often evaluated using logistic or proportional hazards models. Notwithstanding the success of these models, there is still much uncertainty as to who will or will not suffer a fracture. This has led to a search for other components besides mass that affect bone strength. The purpose of this paper is to introduce a new mechanistic stochastic model that characterizes the risk of hip fracture in an individual. A Poisson process is used to model the occurrence of falls, which are assumed to occur at a rate, lambda. The load induced by a fall is assumed to be a random variable that has a Weibull probability distribution. The combination of falls together with loads leads to a compound Poisson process. By retaining only those occurrences of the compound Poisson process that result in a hip fracture, a thinned Poisson process is defined that itself is a Poisson process. The fall rate is modeled as an affine function of age, and hip strength is modeled as a power law function of bone mineral density (BMD). The risk of hip fracture can then be computed as a function of age and BMD. By extending the analysis to a Bayesian framework, the conditional densities of BMD given a prior fracture and no prior fracture can be computed and shown to be consistent with clinical observations. In addition, the conditional probabilities of fracture given a prior fracture and no prior fracture can also be computed, and also demonstrate results similar to clinical data. The model elucidates the fact that the hip fracture process is inherently random and improvements in hip strength estimation over and above that provided by BMD operate in a highly "noisy" environment and may therefore have little ability to impact clinical practice.
Ma, Yanfei L; Hamang, Matthew; Lucchesi, Jonathan; Bivi, Nicoletta; Zeng, Qianqiang; Adrian, Mary D; Raines, Sarah E; Li, Jiliang; Kuhstoss, Stuart A; Obungu, Victor; Bryant, Henry U; Krishnan, Venkatesh
2017-04-01
Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone. Copyright © 2016 Elsevier Inc. All rights reserved.
Drinking water fluoridation and bone.
Allolio, B; Lehmann, R
1999-01-01
Drinking water fluoridation has an established role in the prevention of dental caries, but may also positively or negatively affect bone. In bone fluoride is incorporated into hydroxylapatite to form the less soluble fluoroapatite. In higher concentrations fluoride stimulates osteoblast activity leading to an increase in cancellous bone mass. As optimal drinking water fluoridation (1 mg/l) is widely used, it is of great interest, whether long-term exposition to artificial water fluoridation has any impact on bone strength, bone mass, and -- most importantly -- fracture rate. Animal studies suggest a biphasic pattern of the effect of drinking water fluoridation on bone strength with a peak strength at a bone fluoride content of 1200 ppm followed by a decline at higher concentrations eventually leading to impaired bone quality. These changes are not paralleled by changes in bone mass suggesting that fluoride concentrations remain below the threshold level required for activation of osteoblast activity. Accordingly, in most epidemiological studies in humans bone mass was not altered by optimal drinking water fluoridation. In contrast, studies on the effect on hip fracture rate gave conflicting results ranging from an increased fracture incidence to no effect, and to a decreased fracture rate. As only ecological studies have been performed, they may be biased by unknown confounding factors -- the so-called ecological fallacy. However, the combined results of these studies indicate that any increase or decrease in fracture rate is likely to be small. It has been calculated that appropriately designed cohort studies to solve the problem require a sample size of >400,000 subjects. Such studies will not be performed in the foreseeable future. Future investigations in humans should, therefore, concentrate on the effect of long-term drinking water fluoridation on bone fluoride content and bone strength.
Bonani, Marco; Meyer, Ursina; Frey, Diana; Graf, Nicole; Bischoff-Ferrari, Heike A; Wüthrich, Rudolf P
2016-01-01
In a randomized controlled clinical trial in kidney transplant recipients (NCT01377467) we have recently shown that RANKL inhibition with denosumab significantly improved areal bone mineral density (aBMD) when given during the first year after transplantation. The effect of denosumab on skeletal microstructure and bone strength in kidney transplant recipients is not known. The purpose of the present bone microarchitecture ancillary study was to investigate high-resolution peripheral quantitative computed tomography (HRpQCT) data from the distal tibia and distal radius in 24 study patients that had been randomized to receive either two injections of denosumab 60 mg at baseline and after 6 months (n=10) or no treatment (n=14). Consistent with the full trial findings, denosumab reduced biomarkers of bone turnover, and significantly increased aBMD at the lumbar spine (median difference of 4.7%; 95% confidence interval [CI] 2.6 - 7.8; p<0.001). Bone quality as assessed by total and cortical volumetric bone mineral density (Tot. vBMD, Ct.vBMD) and cortical thickness (Ct.Th) increased significantly at the tibia, while changes at the radius were less pronounced. The trabecular volumetric BMD (Tb.vBMD), thickness (Tb. Th), separation (Tb.Sp) and number (Tb.N) and the cortical porosity (Ct.Po) at the tibia and the radius did not significantly change in both treatment groups. Micro-finite element analysis (µFEA) showed that bone stiffness increased significantly at the tibia (median difference 5.6%; 95% CI 1.8% - 9.2%; p=0.002) but not at the radius (median difference 2.9%, 95% CI -3.7% - 9.1%; p=0.369). Likewise, failure load increased significantly at the tibia (median difference 5.1%; 95% CI 2.1% - 8.1%; p=0.002) but not at the radius (median difference 2.4%, 95% CI -3.2% - 8.5%; p=0.336). These findings demonstrate that denosumab improves bone density and bone quality in first-year kidney transplant recipients at risk to develop osteoporosis. © 2016 The Author(s) Published by S. Karger AG, Basel.
Advanced imaging of the macrostructure and microstructure of bone
NASA Technical Reports Server (NTRS)
Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.
2000-01-01
Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.
Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.
Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès
2016-12-01
Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.
Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y
2012-02-01
This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.
Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M
2015-05-01
The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (p<0.001). At overall structural failure, there was 5-10-fold less failed tissue for the fully brittle than fully ductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strontium ranelate: a novel mode of action leading to renewed bone quality.
Ammann, Patrick
2005-01-01
Various bone resorption inhibitors and bone stimulators have been shown to decrease the risk of osteoporotic fractures. However, there is still a need for agents promoting bone formation by inducing positive uncoupling between bone formation and bone resorption. In vitro studies have suggested that strontium ranelate enhances osteoblast cell replication and activity. Simultaneously, strontium ranelate dose-dependently inhibits osteoclast activity. In vivo studies indicate that strontium ranelate stimulates bone formation and inhibits bone resorption and prevents bone loss and/or promotes bone gain. This positive uncoupling between bone formation and bone resorption results in bone gain and improvement in bone geometry and microarchitecture, without affecting the intrinsic bone tissue quality. Thus, all the determinants of bone strength are positively influenced. In conclusion, strontium ranelate, a new treatment of postmenopausal osteoporosis, acts through an innovative mode of action, both stimulating bone formation and inhibiting bone resorption, resulting in the rebalancing of bone turnover in favor of bone formation. Strontium ranelate increases bone mass while preserving the bone mineralization process, resulting in improvement in bone strength and bone quality.
NASA Astrophysics Data System (ADS)
Kotha, Shiva Prasad
Bone mineral and bone organic are assumed to be a linearly elastic, brittle material. A simple micromechanical model based on the shear lag theory is developed to model the stress transfer between the mineral platelets of bone. The bone mineral platelets carry most of the applied load while the organic primarily serves to transfer load between the overlapped mineral platelets by shear. Experiments were done to elucidate the mechanism of failure in bovine cortical bone and to decrease the mineral content of control bone with in-vitro fluoride ion treatments. It was suggested that the failure at the ultrastructural level is due to the transverse failure of bonds between the collagen microfibrils in the organic matrix. However, the shear stress transfer and the axial load bearing capacity of the organic is not impaired. Hence, it is assumed that the shear strain in the matrix increases while the shear stress remains constant at the shear yield stress once the matrix starts yielding at the ends of the bone mineral. When the shear stress over the length of the mineral platelet reaches the shear yield stress, no more applied stress is carried by the bone mineral platelets while the organic matrix carries the increased axial load. The bone fails when the axial stress in the organic reaches its ultimate stress. The bone mineral is assumed to dissolve due to in-vitro fluoride ion treatments and precipitate calcium fluoride or fluoroapatite like material. The amount of dissolution is estimated based on 19F Nuclear Magnetic Resonance or a decrease in the carbonate content of bone. The dissolution of bone mineral is assumed to increase the porosity in the organic. We assume that the elastic modulus and the ultimate strength of the organic decrease due to the increased porosity. A simple empirical model is used to model the decrease in the elastic modulus. The strength is modeled to decrease based on an increase in the cross-sectional area occupied by the porosity. The precipitate is assumed to contribute to the mechanical properties of bone due to friction generated by the poisson's contraction of the organic as it carries axial loads. The resulting stress-strain curve predicted by the model resembles the stress-strain curves obtained in the experiments.
Henriksen, S S; Ding, M; Juhl, M Vinther; Theilgaard, N; Overgaard, S
2011-05-01
Eight groups of calcium-phosphate scaffolds for bone implantation were prepared of which seven were reinforced with biopolymers, poly lactic acid (PLA) or hyaluronic acid in different concentrations in order to increase the mechanical strength, without significantly impairing the microarchitecture. Controls were un-reinforced calcium-phosphate scaffolds. Microarchitectural properties were quantified using micro-CT scanning. Mechanical properties were evaluated by destructive compression testing. Results showed that adding 10 or 15% PLA to the scaffold significantly increased the mechanical strength. The increase in mechanical strength was seen as a result of increased scaffold thickness and changes to plate-like structure. However, the porosity was significantly lowered as a consequence of adding 15% PLA, whereas adding 10% PLA had no significant effect on porosity. Hyaluronic acid had no significant effect on mechanical strength. The novel composite scaffold is comparable to that of human bone which may be suitable for transplantation in specific weight-bearing situations, such as long bone repair.
Differential Bone Loss in Mouse Models of Colon Cancer Cachexia
Bonetto, Andrea; Kays, Joshua K.; Parker, Valorie A.; Matthews, Ryan R.; Barreto, Rafael; Puppa, Melissa J.; Kang, Kyung S.; Carson, James A.; Guise, Theresa A.; Mohammad, Khalid S.; Robling, Alexander G.; Couch, Marion E.; Koniaris, Leonidas G.; Zimmers, Teresa A.
2017-01-01
Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and ApcMin/+. The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the ApcMin/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia. PMID:28123369
Differential Bone Loss in Mouse Models of Colon Cancer Cachexia.
Bonetto, Andrea; Kays, Joshua K; Parker, Valorie A; Matthews, Ryan R; Barreto, Rafael; Puppa, Melissa J; Kang, Kyung S; Carson, James A; Guise, Theresa A; Mohammad, Khalid S; Robling, Alexander G; Couch, Marion E; Koniaris, Leonidas G; Zimmers, Teresa A
2016-01-01
Cachexia is a distinctive feature of colorectal cancer associated with body weight loss and progressive muscle wasting. Several mechanisms responsible for muscle and fat wasting have been identified, however it is not known whether the physiologic and molecular crosstalk between muscle and bone tissue may also contribute to the cachectic phenotype in cancer patients. The purpose of this study was to clarify whether tumor growth associates with bone loss using several experimental models of colorectal cancer cachexia, namely C26, HT-29, and Apc Min/+ . The effects of cachexia on bone structure and strength were evaluated with dual energy X-ray absorptiometry (DXA), micro computed tomography (μCT), and three-point bending test. We found that all models showed tumor growth consistent with severe cachexia. While muscle wasting in C26 hosts was accompanied by moderate bone depletion, no loss of bone strength was observed. However, HT-29 tumor bearing mice showed bone abnormalities including significant reductions in whole-body bone mineral density (BMD), bone mineral content (BMC), femoral trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th), but no declines in strength. Similarly, cachexia in the Apc Min/+ mice was associated with significant decreases in BMD, BMC, BV/TV, Tb.N, and Tb.Th as well as decreased strength. Our data suggest that colorectal cancer is associated with muscle wasting and may be accompanied by bone loss dependent upon tumor type, burden, stage and duration of the disease. It is clear that preserving muscle mass promotes survival in cancer cachexia. Future studies will determine whether strategies aimed at preventing bone loss can also improve outcomes and survival in colorectal cancer cachexia.
Targeting the LRP5 pathway improves bone properties in a mouse model of osteogenesis imperfecta.
Jacobsen, Christina M; Barber, Lauren A; Ayturk, Ugur M; Roberts, Heather J; Deal, Lauren E; Schwartz, Marissa A; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G; Warman, Matthew L
2014-10-01
The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5(p.A214V) ) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5(+/p.A214V) mice to Col1a2(+/p.G610C) mice, which model human type IV OI. We found that Col1a2(+/p.G610C) ;Lrp5(+/p.A214V) offspring had significantly increased bone mass and strength compared to Col1a2(+/p.G610C) ;Lrp5(+/+) littermates. The improved bone properties were not a result of altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2(+/p.G610C) mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody-treated mice had significantly increased bone mass and strength compared to vehicle-treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. © 2014 American Society for Bone and Mineral Research.
Alkalay, Ron N; von Stechow, Dietrich; Hackney, David B
2015-07-01
Lytic spinal lesions reduce vertebral strength and may result in their fracture. Vertebral augmentation is employed clinically to provide mechanical stability and pain relief for vertebrae with lytic lesions. However, little is known about its efficacy in strengthening fractured vertebrae containing lytic metastasis. Eighteen unembalmed human lumbar vertebrae, having simulated uncontained lytic defects and tested to failure in a prior study, were augmented using a transpedicular approach and re-tested to failure using a wedge fracture model. Axial and moment based strength and stiffness parameters were used to quantify the effect of augmentation on the structural response of the failed vertebrae. Effects of cement volume, bone mineral density and vertebral geometry on the change in structural response were investigated. Augmentation increased the failed lytic vertebral strength [compression: 85% (P<0.001), flexion: 80% (P<0.001), anterior-posterior shear: 95%, P<0.001)] and stiffness [(40% (P<0.05), 53% (P<0.05), 45% (P<0.05)]. Cement volume correlated with the compressive strength (r(2)=0.47, P<0.05) and anterior-posterior shear strength (r(2)=0.52, P<0.05) and stiffness (r(2)=0.45, P<0.05). Neither the geometry of the failed vertebrae nor its pre-fracture bone mineral density correlated with the volume of cement. Vertebral augmentation is effective in bolstering the failed lytic vertebrae compressive and axial structural competence, showing strength estimates up to 50-90% of historical values of osteoporotic vertebrae without lytic defects. This modest increase suggests that lytic vertebrae undergo a high degree of structural damage at failure, with strength only partially restored by vertebral augmentation. The positive effect of cement volume is self-limiting due to extravasation. Copyright © 2015. Published by Elsevier Ltd.
Shao, Hong Da; Li, Guan Wu; Liu, Yong; Qiu, Yu You; Yao, Jian Hua; Tang, Guang Yu
2015-09-01
The fat and bone connection is complicated, and the effect of adipose tissue on hip bone strength remains unclear. The aim of this study was to clarify the relative contribution of body fat accumulation and fat distribution to the determination of proximal femur strength in healthy postmenopausal Chinese women. This cross-sectional study enrolled 528 healthy postmenopausal women without medication history or known diseases. Total lean mass (LM), appendicular LM (ALM), percentage of lean mass (PLM), total fat mass (FM), appendicular FM (AFM), percentage of body fat (PBF), android and gynoid fat amount, android-to-gynoid fat ratio (AOI), bone mineral density (BMD), and proximal femur geometry were measured by dual energy X-ray absorptiometry. Hip structure analysis was used to compute some variables as geometric strength-related parameters by analyzing the images of the hip generated from DXA scans. Correlation analyses among anthropometrics, variables of body composition and bone mass, and geometric indices of hip bone strength were performed with stepwise linear regression analyses as well as Pearson's correlation analysis. In univariate analysis, there were significantly inverse correlations between age, years since menopause (YSM), hip BMD, and hip geometric parameters. Bone data were positively related to height, body weight, LM, ALM, FM, AFM, and PBF but negatively related to AOI and amount of android fat (all P < 0.05). AFM and AOI were significantly related to most anthropometric parameters. AFM was positively associated with height, body weight, and BMI. AFM was negatively associated with age and YSM. AOI was negatively associated with height, body weight, and BMI. AOI positively associated with age and YSM. LM, ALM, and FM had a positive relationship with anthropometric parameters (P < 0.05 for all). PLM had a negative relationship with those parameters. The correlation between LM, ALM, FM, PLM, ALM, age, and YSM was not significant. In multivariate linear regression analysis, the hip bone strength was observed to have a consistent and unchanged positive association with AFM and a negative association with AOI, whereas its association with other variables of body composition was not significant after adjusting for age, years since menopause, height, body weight, and BMI. AFM may be a positively protective effect for hip bone strength while AOI, rather than android fat, shows a strong negative association with hip bone strength after making an adjustment for confounders (age, YSM, height, body weight, and BMI) in healthy postmenopausal Chinese women. Rational weight control and AOI reduction during menopause may have vital clinical significance in decreasing postmenopausal osteoporosis.
NASA Astrophysics Data System (ADS)
Yudaniayanti, Ira Sari; Primarizky, Hardany; Nangoi, Lianny
2018-04-01
Osteoporosis is a chronic skeletal disease characterized by low bone mass and microarchitectural deterioration with a consequent increase in bone fragility and fracture risk. The aim of the study was to evaluate the effects of honey (Apis dorsata) supplements on increased bone strength in ovariectomized rat as animal models of osteoporosis. Twenty female rats at 3 months of age, weighing 150-200 g were used in the study. The rats were divided into five groups (n=4) : Sham operation group (SH); ovariectomy group no treatment(OVX); ovariectomy with treatment Apis dorsata 1g/Kg BW (AD-1); ovariectomy with treatment Apis dorsata 2g/Kg BW (AD-2); ovariectomy with treatment Apis dorsata 4g/Kg BW (AD-3). The treatment started to be given the next day after ovariectomy operation for 12 weeks. The Rats were sacrified within 12 weeks, and then the right femur were taken bone strength test. Based on the statistical analysis of the bone strength test, the greatest score belongs to the Sham operation group (SH) that have significant difference (p<0.05) with OVX group and AD-1 group, but there was no significant difference with AD-2 and AD-3 (p>0,05). In conclusion, honey (Apis dorsata) supplements has the effect of increasing bone strength in ovariectomized rat as animal models of osteoporosis, so that honey (Apis dorsata) supplements has the potential to be used as an alternative treatment for osteoporosis.
Clinical review: Ethnic differences in bone mass--clinical implications.
Leslie, William D
2012-12-01
Differences in bone mineral density (BMD) as assessed with dual-energy x-ray absorptiometry are observed between geographic and ethnic groups, with important implications in clinical practice. PubMed was employed to identify relevant studies. A review of the literature was conducted, and data were summarized and integrated. The available data highlight the complex ethnic variations in BMD, which only partially account for observed variations in fracture rates. Factors contributing to ethnic differences include genetics, skeletal size, body size and composition, lifestyle, and social determinants. Despite BMD differences, the gradient of risk for fracture from BMD and other clinical risk factors appears to be similar across ethnic groups. Furthermore, BMD variation is greater within an ethnic population than between ethnic populations. New imaging technologies have identified ethnic differences in bone geometry, volumetric density, microarchitecture, and estimated bone strength that may contribute to a better understanding of ethnic differences in fracture risk. Factors associated with ethnicity affect BMD and fracture risk through direct and indirect mechanisms.
Sheu, Yahtyng; Zmuda, Joseph M; Boudreau, Robert M; Petit, Moira A; Ensrud, Kristine E; Bauer, Douglas C; Gordon, Christopher L; Orwoll, Eric S; Cauley, Jane A
2011-01-01
Many fractures occur in individuals without osteoporosis defined by areal bone mineral density (aBMD). Inclusion of other aspects of skeletal strength may be useful in identifying at-risk subjects. We used surrogate measures of bone strength at the radius and tibia measured by peripheral quantitative computed tomography (pQCT) to evaluate their relationships with nonvertebral fracture risk. Femoral neck (FN) aBMD, measured by dual-energy X-ray absorptiometry (DXA), also was included. The study population consisted of 1143 white men aged 69+ years with pQCT measures at the radius and tibia from the Minneapolis and Pittsburgh centers of the Osteoporotic Fractures in Men (MrOS) study. Principal-components analysis and Cox proportional-hazards modeling were used to identify 21 of 58 pQCT variables with a major contribution to nonvertebral incident fractures. After a mean 2.9 years of follow-up, 39 fractures occurred. Men without incident fractures had significantly greater bone mineral content, cross-sectional area, and indices of bone strength than those with fractures by pQCT. Every SD decrease in the 18 of 21 pQCT parameters was significantly associated with increased fracture risk (hazard ration ranged from 1.4 to 2.2) independent of age, study site, body mass index (BMI), and FN aBMD. Using area under the receiver operation characteristics curve (AUC), the combination of FN aBMD and three radius strength parameters individually increased fracture prediction over FN aBMD alone (AUC increased from 0.73 to 0.80). Peripheral bone strength measures are associated with fracture risk and may improve our ability to identify older men at high risk of fracture. © 2011 American Society for Bone and Mineral Research.
Xiao, Wei; Zaeem, Mohsen Asle; Bal, B Sonny; Rahaman, Mohamed N
2016-11-01
There is a clinical need for synthetic bioactive materials that can reliably repair intercalary skeletal tissue loss in load-bearing bones. Bioactive glasses have been investigated as one such material but their mechanical response has been a concern. Previously, we created bioactive silicate glass (13-93) scaffolds with a uniform grid-like microstructure which showed a compressive strength comparable to human cortical bone but a much lower flexural strength. In the present study, finite element modeling (FEM) was used to re-design the scaffold microstructure to improve its flexural strength without significantly lowering its compressive strength and ability to support bone infiltration in vivo. Then scaffolds with the requisite microstructures were created by a robotic deposition method and tested in four-point bending and compression to validate the FEM simulations. In general, the data validated the predictions of the FEM simulations. Scaffolds with a porosity gradient, composed of a less porous outer region and a more porous inner region, showed a flexural strength (34±5MPa) that was more than twice the value for the uniform grid-like microstructure (15±5MPa) and a higher compressive strength (88±20MPa) than the grid-like microstructure (72±10MPa). Upon implantation of the scaffolds for 12weeks in rat calvarial defects in vivo, the amount of new bone that infiltrated the pore space of the scaffolds with the porosity gradient (37±16%) was similar to that for the grid-like scaffolds (35±6%). These scaffolds with a porosity gradient that better mimics the microstructure of human long bone could provide more reliable implants for structural bone repair. Copyright © 2016 Elsevier B.V. All rights reserved.
Dargel, Jens; Schmidt-Wiethoff, Rüdiger; Brüggemann, Gert-Peter; Koebke, Jürgen
2007-11-01
Serial dilation of the bone tunnel has been reported to create a tighter graft-tunnel fit. It was hypothesized that a serial dilation of the femoral bone tunnel would increase the initial fixation strength in press-fit anterior cruciate ligament (ACL) reconstructive surgery. Initial fixation strength of the femoral press-fit fixation technique was investigated in 72 porcine specimens in an ex vivo study by varying the femoral tunnel preparation technique. Extraction-drilling, tunnel dilation by 1 mm and dilation by 2.5 mm were assessed. Initial fixation strength of press-fit fixated patellar tendon-bone grafts was tested within each preparation group conducting a single cycle (and cyclic) load to failure protocol. The resulting tunnel diameter and the porcine femoral bone mineral density were determined using microradiographs and peripheral quantitative CT scans, respectively. Dilating a previously extraction-drilled femoral bone tunnel by 1 mm significantly enhances initial press-fit fixation strength in both single cycle and cyclic load to failure testing when compared to extraction-drilling and tunnel dilation by 2.5 mm. Due to an initial spring-back effect the resulting diameter of the femoral tunnel was underestimated by 3.3% with drilling and 6.7 and 12.2% with dilation by 1 and 2.5 mm, respectively. Volumetric trabecular bone mineral density at the site corresponding to the area of tunnel placement averaged 318 mg/cm(3). Dilating a femoral tunnel that is underdrilled by 1 mm appears to be a reasonable technical procedure in order to enhance initial fixation strength of press-fit ACL graft fixation.
Fritsch, Andreas; Hellmich, Christian; Dormieux, Luc
2009-09-21
There is an ongoing discussion on how bone strength could be explained from its internal structure and composition. Reviewing recent experimental and molecular dynamics studies, we here propose a new vision on bone material failure: mutual ductile sliding of hydroxyapatite mineral crystals along layered water films is followed by rupture of collagen crosslinks. In order to cast this vision into a mathematical form, a multiscale continuum micromechanics theory for upscaling of elastoplastic properties is developed, based on the concept of concentration and influence tensors for eigenstressed microheterogeneous materials. The model reflects bone's hierarchical organization, in terms of representative volume elements for cortical bone, for extravascular and extracellular bone material, for mineralized fibrils and the extrafibrillar space, and for wet collagen. In order to get access to the stress states at the interfaces between crystals, the extrafibrillar mineral is resolved into an infinite amount of cylindrical material phases oriented in all directions in space. The multiscale micromechanics model is shown to be able to satisfactorily predict the strength characteristics of different bones from different species, on the basis of their mineral/collagen content, their intercrystalline, intermolecular, lacunar, and vascular porosities, and the elastic and strength properties of hydroxyapatite and (molecular) collagen.
SHEDD-WISE, KRISTINE M.; ALEKEL, D. LEE; HOFMANN, HEIKE; HANSON, KATHY B.; SCHIFERL, DAN J.; HANSON, LAURA N.; VAN LOAN, MARTA D.
2011-01-01
Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined two soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (via peripheral quantitative computed tomography) in healthy postmenopausal women (46–63 y). We measured 3 y change in cortical (Ct) BMD, cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171) and trabecular (Tb) BMD, PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. Strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120 mg/d was protective of CtBMD. Strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80 mg/d became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3 y was modestly beneficial for midshaft femur vBMD as TLMP increased, and for midshaft femur SSI as bone turnover increased. PMID:21295742
Schwaiger, Benedikt J; Kopperdahl, David L; Nardo, Lorenzo; Facchetti, Luca; Gersing, Alexandra S; Neumann, Jan; Lee, Kwang J; Keaveny, Tony M; Link, Thomas M
2017-08-01
Bone fracture risk assessed ancillary to positron emission tomography with computed tomography co-registration (PET/CT) could provide substantial clinical value to oncology patients with elevated fracture risk without introducing additional radiation dose. The purpose of our study was to investigate the feasibility of obtaining valid measurements of bone mineral density (BMD) and finite element analysis-derived bone strength of the hip and spine using PET/CT examinations of prostate cancer patients by comparing against values obtained using routine multidetector-row computed tomography (MDCT) scans-as validated in previous studies-as a reference standard. Men with prostate cancer (n=82, 71.6±8.3 years) underwent Fluorine-18 NaF PET/CT and routine MDCT within three months. Femoral neck and total hip areal BMD, vertebral trabecular BMD and femur and vertebral strength based on finite element analysis were assessed in 63 paired PET/CT and MDCT examinations using phantomless calibration and Biomechanical-CT analysis. Men with osteoporosis or fragile bone strength identified at either the hip or spine (vertebral trabecular BMD ≤80mg/cm 3 , femoral neck or total hip T-score ≤-2.5, vertebral strength ≤6500N and femoral strength ≤3500N, respectively) were considered to be at high risk of fracture. PET/CT- versus MDCT-based BMD and strength measurements were compared using paired t-tests, linear regression and by generating Bland-Altman plots. Agreement in fracture-risk classification was assessed in a contingency table. All measurements from PET/CT versus MDCT were strongly correlated (R 2 =0.93-0.97; P<0.0001 for all). Mean differences for total hip areal BMD (0.001g/cm 2 , 1.1%), femoral strength (-60N, 1.3%), vertebral trabecular BMD (2mg/cm 3 , 2.6%) and vertebral strength (150N; 1.7%) measurements were not statistically significant (P>0.05 for all), whereas the mean difference in femoral neck areal BMD measurements was small but significant (-0.018g/cm 2 ; -2.5%; P=0.007). The agreement between PET/CT and MDCT for fracture-risk classification was 97% (0.89 kappa for repeatability). Ancillary analyses of BMD, bone strength, and fracture risk agreed well between PET/CT and MDCT, suggesting that PET/CT can be used opportunistically to comprehensively assess bone integrity. In subjects with high fracture risk such as cancer patients this may serve as an additional clinical tool to guide therapy planning and prevention of fractures. Copyright © 2017 Elsevier Inc. All rights reserved.
Duan, Hong; Yang, Hongsheng; Xiong, Yan; Zhang, Bin; Ren, Cheng; Min, Li; Zhang, Wenli; Yan, Yonggang; Li, Hong; Pei, Fuxing; Tu, Chongqi
2013-01-01
Background and methods Guided bone regeneration (GBR) is a new treatment for bone defects, and the property of membrane is critical to the success of GBR. This study focuses on a novel membrane tube for GBR, which was prepared by a nanocalcium-deficient hydroxyapatite–multi(amino acid) copolymer (n-CDHA-MAC) composite. The biomechanical strength and degradability of this membrane tube under mechanical loading after immersion in phosphate-buffered solution were investigated to evaluate the effects of mechanical loading on the membrane tube. The membrane-tube group with no mechanical loading and femora bone were used as controls. Results The compressive strength and bending strength of n-CDHA-MAC membrane tubes were 66.4 ± 10.2 MPa and 840.7 ± 12.1 MPa, which were lower than those of the goats’ femoral bones (69.0 ± 5.5 MPa and 900.2 ± 17.3 MPa), but there were no significant (P > 0.05) differences. In the in vitro degradability experiment, all membrane tubes were degradable and showed a surface-erosion degradation model. The PH of solution fluctuated from 7.2 to 7.5. The weight and mechanical strength of loaded tubes decreased more quickly than nonloaded ones, with significant differences (P < 0.05). However, the strength of the loaded group after degradation achieved 20.4 ± 1.2 MPa, which was greater than the maximum mechanical strength of 4.338 MPa based on goat femoral middle stationary state by three-dimensional finite-element analysis. Conclusions n-CDHA-MAC membrane tubes have good biomechanical strength during degradation under mechanical loading. Therefore, this membrane tube is an ideal GBR membrane for critical size defects of long bones in goats for animal experiments. PMID:23946651
Injectable biomaterials for minimally invasive orthopedic treatments.
Jayabalan, M; Shalumon, K T; Mitha, M K
2009-06-01
Biodegradable and injectable hydroxy terminated-poly propylene fumarate (HT-PPF) bone cement was developed. The injectable formulation consisting HT-PPF and comonomer, n-vinyl pyrrolidone, calcium phosphate filler, free radical catalyst, accelerator and radiopaque agent sets rapidly to hard mass with low exothermic temperature. The candidate bone cement attains mechanical strength more than the required compressive strength of 5 MPa and compressive modulus 50 MPa. The candidate bone cement resin elicits cell adhesion and cytoplasmic spreading of osteoblast cells. The cured bone cement does not induce intracutaneous irritation and skin sensitization. The candidate bone cement is tissue compatible without eliciting any adverse tissue reactions. The candidate bone cement is osteoconductive and inductive and allow osteointegration and bone remodeling. HT-PPF bone cement is candidate bone cement for minimally invasive radiological procedures for the treatment of bone diseases and spinal compression fractures.
Anorexia Nervosa and its Associated Endocrinopathy in Young People
Misra, Madhusmita; Klibanski, Anne
2016-01-01
Anorexia nervosa (AN) is a condition of severe undernutrition associated with adaptive changes in many endocrine axes. These changes include hypogonadotropic hypogonadism, acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1) levels, hypercortisolemia, altered secretion of adipokines and appetite regulating hormones, and low bone mineral density (BMD). Bone health is impaired subsequent to low BMI, decreased lean mass, and the endocrine changes described above. In addition to low areal BMD, AN is characterized by a decrease in volumetric BMD, changes in bone geometry, and reductions in strength estimates, leading to an increased risk for fracture. Weight restoration is essential for restoration of normal endocrine function; however, hypercortisolemia, high PYY levels, and ghrelin dynamics may not completely normalize. In some patients, hypogonadotropic hypogonadism persists despite weight restoration. Weight gain and menstrual recovery are critical for improving bone health in AN, however, residual deficits may persist. Physiologic estrogen replacement using transdermal, but not oral, estrogen increases bone accrual in adolescents with AN, while bisphosphonates improve BMD in adults. Recombinant human IGF-1 and teriparatide have been used in a few studies as bone anabolic therapies. More data are necessary to determine the optimal therapeutic strategies for low BMD in AN. PMID:26863308
Rotary ultrasonic bone drilling: Improved pullout strength and reduced damage.
Gupta, Vishal; Pandey, Pulak M; Silberschmidt, Vadim V
2017-03-01
Bone drilling is one of the most common operations used to repair fractured parts of bones. During a bone drilling process, microcracks are generated on the inner surface of the drilled holes that can detrimentally affect osteosynthesis and healing. This study focuses on the investigation of microcracks and pullout strength of cortical-bone screws in drilled holes. It compares conventional surgical bone drilling (CSBD) with rotary ultrasonic bone drilling (RUBD), a novel approach employing ultrasonic vibration with a diamond-coated hollow tool. Both techniques were used to drill holes in porcine bones in an in-vitro study. Scanning electron microscopy was used to observe microcracks and surface morphology. The results obtained showed a significant decrease in the number and dimensions of microcracks generated on the inner surface of drilled holes with the RUBD process in comparison to CSBD. It was also observed that a higher rotational speed and a lower feed rate resulted in lower damage, i.e. fewer microcracks. Biomechanical axial pullout strength of a cortical bone screw inserted into a hole drilled with RUBD was found to be much higher (55-385%) than that for CSBD. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Iwamoto, Jun; Sato, Yoshihiro; Matsumoto, Hideo
2014-01-01
Gastrectomy (GX) induces osteopenia in rats. The present study examined the skeletal effects of vitamin K2 in GX rats. Thirty male Sprague-Dawley rats (12 wk old) were randomized by the stratified weight method into the following three groups of 10 animals each: sham operation (control) group; GX group; and GX+oral vitamin K2 (menatetrenone, 30 mg/kg, 5 d/wk) group. Treatment was initiated at 1 wk after surgery. After 6 wk of treatment, the bone mineral content (BMC), bone mineral density (BMD), and mechanical strength of the femoral diaphysis and distal metaphysis were determined by peripheral quantitative computed tomography and mechanical strength tests, respectively. GX induced decreases in the BMC, BMD, and ultimate force of the femoral diaphysis and distal metaphysis. Vitamin K2 did not significantly influence the BMC or BMD of the femoral diaphysis or distal metaphysis in GX rats, but attenuated the decrease in the ultimate force and increased the stiffness of the femoral diaphysis. The present study showed that administration of vitamin K2 to GX rats improved the bone strength of the femoral diaphysis without altering the BMC or BMD, suggesting effects of vitamin K2 on the cortical bone quality.
Krupski, W; Tatara, M R; Charuta, A; Brodzki, A; Szpetnar, M; Jóźwik, A; Strzałkowska, N; Poławska, E; Łuszczewska-Sierakowska, I
2018-06-01
1. Sex-related differences of long pelvic limb bones and serum bone metabolism indices were evaluated in 14-month-old female (N = 7) and male (N = 7) ostriches of similar body weights. 2. Densitometric parameters of femur, tibia and tarsometatarsus were determined using quantitative computed tomography (volumetric bone mineral density, calcium hydroxyapatite density and mean volumetric bone mineral density) and dual energy X-ray absorptiometry (bone mineral density and bone mineral content) methods. Geometrical parameters such as cortical bone area, cross-sectional area, second moment of inertia, mean relative wall thickness and cortical index were determined in the midshaft of bones. Mechanical properties of bones (maximum elastic strength and ultimate strength) were evaluated using three-point bending test. Serum concentrations of free amino acids, osteocalcin, N-terminal propeptide of type I procollagen, C-terminal telopeptides of type II collagen and total antioxidative capacity were also determined. 3. Bone weight and relative bone weight of all bones were significantly higher in males than in females. Significantly lower values of trabecular bone mineral density and calcium hydroxyapatite density were found in the trabecular bone of tibia in males. The highest number of the sex-related differences was observed in the tarsometatarsus where bone length, bone mineral content, cortical bone area, cross-sectional area and ultimate strength were higher in males. Serum concentrations of taurine, hydroxyproline, valine and isoleucine were significantly higher in males. 4. Higher loading of the tarsometatarsus in comparison to femur and tibia may be an important factor interacting with sex hormones in regulation of bone formation and mineralisation processes. Sex-related differences of bone properties were associated with increased serum concentration of selected amino acids in males.
Cossio-Bolaños, Marco; Lee-Andruske, Cynthia; de Arruda, Miguel; Luarte-Rocha, Cristian; Almonacid-Fierro, Alejandro; Gómez-Campos, Rossana
2018-03-02
Maintaining and building healthy bones during the lifetime requires a complicated interaction between a number of physiological and lifestyle factors. Our goal of this study was to analyze the association between hand grip strength and the maximum peak expiratory flow with bone mineral density and content in adolescent students. The research team studied 1427 adolescent students of both sexes (750 males and 677 females) between the ages of 11.0 and 18.9 years in the Maule Region of Talca (Chile). Weight, standing height, sitting height, hand grip strength (HGS), and maximum peak expiratory flow (PEF) were measured. Furthermore, bone mineral density (BMD) and total body bone mineral content (BMC) were determined by using the Dual-Energy X-Ray Absorptiometry (DXA). Hand grip strength and PEF were categorized in tertiles (lowest, middle, and highest). Linear regression was performed in steps to analyze the relationship between the variables. Differences between categories were determined through ANOVA. In males, the hand grip strength explained 18-19% of the BMD and 20-23% of the BMC. For the females, the percentage of variation occurred between 12 and 13% of the BMD and 17-18% of the BMC. The variation of PEF for the males was observed as 33% of the BMD and 36% of the BMC. For the females, both the BMD and BMC showed a variation of 19%. The HGS and PEF were divided into three categories (lowest, middle, and highest). In both cases, significant differences occurred in bone density health between the three categories. In conclusion, the HGS and the PEF related positively to the bone density health of both sexes of adolescent students. The adolescents with poor values for hand grip strength and expiratory flow showed reduced values of BMD and BMC for the total body. Furthermore, the PEF had a greater influence on bone density health with respect to the HGS of the adolescents of both sexes.
Nyman, Jeffry S.; Merkel, Alyssa R.; Uppuganti, Sasidhar; Nayak, Bijaya; Rowland, Barbara; Makowski, Alexander J.; Oyajobi, Babatunde O.; Sterling, Julie A.
2016-01-01
Multiplemyeloma (MM) patients frequently develop tumor-induced bone destruction, yet no therapy completely eliminates the tumor or fully reverses bone loss. Transforming growth factor-β (TGF-β) activity often contributes to tumor-induced bone disease, and pre-clinical studies have indicated that TGF-β inhibition improves bone volume and reduces tumor growth in bone metastatic breast cancer. We hypothesized that inhibition of TGF-β signaling also reduces tumor growth, increases bone volume, and improves vertebral body strength in MM-bearing mice. We treated myeloma tumor-bearing (immunocompetent KaLwRij and immunocompromised Rag2 −/−) mice with a TGF-β inhibitory (1D11) or control (13C4) antibody, with or without the anti-myeloma drug bortezomib, for 4 weeks after inoculation of murine 5TGM1 MM cells. TGF-β inhibition increased trabecular bone volume, improved trabecular architecture, increased tissue mineral density of the trabeculae as assessed by ex vivo micro-computed tomography, and was associated with significantly greater vertebral body strength in biomechanical compression tests. Serum monoclonal paraprotein titers and spleen weights showed that 1D11 monotherapy did not reduce overall MM tumor burden. Combination therapy with 1D11 and bortezomib increased vertebral body strength, reduced tumor burden, and reduced cortical lesions in the femoral metaphysis, although it did not significantly improve cortical bone strength in three-point bending tests of the mid-shaft femur. Overall, our data provides rationale for evaluating inhibition of TGF-β signaling in combination with existing anti-myeloma agents as a potential therapeutic strategy to improve outcomes in patients with myeloma bone disease. PMID:27423464
Nyman, Jeffry S; Merkel, Alyssa R; Uppuganti, Sasidhar; Nayak, Bijaya; Rowland, Barbara; Makowski, Alexander J; Oyajobi, Babatunde O; Sterling, Julie A
2016-10-01
Multiple myeloma (MM) patients frequently develop tumor-induced bone destruction, yet no therapy completely eliminates the tumor or fully reverses bone loss. Transforming growth factor-β (TGF-β) activity often contributes to tumor-induced bone disease, and pre-clinical studies have indicated that TGF-β inhibition improves bone volume and reduces tumor growth in bone metastatic breast cancer. We hypothesized that inhibition of TGF-β signaling also reduces tumor growth, increases bone volume, and improves vertebral body strength in MM-bearing mice. We treated myeloma tumor-bearing (immunocompetent KaLwRij and immunocompromised Rag2-/-) mice with a TGF-β inhibitory (1D11) or control (13C4) antibody, with or without the anti-myeloma drug bortezomib, for 4weeks after inoculation of murine 5TGM1 MM cells. TGF-β inhibition increased trabecular bone volume, improved trabecular architecture, increased tissue mineral density of the trabeculae as assessed by ex vivo micro-computed tomography, and was associated with significantly greater vertebral body strength in biomechanical compression tests. Serum monoclonal paraprotein titers and spleen weights showed that 1D11 monotherapy did not reduce overall MM tumor burden. Combination therapy with 1D11 and bortezomib increased vertebral body strength, reduced tumor burden, and reduced cortical lesions in the femoral metaphysis, although it did not significantly improve cortical bone strength in three-point bending tests of the mid-shaft femur. Overall, our data provides rationale for evaluating inhibition of TGF-β signaling in combination with existing anti-myeloma agents as a potential therapeutic strategy to improve outcomes in patients with myeloma bone disease. Published by Elsevier Inc.
Targeting the LRP5 pathway improves bone properties in a mouse model of Osteogenesis Imperfecta
Jacobsen, Christina M.; Barber, Lauren A.; Ayturk, Ugur M.; Roberts, Heather J.; Deal, Lauren E.; Schwartz, Marissa A.; Weis, MaryAnn; Eyre, David; Zurakowski, David; Robling, Alexander G.; Warman, Matthew L.
2014-01-01
The cell surface receptor low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass and bone strength. Heterozygous missense mutations in LRP5 cause autosomal dominant high bone mass (HBM) in humans by reducing binding to LRP5 by endogenous inhibitors, such as sclerostin (SOST). Mice heterozygous for a knockin allele (Lrp5p.A214V) that is orthologous to a human HBM-causing mutation have increased bone mass and strength. Osteogenesis Imperfecta (OI) is a skeletal fragility disorder predominantly caused by mutations that affect type I collagen. We tested whether the LRP5 pathway can be used to improve bone properties in animal models of OI. First, we mated Lrp5+/p.A214V mice to Col1a2+/p.G610C mice, which model human type IV OI. We found that Col1a2+/p.G610C;Lrp5+/p.A214V offspring had significantly increased bone mass and strength compared to Col1a2+/p.G610C;Lrp5+/+ littermates. The improved bone properties were not due to altered mRNA expression of type I collagen or its chaperones, nor were they due to changes in mutant type I collagen secretion. Second, we treated Col1a2+/p.G610C mice with a monoclonal antibody that inhibits sclerostin activity (Scl-Ab). We found that antibody treated mice had significantly increased bone mass and strength compared to vehicle treated littermates. These findings indicate increasing bone formation, even without altering bone collagen composition, may benefit patients with OI. PMID:24677211
Lin, Cheng-Yung; Hsu, Jenn-Chung; Wan, Tien-Chun
2012-01-01
An experiment was carried out to determine the effect of age and caponization on the development blood and bone characteristics development in male country chickens in Taiwan. A total of two hundred 8-wk-old LRI native chicken cockerels, Taishi meat No.13 from LRI-COA, were used as experimental animals. Cockerels were surgically caponized at 8 wks of age. Twelve birds in each group were bled and dressed from 8 wks to 35 wks of age at 1 to 5 wk intervals. The results indicated that the plasma testosterone concentration was significantly (p<0.05) lower in capons after 12 wks of age (caponized treatment after 4 wks) than that of the intact males. The relative tibia weight, bone breaking strength, cortical thickness, bone ash, bone calcium, bone phosphorus and bone magnesium contents were significantly (p<0.05) higher in intact males, while capons had higher (p<0.05) plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. The plasma testosterone concentration, relative tibia weight, tibia length, breaking strength, cortical thickness, bone ash, calcium, and phosphorus contents of intact males chickens increased significantly (p<0.05) with the advance of age. In addition, the relative tibia weight of capons peaked at 18 wks of age, and declined at 35 wks of age. The bone ash, calcium and phosphorus content increased most after 14 wks of age in male native chickens in Taiwan. Also, tibia length and cortical thickness peaked at 22 wks of age. However, the peak of bone strength was found at 26 wks of age. These findings support the assertion that androgens can directly influence bone composition fluxes in male chickens. Caponization caused a significant increase in bone loss at 4 wks post treatment, which reflected bone cell damage, and demonstrated reductions in the relative tibia weight, breaking strength, cortical thickness, bone ash, calcium, phosphorus and magnesium contents, and increases in plasma ionized calcium, inorganic phosphorus and alkaline phosphatase concentration. PMID:25049655
Wise, L M; Wang, Z; Grynpas, M D
2007-10-01
Fractography has not been fully developed as a useful technique in assessing failure mechanisms of bone. While fracture surfaces of osteonal bone have been explored, this may not apply to conventional mechanical testing of mouse bone. Thus, the focus of this work was to develop and evaluate the efficacy of a fractography protocol for use in supplementing the interpretation of failure mechanisms in mouse bone. Micro-computed tomography and three-point bending were performed on femora of two groups of 6-month-old mice (C57BL/6 and a mixed strain background of 129SV/C57BL6). SEM images of fracture surfaces were collected, and areas of "tension", "compression" and "transition" were identified. Percent areas of roughness were identified and estimated within areas of "tension" and "compression" and subsequently compared to surface roughness measurements generated from an optical profiler. Porosity parameters were determined on the tensile side. Linear regression analysis was performed to evaluate correlations between certain parameters. Results show that 129 mice exhibit significantly increased bone mineral density (BMD), number of "large" pores, failure strength, elastic modulus and energy to failure compared to B6 mice (p<0.001). Both 129 and B6 mice exhibit significantly (p<0.01) more percent areas of tension (49+/-1%, 42+/-2%; respectively) compared to compression (26+/-2%, 31+/-1%; respectively). In terms of "roughness", B6 mice exhibit significantly less "rough" areas (30+/-4%) compared to "smooth" areas (70+/-4%) on the tensile side only (p<0.001). Qualitatively, 129 mice demonstrate more evidence of bone toughening through fiber bridging and loosely connected fiber bundles. The number of large pores is positively correlated with failure strength (p=0.004), elastic modulus (p=0.002) and energy to failure (p=0.041). Percent area of tensile surfaces is positively correlated with failure strength (p<0.001), elastic modulus (p=0.016) and BMD (p=0.037). Percent area of rough compressive surfaces is positively correlated with energy to failure (p=0.039). Evaluation of fracture surfaces has helped to explain why 129 mice have increased mechanical properties compared to B6 mice, namely via toughening mechanisms on the compressive side of failure. Several correlations exist between fractography parameters and mechanical behavior, supporting the utility of fractography with skeletal mouse models.
Lenz, Gerhard P; Stasiak, Andrzej; Deszczyński, Jarosław; Karpiński, Janusz; Stolarczyk, Artur; Ziółkowski, Marcin; Szczesny, Grzegorz
2003-10-30
Background. This work focuses on problems of heuristic techniques based on artificial intelligence. Mainly about artificial non-linear and multilayer neurons, which were used to estimate the bone union fractures treatment process using orthopaedic stabilizers Dynastab DK. Material and methods. The author utilizes computer software based on multilayer neuronal network systems, which allows to predict the curve of the bone union at early stages of therapy. The training of the neural net has been made on fifty six cases of bone fracture which has been cured by the Dynastab stabilizers DK. Using such trained net, seventeen fractures of long bones shafts were being examined on strength and prediction of the bone union as well. Results. Analyzing results, it should be underlined that mechanical properties of the bone union in the slot of fracture are changing in nonlinear way in function of time. Especially, major changes were observed during the forth month of the fracture treatment. There is strong correlation between measure number two and measure number six. Measure number two is more strict and in the matter of fact it refers to flexion, as well as the measure number six, to compression of the bone in the fracture slot. Conclusions. Consequently, deflection loads are especially hazardous for healing bone. The very strong correlation between real curves and predicted curves shows the correctness of the neuronal model.
Bilek, Laura D; Waltman, Nancy L; Lappe, Joan M; Kupzyk, Kevin A; Mack, Lynn R; Cullen, Diane M; Berg, Kris; Langel, Meghan; Meisinger, Melissa; Portelli-Trinidad, Ashlee; Lang, Molly
2016-08-30
In the United States, over 34 million American post-menopausal women have low bone mass (osteopenia) which increases their risk of osteoporosis and fractures. Calcium, vitamin D and exercise are recommended for prevention of osteoporosis, and bisphosphonates (BPs) are prescribed in women with osteoporosis. BPs may also be prescribed for women with low bone mass, but are more controversial due to the potential for adverse effects with long-term use. A bone loading exercise program (high-impact weight bearing and resistance training) promotes bone strength by preserving bone mineral density (BMD), improving bone structure, and by promoting bone formation at sites of mechanical stress. The sample for this study will be 309 women with low bone mass who are within 5 years post-menopause. Subjects are stratified by exercise history (≥2 high intensity exercise sessions per week; < 2 sessions per week) and randomized to a control or one of two treatment groups: 1) calcium + vitamin D (CaD) alone (Control); 2) a BP plus CaD (Risedronate); or 3) a bone loading exercise program plus CaD (Exercise). After 12 months of treatment, changes in bone structure, BMD, and bone turnover will be compared in the 3 groups. Primary outcomes for the study are bone structure measures (Bone Strength Index [BSI] at the tibia and Hip Structural Analysis [HSA] scores). Secondary outcomes are BMD at the hip and spine and serum biomarkers of bone formation (alkaline phosphase, AlkphaseB) and resorption (Serum N-terminal telopeptide, NTx). Our central hypothesis is that improvements in bone strength will be greater in subjects randomized to the Exercise group compared to subjects in either Control or Risedronate groups. Our research aims to decrease the risk of osteoporotic fractures by improving bone strength in women with low bone mass (pre-osteoporotic) during their first 5 years' post-menopause, a time of rapid and significant bone loss. Results of this study could be used in developing a clinical management pathway for women with low bone mass at their peak period of bone loss that would involve lifestyle modifications such as exercises prior to medications such as BPs. Clinicaltrials.gov NCT02186600 . Initial registration: 7/7/2014.
Sapthagirivasan, V; Anburajan, M; Janarthanam, S
2015-08-01
The early detection of osteoporosis risk enhances the lifespan and quality of life of an individual. A reasonable in-vivo assessment of trabecular bone strength at the proximal femur helps to evaluate the fracture risk and henceforth, to understand the associated structural dynamics on occurrence of osteoporosis. The main aim of our study was to develop a framework to automatically determine the trabecular bone strength from clinical femur CT images and thereby to estimate its correlation with BMD. All the 50 studied south Indian female subjects aged 30 to 80 years underwent CT and DXA measurements at right femur region. Initially, the original CT slices were intensified and active contour model was utilised for the extraction of the neck region. After processing through a novel process called trabecular enrichment approach (TEA), the three dimensional (3D) trabecular features were extracted. The extracted 3D trabecular features, such as volume fraction (VF), solidity of delta points (SDP) and boundness, demonstrated a significant correlation with femoral neck bone mineral density (r = 0.551, r = 0.432, r = 0.552 respectively) at p < 0.001. The higher area under the curve values of the extracted features (VF: 85.3 %; 95CI: 68.2-100 %, SDP: 82.1 %; 95CI: 65.1-98.9 % and boundness: 90.4 %; 95CI: 78.7-100 %) were observed. The findings suggest that the proposed framework with TEA method would be useful for spotting women vulnerable to osteoporotic risk.
Factors affecting the pullout strength of cancellous bone screws.
Chapman, J R; Harrington, R M; Lee, K M; Anderson, P A; Tencer, A F; Kowalski, D
1996-08-01
Screws placed into cancellous bone in orthopedic surgical applications, such as fixation of fractures of the femoral neck or the lumbar spine, can be subjected to high loads. Screw pullout is a possibility, especially if low density osteoporotic bone is encountered. The overall goal of this study was to determine how screw thread geometry, tapping, and cannulation affect the holding power of screws in cancellous bone and determine whether current designs achieve maximum purchase strength. Twelve types of commercially available cannulated and noncannulated cancellous bone screws were tested for pullout strength in rigid unicellular polyurethane foams of apparent densities and shear strengths within the range reported for human cancellous bone. The experimentally derived pullout strength was compared to a predicted shear failure force of the internal threads formed in the polyurethane foam. Screws embedded in porous materials pullout by shearing the internal threads in the porous material. Experimental pullout force was highly correlated to the predicted shear failure force (slope = 1.05, R2 = 0.947) demonstrating that it is controlled by the major diameter of the screw, the length of engagement of the thread, the shear strength of the material into which the screw is embedded, and a thread shape factor (TSF) which accounts for screw thread depth and pitch. The average TSF for cannulated screws was 17 percent lower than that of noncannulated cancellous screws, and the pullout force was correspondingly less. Increasing the TSF, a result of decreasing thread pitch or increasing thread depth, increases screw purchase strength in porous materials. Tapping was found to reduce pullout force by an average of 8 percent compared with nontapped holes (p = 0.0001). Tapping in porous materials decreases screw pullout strength because the removal of material by the tap enlarges hole volume by an average of 27 percent, in effect decreasing the depth and shear area of the internal threads in the porous material.
Kalimeri, Maria; Leek, Francesca; Wang, Nan Xin; Koh, Huann Rong; Roy, Nicole C; Cameron-Smith, David; Kruger, Marlena C; Henry, Christiani Jeyakumar; Totman, John J
2018-04-30
Insulin resistance (IR) is accompanied by increased areal or volumetric bone mineral density (aBMD or vBMD), but also higher fracture risk. Meanwhile, imbalances in bone health biomarkers affect insulin production. This study investigates the effect of IR on proximal femur and lumbar spine BMD, femoral neck bending, compressive and impact strength indices (Composite Strength Indices) and circulating levels of parathyroid hormone (PTH), C-telopeptide of Type I collagen (CTx-1) and 25(OH) Vitamin D₃, in a cohort of 97 healthy, non-obese, menopausal Chinese-Singaporean women. Lumbar spine aBMD was inversely associated with IR and dependent on lean body mass (LBM) and age. No such associations were found for vBMD of the third lumbar vertebra, aBMD and vBMD of the proximal femur, or circulating levels of PTH, CTx-1 and 25(OH) Vitamin D₃. Composite Strength Indices were inversely associated with IR and independent of LBM, but after adjusting for fat mass and age, this association remained valid only for the impact strength index. Composite Strength Indices were significantly lower in participants with a high degree of IR. Our findings on IR and Composite Strength Indices relationships were in agreement with previous studies on different cohorts, but those on IR and BMD associations were not.
Influences of physical fitness on bone mass in women with fibromyalgia.
Gómez-Cabello, Alba; Vicente-Rodríguez, Germán; Navarro-Vera, Isabel; Martinez-Redondo, Diana; Díez-Sánchez, Carmen; Casajús, José Antonio
2015-04-01
The aim of this study was to provide information about the relationship of bone mineral content (BMC) and density (BMD) with some physical-fitness-related variables in a sample of women with fibromyalgia (FM) and age-matched women without FM. Twenty-eight women clinically diagnosed with FM (age 51.1 ± 8.4 yr, M ± SD) and 22 age-matched controls participated in the study. Whole-body BMC and BMD, lean mass, handgrip strength, quadriceps strength, and cardiovascular fitness were measured in all participants. The association between physical-fitness variables and bone-related variables was tested by linear regression controlling for body weight as a possible confounder. There were no differences in BMC or BMD between groups. Women with FM had lower values of handgrip strength, quadriceps strength, and VO2peak than the control group. Handgrip strength and aerobic capacity were associated with BMC and BMD and quadriceps strength was associated with BMD in women with FM; however, only VO2peak was associated with BMC in the group of women without FM. Bone mass of women with FM may be more susceptible to changes in physical fitness than that of the women without fibromyalgia.
[Role of physical activity in the prevention of osteoporosis].
Siegrist, Monika
2008-07-01
In recent years, osteoporosis has become a leading cause of morbidity and mortality in elderly women. Research has demonstrated that the prevention of osteoporosis and osteoporosis-related fractures may best be achieved by initiating sound health behaviors early in life and continuing them throughout life. Evidence suggests that osteoporosis is easier to prevent than to treat. In fact, healthy early life practices, including the adequate consumption of most nutrients, calcium in particular, and regular physical activity, contribute to greater bone mineral mass and optimal peak bone mass. Bone is living tissue that responds to exercise by becoming stronger. Two types of exercises are important for building and maintaining bone mass and density: Weight-bearing exercises, in which bones and muscles work against gravity and resistance training that use muscular strength to improve muscle mass and strengthen bone. Exercise can also improve gait, balance, coordination, proprioception, reaction time, and muscle strength, even in very old and frail elderly people. Overall, the evidence strongly suggests that regular physical activity, especially started in childhood and adolescence, is a cheap and safe way of both improving bone strength and reducing the risk to fall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eneh, C. T. M., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Töyräs, J., E-mail: chibuzor.eneh@uef.fi, E-mail: markus.malo@uef.fi, E-mail: janne.karjalainen@boneindex.fi, E-mail: jukka.liukkonen@gmail.com, E-mail: juha.toyras@uef.fi; Jurvelin, J. S., E-mail: jukka.jurvelin@uef.fi
Purpose: The purpose of this study was to investigate the effect of simultaneous changes in cortical porosity, tissue mineral density, and elastic properties on radial speed of sound (SOS) in cortical bone. The authors applied quantitative pulse-echo (PE) ultrasound techniques that hold much potential especially for screening of osteoporosis at primary healthcare facilities. Currently, most PE measurements of cortical thickness, a well-known indicator of fracture risk, use a predefined estimate for SOS in bone to calculate thickness. Due to variation of cortical bone porosity, the use of a constant SOS value propagates to an unknown error in cortical thickness assessmentmore » by PE ultrasound. Methods: The authors conducted 2.25 and 5.00 MHz focused PE ultrasound time of flight measurements on femoral diaphyses of 18 cadavers in vitro. Cortical porosities of the samples were determined using microcomputed tomography and related to SOS in the samples. Additionally, the effect of cortical bone porosity and mechanical properties of the calcified matrix on SOS was investigated using numerical finite difference time domain simulations. Results: Both experimental measurements and simulations demonstrated significant negative correlation between radial SOS and cortical porosity (R{sup 2} ≥ 0.493, p < 0.01 and R{sup 2} ≥ 0.989, p < 0.01, respectively). When a constant SOS was assumed for cortical bone, the error due to variation of cortical bone porosity (4.9%–16.4%) was about 6% in the cortical thickness assessment in vitro. Conclusions: Use of a predefined, constant value for radial SOS in cortical bone, i.e., neglecting the effect of measured variation in cortical porosity, propagated to an error of 6% in cortical thickness. This error can be critical as characteristic cortical thinning of 1.10% ± 1.06% per yr decreases bending strength of the distal radius and results in increased fragility in postmenopausal women. Provided that the cortical porosity can be estimated in vivo, the relationship between radial SOS and cortical porosity can be utilized and a porosity based radial SOS estimate could be implemented to determine cortical thickness. This would constitute a step toward individualized quantitative ultrasound diagnostics of osteoporosis.« less
Tarlton, John F; Wilkins, Lindsay J; Toscano, Michael J; Avery, Nick C; Knott, Lynda
2013-02-01
The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis. Copyright © 2012 Elsevier Inc. All rights reserved.
Bone density and the lightweight skeletons of birds.
Dumont, Elizabeth R
2010-07-22
The skeletons of birds are universally described as lightweight as a result of selection for minimizing the energy required for flight. From a functional perspective, the weight (mass) of an animal relative to its lift-generating surfaces is a key determinant of the metabolic cost of flight. The evolution of birds has been characterized by many weight-saving adaptations that are reflected in bone shape, many of which strengthen and stiffen the skeleton. Although largely unstudied in birds, the material properties of bone tissue can also contribute to bone strength and stiffness. In this study, I calculated the density of the cranium, humerus and femur in passerine birds, rodents and bats by measuring bone mass and volume using helium displacement. I found that, on average, these bones are densest in birds, followed closely by bats. As bone density increases, so do bone stiffness and strength. Both of these optimization criteria are used in the design of strong and stiff, but lightweight, manmade airframes. By analogy, increased bone density in birds and bats may reflect adaptations for maximizing bone strength and stiffness while minimizing bone mass and volume. These data suggest that both bone shape and the material properties of bone tissue have played important roles in the evolution of flight. They also reconcile the conundrum of how bird skeletons can appear to be thin and delicate, yet contribute just as much to total body mass as do the skeletons of terrestrial mammals.
Wang, Yingxu; Mori, Ryuji; Ozoe, Nobuaki; Nakai, Takahisa; Uchio, Yuji
2009-11-01
Screws with strong pull-out strength have been sought for the treatment of cancellous bone. We hypothesized that an obliquely angled screw thread has advantages over conventional vertical thread with a minimal proximal half angle. Metal and bone screws were made of stainless steel and porcine cortical bone. Their proximal half angle was set at 0 degrees , 30 degrees , or 60 degrees . The screws were inserted into porcine cancellous bone. At 0 degrees , the thread faced the recipient bone vertically. Pullout tests at a rate of 30 mm/min (n=40, each screw type) and microcomputed tomography (n=6) were conducted. The pull-out strength of the screws was maximal at 30 degrees ; 348.8 (SD, 44.1)N with metal and 326.6 (39.4)N with bone. It was intermediate at 0 degrees ; 301.9 (35.9)N with metal and 278.2 (30.6)N with bone. It was minimal at 60 degrees; 126.5 (39.0)N with metal and 174.8 (29.7)N with bone. Cancellous bone was damaged between the threads at 30 degrees , while intact cancellous bone was preserved between the threads at 0 degrees. A proximal half angle of around 30 degrees is appropriate because the pullout force is applied to the recipient bone evenly. Commercial cancellous screws can be improved by changing the thread shape to minimize the damage to recipient bone.
Hara, Daisuke; Nakashima, Yasuharu; Sato, Taishi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Yoshimoto, Kensei; Yoshihara, Yusuke; Nakamura, Akihiro; Nakao, Yumiko; Iwamoto, Yukihide
2016-02-01
The present study examined the bone bonding strength of diamond-structured porous titanium-alloy (Porous-Ti-alloy) manufactured using the electron beam-melting technique in comparison with fiber mesh-coated or rough-surfaced implants. Cylindrical implants with four different pore sizes (500, 640, 800, and 1000μm) of Porous-Ti-alloy, titanium fiber mesh (FM), and surfaces roughened by titanium arc spray (Ti-spray) were implanted into the distal femur of rabbits. Bone bonding strength and histological bone ingrowth were evaluated at 4 and 12weeks after implantation. The bone bonding strength of Porous-Ti-alloy implants (640μm pore size) increased over time from 541.4N at 4weeks to 704.6N at 12weeks and was comparable to that of FM and Ti-spray implants at both weeks. No breakage of the porous structure after mechanical testing was found with Porous-Ti-alloy implants. Histological bone ingrowth that increased with implantation time occurred along the inner structure of Porous-Ti-alloy implants. There was no difference in bone ingrowth in Porous-Ti-alloy implants with pore sizes among 500, 640, and 800μm; however, less bone ingrowth was observed with the 1000μm pore size. These results indicated Porous-Ti-alloy implants with pore size under 800μm provided biologically active and mechanically stable surface for implant fixation to bone, and had potential advantages for weight bearing orthopedic implants such as acetabular cups. Copyright © 2015 Elsevier B.V. All rights reserved.
Shedd-Wise, Kristine M; Alekel, D Lee; Hofmann, Heike; Hanson, Kathy B; Schiferl, Dan J; Hanson, Laura N; Van Loan, Marta D
2011-01-01
Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (by means of peripheral quantitative computed tomography) in healthy postmenopausal women (46-63yr). We measured 3-yr changes in cortical BMD (CtBMD), cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171), and trabecular BMD (TbBMD), PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. The strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole-body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120-mg/d dose was protective of CtBMD. The strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80-mg/d dose became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3yr was modestly beneficial for midshaft femur vBMD as TLMP increased and for midshaft femur SSI as bone turnover increased. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Bone mineral density, serum albumin and serum magnesium.
Saito, Noboru; Tabata, Naoto; Saito, Saburou; Andou, Yoshihisa; Onaga, Yukiko; Iwamitsu, Akihiro; Sakamoto, Morihide; Hori, Tuyoshi; Sayama, Harumi; Kawakita, Toshiko
2004-12-01
This study explores clinical and laboratory abnormalities that contribute to the prevalence of bone fractures in frail and control elderly patients, to ascertain factors that relate to bone strength and fragility. Patients were selected as free from renal failure and not taking supplements or medications that affect their magnesium status, and categorized according to their underlying diseases, sex and age, and evaluated by tests of bone strength. Findings, differentiating elderly patients on the basis of their magnesium, calcium, serum albumin, body mass, bone mineral density and their fracture occurrence were tabulated. Evidence is presented of low magnesium and albumin serum levels, especially in women with low bone density, as well as of low calcium and trace minerals.
Calcaneal bone mineral density and mechanical strength of the metatarsals.
Lidtke, R H; Patel, D; Muehleman, C
2000-10-01
The primary aim of this study was to determine the predictive value of the bone mineral density of the calcaneus for fracture of the metatarsals. The authors report a strong positive correlation between the bone mineral density of the calcaneus and the four-point bending strength of each of the five metatarsals (r2 = 0.76, 0.64, 0.70, 0.68, and 0.78 for metatarsals 1 through 5, respectively). In addition, the relative strengths of the metatarsals and the correlation with their in vivo loads during gait as previously reported in the literature are discussed.
NASA Astrophysics Data System (ADS)
Oshima, Yusuke; Iimura, Tadahiro; Saitou, Takashi; Imamura, Takeshi
2015-02-01
Osteoporosis is a major bone disease that connotes the risk of fragility fractures resulting from alterations to bone quantity and/or quality to mechanical competence. Bone strength arises from both bone quantity and quality. Assessment of bone quality and bone quantity is important for prediction of fracture risk. In spite of the two factors contribute to maintain the bone strength, only one factor, bone mineral density is used to determine the bone strength in the current diagnosis of osteoporosis. On the other hand, there is no practical method to measure chemical composition of bone tissue including hydroxyapatite and collagen non-invasively. Raman spectroscopy is a powerful technique to analyze chemical composition and material properties of bone matrix non-invasively. Here we demonstrated Raman spectroscopic analysis of the bone matrix in osteoporosis model rat. Ovariectomized (OVX) rat was made and the decalcified sections of tibias were analyzed by a Raman microscope. In the results, Raman bands of typical collagen appeared in the obtained spectra. Although the typical mineral bands at 960 cm-1 (Phosphate) was absent due to decalcified processing, we found that Raman peak intensities of amide I and C-C stretching bands were significantly different between OVX and sham-operated specimens. These differences on the Raman spectra were statistically compared by multivariate analyses, principal component analysis (PCA) and liner discrimination analysis (LDA). Our analyses suggest that amide I and C-C stretching bands can be related to stability of bone matrix which reflects bone quality.
Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan
2018-01-01
Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lozano-Berges, Gabriel; Matute-Llorente, Ángel; Gómez-Bruton, Alejandro; González-Agüero, Alex; Vicente-Rodríguez, Germán; Casajús, José A
2018-05-08
The present study shows that football practice during growth may improve bone geometry in male and female football players. However, only females had better bone strength in comparison with controls. The aim of this study was to compare bone geometry in adolescent football players and controls. A total of 107 football players (71 males/36 females; mean age 12.7 ± 0.6/12.7 ± 0.6 years) and 42 controls (20 males/22 females; mean age 13.1 ± 1.4/12.7 ± 1.3 years) participated in this study. Total and trabecular volumetric bone mineral content (Tt.BMC/Tb.BMC), cross-sectional area (Tt.Ar/Tb.Ar), and bone strength index (BSI) were measured at 4% site of the non-dominant tibia by peripheral quantitative computed tomography (pQCT). Moreover, Tt.BMC, cortical BMC (Ct.BMC), Tt.Ar, cortical Ar (Ct.Ar), cortical thickness (Ct.Th), periosteal circumference (PC), endosteal circumference (EC), fracture load in X-axis, and polar strength strain index (SSIp) were measured at 38% site of the tibia. Multivariate analyses of covariance were used to compare bone pQCT variables between football players and controls using the tibia length and maturity offset as covariates. Female football players demonstrated 13.8-16.4% higher BSI, Ct.Th, fracture load in X-axis, and SSIp than controls (p < .0036). Males showed no significant differences in bone strength when compared to controls (p > .0036). In relation to bone mineral content and area, male football players showed 8.8% higher Tt.Ar and Tb.Ar at the 4% site of the tibia when compared to controls; whereas 13.8-15.8% higher Tt.BMC, Ct.BMC, and Ct.Ar at the 38% site of the tibia were found in female football players than controls (p < .0036). In this study, female adolescent football players presented better bone geometry and strength values than controls. In contrast, only bone geometry was higher in male football players than controls.
Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William
2014-01-01
This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries. PMID:24848992
Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia
2011-08-01
An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.
Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility
Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J.; Turner, Charles H.; Foroud, Tatiana
2011-01-01
Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high-resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from 5 of the 8 progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. PMID:21334473
Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.
Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana
2011-05-01
Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright © 2010 Elsevier Inc. All rights reserved.
The biological effects of tocotrienol on bone: a review on evidence from rodent models.
Chin, Kok-Yong; Ima-Nirwana, Soelaiman
2015-01-01
Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation.
The biological effects of tocotrienol on bone: a review on evidence from rodent models
Chin, Kok-Yong; Ima-Nirwana, Soelaiman
2015-01-01
Osteoporosis causes significant health care and economic burden to society, leading to a relentless search for effective preventive agents. Tocotrienol, a member of the vitamin E family, has demonstrated promising potential as an osteoporosis-preventing agent. This review summarizes evidence on the effects of tocotrienol on bone in animal models. Techniques used to examine the effects of tocotrienol on bone in animals included bone histomorphometry, X-ray microtomography, dual-energy X-ray absorptiometry, bone turnover markers, bone calcium content, and biomechanical strength. Tocotrienol was shown to improve osteoblast number, bone formation, mineral deposition, and bone microarchitecture in osteopenic rats. It also decreased osteoclast number and bone erosion in the rats. Tocotrienol supplementation resulted in an improvement in bone mineral density, although biomechanical strength was not significantly altered in the rats. The beneficial effects of tocotrienol on bone can be attributed to its role as an antioxidant, anti-inflammatory agent, suppressor of the mevalonate pathway, and modulator of genes favorable to bone formation. PMID:25897211
Sensitivity Analysis of the Bone Fracture Risk Model
NASA Technical Reports Server (NTRS)
Lewandowski, Beth; Myers, Jerry; Sibonga, Jean Diane
2017-01-01
Introduction: The probability of bone fracture during and after spaceflight is quantified to aid in mission planning, to determine required astronaut fitness standards and training requirements and to inform countermeasure research and design. Probability is quantified with a probabilistic modeling approach where distributions of model parameter values, instead of single deterministic values, capture the parameter variability within the astronaut population and fracture predictions are probability distributions with a mean value and an associated uncertainty. Because of this uncertainty, the model in its current state cannot discern an effect of countermeasures on fracture probability, for example between use and non-use of bisphosphonates or between spaceflight exercise performed with the Advanced Resistive Exercise Device (ARED) or on devices prior to installation of ARED on the International Space Station. This is thought to be due to the inability to measure key contributors to bone strength, for example, geometry and volumetric distributions of bone mass, with areal bone mineral density (BMD) measurement techniques. To further the applicability of model, we performed a parameter sensitivity study aimed at identifying those parameter uncertainties that most effect the model forecasts in order to determine what areas of the model needed enhancements for reducing uncertainty. Methods: The bone fracture risk model (BFxRM), originally published in (Nelson et al) is a probabilistic model that can assess the risk of astronaut bone fracture. This is accomplished by utilizing biomechanical models to assess the applied loads; utilizing models of spaceflight BMD loss in at-risk skeletal locations; quantifying bone strength through a relationship between areal BMD and bone failure load; and relating fracture risk index (FRI), the ratio of applied load to bone strength, to fracture probability. There are many factors associated with these calculations including environmental factors, factors associated with the fall event, mass and anthropometric values of the astronaut, BMD characteristics, characteristics of the relationship between BMD and bone strength and bone fracture characteristics. The uncertainty in these factors is captured through the use of parameter distributions and the fracture predictions are probability distributions with a mean value and an associated uncertainty. To determine parameter sensitivity, a correlation coefficient is found between the sample set of each model parameter and the calculated fracture probabilities. Each parameters contribution to the variance is found by squaring the correlation coefficients, dividing by the sum of the squared correlation coefficients, and multiplying by 100. Results: Sensitivity analyses of BFxRM simulations of preflight, 0 days post-flight and 365 days post-flight falls onto the hip revealed a subset of the twelve factors within the model which cause the most variation in the fracture predictions. These factors include the spring constant used in the hip biomechanical model, the midpoint FRI parameter within the equation used to convert FRI to fracture probability and preflight BMD values. Future work: Plans are underway to update the BFxRM by incorporating bone strength information from finite element models (FEM) into the bone strength portion of the BFxRM. Also, FEM bone strength information along with fracture outcome data will be incorporated into the FRI to fracture probability.
Christiansen, Blaine A; Kopperdahl, David L; Kiel, Douglas P; Keaveny, Tony M; Bouxsein, Mary L
2011-01-01
The biomechanical mechanisms underlying sex-specific differences in age-related vertebral fracture rates are ill defined. To gain insight into this issue, we used finite element analysis of clinical computed tomography (CT) scans of the vertebral bodies of L3 and T10 of young and old men and women to assess age- and sex-related differences in the strength of the whole vertebra, the trabecular compartment, and the peripheral compartment (the outer 2 mm of vertebral bone, including the thin cortical shell). We sought to determine whether structural and geometric changes with age differ in men and women, making women more susceptible to vertebral fractures. As expected, we found that vertebral strength decreased with age 2-fold more in women than in men. The strength of the trabecular compartment declined significantly with age for both sexes, whereas the strength of the peripheral compartment decreased with age in women but was largely maintained in men. The proportion of mechanical strength attributable to the peripheral compartment increased with age in both sexes and at both vertebral levels. Taken together, these results indicate that men and women lose vertebral bone differently with age, particularly in the peripheral (cortical) compartment. This differential bone loss explains, in part, a greater decline in bone strength in women and may contribute to the higher incidence of vertebral fractures among women than men. © 2011 American Society for Bone and Mineral Research. PMID:21542000
Understanding the Structure of Bones
... bend. The same organization is true of bone. Collagen rods in bone are similar to the steel ... These minerals give the bones strength while the collagen rods provide resiliency. Diseases that interfere with the ...
Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C
2015-06-01
Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.
Quantification of bone strength by intraoperative torque measurement: a technical note.
Suhm, Norbert; Haenni, Markus; Schwyn, Ronald; Hirschmann, Michael; Müller, Andreas Marc
2008-06-01
Bone strength describes the resistance of bone against mechanical failure. Bone strength depends on both the amount of bone and the bone's quality, and the bone strength may be looked upon as a relevant parameter to judge an osteosynthesis' stability. Information about bone strength was barely available intraoperatively in the past. The previous work of our group reported on development and laboratory evaluation of mechanical torque measurement as a method for the intraoperative quantification of bone strength. With the clinical series presented here we intend to verify that the im gesamten Text DensiProbe instrumentation for intraoperative torque measurement and the related measurement method are eligible for intraoperative use based on the following criteria: application of the method may not create complications, the measurement can be performed by the surgeon himself and may only cause a limited increase in the procedure time. From December 2006 until May 2007 ten patients with a pertrochanteric femoral fracture or a lateral femoral neck fracture eligible for stabilization with DHS were included in the study after having received informed consent. Any medication and comorbidity that might have influenced bone quality or bone mineral density (BMD) in these patients was documented. Bone strength was intraoperatively measured with DensiProbe. Complications that were obviously related with torque measurement were documented as well as any deviation from the suggested procedure; 6 and 12 weeks postoperative follow-up included clinical and radiological examination. The time required for torque measurement, the overall operating time and the number of persons present in the operating room were protocolled. BMD values of the contralateral femoral neck were postoperatively assessed by dual energy X-ray absorptiometry (DEXA) and compared to intraoperative peak torque values measured by DensiProbe. No major complication was observed during intraoperative application of DensiProbe by trained surgeons. The unintended extraction of the guide wire together with the torque measurement probe was reported only once and is looked upon as a minor complication. Fracture healing was uneventful in all patients. The mean time for torque measurement was 2.35 +/- 0.9 min accounting for 2.2 +/- 1.1% of total surgery time. The presence of an additional person was not required to perform torque measurement but to protocol the data. There was a tendency towards correlation between BMD values of the femoral neck and intraoperative peak torque values. The data presented clearly indicate that the DensiProbe instrumentation and measurement principle are eligible for routine intraoperative use by trained surgeons. Interpretation of possible correlations between BMD values measured by means of DEXA and the Peak Torque values assessed by DensiProbe has to be considered very carefully, because BMD and Peak Torque analyse bone at a different scale. Only within the framework of a multicenter study it will be possible to include a sufficient number of patients for calculation of the methods' predictive value towards implant failure and to verify acceptance of the method by the surgeons.
Peng, T C; Kusy, R P; Garner, S C; Hirsch, P F; De Blanco, M C
1987-06-01
The quality of bone was assessed from femurs of rats both during lactation and after pregnancy + lactation. Mechanical properties of stiffness, strength, toughness, and ductility were measured, along with standard measurements of dry weight, ash weight, and total bone mineral. No changes occurred during the first week of lactation. During the second and third weeks of lactation all bone parameters except ductility decreased significantly. These data are consistent with bone losing mineral in order to supplement the dietary calcium intake necessary for milk production. In other experiments, femurs were collected from nulliparous rats and from rats that had previously undergone 1-3 pregnancy + lactations. The largest changes in bone mineral and mechanical properties occurred after a single pregnancy + lactation period, although significant further decreases in stiffness and strength occurred after the second pregnancy + lactation. No additional losses occurred following the third pregnancy + lactation. Even 5 months after only one pregnancy + lactation period, the bone quality was still impaired as all bone properties were lower than in nulliparous controls. Because the changes, especially stiffness and strength, were relatively larger than the changes in dry and ash weights of bone, measurements of these mechanical properties provide a more sensitive method to evaluate the quality of bone.
Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M
2017-10-01
Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (p<0.001). Multiple regression analysis indicated that ultrasound measurements provide additional information regarding mechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.
Validity and test–retest reliability of a novel simple back extensor muscle strength test
Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth
2017-01-01
Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442
Women with previous stress fractures show reduced bone material strength
Duarte Sosa, Daysi; Fink Eriksen, Erik
2016-01-01
Background and purpose — Bone fragility is determined by bone mass, bone architecture, and the material properties of bone. Microindentation has been introduced as a measurement method that reflects bone material properties. The pathogenesis of underlying stress fractures, in particular the role of impaired bone material properties, is still poorly understood. Based on the hypothesis that impaired bone material strength might play a role in the development of stress fractures, we used microindentation in patients with stress fractures and in controls. Patients and methods — We measured bone material strength index (BMSi) by microindentation in 30 women with previous stress fractures and in 30 normal controls. Bone mineral density by DXA and levels of the bone markers C-terminal cross-linking telopeptide of type-1 collagen (CTX) and N-terminal propeptide of type-1 procollagen (P1NP) were also determined. Results — Mean BMSi in stress fracture patients was significantly lower than in the controls (SD 72 (8.7) vs. 77 (7.2); p = 0.02). The fracture subjects also had a significantly lower mean bone mineral density (BMD) than the controls (0.9 (0.02) vs. 1.0 (0.06); p = 0.03). Bone turnover—as reflected in serum levels of the bone marker CTX—was similar in both groups, while P1NP levels were significantly higher in the women with stress fractures (55 μg/L vs. 42 μg/L; p = 0.03). There was no correlation between BMSi and BMD or bone turnover. Interpretation — BMSi was inferior in patients with previous stress fracture, but was unrelated to BMD and bone turnover. The lower values of BMSi in patients with previous stress fracture combined with a lower BMD may contribute to the increased propensity to develop stress fractures in these patients. PMID:27321443
Oksztulska-Kolanek, Ewa; Znorko, Beata; Michałowska, Małgorzata; Pawlak, Krystyna
2016-01-01
Mineral metabolism disturbances are common in chronic kidney disease (CKD) and have been classified as a new clinical entity, also known as CKD-mineral and bone disorders (CKD-MBD). A decrease in the bone strength, whose clinical manifestation is a tendency for fracture, has been recognized as an important component of CKD-MBD. Because of ethical issues, measurements of the bone strength in the human body are usually limited to noninvasive techniques, such as radiography, dual-energy X-ray absorptiometry and the assays of bone turnover biomarkers. However, it has been postulated recently that the evidence concerning bone strength based solely on the determination of the bone quantity may be insufficient and that bone quality should also be examined. In this regard, an animal model of CKD can represent an experimental tool to test the effectiveness of new therapeutic strategies. Despite the many available methods that are used to diagnose metabolic bone disorders and predict fracture risk especially in small rodents with CKD, it turns out that the most appropriate are biomechanical tests, which can provide information about the structural and material properties of bone. The present review summarizes and discusses the principles for carrying out selected biomechanical tests (3-point bending test and compression test) and their application in clinical practice. © 2015 S. Karger AG, Basel.
Kalimeri, Maria; Leek, Francesca; Wang, Nan Xin; Koh, Huann Rong; Totman, John J.
2018-01-01
Insulin resistance (IR) is accompanied by increased areal or volumetric bone mineral density (aBMD or vBMD), but also higher fracture risk. Meanwhile, imbalances in bone health biomarkers affect insulin production. This study investigates the effect of IR on proximal femur and lumbar spine BMD, femoral neck bending, compressive and impact strength indices (Composite Strength Indices) and circulating levels of parathyroid hormone (PTH), C-telopeptide of Type I collagen (CTx-1) and 25(OH) Vitamin D3, in a cohort of 97 healthy, non-obese, menopausal Chinese-Singaporean women. Lumbar spine aBMD was inversely associated with IR and dependent on lean body mass (LBM) and age. No such associations were found for vBMD of the third lumbar vertebra, aBMD and vBMD of the proximal femur, or circulating levels of PTH, CTx-1 and 25(OH) Vitamin D3. Composite Strength Indices were inversely associated with IR and independent of LBM, but after adjusting for fat mass and age, this association remained valid only for the impact strength index. Composite Strength Indices were significantly lower in participants with a high degree of IR. Our findings on IR and Composite Strength Indices relationships were in agreement with previous studies on different cohorts, but those on IR and BMD associations were not. PMID:29710852
NASA Astrophysics Data System (ADS)
Comsa, Daria Craita
2008-10-01
There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative source strength within 20 %. For sources 14mm deep, the inaccuracy in determining the relative source strength increased to 30 %. Measurements on small animals post mortem showed that the use of measured in situ optical properties to characterize heterogeneous tissue resulted in a superior estimation of the source strength and depth compared to when literature optical properties for organs or tissues were used. Moreover, it was found that regardless of the heterogeneity of the implant location or depth, our algorithm consistently showed an advantage over the simple assessment of the source strength based on the signal strength in the emission image. Our bioluminescence algorithm was generally able to predict the source strength within a factor of 2 of the true strength, but the performance varied with the implant location and depth. In fluorescence imaging a more complex technique is required, including knowledge of tissue optical properties at both the excitation and emission wavelengths. A theoretical study using simulated fluorescence data showed that, for example, for a source 5 mm deep in tissue, errors of up to 15 % in the optical properties would give rise to errors of +/-0.7 mm in the retrieved depth and the source strength would be over- or under-estimated by a factor ranging from 1.25 to 2. Fluorescent sources implanted in rats post mortem at the same depth were localized with an error just slightly higher than predicted theoretically: a root-mean-square value of 0.8 mm was obtained for all implants 5 mm deep. However, for this source depth, the source strength was assessed within a factor ranging from 1.3 to 4.2 from the value estimated in a controlled medium. Nonetheless, similarly to the bioluminescence study, the fluorescence quantification algorithm consistently showed an advantage over the simple assessment of the source strength based on the signal strength in the fluorescence image. Few studies have been reported in the literature that reconstruct known sources of bioluminescence or fluorescence in vivo or in heterogeneous phantoms. The few reported results show that the 3D tomographic methods have not yet reached their full potential. In this context, the simplicity of our technique emerges as a strong advantage.
Fong, Shirley S M; Ng, Shamay S M; Liu, Karen P Y; Pang, Marco Y C; Lee, H W; Chung, Joanne W Y; Lam, Priscillia L; Guo, X
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = -0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly.
Fong, Shirley S. M.; Ng, Shamay S. M.; Liu, Karen P. Y.; Pang, Marco Y. C.; Lee, H. W.; Chung, Joanne W. Y.; Lam, Priscillia L.; Guo, X.
2014-01-01
Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = −0.575, P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly. PMID:25530782
Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C
2016-08-01
Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.
Shih, Kao-Shang; Hou, Sheng-Mou; Lin, Shang-Chih
2017-12-01
The pullout strength of a screw is an indicator of how secure bone fragments are being held in place. Such bone-purchasing ability is sensitive to bone quality, thread design, and the pilot hole, and is often evaluated by experimental and numerical methods. Historically, there are some mathematical formulae to simulate the screw withdrawal from the synthetic bone. There are great variations in screw specifications. However, extensive investigation of the correlation between experimental and analytical results has not been reported in literature. Referring to the literature formulae, this study aims to evaluate the differences in the calculated pullout strengths. The pullout tests of the surgical screws are measured and the sawbone is used as the testing block. The absolute errors and correlation coefficients of the experimental and analytical results are calculated as the comparison baselines of the formulae. The absolute error of the dental, traumatic, and spinal groups are 21.7%, 95.5%, and 37.0%, respectively. For the screws with a conical profile and/or tiny threads, the calculated and measured results are not well correlated. The formulae are not accurate indicators of the pullout strengths of the screws where the design parameters are slightly varied. However, the experimental and numerical results are highly correlated for the cylindrical screws. The pullout strength of a conical screw is higher than that of its counterpart, but all formulae consistently predict the opposite results. In general, the bony purchase of the buttress threads is securer than that of the symmetric thread. An absolute error of up to 51.4% indicates the theoretical results cannot predict the actual value of the pullout strength. Only thread diameter, pitch, and depth are considered in the investigated formulae. The thread profile and shape should be formulated to modify the slippage mechanism at the bone-screw interfaces and simulate the strength change in the squeezed bones, especially for the conical screw. Copyright © 2017. Published by Elsevier B.V.
2018-01-01
Bone tissue engineering (BTE) requires a sturdy biomaterial for scaffolds for restoration of large bone defects. Ideally, the scaffold should have a mechanical strength comparable to the natural bone in the implanted site. We show that adding cosolvent during the processing of our previously developed composite of hydroxyapatite–gelatin with a silane cross-linker can significantly affect its mechanical strength. When processed with tetrahydrofuran (THF) as the cosolvent, the new hydroxyapatite–gelatin composite can demonstrate almost twice the compressive strength (97 vs 195 MPa) and biaxial flexural strength (222 vs 431 MPa) of the previously developed hydroxyapatite–gelatin composite (i.e., processed without THF), respectively. We further confirm that this mechanical strength improvement is due to the improved morphology of both the enTMOS network and the composite. Furthermore, the addition of cosolvents does not appear to negatively impact the cell viability. Finally, the porous scaffold can be easily fabricated, and its compressive strength is around 11 MPa under dry conditions. All these results indicate that this new hydroxyapatite–gelatin composite is a promising material for BTE application. PMID:29623305
Puolakkainen, Tero; Ma, Hongqian; Kainulainen, Heikki; Pasternack, Arja; Rantalainen, Timo; Ritvos, Olli; Heikinheimo, Kristiina; Hulmi, Juha J; Kiviranta, Riku
2017-01-19
Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral μCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P < 0.05) in both ActRIIB-Fc treated groups. Running also resulted in increased bone volume and trabecular number in PBS-treated mice. However, there was no significant difference in trabecular bone structure or volumetric bone mineral density between the ActRIIB-Fc and ActRIIB-Fc-R indicating that running did not further improve bone structure in ActRIIB-Fc-treated mice. ActRIIB-Fc increased bone mass also in vertebrae (BV/TV +20%, Tb.N +30%, P < 0.05) but the effects were more modest. The number of osteoclasts was decreased in histological analysis and the expression of several osteoblast marker genes was increased in ActRIIB-Fc treated mice suggesting decreased bone resorption and increased bone formation in these mice. Increased bone mass in femurs translated into enhanced bone strength in biomechanical testing as the maximum force and stiffness were significantly elevated in ActRIIB-Fc-treated mice. Our results indicate that treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.
Chavassieux, P; Seeman, E; Delmas, P D
2007-04-01
Minimal trauma fractures in bone diseases are the result of bone fragility. Rather than considering bone fragility as being the result of a reduced amount of bone, we recognize that bone fragility is the result of changes in the material and structural properties of bone. A better understanding of the contribution of each component of the material composition and structure and how these interact to maintain whole bone strength is obtained by the study of metabolic bone diseases. Disorders of collagen (osteogenesis imperfecta and Paget's disease of bone), mineral content, composition and distribution (fluorosis and osteomalacia); diseases of high remodeling (postmenopausal osteoporosis, hyperparathyroidism, and hyperthyroidism) and low remodeling (osteopetrosis, pycnodysostosis); and other diseases (idiopathic male osteoporosis, corticosteroid-induced osteoporosis) produce abnormalities in the material composition and structure that lead to bone fragility. Observations in patients and in animal models provide insights on the biomechanical consequences of these illnesses and the nature of the qualities of bone that determine its strength.
Surface pretreatments for medical application of adhesion
Erli, Hans J; Marx, Rudolf; Paar, Othmar; Niethard, Fritz U; Weber, Michael; Wirtz, Dieter C
2003-01-01
Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body. PMID:14561228
Draenert, K; Draenert, M; Erler, M; Draenert, A; Draenert, Y
2011-09-01
The behaviour of physiological biomaterials, β-tricalciumphosphate and hydroxyapatite, is analysed based on current literature and our own experimental work. The properties of graft substitutes based on ceramic materials are clearly defined according to their scientific efficiency. The strength of the materials and their biodegradability are still not fully evaluated. Strength and degradability have a direct proportional relationship and are considered the most efficient way to be adapted by their properties to the needs for the treatment of bone defects. New technologies for the manufacturing process are presented that increase those properties and thus open up new indications and easier application of the ceramic materials. The implantation process as well is carefully validated by animal experiments to avoid failures. Based on the experiments, a completely new approach is defined as to how primary bone formation with osteoconductive ceramics can be achieved. The milestones in that approach comprise a synthetically manufactured replica of the bone marrow spaces as osteoconductive ladder, whereas the bead is defined as bone-forming element. As a result, materials are available with high strength if the ceramic is solid or highly porous and possesses a micro-structure. The injection moulding process allows for the combination of high strength of the material with high porosity. Based on the strong capillary forces, micro-chambered beads fulfil most expectations for primary bone formation in cancellous bone defects, including drug delivery, mechanical strengthening if necessary, and stable implantation in situ by coagulation of the blood and bone marrow suctioned in. Copyright © 2011 Elsevier Ltd. All rights reserved.
Evaluation of Bone Strength During Aflatoxicosis and Ochratoxicosis †
Huff, William E.; Doerr, John A.; Hamilton, Pat B.; Hamann, Donald D.; Peterson, Robert E.; Ciegler, Alex
1980-01-01
Young chickens were fed graded levels of aflatoxin (0, 0.625, 1.25, 2.5, 5.0, and 10.0 μg/g of diet) or ochratoxin (0, 0.5, 1.0, 2.0, 4.0, and 8.0 μg/g of diet), and the breaking strength, displacement before failure, and diameter of their tibias were determined. Breaking strength was decreased at growth inhibitory levels of aflatoxin (2.5 μg/g) and ochratoxin (2 μg/g), whereas a reduction in diameter required higher levels (5.0 and 4.0 μg/g, respectively). Bones from birds with ochratoxicosis selected to have diameters equal to control bones had lower breaking strength. In an attempt to negate mathematically the effect of decreased diameter and bias in any selection process, stress at time of failure of the bones was calculated and found to be decreased by feeding aflatoxin but not ochratoxin. Total displacement of bones before breaking was increased significantly (P < 0.05) by both toxins at the highest levels administered, but this increase was primarily the result of an increase in displacement from the start of failure to complete failure. Increased displacement associated with both toxicoses was equal in bones selected to be of equal diameter or in bones from the same treatment but of different diameters. However, calculation of modulus of elasticity which is corrected for diameter revealed aflatoxin had no effect whereas ochratoxin tripled the effect. These data indicate that the material properties of bones can be altered during mycotoxicoses and suggest yet another way in which mycotoxins are detrimental to animal health. PMID:7406489
Sex Differences in Tibial Bone Strength
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Hutchinson, T. M.; Torikoshi, S.; Hutchinson, K. J.; Hargens, Alan R.; Steele, C. R.
1995-01-01
We have used an instrument (MRTA or Mechanical Response Tissue Analyzer) that measures bending stiffness (EI) non-Invasively to evaluate the strength of the tibia, a long bone in the weightbearing skeleton highly vulnerable to mineral loss during space flight. In healthy men, we found asymmetry in EI consistent with the bone's support function (L greater than R). In this study, we analyzed EI in women and compared the results to those in men.
Contributions of Severe Burn and Disuse to Bone Structure and Strength in Rats
Baer, L.A.; Wu, X.; Tou, J. C.; Johnson, E.; Wolf, S.E.; Wade, C.E.
2012-01-01
Burn and disuse results in metabolic and bone changes associated with substantial and sustained bone loss. Such loss can lead to an increased fracture incidence and osteopenia. We studied the independent effects of burn and disuse on bone morphology, composition and strength, and microstructure of the bone alterations 14 days after injury. Sprague-Dawley rats were randomized into four groups: Sham/Ambulatory (SA), Burn/Ambulatory (BA), Sham/Hindlimb Unloaded (SH) and Burn/Hindlimb Unloaded (BH). Burn groups received a 40% total body surface area full-thickness scald burn. Disuse by hindlimb unloading was initiated immediately following injury. Bone turnover was determined in plasma and urine. Femur biomechanical parameters were measured by three-point bending tests and bone microarchitecture was determined by microcomputed tomography (uCT). On day 14, a significant reduction in body mass was observed as a result of burn, disuse and a combination of both. In terms of bone health, disuse alone and in combination affected femur weight, length and bone mineral content. Bending failure energy, an index of femur strength, was significantly reduced in all groups and maximum bending stress was lower when burn and disuse were combined. Osteocalcin was reduced in BA compared to the other groups, indicating influence of burn. The reductions observed in femur weight, BMC, biomechanical parameters and indices of bone formation are primarily responses to the combination of burn and disuse. These results offer insight into bone degradation following severe injury and disuse. PMID:23142361
Tsanzi, Embedzayi; Light, Heather R; Tou, Janet C
2008-05-01
Consumption of sugar beverages has increased among adolescents. Additionally, the replacement of sucrose with high fructose corn syrup (HFCS) as the predominant sweetener has resulted in higher fructose intake. Few studies have investigated the effect of drinking different sugar-sweetened beverages on bone, despite suggestions that sugar consumption negatively impacts mineral balance. The objective of this study was to determine the effect of drinking different sugar-sweetened beverages on bone mass and strength. Adolescent (age 35d) female Sprague-Dawley rats were randomly assigned (n=8-9/group) to consume deionized distilled water (ddH2O, control) or ddH2O containing 13% w/v glucose, sucrose, fructose or high fructose corn syrup (HFCS-55) for 8weeks. Tibia and femur measurements included bone morphometry, bone turnover markers, determination of bone mineral density (BMD) and bone mineral content (BMC) by dual energy X-ray absorptiometry (DXA) and bone strength by three-point bending test. The effect of sugar-sweetened beverage consumption on mineral balance, urinary and fecal calcium (Ca) and phosphorus (P) was measured by inductively coupled plasma optical emission spectrometry. The results showed no difference in the bone mass or strength of rats drinking the glucose-sweetened beverage despite their having the lowest food intake, but the highest beverage and caloric consumption. Only in comparisons among the rats provided sugar-sweetened beverage were femur and tibia BMD lower in rats drinking the glucose-sweetened beverage. Differences in bone and mineral measurements appeared most pronounced between rats drinking glucose versus fructose-sweetened beverages. Rats provided the glucose-sweetened beverage had reduced femur and tibia total P, reduced P and Ca intake and increased urinary Ca excretion compared to the rats provided the fructose-sweetened beverage. The results suggested that glucose rather than fructose exerted more deleterious effects on mineral balance and bone.
Macdonald, Heather M; Kontulainen, Saija A; Khan, Karim M; McKay, Heather A
2007-03-01
This 16-month randomized, controlled school-based study compared change in tibial bone strength between 281 boys and girls participating in a daily program of physical activity (Action Schools! BC) and 129 same-sex controls. The simple, pragmatic intervention increased distal tibia bone strength in prepubertal boys; it had no effect in early pubertal boys or pre or early pubertal girls. Numerous school-based exercise interventions have proven effective for enhancing BMC, but none have used pQCT to evaluate the effects of increased loading on bone strength during growth. Thus, our aim was to determine whether a daily program of physical activity, Action Schools! BC (AS! BC) would improve tibial bone strength in boys and girls who were pre- (Tanner stage 1) or early pubertal (Tanner stage 2 or 3) at baseline. Ten schools were randomized to intervention (INT, 7 schools) or control (CON, 3 schools). The bone-loading component of AS! BC included a daily jumping program (Bounce at the Bell) plus 15 minutes/day of classroom physical activity in addition to regular physical education. We used pQCT to compare 16-month change in bone strength index (BSI, mg2/mm4) at the distal tibia (8% site) and polar strength strain index (SSIp, mm3) at the tibial midshaft (50% site) in 281 boys and girls participating in AS! BC and 129 same-sex controls. We used a linear mixed effects model to analyze our data. Children were 10.2+/-0.6 years at baseline. Intervention boys tended to have a greater increase in BSI (+774.6 mg2/mm4; 95% CI: 672.7, 876.4) than CON boys (+650.9 mg2/mm4; 95% CI: 496.4, 805.4), but the difference was only significant in prepubertal boys (p=0.03 for group x maturity interaction). Intervention boys also tended to have a greater increase in SSIp (+198.6 mm3; 95% CI: 182.9, 214.3) than CON boys (+177.1 mm3; 95% CI: 153.5, 200.7). Change in BSI and SSIp was similar between CON and INT girls. Our findings suggest that a simple, pragmatic program of daily activity enhances bone strength at the distal tibia in prepubertal boys. The precise exercise prescription needed to elicit a similar response in more mature boys or in girls might be best addressed in a dose-response trial.
Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye
2015-01-01
Objective This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). Materials & Methods The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. Results 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. Conclusions MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values. PMID:26039750
Li, Tao; Weng, Xisheng; Bian, Yanyan; Zhou, Lei; Cui, Fuzhai; Qiu, Zhiye
2015-01-01
This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.
Yoon, Sung-Hee; Sugamori, Kim S; Grynpas, Marc D; Mitchell, Jane
2016-01-01
Patients with Duchenne muscular dystrophy are at increased risk of decreased bone mineral density and bone fracture as a result of inactivity. To determine if antiresorptive bisphosphonates could improve bone quality and their effects on muscle we studied the Mdx mouse, treated with pamidronate during peak bone growth at 5 and 6 weeks of age, and examined the outcome at 13 weeks of age. Pamidronate increased cortical bone architecture and strength in femurs with increased resistance to fracture. While overall long bone growth was not affected by pamidronate, there was significant inhibition of remodeling in metaphyseal trabecular bone with evidence of residual calcified cartilage. Pamidronate treatment had positive effects on skeletal muscle in the Mdx mice with decreased serum and muscle creatine kinase and evidence of improved muscle histology and grip strength. Copyright © 2015 Elsevier B.V. All rights reserved.
Schöffl, I; Kemmler, W; Kladny, B; Vonstengel, S; Kalender, W A; Engelke, K
2008-01-01
The objective of this study was an integrated cross-sectional investigation for answering the question whether differences in bone mineral density in elderly postmenopausal women are associated with differences in habitual physical activity and unspecific exercise levels. Two hundred and ninety nine elderly women (69-/+3 years), without diseases or medication affecting bone metabolism were investigated. The influence of weight, body composition and physical activity on BMD was measured at multiple sites using different techniques (DXA, QCT, and QUS). Physical activity and exercise level were assessed by questionnaire, maximum strength of the legs and aerobic capacity. Variations in physical activity or habitual exercise had no effect on bone. The only significant univariate relation between strength/VO(2)max and BMD/BMC that remained after adjusting for confounding variables was between arm BMD (DXA) and hand-grip strength. The most important variable for explaining BMD was weight and for cortical BMC of the femur (QCT) lean body mass. Weight and lean body mass emerge as predominant predictors of BMD in normal elderly women, whereas the isolated effect of habitual physical activity, unspecific exercise participation, and muscle strength on bone parameters is negligible. Thus, an increase in the amount of habitual physical activity will probably have no beneficial impact on bone.
Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A
2015-06-02
Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age.
Hartard, M; Haber, P; Ilieva, D; Preisinger, E; Seidl, G; Huber, J
1996-01-01
Physical exercise is often recommended as a therapeutic tool to combat pre- and postmenopausal loss of bone density. However, the relationship between training dosage (intensity, duration, frequency) and the effect on bone density still is undergoing discussion. Furthermore, the exercise quantification programs are often described so inadequately that they are neither quantitatively nor qualitatively reproducible. The aim of this investigation was to determine whether a clearly defined training of muscle strength, under defined safety aspects, performed only twice weekly, can counteract bone density loss in women with postmenopausal osteopenia. Data from 16 women in the training group (age, 63.6 +/- 6.2 yr) and 15 women in the control group (age, 67.4 +/-9.7 yr), of comparable height and weight, were evaluated. Strength training was performed for 6 mo as continually adapted strength training, providing an intensity of about 70% of each test person's one repetition maximum. Bone mineral density of lumbar vertebrae 2 to 4 and the femoral neck was measured by dual-energy x-ray absorptiometry. Maximum performance in watts and parameters of hemodynamics were controlled with a bicycle ergometer test to maximal effort. In addition, metabolic data were assessed. In the lumbar spine and femoral neck, the training group showed no significant changes, whereas the control group demonstrated a significant loss of bone mineral density, especially in the femoral neck (P<0.05). The strength increase was highly significant in all exercised muscle groups, rising to about 70% above the pretraining status (P<0.001). Heart rate and blood pressure data indicated a slight economization, metabolism was not significantly influenced. Based on these findings, we conclude that continually adapted strength training is an effective, safe, reproducible, and adaptable method of therapeutic strength training, following only two exercise sessions per week.
Effects of Vitamin K2 on the Development of Osteopenia in Rats as the Models of Osteoporosis
Takeda, Tsuyoshi; Sato, Yoshihiro
2006-01-01
Vitamin K2 is widely used for the treatment of osteoporosis in Japan. To understand the effects of vitamin K2 on bone mass and bone metabolism, we reviewed its effects on the development of osteopenia in rats, which characterizes models of osteoporosis. Vitamin K2 was found to attenuate the increase in bone resorption and/or maintain bone formation, reduce bone loss, protect against the loss of trabecular bone mass and its connectivity, and prevent the decrease in strength of the long bone in ovariectomized rats. However, combined treatment of bisphosphonates and vitamin K2 had an additive effect in preventing the deterioration of the trabecular bone architecture in ovariectomized rats, while the combined treatment of raloxifene and vitamin K2 improved the bone strength of the femoral neck. The use of vitamin K2 alone suppressed the increase in trabecular bone turnover and endocortical bone resorption, which attenuated the development of cancellous and cortical osteopenia in orchidectomized rats. In addition, vitamin K2 inhibited the decrease in bone formation in prednisolone-treated rats, thereby preventing cancellous and cortical osteopenia. In sciatic neurectomized rats, vitamin K2 suppressed endocortical bone resorption and stimulated bone formation, delaying the reduction of the trabecular thickness and retarding the development of cortical osteopenia. Vitamin K2 also prevented the acceleration of bone resorption and the reduction in bone formation in tail-suspended rats, which counteracted cancellous bone loss. Concomitant use of vitamin K2 with a bisphosphonate ameliorated the suppression of bone formation and more effectively prevented cancellous bone loss in tail-suspended rats. Vitamin K2 stimulated renal calcium reabsorption, retarded the increase in serum parathyroid hormone levels, and attenuated cortical bone loss primarily by suppressing bone resorption in calcium-deficient rats while maintaining the strength of the long bone in rats with magnesium deficiency. These findings suggest that vitamin K2 may not only stimulate bone formation, but may also suppress bone resorption. Thus, vitamin K2 could regulate bone metabolism in rats, which represented the various models of osteoporosis. However, the effects of vitamin K2 on bone mass and bone metabolism seem to be modest. PMID:16642543
Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones
NASA Technical Reports Server (NTRS)
Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)
1991-01-01
Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.
SUN, Xiaolei; Fengbo, LI; Xinlong, MA; Jianxiong, MA; ZHAO, Bin; ZHANG, Yang; Yanjun, LI; Jianwei, LV; MENG, Xinmin
2015-01-01
Osteoporosis is a disease characterized by low bone mass and progressive destruction of bone microstructure, resulting in increased the risk of fracture. Previous studies have demonstrated the effect of naringin (NG) or treadmill exercise (EX) on osteoporosis, however, reports about effects of NG plus EX on osteoporosis are limited. This study was designed to investigate the impact of combined treatment with naringin and treadmill exercise on osteoporosis in ovariectomized (OVX) rats. Three months after bilateral ovariectomy, Seventy-five rats were randomly assigned to the following treatment groups: OVX, sham-operated (SHAM), NG, EX, or NG plus EX treatment. Treatments were administered for 60 days. Bone metabolism, bone mineral density, trabecular bone parameters, immunohistochemistry, and the bone strength were evaluated. Compared to the OVX groups, all treatments increased bone volume (BV/TV), trabecula number (Tb.N), trabecula thickness (Tb.Th), bone mineral density (BMD), and mechanical strength. NG + EX showed the strongest effects on BV/TV, Tb.Th, and biomechanical strength. Additionally, decreased C-terminal telopeptides of type I collagen (CTX-1) and enhanced osteocalcin (OCN) expression were observed in the NG + EX group. The present study demonstrates that the NG + EX may have a therapeutic advantage over each monotherapy for the treatment of osteoporosis. PMID:26260240
Oba, Masatoshi; Kobayashi, Naomi; Inaba, Yutaka; Choe, Hyonmin; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki
2018-06-21
To examine the influence of femoral neck resection on the mechanical strength of the proximal femur in actual surgery. Eighteen subjects who received arthroscopic cam resection for cam-type femoroacetabular impingement (FAI) were included. Finite element analyses (FEAs) were performed to calculate changes in simulative fracture load between pre- and postoperative femur models. The finite element femur models were constructed from computed tomographic images; thus, the models represented the shape of the original femur, including the bone resection site. Three-dimensional image analysis of the bone resection site was performed to identify morphometric factors that affect strength in the postoperative femur model. Four oblique sagittal planes running perpendicular to the femoral neck axis were used as reference planes to measure the bone resection site. At the transcervical reference plane, both the bone resection depth and the cross-sectional area at the resection site correlated strongly with postoperative changes in the simulated fracture load (R 2 = 0.6, P = .0001). However, only resection depth was significantly correlated with the simulated fracture load at the reference plane for the head-neck junction. The resected bone volume did not correlate with the postoperative changes in the simulated fracture load. The results of our FEA suggest that the bone resection depth measured at the head-neck junction and transcervical reference plane correlates with fracture risk after osteochondroplasty. By contrast, bone resection at more proximal areas did not have a significant effect on the postoperative femur model strength in our FEA. The total volume of resected bone was also not significantly correlated with postoperative changes in femur model strength. This biomechanical study using FEA suggest that there is a risk of femoral neck fracture after arthroscopic cam resection, particularly when the resected lesion is located distally. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
An approximate model for cancellous bone screw fixation.
Brown, C J; Sinclair, R A; Day, A; Hess, B; Procter, P
2013-04-01
This paper presents a finite element (FE) model to identify parameters that affect the performance of an improved cancellous bone screw fixation technique, and hence potentially improve fracture treatment. In cancellous bone of low apparent density, it can be difficult to achieve adequate screw fixation and hence provide stable fracture fixation that enables bone healing. Data from predictive FE models indicate that cements can have a significant potential to improve screw holding power in cancellous bone. These FE models are used to demonstrate the key parameters that determine pull-out strength in a variety of screw, bone and cement set-ups, and to compare the effectiveness of different configurations. The paper concludes that significant advantages, up to an order of magnitude, in screw pull-out strength in cancellous bone might be gained by the appropriate use of a currently approved calcium phosphate cement.
Tsourdi, Elena; Lademann, Franziska; Ominsky, Michael S; Rijntjes, Eddy; Köhrle, Josef; Misof, Barbara M; Roschger, Paul; Klaushofer, Klaus; Hofbauer, Lorenz C; Rauner, Martina
2017-11-01
Hyperthyroidism in mice is associated with low bone mass, high bone turnover, and high concentrations of sclerostin, a potent Wnt inhibitor. Here, we explored the effects of either increasing bone formation with sclerostin antibodies (Scl-Ab) or reducing bone turnover with bisphosphonates on bone mass and strength in hyperthyroid mice. Twelve-week-old C57BL/6 male mice were rendered hyperthyroid using l-thyroxine (T4; 1.2 µg/mL added to the drinking water) and treated with 20 mg/kg Scl-Ab twice weekly or 100 µg/kg zoledronic acid (ZOL) once weekly or phosphate-buffered saline for 4 weeks. Hyperthyroid mice displayed a lower trabecular bone volume at the spine (-42%, P < 0.05) and the distal femur (-55%, P < 0.05) compared with euthyroid controls. Scl-Ab and ZOL treatment of hyperthyroid mice increased trabecular bone volume at the spine by threefold and twofold, respectively. Serum bone formation and resorption markers were increased in hyperthyroid mice and suppressed by treatment with ZOL but not Scl-Ab. Trabecular bone stiffness at the lumbar vertebra was 63% lower in hyperthyroid mice (P < 0.05) and was increased fourfold by Sci-Ab (P < 0.001) and threefold by ZOL treatment (P < 0.01). Bone strength based on ultimate load, which was 10% lower in hyperthyroidism, was increased by Scl-Ab by 71% and ZOL by 22% (both P < 0.001). Increased proportion of low mineralized bone seen in hyperthyroid mice was restored by treatment with Scl-Ab and ZOL. Thus, bone-forming and antiresorptive drugs prevent bone loss in hyperthyroid mice via different mechanisms. Copyright © 2017 Endocrine Society.
Shi, Changgui; Hu, Bo; Guo, Lei; Cao, Peng; Tian, Ye; Ma, Jun; Chen, Yuanyuan; Wu, Huiqiao; Hu, Jinquan; Deng, Lianfu; Zhang, Ying; Yuan, Wen
2016-05-01
Osteogenesis imperfecta (OI) is a genetic bone dysplasia characterized by brittle bones with increased fracture risk. Although current treatment options to improve bone strength in OI focus on antiresorptive bisphosphonates, controlled clinical trials suggest they have an equivocal effect on reducing fracture risk. Strontium ranelate (SrR) is a promising therapy with a dual mode of action that is capable of simultaneously maintaining bone formation and reducing bone resorption, and may be beneficial for the treatment of OI. In this study, SrR therapy was investigated to assess its effects on fracture frequency and bone mass and strength in an animal model of OI, the oim/oim mouse. Three-week-old oim/oim and wt/wt mice were treated with either SrR or vehicle (Veh) for 11 weeks. After treatment, the average number of fractures sustained by SrR-treated oim/oim mice was significantly reduced compared to Veh-treated oim/oim mice. Micro-computed tomographic (μCT) analyses of femurs showed that both trabecular and cortical bone mass were significantly improved with SrR treatment in both genotypes. SrR significantly inhibited bone resorption, whereas bone formation indices were maintained. Biomechanical testing revealed improved bone structural properties in both oim/oim and wild-type (wt/wt) mice under the treatment, whereas no significant effects on bone brittleness and material quality were observed. In conclusion, SrR was able to effectively reduce fractures in oim/oim mice by improving bone mass and strength and thus represents a potential therapy for the treatment of pediatric OI. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.
Klos, Kajetan; Windolf, Markus; Schwieger, Karsten; Kuhn, Philipp; Hänni, Markus; Gueorguiev, Boyko; Hofmann, Gunther O; Mückley, Thomas
2009-12-01
Bone strength is currently measured with indirect techniques. We investigated the use of an intraoperative mechanical measurement for local bone strength determination and prediction of intramedullary-nail fusion failure. We investigated whether intraoperative local bone strength determination may be useful to the surgeon in predicting intramedullary nail hindfoot fusion performance. In seven human specimens, bone mineral density (BMD) was determined with qCT. A device (DensiProbe) specially devised for nailed tibiotalocalcaneal arthrodesis (TTCA) was inserted at the intended calcaneal screw sites of an intramedullary nail, and the cancellous break-away torque was measured. The constructs were then cyclically loaded to failure in dorsiflexion-plantarfexion. The BMD range was wide (42.8 to 185.9 mg HA/cm(3)). The proximal-screw site peak torque was 0.47 to 1.61 Nm; distal-screw site peak torque was 0.24 to 1.06 Nm. The number of cycles to failure correlated with peak torque both proximally (p = 0.021; r(2) = 0.69) and distally (p = 0.001; r(2) = 0.92). Proximally, peak torque did not correlate with BMD (p = 0.060; r(2) = 0.54); distally, it correlated significantly (p = 0.003; r(2) = 0.86). DensiProbe measurements can be used in the hindfoot to assess bone strength. In this study, specimens that failed early could be identified. However, in clinical practice fusion failure is multifactorial in origin, and failure prediction cannot be based upon peak torque measurements alone. The technique described here may be of use to give an intraoperative decision aid to predict intramedullary nail hindfoot fusion performance.
Shi, Brendan Y; Diaz, Miguel; Belkoff, Stephen M; Srikumaran, Uma
2017-12-01
Obtaining strong fixation in low-density bone is increasingly critical in surgical repair of rotator cuff tears because of the aging population. To evaluate two new methods of improving pullout strength of transosseous rotator cuff repair in low-density bone, we analyzed the effects of 1) using 2-mm suture tape instead of no. 2 suture and 2) augmenting the lateral tunnel with cement. Eleven pairs of osteopenic or osteoporotic cadaveric humeri were identified by dual-energy x-ray absorptiometry. One bone tunnel and one suture were placed in the heads of 22 specimens. Five randomly selected pairs were repaired with no. 2 suture; the other six pairs were repaired with 2-mm suture tape. One side of each pair received lateral tunnel cement augmentation. Specimens were tested to suture pullout. Data were fitted to multivariate models that accounted for bone mineral density and other specimen characteristics. Two specimens were excluded because of knot-slipping during testing. Use of suture tape versus no. 2 suture conferred a 75-N increase (95% CI: 37, 113) in pullout strength (P<0.001). Cement augmentation conferred a 42-N improvement (95% CI: 10, 75; P=0.011). Other significant predictors of pullout strength were age, sex, and bone mineral density. We show two methods of improving the fixation strength of transosseous rotator cuff repairs in low-density bone: using 2-mm suture tape instead of no. 2 suture and augmenting the lateral tunnel with cement. These methods may improve the feasibility of transosseous repairs in an aging patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Little, David G; Peacock, Lauren; Mikulec, Kathy; Kneissel, Michaela; Kramer, Ina; Cheng, Tegan L; Schindeler, Aaron; Munns, Craig
2017-08-01
In this study, we examined the therapeutic potential of anti-Sclerostin Antibody (Scl-Ab) and bisphosphonate treatments for the bone fragility disorder Osteogenesis Imperfecta (OI). Mice with the Amish OI mutation (Col1a2 G610C mice) and control wild type littermates (WT) were treated from week 5 to week 9 of life with (1) saline (control), (2) zoledronic acid given 0.025mg/kg s.c. weekly (ZA), (3) Scl-Ab given 50mg/kg IV weekly (Scl-Ab), or (4) a combination of both (Scl-Ab/ZA). Functional outcomes were prioritized and included bone mineral density (BMD), bone microarchitecture, long bone bending strength, and vertebral compression strength. By dual-energy absorptiometry, Scl-Ab treatment alone had no effect on tibial BMD, while ZA and Scl-Ab/ZA significantly enhanced BMD by week 4 (+16% and +27% respectively, P<0.05). Scl-Ab/ZA treatment also led to increases in cortical thickness and tissue mineral density, and restored the tibial 4-point bending strength to that of control WT mice. In the spine, all treatments increased compression strength over controls, but only the combined group reached the strength of WT controls. Scl-Ab showed greater anabolic effects in the trabecular bone than in cortical bone. In summary, the Scl-Ab/ZA intervention was superior to either treatment alone in this OI mouse model, however further studies are required to establish its efficacy in other preclinical and clinical scenarios. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smietana, Michael J.; Arruda, Ellen M.; Mechanical Engineering, University of Michigan, 2250 GG Brown, 2350 Hayward, Ann Arbor, MI 48109
Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Micemore » deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These data indicate that increased oxidative stress, due to the deficiency of Sod1 is associated with decreased bone stiffness and strength and Sod1{sup -/-} mice may represent an appropriate model for studying disease processes in aging bone.« less
Buckley, Harriet; Owen, Robert; Marin, Ana Campos; Lu, Yongtau; Eyles, Darryl; Lacroix, Damien; Reilly, Gwendolen C.; Skerry, Tim M.; Bishop, Nick J.
2018-01-01
There is increasing evidence of persistent effects of early life vitamin D exposure on later skeletal health; linking low levels in early life to smaller bone size in childhood as well as increased fracture risk later in adulthood, independently of later vitamin D status. A major determinant of bone mass acquisition across all ages is mechanical loading. We tested the hypothesis in an animal model system that early life vitamin D depletion results in abrogation of the response to mechanical loading, with consequent reduction in bone size, mass and strength during both childhood and adulthood. A murine model was created in which pregnant dams were either vitamin D deficient or replete, and their offspring moved to a vitamin D replete diet at weaning. Tibias of the offspring were mechanically loaded and bone structure, extrinsic strength and growth measured both during growth and after skeletal maturity. Offspring of vitamin D deplete mice demonstrated lower bone mass in the non loaded limb and reduced bone mass accrual in response to loading in both the growing skeleton and after skeletal maturity. Early life vitamin D depletion led to reduced bone strength and altered bone biomechanical properties. These findings suggest early life vitamin D status may, in part, determine the propensity to osteoporosis and fracture that blights later life in many individuals. PMID:29370213
Chen, H; Miller, S; Shaw, J; Moyer-Mileur, L
2009-01-01
The objects of this study were to investigate the effects of massage therapy during early life on postnatal growth, body composition, and skeletal development in juvenile and young adult rats. Massage therapy was performed for 10 minutes daily from D6 to D10 of postnatal life in rat pups (MT, n=24). Body composition, bone area, mineral content, and bone mineral density were measured by dual energy X-ray absorptiometry (DXA); bone strength and intrinsic stiffness on femur shaft were tested by three-point bending; cortical and cancellous bone histomorphometric measurements were performed at D21 and D60. Results were compared to age- and gender-matched controls (C, n=24). D21 body weight, body length, lean mass, and bone area were significantly greater in the MT cohort. Greater bone mineral content was found in male MT rats; bone strength and intrinsic stiffness were greater in D60 MT groups. At D60 MT treatment promoted bone mineralization by increasing trabecular mineral apposition rate in male and endosteal mineral surface in females, and also improved micro-architecture by greater trabeculae width in males and decreasing trabecular separation in females. In summary, massage therapy during early life elicited immediate and prolonged anabolic effects on postnatal growth, lean mass and skeletal developmental in a gender-specific manner in juvenile and young adult rats.
Hibernating bears as a model for preventing disuse osteoporosis
Donahue, S.W.; McGee, M.E.; Harvey, K.B.; Vaughan, M.R.; Robbins, C.T.
2006-01-01
The hibernating bear is an excellent model for disuse osteoporosis in humans because it is a naturally occurring large animal model. Furthermore, bears and humans have similar lower limb skeletal morphology, and bears walk plantigrade like humans. Black bears (Ursus americanus) may not develop disuse osteoporosis during long periods of disuse (i.e. hibernation) because they maintain osteoblastic bone formation during hibernation. As a consequence, bone volume, mineral content, porosity, and strength are not adversely affected by annual periods of disuse. In fact, cortical bone bending strength has been shown to increase with age in hibernating black bears without a significant change in porosity. Other animals require remobilization periods 2-3 times longer than the immobilization period to recover the bone lost during disuse. Our findings support the hypothesis that black bears, which hibernate for as long as 5-7 months annually, have evolved biological mechanisms to mitigate the adverse effects of disuse on bone porosity and strength. ?? 2005 Elsevier Ltd. All rights reserved.
Jackowski, S A; Baxter-Jones, A D G; Gruodyte-Raciene, R; Kontulainen, S A; Erlandson, M C
2015-06-01
This study investigated the long-term relationship between the exposure to childhood recreational gymnastics and bone measures and bone strength parameters at the radius and tibia. It was observed that individuals exposed to recreational gymnastics had significantly greater total bone content and area at the distal radius. No differences were observed at the tibia. This study investigated the relationship between exposure to early childhood recreational gymnastics with bone measures and bone strength development at the radius and tibia. One hundred twenty seven children (59 male, 68 female) involved in either recreational gymnastics (gymnasts) or other recreational sports (non-gymnasts) between 4 and 6 years of age were recruited. Peripheral quantitative computed tomography (pQCT) scans of their distal and shaft sites of the forearm and leg were obtained over 3 years, covering the ages of 4-12 years at study completion. Multilevel random effects models were constructed to assess differences in the development of bone measures and bone strength measures between those exposed and not exposed to gymnastics while controlling for age, limb length, weight, physical activity, muscle area, sex, and hours of training. Once age, limb length, weight, muscle area, physical activity, sex, and hours of training effects were controlled, it was observed that individuals exposed to recreational gymnastics had significantly greater total bone area (18.0 ± 7.5 mm(2)) and total bone content (6.0 ± 3.0 mg/mm) at the distal radius (p < 0.05). This represents an 8-21 % benefit in ToA and 8-15 % benefit to ToC from 4 to 12 years of age. Exposure to recreational gymnastics had no significant effect on bone measures at the radius shaft or at the tibia (p > 0.05). Exposure to early life recreational gymnastics provides skeletal benefits to distal radius bone content and area. Thus, childhood recreational gymnastics exposure may be advantageous to bone development at the wrist.
Ren, Jie; Brann, Lynn S; Bruening, Kay S; Scerpella, Tamara A; Dowthwaite, Jodi N
2017-12-01
In pre-pubertal girls, nutrient intakes and non-aquatic organized activity were evaluated as factors in vertebral body bone mass, structure, and strength. Activity, vitamin B 12 , and dietary fiber predicted bone outcomes most consistently. Exercise and vitamin B 12 appear beneficial, whereas high fiber intake appears to be adverse for vertebral body development. Childhood development sets the baseline for adult fracture risk. Most studies evaluate development using postero-anterior (PA) dual-energy X-ray absorptiometry (DXA) areal bone mineral density, bone mineral content, and bone mineral apparent density. In a prior analysis, we demonstrated that PA DXA reflects posterior element properties, rather than vertebral body fracture sites, such that loading is associated with subtle differences in vertebral body geometry, not 3D density. The current analysis is restricted to pre-pubertal girls, for a focused exploration of key nutrient intakes and physical activity as factors in dual plane indices of vertebral body geometry, density, and strength. This cross-sectional analysis used paired PA and supine lateral (LAT) lumbar spine DXA scans to assess "3D" vertebral body bone mineral apparent density (PALATBMAD), "3D" index of structural strength in axial compression (PALATIBS), and fracture risk index (PALATFRI). Diet data were collected using the Youth/Adolescent Questionnaire (YAQ, 1995); organized physical activity was recorded via calendar-based form. Pearson correlations and backward stepwise multiple linear regression analyzed associations among key nutrients, physical activity, and bone outcomes. After accounting for activity and key covariates, fiber, unsupplemented vitamin B 12 , zinc, carbohydrate, vitamin C, unsupplemented magnesium, and unsupplemented calcium intake explained significant variance for one or more bone outcomes (p < 0.05). After adjustment for influential key nutrients and covariates, activity exposure was associated with postero-anterior (PA) areal bone mineral density, PA bone mineral content, PA width, lateral (LAT) BMC, "3D" bone cross-sectional area (coronal plane), "3D" PALATIBS, and PALATFRI benefits (p < 0.05). Physical activity, fiber intake, and unsupplemented B 12 intake appear to influence vertebral body bone mass, density, geometry, and strength in well-nourished pre-pubertal girls; high fiber intakes may adversely affect childhood vertebral body growth.
Dalton, J E; Cook, S D; Thomas, K A; Kay, J F
1995-01-01
Femoral intramedullary implants were constructed by threading 4.0-millimeter-thick disks with a titanium-alloy (Ti-6Al-4V) porous bead coating onto a two-millimeter-diameter threaded rod. Each porous-coated disk, which was 6.0, 8.0, 9.0, or 10.0 millimeters in diameter, was separated by a two-millimeter-thick acrylic disk with a diameter of ten millimeters. Implants with and without a hydroxyapatite coating of twenty-five micrometers were inserted into fifteen skeletally mature adult mongrel dogs. The femoral canal was sequentially reamed bilaterally to a ten-millimeter diameter, resulting in uniform initial implant-bone interface gaps of 0.0, 0.5, 1.0, and 2.0 millimeters. Each animal received paired hydroxyapatite-coated and uncoated implants. Three animals each were killed at four, eight, twelve, twenty-four, and fifty-two weeks after the implantation. The harvested femora were sectioned through the acrylic spacers, transverse to the long axis, to produce individual push-out test specimens for mechanical testing. Characteristics of interface attachment were determined with test fixtures that supported the surrounding bone to within 150 micrometers of the interface. Histological sections were prepared, and the amount of bone within the porous structure and the amount of the original gap that was filled with new bone were quantified with a computerized video image-analysis system. Mechanical attachment strength and bone ingrowth were found to increase with the time after implantation and with a decrease in the size of the gap. Placement of the implant in proximal (cancellous) compared with distal (cortical) locations had no significant effect on the strength of attachment, bone ingrowth, or gap-filling. However, implants with a large initial gap (1.0 or 2.0 millimeters) demonstrated greater attachment strength in cancellous bone than in cortical bone. With a few exceptions, hydroxyapatite-coated implants with an initial gap of 1.0 millimeter or less demonstrated significantly increased mechanical attachment strength and bone ingrowth at all time-periods. Interface attachment strengths were positively correlated with bone ingrowth, the time after implantation, the use of a hydroxyapatite coating, and decreasing initial gap size. Initial implant-bone apposition is thought to be a prerequisite for good biological fixation. This apposition is often not achieved because of the design of the implant or instruments and the operative technique. Poor initial fit during the operation may decrease the longevity of the implant. The results of the present study indicate that attachment strength and bone ingrowth are significantly affected by gaps in the interface, particularly those of more than 1.0 millimeter.(ABSTRACT TRUNCATED AT 400 WORDS)
Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
Islam, Anowarul; Chapin, Katherine; Moore, Emily; Ford, Joel; Rimnac, Clare; Akkus, Ozan
2016-03-01
Sterilization by gamma radiation impairs the mechanical properties of bone allografts. Previous work related to radiation-induced embrittlement of bone tissue has been limited mostly to monotonic testing which does not necessarily predict the high-cycle fatigue life of allografts in vivo. We designed a custom rotating-bending fatigue device to answer the following questions: (1) Does gamma radiation sterilization affect the high-cycle fatigue behavior of cortical bone; and (2) how does the fatigue life change with cyclic stress level? The high-cycle fatigue behavior of human cortical bone specimens was examined at stress levels related to physiologic levels using a custom-designed rotating-bending fatigue device. Test specimens were distributed among two treatment groups (n = 6/group); control and irradiated. Samples were tested until failure at stress levels of 25, 35, and 45 MPa. At 25 MPa, 83% of control samples survived 30 million cycles (run-out) whereas 83% of irradiated samples survived only 0.5 million cycles. At 35 MPa, irradiated samples showed an approximately 19-fold reduction in fatigue life compared with control samples (12.2 × 10(6) ± 12.3 × 10(6) versus 6.38 × 10(5) ± 6.81 × 10(5); p = 0.046), and in the case of 45 MPa, this reduction was approximately 17.5-fold (7.31 × 10(5) ± 6.39 × 10(5) versus 4.17 × 10(4) ± 1.91 × 10(4); p = 0.025). Equations to estimate high-cycle fatigue life of irradiated and control cortical bone allograft at a certain stress level were derived. Gamma radiation sterilization severely impairs the high cycle fatigue life of structural allograft bone tissues, more so than the decline that has been reported for monotonic mechanical properties. Therefore, clinicians need to be conservative in the expectation of the fatigue life of structural allograft bone tissues. Methods to preserve the fatigue strength of nonirradiated allograft bone tissue are needed. As opposed to what monotonic tests might suggest, the cyclic fatigue life of radiation-sterilized structural allografts is likely severely compromised relative to the nonirradiated condition and therefore should be taken into consideration. Methods to reduce the effect of irradiation or to recover structural allograft bone tissue fatigue strength are important to pursue.
Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir
2014-01-01
Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). Conclusion: This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Trial registration: ClinicalTrials.gov: NCT01310348. PMID:25207162
Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir
2014-03-01
Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. ClinicalTrials.gov: NCT01310348.
Bone health measured using quantitative ultrasonography in adult males with muscular dystrophy
Morse, C.I.; Smith, J.; Denny, A.; Tweedale, J.; Searle, N.D.; Winwood, K.; Onambele-Pearson, G.L.
2016-01-01
Objectives: To compare muscle and bone health markers in adult males (aged 20-59 yrs) with and without muscular dystrophy (MD). Methods: Participants included 11 Fascioscapulohumeral (FSH), 11 Becker’s (Be), 9 limb girdle (LG), 11 Duchenne (DMD), and 14 non-dystrophic controls (CTRL). Physical activity was assessed using Bone (BPAQ) and disability specific (PASIPD) questionnaires. Bone QUS provided T- and Z scores from the Distal Radius (DR) and Mid-shaft tibia (MST). Tibialis anterior cross sectional area (TAACSA) was measured using B-mode ultrasound. Grip strength was measured in all but DMD. Results: Physical activity was lower in DMD, FSH and BeMD than CTRL (P<0.05), and lower in DMD than other MDs (P<0.01). T and Z scores were lower in DMD and Be than CTRL (DR, P<0.05); and lower in DMD than CTRL, LG, and FSH (MST, P<0.01). TAACSA and grip strength was 35-59% and 50-58% smaller in MD than CTRL, respectively (P<0.01). Within MD, BPAQ correlated with bone QUS measures (r=0.42-0.38, P<0.01). PASIPD correlated with grip strength (r=0.65, P<0.01) and TAACSA (r=0.46, P<0.01). Conclusion: Muscle size, strength, and bone health was lower in adult males with MD compared to adult males without MD, the extent of this is partially determined by physical activity. PMID:27973386
Bone health measured using quantitative ultrasonography in adult males with muscular dystrophy.
Morse, C I; Smith, J; Denny, A; Tweedale, J; Searle, N D; Winwood, K; Onambele-Pearson, G L
2016-12-14
To compare muscle and bone health markers in adult males (aged 20-59 yrs) with and without muscular dystrophy (MD). Participants included 11 Fascioscapulohumeral (FSH), 11 Becker's (Be), 9 limb girdle (LG), 11 Duchenne (DMD), and 14 non-dystrophic controls (CTRL). Physical activity was assessed using Bone (BPAQ) and disability specific (PASIPD) questionnaires. Bone QUS provided T- and Z scores from the Distal Radius (DR) and Mid-shaft tibia (MST). Tibialis anterior cross sectional area (TA ACSA ) was measured using B-mode ultrasound. Grip strength was measured in all but DMD. Physical activity was lower in DMD, FSH and BeMD than CTRL (P<0.05), and lower in DMD than other MDs (P<0.01). T and Z scores were lower in DMD and Be than CTRL (DR, P<0.05); and lower in DMD than CTRL, LG, and FSH (MST, P<0.01). TA ACSA and grip strength was 35-59% and 50-58% smaller in MD than CTRL, respectively (P<0.01). Within MD, BPAQ correlated with bone QUS measures (r=0.42-0.38, P<0.01). PASIPD correlated with grip strength (r=0.65, P<0.01) and TA ACSA (r=0.46, P<0.01). Muscle size, strength, and bone health was lower in adult males with MD compared to adult males without MD, the extent of this is partially determined by physical activity.
NASA Technical Reports Server (NTRS)
2002-01-01
Dramatic losses of bone mineral density (BMD) and muscle strength are two of the best documented changes observed in humans after prolonged exposure to microgravity. Recovery of muscle upon return to a 1-G environment is well studied, however, far less is known about the rate and completeness of BMD recovery to pre-flight values. Using the mature tail-suspended adult rat model, this proposal will focus on the temporal course of recovery in tibial bone following a 28-d period of skeletal unloading. Through the study of bone density and muscle strength in the same animal, time-points during recovery from simulated microgravity will be identified when bone is at an elevated risk for fracture. These will occur due to the rapid recovery of muscle strength coupled with a slower recovery of bone, producing a significant mismatch in functional strength of these two tissues. Once the time-point of maximal mismatch is defined, various mechanical and pharmacological interventions will be tested at and around this time-point in attempt to minimize the functional difference of bone and muscle. The outcomes of this research will have high relevance for optimizing the rehabilitation of astronauts upon return to Earth, as well as upon landing on the Martian surface before assuming arduous physical tasks. Further. it will impact significantly on rehabilitation issues common to patients experiencing long periods of limb immobilization or bed rest.
Alexander, Benjamin; Daulton, Tyrone L.; Genin, Guy M.; Lipner, Justin; Pasteris, Jill D.; Wopenka, Brigitte; Thomopoulos, Stavros
2012-01-01
The nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral (‘bioapatite’) is present predominantly inside collagen fibrils: in ‘gap channels’ between abutting collagen molecules, and in ‘intermolecular spaces’ between adjacent collagen molecules. However, recent studies report evidence of substantial extrafibrillar bioapatite, challenging this hypothesis. We studied the nanostructure of bioapatite and collagen in mouse bones by scanning transmission electron microscopy (STEM) using electron energy loss spectroscopy and high-angle annular dark-field imaging. Additionally, we developed a steric model to estimate the packing density of bioapatite within gap channels. Our steric model and STEM results constrain the fraction of total bioapatite in bone that is distributed within fibrils at less than or equal to 0.42 inside gap channels and less than or equal to 0.28 inside intermolecular overlap regions. Therefore, a significant fraction of bone's bioapatite (greater than or equal to 0.3) must be external to the fibrils. Furthermore, we observe extrafibrillar bioapatite between non-mineralized collagen fibrils, suggesting that initial bioapatite nucleation and growth are not confined to the gap channels as hypothesized in some models. These results have important implications for the mechanics of partially mineralized and developing tissues. PMID:22345156
de Mello-Sampayo, Cristina; Agripino, Alaíde Alves; Stilwell, Duarte; Vidal, Bruno; Fernando, Ana Luisa; Silva-Lima, Beatriz; Vaz, Maria Fátima; Canhão, Helena
2017-01-01
There is controversy concerning the diabetes impact on bone quality, notorious in type 2 diabetic postmenopausal women. One pointed cause might be uncontrolled glycemia. In this study, the effect of chronic hyperglycemia in bone turnover, morphology, and biomechanics was evaluated in female Wistar rats in the presence/absence of estrogens (ovariectomy). Animals (n = 28) were divided into sham, ovariectomized (OVX), hyperglycemic (streptozotocin 40 mg/kg, single-dose i.p.-STZ), and hyperglycemic-ovariectomized (STZ + OVX) animals. Blood biomarkers were estimated 60 days postovariectomy. Body weight, vertebral microarchitecture (L4-histomorphometry), femur biomechanical properties (bending tests), tibia ultrastructure (scanning electron microscopy), and femur and urinary calcium (atomic absorption) were also evaluated. The increased PINP/CTX ratio of hyperglycemic animals and the similar ratio between STZ + OVX and healthy animals contrasting with the lower ratio of OVX (in line with its histomorphometric data) suggest a tendency for improved bone formation in hyperglycemic-ovariectomized animals. The increased tibia medullar canal, which contrasts with the unaffected cortical thickness of both hyperglycemic groups while that of OVX decreased, was associated to the increased stiffness and strength of STZ + OVX bones compared to those of OVX, in line with the observed ultrastructure. Concluding, chronic hyperglycemia in ovariectomized female rats causes bone morphological changes that translate positively in the ultrastructure and mechanical properties of cortical bones. PMID:29081798
Gradual decline in mobility with the adoption of food production in Europe
Ruff, Christopher B.; Holt, Brigitte; Niskanen, Markku; Sladek, Vladimir; Berner, Margit; Garofalo, Evan; Garvin, Heather M.; Hora, Martin; Junno, Juho-Antti; Schuplerova, Eliska; Vilkama, Rosa; Whittey, Erin
2015-01-01
Increased sedentism during the Holocene has been proposed as a major cause of decreased skeletal robusticity (bone strength relative to body size) in modern humans. When and why declining mobility occurred has profound implications for reconstructing past population history and health, but it has proven difficult to characterize archaeologically. In this study we evaluate temporal trends in relative strength of the upper and lower limb bones in a sample of 1,842 individuals from across Europe extending from the Upper Paleolithic [11,000–33,000 calibrated years (Cal y) B.P.] through the 20th century. A large decline in anteroposterior bending strength of the femur and tibia occurs beginning in the Neolithic (∼4,000–7,000 Cal y B.P.) and continues through the Iron/Roman period (∼2,000 Cal y B.P.), with no subsequent directional change. Declines in mediolateral bending strength of the lower limb bones and strength of the humerus are much smaller and less consistent. Together these results strongly implicate declining mobility as the specific behavioral factor underlying these changes. Mobility levels first declined at the onset of food production, but the transition to a more sedentary lifestyle was gradual, extending through later agricultural intensification. This finding only partially supports models that tie increased sedentism to a relatively abrupt Neolithic Demographic Transition in Europe. The lack of subsequent change in relative bone strength indicates that increasing mechanization and urbanization had only relatively small effects on skeletal robusticity, suggesting that moderate changes in activity level are not sufficient stimuli for bone deposition or resorption. PMID:26060299
Is cortical bone hip? What determines cortical bone properties?
Epstein, Sol
2007-07-01
Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal antibody denosumab binds to RANKL, inhibiting its action and thus improving BMD significantly.
Villa, Christopher R; Ward, Wendy E; Comelli, Elena M
2017-05-24
The gut microbiota (GM) is an important regulator of body homeostasis, including intestinal and extra-intestinal effects. This review focuses on the GM-bone axis, which we define as the effect of the gut-associated microbial community or the molecules they synthesize, on bone health. While research in this field is limited, findings from preclinical studies support that gut microbes positively impact bone mineral density and strength parameters. Moreover, administration of beneficial bacteria (probiotics) in preclinical models has demonstrated higher bone mineralization and greater bone strength. The preferential bacterial genus that has shown these beneficial effects in bone is Lactobacillus and thus lactobacilli are among the best candidates for future clinical intervention trials. However, their effectiveness is dependent on stage of development, as early life constitutes an important time for impacting bone health, perhaps via modulation of the GM. In addition, sex-specific difference also impacts the efficacy of the probiotics. Although auspicious, many questions regarding the GM-bone axis require consideration of potential mechanisms; sex-specific efficacy; effective dose of probiotics; and timing and duration of treatment.
Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A
2016-02-01
Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.
Development of implants composed of bioactive materials for bone repair
NASA Astrophysics Data System (ADS)
Xiao, Wei
The purpose of this Ph.D. research was to address the clinical need for synthetic bioactive materials to heal defects in non-loaded and loaded bone. Hollow hydroxyapatite (HA) microspheres created in a previous study were evaluated as a carrier for controlled release of bone morphogenetic protein-2 (BMP2) in bone regeneration. New bone formation in rat calvarial defects implanted with BMP2-loaded microspheres (43%) was significantly higher than microspheres without BMP2 (17%) at 6 weeks postimplantation. Then hollow HA microspheres with a carbonate-substituted composition were prepared to improve their resorption rate. Hollow HA microspheres with 12 wt. % of carbonate showed significantly higher new bone formation (73 +/- 8%) and lower residual HA (7 +/- 2%) than stoichiometric HA microspheres (59 +/- 2% new bone formation; 21 +/- 3% residual HA). The combination of carbonate-substituted hollow HA microspheres and clinically-safe doses of BMP2 could provide promising implants for healing non-loaded bone defects. Strong porous scaffolds of bioactive silicate (13-93) glass were designed with the aid of finite-element modeling, created by robocasting and evaluated for loaded bone repair. Scaffolds with a porosity gradient to mimic human cortical bone showed a compressive strength of 88 +/- 20 MPa, a flexural strength of 34 +/- 5 MPa and the ability to support bone infiltration in vivo. The addition of a biodegradable polylactic acid (PLA) layer to the external surface of these scaffolds increased their load-bearing capacity in four-point bending by 50% and dramatically enhanced their work of fracture, resulting in a "ductile" mechanical response. These bioactive glass-PLA composites, combining bioactivity, high strength, high work of fracture and an internal architecture conducive to bone infiltration, could provide optimal implants for structural bone repair.
[Sufficiency with water-soluble vitamins and state of bone in pregnant women].
Vrzhesinskaya, O A; Pereverzeva, O G; Gmoshinskaya, M V; Kodentsova, V M; Safronova, A I; Korosteleva, M M; Aleshina, I V; Fandeeva, T A
2015-01-01
Vitamin status and bone strength have been estimated in 91 pregnant women (29.3 ± 4.6 years old) from Moscow by non-invasive methods. Sufficiency with vitamins C, B2, B6 has been evaluated by morning urinary excretion of ascorbic acid, riboflavin and 4-piridoxic acid determined by visual titration and fluorimetric methods. The rate of bone resorption has been measured by the ratio of urinary calcium and creatinine, determined by complexometric titration and spectrophotometrically. The study of the bone strength has been conducted using an ultrasonic densitometer (the speed of the ultrasonic waves along the cortical layer). The lack of vitamin C was found in 20.4% .of the women surveyed, vitamin B2--in 27.4%. Vitamin B6 deficiency was detected most frequently (90%). Excretion of vitamins B2 and B6 in women in the third trimester of pregnancy was lower as compared with the women in the first and second trimester. In 53.3% of the women surveyed an increase in urinary excretion of calcium per creatinine has been observed. Excretion of group B vitamins (especially vitamin B6, 1.75 fold, p < 0.05) in women taking vitamin supplements was higher compared to non-taking vitamins that indicates the better sufficiency of the organism with these vitamins. Among women who took vitamin complexes, inadequate supply with water-soluble vitamins C, B2 and B6 was detected less frequently (the difference was significant for vitamin B2) than among women who did not intake vitamin complexes (in 11.9, 27.7 and 42.4% vs 16.1, 54.8 and 48.8 %). The rate of bone resorption (Ca/creatinine) in women taking vitamins was smaller (0.19 ± 0.09 vs 0.24 ± 0.14, p > 0.05). Ca/creatinine ratio was within normal range in 40% of women who intake vitamins, while in women not taking vitamins--only in 22.2%; this value exceeded the upper limit of norm in the rest. The strength of bone was broken in women in the second and third trimester of pregnancy, having worse supply of vitamins. The percentage of agreement of the results of osteopenia diagnosis assessment (ultrasound densitometry and urinary Ca/creatinine) was 42.2%. Thus, the conclusion has been confirmed that the evaluation of the status of bone is possible only basing on the results of determination of several parameters.
Ethnic differences in bone geometry between White, Black and South Asian men in the UK.
Zengin, A; Pye, S R; Cook, M J; Adams, J E; Wu, F C W; O'Neill, T W; Ward, K A
2016-10-01
Relatively little is known about the bone health of ethnic groups within the UK and data are largely restricted to women. The aim of this study was to investigate ethnic differences in areal bone mineral density (aBMD), volumetric bone mineral density (vBMD), bone geometry and strength in UK men. White European, Black Afro-Caribbean and South Asian men aged over 40years were recruited from Greater Manchester, UK. aBMD at the spine, hip, femoral neck and whole body were measured by DXA. Bone geometry, strength and vBMD were measured at the radius and tibia using pQCT at the metaphysis (4%) and diaphysis (50% radius; 38% tibia) sites. Adjustments were made for age, weight and height. Black men had higher aBMD at the whole body, total hip and femoral neck compared to White and South Asian men independent of body size adjustments, with no differences between the latter two groups. White men had longer hip axis lengths than both Black and South Asian men. There were fewer differences in vBMD but White men had significantly lower cortical vBMD at the tibial diaphysis than Black and South Asian men (p<0.001). At the tibia and radius diaphysis, Black men had larger bones with thicker cortices and greater bending strength than the other groups. There were fewer differences between White and South Asian men. At the metaphysis, South Asian men had smaller bones (p=0.02) and lower trabecular vBMD at the tibia (p=0.003). At the diaphysis, after size-correction, South Asian men had similar sized bones but thinner cortices than White men; measures of strength were not broadly reduced in the South Asian men. Combining pQCT and DXA measurements has given insight into differences in bone phenotype in men from different ethnic backgrounds. Understanding such differences is important in understanding the aetiology of male osteoporosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
The peak bone mass concept: is it still relevant?
Schönau, Eckhard
2004-08-01
The peak bone mass concept implies that optimal skeletal development during childhood and adolescence will prevent fractures in late adulthood. This concept is based on the observation that areal bone density increases with growth during childhood, is highest around 20 years of age and declines thereafter. However, it is now clear that strong bones in the youngster do not necessarily lead to a fracture-free old age. In the recent bone densitometric literature, the terms bone mass and bone density are typically used synonymously. In physics, density has been defined as the mass of a body divided by its volume. In clinical practice and science, "bone density" usually has a different meaning-the degree to which a radiation beam is attenuated by a bone, as judged from a two-dimensional projection image (areal bone density). The attenuation of a radiation beam does not only depend on physical density, but also on bone size. A small bone therefore has a lower areal bone density than a larger bone, even if the physical density is the same. Consequently, a low areal bone density value can simply reflect the small size of an otherwise normal bone. At present, bone mass analysis is very useful for epidemiological studies on factors that may have an impact on bone development. There is an ongoing discussion about whether the World Health Organization (WHO) definition of osteoporosis is over-simplistic and requires upgrading to include indices representing the distribution of bone and mineral (bone strength indices). The following suggestions and recommendations outline a new concept: bone mass should not be related to age. There is now more and more evidence that bone mass should be related to bone size or muscle function. Thus analyzed, there is no such entity as a "peak bone mass". Many studies are currently under way to evaluate whether these novel approaches increase sensitivity and specificity of fracture prediction in an individual. Furthermore, the focus of many bone researchers is shifting away from bone mass to bone geometry or bone strength. Bone mass is one surrogate marker of bone strength. Widely available techniques for measurement of bone mass, such as dual-energy X-ray absorptiometry, radiogrammetry, and computed tomography, can also be used to measure variables of bone geometry such as cortical thickness, cortical area, and moment of inertia.
Modifications in Bone Matrix of Estrogen-Deficient Rats Treated with Intermittent PTH
Campos, Jenifer Freitas; Katchburian, Eduardo; de Medeiros, Valquíria Pereira; Nader, Helena Bonciani; Nonaka, Keico Okino; Plotkin, Lilian Irene; Reginato, Rejane Daniele
2015-01-01
Bone matrix dictates strength, elasticity, and stiffness to the bone. Intermittent parathyroid hormone (iPTH), a bone-forming treatment, is widely used as a therapy for osteoporosis. We investigate whether low doses of intermittent PTH (1-34) change the profile of organic components in the bone matrix after 30 days of treatment. Forty 6-month-old female Wistar rats underwent ovariectomy and after 3 months received low doses of iPTH administered for 30 days: daily at 0.3 µg/kg/day (PTH03) or 5 µg/kg/day (PTH5); or 3 times per week at 0.25 µg/kg/day (PTH025). After euthanasia, distal femora were processed for bone histomorphometry, histochemistry for collagen and glycosaminoglycans, biochemical quantification of sulfated glycosaminoglycans, and hyaluronan by ELISA and TUNEL staining. Whole tibiae were used to estimate the bone mineral density (BMD). Histomorphometric analysis showed that PTH5 increased cancellous bone volume by 6% over vehicle-treated rats. In addition, PTH5 and PTH03 increased cortical thickness by 21% and 20%, respectively. Tibial BMD increased in PTH5-treated rats and this group exhibited lower levels of chondroitin sulfate; on the other hand, hyaluronan expression was increased. Hormonal administration in the PTH5 group led to decreased collagen maturity. Further, TUNEL-positive osteocytes were decreased in the cortical compartment of PTH5 whereas administration of PTH025 increased the osteocyte death. Our findings suggest that daily injections of PTH at low doses alter the pattern of organic components from the bone matrix, favoring the increase of bone mass. PMID:25695082
Greenway, Kathleen G; Walkley, Jeff W; Rich, Peter A
2015-01-01
Osteoporosis is common, and physical activity is important in its prevention and treatment. Of the categories of historical physical activity (PA) examined, we found that weight-bearing and very hard physical activity had the strongest relationships with areal bone mineral density (aBMD) throughout growth and into adulthood, while for measures of strength, only grip strength proved to be an independent predictor of aBMD. To examine relationships between aBMD (total body, lumbar spine, proximal femur, tibial shaft, distal radius) and estimates of historical PA, current strength, and cardiovascular fitness in adult premenopausal women. One hundred fifty-two adult premenopausal women (40 ± 9.6 years) undertook aBMD (dual-energy X-ray absorptiometry (DXA)) and completed surveys to estimate historical physical activity representative of three decades (Kriska et al. [1]), while subsets underwent functional tests of isokinetic strength (hamstrings and quadriceps), grip strength (hand dynamometer), and maximum oxygen uptake (MaxV02; cycle ergometer). Historical PA was characterized by demand (metabolic equivalents, PA > 3 METS; PA > 7 METS) and type (weight-bearing; high impact). Significant positive independent predictors varied by decade and site, with weight-bearing exercise and PA > 3 METS significant for the tibial shaft (10-19 decade) and only PA > 7 METS significant for the final two decades (20-29 and 30-39 years; total body and total hip). A significant negative correlation between high impact activity and tibial shaft aBMD appeared for the final decade. For strength measures, only grip strength was an independent predictor (total body, total hip), while MaxV02 provided a significant independent prediction for the tibial shaft. Past PA > 7 METS was positively associated with aBMD, and such activity should probably constitute a relatively high proportion of all weekly PA to positively affect aBMD. The findings warrant more detailed investigations in a prospective study, specifically also investigating the potentially negative effects of high impact PA on tibial aBMD.
Quantifying leisure physical activity and its relation to bone density and strength.
Shedd, Kristine M; Hanson, Kathy B; Alekel, D Lee; Schiferl, Daniel J; Hanson, Laura N; Van Loan, Marta D
2007-12-01
Compare three published methods of quantifying physical activity (total activity, peak strain, and bone-loading exposure (BLE) scores) and identify their associations with areal bone mineral density (aBMD), volumetric BMD (vBMD), and bone strength. Postmenopausal women (N = 239; mean age: 53.8 yr) from Iowa (ISU) and California (UCD) completed the Paffenbarger Physical Activity Questionnaire, which was scored with each method. Dual energy x-ray absorptiometry assessed aBMD at the spine, hip, and femoral neck, and peripheral quantitative computed tomography (pQCT) measured vBMD and bone strength properties at the distal tibia and midshaft femur. UCD women had higher total activity scores and hours per week of leisure activity. All scoring methods were correlated with each other. No method was associated with aBMD. Peak strain score was negatively associated with polar moment of inertia and strength-strain index at the tibia, and total activity score was positively associated with cortical area and thickness at the femur. Separating by geographic site, the peak strain and hip BLE scores were negatively associated with pQCT measures at the tibia and femur among ISU subjects. Among UCD women, no method was significantly associated with any tibia measure, but total activity score was positively associated with measures at the femur (P < 0.05 for all associations). Given the significantly greater hours per week of leisure activity done by UCD subjects, duration may be an important determinant of the effect physical activity has on bone. The positive association between leisure physical activity (assessed by the total activity score) and cortical bone measures in postmenopausal women may indicate a lifestyle factor that can help offset age-related bone loss.
Reina, P; Cointry, G R; Nocciolino, L; Feldman, S; Ferretti, J L; Rittweger, J; Capozza, R F
2015-03-01
To compare the independent influence of mechanical and non-mechanical factors on bone features, multiple regression analyses were performed between pQCT indicators of radius and tibia bone mass, mineralization, design and strength as determined variables, and age or time since menopause (TMP), body mass, bone length and regional muscles' areas as selected determinant factors, in Caucasian, physically active, untrained healthy men and pre- and post-menopausal women. In men and pre-menopausal women, the strongest influences were exerted by muscle area on radial features and by both muscle area and bone length on the tibia. Only for women, was body mass a significant factor for tibia traits. In men and pre-menopausal women, mass/design/strength indicators depended more strongly on the selected determinants than the cortical vBMD did (p<0.01-0.001 vs n.s.), regardless of age. However, TMP was an additional factor for both bones (p<0.01-0.001). The selected mechanical factors (muscle size, bone lengths) were more relevant than age/TMP or body weight to the development of allometrically-related bone properties (mass/design/strength), yet not to bone tissue 'quality' (cortical vBMD), suggesting a determinant, rather than determined role for cortical stiffness. While the mechanical impacts of muscles and bone levers on bone structure were comparable in men and pre-menopausal women, TMP exerted a stronger impact than allometric or mechanical factors on bone properties, including cortical vBMD.
Modlesky, Christopher M; Whitney, Daniel G; Carter, Patrick T; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman
2014-03-01
Magnetic resonance imaging (MRI) is used to assess trabecular bone microarchitecture in humans; however, image processing can be labor intensive and time consuming. One aim of this study was to determine the pattern of trabecular bone microarchitecture in the distal femur of typically developing children. A second aim was to determine the proportion and location of magnetic resonance images that need to be processed to yield representative estimates of trabecular bone microarchitecture. Twenty-six high resolution magnetic resonance images were collected immediately above the growth plate in the distal femur of 6-12year-old typically developing children (n=40). Measures of trabecular bone microarchitecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the lateral aspect of the distal femur were determined using the twenty most central images (20IM). The average values for appBV/TV, appTb.N, appTb.Th and appTb.Sp from 20IM were compared to the average values from 10 images (10IM), 5 images (5IM) and 3 images (3IM) equally dispersed throughout the total image set and one image (1IM) from the center of the total image set using linear regression analysis. The resulting mathematical models were cross-validated using the leave-one-out technique. Distance from the growth plate was strongly and inversely related to appBV/TV (r(2)=0.68, p<0.001) and appTb.N (r(2)=0.92, p<0.001) and was strongly and positively related to appTb.Sp (r(2)=0.86, p<0.001). The relationship between distance from the growth plate and appTb.Th was not linear (r(2)=0.06, p=0.28), but instead it was quadratic and statistically significant (r(2)=0.54, p<0.001). Trabecular bone microarchitecture estimates from 10IM, 5IM, 3IM and 1IM were not different from estimates from 20IM (p>0.05). However, there was a progressive decrease in the strength of the relationships as a smaller proportion of images were used to predict estimates from 20IM (r(2)=0.98 to 0.99 using 10IM, 0.94 to 0.96 using 5IM, 0.87 to 0.90 using 3IM and 0.66 to 0.72 using 1IM; all p<0.001). Using the resulting mathematical models and the leave-one-out cross-validation analysis, measures of trabecular bone microarchitecture estimated from the 10IM and 5IM partial image sets agreed extremely well with estimates from 20IM. The findings indicate that partial magnetic resonance image sets can be used to provide reasonable estimates of trabecular bone microarchitecture status in the distal femur of typically developing children. However, because the relative amount of trabecular bone in the distal femur decreases with distance from the growth plate due to a decrease in trabecular number, careful positioning of the region of interest and sampling from throughout the region of interest is necessary. Copyright © 2013 Elsevier Inc. All rights reserved.
Brillouin light scattering spectroscopy for tissue engineering application
NASA Astrophysics Data System (ADS)
Akilbekova, Dana; Yakupov, Talgat; Ogay, Vyacheslav; Umbayev, Bauyrzhan; Yakovlev, Vladislav V.; Utegulov, Zhandos N.
2018-02-01
Biomechanical properties of mammalian bones, such as strength, toughness and plasticity, are essential for understanding how microscopic scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) micro-spectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins (BMPs) and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free imaging modality for probing mechanical properties of hard tissues that can give information on structure-function properties of normal and pathological tissues. Results showed that HCF gels containing combination of all factors had the best effect with complete defect regeneration at week 9 and that the bones with fully consolidated fractures have higher values of elastic moduli compared to the bones with defects.
Amin, Shreyasee; Khosla, Sundeep
2012-01-01
The trabecular and cortical compartments of bone each contributes to bone strength. Until recently, assessment of trabecular and cortical microstructure has required a bone biopsy. Now, trabecular and cortical microstructure of peripheral bone sites can be determined noninvasively using high-resolution peripheral quantitative computed tomography (HR-pQCT). Studies that have used HR-pQCT to evaluate cohorts of both men and women have provided novel insights into the changes in bone microarchitecture that occur with age between the sexes, which may help to explain the lower fracture incidence in older men relative to women. This review will highlight observations from these studies on both the sex- and age-related differences in trabecular and cortical microstructure that may underlie the differences in bone strength, and thereby fracture risk, between men and women. PMID:22496983
Stratmann, A; Fröhlich, E K F; Gebhardt-Henrich, S G; Harlander-Matauschek, A; Würbel, H; Toscano, M J
2016-05-01
The prevalence of keel bone damage as well as external egg parameters of 2 pure lines divergently selected for high (H) and low (L) bone strength were investigated in 2 aviary systems under commercial conditions. A standard LSL hybrid was used as a reference group. Birds were kept mixed per genetic line (77 hens of the H and L line and 201 or 206 hens of the LSL line, respectively, per pen) in 8 pens of 2 aviary systems differing in design. Keel bone status and body mass of 20 focal hens per line and pen were assessed at 17, 18, 23, 30, 36, 43, 52, and 63 wk of age. External egg parameters (i.e., egg mass, eggshell breaking strength, thickness, and mass) were measured using 10 eggs per line at both 38 and 57 wk of age. Body parameters (i.e. tarsus and third primary wing feather length to calculate index of wing loading) were recorded at 38 wk of age and mortality per genetic line throughout the laying cycle. Bone mineral density (BMD) of 15 keel bones per genetic line was measured after slaughter to confirm assignment of the experimental lines. We found a greater BMD in the H compared with the L and LSL lines. Fewer keel bone fractures and deviations, a poorer external egg quality, as well as a lower index of wing loading were found in the H compared with the L line. Mortality was lower and production parameters (e.g., laying performance) were higher in the LSL line compared with the 2 experimental lines. Aviary design affected prevalence of keel bone damage, body mass, and mortality. We conclude that selection of specific bone traits associated with bone strength as well as the related differences in body morphology (i.e., lower index of wing loading) have potential to reduce keel bone damage in commercial settings. Also, the housing environment (i.e., aviary design) may have additive effects. © 2016 Poultry Science Association Inc.
Reina, Nicolas; Cavaignac, Etienne; Trousdale, William H; Laffosse, Jean-Michel; Braga, José
2017-06-01
It is widely hypothesized that mechanical loading, specifically repetitive low-intensity tasks, influences the inner structure of cancellous bone. As such, there is likely a relationship between handedness and bone morphology. The aim of this study is to determine patterns in trabecular bone between dominant and non-dominant hands in modern humans. Seventeen healthy patients between 22 and 32 years old were included in the study. Radial carpal bones (lunate, capitate, scaphoid, trapezium, trapezoid, 1st, 2nd and 3rd metacarpals) were analyzed with high-resolution micro-computed tomography. Additionally, crush and pinch grip were recorded. Factorial analysis indicated that bone volume ratio, trabeculae number (Tb.N), bone surface to volume ratio (BS.BV), body weight, stature and crush grip were all positively correlated with principal components 1 and 2 explaining 78.7% of the variance. Volumetric and trabecular endostructural parameters (BV/TV, BS/BV or Tb.Th, Tb.N) explain the observed inter-individual variability better than anthropometric or clinical parameters. Factors analysis regressions showed correlations between these parameters and the dominant side for crush strength for the lunate (r 2 = 0.640, P < 0.0001), trapezium (r 2 = 0.836, P < 0.0001) and third metacarpal (r 2 = 0.763). However, despite a significant lateralization in grip strength for all patients, the endostructural variability between dominant and non-dominant sides was limited in perspective to inter-individual differences. In conclusion, handedness is unlikely to generate trabecular patterns of asymmetry. It appears, however, that crush strength can be considered for endostructural analysis in the modern human wrist. © 2017 Anatomical Society.
Gold, P W; Pavlatou, M G; Michelson, D; Mouro, C M; Kling, M A; Wong, M-L; Licinio, J; Goldstein, S A
2015-01-01
Major depression and bipolar disorder are associated with decreased bone mineral density (BMD). Antidepressants such as imipramine (IMIP) and specific serotonin reuptake inhibitors (SSRIs) have been implicated in reduced BMD and/or fracture in older depressed patients. Moreover, anticonvulsants such as valproate (VAL) and carbamazepine (CBZ) are also known to increase fracture rates. Although BMD is a predictor of susceptibility to fracture, bone strength is a more sensitive predictor. We measured mechanical and geometrical properties of bone in 68 male Sprague Dawley rats on IMIP, fluoxetine (FLX), VAL, CBZ, CBZ vehicle and saline (SAL), given intraperitoneally daily for 8 weeks. Distinct regions were tested to failure by four-point bending, whereas load displacement was used to determine stiffness. The left femurs were scanned in a MicroCT system to calculate mid-diaphyseal moments of inertia. None of these parameters were affected by antidepressants. However, VAL resulted in a significant decrease in stiffness and a reduction in yield, and CBZ induced a decrease in stiffness. Only CBZ induced alterations in mechanical properties that were accompanied by significant geometrical changes. These data reveal that chronic antidepressant treatment does not reduce bone strength, in contrast to chronic anticonvulsant treatment. Thus, decreased BMD and increased fracture rates in older patients on antidepressants are more likely to represent factors intrinsic to depression that weaken bone rather than antidepressants per se. Patients with affective illness on anticonvulsants may be at particularly high risk for fracture, especially as they grow older, as bone strength falls progressively with age. PMID:26035060
Reduced energy availability: implications for bone health in physically active populations.
Papageorgiou, Maria; Dolan, Eimear; Elliott-Sale, Kirsty J; Sale, Craig
2018-04-01
The present review critically evaluates existing literature on the effects of short- and long-term low energy availability (EA) on bone metabolism and health in physically active individuals. We reviewed the literature on the short-term effects of low EA on markers of bone metabolism and the long-term effects of low EA on outcomes relating to bone health (bone mass, microarchitecture and strength, bone metabolic markers and stress fracture injury risk) in physically active individuals. Available evidence indicates that short-term low EA may increase markers of bone resorption and decrease markers of bone formation in physically active women. Bone metabolic marker responses to low EA are less well known in physically active men. Cross-sectional studies investigating the effects of long-term low EA suggest that physically active individuals who have low EA present with lower bone mass, altered bone metabolism (favouring bone resorption), reduced bone strength and increased risk for stress fracture injuries. Reduced EA has a negative influence on bone in both the short- and long-term, and every effort should be made to reduce its occurrence in physically active individuals. Future interventions are needed to explore the effects of long-term reduced EA on bone health outcomes, while short-term low EA studies are also required to give insight into the pathophysiology of bone alterations.
Doherty, Alison H; Roteliuk, Danielle M; Gookin, Sara E; McGrew, Ashley K; Broccardo, Carolyn J; Condon, Keith W; Prenni, Jessica E; Wojda, Samantha J; Florant, Gregory L; Donahue, Seth W
2016-01-01
Periods of physical inactivity increase bone resorption and cause bone loss and increased fracture risk. However, hibernating bears, marmots, and woodchucks maintain bone structure and strength, despite being physically inactive for prolonged periods annually. We tested the hypothesis that bone turnover rates would decrease and bone structural and mechanical properties would be preserved in hibernating marmots (Marmota flaviventris). Femurs and tibias were collected from marmots during hibernation and in the summer following hibernation. Bone remodeling was significantly altered in cortical and trabecular bone during hibernation with suppressed formation and no change in resorption, unlike the increased bone resorption that occurs during disuse in humans and other animals. Trabecular bone architecture and cortical bone geometrical and mechanical properties were not different between hibernating and active marmots, but bone marrow adiposity was significantly greater in hibernators. Of the 506 proteins identified in marmot bone, 40 were significantly different in abundance between active and hibernating marmots. Monoaglycerol lipase, which plays an important role in fatty acid metabolism and the endocannabinoid system, was 98-fold higher in hibernating marmots compared with summer marmots and may play a role in regulating the changes in bone and fat metabolism that occur during hibernation.
Komatsu, Jun; Nagura, Nana; Iwase, Hideaki; Igarashi, Mamoru; Ohbayashi, Osamu; Nagaoka, Isao; Kaneko, Kazuo
2018-01-01
Grafting β-tricalcium phosphate (TCP) is a well-established method for restoring bone defects; however, there is concern that the mechanical stability of the grafted β-TCP is not maintained during bone translation. Teriparatide has an anabolic effect, stimulating bone formation and increasing bone mineral density for the treatment of osteoporosis. The aim of the present study was to evaluate the effect of intermittent teriparatide treatment on changes in bone grafted with β-TCP using a rabbit bone defect model. Bone defects (5×15 mm) were created in the distal femoral condyle of Japanese white rabbits, and β-TCP granules of two different total porosities were manually grafted. Teriparatide (40 µg/kg) or 0.2% rabbit serum albumin solution as a vehicle control was subcutaneously injected three times per week following the surgery. At 4 or 8 weeks post-surgery, serum samples were obtained and the levels of γ-carboxylated osteocalcin (Gla-OC) were quantified using ELISA. Histomorphometry was also performed using sections of graft sites following staining for tartrate resistant acid phosphatase. Activity and mechanical strength (maximum shear strength, maximum shear stiffness and total energy absorption) were evaluated using an axial push-out load to failure test. Teriparatide treatment significantly increased (P<0.05) the serum levels of Gla-OC, a specific marker for bone formation, suggesting that teriparatide enhances bone formation in β-TCP-grafted rabbits. Furthermore teriparatide increased the degradation of β-TCP by bone remodeling (P<0.05) and promoted the formation of new bone following application of the graft compared with the control group (P<0.01). Furthermore, teriparatide suppressed the reduction in mechanical strength (P<0.05) during bone translation in bone defects grafted with β-TCP. The results of the present study demonstrate that teriparatide is effective in maintaining the mechanical stability of grafted β-TCP, possibly by promoting new bone formation. PMID:29387179
Modeling of Stiffness and Strength of Bone at Nanoscale.
Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M
2017-05-01
Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.
Increased Antibiotic Release from a Bone Cement Containing Bacterial Cellulose
Nakai, Takahisa; Enomoto, Koichi; Uchio, Yuji; Yoshino, Katsumi
2010-01-01
Background Major disadvantages of antibiotic bone cements include limited drug release and reduced strength resulting from the addition of high doses of antibiotics. Bacterial cellulose, a three-dimensional hydrophilic mesh, may retain antibiotics and release them gradually. We hypothesized that the addition of cellulose to antibiotic bone cement would improve mechanical strength and antibiotic release. Questions/purposes We therefore examined the mechanical strength and antibiotic release of cellulose antibiotic cement. Methods A high dose of antibiotics (5 g per 40 g cement powder) was incorporated into bacterial cellulose and then mixed with bone cement. We compared the compression strength, fracture toughness, fatigue life, and elution kinetics of this formulation with those of plain cement and a traditional antibiotic cement. Results The average values for compression strength, fracture toughness, and fatigue life of the cellulose antibiotic cement were 97%, 97%, and 78% of the values obtained for plain cement, respectively. The corresponding values for the traditional antibiotic cement were 79%, 82%, and 17%, respectively. The cumulative elution over 35 days was 129% greater from the cellulose antibiotic cement than from the traditional antibiotic cement. Conclusions With a high dose of antibiotics, incorporating cellulose into the bone cement prevented compression and fracture fragility, improved fatigue life, and increased antibiotic elution. Clinical Relevance Antibiotic cements containing cellulose may have applications in clinical situations that require high levels of antibiotic release and preservation of the mechanical properties of the cement. PMID:20945120
Janssen, D; Zwartelé, R E; Doets, H C; Verdonschot, N
2010-01-01
Patients suffering from rheumatoid arthritis typically have a poor subchondral bone quality, endangering implant fixation. Using finite element analysis (FEA) an investigation was made to find whether a press-fit acetabular implant with a polar clearance would reduce interfacial micromotions and improve fixation compared with a standard hemispherical design. In addition, the effects of interference fit, friction, and implant material were analysed. Cups were introduced into an FEA model of a human pelvis with simulated subchondral bone plasticity. The models were loaded with a loading configuration simulating two cycles of normal walking, during which contact stresses and interfacial micromotions were monitored. Subsequently, a lever-out simulation was performed to assess the fixation strength of the various cases. A flattened cup with good bone quality produced the lowest interfacial micromotions. Poor bone decreased the fixation strength regardless of the geometry of the cup. Increasing the interference fit of the flattened cup compensated for the loss of fixation strength caused by poor bone quality. In conclusion, a flattened cup did not significantly improve implant fixation over a hemispherical cup in the case of poor bone quality. However, implant fixation can be optimized by increasing interference fit and avoiding inferior frictional properties and low-stiffness implants.
Cao, Lei; Li, Xiaokang; Zhou, Xiaoshu; Li, Yong; Vecchio, Kenneth S; Yang, Lina; Cui, Wei; Yang, Rui; Zhu, Yue; Guo, Zheng; Zhang, Xing
2017-03-22
Sea urchin spines (Heterocentrotus mammillatus), with a hierarchical open-cell structure similar to that of human trabecular bone and superior mechanical property (compressive strength ∼43.4 MPa) suitable for machining to shape, were explored for potential applications of bone defect repair. Finite element analyses reveal that the compressive stress concentrates along the dense growth rings and dissipates through strut structures of the stereoms, indicating that the exquisite mesostructures play an important role in high strength-to-weight ratios. The fracture strength of magnesium-substituted tricalcium phosphate (β-TCMP) scaffolds produced by hydrothermal conversion of urchin spines is about 9.3 MPa, comparable to that of human trabecular bone. New bone forms along outer surfaces of β-TCMP scaffolds after implantation in rabbit femoral defects for one month and grows into the majority of the inner open-cell spaces postoperation in three months, showing tight interface between the scaffold and regenerative bone tissue. Fusion of beagle lumbar facet joints using a Ti-6Al-4V cage and β-TCMP scaffold can be completed within seven months with obvious biodegradation of the β-TCMP scaffold, which is nearly completely degraded and replaced by newly formed bone ten months after implantation. Thus, sea urchin spines suitable for machining to shape have advantages for production of biodegradable artificial grafts for bone defect repair.
Lee, Dae Hoon; Tripathy, Nirmalya; Shin, Jae Hun; Song, Jeong Eun; Cha, Jae Geun; Min, Kyung Dan; Park, Chan Hum; Khang, Gilson
2017-02-01
Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering. Copyright © 2016. Published by Elsevier B.V.
Ochi, Yasuo; Yamada, Hiroyuki; Mori, Hiroshi; Nakanishi, Yasutomo; Nishikawa, Satoshi; Kayasuga, Ryoji; Kawada, Naoki; Kunishige, Akiko; Hashimoto, Yasuaki; Tanaka, Makoto; Sugitani, Masafumi; Kawabata, Kazuhito
2014-08-01
This study examined the effect of ONO-5334, a cathepsin K inhibitor, on bone turnover, mineral density (BMD), mechanical strength and microstructure in ovariectomized (OVX) cynomolgus monkeys. Vehicle, ONO-5334 (3, 10 or 30 mg/kg) or alendronate (0.5 mg/kg) was orally administered for eight months to sham- and OVX-operated monkeys. ONO-5334 dose-dependently suppressed OVX-induced increase in bone turnover markers (urinary C-terminal cross-linking telopeptide of type I collagen (CTX) and serum osteocalcin). At the dose of 30 mg/kg, ONO-5334 maintained urinary CTX at nearly zero level and kept serum osteocalcin around the level of the sham animals. Marker levels in the alendronate-treated animals were similar to those in the sham animals throughout the study. ONO-5334 dose-dependently reversed the effect of OVX on vertebral BMD as measured by dual-energy X-ray absorptiometry (DXA) with improvement of bone mechanical strength. Both ONO-5334 and alendronate suppressed OVX-induced changes in vertebral microstructure and turnover state. In the femoral neck, peripheral quantitative computed tomography (pQCT) analysis showed that ONO-5334 increased total and cortical BMD. In particular, ONO-5334 significantly increased cortical BMD with improvement of bone mechanical strength. In microstructural analysis, alendronate suppressed OVX-induced increase in femoral mid-shaft osteonal bone formation rate (BFR) to a level below that recorded in the sham group, whereas ONO-5334 at 30 mg/kg did not suppress periosteal, osteonal and endocortical BFR. This finding supports the significant effect of ONO-5334 on cortical BMD and mechanical strength in the femoral neck. The results of this study suggest that ONO-5334 has good therapeutic potential for the treatment of osteoporosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Oestreich, Arin K.; Kamp, William M.; McCray, Marcus G.; Carleton, Stephanie M.; Karasseva, Natalia; Lenz, Kristin L.; Jeong, Youngjae; Daghlas, Salah A.; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M.; Ellersieck, Mark R.; Schulz, Laura C.; Phillips, Charlotte L.
2016-01-01
During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta. PMID:27821779
Oestreich, Arin K; Kamp, William M; McCray, Marcus G; Carleton, Stephanie M; Karasseva, Natalia; Lenz, Kristin L; Jeong, Youngjae; Daghlas, Salah A; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M; Ellersieck, Mark R; Schulz, Laura C; Phillips, Charlotte L
2016-11-22
During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstn tm1Sjl/+ ) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstn tm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2 oim ), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2 oim/+ offspring from natural mating of Mstn tm1Sjl/+ dams to Col1a2 oim/+ sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2 oim/+ dams to Col1a2 oim/+ sires. Finally, increased bone biomechanical strength of Col1a2 oim/+ offspring that had been transferred into Mstn tm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.
Silversides, F G; Korver, D R; Budgell, K L
2006-07-01
Bone strength in layers is a concern for economic reasons and animal welfare concerns. Bone characteristics were investigated in 3 strains of hens: Babcock B-300, a small-bodied commercial white-egg layer; ISA-Brown, a commercial brown-egg layer; and an unselected Brown Leghorn line (BL). After being reared together in a single pen with 8 h of light per day, hens were caged with 14 h of light per day. Half of the hens were caged at 18 wk of age and the other half at 20 wk of age, resulting in a 2-wk difference in the age at photostimulation. Body weights, egg production, feed efficiency, and egg quality were measured throughout production. At 15, 25, 50, and 74 wk of age, hens were euthanized for sampling of the radius and the humerus. Breaking strength of the radius and humerus was measured, and the area and density of trabecular (largely medullary bone) and cortical bone were measured using quantitative computed tomography. Egg production and feed conversion of ISA-Brown hens was as good as or better than that of Babcock B-300 hens, and both commercial strains had higher production than the BL. Photostimulation late delayed sexual maturity and improved albumen and shell characteristics but had only minor effects on egg production and did not affect the yolk weight. The delayed photostimulation resulting from caging 2 wk later affected the radius by increasing the area of the trabecular space at 50 wk of age and the density of the bone in the trabecular space at 74 wk of age. Breaking strength of the humerus at 25 wk of age was greater for the birds that were photostimulated late but was not different later in the trial. The humerus, but not the radius, of the BL had a greater breaking strength than that of the commercial strains, suggesting that selection has decreased humeral breaking strength.
Luo, Xiaotian; Zhang, Jifeng; Zhang, Chi; He, Chengqi; Wang, Pu
2017-11-01
To review the research literature on the effectiveness of whole-body vibration (WBV) therapy in women with postmenopausal osteoporosis. A systematic review was conducted by two independent reviewers. Mean differences (MDs), standardized mean differences (SMDs), and 95% confidence intervals (CIs) were calculated, and heterogeneity was assessed with the I 2 test. The Cochrane risk of bias tool was used to assess the methodological quality of the selected studies. Nine randomized controlled trials involving 625 patients met the inclusion criteria. No significant improvement was found in bone mineral density (BMD) (SMD = -0.06, 95%CI= -0.22-0.11, p = 0.50); bone turnover markers (MD = -0.25, 95%CI= -0.54-0.03, p = 0.08); anthropometric parameters, including muscle mass, fat mass, body mass index (BMI), and weight (SMD = 0.02, 95%CI= -0.16-0.21, p = 0.81); or maximal isotonic knee extensor strength (SMD = 0.16, 95%CI= -0.63-0.95, p = 0.69). However, maximal isometric knee extensor strength improved (SMD = 0.71, 95%CI = 0.34-1.08, p = 0.0002). WBV is beneficial for enhancing maximal isometric knee extensor strength, but it has no overall treatment effect on BMD, bone turnover markers, anthropometric parameters, or maximal isotonic knee extensor strength in women with postmenopausal osteoporosis. Implication of rehabilitation Osteoporosis is the leading underlying cause of fractures in postmenopausal women, whole body vibration (WBV) has received much attention as a potential intervention for the management of osteoporosis in recent years. Whole body vibration is beneficial for enhancing maximal isometric knee extensor strength in women with postmenopausal osteoporosis. Whole body vibration has no overall treatment effect on bone mineral density, bone turnover markers, anthropometric parameters and maximal isotonic knee extensor strength in women with postmenopausal osteoporosis.
Suhm, Norbert; Hengg, Clemens; Schwyn, Ronald; Windolf, Markus; Quarz, Volker; Hänni, Markus
2007-08-01
Bone strength plays an important role in implant anchorage. Bone mineral density (BMD) is used as surrogate parameter to quantify bone strength and to predict implant anchorage. BMD can be measured by means of quantitative computer tomography (QCT) or dual energy X-ray absorptiometry (DXA). These noninvasive methods for BMD measurement are not available pre- or intra-operatively. Instead, the surgeon could determine bone strength by direct mechanical measurement. We have evaluated mechanical torque measurement for (A) its capability to quantify local bone strength and (B) its predictive value towards load at implant cut-out. Our experimental study was performed using sixteen paired human cadaver proximal femurs. BMD was determined for all specimens by QCT. The torque to breakaway of the cancellous bone structure (peak torque) was measured by means of a mechanical probe at the exact position of subsequent DHS placement. The fixation strength of the DHS achieved was assessed by cyclic loading in a stepwise protocol beginning with 1,500 N increasing 500 N every 5,000 cycles until 4,000 N. A highly significant correlation of peak torque with BMD (QCT) was found (r = 0.902, r (2) = 0.814, P < 0.001). Peak torque correlated highly significant with the load at implant cut-out (r = 0.795, P < 0.001). All specimens with a measured peak torque below 6.79 Nm failed at the first load level of 1,500 N. The specimens with a peak torque above 8.63 Nm survived until the last load level of 4,000 N. Mechanical peak torque measurement is able to quantify bone strength. In an experimental setup, peak torque identifies those specimens that are likely to fail at low load. In clinical routine, implant migration and cut-out depend on several parameters, which are difficult to control, such as fracture type, fracture reduction achieved, and implant position. The predictive value of peak torque towards cut-out in a clinical set-up therefore has to be carefully validated.
Specker, Bonny; Binkley, Teresa; Fahrenwald, Nancy
2004-12-01
Despite reports of lower fracture risk among rural versus urban populations, few studies have investigated rural versus urban differences in bone mineral content (BMC) and bone mineral density (BMD). Population differences in cross-sectional bone geometry and understanding lifestyle factors responsible for these differences may reveal insights into the reason for differences in fracture risk. We hypothesized that if lifestyle differences in bone mass, size, and geometry are a result of muscle strength, activity, or dietary differences, Hutterite and rural populations should have greater bone mass compared to nonrural populations. The study population consisted of 1189 individuals: 504 rural Hutterites (188 men), 349 rural individuals (>75% life farming, 184 men), and 336 nonrural individuals (never lived on farm, 134 men) aged 20 to 66 years. BMC, bone area, and areal BMD (aBMD) of the total body (TB), hip, femoral neck (FN), and spine by DXA; volumetric BMD (vBMD) and bone geometry at the 4% and 20% radius; polar stress strain index (pSSI), a measure of bone strength, at the 20% pQCT site; and strength, 7-day activity recall, and 24-h diet recall were collected and compared among groups. Hutterite women and men had greater grip strength compared to rural and nonrural populations (both, P <0.001). Rural women had greater activity versus Hutterite and nonrural (P <0.001), while both Hutterite and rural men had greater activity than nonrural (P <0.001). Hutterite and rural populations tended to have greater BMC and areal size than the nonrural population, while Hutterites had greater BMC and areal size than rural population at some (TB, FN for females only), but not all (proximal hip), sites. Cortical vBMD was inversely associated with periosteal circumference at the 20% radius in women (r=-0.25, P <0.001) and men (r=-0.28, P <0.001) and was higher in nonrural versus Hutterite and rural men. Hutterite and rural women and men had greater pSSI at the 20% radius compared to nonrural; inclusion of strength measurements explained population differences among women, but not men. Lifestyle differences did not explain population differences in BMC, aBMD, vBMD, or bone size.
The effects of strength training and raloxifene on bone health in aging ovariectomized rats.
Stringhetta-Garcia, Camila Tami; Singulani, Monique Patrício; Santos, Leandro Figueiredo; Louzada, Mário Jefferson Quirino; Nakamune, Ana Cláudia Stevanato; Chaves-Neto, Antonio Hernandes; Rossi, Ana Cláudia; Ervolino, Edilson; Dornelles, Rita Cássia Menegati
2016-04-01
The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days. Areal bone mineral density (aBMD), strength, microarchitecture, and biomarkers (osteocalcin, OCN; osteoprotegerin, OPG; and tartrate-resistant acid phosphatase, TRAP) were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), OCN, OPG, TRAP, and receptor activator of nuclear factor kappa-B ligand (RANKL). The rats that performed ST (ST-Veh) or were treated with Ral (NT-Ral) showed significant improvements in aBMD (p=0.001 and 0.004), bone strength (p=0.001), and bone microarchitecture, such as BV/TV (%) (p=0.001), BS/TV (mm(2)/mm(3)) (p=0.023 and 0.002), Conn.Dn (1/mm(3)) (p=0.001), Tb.N (1/mm) (p=0.012 and 0.011), Tb.Th (1/mm) (p=0.001), SMI (p=0.001 and 0.002), Tb.Sp (p=0.001), and DA (p=0.002 and 0.007); there was also a significant decrease in plasma levels of OCN (p=0.001 and 0.002) and OPG (p=0.003 and 0.014), compared with animals in the NT-Veh group. Ral, with or without ST, promoted an increased immunolabeling pattern for RUNX2 (p=0.0105 and p=0.0006) and OSX (p=0.0105), but a reduced immunolabeling pattern for TRAP (p=0.0056) and RANKL (p=0.033 and 0.004). ST increased the immunolabeling pattern for RUNX2 (p=0.0105), and association with Ral resulted in an increased immunolabeling pattern for OPG (p=0.0034) and OCN (p=0.0024). In summary, ST and Ral administration in aged, estrogen-deficient Wistar female rats is associated with a decrease in bone turnover marker plasma levels, increased activity of cells that promote osteoblastogenesis, and decreased activity of cells that promote osteoclastogenesis; these are correlated with higher aBMD, bone strength, and bone microarchitecture at the femoral neck. The results indicate that strength training and Ral are potential tools to reduce the risk of fractures at clinically relevant sites. Copyright © 2016 Elsevier Inc. All rights reserved.
Xie, Huanxin; Ji, Ye; Tian, Qi; Wang, Xintao; Zhang, Nan; Zhang, Yicai; Xu, Jun; Wang, Nanxiang; Yan, Jinglong
2017-11-01
To explore the effects of autogenous bone particle/titanium fiber composites on repairing segmental bone defects in rabbits. A model of bilateral radial bone defect was established in 36 New Zealand white rabbits which were randomly divided into 3 groups according to filling materials used for bilaterally defect treatment: in group C, 9 animal bone defect areas were prepared into simple bilateral radius bone defect (empty sham) as the control group; 27 rabbits were used in groups ABP and ABP-Ti. In group ABP, left defects were simply implanted with autogenous bone particles; meanwhile, group ABP-Ti animals had right defects implanted with autogenous bone particle/titanium fiber composites. Animals were sacrificed at 4, 8, and 12 weeks, respectively, after operation. Micro-CT showed that group C could not complete bone regeneration. Bone volume to tissue volume values in group ABP-Ti were better than group ABP. From histology and histomorphometry Groups ABP and ABP-Ti achieved bone repair, the bone formation of group ABP-Ti was better. The mechanical strength of group ABP-Ti was superior to that of other groups. These results confirmed the effectiveness of autologous bone particle/titanium fiber composites for promoting bone regeneration and mechanical strength.
Exercise Brings Bone Benefits that Last
... have benefits that last a lifetime, a new study showed. The research also confirmed that physical activity as we get older can help us maintain bone strength. Bone is a living tissue. It responds to physical ... lose bone. Studies of animals have shown that exercise during periods ...
[A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].
Wu, Wenjin; Yang, Weizhong; Zhou, Dali; Ma, Jiang; Xiao, Bin
2006-06-01
In order to improve the mechanical properties of alpha-tricalcium phosphate (alpha-TCP), we prepared surface-modified carbon fibers (CF) reinforced alpha-TCP composite bone cement. Bone cement was soaked in Ringer's body solution to test its capacity of fast formation of hydroxyapatite crystals and self-solidification. Scan electronic microscope (SEM) observation and compressive strength measurement were taken to analyze the mechanical properties and the micro- morphological structure of CF reinforced alpha-TCP bone cement. The results showed that the bone cement was transferred into hydroxyapatite plates after being soaked in Ringer's simulated body fluid for 5 days. Suitable amount of carbon fibers could well spread in and bond with the matrix of the bone cement. The mechanical properties of the bone cement have been improved by CF reinforcing; the compressive strength reaches 46.7 MPa when the amount of carbon fibers is 0.5% in weight percent, which is 22% higher than that of the non-reinforced alpha-TCP bone cement.
Matsuura, Takashi; Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw.
Tokutomi, Kentaro; Sasaki, Michiko; Katafuchi, Michitsuna; Mizumachi, Emiri; Sato, Hironobu
2014-01-01
Bone undergoes constant remodeling throughout life. The cellular and biochemical mechanisms of bone remodeling vary in a region-specific manner. There are a number of notable differences between the mandible and long bones, including developmental origin, osteogenic potential of mesenchymal stem cells, and the rate of bone turnover. Collagen, the most abundant matrix protein in bone, is responsible for determining the relative strength of particular bones. Posttranslational modifications of collagen, such as intermolecular crosslinking and lysine hydroxylation, are the most essential determinants of bone strength, although the amount of collagen is also important. In comparison to long bones, the mandible has greater collagen content, a lower amount of mature crosslinks, and a lower extent of lysine hydroxylation. The great abundance of immature crosslinks in mandibular collagen suggests that there is a lower rate of cross-link maturation. This means that mandibular collagen is relatively immature and thus more readily undergoes degradation and turnover. The greater rate of remodeling in mandibular collagen likely renders more flexibility to the bone and leaves it more suited to constant exercise. As reviewed here, it is important in clinical dentistry to understand the distinctive features of the bones of the jaw. PMID:24818151
Kim, Beom-Su; Kang, Hyo Jin; Lee, Jun
2013-10-01
Cuttlefish bones (CBs) have emerged as attractive biomaterials because of their porous structure and components that can be converted into hydroxyapatite (HAp) via a hydrothermal reaction. However, their brittleness and low strength restrict their application in bone tissue engineering. Therefore, to improve the compressive strength of the scaffold following hydrothermal conversion to a HAp form of CB (CB-HAp), the scaffold was coated using a polycaprolactone (PCL) polymer at various concentrations. In this study, raw CB was successfully converted into HAp via a hydrothermal reaction. We then evaluated their surface properties and composition by scanning electron microscopy and X-ray diffraction analysis. The CB-HAp coated with PCL showed improved compressive performance and retained a microporous structure. The compressive strength was significantly increased upon coating with 5 and 10% PCL, by 2.09- and 3.30-fold, respectively, as compared with uncoated CB-HAp. However, coating with 10% PCL resulted in a reduction in porosity. Furthermore, an in vitro biological evaluation demonstrated that MG-63 cells adhered well, proliferated and were able to be differentiated on the PCL-coated CB-HAp scaffold, which was noncytotoxic. These results suggest that a simple coating method is useful to improve the compressive strength of CB-HAp for bone tissue engineering applications. Copyright © 2013 Wiley Periodicals, Inc.
Hughes, Julie M; Gaffney-Stomberg, Erin; Guerriere, Katelyn I; Taylor, Kathryn M; Popp, Kristin L; Xu, Chun; Unnikrishnan, Ginu; Staab, Jeffery S; Matheny, Ronald W; McClung, James P; Reifman, Jaques; Bouxsein, Mary L
2018-08-01
U.S. Army Basic Combat Training (BCT) is a physically-demanding program at the start of military service. Whereas animal studies have shown that increased mechanical loading rapidly alters bone structure, there is limited evidence of changes in bone density and structure in humans exposed to a brief period of unaccustomed physical activity. We aimed to characterize changes in tibial bone density and microarchitecture and serum-based biochemical markers of bone metabolism in female recruits as a result of 8 weeks of BCT. We collected high-resolution peripheral quantitative computed tomographic images of the distal tibial metaphysis and diaphysis (4% and 30% of tibia length from the distal growth plate, respectively) and serum markers of bone metabolism before and after BCT. Linear mixed models were used to estimate the mean difference for each outcome from pre- to post-BCT, while controlling for race/ethnicity, age, and body mass index. 91 female BCT recruits volunteered and completed this observational study (age = 21.5 ± 3.3 yrs). At the distal tibial metaphysis, cortical thickness, trabecular thickness, trabecular number, bone volume/total volume, and total and trabecular volumetric bone density (vBMD) increased significantly by 1-2% (all p < 0.05) over the BCT period, whereas trabecular separation, cortical tissue mineral density (TMD), and cortical vBMD decreased significantly by 0.3-1.0% (all p < 0.05). At the tibial diaphysis, cortical vBMD and cortical TMD decreased significantly (both -0.7%, p < 0.001). Bone strength, estimated by micro finite element analysis, increased by 2.5% and 0.7% at the distal tibial metaphysis and diaphysis, respectively (both p < 0.05). Among the biochemical markers of bone metabolism, sclerostin decreased (-5.7%), whereas bone alkaline phosphatase, C-telopeptide cross-links of type 1 collagen, tartrate-resistance acid phosphatase, and 25(OH)D increased by 10-28% (all p < 0.05). BCT leads to improvements in trabecular bone microarchitecture and increases in serum bone formation markers indicative of new bone formation, as well as increases in serum bone resorption markers and decreases in cortical vBMD consistent with intracortical remodeling. Together, these results demonstrate specific changes in trabecular and cortical bone density and microarchitecture following 8 weeks of unaccustomed physical activity in women. Copyright © 2018 Elsevier Inc. All rights reserved.
Elevated Levels of Peripheral Kynurenine Decrease Bone Strength in Rats with Chronic Kidney Disease
Kalaska, Bartlomiej; Pawlak, Krystyna; Domaniewski, Tomasz; Oksztulska-Kolanek, Ewa; Znorko, Beata; Roszczenko, Alicja; Rogalska, Joanna; Brzoska, Malgorzata M.; Lipowicz, Pawel; Doroszko, Michal; Pryczynicz, Anna; Pawlak, Dariusz
2017-01-01
The diagnosis and treatment of bone disorders in patients with chronic kidney disease (CKD) represent a clinical challenge. CKD leads to mineral and bone complications starting early in the course of renal failure. Recently, we have observed the positive relationship between intensified central kynurenine turnover and bone strength in rats with subtotal 5/6 nephrectomy (5/6 Nx)-induced CKD. The aim of the present study was to determine the association between peripheral kynurenine pathway metabolites and bone strength in rats with 5/6 Nx-induced CKD. The animals were sacrificed 1 and 3 months after 5/6 Nx or sham operation. Nephrectomized rats presented higher concentrations of serum creatinine, urea nitrogen, and parathyroid hormone both 1 and 3 months after nephrectomy. These animals revealed higher concentrations of kynurenine and 3-hydroxykynurenine in the serum and higher gene expression of aryl hydrocarbon receptor (AhR) as a physiological receptor for kynurenine and AhR-dependent cytochrome in the bone tissue. Furthermore, nephrectomy significantly increased the number of osteoclasts in the bone without affecting their resorptive activity measured in serum. These changes were particularly evident in rats 1 month after 5/6 Nx. The main bone biomechanical parameters of the tibia were unchanged between nephrectomized and sham-operated rats but were significantly increased in older compared to younger animals. A similar trend was observed for geometrical parameters measured with calipers, bone mineral density based on Archimedes' method and image of bone microarchitecture obtained from micro-computed tomography analyses of tibial cortical bone. In nephrectomized animals, peripheral kynurenine levels correlated negatively with the main parameters of bone biomechanics, bone geometry, and bone mineral density values. In conclusion, our data suggest that CKD-induced elevated levels of peripheral kynurenine cause pathological changes in bone structure via AhR pathway. This finding opens new opportunities for the treatment/prevention of osteoporosis in CKD. PMID:29163188
Mallinson, Rebecca J; Williams, Nancy I; Hill, Brenna R; De Souza, Mary Jane
2013-09-01
Reproductive function, metabolic hormones, and lean mass have been observed to influence bone metabolism and bone mass. It is unclear, however, if reproductive, metabolic and body composition factors play unique roles in the clinical measures of areal bone mineral density (aBMD) and bone geometry in exercising women. This study compares lumbar spine bone mineral apparent density (BMAD) and estimates of femoral neck cross-sectional moment of inertia (CSMI) and cross-sectional area (CSA) between exercising ovulatory (Ov) and amenorrheic (Amen) women. It also explores the respective roles of reproductive function, metabolic status, and body composition on aBMD, lumbar spine BMAD and femoral neck CSMI and CSA, which are surrogate measures of bone strength. Among exercising women aged 18-30 years, body composition, aBMD, and estimates of femoral neck CSMI and CSA were assessed by dual-energy x-ray absorptiometry. Lumbar spine BMAD was calculated from bone mineral content and area. Estrone-1-glucuronide (E1G) and pregnanediol glucuronide were measured in daily urine samples collected for one cycle or monitoring period. Fasting blood samples were collected for measurement of leptin and total triiodothyronine. Ov (n = 37) and Amen (n = 45) women aged 22.3 ± 0.5 years did not differ in body mass, body mass index, and lean mass; however, Ov women had significantly higher percent body fat than Amen women. Lumbar spine aBMD and BMAD were significantly lower in Amen women compared to Ov women (p < 0.001); however, femoral neck CSA and CSMI were not different between groups. E1G cycle mean and age of menarche were the strongest predictors of lumbar spine aBMD and BMAD, together explaining 25.5% and 22.7% of the variance, respectively. Lean mass was the strongest predictor of total hip and femoral neck aBMD as well as femoral neck CSMI and CSA, explaining 8.5-34.8% of the variance. Upon consideration of several potential osteogenic stimuli, reproductive function appears to play a key role in bone mass at a site composed of primarily trabecular bone. However, lean mass is one of the most influential predictors of bone mass and bone geometry at weight-bearing sites, such as the hip. Copyright © 2013 Elsevier Inc. All rights reserved.
The effect of topiramate and lamotrigine on rat bone mass, structure and metabolism.
Simko, Julius; Fekete, Sona; Gradosova, Iveta; Malakova, Jana; Zivna, Helena; Valis, Martin; Palicka, Vladimir; Zivny, Pavel
2014-05-15
There is only limited data concerning the effect of the newer antiepileptic drugs on bone. The objective of this study was to determine the effect of topiramate (TPM) and lamotrigine (LTG) monotherapy on bone mineral density (BMD), mineral content (BMC), bone markers, body composition and bone mechanical strength in the orchidectomized (ORX) rat model. 24 orchidectomized Wistar rats were divided into control and test groups, 8 rats in each group. The control rats received standard laboratory diet (SLD) while rats in the test group were fed with SLD enriched with LTG or TPM for 12 weeks. Dual energy X-ray absorptiometry was used to measure bone mineral density. The concentrations of bone metabolism markers were assayed in bone homogenate. In addition, both femurs were measured and used for biomechanical testing. Compared to the control group, both test groups had significantly lower weight, fat mass, whole body and femur BMD, BMC and reduced mechanical strength of bone. All of these changes were more pronounced in rats exposed to LTG. In conclusion, both LTG and TPM significantly reduce BMD and body weight and impair mechanical strength of bone. A question arises as to the degree of dependence of the effect on the dose. Further studies are warranted to establish whether LTG and TPM may have a clinically significant effect on BMD exclusively in the model of gonadectomized rats, or whether the effect applies also in the model of gonadally intact animals, and in the respective human models. Copyright © 2014 Elsevier B.V. All rights reserved.
Jacobsen, Christina M; Schwartz, Marissa A; Roberts, Heather J; Lim, Kyung-Eun; Spevak, Lyudmila; Boskey, Adele L; Zurakowski, David; Robling, Alexander G; Warman, Matthew L
2016-09-01
Osteogenesis Imperfecta (OI) comprises a group of genetic skeletal fragility disorders. The mildest form of OI, Osteogenesis Imperfecta type I, is frequently caused by haploinsufficiency mutations in COL1A1, the gene encoding the α1(I) chain of type 1 collagen. Children with OI type I have a 95-fold higher fracture rate compared to unaffected children. Therapies for OI type I in the pediatric population are limited to anti-catabolic agents. In adults with osteoporosis, anabolic therapies that enhance Wnt signaling in bone improve bone mass, and ongoing clinical trials are determining if these therapies also reduce fracture risk. We performed a proof-of-principle experiment in mice to determine whether enhancing Wnt signaling in bone could benefit children with OI type I. We crossed a mouse model of OI type I (Col1a1(+/Mov13)) with a high bone mass (HBM) mouse (Lrp5(+/p.A214V)) that has increased bone strength from enhanced Wnt signaling. Offspring that inherited the OI and HBM alleles had higher bone mass and strength than mice that inherited the OI allele alone. However, OI+HBM and OI mice still had bones with lower ductility compared to wild-type mice. We conclude that enhancing Wnt signaling does not make OI bone normal, but does improve bone properties that could reduce fracture risk. Therefore, agents that enhance Wnt signaling are likely to benefit children and adults with OI type 1. Copyright © 2016 Elsevier Inc. All rights reserved.
Osteoporosis and body composition.
Crepaldi, G; Romanato, G; Tonin, P; Maggi, S
2007-01-01
The Epidemiologic Study on the Prevalence of Osteoporosis in Italy showed that the prevalence of osteoporosis among women and men aged 60 yr and over is 22.8% and 14.5%, respectively, giving rise to about 80,000 new fractures a yr. Sarcopenia is considered to be one of the main features of the aging process. It is characterized by a reduction in muscle mass and muscle strength, and affects women more than men. It is associated with a increased risk of fractures consequent upon a greater predisposition to falls, but also to the lack of bone remodeling due to reduced muscle mechanical strength. Muscle strength determines quality bone modifications such as density, strength, and microarchitecture. Variations in the ratios of cortical and muscle areas give rise to various types of osteoporosis, with different risks of fracture. Bone mineral density increases with body fat mass, and obesity has a protective effect against osteoporosis. This protective effect is explained by a combination of hormonal (peripheral aromatization of androgens to estrogens in adipose tissue) and mechanical factors (on weight-bearing bone sites), but the hormone leptin also probably mediates fat and bone mass. Serum leptin levels are closely related to body fat mass, and some findings suggest the peripheral effect of leptin, which exerts estrogenic effects, enhancing osteoblastic differentiation and inhibiting late adipocytic differentiation. The overall effect of leptin on bone results from a balance between negative central effects and positive direct peripheral effects, according to serum leptin levels.
Farr, Joshua N.; Laudermilk, Monica J.; Lee, Vinson R.; Blew, Robert M.; Stump, Craig; Houtkooper, Linda; Lohman, Timothy G.; Going, Scott B.
2015-01-01
Summary Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8–13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength–strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r =0.20, r =0.17, respectively) and femur trabecular vBMD (r =0.19, r =0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r =0.16, r =0.15, respectively), and femur total and trabecular vBMD (r =0.12, r =0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p <0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility. NIH/NICHD #HD-050775. PMID:24113839
Associations of muscle force, power, cross-sectional muscle area and bone geometry in older UK men.
Zengin, Ayse; Pye, Stephen R; Cook, Michael J; Adams, Judith E; Rawer, Rainer; Wu, Frederick C W; O'Neill, Terence W; Ward, Kate A
2017-08-01
Ageing is associated with sarcopenia, osteoporosis, and increased fall risk, all of which contribute to increased fracture risk. Mechanically, bone strength adapts in response to forces created by muscle contractions. Adaptations can be through changes in bone size, geometry, and bending strength. Muscle mass is often used as a surrogate for muscle force; however, force can be increased without changes in muscle mass. Increased fall risk with ageing has been associated with a decline in muscle power-which is a measure of mobility. The aims of this study were as follows: (i) to investigate the relationship between muscle parameters in the upper and lower limbs with age in UK men and the influence of ethnicity on these relationships; (ii) to examine the relationships between jump force/grip strength/cross-sectional muscle area (CSMA) with bone outcomes at the radius and tibia. White European, Black Afro-Caribbean, and South Asian men aged 40-79 years were recruited from Manchester, UK. Cortical bone mineral content, cross-sectional area, cortical area, cross-sectional moment of inertia, and CSMA were measured at the diaphysis of the radius and tibia using peripheral quantitative computed tomography. Lower limb jump force and power were measured from a single two-legged jump performed on a ground-reaction force platform. Grip strength was measured using a dynamometer. Associations between muscle and bone outcomes was determined using linear regression with adjustments for age, height, weight, and ethnicity. Three hundred and one men were recruited. Jump force was negatively associated with age; for every 10 year increase in age, there was a 4% reduction in jump force (P < 0.0001). There was a significant age-ethnicity interaction for jump power (P = 0.039); after adjustments, this was attenuated (P = 0.088). For every 10 year increase in age, grip strength decreased by 11%. Jump force was positively associated with tibial bone outcomes: a 1 standard deviation greater jump force was associated with significantly higher cortical bone mineral content 3.1%, cross-sectional area 4.2%, cortical area 3.4%, and cross-sectional moment of inertia 6.8% (all P < 0.001). Cross-sectional muscle area of the lower leg was not associated with tibial bone outcomes. Both grip strength and CSMA of the arm were positively associated, to a similar extent, with radius diaphyseal bone outcomes. Jump force and power are negatively associated with age in UK men. In the lower limb, the measurement of jump force is more strongly related to bone outcomes than CSMA. It is important to consider jump force and power when understanding the aetiology of bone loss and mobility in ageing men. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.
Graphite-reinforced bone cement
NASA Technical Reports Server (NTRS)
Knoell, A. C.
1976-01-01
Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.
Gebhardt-Henrich, Sabine G.; Pfulg, Andreas; Fröhlich, Ernst K. F.; Käppeli, Susanna; Guggisberg, Dominik; Liesegang, Annette; Stoffel, Michael H.
2017-01-01
Keel bone damage is a wide-spread welfare problem in laying hens. It is unclear so far whether bone quality relates to keel bone damage. The goal of the present study was to detect possible associations between keel bone damage and bone properties of intact and damaged keel bones and of tibias in end-of-lay hens raised in loose housing systems. Bones were palpated and examined by peripheral quantitative computer tomography (PQCT), a three-point bending test, and analyses of bone ash. Contrary to our expectations, PQCT revealed higher cortical and trabecular contents in fractured than in intact keel bones. This might be due to structural bone repair after fractures. Density measurements of cortical and trabecular tissues of keel bones did not differ between individuals with and without fractures. In the three-point bending test of the tibias, ultimate shear strength was significantly higher in birds with intact vs. fractured keel bones. Likewise, birds with intact or slightly deviated keel bones had higher mineral and calcium contents of the keel bone than birds with fractured keel bones. Calcium content in keel bones was correlated with calcium content in tibias. Although there were some associations between bone traits related to bone strength and keel bone damage, other factors such as stochastic events related to housing such as falls and collisions seem to be at least as important for the prevalence of keel bone damage. PMID:28848740
A new adhesive technique for internal fixation in midfacial surgery
Endres, Kira; Marx, Rudolf; Tinschert, Joachim; Wirtz, Dieter Christian; Stoll, Christian; Riediger, Dieter; Smeets, Ralf
2008-01-01
Background The current surgical therapy of midfacial fractures involves internal fixation in which bone fragments are fixed in their anatomical positions with osteosynthesis plates and corresponding screws until bone healing is complete. This often causes new fractures to fragile bones while drilling pilot holes or trying to insert screws. The adhesive fixation of osteosynthesis plates using PMMA bone cement could offer a viable alternative for fixing the plates without screws. In order to achieve the adhesive bonding of bone cement to cortical bone in the viscerocranium, an amphiphilic bone bonding agent was created, analogous to the dentin bonding agents currently on the market. Methods The adhesive bonding strengths were measured using tension tests. For this, metal plates with 2.0 mm diameter screw holes were cemented with PMMA bone cement to cortical bovine bone samples from the femur diaphysis. The bone was conditioned with an amphiphilic bone bonding agent prior to cementing. The samples were stored for 1 to 42 days at 37 degrees C, either moist or completely submerged in an isotonic NaCl-solution, and then subjected to the tension tests. Results Without the bone bonding agent, the bonding strength was close to zero (0.2 MPa). Primary stability with bone bonding agent is considered to be at ca. 8 MPa. Moist storage over 42 days resulted in decreased adhesion forces of ca. 6 MPa. Wet storage resulted in relatively constant bonding strengths of ca. 8 MPa. Conclusion A new amphiphilic bone bonding agent was developed, which builds an optimizied interlayer between the hydrophilic bone surface and the hydrophobic PMMA bone cement and thus leads to adhesive bonding between them. Our in vitro investigations demonstrated the adhesive bonding of PMMA bone cement to cortical bone, which was also stable against hydrolysis. The newly developed adhesive fixing technique could be applied clinically when the fixation of osteosynthesis plates with screws is impossible. With the detected adhesion forces of ca. 6 to 8 MPa, it is assumed that the adhesive fixation system is able to secure bone fragments from the non-load bearing midfacial regions in their orthotopic positions until fracture consolidation is complete. PMID:18489785
Skeletal Geometry and Indices of Bone Strength in Artistic Gymnasts
Dowthwaite, Jodi N.; Scerpella, Tamara A.
2010-01-01
This review addresses bone geometry and indices of skeletal strength associated with exposure to gymnastic loading during growth. A brief background characterizes artistic gymnastics as a mechanical loading model and outlines densitometric techniques, skeletal outcomes and challenges in assessment of skeletal adaptation. The literature on bone geometric adaptation to gymnastic loading is sparse and consists of results for disparate skeletal sites, maturity phases, gender compositions and assessment methods, complicating synthesis of an overriding view. Furthermore, most studies assess only females, with little information on males and adults. Nonetheless, gymnastic loading during growth appears to yield significant enlargement of total and cortical bone geometry (+10 to 30%) and elevation of trabecular density (+20%) in the forearm, yielding elevated indices of skeletal strength (+20 to +50%). Other sites exhibit more moderate geometric and densitometric adaptations (5 to 15%). Mode of adaptation appears to be site-specific; some sites demonstrate marked periosteal and endosteal expansion, whereas other sites exhibit negligible or moderate periosteal expansion coupled with endocortical contraction. Further research is necessary to address sex-, maturity- and bone tissue-specific adaptation, as well as maintenance of benefits beyond loading cessation. PMID:19949278
Fiber-enriched double-setting calcium phosphate bone cement.
dos Santos, Luís Alberto; Carrodéguas, Raúl Garcia; Boschi, Anselmo Ortega; Fonseca de Arruda, Antônio Celso
2003-05-01
Calcium phosphate bone cements are useful in orthopedics and traumatology, their main advantages being their biocompatibility and bioactivity, which render bone tissue osteoconductive, providing in situ hardening and easy handling. However, their low mechanical strength, which, in the best of cases, is equal to the trabecular bone, and their very low toughness are disadvantages. Calcium phosphate cement compositions with mechanical properties more closely resembling those of human bone would broaden the range of applications, which is currently limited to sites subjected to low loads. This study investigated the influence of added polypropylene, nylon, and carbon fibers on the mechanical properties of double setting alpha-tricalcium phosphate-based cement, using calcium phosphate cement added to an in situ polymerizable acrylamide-based system recently developed by the authors. Although the addition of fibers was found to reduce the compression strength of the double-setting calcium phosphate cement because of increased porosity, it strongly increased the cement's toughness (J(IC)) and tensile strength. The composites developed in this work, therefore, have a potential application in shapes subjected to flexure. Copyright 2003 Wiley Periodicals, Inc.
Bauer, D C; Browner, W S; Cauley, J A; Orwoll, E S; Scott, J C; Black, D M; Tao, J L; Cummings, S R
1993-05-01
To determine the factors associated with appendicular bone mass in older women. Cross-sectional analysis of baseline data collected for a multicenter, prospective study of osteoporotic fractures. Four clinical centers in Baltimore, Maryland; Minneapolis, Minnesota; Portland, Oregon; and the Monongahela valley, Pennsylvania. A total of 9704 ambulatory, nonblack women, ages 65 years or older, recruited from population-based listings. Demographic and historical information and anthropometric measurements were obtained from a baseline questionnaire, interview, and examination. Single-photon absorptiometry scans were obtained at three sites: the distal radius, midradius, and calcaneus. Multivariate associations with bone mass were first examined in a randomly selected half of the cohort (training group) and were then tested on the other half of the cohort (validation group). In order of decreasing strength of association, estrogen use, non-insulin-dependent diabetes, thiazide use, increased weight, greater muscle strength, later age at menopause, and greater height were independently associated with higher bone mass. Gastric surgery, age, history of maternal fracture, smoking, and caffeine intake were associated with lower bone mass (all P < 0.05). For example, we found that 2 or more years of estrogen use was associated with a 7.2% increase in distal radius bone mass, whereas gastrectomy was associated with an 8.2% decrease in bone mass. The associations between bone mass and dietary calcium intake and rheumatoid arthritis were inconsistent. Alcohol use, physical activity, use of calcium supplements, pregnancy, breast-feeding, parental nationality, and hair color were among the many variables not associated with bone mass. Multivariate models accounted for 20% to 35% of the total variance of bone mass. A large number of factors influence the bone mass of elderly women; however, age, weight, muscle strength, and estrogen use are the most important factors.
Ab-Lazid, Rosidah; Perilli, Egon; Ryan, Melissa K; Costi, John J; Reynolds, Karen J
2014-12-01
For cancellous bone screws, the respective roles of the applied insertion torque (TInsert) and of the quality of the host bone (microarchitecture, areal bone mineral density (aBMD)), in contributing to the mechanical holding strength of the bone-screw construct (FPullout), are still unclear. During orthopaedic surgery screws are tightened, typically manually, until adequate compression is attained, depending on surgeons' manual feel. This corresponds to a subjective insertion torque control, and can lead to variable levels of tightening, including screw stripping. The aim of this study, performed on cancellous screws inserted in human femoral heads, was to investigate which, among the measurements of aBMD, bone microarchitecture, and the applied TInsert, has the strongest correlation with FPullout. Forty six femoral heads were obtained, over which microarchitecture and aBMD were evaluated using micro-computed tomography and dual X-ray absorptiometry. Using an automated micro-mechanical test device, a cancellous screw was inserted in the femoral heads at TInsert set to 55% to 99% of the predicted stripping torque beyond screw head contact, after which FPullout was measured. FPullout exhibited strongest correlations with TInsert (R=0.88, p<0.001), followed by structure model index (SMI, R=-0.81, p<0.001), bone volume fraction (BV/TV, R=0.73, p<0.001) and aBMD (R=0.66, p<0.01). Combinations of TInsert with microarchitectural parameters and/or aBMD did not improve the prediction of FPullout. These results indicate that, for cancellous screws, FPullout depends most strongly on the applied TInsert, followed by microarchitecture and aBMD of the host bone. In trabecular bone, screw tightening increases the holding strength of the screw-bone construct. Copyright © 2014 Elsevier Ltd. All rights reserved.
Melville, Katherine M.; Kelly, Natalie H.; Surita, Gina; Buchalter, Daniel B.; Schimenti, John C.; Main, Russell P.; Ross, F. Patrick; van der Meulen, Marjolein C. H.
2015-01-01
Estrogen receptor alpha (ERα) has been implicated in bone’s response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell-specific ERαKO mice. Therefore, we crossed ERα floxed (ERαfl/fl) and osteocalcin-Cre (OC-Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO) and littermate controls (LC). At 10 weeks of age the left tibia was loaded in vivo for two weeks. We analyzed bone mass through microCT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared to LC, female pOC-ERαKO mice had decreased cortical and cancellous bone mass, while male pOC-ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC-ERαKO female L5 vertebrae, and with increased maximum moment in pOC-ERαKO male femora. Female pOC-ERαKO mice responded more to mechanical loading, while the response of pOC-ERαKO male animals was similar to their littermate controls. PMID:25707500
Fan, Xiaoxia; Ren, Haohao; Chen, Shutian; Wang, Guangni; Deng, Tianyu; Chen, Xingtao; Yan, Yonggang
2014-04-01
The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test. The results indicated that the compressive strength of goat bone was similar to that of human thigh bone, reached (135.00 +/- 7.84) MPa; Infrared spectrum (IR), X-ray diffraction (XRD) analysis results showed that the bone-like apatite from goat bone was much closer to the structure and phase composition of bone-like apatite of human bones. Inductively Coupled Plasma (ICP) test results showed that the content of trace elements of bone-like apatite from goat bone was closer to that of apatite of human bone. Energy Dispersive Spectrometer (EDS) results showed that the Ca/P value of bone-like apatite from goat bone was also close to that of human bone, ranged to 1.73 +/- 0.033. Scanning electron microscopy (SEM) patterns indicated that the macrographs of the apatite from human bone and that of goat bone were much similar to each other. Considering all the results above, it could be concluded that the goat bone-like apatite is much similar to that of human bone. It can be used as a potential natural bioceramic material in terms of material properties.
Scerpella, Tamara A; Bernardoni, Brittney; Wang, Sijian; Rathouz, Paul J; Li, Quefeng; Dowthwaite, Jodi N
2016-04-01
We examined site-specific bone development in relation to childhood and adolescent artistic gymnastics exposure, comparing up to 10years of prospectively acquired longitudinal data in 44 subjects, including 31 non-gymnasts (NON) and 13 gymnasts (GYM) who participated in gymnastics from pre-menarche to ≥1.9years post-menarche. Subjects underwent annual regional and whole-body DXA scans; indices of bone geometry and strength were calculated. Anthropometrics, physical activity, and maturity were assessed annually, coincident with DXA scans. Non-linear mixed effect models centered growth in bone outcomes at menarche and adjusted for menarcheal age, height, and non-bone fat-free mass to evaluate GYM-NON differences. A POST-QUIT variable assessed the withdrawal effect of quitting gymnastics. Curves for bone area, mass (BMC), and strength indices were higher in GYM than NON at both distal radius metaphysis and diaphysis (p<0.0001). At the femoral neck, greater GYM BMC (p<0.01), narrower GYM endosteal diameter (p<0.02), and similar periosteal width (p=0.09) yielded GYM advantages in narrow neck cortical thickness and buckling ratio (both p<0.001; lower BR indicates lower fracture risk). Lumbar spine and sub-head BMC were greater in GYM than NON (p<0.036). Following gymnastics cessation, GYM slopes increased for distal radius diaphysis parameters (p≤0.01) and for narrow neck BR (p=0.02). At the distal radius metaphysis, GYM BMC and compressive strength slopes decreased, as did slopes for lumbar spine BMC, femoral neck BMC, and narrow neck cortical thickness (p<0.02). In conclusion, advantages in bone mass, geometry, and strength at multiple skeletal sites were noted across growth and into young adulthood in girls who participated in gymnastics loading to at least 1.9years post-menarche. Following gymnastics cessation, advantages at cortical bone sites improved or stabilized, while advantages at corticocancellous sites stabilized or diminished. Additional longitudinal observation is necessary to determine whether residual loading benefits enhance lifelong skeletal strength. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of losartan treatment on the physicochemical properties of diabetic rat bone.
Donmez, Baris Ozgur; Unal, Mustafa; Ozdemir, Semir; Ozturk, Nihal; Oguz, Nurettin; Akkus, Ozan
2017-03-01
Inhibitors of the renin-angiotensin system used to treat several diseases have also been shown to be effective on bone tissue, suggesting that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may reduce fracture risk. The present study investigated the effects of losartan on the physicochemical and biomechanical properties of diabetic rat bone. Losartan (5 mg/kg/day) was administered via oral gavage for 12 weeks. Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Whole femurs were tested under tension to evaluate the biomechanical properties of bone. The physicochemical properties of bone were analyzed by Fourier transform infrared spectroscopy. Although losartan did not recover decreases in the BMD of diabetic bone, it recovered the physicochemical (mineral and collagen matrix) properties of diabetic rat bone. Furthermore, losartan also recovered ultimate tensile strength of diabetic rat femurs. Losartan, an angiotensin II type 1 receptor blocker, has a therapeutic effect on the physicochemical properties of diabetic bone resulting in improvement of bone strength at the material level. Therefore, specific inhibition of this pathway at the receptor level shows potential as a therapeutic target for diabetic patients suffering from bone diseases such as osteopenia.
Prepubescent Strength Training. Some Considerations.
ERIC Educational Resources Information Center
Priest, Joe W.; Holshouser, Richard S.
1987-01-01
Under the careful supervision of a trained fitness professional, the benefits of prepubescent strength training (improved strength, power, muscular endurance, bone density) outweigh the risks (acute and chronic musculoskeletal injuries). (CB)
[Clinical usefulness of bone turnover markers in the management of osteoporosis].
Yano, Shozo
2013-09-01
Osteoporosis is a state of elevated risk for bone fracture due to depressed bone strength, which is considered to be the sum of bone mineral density and bone quality. Since a measure of bone quality has not been established, bone mineral density and bone turnover markers are the only way to evaluate bone strength. Bone turnover markers are classified into bone formation marker and resorption marker, which are correlated with the bone formation rate and resorption rate, respectively, and bone matrix-related marker. Bone is always metabolized; old tissue is resorbed by acids and proteases derived from osteoclasts, whereas new bone is produced by osteoblasts. Bone formation and resorption rates should be balanced (also called coupled). When the bone resorption rate exceeds the formation rate(uncoupled state), bone volume will be reduced. Thus, we can comprehend bone metabolism by measuring both formation and resorption markers at the same time. Increased fracture risk is recognized by elevated bone resorption markers and undercarboxylated osteocalcin, which reflects vitamin K insufficiency and bone turnover. These values and the time course give us helpful information to choose medicine suitable for the patients and to judge the responsiveness. If the value is extraordinarily high without renal failure, metabolic bone disorder or bone metastatic tumor should be considered. Bone quality may be assessed by measuring bone matrix-related markers such as homocystein and pentosidine. Since recent studies indicate that the bone is a hormone-producing organ, it is possible that glucose metabolism or an unknown mechanism could be assessed in the future.
USDA-ARS?s Scientific Manuscript database
Studies have demonstrated that obesity induced by high-fat diets increases bone resorption, decreases trabecular bone mass, and reduces bone strength in various animal models. This study investigated whether N-acetylcysteine (NAC), an antioxidant and a glutathione precursor, alters glutathione statu...
Influence of recreational activity and muscle strength on ulnar bending stiffness in men
NASA Technical Reports Server (NTRS)
Myburgh, K. H.; Charette, S.; Zhou, L.; Steele, C. R.; Arnaud, S.; Marcus, R.
1993-01-01
Bone bending stiffness (modulus of elasticity [E] x moment of inertia [I]), a measure of bone strength, is related to its mineral content (BMC) and geometry and may be influenced by exercise. We evaluated the relationship of habitual recreational exercise and muscle strength to ulnar EI, width, and BMC in 51 healthy men, 28-61 yr of age. BMC and width were measured by single photon absorptiometry and EI by mechanical resistance tissue analysis. Maximum biceps strength was determined dynamically (1-RM) and grip strength isometrically. Subjects were classified as sedentary (S) (N = 13), moderately (M) (N = 18), or highly active (H) (N = 20) and exercised 0.2 +/- 0.2; 2.2 +/- 1.3; and 6.8 +/- 2.3 h.wk-1 (P < 0.001). H had greater biceps (P < 0.0005) and grip strength (P < 0.05), ulnar BMC (P < 0.05), and ulnar EI (P = 0.01) than M or S, who were similar. Amount of activity correlated with grip and biceps strength (r = 0.47 and 0.49; P < 0.001), but not with bone measurements, whereas muscle strength correlated with both EI and BMC (r = 0.40-0.52, P < 0.005). EI also correlated significantly with both BMC and ulnar width (P < 0.0001). Ulnar width and biceps strength were the only independent predictors of EI (r2 = 0.67, P < 0.0001). We conclude that levels of physical activity sufficient to increase arm strength influence ulnar bending stiffness.
Ethnic Differences in Bone Health
Zengin, Ayse; Prentice, Ann; Ward, Kate Anna
2015-01-01
There are differences in bone health between ethnic groups in both men and in women. Variations in body size and composition are likely to contribute to reported differences. Most studies report ethnic differences in areal bone mineral density (aBMD), which do not consistently parallel ethnic patterns in fracture rates. This suggests that other parameters beside aBMD should be considered when determining fracture risk between and within populations, including other aspects of bone strength: bone structure and microarchitecture, as well as muscle strength (mass, force generation, anatomy) and fat mass. We review what is known about differences in bone-densitometry-derived outcomes between ethnic groups and the extent to which they account for the differences in fracture risk. Studies are included that were published primarily between 1994 and 2014. A “one size fits all approach” should definitely not be used to understand better ethnic differences in fracture risk. PMID:25852642
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa
2015-01-01
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.
Suzuki, Takako; Nakamura, Yukio; Kato, Hiroyuki
2017-08-13
This retrospective study included 21 patients with primary osteoporosis who were treated with the anti-resorption drug, denosumab. To date, there has been no detailed report on the changes of bone-related minerals after anti-resorption drug therapy. Twenty-one post-menopausal females were retrospectively enrolled. Serum zinc (Zn), magnesium (Mg), iron (Fe), copper (Cu), grip strength, and estimated glomerular filtration rate (eGFR) were examined at one week and 1, 2, 4, 6, 8, 10, and 12 months. Lumbar spine (L1-4) bone mineral density (L-BMD) and bilateral total hip BMD (H-BMD) were examined before and at 4, 8, and 12 months after treatment commencement. Serum Zn tended to decrease at one week and one month, and tended to increase during 10 to 12 months. Serum Cu maintained during zero to eight months, then decreased at 10 and 12 months. Serum Fe gradually increased after four months. Serum Mg sharply increased at one week, then decreased further. Grip strength increased for two months, then slightly decreased and maintained 4 to 12 months. eGFR almost maintained for zero to eight months, then slightly decreased thereafter. L-BMD values significantly increased at eight (5.8%) ( p < 0.01) and 12 months (9.8%) ( p < 0.01). H-BMD increased during the period (at 12 months: 3.7%). These results suggest that at later phases of denosumab therapy, Zn and Fe tended to increase while Mg tended to decrease, all of which are important for bone metabolism. Thus, denosumab might improve Zn and Fe metabolism, and thereby likely increase BMD. Since denosumab may not improve Mg, it is better to obtain Mg supplementation during the therapy.
In vivo evaluation of CaO-SiO2-P2O5-B2O3 glass-ceramics coating on Steinman pins.
Lee, Jae Hyup; Hong, Kug Sun; Baek, Hae-Ri; Seo, Jun-Hyuk; Lee, Kyung Mee; Ryu, Hyun-Seung; Lee, Hyun-Kyung
2013-07-01
Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-μm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding. © 2013, Copyright the Authors. Artificial Organs © 2013, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Helgason, Benedikt; Viceconti, Marco; Rúnarsson, Tómas P; Brynjólfsson, Sigurour
2008-01-01
Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.
Melancon, D; Bagheri, Z S; Johnston, R B; Liu, L; Tanzer, M; Pasini, D
2017-11-01
Porous biomaterials can be additively manufactured with micro-architecture tailored to satisfy the stringent mechano-biological requirements imposed by bone replacement implants. In a previous investigation, we introduced structurally porous biomaterials, featuring strength five times stronger than commercially available porous materials, and confirmed their bone ingrowth capability in an in vivo canine model. While encouraging, the manufactured biomaterials showed geometric mismatches between their internal porous architecture and that of its as-designed counterpart, as well as discrepancies between predicted and tested mechanical properties, issues not fully elucidated. In this work, we propose a systematic approach integrating computed tomography, mechanical testing, and statistical analysis of geometric imperfections to generate statistical based numerical models of high-strength additively manufactured porous biomaterials. The method is used to develop morphology and mechanical maps that illustrate the role played by pore size, porosity, strut thickness, and topology on the relations governing their elastic modulus and compressive yield strength. Overall, there are mismatches between the mechanical properties of ideal-geometry models and as-manufactured porous biomaterials with average errors of 49% and 41% respectively for compressive elastic modulus and yield strength. The proposed methodology gives more accurate predictions for the compressive stiffness and the compressive strength properties with a reduction of the average error to 11% and 7.6%. The implications of the results and the methodology here introduced are discussed in the relevant biomechanical and clinical context, with insight that highlights promises and limitations of additively manufactured porous biomaterials for load-bearing bone replacement implants. In this work, we perform mechanical characterization of load-bearing porous biomaterials for bone replacement over their entire design space. Results capture the shift in geometry and mechanical properties between as-designed and as-manufactured biomaterials induced by additive manufacturing. Characterization of this shift is crucial to ensure appropriate manufacturing of bone replacement implants that enable biological fixation through bone ingrowth as well as mechanical property harmonization with the native bone tissue. In addition, we propose a method to include manufacturing imperfections in the numerical models that can reduce the discrepancy between predicted and tested properties. The results give insight into the use of structurally porous biomaterials for the design and additive fabrication of load-bearing implants for bone replacement. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Nagura, Nana; Komatsu, Jun; Iwase, Hideaki; Hosoda, Hiroshi; Ohbayashi, Osamu; Nagaoka, Isao; Kaneko, Kazuo
2015-05-01
The purpose of the present study was to evaluate the combined effects of vitamin K (VK) and teriparatide (TPTD) on bone mineral density (BMD), mechanical strength and other parameters for bone metabolism using a rat ovariectomized osteoporosis model. Ovariectomized female Sprague-Dawley rats were administered with VK (an oral dose of 30 mg/kg/day), TPTD (a subcutaneous dose of 30 µg/kg, three times a week) or a combination for 8 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA; BMD and mechanical strength were measured by computed tomography and biomechanical testing, respectively at the femoral metaphysis. Additionally, histomorphometry was performed using the toluidine blue-stained coronal sections of distal femur. The combination of VK and TPTD clearly increased the serum levels of Gla-OC (a specific marker for bone formation) and osteoblast surface (the number of osteoblasts attaching with the surface of cancellous bone), compared to VK or TPTD alone. In addition, the combination of the two agents improved the BMD and bone strength of the femur in the ovariectomized rats, compared to VK or TPTD alone. Taken together, these findings suggest that the treatment with VK and TPTD may have a therapeutic advantage over VK or TPTD monotherapy for postmenopausal osteoporosis, possibly by enhancing the bone formation through the actions on OC and osteoblasts.
NAGURA, NANA; KOMATSU, JUN; IWASE, HIDEAKI; HOSODA, HIROSHI; OHBAYASHI, OSAMU; NAGAOKA, ISAO; KANEKO, KAZUO
2015-01-01
The purpose of the present study was to evaluate the combined effects of vitamin K (VK) and teriparatide (TPTD) on bone mineral density (BMD), mechanical strength and other parameters for bone metabolism using a rat ovariectomized osteoporosis model. Ovariectomized female Sprague-Dawley rats were administered with VK (an oral dose of 30 mg/kg/day), TPTD (a subcutaneous dose of 30 µg/kg, three times a week) or a combination for 8 weeks. Thereafter, serum levels of γ-carboxylated osteocalcin (Gla-OC) were quantitated by ELISA; BMD and mechanical strength were measured by computed tomography and biomechanical testing, respectively at the femoral metaphysis. Additionally, histomorphometry was performed using the toluidine blue-stained coronal sections of distal femur. The combination of VK and TPTD clearly increased the serum levels of Gla-OC (a specific marker for bone formation) and osteoblast surface (the number of osteoblasts attaching with the surface of cancellous bone), compared to VK or TPTD alone. In addition, the combination of the two agents improved the BMD and bone strength of the femur in the ovariectomized rats, compared to VK or TPTD alone. Taken together, these findings suggest that the treatment with VK and TPTD may have a therapeutic advantage over VK or TPTD monotherapy for postmenopausal osteoporosis, possibly by enhancing the bone formation through the actions on OC and osteoblasts. PMID:26137225
El-Shamy, S
2017-06-01
The objective was to evaluate the effects of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. Thirty children with hemophilia with age ranging from 9 to 13 years were selected and randomly assigned to either the study group that received whole body vibration training (30-40 Hz, 2-4 mm of peak-to-peak vertical plate displacement for 15 minutes/day, 3 days/week/ 12 weeks) plus the conventional physical therapy program or the control group that performed a conventional physical therapy program only. Outcomes included quadriceps strength, bone mineral density, and the functional capacity. Children in the study group showed a significant improvement in all outcomes compared with the control group. The quadriceps peak torque after treatment was 70.26 and 56.46 Nm for the study and control group, respectively (p⟨0.001). The lumbar spine bone mineral density after treatment was 0.85 and 0.72 g/cm 2 for the study and control group, respectively (p⟨0.001). The functional capacity after treatment was 325 and 290 m for the study and control group, respectively (p=0.006). Whole body vibration training is an effective modality in increasing quadriceps strength, bone mineral density, and functional capacity in children with hemophilia.
El-Shamy, S.
2017-01-01
Objectives: The objective was to evaluate the effects of whole body vibration training on quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. Methods: Thirty children with hemophilia with age ranging from 9 to 13 years were selected and randomly assigned to either the study group that received whole body vibration training (30-40 Hz, 2-4 mm of peak-to-peak vertical plate displacement for 15 minutes/day, 3 days/week/ 12 weeks) plus the conventional physical therapy program or the control group that performed a conventional physical therapy program only. Outcomes included quadriceps strength, bone mineral density, and the functional capacity. Results: Children in the study group showed a significant improvement in all outcomes compared with the control group. The quadriceps peak torque after treatment was 70.26 and 56.46 Nm for the study and control group, respectively (p<0.001). The lumbar spine bone mineral density after treatment was 0.85 and 0.72 g/cm2 for the study and control group, respectively (p<0.001). The functional capacity after treatment was 325 and 290 m for the study and control group, respectively (p=0.006). Conclusions: Whole body vibration training is an effective modality in increasing quadriceps strength, bone mineral density, and functional capacity in children with hemophilia. PMID:28574408
Ammann, Patrick; Brennan, Tara C; Mekraldi, Samia; Aubert, Michel L; Rizzoli, René
2010-06-01
Isocaloric protein undernutrition is associated with decreased bone mass and decreased bone strength, together with lower IGF-I levels. It remains unclear whether administration of growth hormone (GH) corrects these alterations in bone metabolism. Six-month-old female rats were fed isocaloric diets containing either 2.5% or 15% casein for 2 weeks. Bovine growth hormone (bGH, 0.5 or 2.5mg/kg of body weight) or vehicle was then administered as subcutaneous injections, twice daily, to rats on either diet for 4 weeks. At the proximal tibia, analysis of bone mineral density (BMD), maximal load and histomorphometry were performed. In addition, urinary deoxypyridinoline, plasma osteocalcin and IGF-I concentrations were measured. Weight was monitored weekly. bGH caused a dose-dependent increase in plasma IGF-I regardless of the dietary protein content. However, bGH dose-dependently decreased BMD and bone strength in rats fed the low-protein diet. There was no significant effect of bGH on BMD in rats fed the normal protein diet within this short-term treatment period, however bone formation as detected by histomorphometry was improved in this group but not the low-protein group. Osteoclast surface was increased in the low-protein bGH-treated animals only. Changes in bone turnover markers were detectable under both normal and low-protein diets. These results emphasize the major importance of dietary protein intake in the bone response to short-term GH administration, and highlight the need for further investigation into the effects of GH treatment in patients with reduced protein intake. Copyright 2010 Elsevier Inc. All rights reserved.
Clinical Imaging of Bone Microarchitecture with HR-pQCT
Nishiyama, Kyle K.; Shane, Elizabeth
2014-01-01
Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future. PMID:23504496
Nyman, Jeffry S.; Even, Jesse L.; Jo, Chan-Hee; Herbert, Erik G.; Murry, Matthew R.; Cockrell, Gael E.; Wahl, Elizabeth C.; Bunn, R. Clay; Lumpkin, Charles K.; Fowlkes, John L.; Thrailkill, Kathryn M.
2011-01-01
Type 1 diabetes (T1DM) increases the likelihood of a fracture. Despite serious complications in the healing of fractures among those with diabetes, the underlying causes are not delineated for the effect of diabetes on the fracture resistance of bone. Therefore, in a mouse model of T1DM, we have investigated the possibility that a prolonged state of diabetes perturbs the relationship between bone strength and structure (i.e., affects tissue properties). At 10, 15, and 18 weeks following injection of streptozotocin to induce diabetes, diabetic male mice and age-matched controls were examined for measures of skeletal integrity. We assessed 1) the moment of inertia (IMIN) of the cortical bone within diaphysis, trabecular bone architecture of the metaphysis, and mineralization density of the tissue (TMD) for each compartment of the femur by microcomputed tomography and 2) biomechanical properties by three point bending test (femur) and nanoindentation (tibia). In the metaphysis, a significant decrease in trabecular bone volume fraction and trabecular TMD was apparent after 10 weeks of diabetes. For cortical bone, type 1 diabetes was associated with decreased cortical TMD, IMIN, rigidity, and peak moment as well as a lack of normal age-related increases in the biomechanical properties. However, there were only modest differences in material properties between diabetic and normal mice at both whole bone and tissue-levels. As the duration of diabetes increased, bone toughness decreased relative to control. If the sole effect of diabetes on bone strength was due to a reduction in bone size, then IMIN would be the only significant variable explaining the variance in the maximum moment. However, general linear modeling found that the relationship between peak moment and IMIN depended on whether the bone was from a diabetic mouse and the duration of diabetes. Thus, these findings suggest that the elevated fracture risk among diabetics is impacted by complex changes in tissue properties that ultimately reduce the fracture resistance of bone. PMID:21185416
A comparison of screw insertion torque and pullout strength.
Ricci, William M; Tornetta, Paul; Petteys, Timothy; Gerlach, Darin; Cartner, Jacob; Walker, Zakiyyah; Russell, Thomas A
2010-06-01
Pullout strength of screws is a parameter used to evaluate plate screw fixation strength. However, screw fixation strength may be more closely related to its ability to generate sufficient insertion because stable nonlocked plate-screw fracture fixation requires sufficient compression between plate and bone such that no motion occurs between the plate and bone under physiological loads. Compression is generated by tightening of screws. In osteoporotic cancellous bone, sufficient screw insertion torque may not be generated before screw stripping. The effect of screw thread pitch on generation of maximum insertion torque (MIT) and pullout strength (POS) was investigated in an osteoporotic cancellous bone model and the relationship between MIT and POS was analyzed. Stainless steel screws with constant major (5.0 mm) and minor (2.7 mm) diameters but with varying thread pitches (1, 1.2, 1.5, 1.6, and 1.75 mm) were tested for MIT and POS in a validated osteoporotic surrogate for cancellous bone (density of 160 kg/m(3) [10 lbs/ft(3)]). MIT was measured with a torque-measuring hex driver for screws inserted through a one-third tubular plate. POS was measured after insertion of screws to a depth of 20 mm based on the Standard Specification and Test Methods for Metallic Medical Bone Screws (ASTM F 543-07). Five screws were tested for each failure mode and screw design. The relationship between MIT and compressive force between the plate and bone surrogate was evaluated using pressure-sensitive film. There was a significant difference in mean MIT based on screw pitch (P < 0.0001), whereas POS did not show statistically significant differences among the different screw pitches (P = 0.052). Small screw pitches (1.0 mm and 1.2 mm) had lower MIT and were distinguished from large pitches (1.5 mm, 1.6 mm, and the 1.75 mm) with higher MIT. For POS, only the 1-mm and 1.6-mm pitch screws were found to be different from each other. Linear regression analysis of MIT revealed a moderate correlation to the screw pitch (R(2) = 0.67, P < 0.0001), whereas the analysis of POS suggested no correlation to the screw pitch (R(2) = 0.28, P = 0.006). Pearson correlation analysis indicated no correlation between MIT and POS (P = 0.069, r = -0.37). A linear relationship of increased compression between the plate and bone surrogate was found for increasing screw torque (R(2) = 0.97). These results indicate that the ability of different screw designs to generate high screw insertion torque in a model of osteoporotic cancellous bone is unrelated to their pullout strength. Therefore, extrapolation of results for POS to identify optimal screw design for osteoporotic bone may not be valid. Screw designs that optimize MIT should be sought for fixation in osteoporotic bone.
USDA-ARS?s Scientific Manuscript database
Introduction: Body mass has a positive effect on bone mineral density and the strength. Whether mass derived from an obesity condition is beneficial to bone has not been established; neither have the mechanism by which obesity affects bone metabolism. The aim of this study was to examine the effects...
Haley, S; Beachy, J; Ivaska, K K; Slater, H; Smith, S; Moyer-Mileur, L J
2012-10-01
Preterm delivery (<37 weeks post-menstrual age) is associated with suboptimal bone mass. We hypothesized that tactile/kinesthetic stimulation (TKS), a form of infant massage that incorporates kinesthetic movement, would increase bone strength and markers of bone accretion in preterm infants. Preterm, AGA infants (29-32 weeks) were randomly assigned to TKS (N=20) or Control (N=20). Twice daily TKS was provided 6 days per week for 2 weeks. Control infants received the same care without TKS treatment. Treatment was masked to parents, health care providers, and study personnel. Baseline and week two measures were collected for tibial speed of sound (tSOS, m/sec), a surrogate for bone strength, by quantitative ultrasound (Sunlight8000) and urine markers of bone metabolism, pyridinium crosslinks and osteocalcin (U-MidOC and unOC). Infant characteristics at birth and study entry as well as energy/nutrient intake were similar between TKS and Control. TKS intervention attenuated the decrease in tSOS observed in Control infants (p<0.05). Urinary pyridinium crosslinks decreased over time in both TKS and CTL (p<0.005). TKS infants experienced greater increases in urinary osteocalcin (U-MidOC, p<0.001 and unOC, p<0.05). We conclude that TKS improves bone strength in premature infants by attenuating the decrease that normally follows preterm birth. Further, biomarkers of bone metabolism suggest a modification in bone turnover in TKS infants in favor of bone accretion. Taken together, we speculate that TKS improves bone mineralization. Copyright © 2012 Elsevier Inc. All rights reserved.
Pahlevanzadeh, F; Bakhsheshi-Rad, H R; Hamzah, E
2018-06-01
In this study, a bone cement consisting of poly methyl methacrylate (PMMA)-poly caprolactone (PCL)-fluorapatite (FA)-graphene oxide (GO) was synthesized as bone filler for application in orthopedic surgeries. The FA and GO particulates were homogenously distributed in the PMMA-PCL polymer matrix and no defects and agglomeration were found in the PMMA-PCL/FA/GO bone cement. The in-vitro bioactivity result exhibited that addition of FA and GO to the polymer cement (PMMA-PCL) improved the apatite formation ability on the surface of polymer. The results also showed that addition of FA to the polymer bone cement escalated the compressive strength and elastic modulus while reducing elongation to 8 ± 2%. However, after addition of GO into the PMMA-PCL/FA bone cement, both compressive strength and elongation considerably increased to 101 ± 5 MPa and 35 ± 6%, respectively. Furthermore, tensile tests exhibited that inclusion of GO was favorable in improving the tensile modulus, UTS and elongation of the PMMA-PCL/FA bone cement. The cytotoxicity test pointed out that MG63 osteoblast cells viability increased to 279 ± 15% after addition of FA and GO to the PMMA-PCL polymer bone cement. The DAPI (4',6-diamidino-2-phenylindole) staining demonstrated better spreading and attachment of MG63 cells on PMMA-PCL/FA/GO surface compared to the PMMA-PCL bone cements. These results confirm the suitable mechanical properties and favorable bioactivity along with high cells viability of PMMA-PCL/FA/GO bone cement, indicating its potentials for orthopedic applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Boron supplementation improves bone health of non-obese diabetic mice.
Dessordi, Renata; Spirlandeli, Adriano Levi; Zamarioli, Ariane; Volpon, José Batista; Navarro, Anderson Marliere
2017-01-01
Diabetes Mellitus is a condition that predisposes a higher risk for the development of osteoporosis. The objective of this study was to investigate the influence of boron supplementation on bone microstructure and strength in control and non-obese diabetic mice for 30days. The animals were supplemented with 40μg/0,5ml of boron solution and controls received 0,5ml of distilled water daily. We evaluated the biochemical parameters: total calcium, phosphorus, magnesium and boron; bone analysis: bone computed microtomography, and biomechanical assay with a three point test on the femur. This study consisted of 28 animals divided into four groups: Group water control - Ctrl (n=10), Group boron control - Ctrl±B (n=8), Group diabetic water - Diab (n=5) and Group diabetic boron - Diab±B (n=5). The results showed that cortical bone volume and the trabecular bone volume fraction were higher for Diab±B and Ctrl±B compared to the Diab and Ctrl groups (p≤0,05). The trabecular specific bone surface was greater for the Diab±B group, and the trabecular thickness and structure model index had the worst values for the Diab group. The boron serum concentrations were higher for the Diab±B group compared to non-supplemented groups. The magnesium concentration was lower for Diab and Diab±B compared with controls. The biomechanical test on the femur revealed maintenance of parameters of the bone strength in animals Diab±B compared to the Diab group and controls. The results suggest that boron supplementation improves parameters related to bone strength and microstructure of cortical and trabecular bone in diabetic animals and the controls that were supplemented. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Abidin, Anas Z.; Jameson, John; Molthen, Robert; Wismüller, Axel
2017-03-01
Few studies have analyzed the microstructural properties of bone in cases of Osteogenenis Imperfecta (OI), or `brittle bone disease'. Current approaches mainly focus on bone mineral density measurements as an indirect indicator of bone strength and quality. It has been shown that bone strength would depend not only on composition but also structural organization. This study aims to characterize 3D structure of the cortical bone in high-resolution micro CT images. A total of 40 bone fragments from 28 subjects (13 with OI and 15 healthy controls) were imaged using micro tomography using a synchrotron light source (SRµCT). Minkowski functionals - volume, surface, curvature, and Euler characteristics - describing the topological organization of the bone were computed from the images. The features were used in a machine learning task to classify between healthy and OI bone. The best classification performance (mean AUC - 0.96) was achieved with a combined 4-dimensional feature of all Minkowski functionals. Individually, the best feature performance was seen using curvature (mean AUC - 0.85), which characterizes the edges within a binary object. These results show that quantitative analysis of cortical bone microstructure, in a computer-aided diagnostics framework, can be used to distinguish between healthy and OI bone with high accuracy.
3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds.
Seidenstuecker, Michael; Kerr, Laura; Bernstein, Anke; Mayr, Hermann O; Suedkamp, Norbert P; Gadow, Rainer; Krieg, Peter; Hernandez Latorre, Sergio; Thomann, Ralf; Syrowatka, Frank; Esslinger, Steffen
2017-12-22
The use of both bioglass (BG) and β tricalcium phosphate (β-TCP) for bone replacement applications has been studied extensively due to the materials' high biocompatibility and ability to resorb when implanted in the body. 3D printing has been explored as a fast and versatile technique for the fabrication of porous bone scaffolds. This project investigates the effects of using different combinations of a composite BG and β-TCP powder for 3D printing of porous bone scaffolds. Porous 3D powder printed bone scaffolds of BG, β-TCP, 50/50 BG/β-TCP and 70/30 BG/β-TCP compositions were subject to a variety of characterization and biocompatibility tests. The porosity characteristics, surface roughness, mechanical strength, viability for cell proliferation, material cytotoxicity and in vitro bioactivity were assessed. The results show that the scaffolds can support osteoblast-like MG-63 cells growth both on the surface of and within the scaffold material and do not show alarming cytotoxicity; the porosity and surface characteristics of the scaffolds are appropriate. Of the two tested composite materials, the 70/30 BG/β-TCP scaffold proved to be superior in terms of biocompatibility and mechanical strength. The mechanical strength of the scaffolds makes them unsuitable for load bearing applications. However, they can be useful for other applications such as bone fillers.
Southmayd, E A; Mallinson, R J; Williams, N I; Mallinson, D J; De Souza, M J
2017-04-01
Many female athletes are energy and/or estrogen deficient, but the independent effects on bone health have not been isolated. Energy deficiency was detrimental at the tibia while estrogen deficiency was detrimental at the radius. Nutrition must be considered alongside menstrual recovery when addressing compromised bone health in female athletes. The purpose of this study was to describe volumetric bone mineral density (vBMD), bone geometry, and estimated bone strength in exercising women (n = 60) grouped according to energy status (energy replete (EnR: n = 30) vs. energy deficient (EnD: n = 30)) and estrogen status (estrogen replete (E 2 R: n = 33) vs. estrogen deficient (E 2 D: n = 27)), resulting in four distinct groups: EnR + E 2 R (n = 17), EnR + E 2 D (n = 13), EnD + E 2 R (n = 16), EnD + E 2 D (n = 14). Energy status was determined using the ratio of measured to predicted resting energy expenditure (mREE/pREE). Estrogen status was based on self-reported menstrual status confirmed by daily evaluation of urinary estrone-1-glucoronide (E1G), pregnanediol glucuronide (PdG), and luteinizing hormone (LH). Eumenorrheic women were considered E 2 R, amenorrheic women were E 2 D, and oligomenorrheic women were categorized based on history of menses in the past year. Bone was assessed using peripheral quantitative computed tomography (pQCT). EnD women exhibited lower total vBMD, trabecular vBMD, cortical area, and BSI at the distal tibia and lower total vBMD, smaller cortical area and cortical thickness, and larger endosteal circumference at the proximal tibia compared to EnR women (p < 0.042). E 2 D women had lower total and cortical vBMD, larger total and trabecular area, and lower BSI at the distal radius and lower cortical vBMD at the proximal radius compared to E 2 R women (p < 0.023). Energy and estrogen interacted to affect total and trabecular area at the distal tibia (p < 0.021). Efforts to correct energy deficiency, which in turn may promote reproductive health, are warranted in order to address the unique contributions of energy status versus estrogen status to bone health.
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is an advanced computer technique of structural stress analysis developed in engineering mechanics. Because the compressive behavior of vertebral bone shows nonlinear behavior, a nonlinear FEA should be utilized to analyze the clinical vertebral fracture. In this article, a computed tomography-based nonlinear FEA (CT/FEA) to analyze the vertebral bone strength, fracture pattern, and fracture location is introduced. The accuracy of the CT/FEA was validated by performing experimental mechanical testing with human cadaveric specimens. Vertebral bone strength and the minimum principal strain at the vertebral surface were accurately analyzed using the CT/FEA. The experimental fracture pattern and fracture location were also accurately simulated. Optimization of the element size was performed by assessing the accuracy of the CT/FEA, and the optimum element size was assumed to be 2 mm. It is expected that the CT/FEA will be valuable in analyzing vertebral fracture risk and assessing therapeutic effects on osteoporosis. PMID:26029476
Muscle strength and regional lean body mass influence on mineral bone health in young male adults.
Guimarães, Bianca Rosa; Pimenta, Luciana Duarte; Massini, Danilo Alexandre; Dos Santos, Daniel; Siqueira, Leandro Oliveira da Cruz; Simionato, Astor Reis; Dos Santos, Luiz Gustavo Almeida; Neiva, Cassiano Merussi; Pessôa Filho, Dalton Muller
2018-01-01
The relationship between muscle strength and bone mineral content (BMC) and bone mineral density (BMD) is supposed from the assumption of the mechanical stress influence on bone tissue metabolism. However, the direct relationship is not well established in younger men, since the enhancement of force able to produce effective changes in bone health, still needs to be further studied. This study aimed to analyze the influence of muscle strength on BMC and BMD in undergraduate students. Thirty six men (24.9 ± 8.6 y/o) were evaluated for regional and whole-body composition by dual energy X-ray absorptiometry (DXA). One repetition maximum tests (1RM) were assessed on flat bench-press (BP), lat-pull down (LPD), leg-curl (LC), knee extension (KE), and leg-press 45° (LP45) exercises. Linear regression modelled the relationships of BMD and BMC to the regional body composition and 1RM values. Measurements of dispersion and error (R2adj and standard error of estimate (SEE)) were tested, setting ρ at ≤0.05. The BMD mean value for whole-body was 1.12±0.09 g/cm2 and BMC attained 2477.9 ± 379.2 g. The regional lean mass (LM) in upper-limbs (UL) (= 6.80±1.21 kg) was related to BMC and BMD for UL (R2adj = 0.74, p<0.01, SEE = 31.0 g and R2adj = 0.63, SEE = 0.08 g/cm2), and LM in lower-limbs (LL) (= 19.13±2.50 kg) related to BMC and BMD for LL (R2adj = 0.68, p<0,01, SEE = 99.3 g and R2adj = 0.50, SEE = 0.20 g/cm2). The 1RM in BP was related to BMD (R2adj = 0.51, SEE = 0.09 g/cm2), which was the strongest relationship among values of 1RM for men; but, 1RM on LPD was related to BMC (R2adj = 0.47, p<0.01, SEE = 44.6 g), and LC was related to both BMC (R2adj = 0.36, p<0.01, SEE = 142.0 g) and BMD (R2adj = 0.29, p<0.01, SEE = 0.23 g/cm2). Hence, 1RM for multi-joint exercises is relevant to BMC and BMD in young men, strengthening the relationship between force and LM, and suggesting both to parametrizes bone mineral health.
Heiss, Christian; Schettler, Nicky; Wenisch, Sabine; Cords, Sven; Schilke, Frank; Lips, Katrin Susanne; Alt, Volker; Schnettler, Reinhard
2010-01-01
The purpose of this study is to assess the mechanical efficacy of an alkylene bis(dilactoyl)-methacrylate-based degradable bone adhesive in 36 sheep. Bone segmentation with osteotomies of the metaphyseal ulna was performed and adhesive was applied into the osteotomy gaps in 18 sheep. The remaining 18 animals served as controls. The segment was subsequently stabilized without any osteosynthesis in all sheep. Six animals of the adhesive group and 6 controls were killed after 21, 42 and 84 days, respectively. Bond strength of the adhesive and quality of fracture healing was studied using biomechanical, histological and radiological methods. There were no significant differences in biomechanical analysis between both groups at any time. However, an increase of in vivo bond strength with the highest stiffness of 102.83 N/mm(2) was observed in the adhesive group after 84 days. In vitro analysis showed non-significant differences in bond strength during polymerization time. Histomorphometric investigations revealed significant differences in osteotomy cross-section area after 84 days, with higher areas of callus in the control. After 84 days the X-ray examinations showed completely bridged gaps in four of six animals in the adhesive and in five animals in the control group. This bone adhesive exhibited good in vivo and in vitro bond strength and mechanical efficiency in both the short and long term without impairment of physiological fracture healing.
Bergschmidt, Philipp; Dammer, Rebecca; Zietz, Carmen; Finze, Susanne; Mittelmeier, Wolfram; Bader, Rainer
2016-06-01
Evaluation of the adhesive strength of femoral components to the bone cement is a relevant parameter for predicting implant safety. In the present experimental study, three types of cemented femoral components (metallic, ceramic and silica/silane-layered ceramic) of the bicondylar Multigen Plus knee system, implanted on composite femora were analysed. A pull-off test with the femoral components was performed after different load and several cementing conditions (four groups and n=3 components of each metallic, ceramic and silica/silane-layered ceramic in each group). Pull-off forces were comparable for the metallic and the silica/silane-layered ceramic femoral components (mean 4769 N and 4298 N) under standard test condition, whereas uncoated ceramic femoral components showed reduced pull-off forces (mean 2322 N). Loading under worst-case conditions led to decreased adhesive strength by loosening of the interface implant and bone cement using uncoated metallic and ceramic femoral components, respectively. Silica/silane-coated ceramic components were stably fixed even under worst-case conditions. Loading under high flexion angles can induce interfacial tensile stress, which could promote early implant loosening. In conclusion, a silica/silane-coating layer on the femoral component increased their adhesive strength to bone cement. Thicker cement mantles (>2 mm) reduce adhesive strength of the femoral component and can increase the risk of cement break-off.
Kang, Huili; Chen, Yu-Ming; Han, Guiyuan; Huang, Hua; Chen, Wei-Qing; Wang, Xidan; Zhu, Ying-Ying; Xiao, Su-Mei
2016-01-23
This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD) and geometric parameters, including cross-sectional area (CSA), outer diameter (OD), cortical thickness (CT), section modulus (SM), buckling ratio (BR) at the narrow neck (NN), intertrochanter (IT), and femoral shaft (FS). Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p < 0.05), which indicated a weaker bone strength at the proximal femur. BMI and years of menstruation had the positive relationships with proximal femur strength (p < 0.05). Further analyses showed that the ranges of absolute value of change slope per year, per BMI or per year of menstruation were 0.14%-1.34%, 0.20%-2.70%, and 0.16%-0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women.
Kang, Huili; Chen, Yu-Ming; Han, Guiyuan; Huang, Hua; Chen, Wei-Qing; Wang, Xidan; Zhu, Ying-Ying; Xiao, Su-Mei
2016-01-01
This study aimed to elucidate the associations of age, BMI, and years of menstruation with proximal femur strength in Chinese postmenopausal women, which may improve the prediction of hip fracture risk. A cross-sectional study was conducted in 1322 Chinese postmenopausal women recruited from communities. DXA images were used to generate bone mineral density (BMD) and geometric parameters, including cross-sectional area (CSA), outer diameter (OD), cortical thickness (CT), section modulus (SM), buckling ratio (BR) at the narrow neck (NN), intertrochanter (IT), and femoral shaft (FS). Relationships of age, BMI, and years of menstruation with bone phenotypes were analyzed with the adjustment of height, age at menarche, total daily physical activity, education, smoking status, calcium tablet intake, etc. Age was associated with lower BMD, CSA, CT, SM, and higher BR (p < 0.05), which indicated a weaker bone strength at the proximal femur. BMI and years of menstruation had the positive relationships with proximal femur strength (p < 0.05). Further analyses showed that the ranges of absolute value of change slope per year, per BMI or per year of menstruation were 0.14%–1.34%, 0.20%–2.70%, and 0.16%–0.98%, respectively. These results supported that bone strength deteriorated with aging and enhanced with higher BMI and longer time of years of menstruation in Chinese postmenopausal women. PMID:26805871
Ohlsson, Claes; Nethander, Maria; Karlsson, Magnus K; Rosengren, Björn E; Ribom, Eva; Mellström, Dan; Vandenput, Liesbeth
2018-03-12
The adrenal-derived hormones dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are the most abundant circulating hormones and their levels decline substantially with age. Many of the actions of DHEAS are considered to be mediated through metabolism into androgens and estrogens in peripheral target tissues. The predictive value of serum DHEA and DHEAS for the likelihood of falling is unknown. The aim of this study was, therefore, to assess the associations between baseline DHEA and DHEAS levels and incident fall risk in a large cohort of older men. Serum DHEA and DHEAS levels were analyzed with mass spectrometry in the population-based Osteoporotic Fractures in Men study in Sweden (n = 2516, age 69 to 81 years). Falls were ascertained every 4 months by mailed questionnaires. Associations between steroid hormones and falls were estimated by generalized estimating equations. During a mean follow-up of 2.7 years, 968 (38.5%) participants experienced a fall. High serum levels of both DHEA (odds ratio [OR] per SD increase 0.85; 95% CI, 0.78 to 0.92) and DHEAS (OR 0.88, 95% CI, 0.81 to 0.95) were associated with a lower incident fall risk in models adjusted for age, BMI, and prevalent falls. Further adjustment for serum sex steroids or age-related comorbidities only marginally attenuated the associations between DHEA or DHEAS and the likelihood of falling. Moreover, the point estimates for DHEA and DHEAS were only slightly reduced after adjustment for lean mass and/or grip strength. Also, the addition of the narrow walk test did not substantially alter the associations between serum DHEA or DHEAS and fall risk. Finally, the association with incident fall risk remained significant for DHEA but not for DHEAS after simultaneous adjustment for lean mass, grip strength, and the narrow walk test. This suggests that the associations between DHEA and DHEAS and falls are only partially mediated via muscle mass, muscle strength, and/or balance. In conclusion, older men with high DHEA or DHEAS levels have a lesser likelihood of a fall. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
NASA Technical Reports Server (NTRS)
Ellman, R.; Sibonga, J. D.; Bouxsein, M. L.
2010-01-01
The factor-of-risk (Phi), defined as the ratio of applied load to bone strength, is a biomechanical approach to hip fracture risk assessment that may be used to identify subjects who are at increased risk for fracture. The purpose of this project was to calculate the factor of risk in long duration astronauts after return from a mission on the International Space Station (ISS), which is typically 6 months in duration. The load applied to the hip was calculated for a sideways fall from standing height based on the individual height and weight of the astronauts. The soft tissue thickness overlying the greater trochanter was measured from the DXA whole body scans and used to estimate attenuation of the impact force provided by soft tissues overlying the hip. Femoral strength was estimated from femoral areal bone mineral density (aBMD) measurements by dual-energy x-ray absorptiometry (DXA), which were performed between 5-32 days of landing. All long-duration NASA astronauts from Expedition 1 to 18 were included in this study, where repeat flyers were treated as separate subjects. Male astronauts (n=20) had a significantly higher factor of risk for hip fracture Phi than females (n=5), with preflight values of 0.83+/-0.11 and 0.36+/-0.07, respectively, but there was no significant difference between preflight and postflight Phi (Figure 1). Femoral aBMD measurements were not found to be significantly different between men and women. Three men and no women exceeded the theoretical fracture threshold of Phi=1 immediately postflight, indicating that they would likely suffer a hip fracture if they were to experience a sideways fall with impact to the greater trochanter. These data suggest that male astronauts may be at greater risk for hip fracture than women following spaceflight, primarily due to relatively less soft tissue thickness and subsequently greater impact force.
Kim, Hyunsoo; Walsh, Matthew C.; Takegahara, Noriko; ...
2017-03-15
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss andmore » hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss related inflammatory conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyunsoo; Walsh, Matthew C.; Takegahara, Noriko
Excessive bone resorption by osteoclasts (OCs) can result in serious clinical outcomes, including bone loss that may weaken skeletal or periodontal strength. Proper bone homeostasis and skeletal strength are maintained by balancing OC function with the bone-forming function of osteoblasts. Unfortunately, current treatments that broadly inhibit OC differentiation or function may also interfere with coupled bone formation. We therefore identified a factor, the purinergic receptor P2X5 that is highly expressed during the OC maturation phase, and which we show here plays no apparent role in early bone development and homeostasis, but which is required for osteoclast-mediated inflammatory bone loss andmore » hyper-multinucleation of OCs. We further demonstrate that P2X5 is required for ATP-mediated inflammasome activation and IL-1β production by OCs, and that P2X5-deficient OC maturation is rescued in vitro by addition of exogenous IL-1β. These findings identify a mechanism by which OCs react to inflammatory stimuli, and may identify purinergic signaling as a therapeutic target for bone loss related inflammatory conditions.« less
[Preparation of nano-nacre artificial bone].
Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying
2008-12-01
To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.
NASA Astrophysics Data System (ADS)
Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji
2016-11-01
Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite-collagen composite) -alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union-related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone.
Shiga, Yasuhiro; Orita, Sumihisa; Kubota, Go; Kamoda, Hiroto; Yamashita, Masaomi; Matsuura, Yusuke; Yamauchi, Kazuyo; Eguchi, Yawara; Suzuki, Miyako; Inage, Kazuhide; Sainoh, Takeshi; Sato, Jun; Fujimoto, Kazuki; Abe, Koki; Kanamoto, Hirohito; Inoue, Masahiro; Kinoshita, Hideyuki; Aoki, Yasuchika; Toyone, Tomoaki; Furuya, Takeo; Koda, Masao; Takahashi, Kazuhisa; Ohtori, Seiji
2016-01-01
Fresh platelet-rich plasma (PRP) accelerates bone union in rat model. However, fresh PRP has a short half-life. We suggested freeze-dried PRP (FD-PRP) prepared in advance and investigated its efficacy in vivo. Spinal posterolateral fusion was performed on 8-week-old male Sprague-Dawley rats divided into six groups based on the graft materials (n = 10 per group): sham control, artificial bone (A hydroxyapatite–collagen composite) –alone, autologous bone, artificial bone + fresh-PRP, artificial bone + FD-PRP preserved 8 weeks, and artificial bone + human recombinant bone morphogenetic protein 2 (BMP) as a positive control. At 4 and 8 weeks after the surgery, we investigated their bone union–related characteristics including amount of bone formation, histological characteristics of trabecular bone at remodeling site, and biomechanical strength on 3-point bending. Comparable radiological bone union was confirmed at 4 weeks after surgery in 80% of the FD-PRP groups, which was earlier than in other groups (p < 0.05). Histologically, the trabecular bone had thinner and more branches in the FD-PRP. Moreover, the biomechanical strength was comparable to that of autologous bone. FD-PRP accelerated bone union at a rate comparable to that of fresh PRP and BMP by remodeling the bone with thinner, more tangled, and rigid trabecular bone. PMID:27833116
Trabecular Bone Mechanical Properties and Fractal Dimension
NASA Technical Reports Server (NTRS)
Hogan, Harry A.
1996-01-01
Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again and also scanned using dual-energy X-ray absorptiometry (DEXA). Cube specimens are then cut from the slabs and tested mechanically in compression. Correlations between mechanical properties and fractal dimension will then be examined to assess and quantify the predictive capability of the fractal calculations.
A Biomechanical Approach to Assessing Hip Fracture Risk
NASA Technical Reports Server (NTRS)
Ellman, Rachel
2009-01-01
Bone loss in microgravity is well documented, but it is difficult to quantify how declines in bone mineral density (BMD) contribute to an astronaut's overall risk of fracture upon return. This study uses a biomechanical approach to assessing hip fracture risk, or Factor of Risk (Phi), which is defined as the ratio of applied load to bone strength. All long-duration NASA astronauts from Expeditions 1-18 were included in this study (n=25), while crewmembers who flew twice (n=2) were treated as separate subjects. Bone strength was estimated based on an empirical relationship between areal BMD at the hip, as measured by DXA, and failure load, as determined by mechanical testing of cadaver femora. Fall load during a sideways fall was calculated from a previously developed biomechanical model, which takes into account body weight, height, gender, and soft tissue thickness overlying the lateral aspect of the hip that serves to attenuate the impact force. While no statistical analyses have been performed yet, preliminary results show that males in this population have a higher FOR than females, with a post- flight Phi of 0.87 and 0.36, respectively. FOR increases 5.1% from preflight to postflight, while only one subject crossed the fracture "threshold" of Phi = 1, for a total of 2 subjects with a postflight Phi > 1. These results suggest that men may be at greater risk for hip fracture due largely in part to their relatively thin soft tissue padding as compared to women, since soft tissue thickness has the highest correlation (R(exp 2)= .53) with FOR of all subject-specific parameters. Future work will investigate changes in FOR during recovery to see if baseline risk levels are restored upon return to 1-g activity. While dual x-ray absorptiometry (DXA) is the most commonly used clinical measure of bone health, it fails to provide compartment-specific information that is useful in assessing changes to bone quality as a result of microgravity exposure. Peripheral quantitative computed tomography (pQCT) accomplishes this by imaging transverse "slices" of the long bones. This project was a re-analysis of a 90 day bed rest study to determine if changes to cortical and trabecular compartments could be detected in the distal tibia with statistical significance using a new pQCT image analysis method. Nearly all changes in bone mineral density (BMD) and cross sectional area (CSA) measures were seen with statistical significance, with the exception of a change in cortical BMD. Total bone CSA increased by 1.1 % (p =0.01), cortical CSA decreased by - 5.6% (p<0.001) and trabecular CSA increased by 1.76% (p=0.007); the combination of which suggests bone resorption occurred at the endocortical surface in response to mechanical unloading by bed rest. Furthermore, total BMD and trabecular BMD decreased (-3.8%, p=0.001 and -2.8%, p =0.007, respectively), while decreases in cortical BMD failed to reach significance (-1.2%, p=0.07). Given that compartment-specific changes are seen with significance and are likely to influence bone strength, it is recommended that pQCT remain a standard measure used in bed rest because it provides a unique measure by which to better evaluate the efficacy of countermeasures to microgravity-induced bone loss.
Yi, Seong; Rim, Dae-Cheol; Park, Seoung Woo; Murovic, Judith A; Lim, Jesse; Park, Jon
2015-06-01
In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised. Copyright © 2015 Elsevier Inc. All rights reserved.
Compression and flexural strength of bone cement mixed with blood.
Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W
2016-08-01
To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.
Vico, Laurence; van Rietbergen, Bert; Vilayphiou, Nicolas; Linossier, Marie-Thérèse; Locrelle, Hervé; Normand, Myriam; Zouch, Mohamed; Gerbaix, Maude; Bonnet, Nicolas; Novikov, Valery; Thomas, Thierry; Vassilieva, Galina
2017-10-01
Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight-bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three-dimensional structure and strength that could be uniquely affected by weightlessness is currently unknown. Our objective is to evaluate bone mass, microarchitecture, and strength of weight-bearing and non-weight-bearing bone in 13 cosmonauts before and for 12 months after a 4-month to 6-month sojourn in the International Space Station (ISS). Standard and advanced evaluations of trabecular and cortical parameters were performed using high-resolution peripheral quantitative computed tomography. In particular, cortical analyses involved determination of the largest common volume of each successive individual scan to improve the precision of cortical porosity and density measurements. Bone resorption and formation serum markers, and markers reflecting osteocyte activity or periosteal metabolism (sclerostin, periostin) were evaluated. At the tibia, in addition to decreased bone mineral densities at cortical and trabecular compartments, a 4% decrease in cortical thickness and a 15% increase in cortical porosity were observed at landing. Cortical size and density subsequently recovered and serum periostin changes were associated with cortical recovery during the year after landing. However, tibial cortical porosity or trabecular bone failed to recover, resulting in compromised strength. The radius, preserved at landing, unexpectedly developed postflight fragility, from 3 months post-landing onward, particularly in its cortical structure. Remodeling markers, uncoupled in favor of bone resorption at landing, returned to preflight values within 6 months, then declined farther to lower than preflight values. Our findings highlight the need for specific protective measures not only during, but also after spaceflight, because of continuing uncertainties regarding skeletal recovery long after landing. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
NASA Technical Reports Server (NTRS)
Wunder, Charles C.; Cook, Kenneth M.; Watkins, Stanley R.; Moressi, William J.
1987-01-01
The dependence of gravitationally related changes in femur bone strength on the comparable changes in calcium content was investigated in rats exposed to chronic simulations of altered gravity from the 28th to 42nd day of age. Zero G was simulated by harness suspension and 3 G by centrifugation. Bone strength (S) was determined by bending (using modified quasi-static cantilever bending methods and equipment described by Wunder et al., 1977 and 1979) and Ca content (C, by mass pct) determined by atomic absorption spectrometry; results were compared with data obtained on both normal and harnessed control animals at 1 G. Multiple regression showed significant dependence of S upon earth's gravity, independent from C, for which there was no significant coefficient of partial regression. It is suggested that the lack of S/C correlation might have been due to the fact that considerable fraction of the calcium in these young, developing bones has not yet crystallized into the hydroxyapatite which provides strength.
Kokkinos, Petros A; Koutsoukos, Petros G; Deligianni, Despina D
2012-06-01
Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.
ERIC Educational Resources Information Center
da Silva, Vinicius Zacarias Maldaner; Barros, Jonatas de Franca; de Azevedo, Monique; de Godoy, Jose Roberto Pimenta; Arena, Ross; Cipriano, Gerson, Jr.
2010-01-01
The purpose of this study was to assess the respiratory muscle strength (RMS) in individuals with mental retardation (MR), with or without Down Syndrome (DS), and its association with bone mineral density (BMD). Forty-five male individuals (15 with DS, 15 with mental retardation (MR) and 15 apparently healthy controls), aged 20-35, participated in…
Shen, C-L; Chyu, M-C; Yeh, J K; Zhang, Y; Pence, B C; Felton, C K; Brismée, J-M; Arjmandi, B H; Doctolero, S; Wang, J-S
2012-05-01
Postmenopausal women with osteopenia received green tea polyphenols (GTP) supplement and/or Tai Chi exercise for 6 months. Bone turnover biomarkers, calcium metabolism, and muscle strength were measured. This study showed that GTP supplementation and Tai Chi exercise increased bone formation biomarkers and improved bone turnover rate. Tai Chi exercise increased serum parathyroid hormone. GTP supplementation, Tai Chi exercise, and the combination of the two all improved muscle strength in postmenopausal women with osteopenia. This study evaluated the effect of GTP supplementation and Tai Chi (TC) exercise on serum markers of bone turnover (bone-specific alkaline phosphatase, BAP, and tartrate-resistant acid phosphatase, TRAP), calcium metabolism, and muscle strength in postmenopausal osteopenic women. One hundred and seventy-one postmenopausal osteopenic women were randomly assigned to four groups: (1) placebo (500 mg starch/day), (2) GTP (500 mg GTP/day), (3) placebo + TC (placebo plus TC training at 60 min/session, three sessions/week), and (4) GTP + TC (GTP plus TC training). Overnight fasting blood and urine samples were collected at baseline, 1, 3, and 6 months for biomarker analyses. Muscle strength was evaluated at baseline, 3, and 6 months. One hundred and fifty subjects completed the 6-month study. Significant increases in BAP level due to GTP intake (at 1 month) and TC (at 3 months) were observed. Significant increases in the change of BAP/TRAP ratio due to GTP (at 3 months) and TC (at 6 months) were also observed. Significant main effect of TC on the elevation in serum parathyroid hormone level was observed at 1 and 3 months. At 6 months, muscle strength significantly improved due to GTP, TC, and GTP + TC interventions. Neither GTP nor TC affected serum TRAP, serum and urinary calcium, and inorganic phosphate. In summary, GTP supplementation and TC exercise increased BAP and improved BAP/TRAP ratio. TC exercise increased serum parathyroid hormone. GTP supplementation, TC exercise, and the combination of the two all improved muscle strength in postmenopausal women with osteopenia.
Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models
NASA Astrophysics Data System (ADS)
Makowski, Alexander J.; Pence, Isaac J.; Uppuganti, Sasidhar; Zein-Sabatto, Ahbid; Huszagh, Meredith C.; Mahadevan-Jansen, Anita; Nyman, Jeffry S.
2014-11-01
Raman spectroscopy (RS) has been extensively used to characterize bone composition. However, the link between bone biomechanics and RS measures is not well established. Here, we leveraged the sensitivity of RS polarization to organization, thereby assessing whether RS can explain differences in bone toughness in genetic mouse models for which traditional RS peak ratios are not informative. In the selected mutant mice-activating transcription factor 4 (ATF4) or matrix metalloproteinase 9 (MMP9) knock-outs-toughness is reduced but differences in bone strength do not exist between knock-out and corresponding wild-type controls. To incorporate differences in the RS of bone occurring at peak shoulders, a multivariate approach was used. Full spectrum principal components analysis of two paired, orthogonal bone orientations (relative to laser polarization) improved genotype classification and correlation to bone toughness when compared to traditional peak ratios. When applied to femurs from wild-type mice at 8 and 20 weeks of age, the principal components of orthogonal bone orientations improved age classification but not the explanation of the maturation-related increase in strength. Overall, increasing polarization information by collecting spectra from two bone orientations improves the ability of multivariate RS to explain variance in bone toughness, likely due to polarization sensitivity to organizational changes in both mineral and collagen.
Koenen, Kathrin; Knepper, Isabell; Klodt, Madlen; Osterberg, Anja; Stratos, Ioannis; Mittlmeier, Thomas; Histing, Tina; Menger, Michael D.; Vollmar, Brigitte; Bruhn, Sven; Müller-Hilke, Brigitte
2017-01-01
Elevated peak bone mass in early adulthood reduces the risk for osteoporotic fractures at old age. As sports participation has been correlated with elevated peak bone masses, we aimed to establish a training program that would efficiently stimulate bone accrual in healthy young mice. We combined voluntary treadmill running with sprint interval training modalities that were tailored to the individual performance limits and were of either high or intermediate intensity. Adolescent male and female STR/ort mice underwent 8 weeks of training before the hind legs were analyzed for cortical and trabecular bone parameters and biomechanical strength. Sprint interval training led to increased running speeds, confirming an efficient training. However, males and females responded differently. The males improved their running speeds in response to intermediate intensities only and accrued cortical bone at the expense of mechanical strength. High training intensities induced a significant loss of trabecular bone. The female bones showed neither adverse nor beneficial effects in response to either training intensities. Speculations about the failure to improve geometric alongside mechanical bone properties include the possibility that our training lacked sufficient axial loading, that high cardio-vascular strains adversely affect bone growth and that there are physiological limits to bone accrual. PMID:28303909
Alcohol and bone: review of dose effects and mechanisms.
Maurel, D B; Boisseau, N; Benhamou, C L; Jaffre, C
2012-01-01
Alcohol is widely consumed across the world. It is consumed in both social and cultural settings. Until recently, two types of alcohol consumption were recognized: heavy chronic alcohol consumption or light consumption. Today, there is a new pattern of consumption among teenagers and young adults namely: binge drinking. Heavy alcohol consumption is detrimental to many organs and tissues, including bones, and is known to induce secondary osteoporosis. Some studies, however, have reported benefits from light alcohol consumption on bone parameters. To date, little is known regarding the effects of binge drinking on bone health. Here, we review the effects of three different means of alcohol consumption: light, heavy, and binge drinking. We also review the detailed literature on the different mechanisms by which alcohol intake may decrease bone mass and strength. The effects of alcohol on bone are thought to be both direct and indirect. The decrease in bone mass and strength following alcohol consumption is mainly due to a bone remodeling imbalance, with a predominant decrease in bone formation. Recent studies, however, have reported new mechanisms by which alcohol may act on bone remodeling, including osteocyte apoptosis, oxidative stress, and Wnt signalling pathway modulation. The roles of reduced total fat mass, increased lipid content in bone marrow, and a hypoleptinemia are also discussed.
Vibration therapy: clinical applications in bone
Thompson, William R.; Yen, Sherwin S.; Rubin, Janet
2015-01-01
Purpose of review The musculoskeletal system is largely regulated through dynamic physical activity and is compromised by cessation of physical loading. There is a need to recreate the anabolic effects of loading on the musculoskeletal system, especially in frail individuals who cannot exercise. Vibration therapy is designed to be a nonpharmacological analogue of physical activity, with an intention to promote bone and muscle strength. Recent findings Animal and human studies suggest that high-frequency, low-magnitude vibration therapy improves bone strength by increasing bone formation and decreasing bone resorption. There is also evidence that vibration therapy is useful in treating sarcopenia, which confounds skeletal fragility and fall risk in aging. Enhancement of skeletal and muscle strength involves regulating the differentiation of mesenchymal stem cells to build these tissues; mesenchymal stem cell lineage allocation is positively promoted by vibration signals. Summary Vibration therapy may be useful as a primary treatment as well as an adjunct to both physical and pharmacological treatments, but future studies must pay close attention to compliance and dosing patterns, and importantly, the vibration signal, be it low-intensity vibration (<1g) appropriate for treatment of frail individuals or high-intensity vibration (>1g) marketed as a training exercise. PMID:25354044
Simonavice, Emily; Liu, Pei-Yang; Ilich, Jasminka Z; Kim, Jeong-Su; Arjmandi, Bahram; Panton, Lynn B
2014-06-01
The purpose of this study was to examine the effects of resistance training (RT) and dried plum (DP) consumption on strength, body composition, blood markers of bone, and inflammation in breast cancer survivors (BCS). Twenty-three BCS (RT, n = 12; RT+DP, n = 11), aged 64 ± 7 years, were evaluated at baseline and after 6 months of intervention on the following: muscular strength (chest press and leg extension) via 1-repetition maximums (1RMs); body composition, specifically bone mineral density (BMD) by dual energy X-ray absorptiometry; biochemical markers of bone turnover (bone-specific alkaline phosphatase (BAP), tartrate resistant acid phosphatase (TRAP-5b)); and inflammation (C-reactive protein (CRP)). Target RT prescription was 2 days/week of 10 exercises, including 2 sets of 8-12 repetitions at ∼60%-80% of 1RM. RT+DP also consumed 90 g of DP daily. There were no baseline differences between groups or any group-by-time interactions for any of the variables. BCS increased upper (p < 0.05) (RT: 64 ± 14 to 80 ± 17 kg; RT+DP: 72 ± 23 to 91 ± 20 kg) and lower (p < 0.05) (RT: 69 ± 20 to 87 ± 28 kg; RT+DP: 78 ± 19 to 100 ± 21 kg) body strength. Body composition and BMD improvements were not observed. TRAP-5b decreased in the RT group (p < 0.05) (4.55 ± 1.57 to 4.04 ± 1.63 U/L) and the RT+DP group (p = 0.07) (5.10 ± 2.75 to 4.27 ± 2.03 U/L). Changes in BAP and CRP were not observed. RT was effective for improving biochemical markers of bone turnover and muscular strength in BCS. A longer and higher intensity intervention may be needed to reveal the true effects of RT and DP on body composition and biochemical markers of inflammation.
Hakki, Sema S; SiddikMalkoc; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H; Götz, Werner
2015-01-01
The objective of this study was to determine whether dietary boron (B) affects the strength, density and mineral composition of teeth and mineral density of alveolar bone in rabbits with apparent obesity induced by a high-energy diet. Sixty female, 8-month-old, New Zealand rabbits were randomly assigned for 7 months into five groups as follows: (1) control 1, fed alfalfa hay only (5.91 MJ/kg and 57.5 mg B/kg); (2) control 2, high energy diet (11.76 MJ and 3.88 mg B/kg); (3) B10, high energy diet + 10 mg B gavage/kg body weight/96 h; (4) B30, high energy diet + 30 mg B gavage/kg body weight/96 h; (5) B50, high energy diet + 50 mg B gavage/kg body weight/96 h. Maxillary incisor teeth of the rabbits were evaluated for compression strength, mineral composition, and micro-hardness. Enamel, dentin, cementum and pulp tissue were examined histologically. Mineral densities of the incisor teeth and surrounding alveolar bone were determined by using micro-CT. When compared to controls, the different boron treatments did not significantly affect compression strength, and micro-hardness of the teeth, although the B content of teeth increased in a dose-dependent manner. Compared to control 1, B50 teeth had decreased phosphorus (P) concentrations. Histological examination revealed that teeth structure (shape and thickness of the enamel, dentin, cementum and pulp) was similar in the B-treated and control rabbits. Micro CT evaluation revealed greater alveolar bone mineral density in B10 and B30 groups than in controls. Alveolar bone density of the B50 group was not different than the controls. Although the B treatments did not affect teeth structure, strength, mineral density and micro-hardness, increasing B intake altered the mineral composition of teeth, and, in moderate amounts, had beneficial effects on surrounding alveolar bone.
Nurzenski, Michelle K; Briffa, N Kathryn; Price, Roger I; Khoo, Benjamin C C; Devine, Amanda; Beck, Thomas J; Prince, Richard L
2007-03-01
A population-based study on 1008 postmenopausal women identified that the 24% of women achieving high levels of PA and CI had 3.4-4.4% higher femoral bone strength in axial compression and 1.7-5.2% in bending than those achieving low levels, indicating that lifestyle factors influence bone strength in the proximal femur. Extensive research has shown that increased physical activity (PA) and calcium intake (CI) decrease the rate of bone loss; however, there is little research on how these lifestyle variables affect bone geometry. This study was designed to investigate the effects of modifiable lifestyle variables, habitual PA and dietary CI, on femoral geometry in older women. Femoral geometry, habitual PA, and dietary CI were measured in a population-based sample of 1008 women (median age+/-interquartile range, 75+/-4years) enrolled in a randomized controlled trial (RCT) of calcium supplementation. Baseline PA and CI were assessed by validated questionnaires, and 1-year DXA scans (Hologic 4500A) were analyzed using the hip structural analysis technique. Section modulus (Z), an index of bending strength, cross-sectional area (CSA), an index of axial compression strength, subperiosteal width (SPW), and centroid position, the position of the center of mass, were measured at the femoral neck (NN), intertrochanter (IT), and femoral shaft (FS) sites. These data were divided into tertiles of PA and CI, and the results were compared using analysis of covariance (ANCOVA), with corrections for age, height, weight, and treatment (calcium/placebo). PA showed a significant dose-response effect on CSA all hip sites (p<0.03) and Z at the narrow neck and intertrochanter sites (p<0.02). For CI, there was a dose-response effect for centroid position at the intertrochanter (p=0.03). These effects were additive, such that the women (n=240) with PA in excess of 65.5 kcal/day and CI in excess of 1039 mg/day had significantly greater CSA (NN, 4.4%; IT, 4.3%; FS, 3.4%) and Z (NN, 3.9%; IT, 5.2%). These data show a favorable association between PA and aspects of bone structural geometry consistent with better bone strength. Association between CI and bone structure was only evident in 1 of 15 variables tested. However, there was evidence that there may be additive effects, whereby women with high levels of PA and CI in excess of 1039 mg/day had significantly greater CSA (NN, 0.4%; FS, 2.1%) and Z (IT, 3.0%) than women with high PA but low CI. These data show that current public health guidelines for PA and dietary CI are not inappropriate where bone structure is the health component of interest.
A 14-day ground-based hypokinesia study in nonhuman primates: A compilation of results
NASA Technical Reports Server (NTRS)
Kazarian, L.; Cann, C. E.; Parfitt, M.; Simmons, D.; Morey-Holton, E.
1981-01-01
A 14 day ground based hypokinesia study with rhesus monkeys was conducted to determine if a spaceflight of similar duration might affect bone remodeling and calcium homeostatis. The monkeys were placed in total body casts and sacrificed either immediately upon decasting or 14 days after decasting. Changes in vertebral strength were noted and further deterioration of bone strength continued during the recovery phase. Resorption in the vertebrae increased dramatically while formation decreased. Cortical bone formation was impaired in the long bones. The immobilized animals showed a progressive decrease in total serum calcium which rebounded upon remobilization. Most mandibular parameters remained unchanged during casting except for retardation of osteon birth or maturation rate and density distribution of matrix and mineral moieties.
Al-Sharif, Fadwa Al-Ghalib; Al-Jiffri, Osama Hussien; El-Kader, Shehab Mahmoud Abd; Ashmawy, Eman Mohamed
2014-03-01
Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. To compare the effects of mild and moderate intensity treadmill walking exercises on markers of bone metabolism and hand grip strength in male patients with moderate hemophilia A. Fifty male patients with moderate hemophilia, and age range from 25 to 45 years. The subjects were randomly assigned into 2 equal groups; the first group (A) received moderate intensity aerobic exercise training. The second group (B) received mild intensity aerobic exercise training. There was a 32.1% and 24.8% increase in mean values of serum calcium and hand grip strength respectively and 22.7 % reduction in mean values of parathyroid hormone in moderate exercise training group (A). While there was a 15.1 % and 15 % increase in mean values of Serum Calcium and Hand grip strength respectively and 10.3 % reduction in mean values of parathyroid hormone in mild exercise training group(B). The mean values of serum calcium and hand grip strength were significantly increased, while the mean values of parathyroid hormone were significantly decreased in both groups . There were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Moderate intensity aerobic exercise training on treadmill is appropriate to improve markers of bone metabolism and hand grip strength in male patients with hemophilia A.
Mori, Takahiro; Ishii, Shinya; Greendale, Gail A.; Cauley, Jane A.; Ruppert, Kristine; Crandall, Carolyn J.; Karlamangla, Arun S.
2015-01-01
Our objective was to examine the associations of lifetime parity and accumulated length of lactation with bone strength in women prior to the menopause transition and fracture risk during and after the transition. Participants were 2239 pre- or early perimenopausal women from the Study of Women's Health Across the Nation (SWAN), ages 42–53 at baseline, who had no childbirths after age 42. Bone mineral density (BMD) was measured in the femoral neck and the lumbar spine at the baseline SWAN visit using dual-energy x-ray absorptiometry, and composite indices of femoral neck strength relative to load (in three failure modes: compression, bending, and impact) were calculated from femoral neck BMD, femoral neck size, and body size. Data on fractures after age 42 were collected for a median follow-up of 15.7 years (interquartile range, 11.4 –18.5 years). In multiple linear regression adjusted for covariates, lifetime parity was associated positively with femoral neck strength relative to load (0.024 standard deviation (SD) increment in impact strength index per childbirth, p= 0.049), but accumulated length of lactation was associated negatively with lumbar spine BMD (0.018 SD decrement per every additional 6 months of lactation p=0.040). In Cox proportional hazards regression adjusted for covariates, neither parity nor lactation was associated with fracture hazard after age 42. In conclusion, parity and lactation have little impact on peak bone strength prior to menopause, and do not affect fracture risk after age 42 over 16-year follow-up. PMID:25528102
Sepsis Reduces Bone Strength Before Morphologic Changes Are Identifiable.
Puthucheary, Zudin A; Sun, Yao; Zeng, Kaiyang; Vu, Lien Hong; Zhang, Zhi Wei; Lim, Ryan Z L; Chew, Nicholas S Y; Cove, Matthew E
2017-12-01
Survivors of critical illness have an increased prevalence of bone fractures. However, early changes in bone strength, and their relationship to structural changes, have not been described. We aimed to characterize early changes in bone functional properties in critical illness and their relationship to changes in bone structure, using a sepsis rodent model. Experimental study. Animal research laboratory. Adult Sprague-Dawley rats. Forty Sprague-Dawley rats were randomized to cecal ligation and puncture or sham surgery. Twenty rodents (10 cecal ligation and puncture, 10 sham) were killed at 24 hours, and 20 more at 96 hours. Femoral bones were harvested for strength testing, microCT imaging, histologic analysis, and multifrequency scanning probe microscopy. Fracture loads at the femoral neck were significantly reduced for cecal ligation and puncture-exposed rodents at 24 hours (83.39 ± 10.1 vs 103.1 ± 17.6 N; p = 0.014) and 96 hours (81.60 ± 14.2 vs 95.66 ± 14.3 N; p = 0.047). Using multifrequency scanning probe microscopy, collagen elastic modulus was lower in cecal ligation and puncture-exposed rats at 24 hours (1.37 ± 0.2 vs 6.13 ± 0.3 GPa; p = 0.001) and 96 hours (5.57 ± 0.5 vs 6.13 ± 0.3 GPa; p = 0.006). Bone mineral elastic modulus was similar at 24 hours but reduced in cecal ligation and puncture-exposed rodents at 96 hours (75.34 ± 13.2 vs 134.4 ± 8.2 GPa; p < 0.001). There were no bone architectural or bone mineral density differences by microCT. Similarly, histologic analysis demonstrated no difference in collagen and elastin staining, and C-X-C chemokine receptor type 4, nuclear factor kappa beta, and tartrate-resistant acid phosphatase immunostaining. In a rodent sepsis model, trabecular bone strength is functionally reduced within 24 hours and is associated with a reduction in collagen and mineral elastic modulus. This is likely to be the result of altered biomechanical properties, rather than increased bone mineral turnover. These data offer both mechanistic insights and may potentially guide development of therapeutic interventions.
Influence of physical activity on tibial bone material properties in laying hens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less
Influence of physical activity on tibial bone material properties in laying hens
Rodriguez-Navarro, A. B.; McCormack, H. M.; Fleming, R. H.; ...
2017-11-03
Laying hens develop a type of osteoporosis that arises from a loss of structural bone, resulting in high incidence of fractures. In this study, a comparison of bone material properties was made for lines of hens created by divergent selection to have high and low bone strength and housed in either individual cages, with restricted mobility, or in an aviary system, with opportunity for increased mobility. Improvement of bone biomechanics in the high line hens and in aviary housing was mainly due to increased bone mass, thicker cortical bone and more medullary bone. However, bone material properties such as corticalmore » and medullary bone mineral composition and crystallinity as well as collagen maturity did not differ between lines. However, bone material properties of birds from the different type of housing were markedly different. The cortical bone in aviary birds had a lower degree of mineralization and bone mineral was less mature and less organized than in caged birds. Here, these differences can be explained by increased bone turnover rates due to the higher physical activity of aviary birds that stimulates bone formation and bone remodeling. Multivariate statistical analyses shows that both cortical and medullary bone contribute to breaking strengthThe cortical thickness was the single most important contributor while its degree of mineralization and porosity had a smaller contribution. Lastly, bone properties had poorer correlations with mechanical properties in cage birds than in aviary birds presumably due to the greater number of structural defects of cortical bone in cage birds.« less
Comparison of an experimental bone cement with surgical Simplex P, Spineplex and Cortoss.
Boyd, D; Towler, M R; Wren, A; Clarkin, O M
2008-04-01
Conventional polymethylmethacrylate (PMMA) cements and more recently Bisphenol-a-glycidyl dimethacrylate (BIS-GMA) composite cements are employed in procedures such as vertebroplasty. Unfortunately, such materials have inherent drawbacks including, a high curing exotherm, the incorporation of toxic components in their formulations, and critically, exhibit a modulus mismatch between cement and bone. The literature suggests that aluminium free, zinc based glass polyalkenoate cements (Zn-GPC) may be suitable alternative materials for consideration in such applications as vertebroplasty. This paper, examines one formulation of Zn-GPC and compares its strengths, modulus, and biocompatibility with three commercially available bone cements, Spineplex, Simplex P and Cortoss. The setting times indicate that the current formulation of Zn-GPC sets in a time unsuitable for clinical deployment. However during setting, the peak exotherm was recorded to be 33 degrees C, the lowest of all cements examined, and well below the threshold level for tissue necrosis to occur. The data obtained from mechanical testing shows the Zn-GPC has strengths of 63 MPa in compression and 30 MPa in biaxial flexure. Importantly these strengths remain stable with maturation; similar long term stability was exhibited by both Spineplex and Simplex P. Conversely, the strengths of Cortoss were observed to rapidly diminish with time, a cause for clinical concern. In addition to strengths, the modulus of each material was determined. Only the Zn-GPC exhibited a modulus similar to vertebral trabecular bone, with all commercial materials exhibiting excessively high moduli. Such data indicates that the use of Zn-GPC may reduce adjacent fractures. The final investigation used the well established simulated body fluid (SBF) method to examine the ability of each material to bond with bone. The results indicate that the Zn-GPC is capable of producing a bone like apatite layer at its surface within 24 h which increased in coverage and density up to 7 days. Conversely, Spineplex, and Simplex P exhibit no apatite layer formation, while Cortoss exhibits only minimal formation of an apatite layer after 7 days incubation in SBF. This paper shows that Zn-GPC, with optimised setting times, are suitable candidate materials for further development as bone cements.
Resistin polymorphisms are associated with muscle, bone, and fat phenotypes in white men and women.
Pistilli, Emidio E; Gordish-Dressman, Heather; Seip, Richard L; Devaney, Joseph M; Thompson, Paul D; Price, Thomas B; Angelopoulos, Theodore J; Clarkson, Priscilla M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hoffman, Eric P; Gordon, Paul M
2007-02-01
The biological function of resistin (RST) is unknown, although it may have roles in obesity, diabetes, and insulin resistance. The objective of this study was to examine the effects of single nucleotide polymorphisms (SNPs) in the human RST gene on muscle, bone, and adipose tissue phenotypes and in response to resistance training (RT). Subjects were white and consisted of strength (n = 482) and size (n = 409) cohorts who had not performed RT in the previous year. Subjects completed 12 weeks of structured, unilateral upper arm RT aimed at increasing the size and strength of the non-dominant arm, using their dominant arm as an untrained control. Strength measurements were taken pre- and post-12-week RT and consisted of elbow flexor isometric strength and one-repetition maximum during a biceps curl using free weights. Whole muscle, subcutaneous fat, and cortical bone volumes were measured by magnetic resonance imaging. Six RST SNPs were identified. Analysis of covariance was used to test for effects of the SNPs on pre- and post-muscle strength and whole muscle, fat, and bone volumes independent of gender, age, and body weight. Five RST SNPs (-537 A>C, -420 C>G, 398 C>T, 540 G>A, 980 C>G) were associated with measured phenotypes among subjects when stratified by BMI (<25, >/ or = 25 kg/m(2)). Several gender-specific associations were observed between RST SNPs and phenotypes among individuals with a BMI > or = 25. Conversely, only two associations were observed among individuals with a BMI < 25. These data support previous identified associations of RST with adipose tissue and demonstrate additional associations with bone and skeletal muscle that warrant further investigation.
Wei, Chung-Kai; Ding, Shinn-Jyh
2016-09-01
To achieve the excellent mechanical properties of biodegradable materials used for cortical bone graft substitutes and fracture fixation devices remains a challenge. To this end, the biomimetic calcium silicate/gelatin/chitosan oligosaccharide composite implants were developed, with an aim of achieving high strength, controlled degradation, and superior osteogenic activity. The work focused on the effect of gelatin on mechanical properties of the composites under four different kinds of mechanical stresses including compression, tensile, bending, and impact. The evaluation of in vitro degradability and fatigue at two simulated body fluid (SBF) of pH 7.4 and 5.0 was also performed, in which the pH 5.0 condition simulated clinical conditions caused by bacterial induced local metabolic acidosis or tissue inflammation. In addition, human mesenchymal stem cells (hMSCs) were sued to examine osteogenic activity. Experimental results showed that the appropriate amount of gelatin positively contributed to failure enhancement in compressive and impact modes. The 10wt% gelatin-containing composite exhibits the maximum value of the compressive strength (166.1MPa), which is within the reported compressive strength for cortical bone. The stability of the bone implants was apparently affected by the in vitro fatigue, but not by the initial pH environments (7.4 or 5.0). The gelatin not only greatly enhanced the degradation of the composite when soaked in the dynamic SBF solution, but effectively promoted attachment, proliferation, differentiation, and formation of mineralization of hMSCs. The 10wt%-gelatin composite with high initial strength may be a potential implant candidate for cortical bone repair and fracture fixation applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomechanical properties of 3D-printed bone scaffolds are improved by treatment with CRFP.
Helguero, Carlos G; Mustahsan, Vamiq M; Parmar, Sunjit; Pentyala, Sahana; Pfail, John L; Kao, Imin; Komatsu, David E; Pentyala, Srinivas
2017-12-22
One of the major challenges in orthopedics is to develop implants that overcome current postoperative problems such as osteointegration, proper load bearing, and stress shielding. Current implant techniques such as allografts or endoprostheses never reach full bone integration, and the risk of fracture due to stress shielding is a major concern. To overcome this, a novel technique of reverse engineering to create artificial scaffolds was designed and tested. The purpose of the study is to create a new generation of implants that are both biocompatible and biomimetic. 3D-printed scaffolds based on physiological trabecular bone patterning were printed. MC3T3 cells were cultured on these scaffolds in osteogenic media, with and without the addition of Calcitonin Receptor Fragment Peptide (CRFP) in order to assess bone formation on the surfaces of the scaffolds. Integrity of these cell-seeded bone-coated scaffolds was tested for their mechanical strength. The results show that cellular proliferation and bone matrix formation are both supported by our 3D-printed scaffolds. The mechanical strength of the scaffolds was enhanced by trabecular patterning in the order of 20% for compression strength and 60% for compressive modulus. Furthermore, cell-seeded trabecular scaffolds modulus increased fourfold when treated with CRFP. Upon mineralization, the cell-seeded trabecular implants treated with osteo-inductive agents and pretreated with CRFP showed a significant increase in the compressive modulus. This work will lead to creating 3D structures that can be used in the replacement of not only bone segments, but entire bones.
Tack, Lloyd J W; Craen, Margarita; Lapauw, Bruno; Goemaere, Stefan; Toye, Kaatje; Kaufman, Jean-Marc; Vandewalle, Sara; T'Sjoen, Guy; Zmierczak, Hans-Georg; Cools, Martine
2018-06-01
Progestins can be used to attenuate endogenous hormonal effects in late-pubertal transgender (trans) adolescents (Tanner stage B4/5 and G4/5). Currently, no data are available on the effects of progestins on the development of bone mass or body composition in trans youth. To study prospectively the evolution of body composition and bone mass in late-pubertal trans adolescents using the proandrogenic or antiandrogenic progestins lynestrenol (L) and cyproterone acetate (CA), respectively. Forty-four trans boys (Tanner B4/5) and 21 trans girls (Tanner G4/5) were treated with L or CA for 11.6 (4 to 40) and 10.6 (5 to 31) months, respectively. Anthropometry, grip strength, body composition, and bone mass, size, and density were determined by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography before the start of progestin and before addition of cross-sex hormones. Using L, lean mass [+3.2 kg (8.6%)] and grip strength [+3 kg (10.6%)] significantly increased, which coincided with a more masculine body shape in trans boys. Trans girls showed loss of lean mass [-2.2 kg (4.7%)], gain of fat mass [+1.5 kg (9.4%)], and decreased grip strength Z scores. CA limited normal bone expansion and impeded pubertal bone mass accrual, mostly at the lumbar spine [Z score: -0.765 to -1.145 (P = 0.002)]. L did not affect physiological bone development. Proandrogenic and antiandrogenic progestins induce body composition changes in line with the desired appearance within 1 year of treatment. Bone health, especially at the lumbar spine, is of concern in trans girls, as bone mass accrual is severely affected by androgen suppressive therapy.
Suppressed bone remodeling in black bears conserves energy and bone mass during hibernation
McGee-Lawrence, Meghan; Buckendahl, Patricia; Carpenter, Caren; Henriksen, Kim; Vaughan, Michael; Donahue, Seth
2015-01-01
ABSTRACT Decreased physical activity in mammals increases bone turnover and uncouples bone formation from bone resorption, leading to hypercalcemia, hypercalcuria, bone loss and increased fracture risk. Black bears, however, are physically inactive for up to 6 months annually during hibernation without losing cortical or trabecular bone mass. Bears have been shown to preserve trabecular bone volume and architectural parameters and cortical bone strength, porosity and geometrical properties during hibernation. The mechanisms that prevent disuse osteoporosis in bears are unclear as previous studies using histological and serum markers of bone remodeling show conflicting results. However, previous studies used serum markers of bone remodeling that are known to accumulate with decreased renal function, which bears have during hibernation. Therefore, we measured serum bone remodeling markers (BSALP and TRACP) that do not accumulate with decreased renal function, in addition to the concentrations of serum calcium and hormones involved in regulating bone remodeling in hibernating and active bears. Bone resorption and formation markers were decreased during hibernation compared with when bears were physically active, and these findings were supported by histomorphometric analyses of bone biopsies. The serum concentration of cocaine and amphetamine regulated transcript (CART), a hormone known to reduce bone resorption, was 15-fold higher during hibernation. Serum calcium concentration was unchanged between hibernation and non-hibernation seasons. Suppressed and balanced bone resorption and formation in hibernating bears contributes to energy conservation, eucalcemia and the preservation of bone mass and strength, allowing bears to survive prolonged periods of extreme environmental conditions, nutritional deprivation and anuria. PMID:26157160
Glenn, Andrea J.; Fielding, Kristina A.; Chen, Jianmin; Comelli, Elena M.; Ward, Wendy E.
2014-01-01
Inflammatory bowel disease (IBD) is an idiopathic disease that can impair bone metabolism. Low vitamin D status has been implicated in its progress. This study used interleukin (IL)-10 knockout (KO) mice, that develop an intestinal inflammation when housed in a non-sterile environment, to determine if supplementation with vitamin D3 throughout life could mitigate inflammation and attenuate the lower bone mineral content (BMC) and density (BMD), and bone strength. Female IL-10 KO mice were randomized 25 or 5000 IU vitamin D3/kg diet throughout pregnancy and lactation. At weaning, offspring received the same or opposite diet as their mother until age three months. Body weight growth was similar among groups within a sex. At three months of age, there were no differences in inflammation and gene expression in the colon of offspring. Male offspring exposed to continuous 25 IU vitamin D3/kg diet had lower (p < 0.001) colonic VDR expression and those exposed only to low vitamin D3 until weaning had higher serum IL-6. There were no differences in femur or vertebral BMC, BMD or bone strength. In summary, long-term exposure to vitamin D3 did not attenuate intestinal inflammation or preserve bone mineral or bone strength. Thus, supplementation with vitamin D3 does not exert anti-inflammatory effects in this mouse model that mimics human inflammatory bowel disease. PMID:25247786
Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B
2014-11-07
Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yao, Wei; Cheng, Zhiqiang; Pham, Aaron; Busse, Cheryl; Zimmermann, Elizabeth A.; Ritchie, Robert O.; Lane, Nancy E.
2008-01-01
Glucocorticoid (GC) excess decreases bone mineralization and microarchitecture and lead to reduced bone strength. Both anabolic (PTH) and anti-resorptive agents are used to prevent and treat GC-induced bone loss, yet these bone active agents alter bone turnover by very different mechanisms. Our study objective was to determine how PTH and risedronate (Ris) alter bone quality following GC excess. Five-month-old Swiss-Webster male mice were treated with the glucocorticoid (GC) prednisolone (5 mg/kg 60-day slow-release pellet) or placebo (PL)]. At day 28−56, two groups of GC-treated animals had either PTH (5μg/kg, 5x/wk) or Ris (5μg/kg, 5x/wk) intervention. Bone quality and quantity measurements include x-ray tomography microscopy (XTM) for the degree of bone mineralization (DBM), microCT for bone microarchitecture, compression testing for trabecular bone strength, biochemistry and histomorphometry for bone turnover. In addition, real-time PCR and immunohistochemistry were performed to monitor the expression of several key genes regulating Wnt signaling (bone formation) and mineralization. Results Compared to the placebo treated mice, GC treatment decreased trabecular bone volume (BV/TV) and serum osteocalcin, but increased serum CTX and osteoclast surface with a peak at day 28. GC+PTH increased and GC+Ris restored BV/TV to the PL levels after a 28 day treatment period. Average DBM was lowered after GC treatment (−27%), and it was restored to PL level with GC+Ris and GC+PTH. At day 56, RT-PCR revealed that continuous exposure to GC and GC+PTH increased, while GC+Ris decreased the expression of genes that inhibit bone mineralization (Dmp1 and Phex), compared to the PL group. Wnt signaling antagonists Dkk1, Sost and Wif1 were up-regulated by GC treatment but were down-regulated after GC+PTH treatment. Immunohistochemistry of bone sections found GC increased N terminal dmp-1 while PTH treatment increased both N and C terminal dmp-1 staining around osteocytes. Summary GC excess reduced expression of genes that regulate mineralization and increased expression of genes that inhibit Wnt signaling which were associated with reduced bone formation and bone volume over a 60 day treatment period. The addition of both PTH and Ris improved bone mass, DBM and bone strength during concurrent GC treatment, with PTH lowering expression of Wnt inhibitors and increasing bone formation; while Ris lowered the expression of mineralization inhibitors and reversed the deterioration of bone mineralization induced by GC excess. PMID:18975341
Design and mechanical behavior of the MD series of bone dowels
NASA Astrophysics Data System (ADS)
Bianchi, John R.
Allograft bone dowels, developed at the University of Florida Tissue Bank, Inc (UFTB) and Regeneration Technologies, Inc (RTI), offer an alternative to the more conventional metallic and other synthetic dowels for spinal fusions. These dowels are machined from the long bone of human donor tissue. They are an advance over current implants because they possess the precise dimensional characteristics that are typical of metallic or other synthetic implants, are composed of mostly cortical bone, do not cause additional donor site morbidity associated with autografts, yet they retain the advantageous osteogenic characteristics of allografts and autografts. Allograft and autograft tissues have a well-established history in spinal fusions. However, postoperative failures are commonly reported. These failures are due to the variations in geometric, material, and mechanical properties of the implants. In addition, little research effort has been placed on insuring that these types of implants have at least a minimum level of load bearing capacity. The results of this research developed a novel method, based on statistical procedures and fracture mechanisms, that defines the strength of the MD-series of bone dowels and uses this technique to establish a nondestructive mechanical quality control procedure. In addition, the influence of donor characteristics such as age, and sex on the strength of the dowels was established. The role of different tissue banking processing steps on the strength of machined tissue was identified, as well as differences in strength among different dowel designs determined.
Z Movassagh, E; Kontulainen, S; Baxter-Jones, A D G; Whiting, S; Szafron, M; Papadimitropoulos, M; Vatanparast, H
2017-02-01
We investigated the impact of food group intake during adolescence on bone structure and strength during adulthood. In females, we found a beneficial effect of adolescent milk and alternatives and fruit and vegetable intake on adult radius shaft and distal tibia bone structure, respectively. No association was observed in males. The purpose of this study was to investigate whether adolescents with high intake of milk and alternatives (M&A) or fruit and vegetables (F&V) had better adult bone structure and strength compared to those with low intake levels. We analyzed data from 47 males and 69 females enrolled in the Pediatric Bone Mineral Accrual Study (PBMAS 1991-2011), who had one peripheral quantitative computed tomography scan at age 29 ± 2 years. We measured radius and tibia shaft total area (ToA), cortical area (CoA), cortical content (CoC), cortical density, bone strength (SSI p ), and muscle area, as well as distal radius and tibia ToA, total density, trabecular area, trabecular content, trabecular density, and bone strength (BSI c ). Sequential 24-h recalls were used to assess M&A and F&V intake; participants were grouped for their mean intake during adolescence (low = bottom quartile, moderate = middle quartiles, high = top quartile) and were compared using multivariate analysis of covariance while adjusting for adult height, muscle area, physical activity, energy and calcium intake and adolescent energy intake, and physical activity. Females with high M&A intake compared to low M&A intake group (mean 3.8 vs. 1.3 servings/day, respectively) had greater adult ToA (14 %, p < 0.05), CoA (15 %, p < 0.01), and CoC (16 %, p < 0.01) at radius shaft. Females with moderate F&V intake compared to low F&V intake group (mean 3.7 vs. 2.1 servings/day, respectively) had greater adult ToA (8.5 %, p < 0.05) at distal tibia. Higher intake of M&A or F&V during adolescence had a long-term beneficial effect on bone structure in females, an association not observed in males.
Evidence Report: Risk of Bone Fracture due to Spaceflight-Induced Changes to Bone
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Evans, Harlan J.; Smith, Scott A.; Spector, Elisabeth R.; Yardley, Greg; Myer, Jerry
2017-01-01
Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.
NASA Astrophysics Data System (ADS)
Schwiedrzik, Jakob; Raghavan, Rejin; Bürki, Alexander; Lenader, Victor; Wolfram, Uwe; Michler, Johann; Zysset, Philippe
2014-07-01
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2004-03-01
Since edentate subjects have a reduced masticatory function, it can be expected that the morphology of the cancellous bone of their mandibular condyles has changed according to the altered mechanical environment. In the present study, the morphology of cylindrical cancellous bone specimens of the mandibular condyles of edentate subjects (n = 25) was compared with that of dentate subjects (n = 24) by means of micro-computed tomography and by the application of Archimedes' principle. Stiffness and strength were determined by destructive mechanical testing. Compared with dentate subjects, it appeared that, in edentate subjects, the bone was less dense and the trabecular structure was less plate-like. The regression models of stiffness and strength built from bone volume fraction and the trabecular orientation relative to the axis of the specimen were similar for both dentate and edentate subjects. This indicates that, under reduced mechanical load, the fundamental relationship between bone morphology and mechanical properties does not change.
Grardel, B; Sutter, B; Flautre, B; Viguier, E; Lavaste, F; Hardouin, P
1994-07-01
The effects of corticosteroid on bone were examined in female growing rabbits treated with 0.7 mg/kg per day prednisolone for 5 months. The evolution of whole-body total bone mineral measured by dual-photon absorptiometry showed a significant difference between the prednisolone-treated group and the control group from the first to the fifth month. The histomorphometric profile of corticosteroid-induced osteoporosis was observed, in particular the lower bone volume and thinner and fewer trabecular plates. Mechanical tests are possible on rabbit vertebrae and showed a very significant difference in bone strength between the prednisolone-treated and control groups, and a good correlation between mechanical tests and histomorphometric or densitometric results. This bone corticosteroid model shows that vertebral compression tests are possible on rabbit lumbar vertebrae. It may contribute to a better evaluation of corticosteroid treatments.
Polymethylmethacrylate bone cements and additives: A review of the literature
Arora, Manit; Chan, Edward KS; Gupta, Sunil; Diwan, Ashish D
2013-01-01
Polymethylmethacrylate (PMMA) bone cement technology has progressed from industrial Plexiglass administration in the 1950s to the recent advent of nanoparticle additives. Additives have been trialed to address problems with modern bone cements such as the loosening of prosthesis, high post-operative infection rates, and inflammatory reduction in interface integrity. This review aims to assess current additives used in PMMA bone cements and offer an insight regarding future directions for this biomaterial. Low index (< 15%) vitamin E and low index (< 5 g) antibiotic impregnated additives significantly address infection and inflammatory problems, with only modest reductions in mechanical strength. Chitosan (15% w/w PMMA) and silver (1% w/w PMMA) nanoparticles have strong antibacterial activity with no significant reduction in mechanical strength. Future work on PMMA bone cements should focus on trialing combinations of these additives as this may enhance favourable properties. PMID:23610754
Muscle, bone, and the Utah paradigm: a 1999 overview.
Frost, H M
2000-05-01
The still-evolving Utah paradigm of skeletal physiology supplements former ideas about the control of postnatal bone strength and "mass" in health and disease, on earth and in orbit, and as functions of physical activities including sports. In its view, peak muscle forces on bone dominate control of the biologic mechanisms that control changes in our postnatal whole-bone strength and mass. This contrasts with former ideas that chiefly nonmechanical factors dominate that control and mechanical factors have little influence on it. The newer view begs the question of how such a bone-muscle relationship would work, and the Utah paradigm offers plausible explanations for that. Whereas many biomechanicians, orthopedists, and sports medicine experts might find the newer view sensible, some people in other disciplines may not. This article summarizes some evidence that support the Utah paradigm and the above-stated view and explores some of the paradigm's features and implications.
Placzek, R; Deuretzbacher, G; Meiss, A L
2002-12-01
It is claimed in the literature that hydroxyapatite(HA)-coated screws of external fixators have superior fixation strength in bone, which is postulated to lead to a substantial decrease in loosening and infection rates. We report on a study of the maximum torque values developed while inserting and removing 30 HA-coated Schanz screws of 8 Heidelberg external fixation systems applied to the tibia to correct leg length differences and axial deformities. The infection rate was determined in accordance with defined criteria, and was found to be about 20% for the HA-coated screws. Screws without infection showed an extraction torque above insertion torque, screws with infection an extraction torque below. A significant correlation (p = 0.05) was seen between infection and decrease in fixation strength (quotient: loosening torque/tightening torque). To exclude the impact of such biological processes as osteointegration and bone remodelling, the clinical results were compared with the torques measured for coated and uncoated Schanz screws in a human cadaveric tibia. A significantly higher fixation strength in bone was found for HA-coated screws in comparison with uncoated screws (p = 0.002). These data warrant a clinical study directly comparing HA-coated and uncoated Schanz screws.
Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C
2013-12-01
Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantitative computed tomography-based predictions of vertebral strength in anterior bending.
Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng
2007-04-20
This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.
NASA Astrophysics Data System (ADS)
Hellmich, Christian; Fritsch, Andreas; Dormieux, Luc
Biomimetics deals with the application of nature-made "design solutions" to the realm of engineering. In the quest to understand mechanical implications of structural hierarchies found in biological materials, multiscale mechanics may hold the key to understand "building plans" inherent to entire material classes, here bone and bone replacement materials. Analyzing a multitude of biophysical hierarchical and biomechanical experiments through homogenization theories for upscaling stiffness and strength properties reveals the following design principles: The elementary component "collagen" induces, right at the nanolevel, the mechanical anisotropy of bone materials, which is amplified by fibrillar collagen-based structures at the 100-nm scale, and by pores in the micrometer-to-millimeter regime. Hydroxyapatite minerals are poorly organized, and provide stiffness and strength in a quasi-brittle manner. Water layers between hydroxyapatite crystals govern the inelastic behavior of the nanocomposite, unless the "collagen reinforcement" breaks. Bone replacement materials should mimic these "microstructural mechanics" features as closely as possible if an imitation of the natural form of bone is desired (Gebeshuber et al., Adv Mater Res 74:265-268, 2009).
Kiuru, Maija; Solomon, Jason; Ghali, Bassem; van der Meulen, Marjolein; Crystal, Ronald G; Hidaka, Chisa
2009-01-01
Bone formation and remodeling involve coordinated interactions between osteoblasts and osteoclasts through signaling networks involving a variety of molecular pathways. We hypothesized that overexpression of Sonic hedgehog (Shh), a morphogen with a crucial role in skeletal development, would stimulate osteoblastogenesis and bone formation in adult animals in vivo. Systemic administration of adenovirus expressing the N-terminal form of Shh into adult mice resulted in a primary increase in osteoblasts and their precursors. Surprisingly, however, this was associated with altered trabecular morphology, decreased bone volume, and decreased compressive strength in the vertebrae. Whereas no change was detected in the number of osteoclast precursors, bone marrow stromal cells from Shh-treated mice showed enhanced osteoclastogenic potential in vitro. These effects were mediated by the PTH/PTH-related protein (PTHrP) pathway as evidenced by increased sensitivity to PTH stimulation and upregulation of the PTH/PTHrP receptor (PPR). Together, these data show that Shh has stimulatory effects on osteoprogenitors and osteoblasts in adult animals in vivo, which results in bone remodeling and reduced bone strength because of a secondary increase in osteoclastogenesis. PMID:19338448
Multanen, J.; Heinonen, A.; Häkkinen, A.; Kautiainen, H.; Kujala, U.M.; Lammentausta, E.; Jämsä, T.; Kiviranta, I.; Nieminen, M.T.
2015-01-01
Objectives: To evaluate the association between radiographically-assessed knee osteoarthritis and femoral neck bone characteristics in women with mild knee radiographic osteoarthritis and those without radiographic osteoarthritis. Methods: Ninety postmenopausal women (mean age [SD], 58 [4] years; height, 163 [6] cm; weight, 71 [11] kg) participated in this cross-sectional study. The severity of radiographic knee osteoarthritis was defined using Kellgren-Lawrence grades 0=normal (n=12), 1=doubtful (n=25) or 2=minimal (n=53). Femoral neck bone mineral content (BMC), section modulus (Z), and cross-sectional area (CSA) were measured with DXA. The biochemical composition of ipsilateral knee cartilage was estimated using quantitative MRI measures, T2 mapping and dGEMRIC. The associations between radiographic knee osteoarthritis grades and bone and cartilage characteristics were analyzed using generalized linear models. Results: Age-, height-, and weight-adjusted femoral neck BMC (p for linearity=0.019), Z (p for linearity=0.033), and CSA (p for linearity=0.019) increased significantly with higher knee osteoarthritis grades. There was no linear relationship between osteoarthritis grades and knee cartilage indices. Conclusions: Increased DXA assessed hip bone strength is related to knee osteoarthritis severity. These results are hypothesis driven that there is an inverse relationship between osteoarthritis and osteoporosis. However, MRI assessed measures of cartilage do not discriminate mild radiographic osteoarthritis severity. PMID:25730654
Uddin, Sardar M Z; Qin, Yi-Xian
2015-06-01
Disuse osteopenia and bone loss have been extensively reported in long duration space mission and long term bed rest. The pathology of the bone loss is similar to osteoporosis but highly confined to weight bearing bones. The current anabolic and/or anti-resorptive drugs have systemic effects and are costly over extended time, with concerns of long term fracture risk. This study use Low Intensity Pulsed Ultrasound (LIPUS) as a non-invasive acoustic force and anabolic stimulus to countermeasure disuse induced bone loss. Four-month old C57BL/6 mice were randomized into five groups, 1) age-matched (AM), 2) non-suspended sham (NS), 3) non-suspended-LIPUS (NU), 4) suspended sham (SS), and 5) suspended-LIPUS (SU) groups. After four weeks of suspension, μCT analyses showed significant decreases in trabecular bone volume fraction (BV/TV) (-36%, p<0.005), bone tissue mineral density (TMD) (-3%, p<0.05), trabecular thickness (Tb.Th) (-12.5%, p<0.005), and increase in bone surface/bone volume (+BS/BV) (+16%, p<0.005), relative to age-matched (AM). The application of LIPUS for 20 min/day for 5 days/week, significantly increased TMD (+3%, p<0.05), Tb.Th (+6%, p<0.05), and decreased BS/BV (-10%, p<0.005), relative to suspension alone (SS) mice. Histomorphometry analyses showed a breakdown of bone microstructure under disuse conditions consist with μCT results. In comparison to SS mice, LIPUS treated bone showed increased structural integrity with increased bone formation rates at metaphysical endosteal and trabecular surfaces (+0.104±0.07 vs 0.031±0.30 μm(3)/μm(2)/day) relative to SS. Four-point bending mechanical tests of disused SS femurs showed reduced elastic modulus (-53%, p<0.05), yield (-33%, p<0.05) and ultimate strength (-45%, p<0.05) at the femoral diaphysis relative to AM bone. LIPUS stimulation mitigated the adverse effects of disuse on bone elastic modulus (+42%, p<0.05), yield strength (+29%, p<0.05), and ultimate strength (+39%, p<0.05) relative to SS femurs. LIPUS provides the essential mechanical stimulus to retain bone morphological and mechanical integrity in disuse conditions. This study demonstrates LIPUS potential as regional therapeutic agent to countermeasure disuse induced bone loss while maintaining bone's integrity. Copyright © 2015 Elsevier Inc. All rights reserved.
Pullout strength of standard vs. cement-augmented rotator cuff repair anchors in cadaveric bone.
Aziz, Keith T; Shi, Brendan Y; Okafor, Louis C; Smalley, Jeremy; Belkoff, Stephen M; Srikumaran, Uma
2018-05-01
We evaluate a novel method of rotator cuff repair that uses arthroscopic equipment to inject bone cement into placed suture anchors. A cadaver model was used to assess the pullout strength of this technique versus anchors without augmentation. Six fresh-frozen matched pairs of upper extremities were screened to exclude those with prior operative procedures, fractures, or neoplasms. One side from each pair was randomized to undergo standard anchor fixation with the contralateral side to undergo anchor fixation augmented with bone cement. After anchor fixation, specimens were mounted on a servohydraulic testing system and suture anchors were pulled at 90° to the insertion to simulate the anatomic pull of the rotator cuff. Sutures were pulled at 1 mm/s until failure. The mean pullout strength was 540 N (95% confidence interval, 389 to 690 N) for augmented anchors and 202 N (95% confidence interval, 100 to 305 N) for standard anchors. The difference in pullout strength was statistically significant (P < 0.05). This study shows superior pullout strength of a novel augmented rotator cuff anchor technique. The described technique, which is achieved by extruding polymethylmethacrylate cement through a cannulated in situ suture anchor with fenestrations, significantly increased the ultimate failure load in cadaveric human humeri. This novel augmented fixation technique was simple and can be implemented with existing instrumentation. In osteoporotic bone, it may substantially reduce the rate of anchor failure. Copyright © 2018 Elsevier Ltd. All rights reserved.
A soluble bone morphogenetic protein type IA receptor increases bone mass and bone strength
Baud’huin, Marc; Solban, Nicolas; Cornwall-Brady, Milton; Sako, Dianne; Kawamoto, Yoshimi; Liharska, Katia; Lath, Darren; Bouxsein, Mary L.; Underwood, Kathryn W.; Ucran, Jeffrey; Kumar, Ravindra; Pobre, Eileen; Grinberg, Asya; Seehra, Jasbir; Canalis, Ernesto; Pearsall, R. Scott; Croucher, Peter I.
2012-01-01
Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFβ superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A–mFc) in vivo. mBMPR1A–mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A–mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A–mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders. PMID:22761317
Vitamin D in older population: new roles for this 'classic actor'?
Lauretani, Fulvio; Maggio, Marcello; Valenti, Giorgio; Dall'Aglio, Elisabetta; Ceda, Gian Paolo
2010-12-01
Vitamin D is a group of lipophilic hormones with pleiotropic actions. It has been traditionally related to bone metabolism, although several studies in the last decade have suggested its role in muscle strength and falls, cardiovascular and neurological diseases, insulin-resistance and diabetes, malignancies, autoimmune diseases and infections. Vitamin D appears to be a hormone with several actions and is fundamental for many biological systems including bone, skeletal muscle, brain and heart. The estimated worldwide prevalence of vitamin D deficiency of 50% in elderly subjects underlines the importance of vitamin D deficiency for public health. In this review, we will describe changes in vitamin D levels with age in both sexes, cut off values to define Vitamin D status, the impact of vitamin D deficiency in age-related disease and finally different therapeutic options available to treat Vitamin D deficiency in older populations.
Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model
USDA-ARS?s Scientific Manuscript database
Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...
The Skeletal Biology of Hibernating Woodchucks (Marmota monax)
NASA Astrophysics Data System (ADS)
Doherty, Alison H.
Long periods of inactivity in most mammals lead to significant bone loss that may not be completely recovered during an individual's lifetime regardless of future activity. Extended bouts of inactivity are the norm for hibernating mammals. It remains largely unknown, however, how these animals avoid adversely affecting bone, their quality, and ultimately survival given the challenges posed to their skeletons by inactivity and nutritional deprivation during hibernation. The primary goal of this project was to identify the physiological mechanisms regulating bone density, area and strength during extended periods of annual inactivity in hibernating woodchucks (Marmota monax). The overall hypothesis that bone integrity is unaffected by several months of inactivity during hibernation in woodchucks was tested across multiple levels of biological function. To gain a holistic assessment of seasonal bone integrity, the locomotor behavior and estimated stresses acting on woodchuck bones were investigated in conjunction with computed tomography scans and three-point bending tests to determine bone density, geometry, and mechanical properties of the long bones throughout the year. In addition, serum protein expression was examined to ascertain bone resorption and formation processes indicative of overall annual skeletal health. It was determined that woodchucks avoid significant changes in gait preference, but experience a decrease in bending stresses acting on distal limb bones following hibernation. Computed tomography scans indicated that bone mass, distribution, and trabecular structure are maintained in these animals throughout the year. Surprisingly, cortical density increased significantly posthibernation. Furthermore, three-point bending tests revealed that although less stiff, woodchuck femora were just as tough during the hibernation season, unlike brittle bones associated with osteoporosis. Finally, bone serum markers suggested a net maintenance of bone resorption and formation processes throughout the year. Taken together, these findings strongly suggest that woodchucks do not lose bone to the extent that would be expected from a non-hibernating animal during four months of inactivity. It is concluded that bone integrity is not adversely affected by hibernation in woodchucks. The results of this work have several broader implications toward skeletal biology research, the evolution of skeletal plasticity, and biomedical applications to osteoporosis prevention and treatment.
Garnero, Patrick
2008-01-01
Osteoporosis is a systemic disease characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increased risk of fracture. While the level of bone mass can be estimated by measuring bone mineral density (BMD) using dual X-ray absorptiometry (DXA), its measurement does not capture all the risk factors for fracture. Quantitative changes in skeletal turnover can be assessed easily and non-invasively by the measurement of serum and urinary biochemical markers; the most sensitive markers include serum osteocalcin, bone specific alkaline phosphatase, the N-terminal propeptide of type I collagen for bone formation, and the crosslinked C- (CTX) and N- (NTX) telopeptides of type I collagen for bone resorption. Advances in our knowledge of bone matrix biochemistry, most notably of post-translational modifications in type I collagen, are likely to lead to the development of new biochemical markers that reflect changes in the material property of bone, an important determinant of bone strength. Among those, the measurement of the urinary ratio of native (alpha) to isomerized (beta) CTX - an index of bone matrix maturation - has been shown to be predictive of fracture risk independently of BMD and bone turnover. In postmenopausal osteoporosis, levels of bone resorption markers above the upper limit of the premenopausal range are associated with an increased risk of hip, vertebral, and nonvertebral fracture, independent of BMD. Therefore, the combined use of BMD measurement and biochemical markers is helpful in risk assessment, especially in those women who are not identified as at risk by BMD measurement alone. Levels of bone markers decrease rapidly with antiresorptive therapies, and the levels reached after 3-6 months of therapy have been shown to be more strongly associated with fracture outcome than changes in BMD. Preliminary studies indicate that monitoring changes of bone formation markers could also be useful to monitor anabolic therapies, including intermittent parathyroid hormone administration and, possibly, to improve adherence to treatment. Thus, repeated measurements of bone markers during therapy may help improve the management of osteoporosis in patients.
Top 10 Research Questions Related to Physical Activity and Bone Health in Children and Adolescents
ERIC Educational Resources Information Center
Janz, Kathleen F.; Thomas, David Q.; Ford, M. Allison; Williams, Skip M.
2015-01-01
Evidence strongly supports a positive, causal effect of physical activity on bone strength and suggests long-term benefits of childhood physical activity to the prevention of osteoporosis. The contribution of healthy bone development in youth is likely to be as important to fracture prevention as the amount of late adulthood bone loss. Families,…
Ben Kahla, Rabeb; Barkaoui, Abdelwahed; Merzouki, Tarek
2018-08-01
Bone tissue is a living composite material, providing mechanical and homeostatic functions, and able to constantly adapt its microstructure to changes in long term loading. This adaptation is conducted by a physiological process, known as "bone remodeling". This latter is manifested by interactions between osteoclasts and osteoblasts, and can be influenced by many local factors, via effects on bone cell differentiation and proliferation. In the current work, age and gender effects on damage rate evolution, throughout life, have been investigated using a mechanobiological finite element modeling. To achieve the aim, a mathematical model has been developed, coupling both cell activities and mechanical behavior of trabecular bone, under cyclic loadings. A series of computational simulations (ABAQUS/UMAT) has been performed on a 3D human proximal femur, allowing to investigate the effects of mechanical and biological parameters on mechanical strength of trabecular bone, in order to evaluate the fracture risk resulting from fatigue damage. The obtained results revealed that mechanical stimulus amplitude affects bone resorption and formation rates, and indicated that age and gender are major factors in bone response to the applied loadings. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.
2016-11-01
Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in physiological media and high permeability falling in the range of trabecular bone. The proposed low-temperature processing approach allows for incorporation of drugs into the residual nanopores without damaging the biomolecule activity.
Morse, A; Yu, N Y C; Peacock, L; Mikulec, K; Kramer, I; Kneissel, M; McDonald, M M; Little, D G
2015-02-01
Sclerostin deficiency, via genetic knockout or anti-Sclerostin antibody treatment, has been shown to cause increased bone volume, density and strength of calluses following endochondral bone healing. However, there is limited data on the effect of Sclerostin deficiency on the formative early stage of fibrocartilage (non-bony tissue) formation and removal. In this study we extensively investigate the early fibrocartilage callus. Closed tibial fractures were performed on Sost(-/-) mice and age-matched wild type (C57Bl/6J) controls and assessed at multiple early time points (7, 10 and 14days), as well as at 28days post-fracture after bony union. External fixation was utilized, avoiding internal pinning and minimizing differences in stability stiffness, a variable that has confounded previous research in this area. Normal endochondral ossification progressed in wild type and Sost(-/-) mice with equivalent volumes of fibrocartilage formed at early day 7 and day 10 time points, and bony union in both genotypes by day 28. There were no significant differences in rate of bony union; however there were significant increases in fibrocartilage removal from the Sost(-/-) fracture calluses at day 14 suggesting earlier progression of endochondral healing. Earlier bone formation was seen in Sost(-/-) calluses over wild type with greater bone volume at day 10 (221%, p<0.01). The resultant Sost(-/-) united bony calluses at day 28 had increased bone volume fraction compared to wild type calluses (24%, p<0.05), and the strength of the fractured Sost(-/-) tibiae was greater than that that of wild type fractured tibiae. In summary, bony union was not altered by Sclerostin deficiency in externally-fixed closed tibial fractures, but fibrocartilage removal was enhanced and the resultant united bony calluses had increased bone fraction and increased strength. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Baker, Joshua F; Davis, Matthew; Alexander, Ruben; Zemel, Babette S; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J; Leonard, Mary B
2013-03-01
The objective of this study was to identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21-78years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p<0.05). Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). These data highlight age-, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age-, sex- and race-related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. Published by Elsevier Inc.
Baker, Joshua F.; Davis, Matthew; Alexander, Ruben; Zemel, Babette S.; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J.; Leonard, Mary B.
2012-01-01
Background/Purpose The objective of this study was identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. Methods This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21–78 years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p < 0.05). Results Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). Conclusions These data highlight age, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age, sex- and race- related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. PMID:23238122
Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L
2015-10-01
Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.
Syddall, Holly E; Evandrou, Maria; Dennison, Elaine M; Cooper, Cyrus; Sayer, Avan Aihie
2012-01-01
It is unknown whether osteoporosis is socially patterned. Using data from the Hertfordshire Cohort Study we found no consistent evidence for social inequalities in prevalent or incident fracture, bone mineral density or loss rates, or bone strength. Public health strategies for prevention of osteoporosis should focus on the whole population. Osteoporosis and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. It is unclear whether osteoporosis and osteoporotic fracture are socially patterned. This study aims to analyse social inequalities in osteoporosis and osteoporotic fracture among the 3,225 community-dwelling men and women, aged 59-73 years, who participated in the Hertfordshire Cohort Study (HCS), UK. A panel of markers of bone health (fracture since 45 years of age; DXA bone mineral density and loss rate at the total femur; pQCT strength strain indices for the radius and tibia; and incident fracture) were analysed in relation to the social circumstances of the HCS participants (characterised at the individual level by: age left full time education; current social class; housing tenure and car availability). We found little strong or consistent evidence among men, or women, for social inequalities in prevalent or incident fracture, DXA bone mineral density, bone loss rates, or pQCT bone strength, with or without adjustment for age, anthropometry, lifestyle and clinical characteristics. Reduced car availability at baseline was associated with lower pQCT radius and tibia strength strain indices at follow-up among men only (p = 0.02 radius and p < 0.01 tibia unadjusted; p = 0.05 radius and p = 0.01 tibia, adjusted for age, anthropometry, lifestyle and clinical characteristics). Our results suggest that fracture and osteoporosis do not have a strong direct social gradient and that public health strategies for prevention and treatment of osteoporosis should continue to focus on the whole population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Quanwei; Chen, Sixu; Qin, Hao
Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice.more » Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength. - Highlights: • Wnt/β-catenin signaling plays a central role in controlling bone mass. • CA-β-catenin has side effects on the bone strength and bone qulity. • CA-β-catenin kept osteoblasts in high proliferative state. • Osteoblastic CA-β-catenin impaired the terminal osteoblast differentiation.« less
Khan, Mohd Parvez; Singh, Atul Kumar; Singh, Abhishek Kumar; Shrivastava, Pragya; Tiwari, Mahesh Chandra; Nagar, Geet Kumar; Bora, Himangshu Kousik; Parameswaran, Venkitanarayanan; Sanyal, Sabyasachi; Bellare, Jayesh R; Chattopadhyay, Naibedya
2016-03-01
Cathepsin K (CK), a lysosomal cysteine protease, is highly expressed in mature osteoclasts and degrades type 1 collagen. Odanacatib (ODN) is a selective and reversible CK inhibitor that inhibits bone loss in preclinical and clinical studies. Although an antiresorptive, ODN does not suppress bone formation, which led us to hypothesize that ODN may display restorative effect on the osteopenic bones. In a curative study, skeletally mature New Zealand rabbits were ovarectomized (OVX) and after induction of bone loss were given a steady-state exposure of ODN (9 mM/d) for 14 weeks. Sham-operated and OVX rabbits treated with alendronate (ALD), 17b-estradiol (E2), or parathyroid hormone (PTH) served as various controls. Efficacy was evaluated by assessing bone mineral density (BMD), bone microarchitecture (using micro-computed tomography), fluorescent labeling of bone, and biomechanical strength. Skeletal Ca/P ratio was measured by scanning electron microscopy (SEM) with X-ray microanalysis, crystallinity by X-ray diffraction, and bone mineral density distribution (tissue mineralization) by backscattered SEM. Between the sham and ODN-treated osteopenic groups, lumbar and femur metaphyseal BMD, Ca/P ratio, trabecular microstructure and geometric indices, vertebral compressive strength, trabecular lining cells, cortical parameters (femoral area and thickness and periosteal deposition), and serum P1NP were largely comparable. Skeletal improvements in ALD-treated or E2-treated groups fell significantly short of the sham/ODN/PTH group. However, the ODN group displayed reduced ductility and enhanced brittleness of central femur, which might have been contributed by higher crytallinity and tissue mineralization. Rabbit bone marrow stromal cells expressed CK and when treated with ODN displayed increased formation of mineralized nodules and decreased apoptosis in serum-deficient medium compared with control. In vivo, ODN did not suppress remodeling but inhibited osteoclast activity more than ALD. Taken together, we show that ODN reverses BMD, skeletal architecture, and compressive strength in osteopenic rabbits; however, it increases crystallinity and tissue mineralization, thus leading to increased cortical bone brittleness. © 2015 American Society for Bone and Mineral Research.
Fabrication of Bioceramic Bone Scaffolds for Tissue Engineering
NASA Astrophysics Data System (ADS)
Liu, Fwu-Hsing
2014-10-01
In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.
Effects of pulsed electromagnetic fields on postmenopausal osteoporosis.
Zhu, Siyi; He, Hongchen; Zhang, Chi; Wang, Haiming; Gao, Chengfei; Yu, Xijie; He, Chengqi
2017-09-01
Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Effect of dietary citric acid on the performance and mineral metabolism of broiler.
Islam, K M S; Schaeublin, H; Wenk, C; Wanner, M; Liesegang, A
2012-10-01
The objective of this study was to investigate the effect of dietary citric acid (CA) on the performance and mineral metabolism of broiler chicks. A total of 1720 Ross PM3 broiler chicks (days old) were randomly assigned to four groups (430 in each) and reared for a period of 35 days. The diets of groups 1, 2, 3 and 4 were supplemented with 0%, 0.25%, 0.75% or 1.25% CA by weight respectively. Feed and faeces samples were collected weekly and analysed for acid insoluble ash, calcium (Ca), phosphorus (P) and magnesium (Mg). The pH was measured in feed and faeces. At the age of 28 days, 10 birds from each group were slaughtered; tibiae were collected from each bird for the determination of bone mineral density, total ash, Ca, P, Mg and bone-breaking strength, and blood was collected for the measurement of osteocalcin, serum CrossLaps(®), Ca, P, Mg and 1,25(OH)(2)Vit-D in serum. After finishing the trial on day 37, all chicks were slaughtered by using the approved procedure. Birds that were fed CA diets were heavier (average body weights of 2030, 2079 and 2086 g in the 0.25%, 0.75% and 1.25% CA groups, respectively, relative to the control birds (1986 g). Feed conversion efficiency (weight gain in g per kg of feed intake) was also higher in birds of the CA-fed groups (582, 595 and 587 g/kg feed intake for 0.25%, 0.75% and 1.25% CA respectively), relative to the control birds (565 g/kg feed intake). The digestibility of Ca, P and Mg increased in the CA-fed groups, especially for the diets supplemented with 0.25% and 0.75% CA. Support for finding was also indicated in the results of the analysis of the tibia. At slaughter, the birds had higher carcass weights and higher graded carcasses in the groups that were fed the CA diets. The estimated profit margin was highest for birds fed the diet containing 0.25% CA. Birds of the 0.75% CA group were found to have the second highest estimated profit margin. Addition of CA up to a level of 1.25% of the diet increased performance, feed conversion efficiency, carcass weight and carcass quality, but only in numerical terms. The addition of CA up to 0.75% significantly increased the digestibility of macro minerals, bone ash content, bone mineral density and bone strength of the broiler chicks. It may, therefore, be concluded that the addition of 0.75% CA in a standard diet is suitable for growth, carcass traits, macromineral digestibility and bone mineral density of broiler chicks. © 2011 Blackwell Verlag GmbH.
Bozzini, Carlos E; Champin, Graciela M; Alippi, Rosa M; Bozzini, Clarisa
2013-04-01
The present study describes the effects of feeding growing rats with diets containing increasing concentrations of wheat gluten (a low quality protein, G) on both the morphometrical and the biomechanical properties of the mandible. Female rats were fed one of six diets containing different concentrations (5-30%) of G between the 30th and 90th days of life. Control rats were fed a diet containing 20% casein (C), which allows a normal growth and development of the bone. Mandibular growth was estimated directly on excised and cleaned bones by taking measurements between anatomical points. Mechanical properties of the right hemimandibles were determined by using a three-point bending mechanical test to obtain a load/deformation curve and estimate the structural properties of the bone. Bone material properties were calculated from structural and geometric properties. The left hemimandibles were ashed and the ash weight obtained. Calcium content was determined by atomic energy absorption. Results were summarised as means±SEM. Comparisons between parameters were performed by ANOVA and post-test. None of the G-fed groups could achieve a normal growth performance as compared to the C-fed control group. Like body size, age-related increments in mandibular weight, length, height and area (index of mandibular size) were negatively affected by the G diets, as was the posterior part of the bone (posterior to molar III). The cross-sectional geometry of the mandible (cross-sectional area and rectangular moment of inertia) as well as its structural properties (yielding load, fracture load, and stiffness) were also severely affected by the G diets. However, material properties (Young's modulus and maximum elastic stress) and calcium concentration in ashes and the degree of mineralisation were unaffected. The differences in strength and stiffness between treated and control rats seemed to be the result of an induced loss of gain in bone growth and mass, in the absence of changes in the quality of the bone mineralised material. Copyright © 2012 Elsevier Ltd. All rights reserved.
Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.
Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi
2017-08-01
The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm 3 vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.
Camargos G. V.; Bhattacharya P.; van Lenthe G. H.; Del Bel Cury A. A.; Naert I.; Duyck J.; Vandamme K.
2015-01-01
Osteoporosis leads to increased bone fragility, thus effective approaches enhancing bone strength are needed. Hence, this study investigated the effect of single or combined application of high-frequency (HF) loading through whole body vibration (WBV) and alendronate (ALN) on the mechanical competence of ovariectomy-induced osteoporotic bone. Thirty-four female Wistar rats were ovariectomized (OVX) or sham-operated (shOVX) and divided into five groups: shOVX, OVX-shWBV, OVX-WBV, ALN-shWBV and ALN-WBV. (Sham)WBV loading was applied for 10 min/day (130 to 150 Hz at 0.3g) for 14 days and ALN at 2 mg/kg/dose was administered 3x/week. Finite element analysis based on micro-CT was employed to assess bone biomechanical properties, relative to bone micro-structural parameters. HF loading application to OVX resulted in an enlarged cortex, but it was not able to improve the biomechanical properties. ALN prevented trabecular bone deterioration and increased bone stiffness and bone strength of OVX bone. Finally, the combination of ALN with HF resulted in an increased cortical thickness in OVX rats when compared to single treatments. Compared to HF loading, ALN treatment is preferred for improving the compromised mechanical competence of OVX bone. In addition, the association of ALN with HF loading results in an additive effect on the cortical thickness. PMID:26027958
New approach to probability estimate of femoral neck fracture by fall (Slovak regression model).
Wendlova, J
2009-01-01
3,216 Slovak women with primary or secondary osteoporosis or osteopenia, aged 20-89 years, were examined with the bone densitometer DXA (dual energy X-ray absorptiometry, GE, Prodigy - Primo), x = 58.9, 95% C.I. (58.42; 59.38). The values of the following variables for each patient were measured: FSI (femur strength index), T-score total hip left, alpha angle - left, theta angle - left, HAL (hip axis length) left, BMI (body mass index) was calculated from the height and weight of the patients. Regression model determined the following order of independent variables according to the intensity of their influence upon the occurrence of values of dependent FSI variable: 1. BMI, 2. theta angle, 3. T-score total hip, 4. alpha angle, 5. HAL. The regression model equation, calculated from the variables monitored in the study, enables a doctor in praxis to determine the probability magnitude (absolute risk) for the occurrence of pathological value of FSI (FSI < 1) in the femoral neck area, i. e., allows for probability estimate of a femoral neck fracture by fall for Slovak women. 1. The Slovak regression model differs from regression models, published until now, in chosen independent variables and a dependent variable, belonging to biomechanical variables, characterising the bone quality. 2. The Slovak regression model excludes the inaccuracies of other models, which are not able to define precisely the current and past clinical condition of tested patients (e.g., to define the length and dose of exposure to risk factors). 3. The Slovak regression model opens the way to a new method of estimating the probability (absolute risk) or the odds for a femoral neck fracture by fall, based upon the bone quality determination. 4. It is assumed that the development will proceed by improving the methods enabling to measure the bone quality, determining the probability of fracture by fall (Tab. 6, Fig. 3, Ref. 22). Full Text (Free, PDF) www.bmj.sk.
Bone remodelling: its local regulation and the emergence of bone fragility.
Martin, T John; Seeman, Ego
2008-10-01
Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.
Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo
2017-01-02
Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Jincheng; Lombardi, Giovanni; Jiao, Wei; Banfi, Giuseppe
2016-08-01
Osteoporosis and postmenopausal bone loss pose a huge social and economic burden worldwide. Regular exercise and physical activity are effective interventions for maximizing or maintaining peak bone mass and preventing bone loss in the elderly; however, most recommendations are addressed to the general public and lack specific indications for girls and women, the segment of the population most at risk for developing osteoporosis. The aim of this overview of systematic reviews and meta-analyses was to summarize current evidence for the effects of exercise and physical activity interventions on bone status in girls and women, and to explore whether specific exercise programs exist for improving or maintaining bone mass or bone strength in females. The PubMed, EMBASE, PEDro, and Cochrane Library databases were searched from January 2009, updated to 22 June 2015, using the following groups of search terms: (i) 'physical activity' and 'exercise'; and (ii) 'bone', 'bone health', 'bone strength', 'bone structure', 'bone metabolism', 'bone turnover', and 'bone biomarkers'. Searches and screening were limited to systematic reviews or meta-analyses of studies in females and published in English. Our final analysis included 12 articles that met the inclusion criteria. Combined-impact exercise protocols (impact exercise with resistance training) are the best choice to preserve/improve bone mineral density in pre- and postmenopausal women. Peak bone mass in young girls can be improved with short bouts of school-based high-impact plyometric exercise programs. Whole-body vibration exercises have no beneficial effects on bone in postmenopausal or elderly women. Lifelong exercise, specific for age, is an effective way to sustain bone health in girls and women.
Prediction of bone strength at the distal tibia by HR-pQCT and DXA.
Popp, Albrecht W; Windolf, Markus; Senn, Christoph; Tami, Andrea; Richards, R Geoff; Brianza, Stefano; Schiuma, Damiano
2012-01-01
Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength. Anatomical tibiae were examined ex vivo by DXA (aBMD) and HR-pQCT (volumetric BMD (vBMD) and bone microstructural parameters). Cortical thickness (CTh) and polar moment of inertia (pMOI) were derived from DXA measurements. Finally, an index combining material (BMD) and mechanical property (polar moment of inertia, pMOI) was defined and analyzed for correlation with torque at failure and stiffness values obtained by biomechanical testing. Areal BMD predicted the vBMD at T-EPI and T-DIA. A high correlation was found between aBMD and microstructural parameters at T-EPIas well as between aBMD and CTh at T-DIA. Finally, at T-DIA both indexes combining BMD and pMOI were strongly and comparably correlated with torque at failure and bone stiffness. Ex vivo, at the distal tibial diaphysis, a novel index combining BMD and pMOI, which can be calculated directly from a single DXA measurement, predicted bone strength and stiffness better than either parameter alone and with an order of magnitude comparable to that of HR-pQCT. Whether this index is suitable for better prediction of fracture risk in vivo deserves further investigation. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakata, Kouhei; Kawai, Nobuyuki; Sato, Morio, E-mail: morisato@mail.wakayama-med.ac.jp
Purpose: This study was designed to compare the strength among bone marrow nails created to treat long bone fractures using interventional procedures. Methods: Twelve resected intact tibiae of healthy swine were used. A circumferential bone fracture was made in nine tibiae and restored with the following created bone marrow nails: acrylic cement alone (ACA) (n = 3), acrylic-cement-filled bare metallic stent (AC-FBMS) (n = 3), and acrylic-cement-filled covered metallic (AC-FCMS) stent (n = 3). The remaining intact tibiae (n = 3) were used as controls. Results: A bone marrow nail was successfully achieved within 30 min in all swine. Themore » maximum injection volume of acrylic cement for creating ACA, AC-FBMS, and AC-FCMS was 1.7 {+-} 0.3, 3.2 {+-} 0.4, and 2.9 {+-} 0.4 mL, respectively. The thickness of bone marrow nail created in the ACA, AC-FBMS, and AC-FCMS groups was 3.6 {+-} 1.0, 10.3 {+-} 0.26, and 9.6 {+-} 0.32 mm, respectively (AC-FBMS group versus AC-FCMS group, p = 0.038), probably because of leakage of acrylic cement surrounding the interstices. The maximum bending power (kilonewton) and bending strength (newton/mm{sup 2}) in the normal long bone, ACA, AC-FBMS, and AC-FCMS groups were: 1.70 {+-} 0.25 and 79.2 {+-} 16.1; 0.21 {+-} 0.11 and 8.8 {+-} 2.8; 0.46 {+-} 0.06 and 18.2 {+-} 1.6; and 0.18 {+-} 0.04 and 7.8 {+-} 2.7, respectively. Conclusions: Although the maximum bending power and bending strength of AC-FBMS were not satisfactory, it was the most robust of the three marrow nails for restoring fractured long bone.« less
Quantifying Leisure Physical Activity and Its Relation to Bone Density and Strength
SHEDD, KRISTINE M.; HANSON, KATHY B.; ALEKEL, D. LEE; SCHIFERL, DANIEL J.; HANSON, LAURA N.; VAN LOAN, MARTA D.
2010-01-01
Purpose Compare three published methods of quantifying physical activity (total activity, peak strain, and bone-loading exposure (BLE) scores) and identify their associations with areal bone mineral density (aBMD), volumetric BMD (vBMD), and bone strength. Methods Postmenopausal women (N = 239; mean age: 53.8 yr) from Iowa (ISU) and California (UCD) completed the Paffenbarger Physical Activity Questionnaire, which was scored with each method. Dual energy x-ray absorptiometry assessed aBMD at the spine, hip, and femoral neck, and peripheral quantitative computed tomography (pQCT) measured vBMD and bone strength properties at the distal tibia and midshaft femur. Results UCD women had higher total activity scores and hours per week of leisure activity. All scoring methods were correlated with each other. No method was associated with aBMD. Peak strain score was negatively associated with polar moment of inertia and strength–strain index at the tibia, and total activity score was positively associated with cortical area and thickness at the femur. Separating by geographic site, the peak strain and hip BLE scores were negatively associated with pQCT measures at the tibia and femur among ISU subjects. Among UCD women, no method was significantly associated with any tibia measure, but total activity score was positively associated with measures at the femur (P < 0.05 for all associations). Conclusion Given the significantly greater hours per week of leisure activity done by UCD subjects, duration may be an important determinant of the effect physical activity has on bone. The positive association between leisure physical activity (assessed by the total activity score) and cortical bone measures in postmenopausal women may indicate a lifestyle factor that can help offset age-related bone loss. PMID:18046190
Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
Yoshida, T; Miyaji, H; Otani, K; Inoue, K; Nakane, K; Nishimura, H; Ibara, A; Shimada, A; Ogawa, K; Nishida, E; Sugaya, T; Sun, L; Fugetsu, B; Kawanami, M
2015-04-01
Beta-tricalcium phosphate (β-TCP), a bio-absorbable ceramic, facilitates bone conductivity. We constructed a highly porous three-dimensional scaffold, using β-TCP, for bone tissue engineering and coated it with co-poly lactic acid/glycolic acid (PLGA) to improve the mechanical strength and biological performance. The aim of this study was to examine the effect of implantation of the PLGA/β-TCP scaffold loaded with fibroblast growth factor-2 (FGF-2) on bone augmentation. The β-TCP scaffold was fabricated by the replica method using polyurethane foam, then coated with PLGA. The PLGA/β-TCP scaffold was characterized by scanning electron miscroscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, compressive testing, cell culture and a subcutaneous implant test. Subsequently, a bone-forming test was performed using 52 rats. The β-TCP scaffold, PLGA-coated scaffold, and β-TCP and PLGA-coated scaffolds loaded with FGF-2, were implanted into rat cranial bone. Histological observations were made at 10 and 35 d postsurgery. SEM and TEM observations showed a thin PLGA layer on the β-TCP particles after coating. High porosity (> 90%) of the scaffold was exhibited after PLGA coating, and the compressive strength of the PLGA/β-TCP scaffold was six-fold greater than that of the noncoated scaffold. Good biocompatibility of the PLGA/β-TCP scaffold was found in the culture and implant tests. Histological samples obtained following implantation of PLGA/β-TCP scaffold loaded with FGF-2 showed significant bone augmentation. The PLGA coating improved the mechanical strength of β-TCP scaffolds while maintaining high porosity and tissue compatibility. PLGA/β-TCP scaffolds, in combination with FGF-2, are bioeffective for bone augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Interaction Between Bone and Muscle in Older Persons with Mobility Limitations
Ferrucci, L.; Baroni, M.; Ranchelli, A.; Lauretani, F.; Maggio, M.; Mecocci, P.; Ruggiero, C.
2015-01-01
Aging is associated with a progressive loss of bone-muscle mass and strength. When the decline in mass and strength reaches critical thresholds associated with adverse health outcomes, they are operationally considered geriatric conditions and named, respectively, osteoporosis and sarcopenia. Osteoporosis and sarcopenia share many of the same risk factors and both directly or indirectly cause higher risk of mobility limitations, falls, fractures and disability in activities of daily living. This is not surprising since bones adapt their morphology and strength to the long-term loads exerted by muscle during anti-gravitational and physical activities. Non-mechanical systemic and local factors also modulate the mechanostat effect of muscle on bone by affecting the bidirectional osteocyte-muscle crosstalk, but the specific pathways that regulate these homeostatic mechanisms are not fully understood. More research is required to reach a consensus on cut points in bone and muscle parameters that identify individuals at high risk for adverse health outcomes, including falls, fractures and disability. A better understanding of the muscle-bone physiological interaction may help to develop preventive strategies that reduce the burden of musculoskeletal diseases, the consequent disability in older persons and to limit the financial burden associated with such conditions. In this review, we summarize age-related bone-muscle changes focusing on the biomechanical and homeostatic mechanisms that explain bone-muscle interaction and we speculate about possible pathological events that occur when these mechanisms become impaired. We also report some recent definitions of osteoporosis and sarcopenia that have emerged in the literature and their implications in clinical practice. Finally, we outline the current evidence for the efficacy of available anti-osteoporotic and proposed anti-sarcopenic interventions in older persons. PMID:24050165