Science.gov

Sample records for estimate groundwater flow

  1. 3PE: A Tool for Estimating Groundwater Flow Vectors

    EPA Science Inventory

    Evaluation of hydraulic gradients and the associated groundwater flow rates and directions is a fundamental aspect of hydrogeologic characterization. Many methods, ranging in complexity from simple three-point solution techniques to complex numerical models of groundwater flow, ...

  2. Radiocarbon Determinations for Estimating Groundwater Flow Velocities in Central Florida.

    PubMed

    Hanshaw, B B; Back, W; Rubin, M

    1965-04-23

    Carbon-14 activity was determined from HCO(3)(-) in samples of groundwater obtained from the principal artesian aquifer in Florida. From these data the "age" of water obtained from a series of wells, each progressively farther down gradient on the piezometric surface, was established. Relative carbon-14 ages indicated a velocity of groundwater movement of 23 feet (7 meters) per year for about 85 miles (137 kilometers) of travel. A velocity of 23 feet per year was calculated independently from Darcy's law.

  3. Radiocarbon determinations for estimating groundwater flow velocities in central Florida

    USGS Publications Warehouse

    Hanshaw, B.B.; Back, W.; Rubin, M.

    1965-01-01

    Carbon-14 activity was determined from HCO3- in samples of groundwater obtained from the principal artesian aquifer in Florida. From these data the "age" of water obtained from a series of wells, each progressively farther down gradient on the piezometric surface, was established. Relative carbon-14 ages indicated a velocity of groundwater movement of 23 feet (7 meters) per year for about 85 miles (137 kilometers) of travel. A velocity of 23 feet per year was calculated independently from Darcy's law.

  4. Simultaneous parameter estimation and contaminant source characterization for coupled groundwater flow and contaminant transport modelling

    USGS Publications Warehouse

    Wagner, B.J.

    1992-01-01

    Parameter estimation and contaminant source characterization are key steps in the development of a coupled groundwater flow and contaminant transport simulation model. Here a methodologyfor simultaneous model parameter estimation and source characterization is presented. The parameter estimation/source characterization inverse model combines groundwater flow and contaminant transport simulation with non-linear maximum likelihood estimation to determine optimal estimates of the unknown model parameters and source characteristics based on measurements of hydraulic head and contaminant concentration. First-order uncertainty analysis provides a means for assessing the reliability of the maximum likelihood estimates and evaluating the accuracy and reliability of the flow and transport model predictions. A series of hypothetical examples is presented to demonstrate the ability of the inverse model to solve the combined parameter estimation/source characterization inverse problem. Hydraulic conductivities, effective porosity, longitudinal and transverse dispersivities, boundary flux, and contaminant flux at the source are estimated for a two-dimensional groundwater system. In addition, characterization of the history of contaminant disposal or location of the contaminant source is demonstrated. Finally, the problem of estimating the statistical parameters that describe the errors associated with the head and concentration data is addressed. A stage-wise estimation procedure is used to jointly estimate these statistical parameters along with the unknown model parameters and source characteristics. ?? 1992.

  5. Two-Dimensional Advective Transport in Ground-Water Flow Parameter Estimation

    USGS Publications Warehouse

    Anderman, E.R.; Hill, M.C.; Poeter, E.P.

    1996-01-01

    Nonlinear regression is useful in ground-water flow parameter estimation, but problems of parameter insensitivity and correlation often exist given commonly available hydraulic-head and head-dependent flow (for example, stream and lake gain or loss) observations. To address this problem, advective-transport observations are added to the ground-water flow, parameter-estimation model MODFLOWP using particle-tracking methods. The resulting model is used to investigate the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Otis Air Force Base, Cape Cod, Massachusetts, USA. The analysis procedure for evaluating the probable effect of new observations on the regression results consists of two steps: (1) parameter sensitivities and correlations calculated at initial parameter values are used to assess the model parameterization and expected relative contributions of different types of observations to the regression; and (2) optimal parameter values are estimated by nonlinear regression and evaluated. In the Cape Cod parameter-estimation model, advective-transport observations did not significantly increase the overall parameter sensitivity; however: (1) inclusion of advective-transport observations decreased parameter correlation enough for more unique parameter values to be estimated by the regression; (2) realistic uncertainties in advective-transport observations had a small effect on parameter estimates relative to the precision with which the parameters were estimated; and (3) the regression results and sensitivity analysis provided insight into the dynamics of the ground-water flow system, especially the importance of accurate boundary conditions. In this work, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and use of

  6. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    USGS Publications Warehouse

    Carlson Mazur, Martha L.; Michael J. Wiley,; Douglas A. Wilcox,

    2015-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions.

  7. Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system

    USGS Publications Warehouse

    Bravo, H.R.; Jiang, F.; Hunt, R.J.

    2002-01-01

    Parameter estimation is a powerful way to calibrate models. While head data alone are often insufficient to estimate unique parameters due to model nonuniqueness, flow-and-heat-transport modeling can constrain estimation and allow simultaneous estimation of boundary fluxes and hydraulic conductivity. In this work, synthetic and field models that did not converge when head data were used did converge when head and temperature were used. Furthermore, frequency domain analyses of head and temperature data allowed selection of appropriate modeling timescales. Inflows in the Wilton, Wisconsin, wetlands could be estimated over periods such as a growing season and over periods of a few days when heads were nearly steady and groundwater temperature varied during the day. While this methodology is computationally more demanding than traditional head calibration, the results gained are unobtainable using the traditional approach. These results suggest that temperature can efficiently supplement head data in systems where accurate flux calibration targets are unavailable.

  8. Estimation of regional-scale groundwater flow properties in the Bengal Basin of India and Bangladesh

    USGS Publications Warehouse

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system. ?? US Government 2009.

  9. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    USGS Publications Warehouse

    Migration_USER, IPDS; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Estimation of the pore pressure distribution from three dimensional groundwater flow model at mine sites in Korea

    NASA Astrophysics Data System (ADS)

    Kang, Sangsoo; Jang, Myounghwan; Kim, Gyoungman; Kim, Donghui; Kim, Daehoon; Baek, Hwanjo

    2016-04-01

    Mining activities continually change the groundwater flow and associated pore pressure distributions within the rockmass around the mine openings or the open-pit bench during the operational periods. As the pore pressure distributions may substantially affect the mechanical behaviour or stability of the rockmass, it is important to monitor the variation of pore pressure incurred by mining operation. The pore pressure distributions within the rockmass can be derived using a two- or three-dimensional finite element groundwater flow model, adopted to simulate the groundwater flow. While the groundwater inflow at mines has generally been dealt with respect to the working environment, detailed case studies on the distribution of pore water pressure related to the stability analysis of mine openings have been relatively rare in Korea. Recently, however, as the health and safety problems are emerged for sustainable mining practice, these issues are of the major concerns for the mining industries. This study aims to establish a three dimensional groundwater flow model to estimate the pore pressure distributions in order to employ as an input parameter for numerical codes such as the FLAC 3D. Also, the groundwater flow simulated can be used for de-watering design at a mine site. The MINEDW code, a groundwater flow model code specifically developed to simulate the complicated hydro-geologic conditions related to mining, has mainly been used in this study. Based on the data collected from field surveys and literature reviews, a conceptual model was established and sensitivity analysis was performed.

  11. Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream.

    PubMed

    Ferguson, Grant; Bense, Victor

    2011-01-01

    Temperature measurements have been used by a variety of researchers to gain insight into groundwater discharge patterns. However, much of this research has reduced the problem to heat and fluid flow in one dimension for ease of analysis. This approach is seemingly at odds with the goal of determining spatial variability in specific discharge, which implies that the temperature field will vary in more than one dimension. However, it is unclear how important the resulting discrepancies are in the context of determining groundwater discharge to surface water bodies. In this study, the importance of these variations is examined by testing two popular one-dimensional analytical solutions with stochastic models of heat and fluid flow in a two-dimensional porous medium. For cases with low degrees of heterogeneity in hydraulic conductivity, acceptable results are possible for specific discharges between 10(-7) and 10(-5) m/s. However, conduction into areas with specific discharges less than 10(-7) m/s from adjacent areas can lead to significant errors. In some of these cases, the one-dimensional solutions produced estimates of specific discharge of nearly 10(-6) m/s. This phenomenon is more likely in situations with greater degrees of heterogeneity. PMID:20646070

  12. Influence of groundwater flow on the estimation of subsurface thermal parameters

    NASA Astrophysics Data System (ADS)

    Verdoya, Massimo; Chiozzi, Paolo

    2016-09-01

    We investigated the influence of groundwater flow on the thermal tests performed in borehole heat exchangers to infer the underground thermal properties. Temperature-time signals were simulated with a moving line source (MLS) model under different hypotheses of Darcy velocity. Periodic and random noise was included in the synthetic data obtained with this model in order to mimic high-frequency disturbances caused by several possible sources (e.g. equipment instability and changes in environmental conditions during the experiment) that often occur in real signals. The subsurface thermal conductivity, the Darcy velocity and the borehole thermal resistance were inferred by minimising the root-mean-square error between the synthetic dataset and the model. The calculated thermal and hydraulic parameters were consistent with the "a priori" values. The optimisation procedure results were then tested with the infinite line source (ILS) model. For a Darcy velocity exceeding 10-7 m s-1, ILS largely overestimates thermal conductivity. The approach relying on the MLS model was finally tested with real temperature-time data and produced reliable estimates of thermal conductivity, Darcy velocity and borehole thermal resistance. The inferred groundwater flow was cross checked by means of an independent method based on the analysis of temperature-depth logs recorded under thermal equilibrium conditions. Such a test validates the Darcy velocity inferred with the MLS approach.

  13. Estimated Ground-water Withdrawals From the Death Valley Regional Flow System, Nevada and California, 1913-98

    SciTech Connect

    M.T. Moreo; K.J. Halford; R.J. LaCamera; and R.J. Laczniak

    2003-09-30

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional,three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  14. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  15. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect

    W.R. Belcher; P.E. Elliott; A.L. Geldon

    2001-12-31

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model, were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  16. Death Valley regional groundwater flow model calibration using optimal parameter estimation methods and geoscientific information systems

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

    1996-01-01

    A three-layer Death Valley regional groundwater flow model was constructed to evaluate potential regional groundwater flow paths in the vicinity of Yucca Mountain, Nevada. Geoscientific information systems were used to characterize the complex surface and subsurface hydrogeological conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. The high contrasts and abrupt contacts of the different hydrogeological units in the subsurface make zonation the logical choice for representing the hydraulic conductivity distribution. Hydraulic head and spring flow data were used to test different conceptual models by using nonlinear regression to determine parameter values that currently provide the best match between the measured and simulated heads and flows.

  17. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment

    USGS Publications Warehouse

    Loheide, S.P., II; Butler, J.J., Jr.; Gorelick, S.M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult-to-measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated-unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified. Copyright 2005 by the American Geophysical Union.

  18. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  19. Scarce data in hydrology and hydrogeology: Estimation and modelling of groundwater recharge for a numerical groundwater flow model in a semi-arid to arid catchment

    NASA Astrophysics Data System (ADS)

    Gräbe, Agnes; Schulz, Stephan; Rödiger, Tino; Kolditz, Olaf

    2013-04-01

    Water resources are strongly limited in semi-arid to arid regions and groundwater constitutes often the only possibility for fresh water for the population and industry. An understanding of the hydrological processes and the estimation of magnitude of water balance parameters also includes the knowledge of processes of groundwater recharge. For the sustainable management of water resources, it is essential to estimate the potential groundwater recharge under the given climatic conditions. We would like to present the results of a hydrological model, which is based on the HRU- concept and intersected the parameters of climatic conditions, topography, geology, soil, vegetation and land use to calculate the groundwater recharge. This model was primarily developed for humid area applications and has now been adapted to the regional conditions in the semi-arid to arid region. It was quite a challenge to understand the hydrological processes in the semi-arid to arid study area and to implement those findings (e.g. routing [Schulz (in prep.)]) into the model structure. Thus we compared the existing approaches for groundwater recharge estimations (chloride mass balance [Marei et. al 2000], empirical relations such as rainfall and base flow-relation [Goldschmidt 1960; Guttman 2000; Hughes 2008; Issar 1993; Lerner 1990; De Vries et. al 2002]) with the results of our numerical model. References: De Vries, J. J., I. Simmers (2002): Groundwater recharge: an overview of processes and challenges. Hydrogeology Journal (2002) 10: 5-17. DOI 10.1007/s10040-001-0171-7. Guttman, J., 2000. Multi-Lateral Project B: Hydrogeology of the Eastern Aquifer in the Judea Hills and Jordan Valley. Mekorot Water Company, Report 468, p. 36. Hughes, A. G., M. M. Mansour, N. S. Robins (2008): Evaluation of distributed recharge in an upland semi-arid karst system: the West Bank Mountain Aquifer, Middle East. Hydrogeology Journal (2008) 16: 845-854. DOI 10.1007/s10040-008-0273-6 Issar, A. S. (1993

  20. U-234/U-238 ratio: Qualitative estimate of groundwater flow in Rocky Flats monitoring wells

    SciTech Connect

    Laul, J.C.

    1994-02-01

    Groundwater movement through various pathways is the primary mechanism for the transport of radionuclides and trace elements in a water/rock interaction. About three dozen wells, installed in the Rocky Flats Plant (RFP) Solar Evaporation Ponds (SEP) area, are monitored quarterly to evaluate the extent of any lateral and downgradient migration of contaminants from the Solar Evaporation Ponds: 207-A; 207-B North, 207-B Center, and 207-B South; and 207-C. The Solar Ponds are the main source for the various contaminants: radionuclides (U-238, U-234, Pu-239, 240 and Am-241); anions; and trace metals to groundwaters. The U-238 concentrations in Rocky Flats groundwaters vary from <0.2 to 69 pCi/I (IpCi = 3 ug). However, the activity U-234/U-238 ratios are low and range mostly 1.2 to 2.7. The low activity ratios can be interpreted to suggest that the groundwaters are moving slow (estimate of about a few ft/year based on hydrologic parameters [1]. Uranium is probably present in the +6 state, predominantly as a uranyl carbonate complexes UO{sub 2}(CO{sub 3}){sub 2}{sup 2{minus}}, because of the predominant bicarbonate medium.

  1. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model

  2. Natural Recharge Estimation and Uncertainty Analysis of an Adjudicated Groundwater Basin using a Regional-Scale Groundwater Flow and Subsidence Model

    NASA Astrophysics Data System (ADS)

    Siade, A. J.; Nishikawa, T.; Martin, P.

    2011-12-01

    The Superior Court of California recently ruled that the Antelope Valley groundwater basin is in overdraft-groundwater extractions are in excess of the "safe yield" of the groundwater basin. As defined by the Court, "safe yield is the amount of annual extractions of water from an aquifer over time equal to the amount of water needed to recharge the groundwater aquifer and maintain it in equilibrium, plus any temporary surplus." Natural recharge is an important component of total groundwater recharge in Antelope Valley; however, the exact quantity and distribution of natural recharge is uncertain with estimates ranging from 30,000 to 160,000 acre-feet per year. Weighing the evidence presented by experts, the Court determined that the "safe yield" of the adjudicated area of the basin was 110,000 acre-feet per year. Knowledge of the quantity and distribution of natural recharge is needed to evaluate whether the Court-defined "safe yield" estimate for the basin will minimize additional storage depletion, and related land subsidence, resulting from continued groundwater extraction. The objective of this study is to systematically address the uncertainty in estimates of natural recharge and related aquifer parameters using a groundwater-flow and land-subsidence model with observational data and expert knowledge. Observational data include measured water levels, land-surface deformation, and estimates of transmissivity throughout the basin. An example of expert knowledge is the distribution of artesian conditions for pre-development times. Even though a great wealth of data is available, the problem of non-uniqueness remains present throughout the calibration process. Regularization is used to systematically identify combinations of parameters that can be uniquely estimated as well as to impose expert knowledge onto the parameter identification process. Once the model was calibrated with a reasonable parameter set, the parameter null-space was identified (i.e., the

  3. Regression Method for Estimating Long-Term Mean Annual Ground-Water Recharge Rates from Base Flow in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Thompson, Ronald E.; Stuckey, Marla H.

    2008-01-01

    A method was developed for making estimates of long-term, mean annual ground-water recharge from streamflow data at 80 streamflow-gaging stations in Pennsylvania. The method relates mean annual base-flow yield derived from the streamflow data (as a proxy for recharge) to the climatic, geologic, hydrologic, and physiographic characteristics of the basins (basin characteristics) by use of a regression equation. Base-flow yield is the base flow of a stream divided by the drainage area of the basin, expressed in inches of water basinwide. Mean annual base-flow yield was computed for the period of available streamflow record at continuous streamflow-gaging stations by use of the computer program PART, which separates base flow from direct runoff on the streamflow hydrograph. Base flow provides a reasonable estimate of recharge for basins where streamflow is mostly unaffected by upstream regulation, diversion, or mining. Twenty-eight basin characteristics were included in the exploratory regression analysis as possible predictors of base-flow yield. Basin characteristics found to be statistically significant predictors of mean annual base-flow yield during 1971-2000 at the 95-percent confidence level were (1) mean annual precipitation, (2) average maximum daily temperature, (3) percentage of sand in the soil, (4) percentage of carbonate bedrock in the basin, and (5) stream channel slope. The equation for predicting recharge was developed using ordinary least-squares regression. The standard error of prediction for the equation on log-transformed data was 9.7 percent, and the coefficient of determination was 0.80. The equation can be used to predict long-term, mean annual recharge rates for ungaged basins, providing that the explanatory basin characteristics can be determined and that the underlying assumption is accepted that base-flow yield derived from PART is a reasonable estimate of ground-water recharge rates. For example, application of the equation for 370

  4. Ground-water system, estimation of aquifer hydraulic properties, and effects of pumping on ground-water flow in Triassic sedimentary rocks in and near Lansdale, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    1999-01-01

    areas in three drainages, the Wissahickon, Towamencin, and Neshaminy Creeks.Ground-water flow was simulated for different pumping patterns representing past and current conditions. The three-dimensional numerical flow model (MODFLOW) was automatically calibrated by use of a parameter estimation program (MODFLOWP). Steady-state conditions were assumed for the calibration period of 1996. Model calibration indicates that estimated recharge is 8.2 inches (208 millimeters) and the regional anisotropy ratio for the sedimentary-rock aquifer is about 11 to 1, with permeability greatest along strike. The regional anisotropy is caused by up- and down-dip termination of high-permeability bed-oriented features, which were not explicitly simulated in the regional-scale model. The calibrated flow model was used to compare flow directions and capture zones in Lansdale for conditions corresponding to relatively high pumping rates in 1994 and to lower pumping rates in 1997. Comparison of the 1994 and 1997 simulations indicates that wells pumped at the lower 1997 rates captured less ground water from known sites of contamination than wells pumped at the 1994 rates. Ground-water flow rates away from Lansdale increased as pumpage decreased in 1997.A preliminary evaluation of the relation between ground-water chemistry and conditions favorable for the degradation of chlorinated solvents was based on measurements of dissolved-oxygen concentration and other chemical constituents in water samples from 92 wells. About 18 percent of the samples contained less than or equal to 5 milligrams per liter dissolved oxygen, a concentration that indicates reducing conditions favorable for degradation of chlorinated solvents.

  5. Global scale groundwater flow model

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  6. U.S. Geological Survey groundwater toolbox, a graphical and mapping interface for analysis of hydrologic data (version 1.0): user guide for estimation of base flow, runoff, and groundwater recharge from streamflow data

    USGS Publications Warehouse

    Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark

    2015-01-01

    This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.

  7. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, L.F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  8. Groundwater-flow parameter estimation and quality modeling of the Equus Beds aquifer in Kansas, U.S.A.

    USGS Publications Warehouse

    Sophocleous, M.A.

    1984-01-01

    The salinity problems created in the Burrton area as a result of poor oil-field brine disposal practices of the past continue to be a major concern to the area depending on the Equus Beds aquifer for water, including the City of Wichita, Kansas. In this paper, an attempt is made to predict where and how fast the brine plume will move in this area, and what the average chloride concentrations in different parts of the aquifer are. In order to make such predictions, it was necessary to get a calibrated model of the groundwater-flow velocity field. Multiple regression analysis is used for parameter estimation of the steady-state groundwater-flow equation applied in the most critical area of the Equus Beds aquifer. Results of such an analysis produced a correlation coefficient of 0.992 between calculated and observed values of hydraulic head. A chloride transport modeling effort is then carried out despite some serious data deficiencies, the significance of which are evaluated through sensitivity analysis. Thus, starting with the quasi steady-state conditions of the early 1940's, it was possible to match the present chloride distribution satisfactorily. Chloride concentration predictions made for the year 2000 indicate that the quality of the Wichita well-field waters will not generally deteriorate from their present condition by that time. ?? 1984.

  9. Oahu Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for the island of Oahu. Data is from the following sources: Rotzoll, K., A.I. El-Kadi. 2007. Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii - Prepared TEC, Inc. Water Resources Research Center, University of Hawaii, Honolulu.; Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume VII – Island of Oahu Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.; and Whittier, R. and A.I. El-Kadi. 2009. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. December 2009.

  10. Computationally Efficient Algorithms for Parameter Estimation and Uncertainty Propagation in Numerical Models of Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Townley, Lloyd R.; Wilson, John L.

    1985-12-01

    Finite difference and finite element methods are frequently used to study aquifer flow; however, additional analysis is required when model parameters, and hence predicted heads are uncertain. Computational algorithms are presented for steady and transient models in which aquifer storage coefficients, transmissivities, distributed inputs, and boundary values may all be simultaneously uncertain. Innovative aspects of these algorithms include a new form of generalized boundary condition; a concise discrete derivation of the adjoint problem for transient models with variable time steps; an efficient technique for calculating the approximate second derivative during line searches in weighted least squares estimation; and a new efficient first-order second-moment algorithm for calculating the covariance of predicted heads due to a large number of uncertain parameter values. The techniques are presented in matrix form, and their efficiency depends on the structure of sparse matrices which occur repeatedly throughout the calculations. Details of matrix structures are provided for a two-dimensional linear triangular finite element model.

  11. Ground-water and surface-water flow and estimated water budget for Lake Seminole, southwestern Georgia and northwestern Florida

    USGS Publications Warehouse

    Dalton, Melinda S.; Aulenbach, Brent T.; Torak, Lynn J.

    2004-01-01

    , and about 2 percent lake evaporation. Measurement error and uncertainty in flux calculations cause a flow imbalance of about 4 percent between inflow and outflow water-budget components. Most of this error can be attributed to errors in estimating ground-water discharge from the lake, which was calculated using a ground-water model calibrated to October 1986 conditions for the entire Apalachicola?Chattahoochee?Flint River Basin and not just the area around Lake Seminole. Evaporation rates were determined using the preferred, but mathematically complex, energy budget and five empirical equations: Priestley-Taylor, Penman, DeBruin-Keijman, Papadakis, and the Priestley-Taylor used by the Georgia Automated Environmental Monitoring Network. Empirical equations require a significant amount of data but are relatively easy to calculate and compare well to long-term average annual (April 2000?March 2001) pan evaporation, which is 65 inches. Calculated annual lake evaporation, for the study period, using the energy-budget method was 67.2 inches, which overestimated long-term average annual pan evaporation by 2.2 inches. The empirical equations did not compare well with the energy-budget method during the 18-month study period, with average differences in computed evaporation using each equation ranging from 8 to 26 percent. The empirical equations also compared poorly with long-term average annual pan evaporation, with average differences in evaporation ranging from 3 to 23 percent. Energy budget and long-term average annual pan evaporation estimates did compare well, with only a 3-percent difference between estimates. Monthly evaporation estimates using all methods ranged from 0.7 to 9.5 inches and were lowest during December 2000 and highest during May 2000. Although the energy budget is generally the preferred method, the dominance of surface water in the Lake Seminole water budget makes the method inaccurate and difficult to use, because surface water makes up m

  12. Global estimates of fresh submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Luijendijk, Elco; Gleeson, Tom; Moosdorf, Nils

    2016-04-01

    Fresh submarine groundwater discharge, the flow of fresh groundwater to oceans, may be a significant contributor to the water and chemical budgets of the world's oceans. We present new estimates of the flux of fresh groundwater to the world's oceans. We couple density-dependent numerical simulations of generic models of coastal basins with geospatial databases of hydrogeological parameters and topography to resolve the rate of terrestrially-derived submarine groundwater discharge globally. We compare the model results to a new global compilation of submarine groundwater discharge observations. The results show that terrestrially-derived SGD is highly sensitive to permeability. In most watersheds only a small fraction of groundwater recharge contributes to submarine groundwater discharge, with most recharge instead contributing to terrestrial discharge in the form of baseflow or evapotranspiration. Fresh submarine groundwater discharge is only significant in watersheds that contain highly permeable sediments, such as coarse-grained siliciclastic sediments, karstic carbonates or volcanic deposits. Our estimates of global submarine groundwater discharge are much lower than most previous estimates. However, many tropical and volcanic islands are hotspots of submarine groundwater discharge and solute fluxes towards the oceans. The comparison of model results and data highlights the spatial variability of SGD and the difficulty of scaling up observations.

  13. Ground-water pumpage and artificial recharge estimates for calendar year 2000 and average annual natural recharge and interbasin flow by hydrographic area, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.; Evetts, David M.

    2004-01-01

    Nevada's reliance on ground-water resources has increased because of increased development and surface-water resources being fully appropriated. The need to accurately quantify Nevada's water resources and water use is more critical than ever to meet future demands. Estimated ground-water pumpage, artificial and natural recharge, and interbasin flow can be used to help evaluate stresses on aquifer systems. In this report, estimates of ground-water pumpage and artificial recharge during calendar year 2000 were made using data from a variety of sources, such as reported estimates and estimates made using Landsat satellite imagery. Average annual natural recharge and interbasin flow were compiled from published reports. An estimated 1,427,100 acre-feet of ground water was pumped in Nevada during calendar year 2000. This total was calculated by summing six categories of ground-water pumpage, based on water use. Total artificial recharge during 2000 was about 145,970 acre-feet. At least one estimate of natural recharge was available for 209 of the 232 hydrographic areas (HAs). Natural recharge for the 209 HAs ranges from 1,793,420 to 2,583,150 acre-feet. Estimates of interbasin flow were available for 151 HAs. The categories and their percentage of the total ground-water pumpage are irrigation and stock watering (47 percent), mining (26 percent), water systems (14 percent), geothermal production (8 percent), self-supplied domestic (4 percent), and miscellaneous (less than 1 percent). Pumpage in the top 10 HAs accounted for about 49 percent of the total ground-water pumpage. The most ground-water pumpage in an HA was due to mining in Pumpernickel Valley (HA 65), Boulder Flat (HA 61), and Lower Reese River Valley (HA 59). Pumpage by water systems in Las Vegas Valley (HA 212) and Truckee Meadows (HA 87) were the fourth and fifth highest pumpage in 2000, respectively. Irrigation and stock watering pumpage accounted for most ground-water withdrawals in the HAs with the sixth

  14. Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

  15. Kauai Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Kauai. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume IV – Island of Kauai Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2015.

  16. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    USGS Publications Warehouse

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  17. Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  18. Groundwater flow modeling of two-levels perched karstic leaking aquifers as a tool for estimating recharge and hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Gvirtzman, Haim

    2010-06-01

    SummaryPerched springs in nature emerge from aquifers laying on aquitards within the unsaturated zone, some of which emerge one above the other. A finite element model was introduced, using the FEFLOW code, for simulating the groundwater flow regime in each of these aquifers, for quantifying the fraction of rain that recharges the aquifers, and for estimating the hydrogeological parameters of the aquifers and aquitards. Many of the perched springs in Israel are found in the Judea Group aquifer, a stratified carbonate rock unit, characterised by a well-developed karst system. The Batir and Jamia springs exemplifies such a system, where Batir is the upper spring discharging at the contact between Aminadav and Moza Formations, and Jamia is the lower one, discharging at the contact between Kesalon and Sorek Formations. The 25-year-long measured spring's hydrographs were used to calibrate the spring's coefficients, the hydraulic conductivities of the different layers, the karst features and the yearly amount of rain recharging the spring.

  19. Death valley regional ground-water flow model calibration using optimal parameter estimation methods and geoscientific information systems

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.; Turner, A.K.

    1999-01-01

    A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing high contrasts and abrupt contacts. This characteristic, combined with the large scale of the model, make zonation the logical choice for representing the hydraulic-conductivity distribution. Different conceptual models were evaluated using sensitivity analysis and were tested by using nonlinear regression to determine parameter values that are optimal, in that they provide the best match between the measured and simulated heads and flows. The different conceptual models were judged based both on the fit achieved to measured heads and spring flows, and the plausibility of the optimal parameter values. One of the conceptual models considered appears to represent the system most realistically. Any apparent model error is probably caused by the coarse vertical and horizontal discretization.A regional-scale, steady-state, saturated-zone ground-water flow model was constructed to evaluate potential regional ground-water flow in the vicinity of Yucca Mountain, Nevada. The model was limited to three layers in an effort to evaluate the characteristics governing large-scale subsurface flow. Geoscientific information systems (GSIS) were used to characterize the complex surface and subsurface hydrogeologic conditions of the area, and this characterization was used to construct likely conceptual models of the flow system. Subsurface properties in this system vary dramatically, producing

  20. A hybrid framework for improving recharge and discharge estimation for a three-dimensional groundwater flow model.

    PubMed

    Meyer, Scott C; Lin, Yu-Feng; Roadcap, George S

    2012-01-01

    We employed the ArcGIS plug-in package PRO-GRADE (Lin et al. 2009), developed for zonation of recharge/discharge (R/D) for modeling two-dimensional aquifer systems, to develop alternative R/D zonations for an existing three-dimensional groundwater flow model of a complex hydrogeologic setting. Our process began by intersecting PRO-GRADE output with the existing model's 4-zone R/D representation to develop a model having 12 R/D zones (R12) and then calibrating the resulting model using PEST. We then revised the R12 zonation using supplementary GIS data to develop a 51-zone R/D zonation (R51). From R51, we developed a series of daughter models having 40, 30, 28, and 18 R/D zones by removing zones from R51 if calibration resulted in little change in the zone's starting R/D rate and/or if the model was insensitive to the zone's R/D rate. For these models (R40N, R30N, R28N, and R18N), we used the ArcGIS Nibble tool to rapidly and consistently reassign model cells within eliminated zones of R51 to the zone of the nearest model cell in a retained zone having the same starting value. R12, R51, R40N, R30N, R28N, and R18N are all more accurate than the original model (R4), although improvements relative to stream discharge targets exceeded improvements relative to head targets. The models also executed with better numerical stability and less mass balance discrepancy than R4. These improvements demonstrate that R/D estimation in a complex shallow three-dimensional steady-state model can be improved with PRO-GRADE estimates of R/D when guided by calibration statistics and supplemental geographic data.

  1. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter

  2. Monitoring probe for groundwater flow

    DOEpatents

    Looney, B.B.; Ballard, S.

    1994-08-23

    A monitoring probe for detecting groundwater migration is disclosed. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow. 4 figs.

  3. Monitoring probe for groundwater flow

    DOEpatents

    Looney, Brian B.; Ballard, Sanford

    1994-01-01

    A monitoring probe for detecting groundwater migration. The monitor features a cylinder made of a permeable membrane carrying an array of electrical conductivity sensors on its outer surface. The cylinder is filled with a fluid that has a conductivity different than the groundwater. The probe is placed in the ground at an area of interest to be monitored. The fluid, typically saltwater, diffuses through the permeable membrane into the groundwater. The flow of groundwater passing around the permeable membrane walls of the cylinder carries the conductive fluid in the same general direction and distorts the conductivity field measured by the sensors. The degree of distortion from top to bottom and around the probe is precisely related to the vertical and horizontal flow rates, respectively. The electrical conductivities measured by the sensors about the outer surface of the probe are analyzed to determine the rate and direction of the groundwater flow.

  4. Estimates of tracer-based piston-flow ages of groundwater from selected sites-National Water-Quality Assessment Program, 1992-2005

    USGS Publications Warehouse

    Hinkle, Stephen R.; Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.

    2011-01-01

    This report documents selected age data interpreted from measured concentrations of environmental tracers in groundwater from 1,399 National Water-Quality Assessment (NAWQA) Program groundwater sites across the United States. The tracers of interest were chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis primarily were from wells representing two types of NAWQA groundwater studies - Land-Use Studies (shallow wells, usually monitoring wells, in recharge areas under dominant land-use settings) and Major-Aquifer Studies (wells, usually domestic supply wells, in principal aquifers and representing the shallow, used resource). Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) associated with Land-Use Studies also were included. Tracer samples were collected between 1992 and 2005, although two networks sampled from 2006 to 2007 were included because of network-specific needs. Tracer data from other NAWQA Program components (Flow System Studies, which are assessments of processes and trends along groundwater flow paths, and various topical studies) were not compiled herein. Tracer data from NAWQA Land-Use Studies and Major-Aquifer Studies that previously had been interpreted and published are compiled herein (as piston-flow ages), but have not been reinterpreted. Tracer data that previously had not been interpreted and published are evaluated using documented methods and compiled with aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), estimates of tracer-based piston-flow ages, and selected ancillary data, such as redox indicators, well construction, and major dissolved gases (N2, O2, Ar, CH4, and CO2). Tracer-based piston-flow ages documented in this report are simplistic representations of the tracer data. Tracer-based piston-flow ages are a convenient means of conceptualizing groundwater age. However, the piston-flow

  5. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    NASA Astrophysics Data System (ADS)

    Siade, Adam; Nishikawa, Tracy; Martin, Peter

    2015-09-01

    Groundwater has provided 50-90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court's decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  6. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    USGS Publications Warehouse

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  7. An inverse modeling approach to estimate groundwater flow and transport model parameters at a research site at Vandenberg AFB, CA

    NASA Astrophysics Data System (ADS)

    Rasa, E.; Foglia, L.; Mackay, D. M.; Ginn, T. R.; Scow, K. M.

    2009-12-01

    A numerical groundwater fate and transport model was developed for analyses of data from field experiments evaluating the impacts of ethanol on the natural attenuation of benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl tert-butyl ether (MTBE) at Vandenberg Air Force Base, Site 60. We used the U.S. Geological Survey (USGS) groundwater flow (MODFLOW2000) and transport (MT3DMS) models in conjunction with the USGS universal inverse modeling code (UCODE) to jointly determine flow and transport parameters using bromide tracer data from multiple experiments in the same location. The key flow and transport parameters include hydraulic conductivity of aquifer and aquitard layers, porosity, and transverse and longitudinal dispersivity. Aquifer and aquitard layers were assumed homogenous in this study. Therefore, the calibration parameters were not spatially variable within each layer. A total of 162 monitoring wells in seven transects perpendicular to the mean flow direction were monitored over the course of ten months, resulting in 1,766 bromide concentration data points and 149 head values used as observations for the inverse modeling. The results showed the significance of the concentration observation data in predicting the flow model parameters and indicated the sensitivity of the hydraulic conductivity of different zones in the aquifer including the excavated former contaminant zone. The model has already been used to evaluate alternative designs for further experiments on in situ bioremediation of the tert-butyl alcohol (TBA) plume remaining at the site. We describe the recent applications of the model and future work, including adding reaction submodels to the calibrated flow model.

  8. A tidal creek water budget: Estimation of groundwater discharge and overland flow using hydrologic modeling in the Southern Everglades

    NASA Astrophysics Data System (ADS)

    Michot, Béatrice; Meselhe, Ehab A.; Rivera-Monroy, Victor H.; Coronado-Molina, Carlos; Twilley, Robert R.

    2011-07-01

    Taylor Slough is one of the natural freshwater contributors to Florida Bay through a network of microtidal creeks crossing the Everglades Mangrove Ecotone Region (EMER). The EMER ecological function is critical since it mediates freshwater and nutrient inputs and controls the water quality in Eastern Florida Bay. Furthermore, this region is vulnerable to changing hydrodynamics and nutrient loadings as a result of upstream freshwater management practices proposed by the Comprehensive Everglades Restoration Program (CERP), currently the largest wetland restoration project in the USA. Despite the hydrological importance of Taylor Slough in the water budget of Florida Bay, there are no fine scale (˜1 km 2) hydrodynamic models of this system that can be utilized as a tool to evaluate potential changes in water flow, salinity, and water quality. Taylor River is one of the major creeks draining Taylor Slough freshwater into Florida Bay. We performed a water budget analysis for the Taylor River area, based on long-term hydrologic data (1999-2007) and supplemented by hydrodynamic modeling using a MIKE FLOOD (DHI, http://dhigroup.com/) model to evaluate groundwater and overland water discharges. The seasonal hydrologic characteristics are very distinctive (average Taylor River wet vs. dry season outflow was 6 to 1 during 1999-2006) with a pronounced interannual variability of flow. The water budget shows a net dominance of through flow in the tidal mixing zone, while local precipitation and evapotranspiration play only a secondary role, at least in the wet season. During the dry season, the tidal flood reaches the upstream boundary of the study area during approximately 80 days per year on average. The groundwater field measurements indicate a mostly upwards-oriented leakage, which possibly equals the evapotranspiration term. The model results suggest a high importance of groundwater contribution to the water salinity in the EMER. The model performance is satisfactory

  9. Geothermal properties and groundwater flow estimated with a three-dimensional geological model in a late Pleistocene terrace area, central Japan

    NASA Astrophysics Data System (ADS)

    Funabiki, A.; Takemura, T.; Hamamoto, S.; Komatsu, T.

    2012-12-01

    1. Introduction The ground source heat pump (GSHP) is a highly efficient and renewable energy technology for space heating and cooling, with benefits that include energy conservation and reductions in greenhouse gas emissions. One result of the huge Tohoku-oki earthquake and tsunami and the subsequent nuclear disasters is that GSHPs are receiving more attention from the media and they are being introduced by some local governments. Heat generated by underground GSHP installation, however, can pollute the geothermal environment or change groundwater flow patterns . In this study, we estimated possible effects from the use of GSHPs in the Tokyo area with a three-dimensional (3D) geological model. 2. Geological model The Tokyo Metropolitan Area is surrounded by the Late Pleistocene terraces called the Musashino uplands. The terrace surfaces are densely populated residential areas. One of these surfaces, the Shimosueyohi surface, formed along the Tama River during the last deglacial period. The CRE-NUCHS-1 core (Funabiki et al., 2011) was obtained from this surface, and the lithology, heat transfer coefficients, and chemical characteristics of the sediments were analyzed. In this study, we used borehole log data from a 5 km2 area surrounding the CRE-NUCHS-1 core site to create a 3D geological model. In this area, the Pleistocene Kazusa Group is overlain by terrace gravels and a volcanic ash layer called the Kanto Loam. The terrace gravels occur mainly beneath the Kanda, Kitazawa, and Karasuyama rivers , which flow parallel to the Tama River, whereas away from the rivers , the Kanto Loam directly overlies the Kazusa Group sediments. 3. Geothermal disturbance and groundwater flow Using the geological model, we calculated the heat transfer coefficients and groundwater flow velocities in the sediments. Within the thick terrace gravels, which are at relatively shallow depth (8-20 m), heat transfer coefficients were high and groundwater flow was relatively fast. The amount

  10. Modeling groundwater flow on MPPs

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Smith, S.G.; Tompson, A.F.B.

    1993-10-01

    The numerical simulation of groundwater flow in three-dimensional heterogeneous porous media is examined. To enable detailed modeling of large contaminated sites, preconditioned iterative methods and massively parallel computing power are combined in a simulator called PARFLOW. After describing this portable and modular code, some numerical results are given, including one that demonstrates the code`s scalability.

  11. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Kinzelbach, W.

    2008-09-01

    Real-time groundwater flow modeling with filter methods is interesting for dynamical groundwater flow systems, for which measurement data in real-time are available. The Ensemble Kalman Filter (EnKF) approach is used here to update states together with parameters by adopting an augmented state vector approach. The performance of EnKF is investigated in a synthetic study with a two-dimensional transient groundwater flow model where (1) only the recharge rate is spatiotemporally variable, (2) only transmissivity is spatially variable with σlnT2 = 1.0 or (3) with σlnT2 = 2.7, and (4) both recharge rate and transmissivity are uncertain (a combination of (1) and (3)). The performance of EnKF for simultaneous state and parameter estimation in saturated groundwater flow problems is investigated in dependence of the number of stochastic realizations, the updating frequency and updating intensity of log-transmissivity, the amount of measurements in space and time, and the method (iterative versus noniterative EnKF), among others. Satisfactory results were also obtained if both transmissivity and recharge rate were uncertain. However, it was found that filter inbreeding is much more severe if hydraulic heads and transmissivities are jointly updated than if only hydraulic heads are updated. The filter inbreeding problem was investigated in more detail and could be strongly reduced with help of a damping parameter, which limits the intensity of the perturbation of the log-transmissivity field. An additional reduction of filter inbreeding could be achieved by combining two measures: (1) inflating the elements of the predicted state covariance matrix on the basis of a comparison between the model uncertainty and the observed errors at the measurement points and (2) starting the flow simulations with a very large number of realizations and then sampling the desired number of realizations after one simulation time step by minimizing the differences between the local cpdfs (and

  12. Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States

    USGS Publications Warehouse

    Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.

    2005-01-01

    This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing

  13. Estimates of consumptive use and ground-water return flow and the effect of rising and sustained high river stage on the method of estimation in Cibola Valley, Arizona and California, 1983 and 1984

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1990-01-01

    In Cibola Valley, Arizona, water is pumped from the Colorado River to irrigate crops and to maintain wildlife habitat. Unused water percolates to the water table and, as groundwater, moves downgradient into areas of phreatophytes, into a drainage ditch, out of the flood plain, and back to the river. In 1983 and 1984, groundwater return flow was negligible because in most of Cibola Valley the river lost water to the aquifer. Evapotranspiration was used as an approximation for consumptive use by vegetation. Evapotranspiration was calculated as the sum of the products of the area of vegetation types and water-use rate by vegetation type. Evapotranspiration was estimated to be 70,100 acre-ft in 1983 and 62,600 acre-ft in 1984. These estimates may be in error because of the effect of sustained inundation on the rate of water use by phreatophytes. The effects cannot be quantified and therefore adjustments to rates calculated for dry-surface conditions could not be made. The method of estimating consumptive use of water by vegetation and groundwater return flow is affected by changing conditions during years of rising and sustained high river stage caused by flood-control releases at Parker Dam. Most of the bank storage that will return to the river when the high river stage subsides did not originate as irrigation water. High river stage caused some areas to be flooded directly or raised groundwater levels above the land surface. No crops could be grown in flooded fields. The decreased depth to water and inundation with fresh water resulted in new phreatophyte growth in some areas. In some areas that were flooded, many phreatophytes died. Changes in the inundated and flooded areas throughout the years made it difficult to estimate the evaporation losses from the increased water surface. (USGS)

  14. Modeling groundwater flow and quality

    USGS Publications Warehouse

    Konikow, Leonard F.; Glynn, Pierre D.; Selinus, Olle

    2013-01-01

    In most areas, rocks in the subsurface are saturated with water at relatively shallow depths. The top of the saturated zone—the water table—typically occurs anywhere from just below land surface to hundreds of feet below the land surface. Groundwater generally fills all pore spaces below the water table and is part of a continuous dynamic flow system, in which the fluid is moving at velocities ranging from feet per millennia to feet per day (Fig. 33.1). While the water is in close contact with the surfaces of various minerals in the rock material, geochemical interactions between the water and the rock can affect the chemical quality of the water, including pH, dissolved solids composition, and trace-elements content. Thus, flowing groundwater is a major mechanism for the transport of chemicals from buried rocks to the accessible environment, as well as a major pathway from rocks to human exposure and consumption. Because the mineral composition of rocks is highly variable, as is the solubility of various minerals, the human-health effects of groundwater consumption will be highly variable.

  15. Estimation of groundwater flow directions and the tensor of hydraulic conductivity in crystalline massif rocks using information from surface structural geology and mining exploration boreholes

    NASA Astrophysics Data System (ADS)

    Florez, C.; Romero, M. A.; Ramirez, M. I.; Monsalve, G.

    2013-05-01

    In the elaboration of a hydrogeological conceptual model in regions of mining exploration where there is significant presence of crystalline massif rocks., the influence of physical and geometrical properties of rock discontinuities must be evaluated. We present the results of a structural analysis of rock discontinuities in a region of the Central Cordillera of Colombia (The upper and middle Bermellon Basin) in order to establish its hydrogeological characteristics for the improvement of the conceptual hydrogeological model for the region. The geology of the study area consists of schists with quartz and mica and porphyritic rocks, in a region of high slopes with a nearly 10 m thick weathered layer. The main objective of this research is to infer the preferential flow directions of groundwater and to estimate the tensor of potential hydraulic conductivity by using surface information and avoiding the use of wells and packer tests. The first step of our methodology is an analysis of drainage directions to detect patterns of structural controls in the run-off; after a field campaign of structural data recollection, where we compile information of strike, dip, continuity, spacing, roughness, aperture and frequency, we built equal area hydro-structural polar diagrams that indicate the potential directions for groundwater flow. These results are confronted with records of Rock Quality Designation (RQD) that have been systematically taken from several mining exploration boreholes in the area of study. By using all this information we estimate the potential tensor of hydraulic conductivity from a cubic law, obtaining the three principal directions with conductivities of the order of 10-5 and 10-6 m/s; the more conductive joint family has a NE strike with a nearly vertical dip.

  16. Estimating Age Distributions of Base Flow in Watersheds Underlain by Single and Dual Porosity Formations Using Groundwater Transport Simulation and Weighted Weibull Functions

    NASA Astrophysics Data System (ADS)

    Sanford, W. E.

    2015-12-01

    Age distributions of base flow to streams are important to estimate for predicting the timing of water-quality responses to changes in distributed inputs of nutrients or pollutants at the land surface. Simple models of shallow aquifers will predict exponential age distributions, but more realistic 3-D stream-aquifer geometries will cause deviations from an exponential curve. In addition, in fractured rock terrains the dual nature of the effective and total porosity of the system complicates the age distribution further. In this study shallow groundwater flow and advective transport were simulated in two regions in the Eastern United States—the Delmarva Peninsula and the upper Potomac River basin. The former is underlain by layers of unconsolidated sediment, while the latter consists of folded and fractured sedimentary rocks. Transport of groundwater to streams was simulated using the USGS code MODPATH within 175 and 275 watersheds, respectively. For the fractured rock terrain, calculations were also performed along flow pathlines to account for exchange between mobile and immobile flow zones. Porosities at both sites were calibrated using environmental tracer data (3H, 3He, CFCs and SF6) in wells and springs, and with a 30-year tritium record from the Potomac River. Carbonate and siliciclastic rocks were calibrated to have mobile porosity values of one and six percent, and immobile porosity values of 18 and 12 percent, respectively. The age distributions were fitted to Weibull functions. Whereas an exponential function has one parameter that controls the median age of the distribution, a Weibull function has an extra parameter that controls the slope of the curve. A weighted Weibull function was also developed that potentially allows for four parameters, two that control the median age and two that control the slope, one of each weighted toward early or late arrival times. For both systems the two-parameter Weibull function nearly always produced a substantially

  17. Flow and storage in groundwater systems.

    PubMed

    Alley, William M; Healy, Richard W; LaBaugh, James W; Reilly, Thomas E

    2002-06-14

    The dynamic nature of groundwater is not readily apparent, except where discharge is focused at springs or where recharge enters sinkholes. Yet groundwater flow and storage are continually changing in response to human and climatic stresses. Wise development of groundwater resources requires a more complete understanding of these changes in flow and storage and of their effects on the terrestrial environment and on numerous surface-water features and their biota.

  18. Evolution of Unsteady Groundwater Flow Systems

    NASA Astrophysics Data System (ADS)

    Liang, Xing; Jin, Menggui; Niu, Hong

    2016-04-01

    Natural groundwater flow is usually transient, especially in long time scale. A theoretical approach on unsteady groundwater flow systems was adopted to highlight some of the knowledge gaps in the evolution of groundwater flow systems. The specific consideration was focused on evolution of groundwater flow systems from unsteady to steady under natural and mining conditions. Two analytical solutions were developed, using segregation variable method to calculate the hydraulic head under steady and unsteady flow conditions. The impact of anisotropy ratio, hydraulic conductivity (K) and specific yield (μs) on the flow patterns were analyzed. The results showed that the area of the equal velocity region increased and the penetrating depth of the flow system decreased while the anisotropy ratio (ɛ = °Kx-/Kz--) increased. Stagnant zones were found in the flow field where the directions of streamlines were opposite. These stagnant zones moved up when the horizontal hydraulic conductivity increased. The results of the study on transient flow indicated a positive impact on hydraulic head with an increase of hydraulic conductivity, while a negative effect on hydraulic head was observed when the specific yield was enhanced. An unsteady numerical model of groundwater flow systems with annual periodic recharge was developed using MODFLOW. It was observed that the transient groundwater flow patterns were different from that developed in the steady flow under the same recharge intensity. The water table fluctuated when the recharge intensity altered. The monitoring of hydraulic head and concentration migration revealed that the unsteady recharge affected the shallow local flow system more than the deep regional flow system. The groundwater flow systems fluctuated with the action of one or more pumping wells. The comparison of steady and unsteady groundwater flow observation indicated that the unsteady flow patterns cannot be simulated by the steady model when the condition

  19. Hawaii Island Groundwater Flow Model

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Groundwater flow model for Hawaii Island. Data is from the following sources: Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume II – Island of Hawaii Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008; and Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014.

  20. East Maui Groundwater Flow Model

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Groundwater flow model for East Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  1. West Maui Groundwater Flow Model

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Groundwater flow model for West Maui. Data is from the following sources: Whittier, R. and A.I. El-Kadi. 2014. Human and Environmental Risk Ranking of Onsite Sewage Disposal Systems For the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final. Prepared by the University of Hawaii, Dept. of Geology and Geophysics for the State of Hawaii Dept. of Health, Safe Drinking Water Branch. September 2014; and Whittier, R.B., K. Rotzoll, S. Dhal, A.I. El-Kadi, C. Ray, G. Chen, and D. Chang. 2004. Hawaii Source Water Assessment Program Report – Volume V – Island of Maui Source Water Assessment Program Report. Prepared for the Hawaii Department of Health, Safe Drinking Water Branch. University of Hawaii, Water Resources Research Center. Updated 2008.

  2. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    : Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  3. Assimilating ambiguous observations to jointly estimate groundwater recharge and conductivity

    NASA Astrophysics Data System (ADS)

    Erdal, Daniel; Cirpka, Olaf A.

    2016-04-01

    In coupled modelling of catchments, the groundwater compartment can be an important water storage as well as having influence on both rivers and evapotranspirational fluxes. It is therefore important to parameterize the groundwater model as correctly as possible. Primarily important to regional groundwater flow is the spatially variable hydraulic conductivity. However, also the groundwater recharge, in a coupled system coming from the unsaturated zone but in a stand-alone groundwater model a boundary condition, is also of high importance. As with all subsurface systems, groundwater properties are difficult to observe in reality and their estimation is an ongoing topic in groundwater research and practice. Commonly, we have to rely on time series of groundwater head observations as base for any parameter estimation. Heads, however, have the drawback that they can be ambiguous and may not uniquely define the inverse problem, especially if both recharge and conductivity are seen as unknown. In the presented work we use a 2D virtual groundwater test case to investigate how the prior knowledge of recharge and conductivity influence their respective and joint estimation as spatially variable fields using head data. Using the Ensemble Kalman filter, it is shown that the joint estimation is possible if the prior knowledge is good enough. If the prior is erroneous the a-priori sampled fields cannot be corrected by the data. However, it is also shown that if the prior knowledge is directly wrong the estimated recharge field can resemble the true conductivity field, resulting in a model that meets the observations but has very poor predictive power. The study exemplifies the importance of prior knowledge in the joint estimation of parameters from ambiguous measurements.

  4. Estimating hyperconcentrated flow discharge

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    Determining flow discharge in torrential mountain floods can help in managing flood risk. However, standard methods of estimating discharge have significant uncertainties. To reduce these uncertainties, Bodoque et al. developed an iterative methodological approach to flow estimation based on a method known as the critical depth method along with paleoflood evidence. They applied the method to study a flash flood that occurred on 17 December 1997 in the Arroyo Cabrera catchment in central Spain. This large flow event, triggered by torrential rains, was complex and included hyperconcentrated flows, which are flows of water mixed with significant amounts of sediment.

  5. Quantifying groundwater flows to streams using differential flow gaugings and water chemistry

    NASA Astrophysics Data System (ADS)

    McCallum, James L.; Cook, Peter G.; Berhane, Dawit; Rumpf, Chris; McMahon, Gerard A.

    2012-01-01

    SummaryWhile estimates of net groundwater inflow to streams (inflow minus outflow) can be made using differential flow gauging, the inclusion of water chemistry (tracer) measurements allows both inflow and outflow to be separately quantified. In this paper we assess how the estimates of net and gross groundwater inflows are affected by the choice of tracer at three contrasting field sites. Groundwater flows are first estimated with differential flow gauging and then with the sequential addition of natural tracer data - electrical conductivity, chloride concentration and radon activity measurements. The final analysis is where an injected tracer experiment is also conducted to constrain the gas transfer velocity for radon. Groundwater inflow rates were estimated by calibrating a numerical model which simulated flows and concentrations of tracers in the river. Although both the total groundwater inflow along the study reach and the spatial distribution of inflow depended on the data used for the model calibration, the difference between the estimates was less than the prediction error. The analysis also showed that prediction error for groundwater inflow decreases as additional tracers are included in the analysis. The magnitude of the error reduction is related to the properties of the specific catchment. Generally, for a tracer to reduce uncertainty substantially the concentration of the tracer in groundwater must be well defined, and the contrast between the concentration of the tracer in groundwater and the river must be high.

  6. Geomorphic aspects of groundwater flow

    NASA Astrophysics Data System (ADS)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  7. Geomorphic aspects of groundwater flow

    NASA Astrophysics Data System (ADS)

    LaFleur, Robert G.

    The many roles that groundwater plays in landscape evolution are becoming more widely appreciated. In this overview, three major categories of groundwater processes and resulting landforms are considered: (1) Dissolution creates various karst geometries, mainly in carbonate rocks, in response to conditions of recharge, geologic setting, lithology, and groundwater circulation. Denudation and cave formation rates can be estimated from kinetic and hydraulic parameters. (2) Groundwater weathering generates regoliths of residual alteration products at weathering fronts, and subsequent exhumation exposes corestones, flared slopes, balanced rocks, domed inselbergs, and etchplains of regional importance. Groundwater relocation of dissolved salts creates duricrusts of various compositions, which become landforms. (3) Soil and rock erosion by groundwater processes include piping, seepage erosion, and sapping, important agents in slope retreat and headward gully migration. Thresholds and limits are important in many chemical and mechanical groundwater actions. A quantitative, morphometric approach to groundwater landforms and processes is exemplified by selected studies in carbonate and clastic terrains of ancient and recent origins. Résumé Les rôles variés joués par les eaux souterraines dans l'évolution des paysages deviennent nettement mieux connus. La revue faite ici prend en considération trois grandes catégories de processus liés aux eaux souterraines et les formes associées: (1) La dissolution crée des formes karstiques variées, surtout dans les roches carbonatées, en fonction des conditions d'alimentation, du cadre géologique, de la lithologie et de la circulation des eaux souterraines. Les taux d'érosion et de formation des grottes peuvent être estimés à partir de paramètres cinétiques et hydrauliques. (2) L'érosion par les eaux souterraines donne naissance à des régolites, résidus d'altération sur des fronts d'altération, et l'exhumation r

  8. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    : Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  9. Estimating groundwater velocity using apparent resistivity tomography: A sandbox experiment

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Chen, C. H.; Kuo, C. L.; Fen, C. S.; Wu, C. C.

    2016-08-01

    The electrical resistivity tomography (ERT) technique can estimate groundwater velocity to within 5% of the pre-set groundwater velocity. The apparent conductivity obtained by the ERT technique is linearly related to the groundwater conductivity, as described by Archie's law. Gaussian-like profiles of the tracer concentration were demonstrated with the ERT technique, and the estimated dispersion coefficient was between 0.0015 and 0.0051 cm2/sec. In terms of monitoring changes in groundwater conductivity, the ERT technique has two major advantages over monitoring wells: (1) it measures a larger area and provides more representative results; and, (2) it does not withdraw groundwater samples, and therefore does not affect the groundwater flow. The objective of this research is to measure groundwater velocity with the ERT technique using only one well. The experiments in this research were divided into two parts. The first part evaluated the accuracy and repeatability of the ERT technique using a dipole-dipole array, and the second part estimated the groundwater velocity in a sandbox using the ERT technique. The length, width, and height of the sandbox, which was made of acrylic, were 1.5, 5, and 1.0 m, respectively. The ERT sandbox was sequentially filled with 5-cm layers of the silica sand to a total height of 70 cm. A total of 32 electrodes spaced every 5-cm were installed in the center of the sandbox. Three monitoring wells were installed along the line of the electrodes. Both no-flow and constant flow (NaCl solution with electrical conductivity and concentration of 5,000 μs/cm and 2.456 g/L, respectively) tracer experiments were conducted.

  10. Using Groundwater Temperatures and Heat Flow Patterns to Assess Groundwater Flow in Snake Valley, Nevada and Utah, USA

    NASA Astrophysics Data System (ADS)

    Masbruch, M. D.; Chapman, D. S.

    2009-12-01

    The Southern Nevada Water Authority’s (SNWA) proposal to develop groundwater resources in Snake Valley and adjacent basins in eastern Nevada has focused attention on understanding the links between basin-fill and carbonate aquifer systems, groundwater flow paths, and the movement of groundwater between basins. The SNWA development plans are contentious in part because (1) there are few perennial streams that flow into the basins and these surface-water resources are fully appropriated; (2) groundwater resources that sustain streams, springs, wetlands, and the local agricultural economy are also limited; and (3) because Snake Valley straddles the Utah-Nevada state line. We report groundwater temperatures and estimates of heat flow used to constrain estimates of groundwater flow into and through Snake Valley. Thermal logs have been collected from 24 monitoring wells in the Utah part of the valley. Natural, undisturbed geothermal gradients within the Basin and Range are generally 30 °C/km, which correspond to heat flow values of approximately 90 mW/m2. Geothermal gradients in the southern portion of Snake Valley are lower than typical Basin and Range geothermal gradients, with the majority ranging between 10 and 20 °C/km, corresponding to heat flow values of 30 to 60 mW/m2. In the northern portion of the basin, however, geothermal gradients are generally higher than typical Basin and Range geothermal gradients, with thermal logs of two wells indicating gradients of 39 °C/km and 51 °C/km, which correspond to heat flow values of approximately 117 and 153 mW/m2, respectively. These observations suggest heat is being redistributed by groundwater flow to discharge points in northern Snake Valley. This interpretation is also supported by spring temperatures in northern Snake Valley and at Fish Springs National Wildlife Refuge to the northeast that are higher than ambient (12 °C) surface temperature. These thermal data are being used together with water levels and

  11. Traffic Flow Estimates.

    ERIC Educational Resources Information Center

    Hart, Vincent G.

    1981-01-01

    Two examples are given of ways traffic engineers estimate traffic flow. The first, Floating Car Method, involves some basic ideas and the notion of relative velocity. The second, Maximum Traffic Flow, is viewed to involve simple applications of calculus. The material provides insight into specialized applications of mathematics. (MP)

  12. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  13. Influence of perched groundwater on base flow

    USGS Publications Warehouse

    Niswonger, R.G.; Fogg, G.E.

    2008-01-01

    Analysis with a three-dimensional variably saturated groundwater flow model provides a basic understanding of the interplay between streams and perched groundwater. A simplified, layered model of heterogeneity was used to explore these relationships. Base flow contribution from perched groundwater was evaluated with regard to varying hydrogeologic conditions, including the size and location of the fine-sediment unit and the hydraulic conductivity of the fine-sediment unit and surrounding coarser sediment. Simulated base flow was sustained by perched groundwater with a maximum monthly discharge in excess of 15 L/s (0.6 feet3/s) over the length of the 2000-m stream reach. Generally, the rate of perched-groundwater discharge to the stream was proportional to the hydraulic conductivity of sediment surrounding the stream, whereas the duration of discharge was proportional to the hydraulic conductivity of the fine-sediment unit. Other aspects of the perched aquifer affected base flow, such as the depth of stream penetration and the size of the fine-sediment unit. Greater stream penetration decreased the maximum base flow contribution but increased the duration of contribution. Perched groundwater provided water for riparian vegetation at the demand rate but reduced the duration of perched-groundwater discharge nearly 75%. Copyright 2008 by the American Geophysical Union.

  14. Revised conceptualization of the North China Basin groundwater flow system: Groundwater age, heat and flow simulations

    NASA Astrophysics Data System (ADS)

    Cao, Guoliang; Han, Dongmei; Currell, Matthew J.; Zheng, Chunmiao

    2016-09-01

    Groundwater flow in deep sedimentary basins results from complex evolution processes on geological timescales. Groundwater flow systems conceptualized according to topography and/or groundwater table configuration generally assume a near-equilibrium state with the modern landscape. However, the time to reach such a steady state, and more generally the timescales of groundwater flow system evolution are key considerations for large sedimentary basins. This is true in the North China Basin (NCB), which has been studied for many years due to its importance as a groundwater supply. Despite many years of study, there remain contradictions between the generally accepted conceptual model of regional flow, and environmental tracer data. We seek to reconcile these contractions by conducting simulations of groundwater flow, age and heat transport in a three dimensional model, using an alternative conceptual model, based on geological, thermal, isotope and historical data. We infer flow patterns under modern hydraulic conditions using this new model and present the theoretical maximum groundwater ages under such a flow regime. The model results show that in contrast to previously accepted conceptualizations, most groundwater is discharged in the vicinity of the break-in-slope of topography at the boundary between the piedmont and central plain. Groundwater discharge to the ocean is in contrast small, and in general there are low rates of active flow in the eastern parts of the basin below the central and coastal plain. This conceptualization is more compatible with geochemical and geothermal data than the previous model. Simulated maximum groundwater ages of ∼1 Myrs below the central and coastal plain indicate that residual groundwater may be retained in the deep parts of the basin since being recharged during the last glacial period or earlier. The groundwater flow system has therefore probably not reached a new equilibrium state with modern-day hydraulic conditions. The

  15. Conceptual groundwater flow models identified in triassic basins, eastern united states

    NASA Astrophysics Data System (ADS)

    Venkatakrishnan, R.; Gheorghiu, F.

    2003-04-01

    groundwater flow models that are developed as a function of geologic setting can be used as a guide in developing site hydrogeologic models, to plan groundwater investigations and interpret the results, and estimate the potential spread of contaminant impacts to groundwater.

  16. Groundwater recharge rate and zone structure estimation using PSOLVER algorithm.

    PubMed

    Ayvaz, M Tamer; Elçi, Alper

    2014-01-01

    The quantification of groundwater recharge is an important but challenging task in groundwater flow modeling because recharge varies spatially and temporally. The goal of this study is to present an innovative methodology to estimate groundwater recharge rates and zone structures for regional groundwater flow models. Here, the unknown recharge field is partitioned into a number of zones using Voronoi Tessellation (VT). The identified zone structure with the recharge rates is associated through a simulation-optimization model that couples MODFLOW-2000 and the hybrid PSOLVER optimization algorithm. Applicability of this procedure is tested on a previously developed groundwater flow model of the Tahtalı Watershed. Successive zone structure solutions are obtained in an additive manner and penalty functions are used in the procedure to obtain realistic and plausible solutions. One of these functions constrains the optimization by forcing the sum of recharge rates for the grid cells that coincide with the Tahtalı Watershed area to be equal to the areal recharge rate determined in the previous modeling by a separate precipitation-runoff model. As a result, a six-zone structure is selected as the best zone structure that represents the areal recharge distribution. Comparison to results of a previous model for the same study area reveals that the proposed procedure significantly improves model performance with respect to calibration statistics. The proposed identification procedure can be thought of as an effective way to determine the recharge zone structure for groundwater flow models, in particular for situations where tangible information about groundwater recharge distribution does not exist.

  17. Estimates of tracer-based piston-flow ages of groundwater from selected sites: National Water-Quality Assessment Program, 2006-2010

    USGS Publications Warehouse

    Shapiro, Stephanie D.; Plummer, L. Niel; Busenberg, Eurybiades; Widman, Peggy K.; Casile, Gerolamo C.; Wayland, Julian E.; Runkle, Donna L.

    2012-01-01

    Piston-flow age dates were interpreted from measured concentrations of environmental tracers from 812 National Water-Quality Assessment (NAWQA) Program groundwater sites from 27 Study Units across the United States. The tracers of interest include chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), and tritium/helium-3 (3H/3He). Tracer data compiled for this analysis were collected from 2006 to 2010 from groundwater wells in NAWQA studies, including: * Land-Use Studies (LUS, shallow wells, usually monitoring wells, located in recharge areas under dominant land-use settings), * Major-Aquifer Studies (MAS, wells, usually domestic supply wells, located in principal aquifers and representing the shallow drinking water supply), * Flow System Studies (FSS, networks of clustered wells located along a flowpath extending from a recharge zone to a discharge zone, preferably a shallow stream) associated with Land-Use Studies, and * Reference wells (wells representing groundwater minimally impacted by anthropogenic activities) also associated with Land-Use Studies. Tracer data were evaluated using documented methods and are presented as aqueous concentrations, equivalent atmospheric concentrations (for CFCs and SF6), and tracer-based piston-flow ages. Selected ancillary data, such as redox data, well-construction data, and major dissolved-gas (N2, O2, Ar, CH4, and CO2) data, also are presented. Recharge temperature was inferred using climate data (approximated by mean annual air temperature plus 1°C [MAAT +1°C]) as well as major dissolved-gas data (N2-Ar-based) where available. The N2-Ar-based temperatures showed significantly more variation than the climate-based data, as well as the effects of denitrification and degassing resulting from reducing conditions. The N2-Ar-based temperatures were colder than the climate-based temperatures in networks where recharge was limited to the winter months when evapotranspiration was reduced. The tracer-based piston-flow ages

  18. Considering Barometric Pressure in Groundwater Flow Investigations

    SciTech Connect

    Spane, Frank A. )

    2002-06-18

    Well water-level elevation measurements are commonly used as the basis to delineate groundwater-flow patterns (i.e., flow direction and hydraulic gradient). Barometric pressure fluctuations, however, can have a discernable impact on well water-levels. These barometric effects may lead to erroneous indications of hydraulic head within the aquifer. Total hydraulic head within the aquifer, not well water-level elevation, is the hydrologic parameter for determining groundwater-flow direction and hydraulic gradient conditions. For low-gradient, unconfined aquifer sites exhibiting variable vadose zone characteristics (e.g., thickness, pneumatic diffusivity), barometric pressure fluctuations can also cause actual, temporal changes in lateral flow direction and flow velocity. Discrete water-level measurements used to determine the average or long-term groundwater-flow conditions, therefore, may provide non-representative results. Calculation of the barometric response characteristics for individual wells provides the basis to account for the temporal effects of barometric pressure fluctuations from monitor well measurements, so that average, long-term groundwater-flow pattern behavior can be determined.

  19. Comparison of Estimated Areas Contributing Recharge to Selected Springs in North-Central Florida by Using Multiple Ground-Water Flow Models

    USGS Publications Warehouse

    Shoemaker, W. Barclay; O'Reilly, Andrew M.; Sepulveda, Nicasio; Williams, Stanley A.; Motz, Louis H.; Sun, Qing

    2004-01-01

    Areas contributing recharge to springs are defined in this report as the land-surface area wherein water entering the ground-water system at the water table eventually discharges to a spring. These areas were delineated for Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs in north-central Florida using four regional ground-water flow models and particle tracking. As expected, different models predicted different areas contributing recharge. In general, the differences were due to different hydrologic stresses, subsurface permeability properties, and boundary conditions that were used to calibrate each model, all of which are considered to be equally feasible because each model matched its respective calibration data reasonably well. To evaluate the agreement of the models and to summarize results, areas contributing recharge to springs from each model were combined into composite areas. During 1993-98, the composite areas contributing recharge to Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs were about 130, 730, 110, and 120 square miles, respectively. The composite areas for all springs remained about the same when using projected 2020 ground-water withdrawals.

  20. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  1. Regression modeling of ground-water flow

    USGS Publications Warehouse

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  2. GROUNDWATER FLOW IN LOW-PERMEABILITY ENVIRONMENTS.

    USGS Publications Warehouse

    Neuzil, C.E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow systems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of petroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters.

  3. Estimated ground-water recharge from streamflow in Fortymile Wash near Yucca Mountain, Nevada

    SciTech Connect

    Savard, C.S.

    1998-10-01

    The two purposes of this report are to qualitatively document ground-water recharge from stream-flow in Fortymile Wash during the period 1969--95 from previously unpublished ground-water levels in boreholes in Fortymile Canyon during 1982--91 and 1995, and to quantitatively estimate the long-term ground-water recharge rate from streamflow in Fortymile Wash for four reaches of Fortymile Wash (Fortymile Canyon, upper Jackass Flats, lower Jackass Flats, and Amargosa Desert). The long-term groundwater recharge rate was estimated from estimates of the volume of water available for infiltration, the volume of infiltration losses from streamflow, the ground-water recharge volume from infiltration losses, and an analysis of the different periods of data availability. The volume of water available for infiltration and ground-water recharge in the four reaches was estimated from known streamflow in ephemeral Fortymile Wash, which was measured at several gaging station locations. The volume of infiltration losses from streamflow for the four reaches was estimated from a streamflow volume loss factor applied to the estimated streamflows. the ground-water recharge volume was estimated from a linear relation between infiltration loss volume and ground-water recharge volume for each of the four reaches. Ground-water recharge rates were estimated for three different periods of data availability (1969--95, 1983--95, and 1992--95) and a long-term ground-water recharge rate estimated for each of the four reaches.

  4. Post processing of zone budgets to generate improved groundwater influx estimates associated with longwall mining.

    PubMed

    Mackie, C D

    2014-01-01

    Impacts of underground longwall mining on groundwater systems are commonly assessed using numerical groundwater flow models that are capable of forecasting changes to strata pore pressures and rates of groundwater seepage over the mine life. Groundwater ingress to a mining operation is typically estimated using zone budgets to isolate relevant parts of a model that represent specific mining areas, and to aggregate flows at nominated times within specific model stress periods. These rates can be easily misinterpreted if simplistic averaging of daily flow budgets is adopted. Such misinterpretation has significant implications for design of underground dewatering systems for a new mine site or it may lead to model calibration errors where measured mine water seepage rates are used as a primary calibration constraint. Improved estimates of groundwater ingress can be made by generating a cumulative flow history from zone budget data, then differentiating the cumulative flow history using a low order polynomial convolved through the data set.

  5. Groundwater Flow and Arsenic Biogeochemistry in Bangladesh

    NASA Astrophysics Data System (ADS)

    Harvey, C. F.

    2004-12-01

    Although groundwater in Bangladesh is severely contaminated by arsenic, little is known about the complex transient patterns of groundwater flow that flush solutes from aquifers and carry solutes into the subsurface. Hydrologic modeling results for our field site in the Munshiganj district indicate that groundwater flow is vigorous, flushing the aquifer over time-scales of decades and also introducing solute loads into the aquifer with recharge from rice fields, ponds and rivers. The combined hydrologic and biogeochemical results from our field site imply that the biogeochemistry of the aquifer system may not be in steady-state, and that the net effect of competing processes could either increase or decrease arsenic concentrations over the next decades. Modeling results suggest that irrigation has greatly changed the location, timing and chemical content of recharge to the aquifer, drawing large fluxes of anoxic water into the aquifer during the dry season that may mobilize arsenic from oxides in near-surface sediments.

  6. Hydromechanical Modeling of Tectonically Driven Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, Y. K.; Liang, X.

    2015-12-01

    Groundwater flow in bedrock is mainly controlled by the distribution of fractures and faults formed by tectonics. Understanding the formation of fractures and faults due to crust movement and their effects on groundwater flow are important in assessment and development of the groundwater resources in fractured rocks. A three-dimensional solid-fluid coupling model of a homogeneous or heterogeneous cubic bedrock was built with the finite difference model FLAC3D to simulate the rock deformation and fluid flow induced by the crust movement during 10000 years. Two opposite velocity boundary conditions on the left and right part of model were used to simulate the shear stress due to the crust movement. The results indicate that for the homogeneous formation the high compressive stresses and thus the maximum pore pressure concentrate along the middle of formation as time progresses. The pore pressure along the middle of formation increases at early time, then approaches a peak value, and finally decreases as time progresses, indicating that the plastic failure of the formation may happen along the middle of formation where the fluid flow is changed by stresses. The heterogeneous case considered is that the mechanical and hydrological properties are different in one half of the formation from the other half. In this case the distribution and change of the stresses and pore pressure are similar with the homogeneous case while the magnitudes are smaller. The results of this study can help one to understand the effects of tectonics on the groundwater flow in fractured rocks. Keywords: solid-fluid coupling model, stresses, pore pressure, groundwater flow

  7. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (PAPER)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  8. IN SITU FLOW METERS AROUND A GROUNDWATER CIRCULATION WELL (ABSTRACT)

    EPA Science Inventory

    The primary benefit of groundwater circulation well (GCW) technology is the development of strong vertical flows surrounding the treatment well. The extent of significant vertical flow surrounding a circulation well is difficult to establish from traditional groundwater elevation...

  9. Geospatial database of estimates of groundwater discharge to streams in the Upper Colorado River Basin

    USGS Publications Warehouse

    Garcia, Adriana; Masbruch, Melissa D.; Susong, David D.

    2014-01-01

    The U.S. Geological Survey, as part of the Department of the Interior’s WaterSMART (Sustain and Manage America’s Resources for Tomorrow) initiative, compiled published estimates of groundwater discharge to streams in the Upper Colorado River Basin as a geospatial database. For the purpose of this report, groundwater discharge to streams is the baseflow portion of streamflow that includes contributions of groundwater from various flow paths. Reported estimates of groundwater discharge were assigned as attributes to stream reaches derived from the high-resolution National Hydrography Dataset. A total of 235 estimates of groundwater discharge to streams were compiled and included in the dataset. Feature class attributes of the geospatial database include groundwater discharge (acre-feet per year), method of estimation, citation abbreviation, defined reach, and 8-digit hydrologic unit code(s). Baseflow index (BFI) estimates of groundwater discharge were calculated using an existing streamflow characteristics dataset and were included as an attribute in the geospatial database. A comparison of the BFI estimates to the compiled estimates of groundwater discharge found that the BFI estimates were greater than the reported groundwater discharge estimates.

  10. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, R.M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  11. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.

    PubMed

    Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz

    2011-02-01

    The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area. PMID:20213054

  12. Modeling groundwater flow on massively parallel computers

    SciTech Connect

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  13. Multiphase groundwater flow near cooling plutons

    USGS Publications Warehouse

    Hayba, D.O.; Ingebritsen, S.E.

    1997-01-01

    We investigate groundwater flow near cooling plutons with a computer program that can model multiphase flow, temperatures up to 1200??C, thermal pressurization, and temperature-dependent rock properties. A series of experiments examines the effects of host-rock permeability, size and depth of pluton emplacement, single versus multiple intrusions, the influence of a caprock, and the impact of topographically driven groundwater flow. We also reproduce and evaluate some of the pioneering numerical experiments on flow around plutons. Host-rock permeability is the principal factor influencing fluid circulation and heat transfer in hydrothermal systems. The hottest and most steam-rich systems develop where permeability is of the order of 10-15 m2. Temperatures and life spans of systems decrease with increasing permeability. Conduction-dominated systems, in which permeabilities are ???10-16m2, persist longer but exhibit relatively modest increases in near-surface temperatures relative to ambient conditions. Pluton size, emplacement depth, and initial thermal conditions have less influence on hydrothermal circulation patterns but affect the extent of boiling and duration of hydrothermal systems. Topographically driven groundwater flow can significantly alter hydrothermal circulation; however, a low-permeability caprock effectively decouples the topographically and density-driven systems and stabilizes the mixing interface between them thereby defining a likely ore-forming environment.

  14. Sublacustrine groundwater discharge in esker aquifers; fully integrated groundwater flow modeling compared with novel field techniques

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Rossi, Pekka M.; Isokangas, Elina; Kløve, Bjørn

    2015-04-01

    Groundwater (GW) discharge to surface water bodies such as streams, lakes and wetlands can greatly affect their water quantity, quality and related aquatic ecology. Therefore better understanding of GW - surface water interaction is needed in integrated management of water resources. Sublacustrine groundwater discharge (SGD) to lakes was studied in a complex unconfined Rokua esker aquifer system. SGD was studied for 12 lakes in the area to better understand water and solute inputs through lake beds and thereby the role of GW on lake water budget and solute concentrations. The locations and fluxes of SGD were simulated using a fully integrated groundwater flow model HydroGeoSphere. The used hydrological simulator allows water to flow and partition into overland and stream flow, evaporation, infiltration, and subsurface discharge into surface water features in a physically-based way, which was needed in simulating SGD of the complex aquifer system. The model was first calibrated for subsurface hydraulic conductivity in steady state using data of measured long-term average groundwater and lake levels and stream baseflow. The model performance in transient simulations was then examined against recorded hydrographs for lake and groundwater levels and stream flow. After model performance was verified, the simulated locations and fluxes of SGD were extracted from the model and compared with results from three independent field methods: airborne thermal imaging, stable isotope water balance and seepage meter measurements. Airborne thermal imaging was used to infer locations of SGD into lakes based on temperature anomalies at lakes shorelines due to discharging cold groundwater. Isotopic composition (H2 and O18) was analysed for lake water, groundwater and the data was used to estimate SGD flux into lakes. Finally, seepage meter measurements were conducted for one of the lakes to establish both locations and fluxes of SGD in detail. The simulated and field-based estimated

  15. Estimated Water Flows in 2005: United States

    SciTech Connect

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

  16. Flow Of Groundwater From Soil To Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Olofsson, B.

    1994-03-01

    Knowledge of groundwater flow from soil or surface water to crystalline bedrock has usually been derived from indirect studies of drawdown in soil due to underground constructions, as well as from analysis of water chemistry and from tracer experiments. Infiltration into the bedrock occurs at specific sites where suitable combinations of geological and hydrological variables exist. Flow from soil to rock in the saturated zone occurs where conductors in the bedrock, such as fractures and fracture zones, are hydraulically connected to a groundwater reservoir in permeable soil or to horizons of permeable and constructive material in heterogeneous soil. Of particular importance for infiltration are the hydraulic conditions of the contact zone between soil and rock. A thin layer of silt on the bedrock surface often blocks the water flow. The micro-topography of the bedrock surface is important since fracture zones usually give depressions in the surface, in which accumulations of sorted and conductive material often can be found. A strong heterogeneity in the infiltration from soil to rock is evidenced by statistical analyses of the flow related to various geological and hydrogeological variables, as well as from analyses of groundwater chemistry and tracer experiments. In order to estimate the infiltration from soil to rock and to carry out mathematical modelling of the groundwater flow, it is necessary to have a good knowledge of the hydraulic conditions of the superficial rock and soil as well as of the conditions at the soil/bedrock contact zone. Information on the saturated flow from soil to rock is essential for calculation of water budgets, for assessments of spread of pollutants and for estimations of leakage into underground constructions.

  17. Effects of intraborehole flow on groundwater age distribution

    USGS Publications Warehouse

    Zinn, B.A.; Konikow, L.F.

    2007-01-01

    Environmental tracers are used to estimate groundwater ages and travel times, but the strongly heterogeneous nature of many subsurface environments can cause mixing between waters of highly disparate ages, adding additional complexity to the age-estimation process. Mixing may be exacerbated by the presence of wells because long open intervals or long screens with openings at multiple depths can transport water and solutes rapidly over a large vertical distance. The effect of intraborehole flow on groundwater age was examined numerically using direct age transport simulation coupled with the Multi-Node Well Package of MODFLOW. Ages in a homogeneous, anisotropic aquifer reached a predevelopment steady state possessing strong depth dependence. A nonpumping multi-node well was then introduced in one of three locations within the system. In all three cases, vertical transport along the well resulted in substantial changes in age distributions within the system. After a pumping well was added near the nonpumping multi-node well, ages were further perturbed by a flow reversal in the nonpumping multi-node well. Results indicated that intraborehole flow can substantially alter groundwater ages, but the effects are highly dependent on local or regional flow conditions and may change with time. ?? Springer-Verlag 2007.

  18. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  19. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes. PMID:27463671

  20. Connections between groundwater flow and transpiration partitioning

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  1. Groundwater flow as a cooling agent of the continental lithosphere

    NASA Astrophysics Data System (ADS)

    Kooi, Henk

    2016-03-01

    Groundwater that flows through the outer shell of the Earth as part of the hydrologic cycle influences the distribution of heat and, thereby, the temperature field in the Earth’s crust. Downward groundwater flow in recharge areas lowers crustal temperatures, whereas upward flow in discharge areas tends to raise temperatures relative to a purely conductive geothermal regime. Here I present numerical simulations of generalized topography-driven groundwater flow. The simulations suggest that groundwater-driven convective cooling exceeds groundwater-driven warming of the Earth’s crust, and hence that groundwater flow systems cause net temperature reductions of groundwater basins. Moreover, the simulations demonstrate that this cooling extends into the underlying crust and lithosphere. I find that horizontal components of groundwater flow play a central role in this net subsurface cooling by conveying relatively cold water to zones of upward groundwater flow. The model calculations suggest that the crust and lithosphere beneath groundwater basins can cool by several tens of degrees Celsius where groundwater flows over large distances in basins that consist of crustal rock. In contrast, groundwater-induced cooling is small in unconsolidated sedimentary settings, such as deltas.

  2. Groundwater

    USGS Publications Warehouse

    Stonestrom, David A.; Wohl, Ellen E.

    2016-01-01

    Groundwater represents the terrestrial subsurface component of the hydrologic cycle. As such, groundwater is generally in motion, moving from elevated areas of recharge to lower areas of discharge. Groundwater usually moves in accordance with Darcy’s law (Dalmont, Paris: Les Fontaines Publiques de la Ville de Dijon, 1856). Groundwater residence times can be under a day in small upland catchments to over a million years in subcontinental-sized desert basins. The broadest definition of groundwater includes water in the unsaturated zone, considered briefly here. Water chemically bound to minerals, as in gypsum (CaSO4 • 2H2O) or hydrated clays, cannot flow in response to gradients in total hydraulic head (pressure head plus elevation head); such water is thus usually excluded from consideration as groundwater. In 1940, M. King Hubbert showed Darcy’s law to be a special case of thermodynamically based potential field equations governing fluid motion, thereby establishing groundwater hydraulics as a rigorous engineering science (Journal of Geology 48, pp. 785–944). The development of computer-enabled numerical methods for solving the field equations with real-world approximating geometries and boundary conditions in the mid-1960s ushered in the era of digital groundwater modeling. An estimated 30 percent of global fresh water is groundwater, compared to 0.3 percent that is surface water, 0.04 percent atmospheric water, and 70 percent that exists as ice, including permafrost (Shiklomanov and Rodda 2004, cited under Groundwater Occurrence). Groundwater thus constitutes the vast majority—over 98 percent—of the unfrozen fresh-water resources of the planet, excluding surface-water reservoirs. Environmental dimensions of groundwater are equally large, receiving attention on multiple disciplinary fronts. Riparian, streambed, and spring-pool habitats can be sensitively dependent on the amount and quality of groundwater inputs that modulate temperature and solutes

  3. Groundwater velocities at the Nevada Test Site: {sup 14}Carbon-based estimates

    SciTech Connect

    Chapman, J.B.; Hershey, R.L.; Lyles, B.F.

    1995-07-01

    Chemical and isotopic data can be used to constrain and validate groundwater flow models. This study examines probable groundwater flowpaths at the Nevada Test Site (NTS) and estimates groundwater velocities for these flowpaths using water chemistry and carbon isotopes. These velocities are provided for comparison to velocities calculated by a numerical flow model developed by GeoTrans, Inc. Similar to numerical flow models, models of chemical and isotopic evolution are not unique; any number of combinations of reactions can simulate evolution from one water to another, but are no guarantee that the simulation is correct. Knowledge of the hydrology, mineralogy, and chemistry must be combined to produce feasible evolutionary paths.

  4. Regional groundwater flow in hard rocks.

    PubMed

    Pacheco, Fernando A L

    2015-02-15

    The territory of continental Portugal has a geologic history marked by the Hercynian orogeny, and to the north of this country the Hercynian large-scale tectonic structures are typically represented by long and deep NW-SE trending ductile shear zones and NNE-SSW trending fragile faults. These structures are elements of mineral and thermal water circuits that discharge as springs in more than one hundred locations. The purpose of this study is to investigate if these structures are also used by shallower non-mineral groundwater, integrated in a large-scale regional flow system. Using an original combination of water balance and recession flow models, it was possible to calculate catchment turnover times based solely on groundwater discharge rates and recession flow parameters. These times were then used to classify a group of 46 watersheds as closed or open basins, and among the later class to identify source and sink basins, based on innovative interpretations of relationships between turnover time and catchment area. By definition, source basins transfer groundwater to sink basins and altogether form a regional flow system. Using a Geographic Information System, it could be demonstrated the spatial association of open basins to the Hercynian ductile and fragile tectonic structures and hence to classify the basins as discharge cells of a regional flow system. Most of the studied watersheds are sub-basins of the Douro River basin, one of the largest regional catchments in the Iberian Peninsula, being located in its mouth area. Because the largest part of open basins is sink, which by definition tends to dominate in the mouth area of regional catchments, it is proposed as an extension of the studied area conceptual boundaries towards the Douro River basin headwaters, where the corresponding sources could be searched for. PMID:25460951

  5. Patterns in groundwater chemistry resulting from groundwater flow

    NASA Astrophysics Data System (ADS)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  6. Estimating the distribution of contemporary (<50 year old) groundwater on Earth

    NASA Astrophysics Data System (ADS)

    Befus, K. M.; Gleeson, T. P.; Luijendijk, E.; Jasechko, S.; Cardenas, M. B.

    2014-12-01

    Time-scales of groundwater dynamics can control how groundwater interacts with many Earth system processes, including weathering, the transport of solutes or contaminants, and hydrologic responses to climate change. In this study, we quantified the global volume and distribution of groundwater that has been recharged over the past 50 years, a time-scale relevant to current policy planning and intimately tied to human generations. We modelled groundwater residence time distributions with several thousand two-dimensional flow and age-as-mass transport simulations guided by global datasets of basin geometric and hydraulic properties. The models suggest that less than 15% of the groundwater on Earth to 2 km depth was recharged in the past 50 years. For most watersheds on Earth, this young groundwater is restricted to the upper 100 m of the Earth's crust. Uncertainty in our estimate stems from the simplification of two-dimensional flow and uncertainty in permeability and porosity.

  7. Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California: 2. Quantitative hydrologic assessment

    USGS Publications Warehouse

    Fio, John L.; Deverel, S.J.

    1991-01-01

    Groundwater flow modeling was used to quantitatively assess the hydrologic processes affecting ground water and solute movement to drain laterals. Modeling results were used to calculate the depth distribution of groundwater flowing into drain laterals at 1.8 m (drain lateral 1) and 2.7 m (drain lateral 2) below land surface. The simulations indicated that under nonirrigated conditions about 89% of the flow in drain lateral 2 was from groundwater originating from depths greater than 6 m below land surface. The deep groundwater has higher selenium concentrations than shallow groundwater. Simulation of irrigated conditions indicates that as recharge (deep percolation) increases, the proportional contribution of deep groundwater to drain lateral flow decreases. Groundwater flow paths and travel times estimated from the simulation results indicate that groundwater containing high concentrations of selenium (greater than 780 μg L−1) probably will continue to enter drain lateral 2 for decades.

  8. Relation of streams, lakes, and wetlands to groundwater flow systems

    USGS Publications Warehouse

    Winter, T.C.

    1999-01-01

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surfacewater bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains.

  9. Groundwater app to determine flow direction and gradient.

    PubMed

    Morrison, Derek; Munster, Clyde

    2015-01-01

    A computational program, called the groundwater flow calculator, was created to quickly and easily determine the hydraulic gradient and direction of groundwater flow. The groundwater flow calculator automates the hand-drawn process by Ralph Heath in the U.S. Geological Survey (USGS) Water Supply Paper 2220. In addition, a mobile app was developed to allow this procedure to run on a smart phone for use in the field.

  10. Using Groundwater Age and Other Isotopic Signatures to Delineate Groundwater Flow and Stratification

    SciTech Connect

    Moran, J E; Hudson, G B

    2005-08-31

    Isotopic tracers, such as stable isotopes of the water molecule and tritium, have been used in investigations of groundwater flow and transport and recharge water source for several decades. While these data can place hard constraints on groundwater flow rates, the degree of vertical flow between aquifers and across aquitards, and recharge source area(s), they are rarely used, even for validation, in conceptual or numerical models of groundwater flow. The Groundwater Ambient Monitoring and Assessment Program, sponsored by the California State Water Resources Control Board, and carried out in collaboration with the U.S. Geological Survey, has provided the means to gather an unprecedented number of tritium-helium groundwater ages in the basins of California. As the examples below illustrate, a collection of groundwater ages in a basin allows delineation of recharge areas (youngest ages), bulk flow rates and flowpaths, as well as a means of assessing susceptibility to anthropogenic contaminants.

  11. Confidence Region Estimation for Groundwater Parameter Identification Problems

    NASA Astrophysics Data System (ADS)

    Vugrin, K. W.; Swiler, L. P.; Roberts, R. M.

    2007-12-01

    This presentation focuses on different methods to generate confidence regions for nonlinear parameter identification problems. Three methods for confidence region estimation are considered: a linear approximation method, an F--test method, and a Log--Likelihood method. Each of these methods are applied to three case studies. One case study is a problem with synthetic data, and the other two case studies identify hydraulic parameters in groundwater flow problems based on experimental well--test results. The confidence regions for each case study are analyzed and compared. Each of the three methods produce similar and reasonable confidence regions for the case study using synthetic data. The linear approximation method grossly overestimates the confidence region for the first groundwater parameter identification case study. The F--test and Log--Likelihood methods result in similar reasonable regions for this test case. For the second groundwater parameter identification case study, the linear approximation method produces a confidence region of reasonable size. In this test case, the F--test and Log--Likelihood methods generate disjoint confidence regions of reasonable size. The differing results, capabilities, and drawbacks of all three methods are discussed. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  12. Megacity pumping and preferential flow threaten groundwater quality

    NASA Astrophysics Data System (ADS)

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-09-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide.

  13. Analysis of groundwater flow in mountainous, headwater catchments with permafrost

    NASA Astrophysics Data System (ADS)

    Evans, Sarah G.; Ge, Shemin; Liang, Sihai

    2015-12-01

    Headwater catchments have a direct impact on the water resources of downstream lowland regions as they supply freshwater in the form of surface runoff and discharging groundwater. Often, these mountainous catchments contain expansive permafrost that may alter the natural topographically controlled groundwater flow system. As permafrost could degrade with climate change, it is imperative to understand the effect of permafrost on groundwater flow in headwater catchments. This study characterizes groundwater flow in mountainous headwater catchments and evaluates the effect of permafrost in the context of climate change on groundwater movement using a three-dimensional, finite element, hydrogeologic model. The model is applied to a representative headwater catchment on the Qinghai-Tibet Plateau, China. Results from the model simulations indicate that groundwater contributes significantly to streams in the form of baseflow and the majority of groundwater flow is from the shallow aquifer above the permafrost, disrupting the typical topographically controlled flow pattern observed in most permafrost-free headwater catchments. Under a warming scenario where mean annual surface temperature is increased by 2°C, reducing the areal extent of permafrost in the catchment, groundwater contribution to streamflow may increase three-fold. These findings suggest that, in headwater catchments, permafrost has a large influence on groundwater flow and stream discharge. Increased annual air temperatures may increase groundwater discharge to streams, which has implications for ecosystem health and the long-term availability of water resources to downstream regions.

  14. A correction on coastal heads for groundwater flow models.

    PubMed

    Lu, Chunhui; Werner, Adrian D; Simmons, Craig T; Luo, Jian

    2015-01-01

    We introduce a simple correction to coastal heads for constant-density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant-density flow) if the coastal heads are corrected to ((α + 1)/α)hs  - B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value hs1+α/α. The accuracy of using these corrections is demonstrated by consistency between constant-density Darcy's solution and variable-density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant-density flow relative to variable-density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant-density groundwater flow models.

  15. Empirical estimation of groundwater quality changes using remote sensing

    NASA Astrophysics Data System (ADS)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2015-12-01

    Recent groundwater availability studies estimate large-scale aquifer depletion rates and aquifer stress using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. To further evaluate available groundwater resources, assessing potability of groundwater is necessary. Statistical relationships are initially developed at individual well locations to discern our ability to predict groundwater geochemistry as a function of groundwater levels. Next, up-scaled multivariate relationships to estimate total dissolved solid (TDS) concentrations as a function of GRACE-derived subsurface storage anomalies, dominant land use, and other physical parameters are developed in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. A goodness of fit test was performed to evaluate model strength. Results demonstrate the potential to characterize global groundwater potability variations using remote sensing.

  16. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  17. Effects of linking a soil-water-balance model with a groundwater-flow model.

    PubMed

    Stanton, Jennifer S; Ryter, Derek W; Peterson, Steven M

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  18. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  19. Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska, 1895-2055-Phase Two

    USGS Publications Warehouse

    Stanton, Jennifer S.; Peterson, Steven M.; Fienen, Michael N.

    2010-01-01

    Regional groundwater-flow simulations for a 30,000-square-mile area of the High Plains aquifer, referred to collectively as the Elkhorn-Loup Model, were developed to predict the effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska. Simulations described the stream-aquifer system from predevelopment through 2005 [including predevelopment (pre-1895), early development (1895-1940), and historical development (1940 through 2005) conditions] and future hypothetical development conditions (2006 through 2033 or 2055). Predicted changes to stream base flow that resulted from simulated changes to groundwater irrigation will aid development of long-term strategies for management of hydrologically connected water supplies. The predevelopment through 2005 simulation was calibrated using an automated parameter-estimation method to optimize the fit to pre-1940 groundwater levels and base flows, 1945 through 2005 decadal groundwater-level changes, and 1940 through 2005 base flows. The calibration results of the pre-1940 period indicated that 81 percent of the simulated groundwater levels were within 30 feet of the measured water levels. The results did not indicate large areas of simulated groundwater levels that were biased too high or too low, indicating that the simulation generally captures the regional trends. Calibration results using 1945 through 2005 decadal groundwater-level changes indicated that a majority of the simulated groundwater-level changes were within 5 feet of the changes calculated from measured groundwater levels. Simulated groundwater-level rises generally were smaller than measured rises near surface-water irrigation districts. Simulated groundwater-level declines were larger than measured declines in several parts of the study area having large amounts of irrigated crops. Base-flow trends and volumes generally were reproduced by the simulation at most sites. Exceptions include downward trends of simulated

  20. Estimating contributions of nitrate and herbicides from groundwater to headwater streams, northern Atlantic Coastal Plain, USA

    USGS Publications Warehouse

    Ator, Scott; Denver, Judith M.

    2012-01-01

    Groundwater transport often complicates understanding of surface-water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late-winter or spring base-flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base-flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base-flow flux of alachlor and metolachlor is <3% of the total base-flow flux of those compounds plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications is typically highest in well-drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base-flow nitrate flux represents 70% of total nitrogen flux in headwater streams.

  1. Ground-water levels, flow, and quality in northwestern Elkhart County, Indiana, 1980-89

    USGS Publications Warehouse

    Duwelius, R.F.; Silcox, C.A.

    1991-01-01

    The time of peak dissolved-bromide concentrations in water from shallow wells downgradient from the landfill was used to estimate a rate of horizontal flow of water in the unconfined aquifer. The average rate of flow between shallow wells downgradient from the landfill was estimated to be 1.2 feet per day. This rate is within the range of values for ground-water flow calculated according to Darcy's law.

  2. Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry

    NASA Astrophysics Data System (ADS)

    Kagabu, Makoto; Shimada, Jun; Delinom, Robert; Tsujimura, Maki; Taniguchi, Makoto

    2011-01-01

    In the Jakarta area (Indonesia), excessive groundwater pumping due to the rapidly increasing population has caused groundwater-related problems such as brackish water contamination in coastal areas and land subsidence. In this study, we adopted multiple hydrogeochemical techniques to demonstrate the groundwater flow system in the Jakarta area. Although almost all groundwater existing in the Jakarta basin is recharged at similar elevations, the water quality and residence time demonstrates a clear difference between the shallow and deep aquifers. Due to the rapid decrease in the groundwater potential in urban areas, we found that the seawater intrusion and the shallow and deep groundwaters are mixing, a conclusion confirmed by major ions, Br -:Cl - ratios, and chlorofluorocarbon (CFC)-12 analysis. Spring water and groundwater samples collected from the southern mountainside area show younger age characteristics with high concentrations of 14C and Ca-HCO 3 type water chemistry. We estimated the residence times of these groundwaters within 45 years under piston flow conditions by tritium analysis. Also, these groundwater ages can be limited to 20-30 years with piston flow evaluated by CFCs. Moreover, due to the magnitude of the CFC-12 concentration, we can use a pseudo age indicator in this field study, because we found a positive correlation between the major type of water chemistry and the CFC-12 concentration.

  3. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  4. Intelligent Flow Friction Estimation

    PubMed Central

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 108 and between 10−7 and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  5. Intelligent Flow Friction Estimation.

    PubMed

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

  6. Intelligent Flow Friction Estimation.

    PubMed

    Brkić, Dejan; Ćojbašić, Žarko

    2016-01-01

    Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor. However, the Colebrook equation is implicit with respect to the friction factor (λ). In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor. To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe (ε/D) were transformed to logarithmic scales. The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively. This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness (ε/D) ranging between 5000 and 10(8) and between 10(-7) and 0.1, respectively. The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation. PMID:27127498

  7. Hydrology and Simulation of Ground-Water Flow in the Tooele Valley Ground-Water Basin, Tooele County, Utah

    USGS Publications Warehouse

    Stolp, Bernard J.; Brooks, Lynette E.

    2009-01-01

    Ground water is the sole source of drinking water within Tooele Valley. Transition from agriculture to residential land and water use necessitates additional understanding of water resources. The ground-water basin is conceptualized as a single interconnected hydrologic system consisting of the consolidated-rock mountains and adjoining unconsolidated basin-fill valleys. Within the basin fill, unconfined conditions exist along the valley margins and confined conditions exist in the central areas of the valleys. Transmissivity of the unconsolidated basin-fill aquifer ranges from 1,000 to 270,000 square feet per day. Within the consolidated rock of the mountains, ground-water flow largely is unconfined, though variability in geologic structure, stratigraphy, and lithology has created some areas where ground-water flow is confined. Hydraulic conductivity of the consolidated rock ranges from 0.003 to 100 feet per day. Ground water within the basin generally moves from the mountains toward the central and northern areas of Tooele Valley. Steep hydraulic gradients exist at Tooele Army Depot and near Erda. The estimated average annual ground-water recharge within the basin is 82,000 acre-feet per year. The primary source of recharge is precipitation in the mountains; other sources of recharge are irrigation water and streams. Recharge from precipitation was determined using the Basin Characterization Model. Estimated average annual ground-water discharge within the basin is 84,000 acre-feet per year. Discharge is to wells, springs, and drains, and by evapotranspiration. Water levels at wells within the basin indicate periods of increased recharge during 1983-84 and 1996-2000. During these periods annual precipitation at Tooele City exceeded the 1971-2000 annual average for consecutive years. The water with the lowest dissolved-solids concentrations exists in the mountain areas where most of the ground-water recharge occurs. The principal dissolved constituents are calcium

  8. Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin; Chen, Ching-Fang; Liang, Ching-Ping; Chen, Jui-Sheng

    2016-02-01

    Overexploitation of groundwater is a common problem in the Pingtung Plain area of Taiwan, resulting in substantial drawdown of groundwater levels as well as the occurrence of severe seawater intrusion and land subsidence. Measures need to be taken to preserve these valuable groundwater resources. This study seeks to spatially determine the most suitable locations for the use of surface water on this plain instead of extracting groundwater for drinking, irrigation, and aquaculture purposes based on information obtained by combining groundwater quality analysis and a numerical flow simulation assuming the planning of manmade lakes and reservoirs to the increase of water supply. The multivariate indicator kriging method is first used to estimate occurrence probabilities, and to rank townships as suitable or unsuitable for groundwater utilization according to water quality standards for drinking, irrigation, and aquaculture. A numerical model of groundwater flow (MODFLOW) is adopted to quantify the recovery of groundwater levels in townships after model calibration when groundwater for drinking and agricultural demands has been replaced by surface water. Finally, townships with poor groundwater quality and significant increases in groundwater levels in the Pingtung Plain are prioritized for the groundwater conservation planning based on the combined assessment of groundwater quality and quantity. The results of this study indicate that the integration of groundwater quality analysis and the numerical flow simulation is capable of establishing sound strategies for joint groundwater and surface water use. Six southeastern townships are found to be suitable locations for replacing groundwater with surface water from manmade lakes or reservoirs to meet drinking, irrigation, and aquaculture demands.

  9. Wave-Induced Groundwater Flows in a Freshwater Beach Aquifer

    NASA Astrophysics Data System (ADS)

    Malott, S. S.; Robinson, C. E.; O'Carroll, D. M.

    2014-12-01

    Wave-induced recirculation across the sediment-water interface can impact the transport of pollutants through a beach aquifer and their ultimate flux into coastal waters. The fate of nutrients (e.g. from septic and agricultural sources) and fecal indicator bacteria (e.g. E. coil) near the sediment-water interface are of particular concern as these pollutants often lead to degradation of recreational water quality and nearshore ecosystems. This paper presents detailed field measurements of groundwater flows in a freshwater beach aquifer on Lake Huron over periods of intensified wave conditions. Quantifying wave-driven processes in a freshwater beach aquifer enables wave effects to be studied in isolation from density and tidal effects that complicate groundwater flows in marine beaches. Water exchange across the sediment-water interface and groundwater flow patterns were measured using groundwater wells, arrays of vertically nested pressure transducers and manometers. Results show that wave action induces rapid infiltration/exfiltration across the sediment-water interface and a larger recirculation cell through the beach aquifer. Field data is used to validate a numerical groundwater model of wave-induced groundwater flows. While prior studies have simulated the effects of waves on beach groundwater flows, this study is the first attempt to validate these sophisticated modeling approaches. Finally, field data illustrating the impact of wave-induced groundwater flows on nutrient and bacteria fate and transport in beach aquifers will also be presented.

  10. Using 14C and 3H to understand groundwater flow and recharge in an aquifer window

    NASA Astrophysics Data System (ADS)

    Atkinson, A. P.; Cartwright, I.; Gilfedder, B. S.; Cendón, D. I.; Unland, N. P.; Hofmann, H.

    2014-12-01

    Knowledge of groundwater residence times and recharge locations is vital to the sustainable management of groundwater resources. Here we investigate groundwater residence times and patterns of recharge in the Gellibrand Valley, southeast Australia, where outcropping aquifer sediments of the Eastern View Formation form an "aquifer window" that may receive diffuse recharge from rainfall and recharge from the Gellibrand River. To determine recharge patterns and groundwater flow paths, environmental isotopes (3H, 14C, δ13C, δ18O, δ2H) are used in conjunction with groundwater geochemistry and continuous monitoring of groundwater elevation and electrical conductivity. The water table fluctuates by 0.9 to 3.7 m annually, implying recharge rates of 90 and 372 mm yr-1. However, residence times of shallow (11 to 29 m) groundwater determined by 14C are between 100 and 10 000 years, 3H activities are negligible in most of the groundwater, and groundwater electrical conductivity remains constant over the period of study. Deeper groundwater with older 14C ages has lower δ18O values than younger, shallower groundwater, which is consistent with it being derived from greater altitudes. The combined geochemistry data indicate that local recharge from precipitation within the valley occurs through the aquifer window, however much of the groundwater in the Gellibrand Valley predominantly originates from the regional recharge zone, the Barongarook High. The Gellibrand Valley is a regional discharge zone with upward head gradients that limits local recharge to the upper 10 m of the aquifer. Additionally, the groundwater head gradients adjacent to the Gellibrand River are generally upwards, implying that it does not recharge the surrounding groundwater and has limited bank storage. 14C ages and Cl concentrations are well correlated and Cl concentrations may be used to provide a first-order estimate of groundwater residence times. Progressively lower chloride concentrations from 10

  11. Regional groundwater flow and geochemical evolution in the Amacuzac River Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Morales-Casique, Eric; Guinzberg-Belmont, Jacobo; Ortega-Guerrero, Adrián

    2016-05-01

    An approach is presented to investigate the regional evolution of groundwater in the basin of the Amacuzac River in Central Mexico. The approach is based on groundwater flow cross-sectional modeling in combination with major ion chemistry and geochemical modeling, complemented with principal component and cluster analyses. The hydrogeologic units composing the basin, which combine aquifers and aquitards both in granular, fractured and karstic rocks, were represented in sections parallel to the regional groundwater flow. Steady-state cross-section numerical simulations aided in the conceptualization of the groundwater flow system through the basin and permitted estimation of bulk hydraulic conductivity values, recharge rates and residence times. Forty-five water locations (springs, groundwater wells and rivers) were sampled throughout the basin for chemical analysis of major ions. The modeled gravity-driven groundwater flow system satisfactorily reproduced field observations, whereas the main geochemical processes of groundwater in the basin are associated to the order and reactions in which the igneous and sedimentary rocks are encountered along the groundwater flow. Recharge water in the volcanic and volcano-sedimentary aquifers increases the concentration of HCO3 -, Mg2+ and Ca2+ from dissolution of plagioclase and olivine. Deeper groundwater flow encounters carbonate rocks, under closed CO2 conditions, and dissolves calcite and dolomite. When groundwater encounters gypsum lenses in the shallow Balsas Group or the deeper Huitzuco anhydrite, gypsum dissolution produces proportional increased concentration of Ca2+ and SO4 2-; two samples reflected the influence of hydrothermal fluids and probably halite dissolution. These geochemical trends are consistent with the principal component and cluster analyses.

  12. Regional Groundwater Flow in the Louisville Aquifer.

    PubMed

    Tiaif, Syafrin; Serrano, Sergio E

    2015-01-01

    The unconfined alluvial aquifer at Louisville, Kentucky, is an important source of water for domestic and industrial uses. It has been the object of several modeling studies in the past, particularly via the application of classical analytical solutions, and numerical solutions (finite differences and finite elements). A new modeling procedure of the Louisville aquifer is presented based on a modification of Adomian's Decomposition Method (ADM) to handle irregularly shaped boundaries. The new approach offers the simplicity, stability, and spatial continuity of analytical solutions, in addition to the ability to handle irregular boundaries typical of numerical solutions. It reduces to the application of a simple set of algebraic equations to various segments of the aquifer. The calculated head contours appear in reasonably agreement with those of previous studies, as well as with those from measured head values from the U.S. Geological Survey field measurement program. A statistical comparison of the error standard deviation is within the same range as that reported in previous studies that used complex numerical solutions. The present methodology could be easily implemented in other aquifers when preliminary results are needed, or when scarce hydrogeologic information is available. Advantages include a simple approach for preliminary groundwater modeling; an analytic description of hydraulic heads, gradients, fluxes, and flow rates; state variables are described continuously over the spatial domain; complications from stability and numerical roundoff are minimized; there is no need for a numerical grid or the handling of large sparse matrices; there is no need to use specialized groundwater software, because all calculations may be done with standard mathematics or spreadsheet programs. Nonlinearity, the effect of higher order terms, and transient simulations could be included if desired.

  13. Groundwater balance estimation in karst by using simple conceptual rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Željković, Ivana; Kadić, Ana; Denić-Jukić, Vesna

    2014-05-01

    The objective of this work is the study of Opačac karst spring which geographically lies in Dalmatia (Croatia). Numerous studies have been carried out in karst aiming the investigation of groundwater regime. The karst spring hydrograph can reflect the groundwater regime and consequently the analysis is based on them. A simple conceptual rainfall-runoff model is proposed for the estimation of groundwater balance components including the influences of time invariant catchment boundaries and intercatchment flows. The proposed parameter estimation procedure merges the soil-moisture balance and the groundwater balance approaches to obtain the complete groundwater budget. The effective rainfall is calculated by using mathematical model based on soil-moisture balance equations i.e. Palmer's fluid mass balance method. The parameters of model of effective rainfall are determined by using simple conceptual rainfall-runoff model consisting of two linear reservoirs representing the fast and slow flow component of the recession. The weight coefficient between the fast and slow component is determined by using BFI (Base Flow Index) analysis of hydrograph. Recession coefficient of the slow flow component and the weight coefficient are determined from hydrograph analysis. Available data from nearby meteorological station includes on daily basis daily average discharge, the amount of precipitation, the average temperature and the humidity from 1995-2010. The average catchment area is also estimated with the average yearly runoff deficit using Turc's method and compared with the values obtained from the application of the rainfall-runoff model. Nash-Sutcliffe model efficiency coefficient for simulated hydrograph is applied to assess the predictive power of model. Calculated groundwater balance shows that the Opačac Spring aquifer contains a significant storage capacity. The application of series of linear reservoirs is a classical and common technique, but the proposed simple

  14. Groundwater-flow and land-subsidence model of Antelope Valley, California

    USGS Publications Warehouse

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    The groundwater-flow model of the basin was discretized horizontally into a grid of 130 rows and 118 columns of square cells 1 kilometer (0.621 mile) on a side, and vertically into four layers representing the upper (two layers), middle (one layer), and lower (one layer) aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915–95, by using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley groundwater basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of groundwater-flow and land-subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during

  15. Numerical simulation of groundwater flow at Puget Sound Naval Shipyard, Naval Base Kitsap, Bremerton, Washington

    USGS Publications Warehouse

    Jones, Joseph L.; Johnson, Kenneth H.; Frans, Lonna M.

    2016-08-18

    Information about groundwater-flow paths and locations where groundwater discharges at and near Puget Sound Naval Shipyard is necessary for understanding the potential migration of subsurface contaminants by groundwater at the shipyard. The design of some remediation alternatives would be aided by knowledge of whether groundwater flowing at specific locations beneath the shipyard will eventually discharge directly to Sinclair Inlet of Puget Sound, or if it will discharge to the drainage system of one of the six dry docks located in the shipyard. A 1997 numerical (finite difference) groundwater-flow model of the shipyard and surrounding area was constructed to help evaluate the potential for groundwater discharge to Puget Sound. That steady-state, multilayer numerical model with homogeneous hydraulic characteristics indicated that groundwater flowing beneath nearly all of the shipyard discharges to the dry-dock drainage systems, and only shallow groundwater flowing beneath the western end of the shipyard discharges directly to Sinclair Inlet.Updated information from a 2016 regional groundwater-flow model constructed for the greater Kitsap Peninsula was used to update the 1997 groundwater model of the Puget Sound Naval Shipyard. That information included a new interpretation of the hydrogeologic units underlying the area, as well as improved recharge estimates. Other updates to the 1997 model included finer discretization of the finite-difference model grid into more layers, rows, and columns, all with reduced dimensions. This updated Puget Sound Naval Shipyard model was calibrated to 2001–2005 measured water levels, and hydraulic characteristics of the model layers representing different hydrogeologic units were estimated with the aid of state-of-the-art parameter optimization techniques.The flow directions and discharge locations predicted by this updated model generally match the 1997 model despite refinements and other changes. In the updated model, most

  16. Comparison of different estimation techniques to quantify groundwater recharge in Pirna, Germany

    NASA Astrophysics Data System (ADS)

    Ringleb, Jana; Sallwey, Jana; Stefan, Catalin

    2015-04-01

    Water scarcity in combination with groundwater exploitation is a major concern worldwide because of climate change, population growth and rising water demand. To be able to sustainably manage and protect groundwater resources, it is necessary to quantify the amount of water which leaks through the unsaturated zone and recharges the aquifer naturally. However, quantifying the spatial and temporal distribution of recharge is difficult because of soil heterogeneity and the influence of vegetation. For that reason and because field measurements of recharge are difficult to obtain, models are valuable tools to quantify recharge. Numerical models need a lot of parameters which are hard to measure and hence can only be estimated. Therefore analytical models or empirical equations which use less and / or easier obtainable parameters could estimate groundwater recharge as well as numerical models because of the underlying uncertainty in parameter estimation. Recharge estimation methods which use different model approaches and have varying complexity were compared at Pirna test field site, Germany to select suitable methods which will later be integrated into a web-based Decision Support System (DSS) developed for the sustainable management of groundwater. The complexity of the used methods covers numerical models, analytical models as well as empirical equations. Different model approaches were used to estimate groundwater recharge including amongst others a groundwater flow model, an unsaturated zone model and a watershed model. The resulting groundwater recharge estimates received from the numerical and analytical models and from empirical equations were compared to evaluate whether the methods are suitable to estimate groundwater recharge considering the complexity, data requirements and time-consumption of each method.

  17. Effective contaminant detection networks in uncertain groundwater flow fields.

    PubMed

    Hudak, P F

    2001-01-01

    A mass transport simulation model tested seven contaminant detection-monitoring networks under a 40 degrees range of groundwater flow directions. Each monitoring network contained five wells located 40 m from a rectangular landfill. The 40-m distance (lag) was measured in different directions, depending upon the strategy used to design a particular monitoring network. Lagging the wells parallel to the central flow path was more effective than alternative design strategies. Other strategies allowed higher percentages of leaks to migrate between monitoring wells. Results of this study suggest that centrally lagged groundwater monitoring networks perform most effectively in uncertain groundwater-flow fields.

  18. Improved methods for GRACE-derived groundwater storage change estimation in large-scale agroecosystems

    NASA Astrophysics Data System (ADS)

    Brena, A.; Kendall, A. D.; Hyndman, D. W.

    2013-12-01

    Large-scale agroecosystems are major providers of agricultural commodities and an important component of the world's food supply. In agroecosystems that depend mainly in groundwater, it is well known that their long-term sustainability can be at risk because of water management strategies and climatic trends. The water balance of groundwater-dependent agroecosystems such as the High Plains aquifer (HPA) are often dominated by pumping and irrigation, which enhance hydrological processes such as evapotranspiration, return flow and recharge in cropland areas. This work provides and validates new quantitative groundwater estimation methods for the HPA that combine satellite-based estimates of terrestrial water storage (GRACE), hydrological data assimilation products (NLDAS-2) and in situ measurements of groundwater levels and irrigation rates. The combined data can be used to elucidate the controls of irrigation on the water balance components of agroecosystems, such as crop evapotranspiration, soil moisture deficit and recharge. Our work covers a decade of continuous observations and model estimates from 2003 to 2013, which includes a significant drought since 2011. This study aims to: (1) test the sensitivity of groundwater storage to soil moisture and irrigation, (2) improve estimates of irrigation and soil moisture deficits (3) infer mean values of groundwater recharge across the HPA. The results show (1) significant improvements in GRACE-derived aquifer storage changes using methods that incorporate irrigation and soil moisture deficit data, (2) an acceptable correlation between the observed and estimated aquifer storage time series for the analyzed period, and (3) empirically-estimated annual rates of groundwater recharge that are consistent with previous geochemical and modeling studies. We suggest testing these correction methods in other large-scale agroecosystems with intensive groundwater pumping and irrigation rates.

  19. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework

    PubMed Central

    Richey, Alexandra S.; Thomas, Brian F.; Lo, Min‐Hui; Swenson, Sean; Rodell, Matthew

    2015-01-01

    Abstract Groundwater is a finite resource under continuous external pressures. Current unsustainable groundwater use threatens the resilience of aquifer systems and their ability to provide a long‐term water source. Groundwater storage is considered to be a factor of groundwater resilience, although the extent to which resilience can be maintained has yet to be explored in depth. In this study, we assess the limit of groundwater resilience in the world's largest groundwater systems with remote sensing observations. The Total Groundwater Stress (TGS) ratio, defined as the ratio of total storage to the groundwater depletion rate, is used to explore the timescales to depletion in the world's largest aquifer systems and associated groundwater buffer capacity. We find that the current state of knowledge of large‐scale groundwater storage has uncertainty ranges across orders of magnitude that severely limit the characterization of resilience in the study aquifers. Additionally, we show that groundwater availability, traditionally defined as recharge and redefined in this study as total storage, can alter the systems that are considered to be stressed versus unstressed. We find that remote sensing observations from NASA's Gravity Recovery and Climate Experiment can assist in providing such information at the scale of a whole aquifer. For example, we demonstrate that a groundwater depletion rate in the Northwest Sahara Aquifer System of 2.69 ± 0.8 km3/yr would result in the aquifer being depleted to 90% of its total storage in as few as 50 years given an initial storage estimate of 70 km3. PMID:26900184

  20. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    NASA Astrophysics Data System (ADS)

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; Blackwell, David D.; Roback, Robert C.; Sondrup, Andrus J.

    2016-06-01

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer, corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.

  1. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    DOE PAGES

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; Blackwell, David D.; Roback, Robert C.; Sondrup, Andrus J.

    2016-04-10

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer,more » corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.« less

  2. Locating groundwater flow in karst by acoustic emission surveys

    SciTech Connect

    Stokowski, S.J. Jr.; Clark, D.A.

    1985-01-01

    An acoustic emission survey of Newala Fm. (primarily dolomite) karst has helped to locate subsurface water flow. This survey was performed on the Rock Quarry Dome, Sevier County, Tennessee. A Dresser RS-4 recording seismograph, adjusted to provide a gain of 1000, collected acoustic emission data using Mark Products CN368 vertical geophones with 3-inch spikes. Data was collected for 5-15 second intervals. The geophones were laid out along traverses with 10, 20, or 30-ft spacing and covered with sand bags in locations of high ambient noise. Traverses were laid out: along and across lineaments known to correspond with groundwater flow in natural subsurface channels; across and along a joint-controlled sink suspected of directing groundwater flow; and across a shallow sinkhole located tangentially to the Little Pigeon River and suspected of capturing river water for the groundwater system. Acoustic emissions of channelized flowing groundwater have a characteristic erratic spiked spectral signature. These acoustic emission signatures increase in amplitude and number in the immediate vicinity of the vertical projection of channelized groundwater flow if it occurs within approximately 30 feet of the surface. If the groundwater flow occurs at greater depths the emissions may be offset from the projection of the actual flow, due to propagation of the signal along rock pinnacles or attenuation by residual soils.

  3. Present-day groundwater recharge estimation in parts of the Indian Sub-Continent

    NASA Astrophysics Data System (ADS)

    Bhanja, S. N.; Mukherjee, A.; Wada, Y.; Scanlon, B. R.; Taylor, R. G.; Rodell, M.; Malakar, P.

    2015-12-01

    Large part of global population has been dependent on groundwater as a source of fresh water. The demand would further increase with increasing population and stress associated with climate change. We tried to provide regional-scale groundwater recharge estimates in a large part of Indian Sub-Continent. A combination of ground-based, satellite-based and numerical model simulated recharge estimates were presented in the densely populated region. Three different methods: an intense network of observational wells (n>13,000 wells), a satellite (TRMM) and global land-surface model (CLM) outputs, and a global-scale hydrological model (PCR GLOBWB) were employed to calculate recharge estimates. Groundwater recharge values exhibit large spatial variations over the entire region on the basis of aquifer hydrogeology, precipitation and groundwater withdrawal patterns. Groundwater recharge estimates from all three estimation techniques were found to be higher (>300 mm/year) in fertile planes of Indus-Ganges-Brahmaputra (IGB) river basins. A combination of favorable hydrogeologic conditions (porosity, permeability etc.), comparatively higher rates of precipitation, and return flow from rapidly withdrawn irrigation water might influence occurrence of high recharge rates. However, central and southern study area experiences lower recharge rates (<200 mm/year), might be associated with unfavorable hydrogeologic conditions associated with cratonic provinces. Statistical analysis of inter-comparison between the three different recharge estimates show good matches in some of the areas. Recharge estimates indicate dynamic nature of groundwater recharge as a function of precipitation, land use pattern, and hydrogeologic parameters. On a first hand basis, the estimates will help policy makers to understand groundwater recharge process over the densely populated region and finally would facilitate to implement sustainable policy for securing water security.

  4. The water balance estimation for catastrophic floods: groundwater contribution

    NASA Astrophysics Data System (ADS)

    Arakelian, Sergey; Vinogradov, Alexey; Tulenev, Nikita; Trifonova, Tatiana

    2016-04-01

    1. We discuss the existing problems in the study of the mechanisms of formation of catastrophic floods taking into account the possible influence of groundwater. The difficulty in assessing the causes of the disastrous floods is linked to the lack of direct field measurements of precipitation and so, to estimate the water balance in the rain floods. The problems that arise when comparing the results of observations and measurements of rainfall floods are considered. 2. We rely on the concept, where groundwater and surface water are the two coupled factors resulting in catastrophic floods/debris, and they are not isolated systems. These two units are closely related to each other on the territory of a unified watershed under its functioning including the overall transport system, i.e. 3D-network of cracks in the rock (visible manifestation on the land surface of which is the rivershed itself). 3. We estimated the pressure in the aquifer taking the data obtained by the observable mudflow or flood as a base. According to our calculations in the case of a violent release, such pressure for the really observed events can reach tens of atmospheres. Such pressure enhancement may occur due to various external factors (including the nature climatic and seismic processes). 4. A more detailed analysis should be carried out in accordance with a real topology of multiple cracks taking into account the non-stationary process and levels of resistance for water flows in different sections of crack-net (hydrostatic/hydrodynamic pressures in underground aquifers).

  5. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically <5 years MRT. Vertical groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of

  6. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  7. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  8. Estimates of vertical hydraulic conductivity and regional ground-water flow rates in rocks of Jurassic and Cretaceous age, San Juan Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Frenzel, P.F.; Lyford, F.P.

    1982-01-01

    The San Juan structural basin northwestern New Mexico was modeled in three dimensions using a finite-difference, steady-state model. The modeled space was divided into seven layers of square prisms that were 6 miles on a side in the horizontal directions. In the vertical direction, the layers of prisms ranged in thickness from 300 to 1,500 feet. The model included the geologic section between the base of the Entrada Sandstone and the top of Mesaverde Group. Principal aquifers in this section are mostly confined and include the Entrada Sandstone, the Westwater Canyon Member of the Morrison Formation , and the Gallup Sandstone. Values for vertical hydraulic conductivities from 10 to the minus 12th power to 10 to the minus 11th power feet per second for the confining layers gave a good simulation of head differences between layers, but a sensitivity analysis indicated that these values could be between 10 and 100 times greater. The model-derived steady-state flow was about 30 cubic feet per second. About one-half of the flow was in the San Juan River drainage basin about one-third in the Rio Grande drainage basin, and one-sixth in the Puerco River drainage basin. (USGS)

  9. Permafrost thaw in a nested groundwater-flow system

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Voss, Clifford I.

    2013-01-01

    Groundwater flow in cold regions containing permafrost accelerates climate-warming-driven thaw and changes thaw patterns. Simulation analyses of groundwater flow and heat transport with freeze/thaw in typical cold-regions terrain with nested flow indicate that early thaw rate is particularly enhanced by flow, the time when adverse environmental impacts of climate-warming-induced permafrost loss may be severest. For the slowest climate-warming rate predicted by the Intergovernmental Panel on Climate Change (IPCC), once significant groundwater flow begins, thick permafrost layers can vanish in several hundred years, but survive over 1,000 years where flow is minimal. Large-scale thaw depends mostly on the balance of heat advection and conduction in the supra-permafrost zone. Surface-water bodies underlain by open taliks allow slow sub-permafrost flow, with lesser influence on regional thaw. Advection dominance over conduction depends on permeability and topography. Groundwater flow around permafrost and flow through permafrost impact thaw differently; the latter enhances early thaw rate. Air-temperature seasonality also increases early thaw. Hydrogeologic heterogeneity and topography strongly affect thaw rates/patterns. Permafrost controls the groundwater/surface-water-geomorphology system; hence, prediction and mitigation of impacts of thaw on ecology, chemical exports and infrastructure require improved hydrogeology/permafrost characterization and understanding

  10. An evaluation of GRACE groundwater estimates over East Africa

    NASA Astrophysics Data System (ADS)

    Nanteza, J.; Thomas, B. F.; de Linage, C.; Famiglietti, J. S.

    2013-12-01

    The East African (EA) region, comprised of five countries (Uganda, Kenya, Tanzania, Rwanda and Burundi), is among those regions characterized as vulnerable to water stress. The region's freshwater resources, both surface and groundwater, are impacted due to increased pressure from changes in climate and human activities. Better management approaches are required to ensure that these pressures do not significantly impact water availability and accessibility. However, the lack of adequate ground-based observation networks to monitor freshwater resources - especially groundwater (the major source of freshwater in EA), limits effective management of the available water resources. In this study, we explore the potential of using remotely sensed data to monitor freshwater resources over EA. The study uses data from the Gravity Recovery and Climate Experiment (GRACE) satellite to estimate groundwater storage variations over EA during the last decade. The satellite's performance in accurately observing changes in groundwater storage is examined by evaluating the GRACE groundwater estimates against spatially interpolated in-situ groundwater observations using goodness of fit criteria including linear regression coefficient, coefficient of determination and root mean square errors. The results demonstrate that GRACE performs well in observing the behavior of groundwater storage. These results can be useful in improving land surface model simulations - a basis for better decision making in water resources management in the region.

  11. Uncertainty in simulated groundwater-quality trends in transient flow

    USGS Publications Warehouse

    Starn, J. Jeffrey; Bagtzoglou, Amvrossios; Robbins, Gary A.

    2013-01-01

    In numerical modeling of groundwater flow, the result of a given solution method is affected by the way in which transient flow conditions and geologic heterogeneity are simulated. An algorithm is demonstrated that simulates breakthrough curves at a pumping well by convolution-based particle tracking in a transient flow field for several synthetic basin-scale aquifers. In comparison to grid-based (Eulerian) methods, the particle (Lagrangian) method is better able to capture multimodal breakthrough caused by changes in pumping at the well, although the particle method may be apparently nonlinear because of the discrete nature of particle arrival times. Trial-and-error choice of number of particles and release times can perhaps overcome the apparent nonlinearity. Heterogeneous aquifer properties tend to smooth the effects of transient pumping, making it difficult to separate their effects in parameter estimation. Porosity, a new parameter added for advective transport, can be accurately estimated using both grid-based and particle-based methods, but predictions can be highly uncertain, even in the simple, nonreactive case.

  12. Estimating Groundwater Quality Changes Using Remotely Sensed Groundwater Storage and Multivariate Regression

    NASA Astrophysics Data System (ADS)

    Gibbons, A.; Thomas, B. F.; Famiglietti, J. S.

    2014-12-01

    Global groundwater dependence is likely to increase with continued population growth and climate-driven freshwater redistribution. Recent groundwater quantity studies have estimated large-scale aquifer depletion rates using monthly water storage variations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission. These innovative approaches currently fail to evaluate groundwater quality, integral to assess the availability of potable groundwater resources. We present multivariate relationships to predict total dissolved solid (TDS) concentrations as a function of GRACE-derived variations in water table depth, dominant land use, and other physical parameters in two important aquifer systems in the United States: the High Plains aquifer and the Central Valley aquifer. Model evaluations were performed using goodness of fit procedures and cross validation to identify general model forms. Results of this work demonstrate the potential to characterize global groundwater potability using remote sensing.

  13. 2007 Estimated International Energy Flows

    SciTech Connect

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  14. PUMa - modelling the groundwater flow in Baltic Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kalvane, G.; Marnica, A.; Bethers, U.

    2012-04-01

    In 2009-2012 at University of Latvia and Latvia University of Agriculture project "Establishment of interdisciplinary scientist group and modelling system for groundwater research" is implemented financed by the European Social Fund. The aim of the project is to develop groundwater research in Latvia by establishing interdisciplinary research group and modelling system covering groundwater flow in the Baltic Sedimentary Basin. Researchers from fields like geology, chemistry, mathematical modelling, physics and environmental engineering are involved in the project. The modelling system is used as a platform for addressing scientific problems such as: (1) large-scale groundwater flow in Baltic Sedimentary Basin and impact of human activities on it; (2) the evolution of groundwater flow since the last glaciation and subglacial groundwater recharge; (3) the effects of climate changes on shallow groundwater and interaction of hydrographical network and groundwater; (4) new programming approaches for groundwater modelling. Within the frame of the project most accessible geological information such as description of geological wells, geological maps and results of seismic profiling in Latvia as well as Estonia and Lithuania are collected and integrated into modelling system. For example data form more then 40 thousands wells are directly used to automatically generate the geological structure of the model. Additionally a groundwater sampling campaign is undertaken. Contents of CFC, stabile isotopes of O and H and radiocarbon are the most significant parameters of groundwater that are established in unprecedented scale for Latvia. The most important modelling results will be published in web as a data set. Project number: 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060. Project web-site: www.puma.lu.lv

  15. The effects of groundwater abstraction on low flows

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; van Beek, L. P. H.; Wada, Y.; Bierkens, M. F. P.

    2012-04-01

    In regions with frequent water stress and large aquifer systems, groundwater often constitutes an essential source of water. If groundwater abstraction exceeds groundwater recharge over a long time and over large areas persistent groundwater depletion can occur. The resulting lowering of groundwater levels can have negative effects on agricultural productivity but also on natural streamflow and associated wetlands and ecosystems, in particular during low-flow events when the groundwater contribution through baseflow is relatively large. In this study we focus on the effects of global groundwater abstraction on low-flow magnitude, frequency and duration for the major rivers of the world for the period 1960-2000. As a basis, we use the large-scale hydrological model PCR-GLOBWB that calculates all major water balance terms on a daily time step at a 0.5ox0.5o resolution. Currently, PCR-GLOBWB represents groundwater and the associated baseflow by means of a linear reservoir that is parameterized using global lithological data and drainage density. It simulates renewable groundwater storage within each 0.5o cell. Lateral flow between cells is not considered. The specific runoff from the model is subsequently transformed into discharge by means of a kinematic wave routing scheme. In this study we perform a sensitivity analysis in which we evaluate the effects of total water demand for the period 1960-2000 (Wada et al., 2011: doi:10.5194/hess-15-3785-2011). This demand is preferentially met by renewable groundwater storage, secondly by surface water. Any remainder is assumed to stem from non- renewable (i.e. fossil) groundwater resources. Thus, groundwater abstractions act as a direct sink of (renewable) groundwater storage, whereas surface water abstractions act as a direct sink of streamflow. The resulting response is non-trivial as abstractions are variably taken from both groundwater and surface water, where return-flows contribute to a single source: return flow from

  16. Improved Uncertainty Quantification in Groundwater Flux Estimation Using GRACE

    NASA Astrophysics Data System (ADS)

    Reager, J. T., II; Rao, P.; Famiglietti, J. S.; Turmon, M.

    2015-12-01

    Groundwater change is difficult to monitor over large scales. One of the most successful approaches is in the remote sensing of time-variable gravity using NASA Gravity Recovery and Climate Experiment (GRACE) mission data, and successful case studies have created the opportunity to move towards a global groundwater monitoring framework for the world's largest aquifers. To achieve these estimates, several approximations are applied, including those in GRACE processing corrections, the formulation of the formal GRACE errors, destriping and signal recovery, and the numerical model estimation of snow water, surface water and soil moisture storage states used to isolate a groundwater component. A major weakness in these approaches is inconsistency: different studies have used different sources of primary and ancillary data, and may achieve different results based on alternative choices in these approximations. In this study, we present two cases of groundwater change estimation in California and the Colorado River basin, selected for their good data availability and varied climates. We achieve a robust numerical estimate of post-processing uncertainties resulting from land-surface model structural shortcomings and model resolution errors. Groundwater variations should demonstrate less variability than the overlying soil moisture state does, as groundwater has a longer memory of past events due to buffering by infiltration and drainage rate limits. We apply a model ensemble approach in a Bayesian framework constrained by the assumption of decreasing signal variability with depth in the soil column. We also discuss time variable errors vs. time constant errors, across-scale errors v. across-model errors, and error spectral content (across scales and across model). More robust uncertainty quantification for GRACE-based groundwater estimates would take all of these issues into account, allowing for more fair use in management applications and for better integration of GRACE

  17. Accounting for Transport Parameter Uncertainty in Geostatistical Groundwater Contaminant Release History Estimation

    NASA Astrophysics Data System (ADS)

    Ostrowski, J.; Shlomi, S.; Michalak, A.

    2007-12-01

    The process of estimating the release history of a contaminant in groundwater relies on coupling a limited number of concentration measurements with a groundwater flow and transport model in an inverse modeling framework. The information provided by available measurements is generally not sufficient to fully characterize the unknown release history; therefore, an accurate assessment of the estimation uncertainty is required. The modeler's level of confidence in the transport parameters, expressed as pdfs, can be incorporated into the inverse model to improve the accuracy of the release estimates. In this work, geostatistical inverse modeling is used in conjunction with Monte Carlo sampling of transport parameters to estimate groundwater contaminant release histories. Concentration non-negativity is enforced using a Gibbs sampling algorithm based on a truncated normal distribution. The method is applied to two one-dimensional test cases: a hypothetical dataset commonly used in validating contaminant source identification methods, and data collected from a tetrachloroethylene and trichloroethylene plume at the Dover Air Force Base in Delaware. The estimated release histories and associated uncertainties are compared to results from a geostatistical inverse model where uncertainty in transport parameters is ignored. Results show that the a posteriori uncertainty associated with the model that accounts for parameter uncertainty is higher, but that this model provides a more realistic representation of the release history based on available data. This modified inverse modeling technique has many applications, including assignment of liability in groundwater contamination cases, characterization of groundwater contamination, and model calibration.

  18. Numerical simulation of ground-water flow in La Crosse County, Wisconsin, and into nearby pools of the Mississippi River

    USGS Publications Warehouse

    Hunt, Randall J.; Saad, David A.; Chapel, Dawn M.

    2003-01-01

    The models provide estimates of the locations and amount of ground-water flow into Pool 8 and the southern portion of Pool 7 of the Mississippi River. Ground-water discharges into all areas of the pools, except along the eastern shore in the vicinity of the city of La Crosse and immediately downgradient from lock and dam 7 and 8. Ground-water flow into the pools is generally greatest around the perimeter with decreasing amounts away from the perimeter. An area of relatively high ground-water discharge extends out towards the center of Pool 7 from the upper reaches of the pool and may

  19. Megacity pumping and preferential flow threaten groundwater quality

    PubMed Central

    Khan, Mahfuzur R.; Koneshloo, Mohammad; Knappett, Peter S. K.; Ahmed, Kazi M.; Bostick, Benjamin C.; Mailloux, Brian J.; Mozumder, Rajib H.; Zahid, Anwar; Harvey, Charles F.; van Geen, Alexander; Michael, Holly A.

    2016-01-01

    Many of the world's megacities depend on groundwater from geologically complex aquifers that are over-exploited and threatened by contamination. Here, using the example of Dhaka, Bangladesh, we illustrate how interactions between aquifer heterogeneity and groundwater exploitation jeopardize groundwater resources regionally. Groundwater pumping in Dhaka has caused large-scale drawdown that extends into outlying areas where arsenic-contaminated shallow groundwater is pervasive and has potential to migrate downward. We evaluate the vulnerability of deep, low-arsenic groundwater with groundwater models that incorporate geostatistical simulations of aquifer heterogeneity. Simulations show that preferential flow through stratigraphy typical of fluvio-deltaic aquifers could contaminate deep (>150 m) groundwater within a decade, nearly a century faster than predicted through homogeneous models calibrated to the same data. The most critical fast flowpaths cannot be predicted by simplified models or identified by standard measurements. Such complex vulnerability beyond city limits could become a limiting factor for megacity groundwater supplies in aquifers worldwide. PMID:27673729

  20. Update to the Ground-Water Withdrawals Database for the Death Valley REgional Ground-Water Flow System, Nevada and California, 1913-2003

    SciTech Connect

    Michael T. Moreo; and Leigh Justet

    2008-07-02

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913–1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  1. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  2. Identifying Components of Groundwater Flow, Flux, and Storage in Tuolumne Meadows, Yosemite, California

    NASA Astrophysics Data System (ADS)

    Vialpando, M., III; Lowry, C.; Visser, A.; Moran, J. E.; Esser, B. K.

    2015-12-01

    High elevation meadows in the Sierra Nevada of California, USA represent mixing zones between surface water and groundwater. Quantifying the exchange between stream water and groundwater, and the residence time of water stored in meadow sediments will allow examination of the possible buffer effect that groundwater has on meadows and streams. This in turn has implications for the resilience of the ecosystem as well as the downstream communities that are dependent upon runoff for water supply. Stream flow was measured and water samples were collected along a 5 km reach of the Tuolumne River and adjacent wells during both spring runoff and baseflow. Water samples were analyzed for concentrations of dissolved noble gases and anions, sulfur-35, tritium and radon to study surface water-groundwater interactions and residence times. Although lower than average because of the ongoing drought in California, discharge in early July 2015 was about 35 times that measured during the previous fall. During baseflow, a small component of fracture flow (2%) is identified using dissolved helium. Radon, anions and stream discharge identify reaches of groundwater discharge. Anions show a steady increase in the groundwater component over the western portion of the meadow during baseflow, and over 50% of stream water is exchanged with meadow groundwater, without a net gain or loss of stream flow. Sulfur-35 and tritium results indicated that groundwater contributing to stream flow has recharged within the previous two years. With the current drought, estimated as the most severe in 1200 years, accurate estimations of water availability are becoming increasingly important to water resource managers.

  3. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  4. Glaciation and regional groundwater flow in the Fennoscandian shield

    USGS Publications Warehouse

    Provost, A.M.; Voss, C.I.; Neuzil, C.E.

    2012-01-01

    Regional-scale groundwater flow modeling of the Fennoscandian shield suggests that groundwater flow can be strongly affected by future climate change and glaciation. We considered variable-density groundwater flow in a 1500-km-long and approximately 10-km-deep cross-section through southern Sweden. Groundwater flow and shield brine transport in the cross-sectional model were analyzed under projected surface conditions for the next 140 ka. Simulations suggest that blockage of recharge and discharge by low-permeability permafrost or cold-based ice causes sinking of brine and consequent freshening of near-surface water in areas of natural discharge. Although recharge of basal meltwater is limited by the requirement that water pressure at the base of the ice sheet not exceed the pressure exerted by the weight of the ice, warm-based ice with basal melting creates a potential for groundwater recharge rates much larger than those of present, ice-free conditions. In the simulations, regional-scale redistribution of recharged water by subsurface flow is minor over the duration of a glacial advance (approximately 10 ka). During glacial retreat, significant upward flow of groundwater may occur below the ice sheet owing to pressure release. If the mechanical loading efficiency of the rocks is high, both subsurface penetration of meltwater during glacial advance and up-flow during glacial retreat are reduced because of loading-induced pressure changes. The maximum rate of groundwater discharge in the simulations occurs at the receding ice margin, and some discharge occurs below incursive postglacial seas. Recharge of basal meltwater could decrease the concentration of dissolved solids significantly below present-day levels at depths of up to several kilometers and may bring oxygenated conditions to an otherwise reducing chemical environment for periods exceeding 10 ka.

  5. Multivariate analyses with end-member mixing to characterize groundwater flow: Wind Cave and associated aquifers

    USGS Publications Warehouse

    Long, Andrew J.; Valder, Joshua F.

    2011-01-01

    Principal component analysis (PCA) applied to hydrochemical data has been used with end-member mixing to characterize groundwater flow to a limited extent, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The method presented herein is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and the associated karst aquifer in the Black Hills of South Dakota, USA. The end-member mixing model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge with an additional 33% from an upgradient aquifer. Artesian springs in the vicinity of Wind Cave primarily received water from regional groundwater flow.

  6. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    B. Arnold; T. Corbet

    2001-12-18

    The purpose of the flow boundary conditions analysis is to provide specified-flux boundary conditions for the saturated zone (SZ) site-scale flow and transport model. This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the SZ site-scale model domain, both as recharge at the upper (water table) boundary and as underflow at the lateral boundaries. The objective is to provide consistency at the boundaries between the SZ site-scale flow model and other groundwater flow models. The scope of this analysis includes extraction of the volumetric groundwater flow rates simulated by the SZ regional-scale flow model to occur at the lateral boundaries of the SZ site-scale flow model and the internal qualification of the regional-scale model for use in this analysis model report (AMR). In addition, the scope includes compilation of information on the recharge boundary condition taken from three sources: (1) distributed recharge as taken from the SZ regional-scale flow model, (2) recharge below the area of the unsaturated zone (UZ) site-scale flow model, and (3) focused recharge along the Fortymile Wash channel.

  7. Estimation of groundwater and nutrient fluxes to the Neuse River estuary, North Carolina

    USGS Publications Warehouse

    Spruill, T.B.; Bratton, J.F.

    2008-01-01

    A study was conducted between April 2004 and September 2005 to estimate groundwater and nutrient discharge to the Neuse River estuary in North Carolina. The largest groundwater fluxes were observed to occur generally within 20 m of the shoreline. Groundwater flux estimates based on seepage meter measurements ranged from 2.86??108 to 4.33??108 m3 annually and are comparable to estimates made using radon, a simple water-budget method, and estimates derived by using Darcy's Law and previously published general aquifer characteristics of the area. The lower groundwater flux estimate (equal to about 9 m3 s-1), which assumed the narrowest groundwater discharge zone (20 m) of three zone widths selected for an area west of New Bern, North Carolina, most closely agrees with groundwater flux estimates made using radon (3-9 m3 s-1) and Darcy's Law (about 9 m3 s-1). A groundwater flux of 9 m 3 s-1 is about 40% of the surface-water flow to the Neuse River estuary between Streets Ferry and the mouth of the estuary and about 7% of the surface-water inflow from areas upstream. Estimates of annual nitrogen (333 tonnes) and phosphorus (66 tonnes) fluxes from groundwater to the estuary, based on this analysis, are less than 6% of the nitrogen and phosphorus inputs derived from all sources (excluding oceanic inputs), and approximately 8% of the nitrogen and 17% of the phosphorus annual inputs from surface-water inflow to the Neuse River estuary assuming a mean annual precipitation of 1.27 m. We provide quantitative evidence, derived from three methods, that the contribution of water and nutrients from groundwater discharge to the Neuse River estuary is relatively minor, particularly compared with upstream sources of water and nutrients and with bottom sediment sources of nutrients. Locally high groundwater discharges do occur, however, and could help explain the occurrence of localized phytoplankton blooms, submerged aquatic vegetation, or fish kills. ?? 2008 Coastal and Estuarine

  8. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update

    USGS Publications Warehouse

    Rutledge, A.T.

    1998-01-01

    The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.

  9. Estimation of groundwater velocities from Yucca Flat to the Amargosa Desert using geochemistry and environmental isotopes

    SciTech Connect

    Hershey, R.L.; Acheampong, S.Y.

    1997-06-01

    Geochemical and isotopic data from groundwater sampling locations can be used to estimate groundwater flow velocities for independent comparison to velocities calculated by other methods. The objective of this study was to calculate groundwater flow velocities using geochemistry and environmental isotopes from the southern end of Yucca Flat to the Amargosa Desert, considering mixing of different groundwater inputs from sources each and southeast of the Nevada Test Site (NTS). The approach used to accomplish the objective of this study consisted of five steps: (1) reviewing and selecting locations where carbon isotopic groundwater analyses, reliable ionic analysis, and well completion information are available; (2) calculating chemical speciation with the computer code WATEQ4F (Ball and Nordstrom, 1991) to determine the saturation state of mineral phases for each ground water location; (3) grouping wells into reasonable flowpaths and mixing scenarios from different groundwater sources; (4) using the computer code NETPATH (Plummer et al., 1991) to simulate mixing and the possible chemical reactions along the flowpath, and to calculate the changes in carbon-13/carbon-12 isotopic ratios ({delta}{sup 13}C) as a result of these reactions; and (5) using carbon-14 ({sup 14}C) data to calculate velocity.

  10. Cost-effective network design for groundwater flow monitoring

    NASA Astrophysics Data System (ADS)

    Andricevic, R.

    1990-03-01

    The extensive use of groundwater resources has increased the need for developing cost-effective monitoring networks to provide an indication of the degree to which the subsurface environment has been affected by human activities. This study presents a cost-effective approach to the design of groundwater flow monitoring networks. The groundwater network design is formulated with two problem formats: maximizing the statistical monitoring power for specified budget constraint and minimizing monitoring cost for statistical power requirement. The statistical monitoring power constraint is introduced with an information reliability threshold value. A branch and bound technique is employed to select the optimal solution from a discrete set of possible network alternatives. The method is tested to the design of groundwater flow monitoring problem in the Pomona County, California.

  11. Estimation of Groundwater Recharge at Pahute Mesa using the Chloride Mass-Balance Method

    SciTech Connect

    Cooper, Clay A; Hershey, Ronald L; Healey, John M; Lyles, Brad F

    2013-07-01

    Groundwater recharge on Pahute Mesa was estimated using the chloride mass-balance (CMB) method. This method relies on the conservative properties of chloride to trace its movement from the atmosphere as dry- and wet-deposition through the soil zone and ultimately to the saturated zone. Typically, the CMB method assumes no mixing of groundwater with different chloride concentrations; however, because groundwater is thought to flow into Pahute Mesa from valleys north of Pahute Mesa, groundwater flow rates (i.e., underflow) and chloride concentrations from Kawich Valley and Gold Flat were carefully considered. Precipitation was measured with bulk and tipping-bucket precipitation gauges installed for this study at six sites on Pahute Mesa. These data, along with historical precipitation amounts from gauges on Pahute Mesa and estimates from the PRISM model, were evaluated to estimate mean annual precipitation. Chloride deposition from the atmosphere was estimated by analyzing quarterly samples of wet- and dry-deposition for chloride in the bulk gauges and evaluating chloride wet-deposition amounts measured at other locations by the National Atmospheric Deposition Program. Mean chloride concentrations in groundwater were estimated using data from the UGTA Geochemistry Database, data from other reports, and data from samples collected from emplacement boreholes for this study. Calculations were conducted assuming both no underflow and underflow from Kawich Valley and Gold Flat. Model results estimate recharge to be 30 mm/yr with a standard deviation of 18 mm/yr on Pahute Mesa, for elevations >1800 m amsl. These estimates assume Pahute Mesa recharge mixes completely with underflow from Kawich Valley and Gold Flat. The model assumes that precipitation, chloride concentration in bulk deposition, underflow and its chloride concentration, have been constant over the length of time of recharge.

  12. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes

    SciTech Connect

    Murphy, E.M.; Schramke, J.A.

    1998-11-01

    Changes in geochemistry and stable isotopes along a well-established groundwater flow path were used to estimate in situ microbial respiration rates in the Middendorf aquifer in the southeastern United States. Respiration rates were determined for individual terminal electron acceptors including O{sub 2}, MnO{sub 2}, Fe{sup 3+}, and SO{sub 4}{sup 2{minus}}. The extent of biotic reactions were constrained by the fractionation of stable isotopes of carbon and sulfur. Sulfur isotopes and the presence of sulfur-oxidizing microorganisms indicated that sulfate is produced through the oxidation of reduced sulfur species in the aquifer and not by the dissolution of gypsum, as previously reported. The respiration rates varied along the flow path as the groundwater transitioned between primarily oxic to anoxic conditions. Iron-reducing microorganisms were the largest contributors to the oxidation of organic matter along the portion of the groundwater flow path investigated in this study. The transition zone between oxic and anoxic groundwater contained a wide range of terminal electron acceptors and showed the greatest diversity and numbers of culturable microorganisms and the highest respiration rates. A comparison of respiration rates measured from core samples and pumped groundwater suggests that variability in respiration rates may often reflect the measurement scales, both in the sample volume and the time-frame over which the respiration measurement is averaged. Chemical heterogeneity may create a wide range of respiration rates when the scale of the observation is below the scale of the heterogeneity.

  13. Numerical simulations of groundwater flow at New Jersey Shallow Shelf

    NASA Astrophysics Data System (ADS)

    Fehr, Annick; Patterson, Fabian; Lofi, Johanna; Reiche, Sönke

    2016-04-01

    During IODP Expedition 313, three boreholes were drilled in the so-called New Jersey transect. Hydrochemical studies revealed the groundwater situation as more complex than expected, characterized by several sharp boundaries between fresh and saline groundwater. Two conflicting hypotheses regarding the nature of these freshwater reservoirs are currently debated. One hypothesis is that these reservoirs are connected with onshore aquifers and continuously recharged by seaward-flowing groundwater. The second hypothesis is that fresh groundwater was emplaced during the last glacial period. In addition to the petrophysical properties measured during IODP 313 expedition, Nuclear Magnetic Resonance (NMR) measurements were performed on samples from boreholes M0027, M0028 and M0029 in order to deduce porosities and permeabilities. These results are compared with data from alternative laboratory measurements and with petrophysical properties inferred from downhole logging data. We incorporate these results into a 2D numerical model that reflects the shelf architecture as known from drillings and seismic data to perform submarine groundwater flow simulations. In order to account for uncertainties related to the spatial distribution of physical properties, such as porosity and permeability, systematic variation of input parameters was performed during simulation runs. The target is to test the two conflicting hypotheses of fresh groundwater emplacements offshore New Jersey and to improve the understanding of fluid flow processes at marine passive margins.

  14. Shallow groundwater in the Matanuska-Susitna Valley, Alaska—Conceptualization and simulation of flow

    USGS Publications Warehouse

    Kikuchi, Colin P.

    2013-01-01

    The Matanuska-Susitna Valley is in the Upper Cook Inlet Basin and is currently undergoing rapid population growth outside of municipal water and sewer service areas. In response to concerns about the effects of increasing water use on future groundwater availability, a study was initiated between the Alaska Department of Natural Resources and the U.S. Geological Survey. The goals of the study were (1) to compile existing data and collect new data to support hydrogeologic conceptualization of the study area, and (2) to develop a groundwater flow model to simulate flow dynamics important at the regional scale. The purpose of the groundwater flow model is to provide a scientific framework for analysis of regional-scale groundwater availability. To address the first study goal, subsurface lithologic data were compiled into a database and were used to construct a regional hydrogeologic framework model describing the extent and thickness of hydrogeologic units in the Matanuska-Susitna Valley. The hydrogeologic framework model synthesizes existing maps of surficial geology and conceptual geochronologies developed in the study area with the distribution of lithologies encountered in hundreds of boreholes. The geologic modeling package Geological Surveying and Investigation in Three Dimensions (GSI3D) was used to construct the hydrogeologic framework model. In addition to characterizing the hydrogeologic framework, major groundwater-budget components were quantified using several different techniques. A land-surface model known as the Deep Percolation Model was used to estimate in-place groundwater recharge across the study area. This model incorporates data on topography, soils, vegetation, and climate. Model-simulated surface runoff was consistent with observed streamflow at U.S. Geological Survey streamgages. Groundwater withdrawals were estimated on the basis of records from major water suppliers during 2004-2010. Fluxes between groundwater and surface water were

  15. Conceptual model and numerical simulation of the groundwater-flow system of Bainbridge Island, Washington

    USGS Publications Warehouse

    Frans, Lonna M.; Bachmann, Matthew P.; Sumioka, Steve S.; Olsen, Theresa D.

    2011-01-01

    Groundwater is the sole source of drinking water for the population of Bainbridge Island. Increased use of groundwater supplies on Bainbridge Island as the population has grown over time has created concern about the quantity of water available and whether saltwater intrusion will occur as groundwater usage increases. A groundwater-flow model was developed to aid in the understanding of the groundwater system and the effects of groundwater development alternatives on the water resources of Bainbridge Island. Bainbridge Island is underlain by unconsolidated deposits of glacial and nonglacial origin. The surficial geologic units and the deposits at depth were differentiated into aquifers and confining units on the basis of areal extent and general water-bearing characteristics. Eleven principal hydrogeologic units are recognized in the study area and form the basis of the groundwater-flow model. A transient variable-density groundwater-flow model of Bainbridge Island and the surrounding area was developed to simulate current (2008) groundwater conditions. The model was calibrated to water levels measured during 2007 and 2008 using parameter estimation (PEST) to minimize the weighted differences or residuals between simulated and measured hydraulic head. The calibrated model was used to make some general observations of the groundwater system in 2008. Total flow through the groundwater system was about 31,000 acre-ft/ yr. The recharge to the groundwater system was from precipitation and septic-system returns. Groundwater flow to Bainbridge Island accounted for about 1,000 acre-ft/ yr or slightly more than 5 percent of the recharge amounts. Groundwater discharge was predominately to streams, lakes, springs, and seepage faces (16,000 acre-ft/yr) and directly to marine waters (10,000 acre-ft/yr). Total groundwater withdrawals in 2008 were slightly more than 6 percent (2,000 acre-ft/yr) of the total flow. The calibrated model was used to simulate predevelopment conditions

  16. Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies

    NASA Astrophysics Data System (ADS)

    Pimentel, Elizabeth T.; Hamza, Valiya M.

    2012-08-01

    The present work deals with determination groundwater flows in the Amazon region, based on analysis of geothermal data acquired in shallow and deep wells. The method employed is based on the model of simultaneous heat transfer by conduction and advection in permeable media. Analysis of temperature data acquired in water wells indicates down flows of groundwaters with velocities in excess of 10-7 m/s at depths less than 300 m in the Amazonas basin. Bottom-hole temperature (BHT) data sets have been used in determining characteristics of fluid movements at larger depths in the basins of Acre, Solimões, Amazonas, Marajó and Barreirinhas. The results of model simulations point to down flow of groundwaters with velocities of the order of 10-8 to 10-9 m/s, at depths of up to 4000 m. No evidence has been found for up flow typical of discharge zones. The general conclusion compatible with such results is that large-scale groundwater recharge systems operate at both shallow and deep levels in all sedimentary basins of the Amazon region. However, the basement rock formations of the Amazon region are relatively impermeable and hence extensive down flow systems through the sedimentary strata are possible only in the presence of generalized lateral movement of groundwater in the basal parts of the sedimentary basins. The direction of this lateral flow, inferred from the basement topography and geological characteristics of the region, is from west to east, following roughly the course of surface drainage system of the Amazon River, with eventual discharge into the Atlantic Ocean. The estimated flow rate at the continental margin is 3287 m3/s, with velocities of the order of 218 m/year. It is possible that dynamic changes in the fluvial systems in the western parts of South American continent have been responsible for triggering alterations in the groundwater recharge systems and deep seated lateral flows in the Amazon region.

  17. SWB-A modified Thornthwaite-Mather Soil-Water-Balance code for estimating groundwater recharge

    USGS Publications Warehouse

    Westenbroek, S.M.; Kelson, V.A.; Dripps, W.R.; Hunt, R.J.; Bradbury, K.R.

    2010-01-01

    A Soil-Water-Balance (SWB) computer code has been developed to calculate spatial and temporal variations in groundwater recharge. The SWB model calculates recharge by use of commonly available geographic information system (GIS) data layers in combination with tabular climatological data. The code is based on a modified Thornthwaite-Mather soil-water-balance approach, with components of the soil-water balance calculated at a daily timestep. Recharge calculations are made on a rectangular grid of computational elements that may be easily imported into a regional groundwater-flow model. Recharge estimates calculated by the code may be output as daily, monthly, or annual values.

  18. Simulation of groundwater flow and interaction of groundwater and surface water on the Lac du Flambeau Reservation, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Fienen, Michael N.; Hunt, Randall J.

    2014-01-01

    The Lac du Flambeau Band of Lake Superior Chippewa and Indian Health Service are interested in improving the understanding of groundwater flow and groundwater/surface-water interaction on the Lac du Flambeau Reservation (Reservation) in southwest Vilas County and southeast Iron County, Wisconsin, with particular interest in an understanding of the potential for contamination of groundwater supply wells and the fate of wastewater that is infiltrated from treatment lagoons on the Reservation. This report describes the construction, calibration, and application of a regional groundwater flow model used to simulate the shallow groundwater flow system of the Reservation and water-quality results for groundwater and surface-water samples collected near a system of waste-water-treatment lagoons. Groundwater flows through a permeable glacial aquifer that ranges in thickness from 60 to more than 200 feet (ft). Seepage and drainage lakes are common in the area and influence groundwater flow patterns on the Reservation. A two-dimensional, steady-state analytic element groundwater flow model was constructed using the program GFLOW. The model was calibrated by matching target water levels and stream base flows through the use of the parameter-estimation program, PEST. Simulated results illustrate that groundwater flow within most of the Reservation is toward the Bear River and the chain of lakes that feed the Bear River. Results of analyses of groundwater and surface-water samples collected downgradient from the wastewater infiltration lagoons show elevated levels of ammonia and dissolved phosphorus. In addition, wastewater indicator chemicals detected in three downgradient wells and a small downgradient stream indicate that infiltrated wastewater is moving southwest of the lagoons toward Moss Lake. Potential effects of extended wet and dry periods (within historical ranges) were evaluated by adjusting precipitation and groundwater recharge in the model and comparing the

  19. Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia

    USGS Publications Warehouse

    Smith, Barry S.

    2001-01-01

    The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from

  20. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  1. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  2. Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method

    USGS Publications Warehouse

    Krabbenhoft, David P.; Bowser, Carl J.; Anderson, Mary P.; Valley, John W.

    1990-01-01

    Groundwater inflow and outflow contributions to the hydrologic budget of lakes can be determined using a stable isotope (18O/16O) mass balance method. The stable isotope method provides a way of integrating the spatial and temporal complexities of the flow field around a lake, thereby offering an appealing alternative to the traditional time and labor intensive methods using seepage meters and an extensive piezometer network. In this paper the method is applied to a lake in northern Wisconsin, demonstrating that it can be successfully applied to lakes in the upper midwest where thousands of similar lakes exist. Inflow and outflow rates calculated for the Wisconsin lake using the isotope mass balance method are 29 and 54 cm/yr, respectively, which compare well to estimates, derived independently using a three-dimensional groundwater flow and solute transport model, of 20 and 50 cm/yr. Such a favorable comparison lends confidence to the use of the stable isotope method to estimate groundwater exchange with lakes. In addition, utilization of stable isotopes in studies of groundwater-lake systems lends insight into mixing processes occurring in the unsaturated zone and in the aquifer surrounding the lake and verifies assumed flow paths based on head measurements in piezometers.

  3. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  4. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    USGS Publications Warehouse

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    75 percent of the total groundwater withdrawn from Coastal Plain aquifers during the year 2000. Unreported self-supplied withdrawals were simulated in the groundwater model by specifying their probable locations, magnitudes, and aquifer assignments on the basis of a separate study of domestic-well characteristics in Virginia. The groundwater flow model was calibrated to 7,183 historic water-level observations from 497 observation wells with the parameter-estimation codes UCODE-2005 and PEST. Most water-level observations were from the Potomac aquifer system, which permitted a more complex spatial distribution of simulated hydraulic conductivity within the Potomac aquifer than was possible for other aquifers. Zone, function, and pilot-point approaches were used to distribute assigned hydraulic properties within the aquifer system. The good fit (root mean square error = 3.6 feet) of simulated to observed water levels and reasonableness of the estimated parameter values indicate the model is a good representation of the physical groundwater flow system. The magnitudes and temporal and spatial distributions of residuals indicate no appreciable model bias. The model is intended to be useful for predicting changes in regional groundwater levels in the confined aquifer system in response to future pumping. Because the transient release of water stored in low-permeability confining units is simulated, drawdowns resulting from simulated pumping stresses may change substantially through time before reaching steady state. Consequently, transient simulations of water levels at different future times will be more accurate than a steady-state simulation for evaluating probable future aquifer-system responses to proposed pumping.

  5. Incorporation of prior information on parameters into nonlinear regression groundwater flow models. l. Theory.

    USGS Publications Warehouse

    Cooley, R.L.

    1982-01-01

    Prior information on the parameters of a groundwater flow model can be used to improve parameter estimates obtained from nonlinear regression solution of a modeling problem. Two scales of prior information can be available: 1) prior information having known reliability (that is, bias and random error structure), and 2) prior information consisting of best available estimates of unknown reliability. It is shown that if both scales of prior information are available, then a combined regression analysis may be made. -from Author

  6. An improved time series approach for estimating groundwater recharge from groundwater level fluctuations

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.

    2010-09-01

    An analytical solution to a linearized Boussinesq equation is extended to develop an expression for groundwater drainage using estimations of aquifer parameters. This is then used to develop an improved water table fluctuation (WTF) technique for estimating groundwater recharge. The resulting method extends the standard WTF technique by making it applicable, as long as aquifer properties for the area are relatively well known, in areas with smoothly varying water tables and is not reliant on precipitation data. The method is validated against numerical simulations and a case study from a catchment where recharge is "known" a priori using other means. The approach may also be inverted to provide initial estimates of aquifer parameters in areas where recharge can be reliably estimated by other methods.

  7. Estimating natural background groundwater chemistry, Questa molybdenum mine, New Mexico

    USGS Publications Warehouse

    Verplanck, Phillip L.; Nordstrom, D Kirk; Plumlee, Geoffrey S.; Walker, Bruce M.; Morgan, Lisa A.; Quane, Steven L.

    2010-01-01

    This 2 1/2 day field trip will present an overview of a U.S. Geological Survey (USGS) project whose objective was to estimate pre-mining groundwater chemistry at the Questa molybdenum mine, New Mexico. Because of intense debate among stakeholders regarding pre-mining groundwater chemistry standards, the New Mexico Environment Department and Chevron Mining Inc. (formerly Molycorp) agreed that the USGS should determine pre-mining groundwater quality at the site. In 2001, the USGS began a 5-year, multidisciplinary investigation to estimate pre-mining groundwater chemistry utilizing a detailed assessment of a proximal natural analog site and applied an interdisciplinary approach to infer pre-mining conditions. The trip will include a surface tour of the Questa mine and key locations in the erosion scar areas and along the Red River. The trip will provide participants with a detailed understanding of geochemical processes that influence pre-mining environmental baselines in mineralized areas and estimation techniques for determining pre-mining baseline conditions.

  8. Simulation of ground-water flow and areas contributing ground water to production wells, Cadillac, Michigan

    USGS Publications Warehouse

    Hoard, Christopher J.; Westjohn, David B.

    2005-01-01

    Ground water is the primary source of water for domestic, municipal, and industrial use within the northwest section of Michigan's Lower Peninsula. Because of the importance of this resource, numerous communities including the city of Cadillac in Wexford County, Michigan, have begun local wellhead protection programs. In these programs, communities protect their ground-water resources by identifying the areas that contribute water to production wells, identifying potential sources of contamination, and developing methods to cooperatively manage and minimize threats to the water supply. The U.S. Geological Survey, in cooperation with the city of Cadillac, simulated regional ground-water flow and estimated areas contributing recharge and zones of transport to the production well field. Ground-water flow models for the Clam River watershed, in Wexford and Missaukee Counties, were developed using the U.S. Geological Survey modular three-dimensional finite-difference ground-water flow model (MODFLOW 2000). Ground-water flow models were calibrated using the observation, sensitivity, and parameter estimation packages of MODFLOW 2000. Ground-water-head solutions from calibrated flow models were used in conjunction with MODPATH, a particle-tracking program, to simulate regional ground-water flow and estimate areas contributing recharge and zones of transport to the Cadillac production-well field for a 10-year period. Model simulations match the conceptual model in that regional ground-water flow in the deep ground-water system is from southeast to northwest across the watershed. Areas contributing water were determined for the optimized parameter set and an alternate parameter set that included increased recharge and hydraulic conductivity values. Although substantially different hydrologic parameters (assumed to represent end-member ranges of realistic hydrologic parameters) were used in alternate numerical simulations, simulation results differ little in predictions of

  9. Complex groundwater flow systems as traveling agent models.

    PubMed

    López Corona, Oliver; Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

  10. Complex groundwater flow systems as traveling agent models

    PubMed Central

    Padilla, Pablo; Escolero, Oscar; González, Tomas; Morales-Casique, Eric; Osorio-Olvera, Luis

    2014-01-01

    Analyzing field data from pumping tests, we show that as with many other natural phenomena, groundwater flow exhibits complex dynamics described by 1/f power spectrum. This result is theoretically studied within an agent perspective. Using a traveling agent model, we prove that this statistical behavior emerges when the medium is complex. Some heuristic reasoning is provided to justify both spatial and dynamic complexity, as the result of the superposition of an infinite number of stochastic processes. Even more, we show that this implies that non-Kolmogorovian probability is needed for its study, and provide a set of new partial differential equations for groundwater flow. PMID:25337455

  11. An initial inverse calibration of the ground-water flow model for the Hanford unconfined aquifer

    SciTech Connect

    Jacobson, E.A. . Desert Research Inst.); Freshly, M.D. )

    1990-03-01

    Large volumes of process cooling water are discharged to the ground form U.S. Department of Energy (DOE) nuclear fuel processing operations in the central portion of the Hanford Site in southeastern Washington. Over the years, these large volumes of waste water have recharged the unconfined aquifer at the Site. This artificial recharge has affected ground-water levels and contaminant movement in the unconfined aquifer. Ground-water flow and contaminant transport models have been applied to assess the impacts of site operations on the rate and direction of ground-water flow and contaminant transport in unconfined aquifer at the Hanford Site. The inverse calibration method developed by Neuman and modified by Jacobson was applied to improve calibration of a ground-water flow model of the unconfined aquifer at the Hanford Site. All information about estimates of hydraulic properties of the aquifer, hydraulic heads, boundary conditions, and discharges to and withdrawals form the aquifer is included in the inverse method to obtain an initial calibration of the ground-water flow model. The purpose of this report is to provide a description of the inverse method, its initial application to the unconfined aquifer at Hanford, and to present results of the initial inverse calibration. 28 refs., 19 figs., 1 tab.

  12. Control on groundwater flow in a semiarid folded and faulted intermountain basin

    USGS Publications Warehouse

    Ball, Lyndsay B.; Caine, Jonathan S.; Ge, Shemin

    2013-01-01

    The major processes controlling groundwater flow in intermountain basins are poorly understood, particularly in basins underlain by folded and faulted bedrock and under regionally realistic hydrogeologic heterogeneity. To explore the role of hydrogeologic heterogeneity and poorly constrained mountain hydrologic conditions on regional groundwater flow in contracted intermountain basins, a series of 3-D numerical groundwater flow models were developed using the South Park basin, Colorado, USA as a proxy. The models were used to identify the relative importance of different recharge processes to major aquifers, to estimate typical groundwater circulation depths, and to explore hydrogeologic communication between mountain and valley hydrogeologic landscapes. Modeling results show that mountain landscapes develop topographically controlled and predominantly local-scale to intermediate-scale flow systems. Permeability heterogeneity of the fold and fault belt and decreased topographic roughness led to permeability controlled flow systems in the valley. The structural position of major aquifers in the valley fold and fault belt was found to control the relative importance of different recharge mechanisms. Alternative mountain recharge model scenarios showed that higher mountain recharge rates led to higher mountain water table elevations and increasingly prominent local flow systems, primarily resulting in increased seepage within the mountain landscape and nonlinear increases in mountain block recharge to the valley. Valley aquifers were found to be relatively insensitive to changing mountain water tables, particularly in structurally isolated aquifers inside the fold and fault belt.

  13. Intercomparison of Groundwater Flow Monitoring Technologies at Site OU 1, Former Fort Ord, California

    SciTech Connect

    Daley, P F; Jantos, J; Pedler, W H; Mandell, W A

    2005-09-20

    velocity measurements, and the ISPFS and SCBFM systems also gene generate flow direction rate estimates. The ISPFS probes are permanently installed and are non-retrievable, but produce long-term records with essentially no operator intervention or maintenance. The HPL and SCBFM systems are lightweight, portable logging devices that employ recording of electrical conductivity changes in wells purged with deionized water (HPL), or imaging of colloidal particles traversing the borehole (SCBFM) as the physical basis for estimating the velocity of groundwater flow through monitoring wells. All three devices gave estimates of groundwater velocity that were in reasonable agreement. However, although the ISPFS produced groundwater azimuth data that correlated well with conventional conductivity and gradient analyses of the groundwater flow field, the SCBFM direction data were in poor agreement. Further research into the reasons for this lack of correlation would seem to be warranted, given the ease of deployment of this tool in existing conventional monitoring wells, and its good agreement with the velocity estimates of the other technologies examined.

  14. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA

    USGS Publications Warehouse

    Delin, G.N.; Healy, R.W.; Lorenz, D.L.; Nimmo, J.R.

    2007-01-01

    Regional ground-water recharge estimates for Minnesota were compared to estimates made on the basis of four local- and basin-scale methods. Three local-scale methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three approaches, and age dating of ground water) yielded point estimates of recharge that represent spatial scales from about 1 to about 1000 m2. A fourth method (RORA, a basin-scale analysis of streamflow records using a recession-curve-displacement technique) yielded recharge estimates at a scale of 10–1000s of km2. The RORA basin-scale recharge estimates were regionalized to estimate recharge for the entire State of Minnesota on the basis of a regional regression recharge (RRR) model that also incorporated soil and climate data. Recharge rates estimated by the RRR model compared favorably to the local and basin-scale recharge estimates. RRR estimates at study locations were about 41% less on average than the unsaturated-zone water-balance estimates, ranged from 44% greater to 12% less than estimates that were based on the three WTF approaches, were about 4% less than the age dating of ground-water estimates, and were about 5% greater than the RORA estimates. Of the methods used in this study, the WTF method is the simplest and easiest to apply. Recharge estimates made on the basis of the UZWB method were inconsistent with the results from the other methods. Recharge estimates using the RRR model could be a good source of input for regional ground-water flow models; RRR model results currently are being applied for this purpose in USGS studies elsewhere.

  15. Comparison of local- to regional-scale estimates of ground-water recharge in Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Delin, Geoffrey N.; Healy, Richard W.; Lorenz, David L.; Nimmo, John R.

    2007-02-01

    SummaryRegional ground-water recharge estimates for Minnesota were compared to estimates made on the basis of four local- and basin-scale methods. Three local-scale methods (unsaturated-zone water balance, water-table fluctuations (WTF) using three approaches, and age dating of ground water) yielded point estimates of recharge that represent spatial scales from about 1 to about 1000 m 2. A fourth method (RORA, a basin-scale analysis of streamflow records using a recession-curve-displacement technique) yielded recharge estimates at a scale of 10-1000s of km 2. The RORA basin-scale recharge estimates were regionalized to estimate recharge for the entire State of Minnesota on the basis of a regional regression recharge (RRR) model that also incorporated soil and climate data. Recharge rates estimated by the RRR model compared favorably to the local and basin-scale recharge estimates. RRR estimates at study locations were about 41% less on average than the unsaturated-zone water-balance estimates, ranged from 44% greater to 12% less than estimates that were based on the three WTF approaches, were about 4% less than the age dating of ground-water estimates, and were about 5% greater than the RORA estimates. Of the methods used in this study, the WTF method is the simplest and easiest to apply. Recharge estimates made on the basis of the UZWB method were inconsistent with the results from the other methods. Recharge estimates using the RRR model could be a good source of input for regional ground-water flow models; RRR model results currently are being applied for this purpose in USGS studies elsewhere.

  16. Consistency of groundwater flow patterns in mountainous topography: Implications for valley bottom water replenishment and for defining groundwater flow boundaries

    NASA Astrophysics Data System (ADS)

    Welch, L. A.; Allen, D. M.

    2012-05-01

    Topographic influences on groundwater flow processes that contribute to baseflow and mountain block recharge (MBR) are conceptually investigated using three-dimensional numerical models of saturated groundwater flow. Model domains for conceptual and real topographies are developed as "mountain groundwatershed units" (MGUs) to represent regional-scale watershed systems. Results indicate regularity in groundwater flow patterns that reflect consistency of prominent topographic features, providing a basis for conceptualizing three-dimensional groundwater flow. Baseflow is generated mainly from recharge within the watershed area. MBR is produced primarily from recharge that is focused across triangular facets near the mountain front (˜73%-97% of total MBR), with additional contributions originating within the watershed (up to ˜27% of MBR). MBR contributions originating from recharge near the highest-elevation watershed boundaries are minimal but are greater for topography with less stream incision. With orographic influences, more MBR originates within the watershed. MBR rates are relatively consistent between models because of similarities in mountain front topography, while baseflow is variable. Gains and losses to systems via cross-watershed groundwater flux, generated because of topographic differences between adjacent watersheds, cause baseflow to vary by up to ˜10% but do not significantly influence MBR. In data-sparse regions such as mountains, a basic numerical modeling approach, using the MGU concept with topography data and mapped watershed boundaries, can be used to develop site-specific conceptual models to constrain water budgets, to delineate recharge areas, and to guide further investigation and data collection.

  17. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    USGS Publications Warehouse

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  18. Contribution of groundwater and overland flows to storm flow generation in a cultivated Mediterranean catchment. Quantification by natural chemical tracing

    NASA Astrophysics Data System (ADS)

    Ribolzi, O.; Andrieux, P.; Valles, V.; Bouzigues, R.; Bariac, T.; Voltz, M.

    2000-06-01

    Little work has up to now been done on the mechanisms of storm flow generation in Mediterranean cultivated environments. The present work analysed such mechanisms by natural chemical tracing in a small Mediterranean wine-growing catchment (0.91 km 2): Roujan, Hérault, France. Two autumn runoff events with very different characteristics were studied. The first, a minor one (specific peak flow=28 l/s/km 2), was used to evaluate the sensitivity of the environment to low intensity rainfall. The second was significantly larger (specific peak flow=944 l/s/km 2) and was used to analyse the response of the catchment to heavy downpours. Tracer concentrations at the catchment outlet, for the groundwater of two distinct geomorphological units (depression and plateau) and in an experimental plot are presented. A mixing model involving three reservoirs and two tracers (chloride and nitrate) is then used to estimate the contributions of the three main storm flow components: (a) the pre-event water deriving from the depression groundwater; (b) the event water of the precipitations; and (c) the pre-event water of the plateau groundwater. The event water end member basically corresponds to infiltration-excess overland flow plus direct precipitation on saturated areas. The imprecision of the calculations was estimated by the Monte Carlo method. During both runoff events, there was little variation in the rate at which the stream was fed by pre-existing water deriving from the groundwater, although the water tables rose rapidly. Overland flow dominated in the rapid storm flow. Its contribution varied between 12 and 82% according to the importance of the event. When the water level rose, particularly in the case of the heavy runoff event, the overland flows concentrated in the man-made network of ditches running down towards the main ditch. This wave of overland flow spread, expelling the pre-event water into the ditches located downstream, which were initially fed by the groundwater

  19. Automatic Time Stepping with Global Error Control for Groundwater Flow Models

    SciTech Connect

    Tang, Guoping

    2008-09-01

    An automatic time stepping with global error control is proposed for the time integration of the diffusion equation to simulate groundwater flow in confined aquifers. The scheme is based on an a posteriori error estimate for the discontinuous Galerkin (dG) finite element methods. A stability factor is involved in the error estimate and it is used to adapt the time step and control the global temporal error for the backward difference method. The stability factor can be estimated by solving a dual problem. The stability factor is not sensitive to the accuracy of the dual solution and the overhead computational cost can be minimized by solving the dual problem using large time steps. Numerical experiments are conducted to show the application and the performance of the automatic time stepping scheme. Implementation of the scheme can lead to improvement in accuracy and efficiency for groundwater flow models.

  20. Approaches to the simulation of unconfined flow and perched groundwater flow in MODFLOW

    USGS Publications Warehouse

    Bedekar, Vivek; Niswonger, Richard G.; Kipp, Kenneth; Panday, Sorab; Tonkin, Matthew

    2012-01-01

    Various approaches have been proposed to manage the nonlinearities associated with the unconfined flow equation and to simulate perched groundwater conditions using the MODFLOW family of codes. The approaches comprise a variety of numerical techniques to prevent dry cells from becoming inactive and to achieve a stable solution focused on formulations of the unconfined, partially-saturated, groundwater flow equation. Keeping dry cells active avoids a discontinuous head solution which in turn improves the effectiveness of parameter estimation software that relies on continuous derivatives. Most approaches implement an upstream weighting of intercell conductance and Newton-Raphson linearization to obtain robust convergence. In this study, several published approaches were implemented in a stepwise manner into MODFLOW for comparative analysis. First, a comparative analysis of the methods is presented using synthetic examples that create convergence issues or difficulty in handling perched conditions with the more common dry-cell simulation capabilities of MODFLOW. Next, a field-scale three-dimensional simulation is presented to examine the stability and performance of the discussed approaches in larger, practical, simulation settings.

  1. Comparison of groundwater flow in Southern California coastal aquifers

    USGS Publications Warehouse

    Hanson, Randall T.; Izbicki, John A.; Reichard, Eric G.; Edwards, Brian D.; Land, Michael; Martin, Peter

    2009-01-01

    Development of the coastal aquifer systems of Southern California has resulted in overdraft, changes in streamflow, seawater intrusion, land subsidence, increased vertical flow between aquifers, and a redirection of regional flow toward pumping centers. These water-management challenges can be more effectively addressed by incorporating new understanding of the geologic, hydrologic, and geochemical setting of these aquifers. Groundwater and surface-water flow are controlled, in part, by the geologic setting. The physiographic province and related tectonic fabric control the relation between the direction of geomorphic features and the flow of water. Geologic structures such as faults and folding also control the direction of flow and connectivity of groundwater flow. The layering of sediments and their structural association can also influence pathways of groundwater flow and seawater intrusion. Submarine canyons control the shortest potential flow paths that can result in seawater intrusion. The location and extent of offshore outcrops can also affect the flow of groundwater and the potential for seawater intrusion and land subsidence in coastal aquifer systems. As coastal aquifer systems are developed, the source and movement of ground-water and surface-water resources change. In particular, groundwater flow is affected by the relative contributions of different types of inflows and outflows, such as pump-age from multi-aquifer wells within basal or upper coarse-grained units, streamflow infiltration, and artificial recharge. These natural and anthropogenic inflows and outflows represent the supply and demand components of the water budgets of ground-water within coastal watersheds. They are all significantly controlled by climate variability related to major climate cycles, such as the El Niño–Southern Oscillation and the Pacific Decadal Oscillation. The combination of natural forcings and anthropogenic stresses redirects the flow of groundwater and either

  2. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations

  3. Hydrologic and geochemical approaches for determining ground-water flow components

    USGS Publications Warehouse

    Hjalmarson, H.W.; Robertson, F.N.

    1991-01-01

    Lyman Lake is an irrigation-storage reservoir on the Little Colorado River near St. Johns, Arizona. The main sources of water for the lake are streamflow in the Little Colorado River and ground-water inflow from the underlying Coconino aquifer. Two approaches, a hydrologic analysis and a geochemical analysis, were used to compute the quantity of ground-water flow to and from Lyman Lake. Hydrologic data used to calculate a water budget were precipitation on the lake, evaporation from the lake, transpiration from dense vegetation, seepage through the dam, streamflow in and out of the lake, and changes in lake storage. Geochemical data used to calculate the ground-water flow components were major ions, trace elements, and the stable isotopes of hydrogen and oxygen. During the study, the potentiometric level of the Coconino aquifer was above the lake level at the upstream end of the lake and below the lake level at the downstream end. Hydrologic and geochemical data indicate that about 10 percent and 8 percent, respectively, of the water in the lake is ground-water inflow and that about 35 percent of the water in the Little Colorado River 6 miles downgradient from the lake near Salado Springs is ground water. These independent estimates of ground-water flow derived from each approach are in agreement and support a conceptual model of the water budget.

  4. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase

  5. Characterization and conceptualization of groundwater flow systems: Chapter 2

    USGS Publications Warehouse

    Plummer, L.N.; Sanford, W.E.; Glynn, P.D.

    2013-01-01

    This chapter discusses some of the fundamental concepts, data needs and approaches that aid in developing a general understanding of a groundwater system. Principles of the hydrological cycle are reviewed; the processes of recharge and discharge in aquifer systems; types of geological, hydrological and hydraulic data needed to describe the hydrogeological framework of an aquifer system; factors affecting the distribution of recharge to aquifers; and uses of groundwater chemistry, geochemical modelling, environmental tracers and age interpretations in groundwater studies. Together, these concepts and observations aid in developing a conceptualization of groundwater flow systems and provide input to the development of numerical models of a flow system. Conceptualization of the geology, hydrology, geochemistry, and hydrogeological and hydrochemical framework can be quite useful in planning, study design, guiding sampling campaigns, acquisition of new data and, ultimately, developing numerical models capable of assessing a wide variety of societal issues — for example, sustainability of groundwater resources in response to real or planned withdrawals from the system, CO2 sequestration or other waste isolation issues (such as nuclear waste disposal).

  6. Mathematical modelling of surface water-groundwater flow and salinity interactions in the coastal zone

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina; Kampanis, Nikolaos A.

    2014-05-01

    surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. Initial results show that IRENE can accurately predict surface water-groundwater flow and salinity interactions in coastal areas. Important research issues that can be investigated using IRENE include: (a) sea level rise and tidal effects on aquifer salinisation and the configuration of the saltwater wedge, (b) the effects of surface water-groundwater interaction on salinity increase of coastal wetlands and (c) the estimation of the location and magnitude of groundwater discharge to coasts. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References

  7. Reconstructing the groundwater flow in the Baltic Basin during the Last glaciation

    NASA Astrophysics Data System (ADS)

    Saks, T.; Sennikovs, J.; Timuhins, A.; Kalvāns, A.

    2012-04-01

    In last decades it has been discussed that most large ice sheets tend to reside on warm beds even in harsh clima tic conditions and subglacial melting occurs due to geothermal heat flow and deformation heat of the ice flow. However the subglacial groundwater recharge and flow conditions have been addressed in only few studies. The aim of this study is to establish the groundwater flow pattern in the Baltic Basin below the Scandinavian ice sheet during the Late Weichselian glaciation. The calculation results are compared to the known distribution of the groundwater body of the glacial origin found in Cambrian - Vendian (Cm-V) aquifer in the Northern Estonia which is believed to have originated as a result of subglacial meltwater infiltration during the reoccurring glaciations. Steady state regional groundwater flow model of the Baltic Basin was used to simulate the groundwater flow beneath the ice sheet with its geometry adjusted to reflect the subglacial topography. Ice thickness modelling data (Argus&Peltier, 2010) was used for the setup of the boundary conditions: the meltwater pressure at the ice bed was assumed equal to the overlying ice mass. The modelling results suggest two main recharge areas of the Cm-V aquifer system, and reversed groundwater flow that persisted for at least 14 thousand years. Model results show that the groundwater flow velocities in the Cm-V aquifer in the recharge area in N-Estonia beneath the ice sheet exceeded the present velocities by a factor of 10 on average. The calculated meltwater volume recharged into the Cm-V aquifer system during the Late Weichselian corresponds roughly to the estimated, however, considering the fact, that the study area has been glaciated at least 4 times this is an overestimation. The modeling results attest the hypothesis of light dO18 groundwater glacial origin in the Cm-V aquifer system, however the volumes, timing and processes involved in the meltwater intrusion are yet to be explored. This study was

  8. A method to estimate groundwater depletion from confining layers

    USGS Publications Warehouse

    Konikow, L.F.; Neuzil, C.E.

    2007-01-01

    Although depletion of storage in low-permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.

  9. Assessing the groundwater fortunes of aquifers in the White Volta Basin, Ghana: An application of numerical groundwater flow modeling and isotopic studies

    NASA Astrophysics Data System (ADS)

    Oteng, F. M.; Yidana, S. M.; Alo, C. A.

    2012-12-01

    Effective development and informed management of groundwater resources represent a critical opportunity for improved rural water supply in Ghana and enhanced livelihoods particularly in the northern part of the White Volta Basin, a region already prone to a myriad of water-related infirmities. If adequately developed, the resource will form a sufficient buffer against the effects of climate change/variability and foster food security and sustainable livelihoods among the largely peasant communities in the region. This research presents the results of a preliminary assessment of the hydrogeological conditions and recharge regimes of the aquifers in the Northern parts of the White Volta Basin, Ghana. Results of estimates of groundwater recharge through the conventional isotopic and mass balance techniques are presented. Details of the groundwater flow pattern and preliminary delineation of local and regional groundwater recharge areas are presented from initial simulations of the hydrogeological system with a robust groundwater flow simulation code, MODFLOW, in the Groundwater Modeling System, GMS, version 7.1. The stream flow and evapotranspiration components of the program were activated to incorporate surface flow processes, so that the resulting model represents the conditions of the entire hydrological system. The results of this study form a platform for detailed numerical assessment of the conditions of the aquifers in the area under transient conditions of fluctuating rainfall patterns in the face of climate change/variability.

  10. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    USGS Publications Warehouse

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    Subsurface flow between hydrographic basins was evaluated using estimated transmissivity, groundwater-flow sections derived from remotely sensed imagery, and hydraulic gradients determined from 2012 water-level data. Subsurface outflow ranged from 0 acre-ft/yr for Diamond Valley to 3,400 acre-ft/yr for northern Monitor Valley into western Kobeh Valley. Subsurface

  11. Using uncertainty analysis and groundwater measurements to improve the confidence of river water balance estimates

    NASA Astrophysics Data System (ADS)

    Adams, R.; Costelloe, J. F.; Western, A. W.; George, B.

    2013-10-01

    An improved understanding of water balances of rivers is fundamental in water resource management. Effective use of a water balance approach requires thorough identification of sources of uncertainty around all terms in the analysis and can benefit from additional, independent information that can be used to interpret the accuracy of the residual term of a water balance. We use a Monte Carlo approach to estimate a longitudinal river channel water balance and to identify its sources of uncertainty for a regulated river in south-eastern Australia, assuming that the residual term of this water balance represents fluxes between groundwater and the river. Additional information from short term monitoring of ungauged tributaries and groundwater heads is used to further test our confidence in the estimates of error and variance for the major components of this water balance. We identify the following conclusions from the water balance analysis. First, improved identification of the major sources of error in consecutive reaches of a catchment can be used to support monitoring infrastructure design to best reduce the largest sources of error in a water balance. Second, estimation of ungauged inflow using rainfall-runoff modelling is sensitive to the representativeness of available gauged data in characterising the flow regime of sub-catchments along a perennial to intermittent continuum. Lastly, comparison of temporal variability of stream-groundwater head difference data and a residual water balance term provides an independent means of assessing the assumption that the residual term represents net stream-groundwater fluxes.

  12. MODIS-aided statewide net groundwater-recharge estimation in Nebraska.

    PubMed

    Szilagyi, Jozsef; Jozsa, Janos

    2013-01-01

    Monthly evapotranspiration (ET) rates (2000 to 2009) across Nebraska at about 1-km resolution were obtained by linear transformations of the MODIS (MODerate resolution Imaging Spectroradiometer) daytime surface temperature values with the help of the Priestley-Taylor equation and the complementary relationship of evaporation. For positive values of the mean annual precipitation and ET differences, the mean annual net recharge was found by an additional multiplication of the power-function-transformed groundwater vulnerability DRASTIC-code values. Statewide mean annual net recharge became about 29 mm (i.e., 5% of mean annual precipitation) with the largest recharge rates (in excess of 100 mm/year) found in the eastern Sand Hills and eastern Nebraska. Areas with the largest negative net recharge rates caused by declining groundwater levels due to large-scale irrigation are found in the south-western region of the state. Error bounds of the estimated values are within 10% to 15% of the corresponding precipitation rates and the estimated net recharge rates are sensitive to errors in the precipitation and ET values. This study largely confirms earlier base-flow analysis-based statewide groundwater recharge estimates when considerations are made for differences in the recharge definitions. The current approach not only provides better spatial resolution than available earlier studies for the region but also quantifies negative net recharge rates that become especially important in numerical modeling of shallow groundwater systems. PMID:23216050

  13. MODIS-aided statewide net groundwater-recharge estimation in Nebraska.

    PubMed

    Szilagyi, Jozsef; Jozsa, Janos

    2013-01-01

    Monthly evapotranspiration (ET) rates (2000 to 2009) across Nebraska at about 1-km resolution were obtained by linear transformations of the MODIS (MODerate resolution Imaging Spectroradiometer) daytime surface temperature values with the help of the Priestley-Taylor equation and the complementary relationship of evaporation. For positive values of the mean annual precipitation and ET differences, the mean annual net recharge was found by an additional multiplication of the power-function-transformed groundwater vulnerability DRASTIC-code values. Statewide mean annual net recharge became about 29 mm (i.e., 5% of mean annual precipitation) with the largest recharge rates (in excess of 100 mm/year) found in the eastern Sand Hills and eastern Nebraska. Areas with the largest negative net recharge rates caused by declining groundwater levels due to large-scale irrigation are found in the south-western region of the state. Error bounds of the estimated values are within 10% to 15% of the corresponding precipitation rates and the estimated net recharge rates are sensitive to errors in the precipitation and ET values. This study largely confirms earlier base-flow analysis-based statewide groundwater recharge estimates when considerations are made for differences in the recharge definitions. The current approach not only provides better spatial resolution than available earlier studies for the region but also quantifies negative net recharge rates that become especially important in numerical modeling of shallow groundwater systems.

  14. Validation Analysis of the Shoal Groundwater Flow and Transport Model

    SciTech Connect

    A. Hassan; J. Chapman

    2008-11-01

    Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of

  15. Geohydrology, simulation of regional groundwater flow, and assessment of watermanagement strategies, Twentynine Palms area, California

    USGS Publications Warehouse

    Li, Zhen; Martin, Peter

    2011-01-01

    aquifers (referred to as the upper and the middle aquifers) and the Tertiary sedimentary deposits into a single aquifer (referred to as the lower aquifer). In general, wells perforated in the upper aquifer yield more water than wells perforated in the middle and lower aquifers. The study area is dominated by extensive faulting and moderate to intense folding that has displaced or deformed the pre-Tertiary basement complex as well as the overlying Tertiary and Quaternary deposits. Many of these faults act as barriers to the lateral movement of groundwater flow and form many of the boundaries of the groundwater subbasins. The principal recharge to the study area is groundwater underflow across the western and southern boundaries that originates as runoff in the surrounding mountains. Groundwater discharges naturally from the study area as spring flow, as groundwater underflow to downstream basins, and as water vapor to the atmosphere by transpiration of phreatophytes and direct evaporation from moist soil. The annual volume of water that naturally recharged to or discharged from the groundwater flow system in the study area during predevelopment conditions was estimated to be 1,010 acre-feet per year (acre-ft/yr). About 90 percent of this recharge originated as runoff from the Little San Bernardino and the Pinto Mountains to the south, and the remainder originated as runoff from the San Bernardino Mountains to the west. Evapotranspiration by phreatophytes near Mesquite Lake (dry) was the primary form of predevelopment groundwater discharge. From 1953 through 2007, approximately 139,400 acre-feet (acre-ft) of groundwater was pumped by the MCAGCC from the Surprise Spring subbasin. A regional-scale numerical groundwater flow model was developed using MODFLOW-2000 for the Surprise Spring, Deadman, Mesquite, and Mainside subbasins. The aquifer system was simulated by using three model layers representing the upper, middle, and lower aquifers. Measured groundwater levels

  16. Estimation of shallow ground-water recharge in the Great Lakes basin

    USGS Publications Warehouse

    Neff, B.P.; Piggott, A.R.; Sheets, R.A.

    2006-01-01

    This report presents the results of the first known integrated study of long-term average ground-water recharge to shallow aquifers (generally less than 100 feet deep) in the United States and Canada for the Great Lakes, upper St. Lawrence, and Ottawa River Basins. The approach used was consistent throughout the study area and allows direct comparison of recharge rates in disparate parts of the study area. Estimates of recharge are based on base-flow estimates for streams throughout the Great Lakes Basin and the assumption that base flow in a given stream is equal to the amount of shallow ground-water recharge to the surrounding watershed, minus losses to evapotranspiration. Base-flow estimates were developed throughout the study area using a single model based on an empirical relation between measured base-flow characteristics at streamflow-gaging stations and the surficial-geologic materials, which consist of bedrock, coarse-textured deposits, fine-textured deposits, till, and organic matter, in the surrounding surface-water watershed. Model calibration was performed using base-flow index (BFI) estimates for 959 stations in the U.S. and Canada using a combined 28,784 years of daily streamflow record determined using the hydrograph-separation software program PART. Results are presented for watersheds represented by 8-digit hydrologic unit code (HUC, U.S.) and tertiary (Canada) watersheds. Recharge values were lowest (1.6-4.0 inches/year) in the eastern Lower Peninsula of Michigan; southwest of Green Bay, Wisconsin; in northwestern Ohio; and immediately south of the St. Lawrence River northeast of Lake Ontario. Recharge values were highest (12-16.8 inches/year) in snow shadow areas east and southeast of each Great Lake. Further studies of deep aquifer recharge and the temporal variability of recharge would be needed to gain a more complete understanding of ground-water recharge in the Great Lakes Basin.

  17. Bias in groundwater samples caused by wellbore flow

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1989-01-01

    Proper design of physical installations and sampling procedures for groundwater monitoring networks is critical for the detection and analysis of possible contaminants. Monitoring networks associated with known contaminant sources sometimes include an array of monitoring wells with long well screens. The purpose of this paper is: (a) to report the results of a numerical experiment indicating that significant borehole flow can occur within long well screens installed in homogeneous aquifers with very small head differences in the aquifer (less than 0.01 feet between the top and bottom of the screen); (b) to demonstrate that contaminant monitoring wells with long screens may completely fail to fulfill their purpose in many groundwater environments.

  18. Analysis of ground-water flow along a regional flow path of the Midwestern Basins and Arches aquifer system in Ohio

    USGS Publications Warehouse

    Hanover, R.H.

    1994-01-01

    A cross-sectional analysis of ground-water flow in central-western and northwestern Ohio was done as part of the Midwestern Basins and Arches Regional Aquifer-System Analysis project. The Midwestern Basins and Arches aquifer system is composed of carbonate bedrock of Silurian and Devonian age and overlying glacial flow analysis of the Scioto and Blanchard rivers in the study area were used to describe patrems of ground-water flow, to evaluate stream-aquifer interaction, and to quantify recharge and discharge within the ground-water-flow system along a regional ground-water-flow path. The selected regional flow path begins at a regional topographic high in Logan County, Ohio, and ends in Sandusky Bay (Lake Erie), a regional topographic low. Recharge to the ground-water system along the selected regional flow path was estimated from hydrograph separation of streamflow and averaged 3.24 inches per year. Computer model simulations indicate that 84 percent of the water entering the ground-water system flows less than 5 miles from point of recharge to point of discharge and no deeper than the upper surficial aquifers. The distance and depth that ground water travels and traveltime from point of recharge to point of discharge is controlled largely by where ground water enters the flow system. Ground water entering the flow system in the vicinity of major surface- water divides generally travels further, deeper, and longer than ground water entering the flow system elsewhere along the regional flow path. Particle tracking simulations substantiate the concept that the 80-mile-long regional flow path is within a continuous ground-water basin. Estimated traveltimes for ground-water from the regional high to Sandusky Bay range from 22,000 to 40,700 years, given a range of porosities from 8 to 22 percent for the carbonate-rock aquifer.

  19. Groundwater availability as constrained by hydrogeology and environmental flows

    USGS Publications Warehouse

    Watson, Katelyn A.; Mayer, Alex S.; Reeves, Howard W.

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

  20. Groundwater availability as constrained by hydrogeology and environmental flows.

    PubMed

    Watson, Katelyn A; Mayer, Alex S; Reeves, Howard W

    2014-01-01

    Groundwater pumping from aquifers in hydraulic connection with nearby streams has the potential to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes-St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations may constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin may be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time, regional and local hydrogeology, streambed conductance, and streamflow depletion limits. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.

  1. Partitioning a regional groundwater flow system into shallow local and deep regional flow compartments

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Davy, Philippe; Bresciani, Etienne; Dreuzy, Jean-Raynald; Borgne, Tanguy

    2013-04-01

    The distribution of groundwater fluxes in aquifers is strongly influenced by topography, and organized between hillslope and regional scales. The objective of this study is to provide new insights regarding the compartmentalization of aquifers at the regional scale and the partitioning of recharge between shallow/local and deep/regional groundwater transfers. A finite-difference flow model was implemented, and the flow structure was analyzed as a function of recharge (from 20 to 500 mm/yr), at the regional-scale (1400 km2), in three dimensions, and accounting for variable groundwater discharge zones; aspects which are usually not considered simultaneously in previous studies. The model allows visualizing 3-D circulations, as those provided by Tothian models in 2-D, and shows local and regional transfers, with 3-D effects. The probability density function of transit times clearly shows two different parts, interpreted using a two-compartment model, and related to regional groundwater transfers and local groundwater transfers. The role of recharge on the size and nature of the flow regimes, including groundwater pathways, transit time distributions, and volumes associated to the two compartments, have been investigated. Results show that topography control on the water table and groundwater compartmentalization varies with the recharge rate applied. When recharge decreases, the absolute value of flow associated to the regional compartment decreases, whereas its relative value increases. The volume associated to the regional compartment is calculated from the exponential part of the two-compartment model, and is nearly insensitive to the total recharge fluctuations.

  2. Improving Radium-based Estimates of Submarine Groundwater Discharge

    NASA Astrophysics Data System (ADS)

    Hughes, A. L.; Wilson, A. M.

    2011-12-01

    Groundwater discharge is vital for the exchange of solutes between salt marshes and estuaries, and radium isotopes are frequently used as tracers of groundwater flow paths and discharge in coastal systems. Considerable spatial and temporal variability in porewater radium activity has hindered the accuracy of this tracer. In porewater, radium activity is a complex function of production by parent isotopes in and grain size of the aquifer material, individual decay rates, porewater salinity, temperature, redox- and pH-dependent adsorption and desorption, sediment Fe- and Mn-oxide/hydroxide coatings, and groundwater transport (advection and dispersion). In order to resolve the primary factors controlling porewater radium activity in an intertidal salt marsh, where high salinity and reducing conditions prevail, and sediment oxide coatings vary from winter to summer, a field and modeling study was conducted at a salt marsh island within North Inlet Salt Marsh, Georgetown, South Carolina. This site was previously developed as part of a larger study to understand the links between salt marsh groundwater dynamics and acute marsh dieback. Porewater and surface water samples were collected from November 2009 - February 2011. Shallow sediment samples were collected in winter and summer 2010, and deeper sediments were split from cores collected during site development. Measurements of water temperature, salinity, mV, and pH were taken in the field, and radium isotopes were measured via delayed-coincidence counter or gamma spectrometry. Surface-bound sediment radium activity was determined by desorption experiments. Iron and manganese oxide coatings on surface sediments were isolated through a sequential leaching process, and the leachate analyzed via ICP-AES. Finally, a 3-D groundwater flow model was developed using SUTRA, a U.S.G.S. numerical model, which was modified to account for changes in total stress resulting from tidal loading of the marsh surface and for complex

  3. Estimating Natural Flows into the California's Sacramento - San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Huang, G.; Kadir, T.; Chung, F. I.

    2014-12-01

    Natural flows into the California's Sacramento - San Joaquin Delta under predevelopment vegetative conditions, if and when reconstructed, can serve as a useful guide to establish minimum stream flows, restoration targets, and a basis for assessing impacts of global warming in the Bay-Delta System. Daily simulations of natural Delta flows for the period 1922-2009 were obtained using precipitation-snowmelt-runoff models for the upper watersheds that are tributaries to the California's Central Valley, and then routing the water through the Central Valley floor area using a modified version of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSIM) for water years 1922 through 2009. Daily stream inflows from all major upper watersheds were simulated using 23 Soil Water Assessment Tool (SWAT) models. Historical precipitation and reference evapotranspiration data were extracted from the SIMETAW2 with the 4km gridded meteorological data. The Historical natural and riparian vegetation distributions were compiled from several pre-1900 historical vegetation maps of the Central Valley. Wetlands were dynamically simulated using interconnected lakes. Flows overtopping natural levees were simulated using flow rating curves. New estimates of potential evapotranspiration from different vegetative classes under natural conditions were also used. Sensitivity simulations demonstrate that evapotranspiration estimates, native vegetation distribution, surface-groundwater interaction parameters, extinction depth for groundwater uptake, and other physical processes play a key role in the magnitude and timing of upstream flows arriving at the Delta. Findings contradict a common misconception that the magnitude of inflows to the Delta under natural vegetative conditions is greater than those under the historical agricultural and urban land use development. The developed models also enable to study the impacts of global warming by modifying meteorological and

  4. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    USGS Publications Warehouse

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The pre-development, steady state, groundwater budget for the Diamond Valley flow system was estimated at about 70,000 acre-ft/yr of inflow and outflow. During years 2011–12, inflow components of groundwater recharge from precipitation and subsurface inflow from adjacent basins totaled 70,000 acre-ft/yr for the DVFS, whereas outflow components included 64,000 acre-ft/yr of groundwater evapotranspiration and 69,000 acre-ft/yr of net groundwater withdrawals, or net pumpage. Spring discharge in northern Diamond Valley declined about 6,000 acre-ft/yr between pre-development time and years 2011–12. Assuming net groundwater withdrawals minus spring flow decline is equivalent to the storage change, the 2011–12 summation of inflow and storage change was balanced with outflow at about 133,000 acre-ft/yr.

  5. Estimated ground-water discharge by evapotranspiration, Ash Meadows Area, Nye County, Nevada, 1994

    SciTech Connect

    Nichols, W.D.; Laczniak, R.J.; DeMeo, G.A.; Rapp, T.R.

    1997-05-01

    Ground water discharges from the regional ground-water flow system that underlies the eastern part of the Nevada Test Site through numerous springs and seeps in the Ash Meadows National Wildlife Refuge in southern Nevada. The total spring discharge was estimated to be about 17,000 acre-feet per year by earlier studies. Previous studies estimated that about 10,500 acre-feet of this discharge was lost to evapotranspiration. The present study was undertaken to develop a more rigorous approach to estimating ground-water discharge in the Ash Meadows area. Part of the study involves detailed field investigation of evapotranspiration. Data collection began in early 1994. The results of the first year of study provide a basis for making preliminary estimates of ground-water discharge by evapotranspiration. An estimated 13,100 acre-feet of ground water was evapotranspired from about 6,800 acres of marsh and salt-grass. Additional 3,500 acre-feet may have been transpired from the open water and from about 1,460 acres of other areas of Ash Meadows in which field studies have not yet been made.

  6. Estimation of methane concentrations and loads in groundwater discharge to Sugar Run, Lycoming County, Pennsylvania

    USGS Publications Warehouse

    Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.

    2014-01-01

    A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load

  7. Correlation between permeability and groundwater flow patterns in carbonate rocks

    NASA Astrophysics Data System (ADS)

    Park, Y.; Lee, J.; Park, Y.; Keehm, Y.

    2011-12-01

    Groundwater flow in carbonate rocks is controlled by many factors such as degree of fracture and pore development, weathering and diagenesis. Among these factors, fracture is main factor and can form main flow path. Also, flow patterns in carbonate area are decided by these factors. This study was performed to understand factors controlling permeability and flow patterns in carbonate area and to evaluate correlation between permeability and flow patterns. Data used in this study were collected from many literatures and these data were analyzed and evaluated using graphic and statistical analysis. In many carbonate areas, branching conduit patterns were dominant. Of these areas, permeability was relatively high in areas where moving distance of flow was short and hydraulic gradient was steep. This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A).

  8. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    NASA Astrophysics Data System (ADS)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season "deficit" area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  9. Use of a ground-water flow model with particle tracking to evaluate ground-water vulnerability, Clark County, Washington

    USGS Publications Warehouse

    Snyder, D.T.; Wilkinson, J.M.; Orzol, L.L.

    1996-01-01

    public-supply wells in Clark County may be receiving a component of water that recharged in areas that are more conducive to contaminant entry. The aquifer sensitivity maps illustrate a critical deficiency in the DRASTIC methodology: the failure to account for the dynamics of the ground-water flow system. DRASTIC indices calculated for a particular location thus do not necessarily reflect the conditions of the ground-water resources at the recharge areas to that particular location. Each hydrogeologic unit was also mapped to highlight those areas that will eventually receive flow from recharge areas with on-site waste-disposal systems. Most public-supply wells in southern Clark County may eventually receive a component of water that was recharged from on-site waste-disposal systems.Traveltimes from particle tracking were used to estimate the minimum and maximum age of ground water within each model-grid cell. Chlorofluorocarbon (CFC)-age dating of ground water from 51 wells was used to calibrate effective porosity values used for the particle- tracking program by comparison of ground-water ages determined through the use of the CFC-age dating with those calculated by the particle- tracking program. There was a 76 percent agreement in predicting the presence of modern water in the 51 wells as determined using CFCs and calculated by the particle-tracking program. Maps showing the age of ground water were prepared for all the hydrogeologic units. Areas with the youngest ground-water ages are expected to be at greatest risk for contamination from anthropogenic sources. Comparison of these maps with maps of public- supply wells in Clark County indicates that most of these wells may withdraw ground water that is, in part, less than 100 years old, and in many instances less than 10 years old. Results of the analysis showed that a single particle-tracking analysis simulating advective transport can be used to evaluate ground-water vulnerability for any part of a ground-wate

  10. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    USGS Publications Warehouse

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  11. Ground-water age, flow, and quality near a landfill, and changes in ground-water conditions from 1976 to 1996 in the Swinomish Indian Reservation, northwestern Washington

    USGS Publications Warehouse

    Thomas, B.E.; Cox, S.E.

    1998-01-01

    This report describes the results of two related studies: a study of ground-water age, flow, and quality near a landfill in the south-central part of the Swinomish Indian Reservation; and a study of changes in ground-water conditions for the entire reservation from 1976 to 1996. The Swinomish Indian Reservation is a 17-square-mile part of Fidalgo Island in northwestern Washington. The groundwater flow system in the reservation is probably independent of other flow systems in the area because it is almost completely surrounded by salt water. There has been increasing stress on the ground-water resources of the reservation because the population has almost tripled during the past 20 years, and 65 percent of the population obtain their domestic water supply from the local ground-water system. The Swinomish Tribe is concerned that increased pumping of ground water might have caused decreased ground-water discharge into streams, declines in ground-water levels, and seawater intrusion into the ground-water system. There is also concern that leachate from an inactive landfill containing mostly household and wood-processing wastes may be contaminating the ground water. The study area is underlain by unconsolidated glacial and interglacial deposits of Quaternary age that range from about 300 to 900 feet thick. Five hydrogeologic units have been defined in the unconsolidated deposits. From top to bottom, the hydrogeologic units are a till confining bed, an outwash aquifer, a clay confining bed, a sea-level aquifer, and an undifferentiated unit. The ground-water flow system of the reservation is similar to other island-type flow systems. Water enters the system through the water table as infiltration and percolation of precipitation (recharge), then the water flows downward and radially outward from the center of the island. At the outside edges of the system, ground water flows upward to discharge into the surrounding saltwater bodies. Average annual recharge is estimated to

  12. A root zone modelling approach to estimating groundwater recharge from irrigated areas

    NASA Astrophysics Data System (ADS)

    Jiménez-Martínez, J.; Skaggs, T. H.; van Genuchten, M. Th.; Candela, L.

    2009-03-01

    SummaryIn irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge. In this study we estimated irrigation return flow using a root zone modelling approach in which irrigation, evapotranspiration, and soil moisture dynamics for specific crops and irrigation regimes were simulated with the HYDRUS-1D software package. The model was calibrated using field data collected in an experimental plot. Good agreement was achieved between the HYDRUS-1D simulations and field measurements made under melon and lettuce crops. The simulations indicated that water use by the crops was below potential levels despite regular irrigation. The fraction of applied water (irrigation plus precipitation) going to recharge ranged from 22% for a summer melon crop to 68% for a fall lettuce crop. In total, we estimate that irrigation of annual fruits and vegetables produces 26 hm 3 y -1 of groundwater recharge to the top unconfined aquifer. This estimate does not include important irrigated perennial crops in the region, such as artichoke and citrus. Overall, the results suggest a greater amount of irrigation return flow in the Campo de Cartagena region than was previously estimated.

  13. Simulation of groundwater flow in the shallow aquifer system of the Delmarva Peninsula, Maryland and Delaware

    USGS Publications Warehouse

    Sanford, Ward E.; Pope, Jason P.; Selnick, David L.; Stumvoll, Ryan F.

    2012-01-01

    Estimating future loadings of nitrogen to the Chesapeake Bay requires knowledge about the groundwater flow system and the traveltime of water and chemicals between recharge at the water table and the discharge to streams and directly to the bay. The Delmarva Peninsula has a relatively large proportion of its land devoted to agriculture and a large associated nitrogen load in groundwater that has the potential to enter the bay in discharging groundwater. To better understand the shallow aquifer system with respect to this loading and the traveltime to the bay, the U.S. Geological Survey constructed a steady-state groundwater flow model for the region. The model is based on estimates of recharge calculated using recently developed regression equations for evapotranspiration and surface runoff. The hydrogeologic framework incorporated into the model includes unconfined surficial aquifer sediments, as well as subcropping confined aquifers and confining beds down to 300 feet below land surface. The model was calibrated using 48 water-level measurements and 24 tracer-based ages from wells located across the peninsula. The resulting steady-state flow solution was used to estimate ages of water in the shallow aquifer system through the peninsula and the distribution and magnitude of groundwater traveltime from recharge at the water table to discharge in surface-water bodies (referred to as return time). Return times vary but are typically less than 10 years near local streams and greater than 100 years near the stream divides. The model can be used to calculate nitrate transport parameters in various local watersheds and predict future trends in nitrate loadings to Chesapeake Bay for different future nitrogen application scenarios.

  14. Multivariate analyses with end-member mixing to characterize groundwater flow: Wind Cave and associated aquifers

    USGS Publications Warehouse

    Long, A.J.; Valder, J.F.

    2011-01-01

    Principal component analysis (PCA) applied to hydrochemical data has been used with end-member mixing to characterize groundwater flow to a limited extent, but aspects of this approach are unresolved. Previous similar approaches typically have assumed that the extreme-value samples identified by PCA represent end members. The method presented herein is different from previous work in that (1) end members were not assumed to have been sampled but rather were estimated and constrained by prior knowledge; (2) end-member mixing was quantified in relation to hydrogeologic domains, which focuses model results on major hydrologic processes; (3) a method to select an appropriate number of end members using a series of cluster analyses is presented; and (4) conservative tracers were weighted preferentially in model calibration, which distributed model errors of optimized values, or residuals, more appropriately than would otherwise be the case. The latter item also provides an estimate of the relative influence of geochemical evolution along flow paths in comparison to mixing. This method was applied to groundwater in Wind Cave and the associated karst aquifer in the Black Hills of South Dakota, USA. The end-member mixing model was used to test a hypothesis that five different end-member waters are mixed in the groundwater system comprising five hydrogeologic domains. The model estimated that Wind Cave received most of its groundwater inflow from local surface recharge with an additional 33% from an upgradient aquifer. Artesian springs in the vicinity of Wind Cave primarily received water from regional groundwater flow. ?? 2011.

  15. Recharge and Lateral Groundwater Flow Boundary Conditions for the Saturated Zone Site-Scale Flow and Transport Model

    SciTech Connect

    S. James

    2004-10-06

    This analysis is designed to use existing modeling and analysis results as the basis for estimated groundwater flow rates into the saturated zone (SZ) site-scale model domains, both as recharge (infiltration) at the upper boundary (water table), and as underflow at the lateral boundaries. Specifically, this work compiles information on the recharge boundary conditions supplied to the base-case and alternate SZ site-scale flow models taken from (1) distributed recharge from the 1997 (D'Agnese et al. 1997 [DIRS 100131]) or 2001 (D'Agnese et al. 2002 [DIRS 158876]) SZ regional-scale (Death Valley Regional Flow System [DVRFS]) model; (2) recharge below the area of the 1997 (Wu et al. 1997 [DIRS 156453]) or 2003 (BSC 2004 [DIRS 169861]) unsaturated zone (UZ) site-scale flow model; and (3) focused recharge along Fortymile Wash. In addition, this analysis includes extraction of the groundwater flow rates simulated by the 1997 and 2001 DVRFS models coincident with the lateral boundaries of the SZ site-scale flow models. The fluxes from the 1997 DVRFS were used to calibrate the base-case SZ site-scale flow model. The 2001 DVRFS fluxes are used in the alternate SZ site-scale flow model.

  16. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    USGS Publications Warehouse

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  17. Numerical simulation of groundwater flow in Dar es Salaam Coastal Plain (Tanzania)

    NASA Astrophysics Data System (ADS)

    Luciani, Giulia; Sappa, Giuseppe; Cella, Antonella

    2016-04-01

    They are presented the results of a groundwater modeling study on the Coastal Aquifer of Dar es Salaam (Tanzania). Dar es Salaam is one of the fastest-growing coastal cities in Sub-Saharan Africa, with with more than 4 million of inhabitants and a population growth rate of about 8 per cent per year. The city faces periodic water shortages, due to the lack of an adequate water supply network. These two factors have determined, in the last ten years, an increasing demand of groundwater exploitation, carried on by quite a number of private wells, which have been drilled to satisfy human demand. A steady-state three dimensional groundwater model has been set up by the MODFLOW code, and calibrated with the UCODE code for inverse modeling. The aim of the model was to carry out a characterization of groundwater flow system in the Dar es Salaam Coastal Plain. The inputs applied to the model included net recharge rate, calculated from time series of precipitation data (1961-2012), estimations of average groundwater extraction, and estimations of groundwater recharge, coming from zones, outside the area under study. Parametrization of the hydraulic conductivities was realized referring to the main geological features of the study area, based on available literature data and information. Boundary conditions were assigned based on hydrogeological boundaries. The conceptual model was defined in subsequent steps, which added some hydrogeological features and excluded other ones. Calibration was performed with UCODE 2014, using 76 measures of hydraulic head, taken in 2012 referred to the same season. Data were weighted on the basis of the expected errors. Sensitivity analysis of data was performed during calibration, and permitted to identify which parameters were possible to be estimated, and which data could support parameters estimation. Calibration was evaluated based on statistical index, maps of error distribution and test of independence of residuals. Further model

  18. Flow partitioning in regional groundwater flow systems as a function of recharge and topography

    NASA Astrophysics Data System (ADS)

    Goderniaux, P.; Davy, P.; Bresciani, E.; De Dreuzy, J.; Le Borgne, T.

    2013-12-01

    The distribution of groundwater fluxes in aquifers is strongly influenced by topography, and organized between hillslope and regional scales. In this study, we use a finite-difference flow model to quantify the partitioning of recharge and compartmentalization of aquifers between shallow/local and deep/regional groundwater transfers. The flow structure is analyzed for a regional aquifers, as a function of recharge (from 20 to 500 mm/yr), in 3-dimensions, and accounting for variable groundwater discharge zones. The Probability Density Function of transit times shows two different parts, interpreted using a two-compartment model, related to regional and local groundwater flows. The role of recharge on the size and nature of the flow regimes, including groundwater pathways, transit time distributions, and volumes associated to the two compartments is investigated. Results show that topography control on the water table and groundwater compartmentalization varies with the recharge rate applied. The volume associated to the regional compartment is calculated from the exponential part of the two-compartment model, and is nearly insensitive to the total recharge fluctuations. The model also allows visualizing 3D circulations, as those provided by Tothian models in 2D, and shows local and regional transfers, with 3D effects. Results are presented for a specific basin (1400 km2) in Brittany (France). Preliminary results using different kinds of topography are presented and compared.

  19. Occlusion-aware optical flow estimation.

    PubMed

    Ince, Serdar; Konrad, Janusz

    2008-08-01

    Optical flow can be reliably estimated between areas visible in two images, but not in occlusion areas. If optical flow is needed in the whole image domain, one approach is to use additional views of the same scene. If such views are unavailable, an often-used alternative is to extrapolate optical flow in occlusion areas. Since the location of such areas is usually unknown prior to optical flow estimation, this is usually performed in three steps. First, occlusion-ignorant optical flow is estimated, then occlusion areas are identified using the estimated (unreliable) optical flow, and, finally, the optical flow is corrected using the computed occlusion areas. This approach, however, does not permit interaction between optical flow and occlusion estimates. In this paper, we permit such interaction by proposing a variational formulation that jointly computes optical flow, implicitly detects occlusions and extrapolates optical flow in occlusion areas. The extrapolation mechanism is based on anisotropic diffusion and uses the underlying image gradient to preserve structure, such as optical flow discontinuities. Our results show significant improvements in the computed optical flow fields over other approaches, both qualitatively and quantitatively. PMID:18632352

  20. ShowFlow: A practical interface for groundwater modeling

    SciTech Connect

    Tauxe, J.D.

    1990-12-01

    ShowFlow was created to provide a user-friendly, intuitive environment for researchers and students who use computer modeling software. What traditionally has been a workplace available only to those familiar with command-line based computer systems is now within reach of almost anyone interested in the subject of modeling. In the case of this edition of ShowFlow, the user can easily experiment with simulations using the steady state gaussian plume groundwater pollutant transport model SSGPLUME, though ShowFlow can be rewritten to provide a similar interface for any computer model. Included in this thesis is all the source code for both the ShowFlow application for Microsoft{reg sign} Windows{trademark} and the SSGPLUME model, a User's Guide, and a Developer's Guide for converting ShowFlow to run other model programs. 18 refs., 13 figs.

  1. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  2. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    PubMed

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  3. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    PubMed

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes. PMID:25040235

  4. Processing, Analysis, and General Evaluation of Well-Driller Logs for Estimating Hydrogeologic Parameters of the Glacial Sediments in a Ground-Water Flow Model of the Lake Michigan Basin

    USGS Publications Warehouse

    Arihood, Leslie D.

    2009-01-01

    In 2005, the U.S. Geological Survey began a pilot study for the National Assessment of Water Availability and Use Program to assess the availability of water and water use in the Great Lakes Basin. Part of the study involves constructing a ground-water flow model for the Lake Michigan part of the Basin. Most ground-water flow occurs in the glacial sediments above the bedrock formations; therefore, adequate representation by the model of the horizontal and vertical hydraulic conductivity of the glacial sediments is important to the accuracy of model simulations. This work processed and analyzed well records to provide the hydrogeologic parameters of horizontal and vertical hydraulic conductivity and ground-water levels for the model layers used to simulated ground-water flow in the glacial sediments. The methods used to convert (1) lithology descriptions into assumed values of horizontal and vertical hydraulic conductivity for entire model layers, (2) aquifer-test data into point values of horizontal hydraulic conductivity, and (3) static water levels into water-level calibration data are presented. A large data set of about 458,000 well driller well logs for monitoring, observation, and water wells was available from three statewide electronic data bases to characterize hydrogeologic parameters. More than 1.8 million records of lithology from the well logs were used to create a lithologic-based representation of horizontal and vertical hydraulic conductivity of the glacial sediments. Specific-capacity data from about 292,000 well logs were converted into horizontal hydraulic conductivity values to determine specific values of horizontal hydraulic conductivity and its aerial variation. About 396,000 well logs contained data on ground-water levels that were assembled into a water-level calibration data set. A lithology-based distribution of hydraulic conductivity was created by use of a computer program to convert well-log lithology descriptions into aquifer or

  5. Controls on Snowmelt Partitioning to Surface and Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Hill, A. F.; Williams, M. W.; Chowanski, K.

    2015-12-01

    High altitude mountainous regions are vital source areas of water and their snow-dominated hydrologic processes are particularly sensitive to climate change. Yet, basic questions remain about snowmelt's partitioning between surface and subsurface flow and the role it plays in replenishing alpine groundwater. High geologic heterogeneity in mountain regions and inter-annual climate variation challenge our ability to address these questions and anticipate related water resource vulnerabilities. This study compares bedrock and colluvial aquifer system responses to snowmelt on Niwot Ridge in Colorado over five years (2008-2012) to evaluate the role of snowmelt in annual groundwater recharge over varying temporal and spatial scales. We monitor water tables and conservative tracers in source water samples to infer groundwater interaction with snow melt based on unique signatures of source waters. We find that snowmelt is the most important hydrologic alpine groundwater recharge event with water table rises of up to 8m and 4m in response to the freshet in the bedrock and colluvial aquifers, respectively. However, the nature of groundwater response not only depends on climate conditions and the geologic setting, but also on wind scour and topography that affect seasonally frozen soil extent and thus soil infiltration capacity during snowmelt. Areas with high scour and small overlying snow experience smaller annual water table rise and recharge comes from a mix of snowmelt and summer rain sources. This finding suggests that localized recharge processes where seasonally frozen soil is present may not be as vulnerable to declining snowpacks as aquifers more exclusively reliant on snowmelt for recharge. Because wind scour indices can be determined using remotely sensed information, it is possible to anticipate this groundwater response over large scales and in remote regions.

  6. Simulation of regional ground-water flow in the Upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.

    2004-01-01

    This report describes a numerical model that simulates regional ground-water flow in the upper Deschutes Basin of central Oregon. Ground water and surface water are intimately connected in the upper Deschutes Basin and most of the flow of the Deschutes River is supplied by ground water. Because of this connection, ground-water pumping and reduction of artificial recharge by lining leaking irrigation canals can reduce the amount of ground water discharging to streams and, consequently, streamflow. The model described in this report is intended to help water-management agencies and the public evaluate how the regional ground-water system and streamflow will respond to ground-water pumping, canal lining, drought, and other stresses. Ground-water flow is simulated in the model by the finite-difference method using MODFLOW and MODFLOWP. The finite-difference grid consists of 8 layers, 127 rows, and 87 columns. All major streams and most principal tributaries in the upper Deschutes Basin are included. Ground-water recharge from precipitation was estimated using a daily water-balance approach. Artificial recharge from leaking irrigation canals and on-farm losses was estimated from diversion and delivery records, seepage studies, and crop data. Ground-water pumpage for irrigation and public water supplies, and evapotranspiration are also included in the model. The model was calibrated to mean annual (1993-95) steady-state conditions using parameter-estimation techniques employing nonlinear regression. Fourteen hydraulic-conductivity parameters and two vertical conductance parameters were determined using nonlinear regression. Final parameter values are all within expected ranges. The general shape and slope of the simulated water-table surface and overall hydraulic-head distribution match the geometry determined from field measurements. The fitted standard deviation for hydraulic head is about 76 feet. The general magnitude and distribution of ground-water discharge to

  7. Developing an Analysis Program to Estimate and Prediction Groundwater Droughts in Korea from Groundwater Time-Series Data.

    NASA Astrophysics Data System (ADS)

    Cho, S.; Woo, N. C.; Lee, J. M.

    2015-12-01

    This study is aimed at developing process to analyze and predict groundwater drought potentials for Winter and Spring droughts in Korea using a long-term groundwater monitoring data. So far, most drought researches have been focused on precipitation and stream-flow data, although these data are considered to be non-linear. Subsequently, the prediction of drought events has been very difficult in practice. In this study, we targets to analyze the groundwater system as an intermediate stage between precipitation and stream-flow, but still has semi-linear characteristics. By the analysis of past trends of groundwater time-series compared with drought events, we will identify characteristics of fluctuation between groundwater-level and precipitation of the year before the droughts. Then, the characteristics will be tested with recent drought events in Korea. For this analysis, The updated ATGT (Analysis Tool for Groundwater Time-series data program version 1.0 based on JAVA), that was developed for analyzing and presenting groundwater time-series data, basically to identify abnormal changes in groundwater fluctuations, will be presented with additional functions including cross-correlation between groundwater and drought based on the PYTHON language.

  8. Heterogeneous Heat Flow and Groundwater Effects on East Antarctic Ice Sheet Dynamics

    NASA Astrophysics Data System (ADS)

    Gooch, B. T.; Soderlund, K. M.; Young, D. A.; Blankenship, D. D.

    2015-12-01

    We present the results numerical models describing the potential contributions groundwater and heterogeneous heat sources might have on ice dynamics. A two-phase, 1D hydrothermal model demonstrates the importance of groundwater flow in heat flux advection near the ice-bed interface. Typical, conservative vertical groundwater volume fluxes on the order of +/- 1-10 mm/yr can alter vertical heat flux by +/- 50-500 mW/m2 that could produce considerable volumes of meltwater depending on basin geometry and geothermal heat production. A 1D hydromechanical model demonstrates that during ice advance groundwater is mainly recharged into saturated sedimentary aquifers and during retreat groundwater discharges into the ice-bed interface, potentially contributing to subglacial water budgets on the order of 0.1-1 mm/yr during ice retreat. A map of most-likely elevated heat production provinces, estimated sedimentary basin depths, and radar-derived bed roughness are compared together to delineate areas of greatest potential to ice sheet instability in East Antarctica. Finally, a 2D numerical model of crustal fluid and heat flow typical to recently estimated sedimentary basins under the East Antarctic Ice Sheet is coupled to a 2.5D Full Stokes ice sheet model (with simple basal hydrology) to test for the sensitivity of hydrodynamic processes on ice sheet dynamics. Preliminary results show that the enhanced fluid flow can dramatically alter the basal heating of the ice and its temperature profile, as well as, the sliding rate, which heavily alter ice dynamics.

  9. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  10. Estimating contaminant attenuation half-lives in alluvial groundwater systems.

    PubMed

    Tardiff, Mark F; Katzman, Danny

    2007-03-01

    One aspect of describing contamination in an alluvial aquifer is estimating changes in concentrations over time. A variety of statistical methods are available for assessing trends in contaminant concentrations. We present a method that extends trend analysis to include estimating the coefficients for the exponential decay equation and calculating contaminant attenuation half-lives. The conceptual model for this approach assumes that the rate of decline is proportional to the contaminant concentration in an aquifer. Consequently, the amount of time to remove a unit quantity of the contaminant inventory from an aquifer lengthens as the concentration decreases. Support for this conceptual model is demonstrated empirically with log-transformed time series of contaminant data. Equations are provided for calculating system attenuation half-lives for non-radioactive contaminants. For radioactive contaminants, the system attenuation half-life is partitioned into the intrinsic radioactive decay and the concentration reduction caused by aquifer processes. Examples are presented that provide the details of this approach. In addition to gaining an understanding of aquifer characteristics and changes in constituent concentrations, this method can be used to assess compliance with regulatory standards and to estimate the time to compliance when natural attenuation is being considered as a remediation strategy. A special application of this method is also provided that estimates the half-life of the residence time for groundwater in the aquifer by estimating the half life for a conservative contaminant that is no longer being released into the aquifer. Finally, the ratio of the half-life for groundwater residence time to the attenuation half-life for a contaminant is discussed as a system-scale retardation factor which can be used in analytical and numerical modeling.

  11. On the mechanism of earthquake induced groundwater flow

    NASA Astrophysics Data System (ADS)

    Dudley Ward, Nicholas F.

    2015-11-01

    The Canterbury/Christchurch earthquakes and aftershocks of 2010-2011 generated groundwater level responses throughout New Zealand. However, the greater part of damage was sustained by the city of Christchurch which is built on a layered sequence of artesian aquifers. In a previous paper we analysed the earthquake induced groundwater responses. We quantified groundwater responses by fitting a simple statistical model which differentiated between immediate earthquake induced response (spike) and post-seismic change (offset). The most notable feature of this analysis was the consistency of responses between the earthquakes: deeper wells correlate with negative offset and shallower wells correlate with positive offset. In that paper we argued that this is consistent with the upwards vertical movement of water. In this paper we focus on the physical mechanisms, and consider a model that further explains and supports this hypothesis. We postulate a groundwater flow model in which storativity and aquitard permeability are modelled as time-varying shocks. We analyse the solutions for a range of non-dimensional parameters and obtain type curves that exhibit the same behaviour as the observed responses. Finally we consider data from the 2010 Mw 7.1 Darfield (Canterbury) earthquake.

  12. An approach to improve direct runoff estimates and reduce uncertainty in the calculated groundwater component in water balances of large lakes

    NASA Astrophysics Data System (ADS)

    Wiebe, Andrew J.; Conant, Brewster; Rudolph, David L.; Korkka-Niemi, Kirsti

    2015-12-01

    Groundwater is important in the overall water budget of a lake because it affects the quantity and quality of surface water and the ecological health of the lake. The water balance equation is frequently used to estimate the net groundwater flow for small lakes but is seldom used to determine net groundwater flow components for large lakes because: (1) errors accumulate in the calculated groundwater term, and (2) there is an inability to accurately quantify the direct runoff component. In this water balance study of Lake Pyhäjärvi (155 km2) in Finland, it was hypothesized a hydrograph separation model could be used to estimate direct runoff to the lake and, when combined with a rigorous uncertainty analyses, would provide reliable net groundwater flow estimates. The PART hydrograph separation model was used to estimate annual per unit area direct runoff values for the watershed of the inflowing Yläneenjoki River (a subwatershed of the lake) which were then applied to other physically similar subwatersheds of the lake to estimate total direct runoff to the lake. The hydrograph separation method provided superior results and had lower uncertainty than the common approach of using a runoff coefficient based method. The average net groundwater flow into the lake was calculated to be +43 mm per year (+3.0% of average total inflow) for the 38 water years 1971-2008. It varied from -197 mm to 284 mm over that time, and had a magnitude greater than the uncertainty for 17 of the 38 years. The average indirect groundwater contribution to the lake (i.e., the groundwater part of the inflowing rivers) was 454 mm per year (+32% of average total inflow) and demonstrates the overall importance of groundwater. The techniques in this study are applicable to other large lakes and may allow small net groundwater flows to be reliably quantified in settings that might otherwise be unquantifiable or completely lost in large uncertainties.

  13. Data Intensive Simulation and Analysis of Groundwater Flow and Transport in the Los Alamos aquifer

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Harp, D.; Miller, T. A.; Vesselinov, V. V.

    2011-12-01

    Characterization of the groundwater flow and transport in regional aquifer systems is a challenging task. In most practical cases, there is not sufficient hydrogeologic information that can be applied to evaluate aquifer properties. In addition, the development, execution and analyses of large-scale numerical models are computational demanding requiring advanced high-performance codes and state-of-the-art computational resources. We have developed a complex 3D regional groundwater flow model of the regional aquifer beneath the Los Alamos National Laboratory (LANL) site to provide a better understanding of hydrogeologic properties, recharge sources, groundwater travel times, migration pathways for potential contaminants, and potential contaminant concentrations at water supply wells. The 3D computational grid is generated using sophisticated grid generating software, LaGriT (http://lagrit.lanl.gov). LaGriT allows the use of unstructured meshing strategies, which capture the details of complex groundwater flow of the LANL site, including wellbore geometries and hydrostratigraphy. The numerical simulation is performed using the FEHM (Finite Element Heat and Mass transfer) (http://fehm.lanl.gov) codes. Long-term groundwater level monitoring at LANL started in the mid-1940s; the monitoring data is currently collected at more than 70 regional monitoring wells providing an extensive water-level observation data set. The water-level data represent over 62 years of recorded drawdowns and recovery caused by the spatially and temporally variable pumping at six municipal water-supply wells. The water-level data is applied in the 3D flow model to inversely estimate the aquifer parameters. The model calibration, uncertainty quantification, and sensitivity analyses are performed using the code MADS (Model Analyses and Decision Support; http://ees.lanl.gov/staff/monty/codes/mads). The research utilizes high performance computational resources (multiprocessor clusters) at LANL. In

  14. Striking effect of time variation in the estimation of groundwater age in the Wairarapa valley

    NASA Astrophysics Data System (ADS)

    Petrus, Karine; Toews, Michael; Daughney, Christopher; Cornaton, Fabien

    2014-05-01

    The Wairarapa Valley exhibits complex interactions between its rivers and shallow aquifers. With agriculture being an essential part of the region the risk of contamination and depletion of groundwater exists. In order to assist with water resource management in the region, we can do predictions with the help of numerical models. Among these predictions, the evaluation of groundwater age is critical for decision making. This project builds on work done by Greater Wellington Regional Council and will focus on the Wairarapa Valley. The aim of this study is to evaluate the age of the groundwater in the Wairarapa region. Investigations have already been done thanks to hydrochemistry. However radiometric age can be misleading in the sense that it does not consider the mixing process in the motion of groundwater particules. Therefore another approach can be considered .This latter is physic based by considering the age as a property that we transport through two main processes: advection at a macroscopic scale and diffusion at a microscopic scale. The determination of the distribution age by this approach has already been done for the Lake Rotorua but in the steady state case (cf Daughney). The unique contribution of the present study is to estimate the changes in groundwater age distribution through time within the region. Indeed transient simulations are needed to explicitly account for seasonally variable rainfall and pumping wells. This affects the simulated flow solution and then the simulated age solution. In order to solve numerically the transport of age distribution we have chosen to use the Time Marching Laplace Transform Galerkin technique which has been developed in a research code by Fabien Cornaton. The obtained results depict that temporal variations in groundwater age are present and have important implication for resource management

  15. Tide-induced fingering flow during submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Greskowiak, Janek

    2013-04-01

    Submarine groundwater discharge (SGD) is a relevant component of the hydrological cycle (Moore, 2010). The discharge of fresh groundwater that originated from precipitation on the land typically occurs at the near shore scale (~ 10m-100m) and the embayment scale (~ 100m - 10km) (Bratton, 2010). In the recent years a number of studies revealed that tidal forcing has an important effect on the fresh SGD pattern in the beach zone, i.e., it leads to the formation of an upper saline recirculation cell and a lower "freshwater discharge tube" (Boufadel, 2000, Robinson et al., 2007; Kuan et al., 2012). Thereby the discharge of the fresh groundwater occurs near the low-tide mark. The shape and extent of the upper saline recirculation cell is mainly defined by the tidal amplitude, beach slope, fresh groundwater discharge rate and hydraulic conductivity (Robinson et al., 2007). In spite of fact that in this case sea water overlies less denser freshwater, all previous modeling studies suggested that the saline recirculation cell and the freshwater tube are rather stable. However, new numerical investigations indicate that there maybe realistic cases where the upper saline recirculation cell becomes unstable as a result of the density contrast to the underlying freshwater tube. In these cases salt water fingers develop and move downward, thereby penetrating the freshwater tube. To the author's knowledge, the present study is the first that illustrate the possibility of density induced fingering flow during near shore SGD. A total of 240 high resolution simulations with the density dependent groundwater modelling software SEAWAT-2000 (Langevin et al., 2007) has been carried out to identify the conditions under which salt water fingering starts to occur. The simulations are based on the field-scale model setup employed in Robinson et al. (2007). The simulation results indicate that a very flat beach slope of less than 1:35, a hydraulic conductivity of 10 m/d and already a tidal

  16. Deterministic modelling of the cumulative impacts of underground structures on urban groundwater flow and the definition of a potential state of urban groundwater flow: example of Lyon, France

    NASA Astrophysics Data System (ADS)

    Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Cuvillier, Loann; Eisenlohr, Laurent

    2016-08-01

    Underground structures have been shown to have a great influence on subsoil resources in urban aquifers. A methodology to assess the actual and the potential state of the groundwater flow in an urban area is proposed. The study develops a three-dimensional modeling approach to understand the cumulative impacts of underground infrastructures on urban groundwater flow, using a case in the city of Lyon (France). All known underground structures were integrated in the numerical model. Several simulations were run: the actual state of groundwater flow, the potential state of groundwater flow (without underground structures), an intermediate state (without impervious structures), and a transient simulation of the actual state of groundwater flow. The results show that underground structures fragment groundwater flow systems leading to a modification of the aquifer regime. For the case studied, the flow systems are shown to be stable over time with a transient simulation. Structures with drainage systems are shown to have a major impact on flow systems. The barrier effect of impervious structures was negligible because of the small hydraulic gradient of the area. The study demonstrates that the definition of a potential urban groundwater flow and the depiction of urban flow systems, which involves understanding the impact of underground structures, are important issues with respect to urban underground planning.

  17. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22??C in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  18. Updated comparison of groundwater flow model results and isotopic data in the Leon Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, G. D.

    2015-12-01

    Northwest of Mexico City, the study area is located in the State of Guanajuato. Leon Valley has covered with groundwater its demand of water, estimated in 20.6 cubic meters per second. The constant increase of population and economic activities in the region, mainly in cities and automobile factories, has also a constant growth in water needs. Related extraction rate has produced an average decrease of approximately 1.0 m per year over the past two decades. This suggests that the present management of the groundwater should be checked. Management of groundwater in the study area involves the possibility of producing environmental impacts by extraction. This vital resource under stress becomes necessary studying its hydrogeological functioning to achieve scientific management of groundwater in the Valley. This research was based on the analysis and integration of existing information and the field generated by the authors. On the base of updated concepts like the geological structure of the area, the hydraulic parameters and the composition of deuterium-delta and delta-oxygen -18, this research has new results. This information has been fully analyzed by applying a groundwater flow model with particle tracking: the result has also a similar result in terms of travel time and paths derived from isotopic data.

  19. Regional heat flow variations in the northern Michigan and Lake Superior region determined using the silica heat flow estimator

    USGS Publications Warehouse

    Vugrinovich, R.

    1987-01-01

    Conventional heat flow data are sparse for northern Michigan. The groundwater silica heat flow estimator expands the database sufficiently to allow regional variations in heat flow to be examined. Heat flow shows a pattern of alternating highs and lows trending ESE across the Upper Peninsula and Lake Superior. The informal names given to these features, their characteristic heat flow and inferred causes are listed: {A table is presented} The results suggest that, for the study area, regional variations in heat flow cannot be interpreted solely in terms of regional variations of the heat generation rate of basement rocks. ?? 1987.

  20. Groundwater flow and radionuclide decay-chain transport modelling around a proposed uranium tailings pond in India

    NASA Astrophysics Data System (ADS)

    Elango, L.; Brindha, K.; Kalpana, L.; Sunny, Faby; Nair, R. N.; Murugan, R.

    2012-06-01

    Extensive hydrogeological investigations followed by three-dimensional groundwater flow and contaminant transport modelling were carried out around a proposed uranium tailings pond at Seripalli in Andhra Pradesh, India, to estimate its radiological impact. The hydrogeological parameters and measured groundwater level were used to model the groundwater flow and contaminant transport from the uranium tailings pond using a finite-element-based model. The simulated groundwater level compares reasonably with the observed groundwater level. Subsequently, the transport of long-lived radionuclides such as 238U, 234U, 230Th and 226Ra from the proposed tailings pond was modelled. The ingrowths of progenies were also considered in the modelling. It was observed that these radionuclides move very little from the tailings pond, even at the end of 10,000 y, due to their high distribution coefficients and low groundwater velocities. These concentrations were translated into committed effective dose rates at different distances in the vicinity of the uranium tailings pond. The results indicated that the highest effective dose rate to members of the public along the groundwater flow pathway is 2.5 times lower than the drinking water guideline of 0.1 mSv/y, even after a long time period of 10,000 y.

  1. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths

    USGS Publications Warehouse

    Tesoriero, A.J.; Liebscher, H.; Cox, S.E.

    2000-01-01

    The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive agricultural activity in this area has resulted in nitrate concentrations in groundwater often exceeding drinking water standards. Both the extent and rate of denitrification varied depending on the groundwater flow path. While little or no denitrification occurred in much of the upland portions of the aquifer, a gradual redox gradient is observed as aerobic upland groundwater moves deeper in the aquifer. In contrast, a sharp shallow redox gradient is observed adjacent to a third-order stream as aerobic groundwater enters reduced sediments. An essentially complete loss of nitrate concurrent with increases in excess N2 provide evidence that denitrification occurs as groundwater enters this zone. Electron and mass balance calculations suggest that iron sulfide (e.g., pyrite) oxidation is the primary source of electrons for denitrification. Denitrification rate estimates were based on mass balance calculations using nitrate and excess N2 coupled with groundwater travel times. Travel times were determined using a groundwater flow model and were constrained by chlorofluorocarbon-based age dates. Denitrification rates were found to vary considerably between the two areas where denitrification occurs. Denitrification rates in the deep, upland portions of the aquifer were found to range from < 0.01 to 0.14 mM of N per year; rates at the redoxcline along the shallow flow path range from 1.0 to 2.7 mM of N per year. Potential denitrification rates in groundwater adjacent to the stream may be much faster, with rates up to 140 mM per year based on an in situ experiment conducted in this zone.The rate and mechanism of nitrate removal along and between groundwater flow paths were investigated using a series of well nests screened in an unconfined sand and gravel aquifer. Intensive

  2. From groundwater baselines to numerical groundwater flow modelling for the Milan metropolitan area

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Frattini, Paolo; Peretti, Lidia; Villa, Federica; Gorla, Maurizio

    2015-04-01

    allow for the groundwater flow and transport modeling at the large scale and could be successively linked to some more site-specific transport multi-reactive models focused on the modeling of some specific contaminants.

  3. Experimental and numerical investigations of soil water balance at the hinterland of the Badain Jaran Desert for groundwater recharge estimation

    NASA Astrophysics Data System (ADS)

    Hou, Lizhu; Wang, Xu-Sheng; Hu, Bill X.; Shang, Jie; Wan, Li

    2016-09-01

    Quantification of groundwater recharge from precipitation in the huge sand dunes is an issue in accounting for regional water balance in the Badain Jaran Desert (BJD) where about 100 lakes exist between dunes. In this study, field observations were conducted on a sand dune near a large saline lake in the BJD to investigate soil water movement through a thick vadose zone for groundwater estimation. The hydraulic properties of the soils at the site were determined using in situ experiments and laboratory measurements. A HYDRUS-1D model was built up for simulating the coupling processes of vertical water-vapor movement and heat transport in the desert soil. The model was well calibrated and validated using the site measurements of the soil water and temperature at various depths. Then, the model was applied to simulate the vertical flow across a 3-m-depth soil during a 53-year period under variable climate conditions. The simulated flow rate at the depth is an approximate estimation of groundwater recharge from the precipitation in the desert. It was found that the annual groundwater recharge would be 11-30 mm during 1983-2012, while the annual precipitation varied from 68 to 172 mm in the same period. The recharge rates are significantly higher than those estimated from the previous studies using chemical information. The modeling results highlight the role of the local precipitation as an essential source of groundwater in the BJD.

  4. Using noble gas tracers to constrain a groundwater flow model with recharge elevations: A novel approach for mountainous terrain

    USGS Publications Warehouse

    Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich

    2015-01-01

    Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.

  5. Ground-water flow in Melton Valley, Oak Ridge reservation, Roane County, Tennessee; preliminary model analysis

    USGS Publications Warehouse

    Tucci, Patrick

    1986-01-01

    Shallow land burial of low-level radioactive waste has been practiced since 1951 in Melton Valley. Groundwater flow modeling was used to better understand the geohydrology of the valley, and to provide a foundation for future contaminant transport modeling. The three-dimensional, finite difference model simulates the aquifer as a two layer system that represents the regolith and bedrock. Transmissivities, which were adjusted during model calibration, range from 8 to 16 sq ft/day for the regolith, and from 0.2 to 1.5 sq ft/day for bedrock. An anisotropy ratio of 1:3 for strike-normal to strike-parallel transmissivity values, in conjunction with recharge rate = 6% of precipitation that is uniformly distributed over the model area, produces the best match between simulated and observed water levels. Simulated water levels generally compare well to observed or estimated 1978 groundwater conditions. Simulated water levels for the regolith for 39 of 69 comparison points are within +/- 10 ft of average 1978 levels. Simulated vertical flow components are in the observed direction for 9 of 11 comparison points. Preliminary simulations indicate that nearly all groundwater flow is within the regolith and discharges to either the Clinch River or the White Oak Creek-Melton Branch drainage systems. Less than 3% of the flow is between the regolith and bedrock, and < 1% of total groundwater flow discharges to the Clinch River through bedrock. Additional data needed to refine and further calibrate the model, include: (1) quantity and areal distribution of recharge; (2) water levels in the regolith near the model boundaries and beyond the Clinch River; (3) water levels and aquifer characteristics for bedrock; and (4) additional surface water data. (Author 's abstract)

  6. Estimation of yield capacity of fractured rock aquifer for multi-well groundwater heat pump system

    NASA Astrophysics Data System (ADS)

    Bak, Hyeongmin; Yeo, In Wook

    2015-04-01

    Geothermal heat pump system is classified as closed loop and open loop. Closed loop uses a refrigerant as a heat source. For the reason, when using it for a long time, there is a possibility that the refrigerant pipe is corroded. Accordingly, soil and groundwater can be contaminated. Whereas the open loop system uses a eco-friendly groundwater as a heat source. Thermal circulation of standing column well (SCW) occurs in one well. In contrast, thermal circulation of multi-well groundwater heat pump system (MGHP) occurs through fractured rock aquifer between extraction and injection wells. Therefore, temperature efficiency of MGHP appears to be better than that of SCW. However, the MGHP has problems such as the overflowing in the injection well and the clogging, which restricts the wide use of MGHP. This study aims at how to to array the extraction and injection wells for stable circulating of groundwater and at evaluating the sustainable yield capacity of groundwater circulation between the two wells. The study site is located in Chuncheon, Republic of Korea. Pumping tests were conducted to estimate transmissivity of the two wells (W3, W4). In addition, the step-circulation tests were conducted to estimate the sustainable yield capacity. Transmissivity of W3 and W4 was estimated to be 5.81 x 10^-5 m^2/s and 2.57 x 10^-5 m^2/s, respectively. Preliminary groundwater circulation tests were conducted to figure out the array of the extraction and injection wells. Circulation tests were performed for two cases: first, extraction well was set at the well with higher transmissivity and injection well set at the well with lower transmissivity, and the opposite array was set for the second case. In the first case, when flow rate was set at 70.47 m^3/day, the water level of W3 fell 0.61m and that of W4 rose 1.89m. In the second case, when flow rate was set at 67.70 m^3/day, the water level of W4 fell 2.17m and that of W3 rose 0.5m. Preliminary groundwater

  7. Application of hydrogeology and groundwater-age estimates to assess the travel time of groundwater at the site of a landfill to the Mahomet Aquifer, near Clinton, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Buszka, Paul M.

    2016-03-02

    The U.S. Geological Survey used interpretations of hydrogeologic conditions and tritium-based groundwater age estimates to assess the travel time of groundwater at a landfill site near Clinton, Illinois (the “Clinton site”) where a chemical waste unit (CWU) was proposed to be within the Clinton landfill unit #3 (CLU#3). Glacial deposits beneath the CWU consist predominantly of low-permeability silt- and clay-rich till interspersed with thin (typically less than 2 feet in thickness) layers of more permeable deposits, including the Upper and Lower Radnor Till Sands and the Organic Soil unit. These glacial deposits are about 170 feet thick and overlie the Mahomet Sand Member of the Banner Formation. The Mahomet aquifer is composed of the Mahomet Sand Member and is used for water supply in much of east-central Illinois.Eight tritium analyses of water from seven wells were used to evaluate the overall age of recharge to aquifers beneath the Clinton site. Groundwater samples were collected from six monitoring wells on or adjacent to the CLU#3 that were open to glacial deposits above the Mahomet aquifer (the upper and lower parts of the Radnor Till Member and the Organic Soil unit) and one proximal production well (approximately 0.5 miles from the CLU#3) that is screened in the Mahomet aquifer. The tritium-based age estimates were computed with a simplifying, piston-flow assumption: that groundwater moves in discrete packets to the sampled interval by advection, without hydrodynamic dispersion or mixing.Tritium concentrations indicate a recharge age of at least 59 years (pre-1953 recharge) for water sampled from deposits below the upper part of the Radnor Till Member at the CLU#3, with older water expected at progressively greater depth in the tills. The largest tritium concentration from a well sampled by this study (well G53S; 0.32 ± 0.10 tritium units) was in groundwater from a sand deposit in the upper part of the Radnor Till Member; the shallowest permeable unit

  8. Estimating pumping time and ground-water withdrawals using energy- consumption data

    USGS Publications Warehouse

    Hurr, R.T.; Litke, D.W.

    1989-01-01

    Evaluation of the hydrology of an aquifer requires knowledge about the volume of groundwater in storage and also about the volume of groundwater withdrawals. Totalizer flow meters may be installed at pumping plants to measure withdrawals; however, it generally is impractical to equip all pumping plants in an area with meters. A viable alternative is the use of rate-time methods. Rate-time methods may be used at individual pumping plants to decrease the data collection necessary for determining withdrawals. At sites where pumping-time measurement devices are not installed, pumping time may be determined on the basis of energy consumption and power demand. At pumping plants where energy consumption is metered, data acquired by reading of meters is used to estimate pumping time. Care needs to be taken to read these meters correctly. At pumping plants powered by electricity, the calculations need to be modified if transformers are present. At pumping plants powered by natural gas, the effects of the pressure-correction factor need to be included in the calculations. At pumping plants powered by gasoline, diesel oil, or liquid petroleum gas, the geometry of storage tanks needs to be analyzed as part of the calculations. The relation between power demand and pumping rate at a pumping plant can be described through the use of the power-consumption coefficient. Where equipment and hydrologic conditions are stable, this coefficient can be applied to total energy consumption at a site to estimate total groundwater withdrawals. Random sampling of power consumption coefficients can be used to estimate area-wide groundwater withdrawal. (USGS)

  9. Simulation of groundwater flow and the interaction of groundwater and surface water in the Willamette Basin and Central Willamette subbasin, Oregon

    USGS Publications Warehouse

    Herrera, Nora B.; Burns, Erick R.; Conlon, Terrence D.

    2014-01-01

    accounted for about 80 percent of that total. The upper 180 feet of productive aquifers in the Central Willamette and Southern Willamette subbasins produced about 70 percent of the total pumped volume. In this study, the USGS constructed a three-dimensional numerical finite-difference groundwater-flow model of the Willamette Basin representing the six hydrogeologic units, defined in previous investigations, as six model layers. From youngest to oldest, and [generally] uppermost to lowermost they are the: upper sedimentary unit, Willamette silt unit, middle sedimentary unit, lower sedimentary unit, Columbia River basalt unit, and basement confining unit. The high Cascade unit is not included in the groundwater-flow model because it is not present within the model boundaries. Geographic boundaries are simulated as no-flow (no water flowing in or out of the model), except where the Columbia River is simulated as a constant hydraulic head boundary. Streams are designated as head-dependent-flux boundaries, in which the flux depends on the elevation of the stream surface. Groundwater recharge from precipitation was estimated using the Precipitation-Runoff Modeling System (PRMS), a watershed model that accounts for evapotranspiration from the unsaturated zone. Evapotranspiration from the saturated zone was not considered an important component of groundwater discharge. Well pumping was simulated as specified flux and included public supply, irrigation, and industrial pumping. Hydraulic conductivity values were estimated from previous studies through aquifer slug and permeameter tests, specific capacity data, core analysis, and modeling. Upper, middle and lower sedimentary unit horizontal hydraulic conductivity values were differentiated between the Portland subbasin and the Tualatin, Central Willamette, and Southern Willamette subbasins based on preliminary model results.

  10. Estimating evapotranspiration in different rain-fed peatlands from groundwater level changes

    NASA Astrophysics Data System (ADS)

    Dettmann, Ullrich; Maurer, Eike; Bechtold, Michel; Brümmer, Christian; Tiemeyer, Bärbel

    2014-05-01

    Biogeochemical processes in peatlands are strongly controlled by the hydrological conditions of these environments. One of the key parameters controlling the water balance is the evapotranspiration, which can be calculated e.g. by the FAO crop reference evapotranspiration or the Penman-Monteith equation as a function of atmospheric conditions and plant specific parameters. These parameters are well investigated for agricultural crops and forests but poorly for most peatland vegetation types. Direct measurement of the evapotranspiration is possible with weighing lysimeters or the eddy-covariance technique, but expensive and time consuming. In many peatlands and riparian areas groundwater table changes are characterized by diurnal fluctuations (daytime decline, night-time recovery) caused by the evapotranspiration and groundwater recharge. White introduced 1932 a method to calculate the evapotranspiration from these diurnal fluctuations. In contrast to traditional evapotranspiration models only a small number of variables need to be measured (groundwater level changes, possibly precipitation) or calculated (specific yield). Over the last decades, several studies and modifications of the White method have been published. Several authors showed the applicability of the method for riparian areas and fens, but this relies on the assumption of a constant recharge over the whole day. As there is no groundwater inflow at rain-fed peatlands, recovery during night-time can only result from redistribution in the soil profile or from lateral flow processes within the peatland. Thus, approaches to calculate evapotranspiration from diurnal groundwater fluctuations used to date need to be adapted. Based on 50 hydrographs measured in 6 rain-fed peatlands in Germany characterized by different soil properties, land use and vegetation, we systematically analyzed diurnal patterns of the groundwater levels. These patterns were spatially and temporally very variable. At some sites, the

  11. Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94)

    SciTech Connect

    Arnold, B.W.; Altman, S.J.; Robey, T.H.

    1995-08-01

    Evaluation of groundwater travel time (GWTT) is required as part of the investigation of the suitability of Yucca Mountain as a potential high-level nuclear-waste repository site. The Nuclear Regulatory Commission`s GWTT regulation is considered to be a measure of the intrinsic ability of the site to contain radionuclide releases from the repository. The work reported here is the first step in a program to provide an estimate of GWTT at the Yucca Mountain site in support of the DOE`s Technical Site Suitability and as a component of a license application. Preliminary estimation of the GWTT distribution in the unsaturated zone was accomplished using a numerical model of the physical processes of groundwater flow in the fractured, porous medium of the bedrock. Based on prior investigations of groundwater flow at the site, fractures are thought to provide the fastest paths for groundwater flow; conditions that lead to flow in fractures were investigated and simulated. Uncertainty in the geologic interpretation of Yucca Mountain was incorporated through the use of geostatistical simulations, while variability of hydrogeologic parameters within each unit was accounted for by the random sampling of parameter probability density functions. The composite-porosity formulation of groundwater flow was employed to simulate flow in both the matrix and fracture domains. In this conceptualization, the occurrence of locally saturated conditions within the unsaturated zone is responsible for the initiation of fast-path flow through fractures. The results of the GWTT-94 study show that heterogeneity in the hydraulic properties of the model domain is an important factor in simulating local regions of high groundwater saturation. Capillary-pressure conditions at the surface boundary influence the extent of the local saturation simulated.

  12. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    SciTech Connect

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J.L.; Nylund, W.E.

    1999-09-30

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. Micrometeorological data were collected for a minimum of 1 year at each site during 1994 through 1997. Evapotranspiration ranged from 0.6 foot per year in a sparse, dry saltgrass environment to 8.6 feet per year over open water. Mean annual ET from the Ash Meadows area is estimated at 21,000 acre-feet. The estimates given for mean annual ground-water discharge range from 18,000 to 21,000 acre-feet. The range presented is only slightly higher than previous estimates of ground-water discharge from the Ash Meadows area based primarily on springflow measurements.

  13. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China.

    PubMed

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater delta(2)H and delta(18)O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. (87)Sr/(86)Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems. PMID:19548025

  14. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China.

    PubMed

    Han, Dongmei; Liang, Xing; Jin, Menggui; Currell, Matthew J; Han, Ying; Song, Xianfang

    2009-08-01

    Based on analysis of groundwater hydrochemical and isotopic indicators, this article aims to identify the groundwater flow systems in the Yangwu River alluvial fan, in the Xinzhou Basin, China. Groundwater delta(2)H and delta(18)O values indicate that the origin of groundwater is mainly from precipitation, with local evaporative influence. d-excess values lower than 10% in most groundwaters suggest a cold climate during recharge in the area. Major ion chemistry, including rCa/rMg and rNa/rCl ratios, show that groundwater salinization is probably dominated by water-rock interaction (e.g., silicate mineral weathering, dissolution of calcite and dolomite and cation exchange) in the Yangwu River alluvial fan, and locally by intensive evapotranspiration in the Hutuo River valley. Cl and Sr concentrations follow an increasing trend in shallow groundwater affected by evaporation, and a decreasing trend in deep groundwater. (87)Sr/(86)Sr ratios reflect the variety of lithologies encountered during throughflow. The groundwater flow systems (GFS) of the Yangwu River alluvial fan include local and intermediate flow systems. Hydrogeochemical modeling results, simulated using PHREEQC, reveal water-rock interaction processes along different flow paths. This modeling method is more effective for characterizing flow paths in the intermediate system than in the local system. Artificial exploitation on groundwater in the alluvial fan enhances mixing between different groundwater flow systems.

  15. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  16. Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers

    USGS Publications Warehouse

    Cook, P.G.; Solomon, D.K.; Sanford, W.E.; Busenberg, E.; Plummer, L.N.; Poreda, R.J.

    1996-01-01

    The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short-term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr-. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.

  17. Evaluation of ground-water flow by particle tracking, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Sheets, R.A.; Schalk, C.W.

    1994-01-01

    The U.S. Geological Survey (USGS) and Wright-Patterson Air Force Base (WPAFB) began a Basewide Monitoring Program (BMP) in 1992. The purpose of the BMP was to establish a long-term ground-water and surface- water sampling network in order to (1) characterize current ground-water and surface-water quality; (2) describe water-quality changes as water enters, flows across, and exits Base boundaries; (3) conduct statistical analyses of water quality; and (4) estimate the effect of WPAFB on regional water quality. As part of the BMP, the USGS conducted ground-water particle-tracking analyses based on a ground-water-flow model produced during a previous USGS study. This report briefly describes the previous USGS study, the inherent assumptions of particle-tracking analyses, and information on the regional ground-water-flow field as inferred from particle pathlines. Pathlines for particles placed at the Base boundary and particles placed within identified Installation Restoration Program sites are described.

  18. Modelling of the groundwater flow in Baltic Artesian Basin

    NASA Astrophysics Data System (ADS)

    Virbulis, J.; Sennikovs, J.; Bethers, U.

    2012-04-01

    Baltic Artesian Basin (BAB) is a multi-layered complex hydrogeological system underlying about 480'000 km2 in the territory of Latvia, Lithuania, Estonia, Poland, Russia, Belarus and the Baltic Sea. The model of the geological structure contains 42 layers including aquifers and aquitards from Cambrian up to the Quaternary deposits. The finite element method was employed for the calculation of the steady state three-dimensional groundwater flow with free surface. The horizontal and vertical hydraulic conductivities of geological materials were assumed constant in each of the layers. The Precambrian basement forms the impermeable bottom of the model. The zero water exchange is assumed through the side boundaries of BAB. Simple hydrological model is applied on the surface. The level of the lakes, rivers and the sea is fixed as constant hydraulic head in corresponding mesh points. The infiltration is set as a flux boundary condition elsewhere. Instead of extensive coupling with hydrology model, a constant mean value of 70 mm/year was assumed as an infiltration flux for the whole BAB area and this value was adjusted during the automatic calibration process. Averaged long-term water extraction was applied at the water supply wells with large debits. In total 49 wells in Lithuania (total abstraction 45000 m3/day), 161 in Latvia (184000 m3/day) and 172 in Estonia (24000 m3/day) are considered. The model was calibrated on the statistically weighted (using both spatial and temporal weighting function) borehole water level measurements applying automatic parameter optimization method L-BFGS-B for hydraulic conductivities of each layer. The steady-stade calculations were performed for the situations corresponding to undisturbed situation (1950-ies), intensive groundwater use (1980-ies) and present state situation (after 2000). The distribution of piezometric heads and principal flows inside BAB was analyzed based on the model results. The results demonstrate that generally the

  19. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology

    NASA Astrophysics Data System (ADS)

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.

    2016-02-01

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.

  20. Estimated ground-water availability in the Delaware River basin, 1997-2000

    USGS Publications Warehouse

    Sloto, Ronald A.; Buxton, Debra E.

    2006-01-01

    Ground-water availability using a watershed-based approach was estimated for the 147 watersheds that make up the Delaware River Basin. This study, conducted by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission (DRBC), supports the DRBC's Water Resources Plan for the Delaware River Basin. Different procedures were used to estimate ground-water availability for the region underlain by fractured rocks in the upper part of the basin and for surficial aquifers in the region underlain by unconsolidated sediments in the lower part of the basin. The methodology is similar to that used for the Delaware River Basin Commission's Ground-Water Protected Area in Pennsylvania. For all watersheds, ground-water availability was equated to average annual base flow. Ground-water availability for the 109 watersheds underlain by fractured rocks in Delaware, New Jersey, New York, and Pennsylvania was based on lithology and physiographic province. Lithology was generalized by grouping 183 geologic units into 14 categories on the basis of rock type and physiographic province. Twenty-three index streamflow-gaging stations were selected to represent the 14 categories. A base-flow-recurrence analysis was used to determine the average annual 2-, 5-, 10-, 25-, and 50-year-recurrence intervals for each index station. A GIS analysis used lithology and base flow at the index stations to determine the average annual base flow for the 109 watersheds. Average annual base flow for these watersheds ranged from 0.313 to 0.915 million gallons per day per square mile for the 2-year-recurrence interval to 0.150 to 0.505 million gallons per day per square mile for the 50-year-recurrence interval. Ground-water availability for watersheds underlain by unconsolidated surficial aquifers was based on predominant surficial geology and land use, which were determined from statistical tests to be the most significant controlling factors of base flow. Twenty-one index streamflow

  1. A new analytical method for groundwater recharge and discharge estimation

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhang, You-Kuan

    2012-07-01

    SummaryA new analytical method was proposed for groundwater recharge and discharge estimation in an unconfined aquifer. The method is based on an analytical solution to the Boussinesq equation linearized in terms of h2, where h is the water table elevation, with a time-dependent source term. The solution derived was validated with numerical simulation and was shown to be a better approximation than an existing solution to the Boussinesq equation linearized in terms of h. By calibrating against the observed water levels in a monitoring well during a period of 100 days, we shown that the method proposed in this study can be used to estimate daily recharge (R) and evapotranspiration (ET) as well as the lateral drainage. It was shown that the total R was reasonably estimated with a water-table fluctuation (WTF) method if the water table measurements away from a fixed-head boundary were used, but the total ET was overestimated and the total net recharge was underestimated because of the lack of consideration of lateral drainage and aquifer storage in the WTF method.

  2. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    1999-01-01

    Prior to the early 1990's, ground-water in the Kona area, which is in the western part of the island of Hawaii, was withdrawn from wells located within about 3 mi from the coast where water levels were less than 10 feet above sea level. In 1990, exploratory drilling in the uplands east of the existing coastal wells first revealed the presence of high water levels (greater than 40 feet above sea level) in the Kona area. Measured water levels from 16 wells indicate that high water levels exist in a zone parallel to and inland of the Kona coast, between Kalaoa and Honaunau. Available hydrologic and geophysical evidence is generally consistent with the concept that the high ground-water levels are associated with a buried dike complex. A two-dimensional (areal), steady-state, freshwater-saltwater, sharp-interface ground-water flow model was developed for the Kona area of the island of Hawaii, to enhance the understanding of (1) the distribution of aquifer hydraulic properties, (2) the conceptual framework of the ground-water flow system, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-difference code SHARP. To estimate the hydraulic characteristics, average recharge, withdrawals, and water-level conditions for the period 1991-93 were simulated. The following horizontal hydraulic-conductivity values were estimated: (1) 7,500 feet per day for the dike-free volcanic rocks of Hualalai and Mauna Loa, (2) 0.1 feet per day for the buried dike complex of Hualalai, (3) 10 feet per day for the northern marginal dike zone (north of Kalaoa), and (4) 0.5 feet per day for the southern marginal dike zone between Palani Junction and Holualoa. The coastal leakance was estimated to be 0.05 feet per day per foot. Measured water levels indicate that ground water generally flows from inland areas to the coast. Model results are in general agreement with the limited set of measured water levels in the Kona area. Model

  3. Groundwater Budget Analysis of Cross Formational Flow: Hueco Bolson (Texas and Chihuahua)

    NASA Astrophysics Data System (ADS)

    Hutchison, W. R.

    2005-12-01

    Groundwater from the Hueco Bolson supplies the majority of municipal water in El Paso, Texas and Ciudad Juarez, Chihuahua, the largest international border community in the world. For over 100 years, water managers and researchers have been developing an understanding of Hueco Bolson groundwater occurrence and movement, and the interaction between surface water and groundwater. Since 2001, isotopic studies of groundwater chemistry on both sides of the border have provided valuable insights into the occurrence of groundwater and its historic movement. Numerical groundwater flow models of the area have been developed and used since the 1970s. The results of the most recent model were used to develop a detailed analysis of the groundwater inflows, outflows and storage change of the entire area and subregions of the model domain from 1903 to 2002. These detailed groundwater budgets were used to quantify temporal and spatial flow changes that resulted from groundwater pumping: induced inflow of surface water, decreased natural outflows, and storage declines. In addition, the detailed groundwater budgets were used to quantify the changes in cross formational flow between the Rio Grande Alluvium and the Hueco Bolson, as well as the changes in vertical flow within the Hueco Bolson. The groundwater budget results are consistent with the results of the isotopic analyses, providing a much needed confirmation of the overall conceptual model of the numerical model. In addition, the groundwater budgets have provided information that has been useful in further interpreting the results of the isotopic analyses.

  4. Predicting groundwater flow system discharge in the river network at the watershed scale

    NASA Astrophysics Data System (ADS)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-04-01

    The interaction between rivers and aquifers affects the quality and the quantity of surface and subsurface water since it plays a crucial role for solute transport, nutrient cycling and microbial transformations. The groundwater-surface water interface, better known as hyporheic zone, has a functional significance for the biogeochemical and ecological conditions of the fluvial ecosystem since it controls the flux of groundwater solutes discharging into rivers, and vice versa. The hyporheic processes are affected by the complex surrounding aquifer because the groundwater flow system obstructs the penetration of stream water into the sediments. The impact of large-scale stream-aquifer interactions on small scale exchange has generally been analyzed at local scales of a river reach, or even smaller. However, a complete comprehension of how hyporheic fluxes are affected by the groundwater system at watershed scale is still missing. Evaluating this influence is fundamental to predict the consequences of hyporheic exchange on water quality and stream ecology. In order to better understand the actual structure of hyporheic exchange along the river network, we firstly examine the role of basin topography complexity in controlling river-aquifer interactions. To reach this target, we focus on the analysis of surface-subsurface water exchange at the watershed scale, taking into account the river-aquifer interactions induced by landscape topography. By way of a mathematical model, we aim to improve the estimation of the role of large scale hydraulic gradients on hyporheic exchange. The potential of the method is demonstrated by the analysis of a benchmark case's study, which shows how the topographic conformation influences the stream-aquifer interaction and induces a substantial spatial variability of the groundwater discharge even among adjacent reaches along the stream. The vertical exchange velocity along the river evidences a lack of autocorrelation. Both the groundwater

  5. Multiregional estimation of gross internal migration flows.

    PubMed

    Foot, D K; Milne, W J

    1989-01-01

    "A multiregional model of gross internal migration flows is presented in this article. The interdependence of economic factors across all regions is recognized by imposing a non-stochastic adding-up constraint that requires total inmigration to equal total outmigration in each time period. An iterated system estimation technique is used to obtain asymptotically consistent and efficient parameter estimates. The model is estimated for gross migration flows among the Canadian provinces over the period 1962-86 and then is used to examine the likelihood of a wash-out effect in net migration models. The results indicate that previous approaches that use net migration equations may not always be empirically justified."

  6. In-situ characterization of wastewater flow and transport from at-grade line sources to shallow groundwater

    NASA Astrophysics Data System (ADS)

    Weldeyohannes, A. O.; Kachanoski, R. G.; Dyck, M. F.

    2011-12-01

    A better understanding of multidimensional unsaturated and saturated flow and transport under boundary conditions typical of on-site wastewater disposal systems is required to assess the risk to groundwater contamination. The main objective of this research is to characterize in-situ wastewater flow and transport from at-grade line sources on a shallow groundwater conditions. The research site was conducted at Wetaskiwin Rest Stop, Alberta, Canada, where ultraviolet disinfected wastewater has been disposed off to the ground via pressurized at-grade line sources since 2007. The site was characterized for wastewater plume and temporal groundwater fluctuation by using Electromagnetic induction (EM31) and (EM38); and by grid of 74 water table wells, 14 piezometers and 11 transducers. Groundwater was analyzed for selected tracers (pH, EC and Cl) and some microbiology (e.g. E. coli). From the results wastewater plume was identified; and wastewater plume center of mass and average flow direction were estimated. Along the horizontal plume center of mass, 30 monitoring wells in 10 nests and 31 temperature sensors in 5 nests were installed to get vertical resolution of the wastewater plume and to track contaminant transport over time. Results, implications and plans for future investigations will be presented. The research output will benefit future research on contaminant fate and transport and groundwater risk assessment plans. Key words: On-site wastewater treatment/disposal system, Wastewater plume, Groundwater contamination.

  7. Estimation of in situ groundwater chemistry using geochemical modeling: A test case for saline type groundwater in argillaceous rock

    NASA Astrophysics Data System (ADS)

    Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.

    Saline type groundwaters data in the Mobara area (a marine based argillaceous rock) located in the well-known “South Kanto gas field” in Japan were investigated by JNC as part of a natural analogue study. Most groundwaters in the field were extracted from deep gas wells ( e. g., 400-2000 m below the surface), and the all data reported previously were sampled at the wellhead, where physico-chemical parameters ( e. g., temperature, pH, Eh etc.) were also measured. In such cases, particular attention should be paid to whether the measured and/or analyzed results are consistent with the chemical and physical conditions in the in situ geological formation because air contamination, the temperature and pressure changes during sampling can affect the groundwater chemistry. The present study shows a test case to estimate the in situ groundwater chemistry in argillaceous rock of the Mobara area using geochemical model calculations. Results from thermodynamic interpretation of groundwater chemistry using the measured pH and Eh of groundwater sampled at wellhead ( e. g., pH = 7.86, Eh = -50 mV) indicate that the groundwaters are supersaturated with respect to calcite ( e. g., the saturation index; SI is 1.14). Calcite is known to equilibrate relatively quickly with aqueous solutions at low temperatures and this mineral is present in the Otadai formation, however. Therefore the values greater than 0 for SI of calcite may be due to errors in the pH measurement. Also the measured Eh is relatively oxidizing value which may be inconsistent with the in situ geochemical conditions ( e. g., pyrite and siderite coexist, CH 4(g) dominates in the groundwaters). Thus such Eh value may be disturbed by contact of the samples with atmospheric oxygen and other effects like degassing. Errors in the pH measurement might be caused by degassing during sampling of groundwaters. As a test case to estimate the groundwater considering such degassing effect, we first assume that the in situ

  8. Topographically driven groundwater flow and the San Andreas heat flow paradox revisited

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.; Hickman, S.

    2003-01-01

    Evidence for a weak San Andreas Fault includes (1) borehole heat flow measurements that show no evidence for a frictionally generated heat flow anomaly and (2) the inferred orientation of ??1 nearly perpendicular to the fault trace. Interpretations of the stress orientation data remain controversial, at least in close proximity to the fault, leading some researchers to hypothesize that the San Andreas Fault is, in fact, strong and that its thermal signature may be removed or redistributed by topographically driven groundwater flow in areas of rugged topography, such as typify the San Andreas Fault system. To evaluate this scenario, we use a steady state, two-dimensional model of coupled heat and fluid flow within cross sections oriented perpendicular to the fault and to the primary regional topography. Our results show that existing heat flow data near Parkfield, California, do not readily discriminate between the expected thermal signature of a strong fault and that of a weak fault. In contrast, for a wide range of groundwater flow scenarios in the Mojave Desert, models that include frictional heat generation along a strong fault are inconsistent with existing heat flow data, suggesting that the San Andreas Fault at this location is indeed weak. In both areas, comparison of modeling results and heat flow data suggest that advective redistribution of heat is minimal. The robust results for the Mojave region demonstrate that topographically driven groundwater flow, at least in two dimensions, is inadequate to obscure the frictionally generated heat flow anomaly from a strong fault. However, our results do not preclude the possibility of transient advective heat transport associated with earthquakes.

  9. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    USGS Publications Warehouse

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  10. Groundwater recharge estimation using time series models and hybrid water fluctuation method

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Park, E.; Ha, K.; Kim, G.

    2013-12-01

    Predicting groundwater level fluctuations and estimating groundwater recharge are necessary for an effective management of groundwater resources. Applications of the water table fluctuation (WTF) method to groundwater recharge estimation are limited when time series data of groundwater level is discontinuous or abnormal. In the present study, we designed a method to correct abnormal data using time series models for groundwater recharge estimation. An artificial neural network and a support vector machine were employed for time series model development and the hybrid water table fluctuation method (h-WTF) considering transient fillable porosity was utilized for groundwater recharge estimation. A comparison study was conducted between three different techniques for groundwater recharge estimation: the classic WTF, h-WTF with observed data (h-WTF1), and h-WTF with corrected data (h-WTF2), using daily rainfall and groundwater level data of 5 groundwater monitoring stations in South Korea. Correlation coefficient values of observed and predicted groundwater level were as high as more than 0.8 for all the 5 stations. The result of the comparison study shows that the estimated ratio of recharge to rainfall ranges from 14.9 to 38.3% for WTF, 12.8 to 31.2% for h-WTF1, and 21.8 to 50.0% for h-WTF2 method. The estimated recharge ratios of h-WTF1 are smaller than h-WTF2 by 9.8 to 41.3%. The reason is thought to be that the effect of exogenous factors to groundwater recharge except rainfall was filtered out through the time series model in h-WTF2 method.

  11. Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Simpkins, W. W.; Bradbury, K. R.

    1992-03-01

    Piezometer nests were installed at study sites in each of five north-south-trending end moraines of the late Pleistocene Oak Creek Formation in southeastern Wisconsin. The formation is composed primarily of a fine-grained glacial diamicton (till) and laterally continuous and discontinuous, coarse-grained lake and meltwater stream sediment. It overlies the Silurian dolomite aquifer, which is a source of drinking water to rural areas. The average vertical linear velocity and age of ground water in the Oak Creek Formation were estimated by three methods: Darcy's Law, environmental isotopes including 3H, δ2H, δ18O, and 14C (dissolved inorganic carbon), and solute transport modeling of 18O. The F-1 and Metro sites in the Tinley moraine showed excellent agreement among the three estimates of vertical velocity and showed the lowest velocity values (0.3-0.5 cm year -1 downward), which suggests that diffusion controls vertical mass transport at these sites. Although the extrapolated maximum age of ground water is 35 000 years, ground water below 75 m at these sites is probably not older than 15 000 years, which is the maximum age of the formation. Estimates of velocity showed less agreement at study sites in the Lake Border moraine system to the east and ranged from about 0.2 to 20.7 cm year -1; maximum groundwater age could range from 213 to 6000 years. Higher and more variable velocities, perhaps owing to thinner and more heterogeneous sediment in these areas, suggest that diffusion may not dominate vertical mass transport. Heterogeneity and fractures may also promote the development of groundwater flow systems dominated by lateral flow. Because of the uncertainty about the nature of groundwater flow, velocity, and age in the formation east of the Tinley moraine, future waste-disposal activity in southeastern Wisconsin should be confined to the thickest parts of the Tinley moraine near the present F-1 and Metro sites.

  12. Description and Evaluation of Numerical Groundwater Flow Models for the Edwards Aquifer, South-Central Texas

    USGS Publications Warehouse

    Lindgren, Richard J.; Taylor, Charles J.; Houston, Natalie A.

    2009-01-01

    incorporates improvements over previous models by using (1) a user-friendly interface, (2) updated computer codes (MODFLOW-96 and MODFLOW-2000), (3) a finer grid resolution, (4) less-restrictive boundary conditions, (5) an improved discretization of hydraulic conductivity, (6) more accurate estimates of pumping stresses, (7) a long transient simulation period (54 years, 1947-2000), and (8) a refined representation of high-permeability zones or conduits. All of the models except the MODFLOW-DCM conduit model have limitations resulting from the use of Darcy's law to simulate groundwater flow in a karst aquifer system where non-Darcian, turbulent flow might actually dominate. The MODFLOW-DCM conduit model is an improvement in the ability to simulate karst-like flow conditions in conjunction with porous-media-type matrix flow. However, the MODFLOW-DCM conduit model has had limited application and testing and currently (2008) lacks commercially available pre- and post-processors. The MODFLOW conduit-flow and diffuse-flow Edwards aquifer models are limited by the lack of calibration for the northern part of the Barton Springs segment (Travis County) and their reliance on the use of the calibrated hydraulic conductivity and storativity values from the calibrated Barton Springs segment GAM model. The major limitation of the Barton Springs segment GAM and recalibrated GAM models is that they were calibrated to match measured water levels and springflows for a restrictive range of hydrologic conditions, with each model having different hydraulic conductivity and storativity values appropriate to the hydrologic conditions that were simulated. The need for two different sets of hydraulic conductivity and storativity values increases the uncertainty associated with the accuracy of either set of values, illustrates the non-uniqueness of the model solution, and probably most importantly demonstrates the limitations of using a one-layer model to represent the heterogeneous hydrostratigraph

  13. Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling

    NASA Astrophysics Data System (ADS)

    Michalak, Anna M.; Kitanidis, Peter K.

    2004-08-01

    As the incidence of groundwater contamination continues to grow, a number of inverse modeling methods have been developed to address forensic groundwater problems. In this work the geostatistical approach to inverse modeling is extended to allow for the recovery of the antecedent distribution of a contaminant at a given point back in time, which is critical to the assessment of historical exposure to contamination. Such problems are typically strongly underdetermined, with a large number of points at which the distribution is to be estimated. To address this challenge, the computational efficiency of the new method is increased through the application of the adjoint state method. In addition, the adjoint problem is presented in a format that allows for the reuse of existing groundwater flow and transport codes as modules in the inverse modeling algorithm. As demonstrated in the presented applications, the geostatistical approach combined with the adjoint state method allow for a historical multidimensional contaminant distribution to be recovered even in heterogeneous media, where a numerical solution is required for the forward problem.

  14. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  15. STRING 3: An Advanced Groundwater Flow Visualization Tool

    NASA Astrophysics Data System (ADS)

    Schröder, Simon; Michel, Isabel; Biedert, Tim; Gräfe, Marius; Seidel, Torsten; König, Christoph

    2016-04-01

    The visualization of 3D groundwater flow is a challenging task. Previous versions of our software STRING [1] solely focused on intuitive visualization of complex flow scenarios for non-professional audiences. STRING, developed by Fraunhofer ITWM (Kaiserslautern, Germany) and delta h Ingenieurgesellschaft mbH (Witten, Germany), provides the necessary means for visualization of both 2D and 3D data on planar and curved surfaces. In this contribution we discuss how to extend this approach to a full 3D tool and its challenges in continuation of Michel et al. [2]. This elevates STRING from a post-production to an exploration tool for experts. In STRING moving pathlets provide an intuition of velocity and direction of both steady-state and transient flows. The visualization concept is based on the Lagrangian view of the flow. To capture every detail of the flow an advanced method for intelligent, time-dependent seeding is used building on the Finite Pointset Method (FPM) developed by Fraunhofer ITWM. Lifting our visualization approach from 2D into 3D provides many new challenges. With the implementation of a seeding strategy for 3D one of the major problems has already been solved (see Schröder et al. [3]). As pathlets only provide an overview of the velocity field other means are required for the visualization of additional flow properties. We suggest the use of Direct Volume Rendering and isosurfaces for scalar features. In this regard we were able to develop an efficient approach for combining the rendering through raytracing of the volume and regular OpenGL geometries. This is achieved through the use of Depth Peeling or A-Buffers for the rendering of transparent geometries. Animation of pathlets requires a strict boundary of the simulation domain. Hence, STRING needs to extract the boundary, even from unstructured data, if it is not provided. In 3D we additionally need a good visualization of the boundary itself. For this the silhouette based on the angle of

  16. A preliminary analysis of the hydrogeological conditions and groundwater flow in some parts of a crystalline aquifer system: Afigya Sekyere South District, Ghana

    NASA Astrophysics Data System (ADS)

    Yidana, Sandow Mark; Essel, Stephen Kwaku; Addai, Millicent Obeng; Fynn, Obed Fiifi

    2015-04-01

    A steady state groundwater flow model was calibrated to simulate the complex groundwater flow pattern in some crystalline aquifer systems in north-central Ghana. The objective was to develop the general geometry of the groundwater system and also estimate spatial variations in the hydraulic conductivity field as part of efforts to thoroughly investigate the general hydrogeology and groundwater conditions of aquifers in the area. The calibrated model was used in a limited fashion to simulate some scenarios of groundwater development in the terrain. The results suggest the dominance of local groundwater flow systems resulting from local variabilities in the hydraulic conductivity field and the topography. Estimated horizontal hydraulic conductivities range between 1.04 m/d and 15.25 m/d, although most of the areas consist of hydraulic conductivities in the range of 1.04 m/d and 5.5 m/d. Groundwater flow is apparently controlled by discrete entities with limited spatial interconnectivities. Recharge rates estimated at calibration range between 4.3% and 13% of the annual rainfall in the terrain. The analysis suggests that under the current recharge rates, the system can sustain increasing groundwater abstraction rates by up to 50% with minimal drawdown in the hydraulic head for the entire terrain. However, with decreasing groundwater recharge as would be expected in the wake of climate change/variability in the area, increased groundwater abstraction by up to 50% can lead to drastic drawdowns by more than 25% if recharge reduces by up to 50% of the current levels. This study strongly recommend the protection of some of the local groundwater recharge areas identified in this study and the promotion of local recharge through the development of dugouts and other conduits to encourage recharge.

  17. Groundwater flow pattern and related environmental phenomena in complex geologic setting based on integrated model construction

    NASA Astrophysics Data System (ADS)

    Tóth, Ádám; Havril, Tímea; Simon, Szilvia; Galsa, Attila; Monteiro Santos, Fernando A.; Müller, Imre; Mádl-Szőnyi, Judit

    2016-08-01

    Groundwater flow, driven, controlled and determined by topography, geology and climate, is responsible for several natural surface manifestations and affected by anthropogenic processes. Therefore, flowing groundwater can be regarded as an environmental agent. Numerical simulation of groundwater flow could reveal the flow pattern and explain the observed features. In complex geologic framework, where the geologic-hydrogeologic knowledge is limited, the groundwater flow model could not be constructed based solely on borehole data, but geophysical information could aid the model building. The integrated model construction was presented via the case study of the Tihany Peninsula, Hungary, with the aims of understanding the background and occurrence of groundwater-related environmental phenomena, such as wetlands, surface water-groundwater interaction, slope instability, and revealing the potential effect of anthropogenic activity and climate change. The hydrogeologic model was prepared on the basis of the compiled archive geophysical database and the results of recently performed geophysical measurements complemented with geologic-hydrogeologic data. Derivation of different electrostratigraphic units, revealing fracturing and detecting tectonic elements was achieved by systematically combined electromagnetic geophysical methods. The deduced information can be used as model input for groundwater flow simulation concerning hydrostratigraphy, geometry and boundary conditions. The results of numerical modelling were interpreted on the basis of gravity-driven regional groundwater flow concept and validated by field mapping of groundwater-related phenomena. The 3D model clarified the hydraulic behaviour of the formations, revealed the subsurface hydraulic connection between groundwater and wetlands and displayed the groundwater discharge pattern, as well. The position of wetlands, their vegetation type, discharge features and induced landslides were explained as

  18. Geohydrology and simulated ground-water flow in an irrigated area of northwestern Indiana

    USGS Publications Warehouse

    Arihood, L.D.; Basch, M.E.

    1994-01-01

    Water for irrigation in parts of Newton and Jasper Counties and adjacent areas of northwestern Indiana is pumped mostly from the carbonate- bedrock aquifer that underlies glacial drift. To help in managing the ground-water resources of the area, a three-dimensional ground-water model was developed and tested with hydrologic data collected during 1986 and 1988. Two major aquifers and a confining unit were identified. The surficial unconfined outwash aquifer consists of sand and some gravel. Saturated thickness averages about 30 feet. Estimated values of horizontal hydraulic conductivity and storage coefficient are 350 feet per day and 0.07, respectively. The generally continuous confining unit beneath the outwash aquifer is composed predominantly of till and lacustrine silt and clay and is 0 to 125 feet thick. The carbonate-bedrock aquifer is composed of Silurian and Devonian dolomitic limestone; dolomite and has a median transmissivity of 2,000 feet squared per day. A nine-layer digital model was developed to simulate flow in the ground-water system. The mean absolute errors for simulated water levels in the bedrock aquifer ranged from 5 to 7 feet for two recent periods of irrigation. The component of the flow system that most affects water-level drawdowns in the bedrock aquifer is the confining unit which controls the rate of leakage to the bedrock aquifer. The model is most accurate in areas for which data for confining-unit thickness and bedrock water levels are available.

  19. Analytical sensitivity analysis of transient groundwater flow in a bounded model domain using the adjoint method

    NASA Astrophysics Data System (ADS)

    Lu, Zhiming; Vesselinov, Velimir V.

    2015-07-01

    Sensitivity analyses are an important component of any modeling exercise. We have developed an analytical methodology based on the adjoint method to compute sensitivities of a state variable (hydraulic head) to model parameters (hydraulic conductivity and storage coefficient) for transient groundwater flow in a confined and randomly heterogeneous aquifer under ambient and pumping conditions. For a special case of two-dimensional rectangular domains, these sensitivities are represented in terms of the problem configuration (the domain size, boundary configuration, medium properties, pumping schedules and rates, and observation locations and times), and there is no need to actually solve the adjoint equations. As an example, we present analyses of the obtained solution for typical groundwater flow conditions. Analytical solutions allow us to calculate sensitivities efficiently, which can be useful for model-based analyses such as parameter estimation, data-worth evaluation, and optimal experimental design related to sampling frequency and locations of observation wells. The analytical approach is not limited to groundwater applications but can be extended to any other mathematical problem with similar governing equations and under similar conceptual conditions.

  20. Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo

    2016-04-01

    different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.

  1. Scaling of flow and transport behavior in heterogeneous groundwater systems

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy; Yabusaki, Steven

    1998-11-01

    Three-dimensional numerical simulations using a detailed synthetic hydraulic conductivity field developed from geological considerations provide insight into the scaling of subsurface flow and transport processes. Flow and advective transport in the highly resolved heterogeneous field were modeled using massively parallel computers, providing a realistic baseline for evaluation of the impacts of parameter scaling. Upscaling of hydraulic conductivity was performed at a variety of scales using a flexible power law averaging technique. A series of tests were performed to determine the effects of varying the scaling exponent on a number of metrics of flow and transport behavior. Flow and transport simulation on high-performance computers and three-dimensional scientific visualization combine to form a powerful tool for gaining insight into the behavior of complex heterogeneous systems. Many quantitative groundwater models utilize upscaled hydraulic conductivity parameters, either implicitly or explicitly. These parameters are designed to reproduce the bulk flow characteristics at the grid or field scale while not requiring detailed quantification of local-scale conductivity variations. An example from applied groundwater modeling is the common practice of calibrating grid-scale model hydraulic conductivity or transmissivity parameters so as to approximate observed hydraulic head and boundary flux values. Such parameterizations, perhaps with a bulk dispersivity imposed, are then sometimes used to predict transport of reactive or non-reactive solutes. However, this work demonstrates that those parameters that lead to the best upscaling for hydraulic conductivity and head do not necessarily correspond to the best upscaling for prediction of a variety of transport behaviors. This result reflects the fact that transport is strongly impacted by the existence and connectedness of extreme-valued hydraulic conductivities, in contrast to bulk flow which depends more strongly on

  2. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    USGS Publications Warehouse

    Crusius, J.; Koopmans, D.; Bratton, J.F.; Charette, M.A.; Kroeger, K.D.; Henderson, P.; Ryckman, L.; Halloran, K.; Colman, J.A.

    2005-01-01

    Submarine groundwater discharge was quantified by a variety of methods in Salt Pond, adjacent to Nauset Marsh on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. A box model was used to estimate discharge separately to Salt Pond and to the channel by simulating the timing and magnitude of variations in the radon and salinity data in the channel. Discharge to the pond is estimated to be 2200??1100 m3 d-1, while discharge to the channel is estimated to be 300??150m3 d-1, for a total discharge of 2500??1250 m3 d-1 to the Salt Pond system. This translates to an average groundwater flow velocity of 3??1.5 cm d -1. Seepage meter flow estimates are broadly consistent with this figure, provided discharge is confined to shallow sediments (water depth <1 m). The radon data can be modeled assuming all groundwater fluxes to both the channel and to the pond are fresh, with no need to invoke a saline component. The absence of a saline component in the radon flux may be due to removal of radon from saline groundwater by recent advection of seawater or it may to due to the presence of impermeable sediments in the center of the pond that limit seawater recirculation. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 20041). Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to determine the rate of groundwater discharge seaward of Salt Pond. Data also suggest a TDN flux from groundwater to Salt Pond of ???2.6 mmol m-2 d-1, a figure comparable to fluxes observed in other eutrophic settings.

  3. Investigations of groundwater system and simulation of regional groundwater flow for North Penn Area 7 Superfund site, Montgomery County, Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Goode, Daniel J.

    2013-01-01

    Groundwater in the vicinity of several industrial facilities in Upper Gwynedd Township and vicinity, Montgomery County, in southeast Pennsylvania has been shown to be contaminated with volatile organic compounds (VOCs), the most common of which is the solvent trichloroethylene (TCE). The 2-square-mile area was placed on the National Priorities List as the North Penn Area 7 Superfund site by the U.S. Environmental Protection Agency (USEPA) in 1989. The U.S. Geological Survey (USGS) conducted geophysical logging, aquifer testing, and water-level monitoring, and measured streamflows in and near North Penn Area 7 from fall 2000 through fall 2006 in a technical assistance study for the USEPA to develop an understanding of the hydrogeologic framework in the area as part of the USEPA Remedial Investigation. In addition, the USGS developed a groundwater-flow computer model based on the hydrogeologic framework to simulate regional groundwater flow and to estimate directions of groundwater flow and pathways of groundwater contaminants. The study area is underlain by Triassic- and Jurassic-age sandstones and shales of the Lockatong Formation and Brunswick Group in the Mesozoic Newark Basin. Regionally, these rocks strike northeast and dip to the northwest. The sequence of rocks form a fractured-sedimentary-rock aquifer that acts as a set of confined to partially confined layers of differing permeabilities. Depth to competent bedrock typically is less than 20 ft below land surface. The aquifer layers are recharged locally by precipitation and discharge locally to streams. The general configuration of the potentiometric surface in the aquifer is similar to topography, except in areas affected by pumping. The headwaters of Wissahickon Creek are nearby, and the stream flows southwest, parallel to strike, to bisect North Penn Area 7. Groundwater is pumped in the vicinity of North Penn Area 7 for industrial use, public supply, and residential supply. Results of field investigations

  4. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge

    NASA Astrophysics Data System (ADS)

    Moon, Sang-Ki; Woo, Nam C.; Lee, Kwang S.

    2004-06-01

    Using water-table monitoring data from the National Groundwater Monitoring Network in Korea, groundwater hydrographs were classified into five typical groups. Then, to estimate groundwater recharge, a modified water-table fluctuation (WTF) method was developed from the relation between the cumulative WTF and corresponding precipitation records. Applying this method to different types of hydrographs, the spatial variability of recharge in river basins was evaluated. Each estimated recharge can be considered the maximum value, and therefore, could be used as a cut-off guideline (an upper limit) for groundwater development in river basins.

  5. Analysis of confidence in continental-scale groundwater recharge estimates for Africa using a distributed water balance model

    NASA Astrophysics Data System (ADS)

    Mackay, Jonathan; Mansour, Majdi; Bonsor, Helen; Pachocka, Magdalena; Wang, Lei; MacDonald, Alan; Macdonald, David; Bloomfield, John

    2014-05-01

    There is a growing need for improved access to reliable water in Africa as population and food production increases. Currently approximately 300 million people do not have access to a secure source of safe drinking water. To meet these current and future demands, groundwater will need to be increasingly abstracted; groundwater is more reliable than surface water sources due to its relatively long response time to meteorological stresses and therefore is likely to be a more secure water resource in a more variable climate. Recent studies also quantified the volumes of groundwater potentially available which suggest that, if exploited, groundwater could help to meet the demand for fresh water. However, there is still considerable uncertainty as to how these resources may respond in the future due to changes in groundwater recharge and abstraction. Understanding and quantifying groundwater recharge is vital as it forms a primary indicator of the sustainability of underlying groundwater resources. Computational hydrological models provide a means to do this, but the complexity of recharge processes in Africa mean that these simulations are often highly uncertain. This study aims to evaluate our confidence in simulating groundwater recharge over Africa based on a sensitivity analysis using a distributed hydrological model developed by the British Geological Survey, ZOODRM. The model includes land surface, canopy, river, soil and groundwater components. Each component is able to exchange water and as such, forms a distributed water balance of Africa. The components have been parameterised using available spatial datasets of African vegetation, land-use, soil and hydrogeology while the remaining parameters have been estimated by calibrating the model to available river flow data. Continental-scale gridded precipitation and potential evapotranspiration datasets, based on remotely sensed and ground observations, have been used to force the model. Following calibration, the

  6. Model Reduction of a Transient Groundwater-Flow Model for Bayesian Inverse Problems

    NASA Astrophysics Data System (ADS)

    Boyce, S. E.; Yeh, W. W.

    2011-12-01

    reduced models. The new parameter vector is added to the parameter basis and its corresponding parameter snapshot set is added to the state basis. Additional parameter vectors and parameter snapshot sets are added to their corresponding bases until adding a new parameter vector has little impact on the error between the reduced model and the full model. The resulting parameter and state bases are used directly to reduce the parameter and state dimensions of the groundwater flow model. We apply the proposed model reduction technique to a synthetic example that estimates the posterior probability distribution of hydraulic conductivity using a one-dimensional confined groundwater model and the Markov Chain Monte Carlo method. Several cases will be explored that depend on the number of hydraulic conductivity values that represent the synthetic system and their impact on management decisions.

  7. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements.

    PubMed

    Burnett, William C; Dulaiova, Henrieta

    2003-01-01

    Submarine groundwater discharge (SGD) into the coastal zone has received increased attention in the last few years as it is now recognized that this process represents an important pathway for material transport. Assessing these material fluxes is difficult, as there is no simple means to gauge the water flux. To meet this challenge, we have explored the use of a continuous radon monitor to measure radon concentrations in coastal zone waters over time periods from hours to days. Changes in the radon inventories over time can be converted to fluxes after one makes allowances for tidal effects, losses to the atmosphere, and mixing with offshore waters. If one assumes that advective flow of radon-enriched groundwater (pore waters) represent the main input of 222Rn in the coastal zone, the calculated radon fluxes may be converted to water fluxes by dividing by the estimated or measured 222Rn pore water activity. We have also used short-lived radium isotopes (223Ra and 224Ra) to assess mixing between near-shore and offshore waters in the manner pioneered by. During an experiment in the coastal Gulf of Mexico, we showed that the mixing loss derived from the 223Ra gradient agreed very favorably to the estimated range based on the calculated radon fluxes. This allowed an independent constraint on the mixing loss of radon-an important parameter in the mass balance approach. Groundwater discharge was also estimated independently by the radium isotopic approach and was within a factor of two of that determined by the continuous radon measurements and an automated seepage meter deployed at the same site.

  8. Groundwater flow near the Shoal Site, Sand Springs Range, Nevada: Impact of density-driven flow

    SciTech Connect

    Chapman, J.; Mihevc, T.; McKay, A.

    1994-09-01

    The nature of flow from a highland recharge area in a mountain range in north-central Nevada to discharge areas on either side of the range is evaluated to refine a conceptual model of contaminant transport from an underground nuclear test conducted beneath the range. The test, known as the Shoal event, was conducted in 1963 in granitic rocks of the Sand Springs Range. Sparse hydraulic head measurements from the early 1960s suggest flow from the shot location to the east to Fairview Valley, while hydrochemistry supports flow to salt pans in Fourmile Flat to the west. Chemical and isotopic data collected from water samples and during well-logging arc best explained by a reflux brine system on the west side of the Sand Springs Range, rather than a typical local flow system where all flow occurs from recharge areas in the highlands to a central discharge area in a playa. Instead, dense saline water from the playa is apparently being driven toward the range by density contrasts. The data collected between the range and Fourmile Flat suggest the groundwater is a mixture of younger, fresher recharge water with older brine. Chemical contrasts between groundwater in the east and west valleys reflect the absence of re-flux water in Fairview Valley because the regional discharge area is distant and thus there is no accumulation of salts. The refluxing hydraulic system probably developed after the end of the last pluvial period and differences between the location of the groundwater divide based on hydraulic and chemical indicators could reflect movement of the divide as the groundwater system adjusts to the new reflux condition.

  9. ENVIRONMENTAL RESEARCH BRIEF : ANALYTIC ELEMENT MODELING OF GROUND-WATER FLOW AND HIGH PERFORMANCE COMPUTING

    EPA Science Inventory

    Several advances in the analytic element method have been made to enhance its performance and facilitate three-dimensional ground-water flow modeling in a regional aquifer setting. First, a new public domain modular code (ModAEM) has been developed for modeling ground-water flow ...

  10. Using the Community Land Model to Assess Uncertainty in Basin Scale GRACE-Based Groundwater Estimates

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2015-12-01

    One method for interpreting the variability in total water storage observed by GRACE is to partition the integrated GRACE measurement into its component storage reservoirs based on information provided by hydrological models. Such models, often designed to be used in couple Earth System models, simulate the stocks and fluxes of moisture through the land surface and subsurface. One application of this method attempts to isolate groundwater changes by removing modeled surface water, snow, and soil moisture changes from GRACE total water storage estimates. Human impacts on groundwater variability can be estimated by further removing model estimates of climate-driven groundwater changes. Errors in modeled water storage components directly affect the residual groundwater estimates. Here we examine the influence of model structure and process representation on soil moisture and groundwater uncertainty using the Community Land Model, with a particular focus on basins in the western U.S.

  11. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Molokai, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    1997-01-01

    A two-dimensional, steady-state, areal ground-water flow model was developed for the island of Molokai, Hawaii, to enhance the understanding of (1) the conceptual framework of the ground-water flow system, (2) the distribution of aquifer hydraulic properties, and (3) the regional effects of ground-water withdrawals on water levels and coastal discharge. The model uses the finite-element code AQUIFEM-SALT, which simulates flow of fresh ground water in systems that may have a freshwater lens floating on denser underlying saltwater. Model results are in agreement with the general conceptual model of the flow system on Molokai, where ground water flows from the interior, high-recharge areas to the coast. The model-calculated ground-water divide separating flow to the northern and southern coasts lies to either the north or the south of the topographic divide but is generally not coincident with the topographic divide. On the basis of model results, the following horizontal hydraulic conductivities were estimated: (1) 1,000 feet per day for the dike-free volcanic rocks of East and West Molokai, (2) 100 feet per day for the marginal dike zone of the East Molokai Volcano, (3) 2 feet per day for the West Molokai dike complex, (4) 0.02 feet per day for the East Molokai dike complex, and (5) 500 feet per day for the Kalaupapa Volcanics. Three simulations to determine the effects of proposed ground-water withdrawals on water levels and coastal discharge, relative to model-calculated water levels and coastal discharge for 1992-96 withdrawal rates, show that the effects are widespread. For a withdrawal rate of 0.337 million gallons per day from a proposed well about 4 miles southeast of Kualapuu and 3 miles north of Kamiloloa, the model-calculated drawdown of 0.01 foot or more extends 4 miles southeast and 6 miles northwest from the well. For a withdrawal rate of 1.326 million gallons per day from the same well, the model-calculated drawdown of 0.01 foot or more extends 6 miles

  12. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  13. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    USGS Publications Warehouse

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-02-23

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  14. Groundwater ages from the freshwater zone of the Edwards aquifer, Uvalde County, Texas—Insights into groundwater flow and recharge

    USGS Publications Warehouse

    Hunt, Andrew G.; Landis, Gary P.; Faith, Jason R.

    2016-01-01

    Tritium–helium-3 groundwater ages of the Edwards aquifer in south-central Texas were determined as part of a long-term study of groundwater flow and recharge in the Edwards and Trinity aquifers. These ages help to define groundwater residence times and to provide constraints for calibration of groundwater flow models. A suite of 17 samples from public and private supply wells within Uvalde County were collected for active and noble gases, and for tritium–helium-3 analyses from the confined and unconfined parts of the Edwards aquifer. Samples were collected from monitoring wells at discrete depths in open boreholes as well as from integrated pumped well-head samples. The data indicate a fairly uniform groundwater flow system within an otherwise structurally complex geologic environment comprised of regionally and locally faulted rock units, igneous intrusions, and karst features within carbonate rocks. Apparent ages show moderate, downward average, linear velocities in the Uvalde area with increasing age to the east along a regional groundwater flow path. Though the apparent age data show a fairly consistent distribution across the study area, many apparent ages indicate mixing of both modern (less than 60 years) and premodern (greater than 60 years) waters. This mixing is most evident along the “bad water” line, an arbitrary delineation of 1,000 milligrams per liter dissolved solids that separates the freshwater zone of the Edwards aquifer from the downdip saline water zone. Mixing of modern and premodern waters also is indicated within the unconfined zone of the aquifer by high excess helium concentrations in young waters. Excess helium anomalies in the unconfined aquifer are consistent with possible subsurface discharge of premodern groundwater from the underlying Trinity aquifer into the younger groundwater of the Edwards aquifer.

  15. Spatial variability analysis of combining the water quality and groundwater flow model to plan groundwater and surface water management in the Pingtung plain

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Fang; Chen, Jui-Sheng; Jang, Cheng-Shin

    2014-05-01

    As a result of rapid economic growth in the Pingtung Plain, the use of groundwater resources has changed dramatically. The groundwater is quite rich in the Pingtung plain and the most important water sources. During the several decades, a substantial amount of groundwater has been pumped for the drinking, irrigation and aquaculture water supplies. However, because the sustainable use concept of groundwater resources is lack, excessive pumping of groundwater causes the occurrence of serious land subsidence and sea water intrusion. Thus, the management and conservation of groundwater resources in the Pingtung plain are considerably critical. This study aims to assess the conjunct use effect of groundwater and surface water in the Pingtung plain on recharge by reducing the amount of groundwater extraction. The groundwater quality variability and groundwater flow models are combined to spatially analyze potential zones of groundwater used for multi-purpose in the Pingtung Plain. First, multivariate indicator kriging (MVIK) is used to analyze spatial variability of groundwater quality based on drinking, aquaculture and irrigation water quality standards, and probabilistically delineate suitable zones in the study area. Then, the groundwater flow model, Processing MODFLOW (PMWIN), is adopted to simulate groundwater flow. The groundwater flow model must be conducted by the calibration and verification processes, and the regional groundwater recovery is discussed when specified water rights are replaced by surface water in the Pingtung plain. Finally, the most suitable zones of reducing groundwater use are determined for multi-purpose according to combining groundwater quality and quantity. The study results can establish a sound and low-impact management plan of groundwater resources utilization for the multi-purpose groundwater use, and prevent decreasing ground water tables, and the occurrence of land subsidence and sea water intrusion in the Pingtung plain.

  16. Evaluation of Parameter Uncertainty Reduction in Groundwater Flow Modeling Using Multiple Environmental Tracers

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Gardner, P.

    2013-12-01

    Calibration of groundwater flow models for the purpose of evaluating flow and aquifer heterogeneity typically uses observations of hydraulic head in wells and appropriate boundary conditions. Environmental tracers have a wide variety of decay rates and input signals in recharge, resulting in a potentially broad source of additional information to constrain flow rates and heterogeneity. A numerical study was conducted to evaluate the reduction in uncertainty during model calibration using observations of various environmental tracers and combinations of tracers. A synthetic data set was constructed by simulating steady groundwater flow and transient tracer transport in a high-resolution, 2-D aquifer with heterogeneous permeability and porosity using the PFLOTRAN software code. Data on pressure and tracer concentration were extracted at well locations and then used as observations for automated calibration of a flow and transport model using the pilot point method and the PEST code. Optimization runs were performed to estimate parameter values of permeability at 30 pilot points in the model domain for cases using 42 observations of: 1) pressure, 2) pressure and CFC11 concentrations, 3) pressure and Ar-39 concentrations, and 4) pressure, CFC11, Ar-39, tritium, and He-3 concentrations. Results show significantly lower uncertainty, as indicated by the 95% linear confidence intervals, in permeability values at the pilot points for cases including observations of environmental tracer concentrations. The average linear uncertainty range for permeability at the pilot points using pressure observations alone is 4.6 orders of magnitude, using pressure and CFC11 concentrations is 1.6 orders of magnitude, using pressure and Ar-39 concentrations is 0.9 order of magnitude, and using pressure, CFC11, Ar-39, tritium, and He-3 concentrations is 1.0 order of magnitude. Data on Ar-39 concentrations result in the greatest parameter uncertainty reduction because its half-life of 269

  17. Groundwater flow, quality (2007-10), and mixing in the Wind Cave National Park area, South Dakota

    USGS Publications Warehouse

    Long, Andrew J.; Ohms, Marc J.; McKaskey, Jonathan D.R.G.

    2012-01-01

    A study of groundwater flow, quality, and mixing in relation to Wind Cave National Park in western South Dakota was conducted during 2007-11 by the U.S. Geological Survey in cooperation with the National Park Service because of water-quality concerns and to determine possible sources of groundwater contamination in the Wind Cave National Park area. A large area surrounding Wind Cave National Park was included in this study because to understand groundwater in the park, a general understanding of groundwater in the surrounding southern Black Hills is necessary. Three aquifers are of particular importance for this purpose: the Minnelusa, Madison, and Precambrian aquifers. Multivariate methods applied to hydrochemical data, consisting of principal component analysis (PCA), cluster analysis, and an end-member mixing model, were applied to characterize groundwater flow and mixing. This provided a way to assess characteristics important for groundwater quality, including the differentiation of hydrogeologic domains within the study area, sources of groundwater to these domains, and groundwater mixing within these domains. Groundwater and surface-water samples collected for this study were analyzed for common ions (calcium, magnesium, sodium, bicarbonate, chloride, silica, and sulfate), arsenic, stable isotopes of oxygen and hydrogen, specific conductance, and pH. These 12 variables were used in all multivariate methods. A total of 100 samples were collected from 60 sites from 2007 to 2010 and included stream sinks, cave drip, cave water bodies, springs, and wells. In previous approaches that combined PCA with end-member mixing, extreme-value samples identified by PCA typically were assumed to represent end members. In this study, end members were not assumed to have been sampled but rather were estimated and constrained by prior hydrologic knowledge. Also, the end-member mixing model was quantified in relation to hydrogeologic domains, which focuses model results on

  18. Calibration of a large-scale groundwater flow model using GRACE data: a case study in the Qaidam Basin, China

    NASA Astrophysics Data System (ADS)

    Hu, Litang; Jiao, Jiu Jimmy

    2015-11-01

    Traditional numerical models usually use extensive observed hydraulic-head data as calibration targets. However, this calibration process is not applicable in remote areas with limited or no monitoring data. This study presents an approach to calibrate a large-scale groundwater flow model using the monthly Gravity Recovery and Climate Experiment (GRACE) satellite data, which have been available globally on a spatial grid of 1° in the geographic coordinate system since 2002. A groundwater storage anomaly isolated from the terrestrial water storage (TWS) anomaly is converted into hydraulic head at the center of the grid, which is then used as observed data to calibrate a numerical model to estimate aquifer hydraulic conductivity. The aquifer system in the remote and hyperarid Qaidam Basin, China, is used as a case study to demonstrate the applicability of this approach. A groundwater model using FEFLOW is constructed for the Qaidam Basin and the GRACE-derived groundwater storage anomaly over the period 2003-2012 is included to calibrate the model, which is done using an automatic estimation method (PEST). The calibrated model is then run to output hydraulic heads at three sites where long-term hydraulic head data are available. The reasonably good fit between the calculated and observed hydraulic heads, together with the very similar groundwater storage anomalies from the numerical model and GRACE data, demonstrate that this approach is generally applicable in regions of groundwater data scarcity.

  19. Ground-water flow and quality near Canon City, Colorado

    USGS Publications Warehouse

    Hearne, G.A.; Litke, D.W.

    1987-01-01

    Water in aquifers that underlie the Lincoln Park area near Canon City, Colorado, contains measurable concentrations of chemical constituents that are similar to those in raffinate (liquid waste) produced by a nearby uranium ore processing mill. The objective of this study was to expand the existing geohydrologic data base by collecting additional geohydrologic and water quality, in order to refine the description of the geohydrologic and geochemical systems in the study area. Geohydrologic data were collected from nine tests wells drilled in the area between the U.S. Soil Conservation Service dam and Lincoln Park. Lithologic and geophysical logs of these wells indicated that the section of Vermejo Formation penetrated consisted of interbedded sandstone and shale. The sandstone beds had a small porosity and small hydraulic conductivity. Groundwater flow from the U.S. Soil Conservation Service dam to Lincoln Park seemed to be along an alluvium-filled channel in the irregular and relatively undescribed topography of the Vermejo Formation subcrop. North of the De Weese Dye Ditch, the alluvium becomes saturated and groundwater generally flows to the northeast. Water samples from 28 sites were collected and analyzed for major ions and trace elements; selected water samples also were analyzed for stable isotopes; samples were collected from wells near the uranium ore processing mill, from privately owned wells in Lincoln Park, and from the test wells drilled in the intervening area. Results from the quality assurance samples indicate that cross-contamination between samples from different wells was avoided and that the data are reliable. Water in the alluvial aquifer underlying Lincoln Park is mainly a calcium bicarbonate type. Small variations in the composition of water in the alluvial aquifer appears to result from a reaction of water leaking from the De Weese Dye Ditch with alluvial material. Upward leakage from underlying aquifers does not seem to be significant in

  20. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Stable water isotopes (δ2H, δ18O) were used to trace hydrological processes and tritium (3H) to evaluate the relative contribution of modern water in samples. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal groundwater, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3-type. It originates as recharge at "La Primavera" caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal groundwater is characterized by high salinity, temperature, Cl, Na and HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed-HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural return flow. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Twenty-seven groundwater samples contain at least a small fraction of modern water. The application of a multivariate mixing model allowed the mixing proportions of hydrothermal fluids, polluted waters and cold groundwater in sampled water to be evaluated. This study will help local water authorities to identify and dimension groundwater contamination, and act accordingly. It may be broadly applicable to

  1. A new approach to constrain basal helium flux into aquifers for better estimation of groundwater ages by Helium 4

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Sturchio, Neil C.; Chang, Hung K.; Gastmans, Didier; Araguas-Araguas, Luis J.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yokochi, Reika; Purtschert, Roland; Zongyu, Chen; Shuiming, Hu; Aggarwal, Pradeep K.

    2016-04-01

    Estimation of groundwater age through the combined use of isotope methods and groundwater flow modelling is the common approach used for developing the required level of knowledge in the case of groundwater pumped from deep aquifers. For more than 50 years radiocarbon and tritium have been the common tools used in isotope hydrology studies to provide first estimates of groundwater age and dynamics. The half-life of carbon-14 (5730 years) and the complex geochemistry of carbon species in most environments have limited the proper characterization of groundwater flow patterns in large sedimentary basins and deep aquifers to ages more recent than about 40 000 years. Over the last years, a number of long-live radionuclides and other isotopes have been tested as more reliable age indicators by specialised laboratories. Among these methods, chlorine-36 (half-life of 300 000 yr) has been used with mixed results, mainly due to problems derived from in-situ production of this radionuclide. Uranium isotopes have also been used in a few instances, but never became a routine tool. Accumulation of helium-4 in deep groundwaters has also been proposed and used in a few instance, but one major obstacle in the 4He dating method is a difficulty in assessing a rate constant of 4He input into aquifers (namely, the entering basal 4He flux). In this context, recent breakthrough developments in analytical methods allow the precise determination of dissolved noble gases in groundwater as well as trace-level noble gas radionuclides present in very old groundwaters. Atom trap trace analysis, or ATTA, has dramatically improved over the last years the processing of very small amount of noble gases, providing now real possibilities for routine measurements of extremely low concentration of exotic radionuclides dissolved in groundwater, such as krypton-81 (half-life 229 000 years). Atom trap trace analysis involves the selective capture of individual atoms of a given isotope using six laser

  2. Relation of streams, lakes, and wetlands to groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Winter, Thomas C.

    Surface-water bodies are integral parts of groundwater flow systems. Groundwater interacts with surface water in nearly all landscapes, ranging from small streams, lakes, and wetlands in headwater areas to major river valleys and seacoasts. Although it generally is assumed that topographically high areas are groundwater recharge areas and topographically low areas are groundwater discharge areas, this is true primarily for regional flow systems. The superposition of local flow systems associated with surface-water bodies on this regional framework results in complex interactions between groundwater and surface water in all landscapes, regardless of regional topographic position. Hydrologic processes associated with the surface-water bodies themselves, such as seasonally high surface-water levels and evaporation and transpiration of groundwater from around the perimeter of surface-water bodies, are a major cause of the complex and seasonally dynamic groundwater flow fields associated with surface water. These processes have been documented at research sites in glacial, dune, coastal, mantled karst, and riverine terrains. Résumé Les eaux de surface sont parties intégrantes des systèmes aquifères. Les eaux souterraines interagissent avec les eaux de surface dans presque tous les types d'environnements, depuis les petits ruisseaux, les lacs et les zones humides jusqu'aux bassins versants des vallées des grands fleuves et aux lignes de côte. Il est en général admis que les zones topographiquement hautes sont des lieux de recharge des aquifères et les zones basses des lieux de décharge, ce qui est le cas des grands systèmes aquifères régionaux. La superposition de systèmes locaux, associés à des eaux de surface, à l'organisation régionale d'écoulements souterrains résulte d'interactions complexes entre les eaux souterraines et les eaux de surface dans tous les environnements, quelle que soit la situation topographique régionale. Les processus

  3. Identification of potential groundwater flow paths using geological and geophysical data

    SciTech Connect

    Pohlmann, K.; Andricevic, R.

    1994-09-01

    This project represents the first phase in the development of a methodology for generating three-dimensional equiprobable maps of hydraulic conductivity for the Nevada Test Site (NTS). In this study, potential groundwater flow paths were investigated for subsurface tuffs at Yucca Flat by studying how these units are connected. The virtual absence of site-specific hydraulic conductivity data dictates that as a first step a surrogate attribute (geophysical logs) be utilized. In this first phase, the connectivity patterns of densely welded ash-flow tuffs were studied because these tuffs are the most likely to form zones of high hydraulic conductivity. Densely welded tuffs were identified based on the response shown on resistivity logs and this information was transformed into binary indicator values. The spatial correlation of the indicator data was estimated through geostatistical methods. Equiprobable three-dimensional maps of the distribution of the densely-welded and nonwelded tuffs (i.e., subsurface heterogeneity) were then produced using a multiple indicator simulation formalism. The simulations demonstrate that resistivity logs are effective as soft data for indicating densely welded tuffs. The simulated welded tuffs reproduce the stratigraphic relationships of the welded tuffs observed in hydrogeologic cross sections, while incorporating the heterogeneity and anisotropy that is expected in this subsurface setting. Three-dimensional connectivity of the densely welded tuffs suggests potential groundwater flow paths with lengths easily over 1 km. The next phase of this investigation should incorporate other geophysical logs (e.g., gamma-gamma logs) and then calibrate the resulting soft data maps with available hard hydraulic conductivity data. The soft data maps can then augment the hard data to produce the final maps of the spatial distribution of hydraulic conductivity that can be used as input for numerical solution of groundwater flow and transport.

  4. Simulation of the shallow groundwater-flow system near the Hayward Airport, Sawyer County, Wisconsin

    USGS Publications Warehouse

    Hunt, Randall J.; Juckem, Paul F.; Dunning, Charles P.

    2010-01-01

    There are concerns that removal and trimming of vegetation during expansion of the Hayward Airport in Sawyer County, Wisconsin, could appreciably change the character of a nearby cold-water stream and its adjacent environs. In cooperation with the Wisconsin Department of Transportation, a two-dimensional, steady-state groundwater-flow model of the shallow groundwater-flow system near the Hayward Airport was refined from a regional model of the area. The parameter-estimation code PEST was used to obtain a best fit of the model to additional field data collected in February 2007 as part of this study. The additional data were collected during an extended period of low runoff and consisted of water levels and streamflows near the Hayward Airport. Refinements to the regional model included one additional hydraulic-conductivity zone for the airport area, and three additional parameters for streambed resistance in a northern tributary to the Namekagon River and in the main stem of the Namekagon River. In the refined Hayward Airport area model, the calibrated hydraulic conductivity was 11.2 feet per day, which is within the 58.2 to 7.9 feet per day range reported for the regional glacial and sandstone aquifer, and is consistent with a silty soil texture for the area. The calibrated refined model had a best fit of 8.6 days for the streambed resistance of the Namekagon River and between 0.6 and 1.6 days for the northern tributary stream. The previously reported regional groundwater-recharge rate of 10.1 inches per year was adjusted during calibration of the refined model in order to match streamflows measured during the period of extended low runoff; this resulted in an optimal groundwater-recharge rate of 7.1 inches per year during this period. The refined model was then used to simulate the capture zone of the northern tributary to the Namekagon River.

  5. Assessment of groundwater level estimation uncertainty using sequential Gaussian simulation and Bayesian bootstrapping

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Hristopulos, Dionissios

    2015-04-01

    Space-time geostatistical approaches can improve the reliability of dynamic groundwater level models in areas with limited spatial and temporal data. Space-time residual Kriging (STRK) is a reliable method for spatiotemporal interpolation that can incorporate auxiliary information. The method usually leads to an underestimation of the prediction uncertainty. The uncertainty of spatiotemporal models is usually estimated by determining the space-time Kriging variance or by means of cross validation analysis. For de-trended data the former is not usually applied when complex spatiotemporal trend functions are assigned. A Bayesian approach based on the bootstrap idea and sequential Gaussian simulation are employed to determine the uncertainty of the spatiotemporal model (trend and covariance) parameters. These stochastic modelling approaches produce multiple realizations, rank the prediction results on the basis of specified criteria and capture the range of the uncertainty. The correlation of the spatiotemporal residuals is modeled using a non-separable space-time variogram based on the Spartan covariance family (Hristopulos and Elogne 2007, Varouchakis and Hristopulos 2013). We apply these simulation methods to investigate the uncertainty of groundwater level variations. The available dataset consists of bi-annual (dry and wet hydrological period) groundwater level measurements in 15 monitoring locations for the time period 1981 to 2010. The space-time trend function is approximated using a physical law that governs the groundwater flow in the aquifer in the presence of pumping. The main objective of this research is to compare the performance of two simulation methods for prediction uncertainty estimation. In addition, we investigate the performance of the Spartan spatiotemporal covariance function for spatiotemporal geostatistical analysis. Hristopulos, D.T. and Elogne, S.N. 2007. Analytic properties and covariance functions for a new class of generalized Gibbs

  6. Use of self-potential (SP) method to understand the regional groundwater flow system

    NASA Astrophysics Data System (ADS)

    Satou, S.; Shimada, J.; Goto, T.

    2005-12-01

    The self-potential method (SP method) is one of the geophysical explorations technique originally used to explore the mineral deposit for mining purposes. Recently, this technique has been applied to understand the geothermal fluid flow in and around the volcanic area. As there exists various factors to affect the surface SP measurement, it is rather difficult to find out the major cause of self-potential generation because their complexity of the generation mechanism. In this application, the behavior of groundwater flow is thought to be as a kind of noise. However, in case of non geothermal area, groundwater flow flux should create substantial self potential at the area which is less complex than geothermal area. The self-potential created by the groundwater flow is mainly caused by the streaming potential represented by the electrokinetic factors such as groundwater potential and the ground resistivity (Ishido and Mizutani,1981). As there exist little SP study to understand groundwater flow system, we have conducted the field SP measurement and its numerical model consideration in the clear groundwater flow existing area. A basin scale groundwater flow region including the mountainous ridge to the coastal area within one river-water catchment basin, which is geologically composed by the volcanic lava and tuff-breccia bedrock, was selected to apply the SP method_DThe study area is Shiranui town, Kumamoto, Kyusyu, Japan. In this area, following multi-hydrological studies have been conducted to understand the groundwater flow regime of the area: groundwater flow system study with observation boreholes and eivironmental isotopes, hydrometric observation for river discharge and precipitation for the regional water budget, micro-meteorological observation at different vegetation and altitude for the evapotranspiration measurement, submarine groundwater discharge investigation, geological borehole drilling, and 3D groundwater flow simulation, etc. The SP measurement

  7. Streambed Temperatures and Heat Budget Estimates in Groundwater-fed Streams

    NASA Astrophysics Data System (ADS)

    Middleton, M.; Allen, D. M.; Whitfield, P. H.

    2013-12-01

    A streambed temperature monitoring network was installed in a groundwater-fed stream in the Lower Fraser Valley of British Columbia. A network of fifteen temperature loggers was installed in a short reach (<40 m) of Fishtrap Creek to characterize the spatial and temporal variability in streambed temperatures and identify potential mechanisms for localized cooling based on heat exchanges during the summer low flow period. This reach has uniform channel form and water depth, and consistent bed material. Streambed temperature data were collected hourly for the period of July 2008 through October 2012, spanning five summer low flow periods. Nearby climate, stream discharge, and groundwater monitoring stations provided the data to estimate the heat budget components. Over the five summer low flow periods, the network of dataloggers recorded a mean streambed temperature of 13.8oC, with a range of 10.2oC to 20.0oC across the streambed. In order to assess controls on streambed temperature at individual datalogger locations, the incoming heat from sources acting across the entire reach had to be removed from the observed temperature signals. The incoming heat was calculated for the air-water interface to estimate the energy flux into the reach using a heat balance. Incoming solar radiation dominates the heat balance, and evaporative heat fluxes were noticeable as small amplitude variations at a daily scale. Precipitation occurrence, or absence, was not an important component of the heat balance during the summer low flow period. Since incoming solar radiation dominates both air and water temperatures, air temperature (Ta) can be used as a proxy for streambed temperature (Ts). The actual lag time between the air and streambed temperature for this site was 30 hours; however, for the calculation of stream temperature at a daily time step, a lag of 24 hours was used. The relationship between daily streambed temperature and daily air temperature, at a lag of one day, was

  8. Modeling Steady-State Groundwater Flow Using Microcomputer Spreadsheets.

    ERIC Educational Resources Information Center

    Ousey, John Russell, Jr.

    1986-01-01

    Describes how microcomputer spreadsheets are easily adapted for use in groundwater modeling. Presents spreadsheet set-ups and the results of five groundwater models. Suggests that this approach can provide a basis for demonstrations, laboratory exercises, and student projects. (ML)

  9. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    USGS Publications Warehouse

    Pool, D.R.; Dickinson, Jesse E.

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  10. Groundwater.

    ERIC Educational Resources Information Center

    Braids, Olin C.; Gillies, Nola P.

    1978-01-01

    Presents a literature review of groundwater quality covering publications of 1977. This review includes: (1) sources of groundwater contamination; and (2) management of groundwater. A list of 59 references is also presented. (HM)

  11. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  12. Hydraulic characteristics of fault zones and their impact on groundwater flow

    NASA Astrophysics Data System (ADS)

    Banks, E.; Cook, P. G.

    2014-12-01

    An important source of groundwater recharge to sedimentary basin aquifers is from mountain block recharge and in many instances the rate and direction of groundwater flow is controlled by regional scale fault systems. Vertical faults may act as either barriers to horizontal groundwater flow perpendicular to the fault, conduits to horizontal flow along the fault or a combination of both. Faults can also provide conduits for vertical flow. There are very few evaluations of the impact of fault zones on groundwater flow. This study investigated groundwater flow characteristics across a fault zone between a fractured rock and sedimentary aquifer system. Hydrogeological and hydrogeophysical techniques were used to design a drilling program whereby multi-level observation wells were constructed at 3 field sites either side of the Willunga fault in the Willunga Basin, South Australia, up to 300 metres below ground level. The observed hydraulic gradients across the fault zone were very significant (2.5), with a head difference of 80 metres over a horizontal distance of less than 30 metres. Despite the high hydraulic gradient, calculating the groundwater flux across the fault was more complicated. A 3D numerical model was developed to determine the relative proportion of groundwater flow across the fault and flow parallel to the fault. This model was also used to assess the impact of the fault zone permeability on the hydraulic gradients across the fault and evaluate the mechanisms and behaviour of these conduit-barrier systems to groundwater flow. Groundwater age dating and hydrochemical analyses were conducted to examine and constrain the contributing end members of the different aquifer systems and trace groundwater movement and residence time across the fault zone.

  13. Estimating groundwater dynamics at a Colorado River floodplain site using historical hydrological data and climate information

    NASA Astrophysics Data System (ADS)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Ficklin, Darren L.

    2016-03-01

    Long-term prediction of groundwater dynamics is important for assessing water resources and their impacts on biogeochemical cycling. However, estimating future groundwater dynamics is challenging due to the wide range of spatiotemporal scales in hydrological processes and uncertainty in future climate conditions. In this study, we develop a Bayesian model to combine small-scale historical hydrological data with large-scale climate information to estimate groundwater dynamics at a floodplain site in Rifle, Colorado. Although we have only a few years of groundwater elevation measurements, we have 47 years of streamflow data from a gaging station approximately 43 km upstream and long-term climate prediction on the Upper Colorado River Basin. To estimate future daily groundwater dynamics, we first develop a time series model to downscale the monthly streamflow derived from climate information to daily streamflow, and then transform the daily streamflow to groundwater dynamics at the downstream floodplain site. We use Monte Carlo methods to estimate future groundwater dynamics at the site through sampling from the joint posterior probability distribution. The results suggest that although future groundwater levels are expected to be similar to the current levels, the timing of the high groundwater levels is predicted to occur about 1 month earlier. The developed framework is extendable to other sites to estimate future groundwater dynamics given disparate data sets and climate projections. Additionally, the obtained estimates are being used as input to a site-specific watershed reactive transport models to predict how climate-induced changes will influence future biogeochemical cycling relevant to a variety of ecosystem services.

  14. Model Refinement and Simulation of Groundwater Flow in Clinton, Eaton, and Ingham Counties, Michigan

    USGS Publications Warehouse

    Luukkonen, Carol L.

    2010-01-01

    A groundwater-flow model that was constructed in 1996 of the Saginaw aquifer was refined to better represent the regional hydrologic system in the Tri-County region, which consists of Clinton, Eaton, and Ingham Counties, Michigan. With increasing demand for groundwater, the need to manage withdrawals from the Saginaw aquifer has become more important, and the 1996 model could not adequately address issues of water quality and quantity. An updated model was needed to better address potential effects of drought, locally high water demands, reduction of recharge by impervious surfaces, and issues affecting water quality, such as contaminant sources, on water resources and the selection of pumping rates and locations. The refinement of the groundwater-flow model allows simulations to address these issues of water quantity and quality and provides communities with a tool that will enable them to better plan for expansion and protection of their groundwater-supply systems. Model refinement included representation of the system under steady-state and transient conditions, adjustments to the estimated regional groundwater-recharge rates to account for both temporal and spatial differences, adjustments to the representation and hydraulic characteristics of the glacial deposits and Saginaw Formation, and updates to groundwater-withdrawal rates to reflect changes from the early 1900s to 2005. Simulations included steady-state conditions (in which stresses remained constant and changes in storage were not included) and transient conditions (in which stresses changed in annual and monthly time scales and changes in storage within the system were included). These simulations included investigation of the potential effects of reduced recharge due to impervious areas or to low-rainfall/drought conditions, delineation of contributing areas with recent pumping rates, and optimization of pumping subject to various quantity and quality constraints. Simulation results indicate

  15. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Wang, Jun-Zhi; Yin, Bin-Xi; Fu, Wen-Xiang; Lin, Chang-Hong

    2014-04-01

    Groundwater flow systems and stagnant zones in drainage basins are critical to a series of geologic processes. Unfortunately, the difficulty of mapping flow system boundaries and no field example of detected stagnant zones restrict the application of the concept of nested flow systems. By assuming the variation in bulk resistivity of an aquifer with uniform porosity is mainly caused by groundwater salinity, the magnetotelluric technique is used to obtain the apparent resistivity of a profile across a groundwater-fed river in the Ordos Plateau, China. Based on the variations in apparent resistivity of the Cretaceous sandstone aquifer, the basin-bottom hydraulic trap below the river has been detected for the first time, and its size is found to be large enough for possible deposition of large ore bodies. The boundaries between local and regional flows have also been identified, which would be useful for groundwater exploration and calibration of large-scale groundwater models.

  16. Hydrogeology and Ground-Water Flow in the Opequon Creek Watershed area, Virginia and West Virginia

    USGS Publications Warehouse

    Kozar, Mark D.; Weary, David J.

    2009-01-01

    Due to increasing population and economic development in the northern Shenandoah Valley of Virginia and West Virginia, water availability has become a primary concern for water-resource managers in the region. To address these issues, the U.S. Geological Survey (USGS), in cooperation with the West Virginia Department of Health and Human Services and the West Virginia Department of Environmental Protection, developed a numerical steady-state simulation of ground-water flow for the 1,013-square-kilometer Opequon Creek watershed area. The model was based on data aggregated for several recently completed and ongoing USGS hydrogeologic investigations conducted in Jefferson, Berkeley, and Morgan Counties in West Virginia and Clarke, Frederick, and Warren Counties in Virginia. A previous detailed hydrogeologic assessment of the watershed area of Hopewell Run (tributary to the Opequon Creek), which includes the USGS Leetown Science Center in Jefferson County, West Virginia, provided key understanding of ground-water flow processes in the aquifer. The ground-water flow model developed for the Opequon Creek watershed area is a steady-state, three-layer representation of ground-water flow in the region. The primary objective of the simulation was to develop water budgets for average and drought hydrologic conditions. The simulation results can provide water managers with preliminary estimates on which water-resource decisions may be based. Results of the ground-water flow simulation of the Opequon Creek watershed area indicate that hydrogeologic concepts developed for the Hopewell Run watershed area can be extrapolated to the larger watershed model. Sensitivity analyses conducted as part of the current modeling effort and geographic information system analyses of spring location and yield reveal that thrust and cross-strike faults and low-permeability bedding, which provide structural and lithologic controls, respectively, on ground-water flow, must be incorporated into the

  17. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    SciTech Connect

    Chilakapati, A

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  18. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    PubMed

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  19. Prediction of groundwater flowing well zone at An-Najif Province, central Iraq using evidential belief functions model and GIS.

    PubMed

    Al-Abadi, Alaa M; Pradhan, Biswajeet; Shahid, Shamsuddin

    2015-10-01

    The objective of this study is to delineate groundwater flowing well zone potential in An-Najif Province of Iraq in a data-driven evidential belief function model developed in a geographical information system (GIS) environment. An inventory map of 68 groundwater flowing wells was prepared through field survey. Seventy percent or 43 wells were used for training the evidential belief functions model and the reset 30 % or 19 wells were used for validation of the model. Seven groundwater conditioning factors mostly derived from RS were used, namely elevation, slope angle, curvature, topographic wetness index, stream power index, lithological units, and distance to the Euphrates River in this study. The relationship between training flowing well locations and the conditioning factors were investigated using evidential belief functions technique in a GIS environment. The integrated belief values were classified into five categories using natural break classification scheme to predict spatial zoning of groundwater flowing well, namely very low (0.17-0.34), low (0.34-0.46), moderate (0.46-0.58), high (0.58-0.80), and very high (0.80-0.99). The results show that very low and low zones cover 72 % (19,282 km(2)) of the study area mostly clustered in the central part, the moderate zone concentrated in the west part covers 13 % (3481 km(2)), and the high and very high zones extended over the northern part cover 15 % (3977 km(2)) of the study area. The vast spatial extension of very low and low zones indicates that groundwater flowing wells potential in the study area is low. The performance of the evidential belief functions spatial model was validated using the receiver operating characteristic curve. A success rate of 0.95 and a prediction rate of 0.94 were estimated from the area under relative operating characteristics curves, which indicate that the developed model has excellent capability to predict groundwater flowing well zones. The produced map of groundwater

  20. The advantages, and challenges, in using multiple techniques in the estimation of surface water-groundwater fluxes.

    NASA Astrophysics Data System (ADS)

    Shanafield, M.; Cook, P. G.

    2014-12-01

    When estimating surface water-groundwater fluxes, the use of complimentary techniques helps to fill in uncertainties in any individual method, and to potentially gain a better understanding of spatial and temporal variability in a system. It can also be a way of preventing the loss of data during infrequent and unpredictable flow events. For example, much of arid Australia relies on groundwater, which is recharged by streamflow through ephemeral streams during flood events. Three recent surface water/groundwater investigations from arid Australian systems provide good examples of how using multiple field and analysis techniques can help to more fully characterize surface water-groundwater fluxes, but can also result in conflicting values over varying spatial and temporal scales. In the Pilbara region of Western Australia, combining streambed radon measurements, vertical heat transport modeling, and a tracer test helped constrain very low streambed residence times, which are on the order of minutes. Spatial and temporal variability between the methods yielded hyporheic exchange estimates between 10-4 m2 s-1 and 4.2 x 10-2 m2 s-1. In South Australia, three-dimensional heat transport modeling captured heterogeneity within 20 square meters of streambed, identifying areas of sandy soil (flux rates of up to 3 m d-1) and clay (flux rates too slow to be accurately characterized). Streamflow front modeling showed similar flux rates, but averaged over 100 m long stream segments for a 1.6 km reach. Finally, in central Australia, several methods are used to decipher whether any of the flow down a highly ephemeral river contributes to regional groundwater recharge, showing that evaporation and evapotranspiration likely accounts for all of the infiltration into the perched aquifer. Lessons learned from these examples demonstrate the influences of the spatial and temporal variability between techniques on estimated fluxes.

  1. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity

    USGS Publications Warehouse

    Lapham, Wayne W.

    1989-01-01

    The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the

  2. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, Jody L.; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  3. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the

  4. Estimating residents' willingness to pay for groundwater protection in the Vietnamese Mekong Delta

    NASA Astrophysics Data System (ADS)

    Vo, Danh Thanh; Huynh, Khai Viet

    2014-11-01

    Groundwater in the Vietnamese Mekong Delta is facing the pollution and it needs to be protected. Searching literature reviews on economic valuation techniques, the contingent valuation method (CVM) has been popularly applied to estimate the economic value of water protection. This approach is based on a hypothetical scenario in which respondents are requested through questionnaires to reveal their maximum willingness to pay (WTP) for the water protection project. The study used the approach of CVM to analyze the households' motivations and their WTP for the program of groundwater protection in the Mekong Delta. The study performed that the residents in the delta were willing to pay approximately 141,730 VND (US6.74) per household a year. Groundwater could be an inferior good with the negative income effect found in the demanding for clean groundwater. Respondent's gender and groundwater-related health risk consideration were factors sensitively affecting the probability of demanding for groundwater protection.

  5. Groundwater balance estimation and sustainability in the Sandıklı Basin (Afyonkarahisar/Turkey)

    NASA Astrophysics Data System (ADS)

    Aksever, Fatma; Davraz, Ayşen; Karaguzel, Remzi

    2015-06-01

    The Sandıklı (Afyonkarahisar) Basin is located in the southwest of Turkey and is a semi-closed basin. Groundwater is widely used for drinking, domestic and irrigation purposes in the basin. The mismanagement of groundwater resources in the basin causes negative effects including depletion of the aquifer storage and groundwater level decline. To assure sustainability of the basin, determination of groundwater budget is necessary. In this study, the water-table fluctuation (WTF) and the meteorological water budget (MWB) methods were used to estimate groundwater budget in the Sandıklı basin (Turkey). Conceptual hydrogeological model of the basin was used for understanding the relation between budget parameters. The groundwater potential of the basin calculated with MWB method as 42.10 × 106 m3/year. In addition, it is also calculated with simplified WTF method as 38.48 × 106 m3/year.

  6. Comparison of a karst groundwater model with and without discrete conduit flow

    NASA Astrophysics Data System (ADS)

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-11-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  7. Comparison of a karst groundwater model with and without discrete conduit flow

    USGS Publications Warehouse

    Saller, Stephen P.; Ronayne, Michael J.; Long, Andrew J.

    2013-01-01

    Karst aquifers exhibit a dual flow system characterized by interacting conduit and matrix domains. This study evaluated the coupled continuum pipe-flow framework for modeling karst groundwater flow in the Madison aquifer of western South Dakota (USA). Coupled conduit and matrix flow was simulated within a regional finite-difference model over a 10-year transient period. An existing equivalent porous medium (EPM) model was modified to include major conduit networks whose locations were constrained by dye-tracing data and environmental tracer analysis. Model calibration data included measured hydraulic heads at observation wells and estimates of discharge at four karst springs. Relative to the EPM model, the match to observation well hydraulic heads was substantially improved with the addition of conduits. The inclusion of conduit flow allowed for a simpler hydraulic conductivity distribution in the matrix continuum. Two of the high-conductivity zones in the EPM model, which were required to indirectly simulate the effects of conduits, were eliminated from the new model. This work demonstrates the utility of the coupled continuum pipe-flow method and illustrates how karst aquifer model parameterization is dependent on the physical processes that are simulated.

  8. Velocity estimation using optic flow and radar

    NASA Astrophysics Data System (ADS)

    Gerardi, Steven A.; Humbert, J. Sean; Pierce, Leland E.; Sarabandi, Kamal

    2011-06-01

    This paper presents the development of a static estimator for obtaining state information from optic flow and radar measurements. It is shown that estimates of translational and rotational speed can be extracted using a least squares inversion. The approach is demonstrated in a simulated three dimensional urban environment on an autonomous quadrotor micro-air-vehicle (MAV). The resulting methodology has the advantages of computation speed and simplicity, both of which are imperative for implementation on MAVs due to stringent size, weight, and power requirements.

  9. Identification of groundwater parameters at Columbus, Mississippi, using a 3D inverse flow and transport model

    USGS Publications Warehouse

    Barlebo, H.C.; Rosbjerg, D.; Hill, M.C.

    1996-01-01

    An extensive amount of data including hydraulic heads, hydraulic conductivities and concentrations of several solutes from controlled injections have been collected during the MADE 1 and MADE 2 experiments at a heterogeneous site near Columbus, Mississippi. In this paper the use of three-dimensional inverse groundwater models including simultaneous estimation of flow and transport parameters is proposed to help identify the dominant characteristics at the site. Simulations show that using a hydraulic conductivity distribution obtained from 2187 borehole flowmeter tests directly in the model produces poor matches to the measured hydraulic heads and tritium concentrations. Alternatively, time averaged hydraulic head maps are used to define zones of constant hydraulic conductivity to be estimated. Preliminary simulations suggest that in the case of conservative transport many, but not all, of the major plume characteristics can be explained by large-scale heterogeneity in recharge and hydraulic conductivity.

  10. Characterization of fracture aperture for groundwater flow and transport

    NASA Astrophysics Data System (ADS)

    Sawada, A.; Sato, H.; Tetsu, K.; Sakamoto, K.

    2007-12-01

    This paper presents experiments and numerical analyses of flow and transport carried out on natural fractures and transparent replica of fractures. The purpose of this study was to improve the understanding of the role of heterogeneous aperture patterns on channelization of groundwater flow and dispersion in solute transport. The research proceeded as follows: First, a precision plane grinder was applied perpendicular to the fracture plane to characterize the aperture distribution on a natural fracture with 1 mm of increment size. Although both time and labor were intensive, this approach provided a detailed, three dimensional picture of the pattern of fracture aperture. This information was analyzed to provide quantitative measures for the fracture aperture distribution, including JRC (Joint Roughness Coefficient) and fracture contact area ratio. These parameters were used to develop numerical models with corresponding synthetic aperture patterns. The transparent fracture replica and numerical models were then used to study how transport is affected by the aperture spatial pattern. In the transparent replica, transmitted light intensity measured by a CCD camera was used to image channeling and dispersion due to the fracture aperture spatial pattern. The CCD image data was analyzed to obtain the quantitative fracture aperture and tracer concentration data according to Lambert-Beer's law. The experimental results were analyzed using the numerical models. Comparison of the numerical models to the transparent replica provided information about the nature of channeling and dispersion due to aperture spatial patterns. These results support to develop a methodology for defining representative fracture aperture of a simplified parallel fracture model for flow and transport in heterogeneous fractures for contaminant transport analysis.

  11. Effect of irrigation return flow on groundwater recharge in an overexploited aquifer in Bangladesh

    NASA Astrophysics Data System (ADS)

    Touhidul Mustafa, Syed Md.; Shamsudduha, Mohammad; Huysmans, Marijke

    2016-04-01

    Irrigated agriculture has an important role in the food production to ensure food security of Bangladesh that is home to over 150 million people. However, overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-level decline in areas where abstraction is high and surface geology inhibits direct recharge to underlying shallow aquifer. This is causing a number of potential adverse socio-economic, hydrogeological, and environmental problems in Bangladesh. Alluvial aquifers are primarily recharged during monsoon season from rainfall and surface sources. However, return flow from groundwater-fed irrigation can recharge during the dry months. Quantification of the effect of return flow from irrigation in the groundwater system is currently unclear but thought to be important to ensure sustainable management of the overexploited aquifer. The objective of the study is to investigate the effect of irrigation return flow on groundwater recharge in the north-western part of Bangladesh, also known as Barind Tract. A semi-physically based distributed water balance model (WetSpass-M) is used to simulate spatially distributed monthly groundwater recharge. Results show that, groundwater abstraction for irrigation in the study area has increased steadily over the last 29 years. During the monsoon season, local precipitation is the controlling factor of groundwater recharge; however, there is no trend in groundwater recharge during that period. During the dry season, however, irrigation return-flow plays a major role in recharging the aquifer in the irrigated area compared to local precipitation. Therefore, during the dry season, mean seasonal groundwater recharge has increased and almost doubled over the last 29 years as a result of increased abstraction for irrigation. The increase in groundwater recharge during dry season has however no significant effect in the improvement of groundwater levels. The relation between groundwater

  12. A novel approach for direct estimation of fresh groundwater discharge to an estuary

    USGS Publications Warehouse

    Ganju, Neil K.

    2011-01-01

    Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater-fed tidal creek over a spring-neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross-sectionally averaged salinity. These measurements were used in a time-dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time-series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well-defined cross-sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment. Copyright. Published in 2011 by the American Geophysical Union.

  13. A novel approach for direct estimation of fresh groundwater discharge to an estuary

    NASA Astrophysics Data System (ADS)

    Ganju, Neil K.

    2011-06-01

    Coastal groundwater discharge is an important source of freshwater and nutrients to coastal and estuarine systems. Directly quantifying the spatially integrated discharge of fresh groundwater over a coastline is difficult due to spatial variability and limited observational methods. In this study, I applied a novel approach to estimate net freshwater discharge from a groundwater-fed tidal creek over a spring-neap cycle, with high temporal resolution. Acoustic velocity instruments measured tidal water fluxes while other sensors measured vertical and lateral salinity to estimate cross-sectionally averaged salinity. These measurements were used in a time-dependent version of Knudsen's salt balance calculation to estimate the fresh groundwater contribution to the tidal creek. The time-series of fresh groundwater discharge shows the dependence of fresh groundwater discharge on tidal pumping, and the large difference between monthly mean discharge and instantaneous discharge over shorter timescales. The approach developed here can be implemented over timescales from days to years, in any size estuary with dominant groundwater inputs and well-defined cross-sections. The approach also directly links delivery of groundwater from the watershed with fluxes to the coastal environment.

  14. Estimating Urban-Induced Groundwater Recharge Through Coupled Hydrologic Modeling in Ballona Creek Watershed, Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Reyes, B.; Hogue, T. S.

    2012-12-01

    The current research focuses on the modeling and prediction of urban-induced groundwater recharge in highly developed, semi-arid regions. The groundwater component of the hydrologic cycle goes through significant changes during urbanization and has historically been understudied. The changes brought on by urbanization not only include physical alterations (increased surface imperviousness, channelized flow, increased sub-surface infrastructure etc.) but also changes to the water cycle due to human interactions (increased use of imported water, variable landscape irrigation, industrial water use, etc.). We undertake our initial analysis in Ballona Creek watershed, which contains highly urbanized and diverse portions of the cities of Santa Monica and Los Angeles, California along with more natural land surfaces in the northern portions of the watershed in the Santa Monica Mountains. The primary focus of this research is the development of a fully distributed and coupled surface-groundwater model of the Ballona Creek watershed. We use the three-dimensional finite-difference surface and groundwater flow model, ParFlow, fully-coupled to a land surface model, CLM, at a 30-meter by 30-meter resolution forced by observed meteorological data from 2000 to 2010. Previous work in Ballona includes a detailed historical water budget analysis from the early 1900s to the present. This extensive in situ data set will be used to estimate model parameters as well as provide upper and lower boundaries for groundwater recharge values across the system. Preliminary results focus on annual and seasonal (wet/dry periods) surface and groundwater fluxes, including the influence of natural spring flow and dry weather runoff in the watershed. Los Angeles and the surrounding metropolitan area rely on some of the most extensive and oldest centralized water redistribution projects in the United States where water is transported hundreds of kilometers to support agricultural and urban activities

  15. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    PubMed

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings.

  16. Impact of Groundwater Flow and Energy Load on Multiple Borehole Heat Exchangers.

    PubMed

    Dehkordi, S Emad; Schincariol, Robert A; Olofsson, Bo

    2015-01-01

    The effect of array configuration, that is, number, layout, and spacing, on the performance of multiple borehole heat exchangers (BHEs) is generally known under the assumption of fully conductive transport. The effect of groundwater flow on BHE performance is also well established, but most commonly for single BHEs. In multiple-BHE systems the effect of groundwater advection can be more complicated due to the induced thermal interference between the boreholes. To ascertain the influence of groundwater flow and borehole arrangement, this study investigates single- and multi-BHE systems of various configurations. Moreover, the influence of energy load balance is also examined. The results from corresponding cases with and without groundwater flow as well as balanced and unbalanced energy loads are cross-compared. The groundwater flux value, 10(-7) m/s, is chosen based on the findings of previous studies on groundwater flow interaction with BHEs and thermal response tests. It is observed that multi-BHE systems with balanced loads are less sensitive to array configuration attributes and groundwater flow, in the long-term. Conversely, multi-BHE systems with unbalanced loads are influenced by borehole array configuration as well as groundwater flow; these effects become more pronounced with time, unlike when the load is balanced. Groundwater flow has more influence on stabilizing loop temperatures, compared to array characteristics. Although borehole thermal energy storage (BTES) systems have a balanced energy load function, preliminary investigation on their efficiency shows a negative impact by groundwater which is due to their dependency on high temperature gradients between the boreholes and surroundings. PMID:25227154

  17. Satellite-based estimates of groundwater depletion in India.

    PubMed

    Rodell, Matthew; Velicogna, Isabella; Famiglietti, James S

    2009-08-20

    Groundwater is a primary source of fresh water in many parts of the world. Some regions are becoming overly dependent on it, consuming groundwater faster than it is naturally replenished and causing water tables to decline unremittingly. Indirect evidence suggests that this is the case in northwest India, but there has been no regional assessment of the rate of groundwater depletion. Here we use terrestrial water storage-change observations from the NASA Gravity Recovery and Climate Experiment satellites and simulated soil-water variations from a data-integrating hydrological modelling system to show that groundwater is being depleted at a mean rate of 4.0 +/- 1.0 cm yr(-1) equivalent height of water (17.7 +/- 4.5 km(3) yr(-1)) over the Indian states of Rajasthan, Punjab and Haryana (including Delhi). During our study period of August 2002 to October 2008, groundwater depletion was equivalent to a net loss of 109 km(3) of water, which is double the capacity of India's largest surface-water reservoir. Annual rainfall was close to normal throughout the period and we demonstrate that the other terrestrial water storage components (soil moisture, surface waters, snow, glaciers and biomass) did not contribute significantly to the observed decline in total water levels. Although our observational record is brief, the available evidence suggests that unsustainable consumption of groundwater for irrigation and other anthropogenic uses is likely to be the cause. If measures are not taken soon to ensure sustainable groundwater usage, the consequences for the 114,000,000 residents of the region may include a reduction of agricultural output and shortages of potable water, leading to extensive socioeconomic stresses.

  18. Groundwater Flow in the Arthur Marble Aquifer, New Zealand

    NASA Astrophysics Data System (ADS)

    Stewart, M. K.

    2008-05-01

    Arthur Marble underlies the Takaka Valley and outcrops in Karst Uplands to east and west of the valley in the South Island of New Zealand. It is the principal groundwater aquifer in the region and host to the remarkable Waikoropupu Springs near the coast. With average flow of 13,300 L/s, the karstic springs have many interesting features including unusual size and clarity. This work uses rainfall and river level, natural tracer and chemical measurements to determine the recharge sources and nature of the flow system in the Arthur Marble Aquifer (AMA). Total recharge to the AMA of 19,750 L/s comes from three sources (Karst Uplands stream seepage, Takaka River seepage and Takaka Valley rainfall infiltration). Since 13,300 L/s is discharged at the springs, the remainder must escape via offshore springs (6,450 L/s). The oxygen-18 mass balance allows the contribution of each source to each spring to be determined; most of the flow to the Main Spring of the Waikoropupu Springs comes from the Karst Uplands. The offshore springs are mostly fed from the Takaka River. The chemical concentrations of the Main Spring show input of 0.5% of sea water on average, but varying with flow. This variation with flow shows that two water components (sea-water-bearing and non-sea-water-bearing) contribute to the spring's discharge. Tritium measurements spanning 40 years, and CFC-11 measurements, give a mean residence time of 8 years for the Main Spring water using the preferred two-component model. Our conceptual flow model, based on the flow, oxygen-18, chloride and tritium measurements, reveals that two different flow systems with different recharge sources are needed to explain the flow within the AMA. One system contains deeply penetrating old water with mean age 10.2 years and water volume 3 cubic kilometers, recharged from the Karst Uplands. The other, at shallow levels below the valley floor, has much younger water, with mean age 1.2 years and water volume 0.4 cubic kilometers

  19. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer system.

    PubMed

    Pavlovskiy, Igor; Selle, Benny

    2015-04-01

    For karstified aquifer systems, numerical models of groundwater flow are difficult to setup and parameterize. However, a system understanding useful for groundwater management may be obtained without applying overly complicated models. In this study, we demonstrate for a karstified carbonate aquifer in south-western Germany that a combination of methods with moderate data requirements can be used to infer flowpaths and transit times of groundwater to production wells.

  20. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  1. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field.

    PubMed

    Saba, T; Illangasekare, T H; Ewing, J

    2001-09-01

    Because of their low solubility, waste chemicals in the form of nonaqueous phase liquids (NAPLs) that are entrapped in subsurface formations act as long-term sources of groundwater contamination. In the design of remediation schemes that use surfactants, it is necessary to estimate the mass transfer rate coefficients under multi-dimensional flow fields that exit at field sites. In this study, we investigate mass transfer under a two-dimensional flow field to obtain an understanding of the basic mechanisms of surfactant-enhanced dissolution and to quantify the mass transfer rates. Enhanced dissolution experiments in a two-dimensional test cell were conducted to measure rates of mass depletion from entrapped NAPLs to a flowing aqueous phase containing a surfactant. In situ measurement of transient saturation changes using a gamma attenuation system revealed dissolution patterns that are affected by the dimensionality of the groundwater flow field. Numerical modeling of local flow fields that changed with time, due to depletion of NAPL sources, enabled the examination of the basic mechanisms of NAPL dissolution in complex groundwater systems. Through nonlinear regression analysis, mass transfer rates were correlated to porous media properties, NAPL saturation and aqueous phase velocity. Results from the experiments and numerical analyses were used to identify deficiencies in existing methods of analysis that uses assumptions of one-dimensional flow, homogeneity of aquifer properties, local equilibrium and idealized transient mass transfer.

  2. Groundwater flow system in the valley of Toluca, Mexico: an assay of natural radionuclide specific activities.

    PubMed

    Segovia, N; Tamez, E; Peña, P; Carrillo, J; Acosta, E; Armienta, M A; Iturbe, J L

    1999-03-01

    Natural radionuclides and physicochemical parameters have been evaluated in groundwater samples from boreholes belonging to the drinking water supply system of the Toluca City, Mexico. The results obtained for radon and radium, together with the physicochemical parameters of the studied samples, indicate a fast and efficient recharge pattern. The presence of a local and a regional groundwater flows was also observed. The local flow belongs to shallower water, recognized by its low radon content and dissolved ions, as compared with the regional, deeper groundwater flow with a longer residence time.

  3. Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution

    USGS Publications Warehouse

    Long, A.J.; Putnam, L.D.

    2009-01-01

    Convolution modeling is useful for investigating the temporal distribution of groundwater age based on environmental tracers. The framework of a quasi-transient convolution model that is applicable to two-domain flow in karst aquifers is presented. The model was designed to provide an acceptable level of statistical confidence in parameter estimates when only chlorofluorocarbon (CFC) and tritium (3H) data are available. We show how inverse modeling and uncertainty assessment can be used to constrain model parameterization to a level warranted by available data while allowing major aspects of the flow system to be examined. As an example, the model was applied to water from a pumped well open to the Madison aquifer in central USA with input functions of CFC-11, CFC-12, CFC-113, and 3H, and was calibrated to several samples collected during a 16-year period. A bimodal age distribution was modeled to represent quick and slow flow less than 50 years old. The effects of pumping and hydraulic head on the relative volumetric fractions of these domains were found to be influential factors for transient flow. Quick flow and slow flow were estimated to be distributed mainly within the age ranges of 0-2 and 26-41 years, respectively. The fraction of long-term flow (>50 years) was estimated but was not dateable. The different tracers had different degrees of influence on parameter estimation and uncertainty assessments, where 3H was the most critical, and CFC-113 was least influential.

  4. Age-distribution estimation for karst groundwater: Issues of parameterization and complexity in inverse modeling by convolution

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Putnam, Larry D.

    2009-10-01

    SummaryConvolution modeling is useful for investigating the temporal distribution of groundwater age based on environmental tracers. The framework of a quasi-transient convolution model that is applicable to two-domain flow in karst aquifers is presented. The model was designed to provide an acceptable level of statistical confidence in parameter estimates when only chlorofluorocarbon (CFC) and tritium ( 3H) data are available. We show how inverse modeling and uncertainty assessment can be used to constrain model parameterization to a level warranted by available data while allowing major aspects of the flow system to be examined. As an example, the model was applied to water from a pumped well open to the Madison aquifer in central USA with input functions of CFC-11, CFC-12, CFC-113, and 3H, and was calibrated to several samples collected during a 16-year period. A bimodal age distribution was modeled to represent quick and slow flow less than 50 years old. The effects of pumping and hydraulic head on the relative volumetric fractions of these domains were found to be influential factors for transient flow. Quick flow and slow flow were estimated to be distributed mainly within the age ranges of 0-2 and 26-41 years, respectively. The fraction of long-term flow (>50 years) was estimated but was not dateable. The different tracers had different degrees of influence on parameter estimation and uncertainty assessments, where 3H was the most critical, and CFC-113 was least influential.

  5. A simple method for estimating basin-scale groundwater discharge by vegetation in the basin and range province of Arizona using remote sensing information and geographic information systems

    USGS Publications Warehouse

    Tillman, F.D.; Callegary, J.B.; Nagler, P.L.; Glenn, E.P.

    2012-01-01

    Groundwater is a vital water resource in the arid to semi-arid southwestern United States. Accurate accounting of inflows to and outflows from the groundwater system is necessary to effectively manage this shared resource, including the important outflow component of groundwater discharge by vegetation. A simple method for estimating basin-scale groundwater discharge by vegetation is presented that uses remote sensing data from satellites, geographic information systems (GIS) land cover and stream location information, and a regression equation developed within the Southern Arizona study area relating the Enhanced Vegetation Index from the MODIS sensors on the Terra satellite to measured evapotranspiration. Results computed for 16-day composited satellite passes over the study area during the 2000 through 2007 time period demonstrate a sinusoidal pattern of annual groundwater discharge by vegetation with median values ranging from around 0.3 mm per day in the cooler winter months to around 1.5 mm per day during summer. Maximum estimated annual volume of groundwater discharge by vegetation was between 1.4 and 1.9 billion m3 per year with an annual average of 1.6 billion m3. A simplified accounting of the contribution of precipitation to vegetation greenness was developed whereby monthly precipitation data were subtracted from computed vegetation discharge values, resulting in estimates of minimum groundwater discharge by vegetation. Basin-scale estimates of minimum and maximum groundwater discharge by vegetation produced by this simple method are useful bounding values for groundwater budgets and groundwater flow models, and the method may be applicable to other areas with similar vegetation types.

  6. Simulation for the development of the continuous groundwater flow measurement technology

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaoru; Kumagai, Koki; Fujima, Ritsuko; Chikahisa, Hiroshi

    The flow of groundwater varies with time due to rainfall, atmospheric pressure change, tidal change, melting of snow during seasonal change, underground construction works etc. Therefore, to increase the precision of assessing in-situ groundwater flow characteristics, it is important to measure continuously the direction and velocity of the flow, in addition to obtaining accurate data for the afore mentioned environmental changes. The first part of this paper describes the development of a new device for measuring the direction and velocity of groundwater flow. The device was composed of a unique floating sensor with a hinge end at the bottom, which enabled continuous measurement of groundwater flow based on image data processing technique. In the second part, discussion is focused on clarifying the optimum cross-section shape and the behavior of the float sensor in saltwater and freshwater using numerical analysis.

  7. Hydrogeology and simulation of ground-water flow in the aquifers underlying Belvidere, Illinois

    USGS Publications Warehouse

    Mills, Patrick C.; Nazimek, J.E.; Halford, K.J.; Yeskis, D.J.

    2002-01-01

    The U.S. Geological Survey investigated the ground-water-flow system and distribution of contaminants in the vicinity of Belvidere, Illinois, during 1992?2000. The study included the compilation, collection, and analyses of hydrogeologic and water-quality data and simulation of the ground-water-flow system. Hydrogeologic data include lithologic, stratigraphic, geophysical, hydraulic-property, water-level, ground-water withdrawal, and streamflow data. Water-quality data include analyses of water samples primarily for volatile organic compounds (VOC?s) and selectively for tritium and inorganic constituents. Data were collected from about 250 wells and 21 surfacewater sites. These data were used (1) to describe the hydrogeologic framework of the ground-waterflow system, preferential pathways and directions of ground-water movement and contaminant distribution, ground-water/surface-water relations, and the water budget and (2) to develop and calibrate the ground-water-flow model. The glacial drift (sand and gravel with some clay) and Galena-Platteville (fractured dolomite) aquifers and the sandstone aquifers of the Cambrian-Ordovician aquifer system compose the ground-water-flow system underlying Belvidere and vicinity. The Glenwood confining unit separates the Galena-Platteville aquifer from the underlying sandstone aquifers. The Galena- Platteville aquifer and confining unit may be absent in parts of the Troy Bedrock Valley, about 1.5 miles west of Belvidere. Throughout the study area, the Kishwaukee River and its tributaries seem to be gaining flow from shallow ground-water discharge. Potentiometric levels in the glacial drift and Galena-Platteville aquifers range from about 900 feet above sea level in the upland areas to 740 feet along the Kishwaukee River. Estimated horizontal hydraulic conductivity of the glacial drift aquifer ranges from about 0.13 to 280 feet per day. The Galena-Platteville aquifer is a dual-porosity unit with the greatest percentage of flow

  8. Estimating instantaneous peak flow from mean daily flow

    NASA Astrophysics Data System (ADS)

    Chen, B.; Krajewski, W. F.

    2015-12-01

    While instantaneous peak flow (IPF) records have historically been necessary for practical applications in flood risk management and hydraulic structure design, mean daily flow (MDF) values are often all that are available. To address this problem, we propose a simple method, which requires only MDF records as its input and uses the rising and falling slopes of daily hydrographs, to estimate IPFs. We applied this method to 144 catchments in Iowa, USA, with drainage areas ranging from about 7 to 220,000 km2. This application involves about 3800 peak flow events originating from different flood generation mechanisms over the period from 1997 to 2014. About 55% of the catchments have prediction errors within ±10%, and 85% of the catchments have predictions errors within ±20%. The method works well for catchments larger than 500 km2, poorly for catchments smaller than 100 km2, and fairly well for catchments in between these sizes. The reduction in the method's effectiveness with decreasing catchment size is due to the fact that the smaller the catchment, the more information is lost when using MDF to characterize the instantaneous flow processes. Our proposed method is simple and promising in terms of estimating IPFs from MDFs for areas where IPF records are unavailable or are insufficient.

  9. Unsaturated Groundwater Flow Beneath Upper Mortandad Canyon, Los Alamos, New Mexico

    SciTech Connect

    Dander, D.C.

    1998-10-15

    Mortandad Canyon is a discharge site for treated industrial effluents containing radionuclides and other chemicals at Los Alamos National Laboratory, New Mexico. This study was conducted to develop an understanding of the unsaturated hydrologic behavior below the canyon floor. The main goal of this study was to evaluate the hypothetical performance of the vadose zone above the water table. Numerical simulations of unsaturated groundwater flow at the site were conducted using the Finite Element Heat and Mass Transfer (FEHM) code. A two-dimensional cross-section along the canyon's axis was used to model flow between an alluvial groundwater system and the regional aquifer approximately 300 m below. Using recharge estimated from a water budget developed in 1967, the simulations showed waters from the perched water table reaching the regional aquifer in 13.8 years, much faster than previously thought. Additionally, simulations indicate that saturation is occurring in the Guaje pumice bed an d that the Tshirege Unit 1B is near saturation. Lithologic boundaries between the eight materials play an important role in flow and solute transport within the system. Horizontal flow is shown to occur in three thin zones above capillary barriers; however, vertical flow dominates the system. Other simulations were conducted to examine the effects of changing system parameters such as varying recharge inputs, varying the distribution of recharge, and bypassing fast-path fractured basalt of uncertain extent and properties. System sensitivity was also explored by changing model parameters with respect to size and types of grids and domains, and the presence of dipping stratigraphy.

  10. Groundwater flow and solute movement to drain laterals, western San Joaquin Valley, California. 1. Geochemical assessment

    SciTech Connect

    Deverel, S.J.; Fio, J.L. )

    1990-01-01

    A study was undertaken to quantitatively evaluate the hydrologic processes affecting the chemical and isotopic composition of drain lateral water from an agricultural field in the western San Joaquin Valley, California. Results from chemical and isotopic analysis of the samples, and analysis of hydraulic head data and drain lateral flow data, elucidate the process of mixing of deep and shallow groundwater entering the drain laterals. The deep groundwater was subject to partial evaporation prior to drainage system installation and has been displaced downward in the groundwater system. This groundwater is flowing toward the drain laterals. The percentage of deep, isotopically enriched groundwater entering the drain laterals varies with time and between drain laterals. The percentage of the total drain lateral flow, which is deep groundwater flow, is about 30% for the shallow drain lateral and 60% for the deep drain lateral. During irrigation, these percentages decrease to 0 and 30% for the shallow and deep drain laterals. Selenium loads in the drain laterals vary with time and between drain laterals. The selenium load for the shallow drain lateral during 1 year is 21% of the load for the deep drain lateral because it collects less deep, high selenium groundwater and does not flow continuously. Although selenium concentrations in the drain lateral water decreased during irrigation, selenium loads increased substantially during a preplant irrigation because of increased flow into the drain laterals. The selenium loads during 8 days of irrigation represented a substantial percentage of the total selenium load for 1 year.

  11. Simulating the effect of climate extremes on groundwater flow through a lakebed

    USGS Publications Warehouse

    Virdi, Makhan L.; Lee, Terrie M.; Swancar, Amy; Niswonger, Richard G.

    2012-01-01

    Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.

  12. Simulation of the effects of development of the ground-water flow system of Long Island, New York

    USGS Publications Warehouse

    Buxton, Herbert T.; Smolensky, Douglas A.

    1999-01-01

    Extensive development on Long Island since the late 19th century and projections of increased urbanization and ground-water use makes effective water-resource management essential for preservation of the island's hydrologic environment and maintenance of a reliable source of water supply. This report presents results of a ground-water flow simulation analysis of the effects of development on the Long Island ground-water system. It describes ground-water levels, stream-flow, and the ground-water budget for the predevelopment period (pre-1900), the 1960's drought, and a more recent (1968-83) period with significant hydrologic stress. The report also presents estimated effects of a proposed water-supply strategy for the year 2020. Long Island has three major aquifers-the upper glacial (water-table), the Magothy, and the Lloyd aquifers-that are separated to varying degrees by confining units. Before development, recharge from precipitation entered the ground-water system at a rate of more than 1.1 billion gallons per day. An equal amount discharged to streams (41 percent), the shore (52 percent), and subsea boundaries (7 percent) . Urbanization and withdrawal of more than 400 Mgal/d (million gallons per day) from wells have resulted in local effects that include declines in ground-water levels, drying up and burial of streams and wetlands, reduction of ground-water recharge by increased overland flow to the ocean, a general decrease in ground-water discharge, and salt water intrusion. In some areas, the reduction in recharge is mitigated by leakage from water-supply and wastewater disposal lines, and infiltration of storm water through recharge basins. During 1968-83, a net loss of 240 Mgal/d from the ground-water system caused a decrease in ground-water discharge to streams (135 Mgal/d), to the shore (82 Mgal/d), and to subsea boundaries (23Mgal/d).The greatest adverse effects have been in western Long Island, where the most severe development has occurred. This

  13. Analysis of groundwater-level response to rainfall and estimation of annual recharge in fractured hard rock aquifers, NW Ireland

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Ofterdinger, Ulrich

    2016-04-01

    Despite fractured hard rock aquifers underlying over 65% of Ireland, knowledge of key processes controlling groundwater recharge in these bedrock systems is inadequately constrained. In this study, we examined 19 groundwater-level hydrographs from two Irish hillslope sites underlain by hard rock aquifers. Water-level time-series in clustered monitoring wells completed at the subsoil, soil/bedrock interface, shallow and deep bedrocks were continuously monitored hourly over two hydrological years. Correlation methods were applied to investigate groundwater-level response to rainfall, as well as its seasonal variations. The results reveal that the direct groundwater recharge to the shallow and deep bedrocks on hillslope is very limited. Water-level variations within these geological units are likely dominated by slow flow rock matrix storage. The rapid responses to rainfall (⩽2 h) with little seasonal variations were observed to the monitoring wells installed at the subsoil and soil/bedrock interface, as well as those in the shallow or deep bedrocks at the base of the hillslope. This suggests that the direct recharge takes place within these units. An automated time-series procedure using the water-table fluctuation method was developed to estimate groundwater recharge from the water-level and rainfall data. Results show the annual recharge rates of 42-197 mm/yr in the subsoil and soil/bedrock interface, which represent 4-19% of the annual rainfall. Statistical analysis of the relationship between the rainfall intensity and water-table rise reveal that the low rainfall intensity group (⩽1 mm/h) has greater impact on the groundwater recharge rate than other groups (>1 mm/h). This study shows that the combination of the time-series analysis and the water-table fluctuation method could be an useful approach to investigate groundwater recharge in fractured hard rock aquifers in Ireland.

  14. Characterization of Groundwater Flow Processes in the Cedar Creek Watershed and the Cedarburg Bog in Southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Graham, J. P.; Han, W. S.; Feinstein, D.; Hart, D. J.

    2014-12-01

    The purpose of this study is to characterize the geology and groundwater flow of the bog as well as the surrounding area, notably the Cedar Creek Watershed, a HUC (Hydrologic Unit Code) 12 watershed. The watershed is approximately 330 km2, and borders the sub-continental divide separating the Mississippi River Basin from the Great Lakes Basin. The Cedar Creek watershed is composed of mostly agricultural and urban land with a significant stress of groundwater withdrawal for both irrigation and residential use. This watershed has importance due to the contribution to both the Milwaukee River and Lake Michigan, and is integral in the study of regional groundwater flow of Southeastern Wisconsin. Furthermore, the Cedarburg Bog, located in the northeast corner of the Cedar Creek Watershed preserves diverse ecology and is recognized by the U.S. Department of Interior as a National Landmark. Groundwater is the primary driver for the diverse and unique ecology that is contained within the bog. Within the Cedar Creek Watershed, well data and glacial geology maps (Mickelson and Syverson, 1997) were integrated to develop a 3-dimensional subsurface map and watershed-scale groundwater flow model using the LAK3 and the SFR2 package to simulate surface water-aquifer interactions. The model includes 10 zones of the glacial sediments and the weathered and consolidated Silurian Dolomite bedrock. The hydraulic conductivity and storage parameters were calibrated with 203 head targets using universal parameter estimation code (PEST). Then, a series of future climate scenarios, developed by the Wisconsin Initiative on Climate Change Impact, were implemented to the USGS Soil-Water-Balance Code (SWB) to identify variations in recharge. The simulated recharge scenarios were adopted to predict the response of groundwater resources in the watershed and the Cedarburg Bog. Preliminary results produced from the MODFLOW model indicate the bog is acting as a recharge zone under current recharge

  15. Simulation of ground-water flow in the Mississippi River Valley alluvial aquifer in eastern Arkansas

    USGS Publications Warehouse

    Mahon, G.L.; Ludwig, A.H.

    1990-01-01

    The U.S Geological Survey has developed and calibrated a digital model of the flow system in the alluvial aquifer as part of a multiagency Eastern Arkansas Region Comprehensive Study being conducted by the U. S. Army Corps of Engineers. Other cooperating agencies include the U.S. Soil Conservation Service, the Arkansas Soil and Water Conservation Commission, and the University of Arkansas. The study was prompted by the growing concern about significant water level declines in the Mississippi River Valley alluvial aquifer north of the Arkansas River in eastern Arkansas. The declines are a result of large groundwater withdrawals, mainly for irrigation. After calibration, the flow model was used to simulate the effects of projected groundwater pumpage through the year 2050, based on estimates made by the U.S. Soil Conservation Service for pumpage scenarios with and without water conservation measures. Simulations of projected pumpage indicated that by the year 2050 water level declines would reduce the saturated thickness of the aquifer to less than 20 ft in large areas of eastern Arkansas. More than 26% of the active cells in the scenario without conservation had saturated thicknesses of 20 ft or less and mroe than 16% in the scenario with conservation. The principal areas where the saturated thickness is expected to reach these critical levels are in the Grand Prairie region and in two areas on the east and west sides of Crowleys Ridge. (USGS)

  16. Simplified groundwater flow modeling: an application of Kalman filter based identification

    SciTech Connect

    Pimentel, K.D.; Candy, J.V.; Azevedo, S.G.; Doerr, T.A.

    1980-05-01

    The need exists for methods to simplify groundwater contaminant transport models. Reduced-order models are needed in risk assessments for licensing and regulating long-term nuclear waste repositories. Such models will be used in Monte Carlo simulations to generate probabilities of nuclear waste migration in aquifers at candidate repository sites in the United States. In this feasibility study we focused on groundwater flow rather than contaminant transport because the flow problem is more simple. A pump-drawdown test is modeled with a reduced-order set of ordinary differential equations obtained by differencing the partial differential equation. We determined the accuracy of the reduced model by comparing it with the analytic solution for the drawdown test. We established an accuracy requirement of 2% error at the single observation well and found that a model with only 21 states satisfied that criterion. That model was used in an extended Kalman filter with synthesized measurement data from one observation well to identify transmissivity within 1% error and storage coefficient within 10% error. We used several statistical tests to assess the performance of the estimator/identifier and found it to be satisfactory for this application.

  17. Descriptions and characterizations of water-level data and groundwater flow for the Brewster Boulevard and Castle Hayne Aquifer Systems and the Tarawa Terrace Aquifer

    USGS Publications Warehouse

    Faye, Robert E.; Jones, L. Elliott; Suárez-Soto, René J.

    2013-01-01

    This supplement of Chapter A (Supplement 3) summarizes results of analyses of groundwater-level data and describes corresponding elements of groundwater flow such as vertical hydraulic gradients useful for groundwater-flow model calibration. Field data as well as theoretical concepts indicate that potentiometric surfaces within the study area are shown to resemble to a large degree a subdued replica of surface topography. Consequently, precipitation that infiltrates to the water table flows laterally from highland to lowland areas and eventually discharges to streams such as Northeast and Wallace Creeks and New River. Vertically downward hydraulic gradients occur in highland areas resulting in the transfer of groundwater from shallow relatively unconfined aquifers to underlying confined or semi-confined aquifers. Conversely, in the vicinity of large streams such as Wallace and Frenchs Creeks, diffuse upward leakage occurs from underlying confined or semi-confined aquifers. Point water-level data indicating water-table altitudes, water-table altitudes estimated using a regression equation, and estimates of stream levels determined from a digital elevation model (DEM) and topographic maps were used to estimate a predevelopment water-table surface in the study area. Approximate flow lines along hydraulic gradients are shown on a predevelopment potentiometric surface map and extend from highland areas where potentiometric levels are greatest toward streams such as Wallace Creek and Northeast Creek. The distribution of potentiometric levels and corresponding groundwater-flow directions conform closely to related descriptions of the conceptual model.

  18. Ground-water levels in water year 1987 and estimated ground-water pumpage in water years 1986-87, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1990-01-01

    Groundwater levels were measured at 58 wells during water year 1987 and a summary of estimated pumpage is given for water years 1986 and 1987 in Carson Valley, Douglas County, Nevada. The data were collected to provide a record of groundwater changes over the long-term and pumpage estimates that can be incorporated into an existing groundwater model. The estimated total pumpage in water year 1986 was 10,200 acre-ft and in water year 1987 was 13,400 acre-ft. Groundwater levels exhibited seasonal fluctuations but remained relatively stable over the reporting period throughout most of the valley. (USGS)

  19. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.

    PubMed

    Herrera, Christian; Custodio, Emilio

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist.

  20. Groundwater flow in a relatively old oceanic volcanic island: the Betancuria area, Fuerteventura Island, Canary Islands, Spain.

    PubMed

    Herrera, Christian; Custodio, Emilio

    2014-10-15

    The island of Fuerteventura is the oldest of the Canary Islands' volcanic archipelago. It is constituted by volcanic submarine and subaerial activity and intrusive Miocene events, with some residual later volcanism and Quaternary volcanic deposits that have favored groundwater recharge. The climate is arid, with an average rainfall that barely attains 60 mm/year in the coast and up to 200 mm/year in the highlands. The aquifer recharge is small but significant; it is brackish due to large airborne atmospheric salinity, between 7 and 15 gm(-2)year(-1) of chloride deposition, and high evapo-concentration in the soil. The average recharge is estimated to be less than about 5 mm/year at low altitude and up to 10 mm/year in the highlands, and up to 20 mm/year associated to recent lava fields. Hydrochemical and water isotopic studies, supported by water table data and well and borehole descriptions, contribute a preliminary conceptual model of groundwater flow and water origin in the Betancuria area, the central area of the island. In general, water from springs and shallow wells tends to be naturally brackish and of recent origin. Deep saline groundwater is found and is explained as remnants of very old marine water trapped in isolated features in the very low permeability intrusive rocks. Preliminary radiocarbon dating indicates that this deep groundwater has an apparent age of less than 5000 years BP but it is the result of mixing recent water recharge with very old deep groundwater. Most of the groundwater flow occurs through the old raised volcanic shield of submarine and subaerial formations and later Miocene subaerial basalts. Groundwater transit time through the unsaturated zone is of a few decades, which allows the consideration of long-term quasi-steady state recharge. Transit times are up to a few centuries through the saturated old volcanics and up to several millennia in the intrusive formations, where isolated pockets of very old water may exist. PMID

  1. Hydrology and simulation of ground-water flow in Cedar Valley, Iron County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.

    2005-01-01

    Cedar Valley, located in the eastern part of Iron County in southwestern Utah, is experiencing rapid population growth. Cedar Valley traditionally has supported agriculture, but the growing population needs a larger share of the available water resources. Water withdrawn from the unconsolidated basin fill is the primary source for public supply and is a major source of water for irrigation. Water managers are concerned about increasing demands on the water supply and need hydrologic information to manage this limited water resource and minimize flow of water unsuitable for domestic use toward present and future public-supply sources. Surface water in the study area is derived primarily from snowmelt at higher altitudes east of the study area or from occasional large thunderstorms during the summer. Coal Creek, a perennial stream with an average annual discharge of 24,200 acre-feet per year, is the largest stream in Cedar Valley. Typically, all of the water in Coal Creek is diverted for irrigation during the summer months. All surface water is consumed within the basin by irrigated crops, evapotranspiration, or recharge to the ground-water system. Ground water in Cedar Valley generally moves from primary recharge areas along the eastern margin of the basin where Coal Creek enters, to areas of discharge or subsurface outflow. Recharge to the unconsolidated basin-fill aquifer is by seepage of unconsumed irrigation water, streams, direct precipitation on the unconsolidated basin fill, and subsurface inflow from consolidated rock and Parowan Valley and is estimated to be about 42,000 acre-feet per year. Stable-isotope data indicate that recharge is primarily from winter precipitation. The chloride mass-balance method indicates that recharge may be less than 42,000 acre-feet per year, but is considered a rough approximation because of limited chloride concentration data for precipitation and Coal Creek. Continued declining water levels indicate that recharge is not

  2. Ground-water levels in water years 1984-86 and estimated ground-water pumpage in water years 1984-85, Carson Valley, Douglas County, Nevada

    USGS Publications Warehouse

    Berger, D.L.

    1987-01-01

    Tabulations of groundwater level measurements made during the water years 1984-86 and summaries of estimated pumpage for water years 1984 and 1985 in Carson valley, Douglas County, Nevada, are included in this report. The data are being collected to provide a record of long-term groundwater changes and pumpage estimates that can be incorporated in a groundwater model change at a later date. (USGS)

  3. Applying Short-Time Fourier Transform on Groundwater Fluctuation for the Estimation of Regional Groundwater Pumping

    NASA Astrophysics Data System (ADS)

    Chen, Y. W.; Yu, C. H.; Wang, Y.; Chang, L. C.; Chen, Y. C.

    2015-12-01

    For sustainable management of groundwater resource, precise records of regional groundwater pumping is crucial. However, the fact that number of private pumping wells is too huge makes obtaining precise pumping records of each wells become difficult. Because the most significant response of pumping is drawdown and the influence radius of pumping might over several hundred meters, a network of observation wells can be used to sense the regional pumping. Groundwater fluctuations are the synthetic effect of different physical mechanisms include pumping, recharge, tidal effect and others and an analysis of short-time Fourier transform is applied to identified the temporal effects of each mechanisms. Because pumping is a kind of human activity and the most significant frequency of human activity is daily, the temporal amplitude with daily frequency (TADF) is the response of regional pumping in the neighborhood of the observation well and TADF can be a linear indicator of regional groundwater pumping. The proposed method was applied in the Pingtung Plain and the horizontal of analysis period is from 2008 to 2011. The TADF of each observation well can reflect the temporal variation of regional groundwater pumping around the observation well. For the well in coast area, the shape of TADF looks like a sinusoid line with a half year cycle and the peaks of large pumping respectively are during January and July. The peaks of large pumping are mainly caused by fish farms.

  4. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    NASA Astrophysics Data System (ADS)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-02-01

    Groundwater chemistry and isotopic data from 40 production wells in the Atemajac and Toluquilla Valleys, located in and around the Guadalajara metropolitan area, were determined to develop a conceptual model of groundwater flow processes and mixing. Multivariate analysis including cluster analysis and principal component analysis were used to elucidate distribution patterns of constituents and factors controlling groundwater chemistry. Based on this analysis, groundwater was classified into four groups: cold groundwater, hydrothermal water, polluted groundwater and mixed groundwater. Cold groundwater is characterized by low temperature, salinity, and Cl and Na concentrations and is predominantly of Na-HCO3 type. It originates as recharge at Primavera caldera and is found predominantly in wells in the upper Atemajac Valley. Hydrothermal water is characterized by high salinity, temperature, Cl, Na, HCO3, and the presence of minor elements such as Li, Mn and F. It is a mixed HCO3 type found in wells from Toluquilla Valley and represents regional flow circulation through basaltic and andesitic rocks. Polluted groundwater is characterized by elevated nitrate and sulfate concentrations and is usually derived from urban water cycling and subordinately from agricultural practices. Mixed groundwaters between cold and hydrothermal components are predominantly found in the lower Atemajac Valley. Tritium method elucidated that practically all of the sampled groundwater contains at least a small fraction of modern water. The multivariate mixing model M3 indicates that the proportion of hydrothermal fluids in sampled well water is between 13 (local groundwater) and 87% (hydrothermal water), and the proportion of polluted water in wells ranges from 0 to 63%. This study may help local water authorities to identify and quantify groundwater contamination and act accordingly.

  5. Estimation of Spatially and Temporally Varied Groundwater Recharge from Precipitation Using a Systematic and Integrated Approach

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2006-05-01

    Quantitative determination of spatially and temporally varied groundwater recharge from precipitation is a complex issue involving many control factors, and investigators face great challenges for quantifying the relationship between groundwater recharge and its control factors. In fact, its quantification is a complex process in which unstructured decisions are generally involved. The Analytic Hierarchy Process (AHP) is a systematic method for a powerful and flexible decision making to determine priorities and make the best decision when both qualitative and quantitative aspects of a decision need to be accounted for. Moreover, through a process of reducing complex decisions to a series of one-on-one comparisons, then synthesizing the results, the rationale can clearly be understood for making the best decision. In this study, a systematic and integrated approach for estimation of spatially and temporally varied groundwater recharge from precipitation is proposed, in which the remote sensing, GIS, AHP, and modeling techniques are coupled. A case study is presented for demonstration of its application. Based on field survey and information analyses, the pertinent factors for groundwater recharge are assessed and the dominating factors are identified. An analytical model is then established for estimation of the spatially and temporally varied groundwater recharge from precipitation in which the contribution potentials to groundwater recharge and relative weights of those dominating factors are taken into account. The contribution potentials can be assessed by adopting fuzzy membership functions and integrating expert opinions. The weight for each of the dominating factors can systematically be determined through coupling of the RS, GIS, and AHP techniques. To reduce model uncertainty, this model should be further calibrated systematically and validated using even limited groundwater field data such as observed groundwater heads and groundwater discharges into

  6. Freshwater flow into a coastal embayment: Groundwater and surface water inputs

    SciTech Connect

    Millham, N.P.; Howes, B.L.

    1994-12-01

    Freshwater discharge to a shallow coastal embayment was measured with two upland hydrologic and three embayment physical methods for 2 yr. Parallel measurements from the five methods ranged from 3,900 ({plus_minus}630) to 9,400 ({plus_minus}3,400) m{sup 3} d{sup {minus}1}, and four of the methods showed close agreement and averaged 4,800 ({plus_minus}670) m{sup 3} d{sup {minus}1}. The most precise estimate of discharge was from a chloride balance, while the best understanding of the rate and pattern of groundwater flow was from a Darcian streamtube approach. Groundwater dominated the freshwater budget, accounting for >95% of the total annual input, and was partitioned almost equally between direct seepage to embayment waters and seepage to a stream with final discharge via surface flow. Freshwater inputs decreased rapidly toward the mouth of the estuary and >80% entered into the upper half. The lack of fixed watershed boundaries resulted in large errors in both the location and area of the topographically defined watershed when compared to a watershed defined by water-table mapping. Seasonal variations were found in both the boundaries of the watershed (8%) and in groundwater discharge (6-fold) in response to changing water-table gradients due to recharge. Hydrologic alterations of the upland through the import of water and the increased recharge from impermeable surfaces led to an apparent increase in the total freshwater discharge to the embayment of nearly 50% over {open_quotes}natural{close_quotes}levels. 48 refs., 9 figs., 7 tabs.

  7. Controls on groundwater flow in the Bengal Basin of India and Bangladesh: Regional modeling analysis

    USGS Publications Warehouse

    Michael, H.A.; Voss, C.I.

    2009-01-01

    Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions. ?? Springer-Verlag 2009.

  8. Numerical simulation of groundwater flow in the Columbia Plateau Regional Aquifer System, Idaho, Oregon, and Washington

    USGS Publications Warehouse

    Ely, D. Matthew; Burns, Erick R.; Morgan, David S.; Vaccaro, John J.

    2014-01-01

    Groundwater pumping has increased substantially over the past 40–50 years; this increase resulted in declining water levels at depth and decreased base flows over much of the study area. The effects of pumping are mitigated somewhat by the increase of surface-water irrigation, especially in the shallow Overburden unit, and commingling wells in some areas. During dry to average years, groundwater pumping causes a net loss of groundwater in storage and current condition (2000–2007) groundwater pumping exceeds recharge in all but the wettest of years.

  9. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  10. Groundwater response to the 2014 pulse flow in the Colorado River Delta

    USGS Publications Warehouse

    Kennedy, Jeffrey; Rodriguez-Burgueno, Eliana; Ramirez-Hernandez, Jorge

    2016-01-01

    During the March-May 2014 Colorado River Delta pulse flow, approximately 102 × 106 m3 (82,000 acre-feet) of water was released into the channel at Morelos Dam, with additional releases further downstream. The majority of pulse flow water infiltrated and recharged the regional aquifer. Using groundwater-level and microgravity data we mapped the spatial and temporal distribution of changes in aquifer storage associated with pulse flow. Surface-water losses to infiltration were greatest around the Southerly International Boundary, where a lowered groundwater level owing to nearby pumping created increased storage potential as compared to other areas with shallower groundwater. Groundwater levels were elevated for several months after the pulse flow but had largely returned to pre-pulse levels by fall 2014. Elevated groundwater levels in the limitrophe (border) reach extended about 2 km to the east around the midway point between the Northerly and Southerly International Boundaries, and about 4 km to the east at the southern end. In the southern part of the delta, although total streamflow in the channel was less due to upstream infiltration, augmented deliveries through irrigation canals and possible irrigation return flows created sustained increases in groundwater levels during summer 2014. Results show that elevated groundwater levels and increases in groundwater storage were relatively short lived (confined to calendar year 2014), and that depressed water levels associated with groundwater pumping around San Luis, Arizona and San Luis Rio Colorado, Sonora cause large, unavoidable infiltration losses of in-channel water to groundwater in the vicinity.

  11. AN INTEGRATED VIEW OF GROUNDWATER FLOW CHARACTERIZATION AND MODELING IN FRACTURED GEOLOGIC MEDIA

    EPA Science Inventory

    The particular attributes of fractured geologic media pertaining to groundwater flow characterization and modeling are presented. These cover the issues of fracture network and hydraulic control of fracture geometry parameters, major and minor fractures, heterogeneity, anisotrop...

  12. Evolution of 3-D geologic framework modeling and its application to groundwater flow studies

    USGS Publications Warehouse

    Blome, Charles D.; Smith, David V.

    2012-01-01

    In this Fact Sheet, the authors discuss the evolution of project 3-D subsurface framework modeling, research in hydrostratigraphy and airborne geophysics, and methodologies used to link geologic and groundwater flow models.

  13. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2013-03-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is presented and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via preferential flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in preferential flow pathways due to seasonal ploughing of the topsoil and to a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  14. Simulation of the ground-water flow system at Naval Submarine Base Bangor and vicinity, Kitsap County, Washington

    USGS Publications Warehouse

    Heeswijk, Marijke van; Smith, Daniel T.

    2002-01-01

    An evaluation of the interaction between ground-water flow on Naval Submarine Base Bangor and the regional-flow system shows that for selected alternatives of future ground-water pumping on and near the base, the risk is low that significant concentrations of on-base ground-water contamination will reach off-base public-supply wells and hypothetical wells southwest of the base. The risk is low even if worst-case conditions are considered ? no containment and remediation of on-base contamination. The evaluation also shows that future saltwater encroachment of aquifers below sea level may be possible, but this determination has considerable uncertainty associated with it. The potential effects on the ground-water flow system resulting from four hypothetical ground-water pumping alternatives were considered, including no change in 1995 pumping rates, doubling the rates, and 2020 rates estimated from population projections with two different pumping distributions. All but a continuation of 1995 pumping rates demonstrate the possibility of future saltwater encroachment in the Sea-level aquifer on Naval Submarine Base Bangor. The amount of time it would take for encroachment to occur is unknown. For all pumping alternatives, future saltwater encroachment in the Sea-level aquifer also may be possible along Puget Sound east and southeast of the base. Future saltwater encroachment in the Deep aquifer also may be possible throughout large parts of the study area. Projections of saltwater encroachment are least certain outside the boundaries of Naval Submarine Base Bangor. The potential effects of the ground-water pumping alternatives were evaluated by simulating the ground-water flow system with a three-dimensional uniform-density ground-water flow model. The model was calibrated by trial-and-error by minimizing differences between simulated and measured or estimated variables. These included water levels from prior to January 17, 1977 (termed 'predevelopment'), water

  15. Geohydrology, simulation of ground-water flow, and ground-water quality at two landfills, Marion County, Indiana

    USGS Publications Warehouse

    Duwelius, R.F.; Greeman, T.K.

    1989-01-01

    Concentrations of dissolved inorganic substances in ground-water samples indicate that leachate from both landfills is reaching the shallow aquifers. The effect on deeper aquifers is small because of the predominance of horizontal ground-water flow and discharge to the streams. Increases in almost all dissolved constituents were observed in shallow wells that are screened beneath and downgradient from the landfills. Several analyses, especially those for bromide, dissolved solids, and ammonia, were useful in delineating the plume of leachate at both landfills.

  16. Identification of a nonlinear groundwater flow at a slug test in fractured rock and its influence on the test

    NASA Astrophysics Data System (ADS)

    Ji, S.; Koh, Y.

    2013-12-01

    Many laboratory and numerical studies reported that a groundwater flow through a fracture at sufficiently high Reynolds numbers does not obey the cubic law which assumes a linear relation between the hydraulic gradient and the flux. Most of them observed that the transitions from a linear to nonlinear flow arose at the Reynolds numbers greater than 10. A slug test is one of the common hydraulic tests, and used for estimation of the hydraulic properties of an aquifer by analyzing the recovery after a sudden change in hydraulic pressure. In this study, we conducted a series of slug tests with various initial head displacements at an experimental borehole at KAERI's (Korea Atomic Energy Research Institute) underground research tunnel whose host rock is Jurassic granite. The Reynolds number at a fracture during slug tests was calculated using the geophysical logging data and slug test results, and the nonlinear flow regime at slug tests was identified. From changes in the Reynolds number during the tests and estimates of the hydraulic properties from the tests, the influence of a nonlinear flow on a slug test was discussed. Our results indicate that the nonlinearity of groundwater flow at a slug test became more severe and the estimated hydraulic conductivity decreased as the initial head displacement increased.

  17. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  18. Ground-water levels and flow near the industrial excess landfill, Uniontown, Ohio

    SciTech Connect

    Bair, E.S.; Norris, S.E.

    1989-01-01

    Water levels recorded on drillers' logs from 279 wells were used to assess the regional groundwater flow system in the area of the Industrial Excess Landfill (IEL) site in Uniontown, Ohio. The flow system was divided into two regional aquifers: a shallow unconfined glacial-drift aquifer and a deeper, semiconfined bedrock aquifer. A composite potentiometric-surface map of the glacial-drift aquifer shows that the IEL site appears to straddle a prominent groundwater ridge that trends northeast-southwest. Groundwater flows radially away from this ridge, primarily to the northwest and to the southeast; as a result, flow in the glacial-drift aquifer at the IEL site moves in a radial pattern away from the site in all directions. a composite, regional potentiometric-surface map of the bedrock aquifer shows a similar elongated groundwater ridge trending northeast-southwest across the northwestern corner of the IEL site; however, the site does not appear to straddle the groundwater ridge in the bedrock potentiometric surface. As a consequence of the radial-type of flow pattern in the glacial-drift aquifer at the IEL site, the direction of potential off-site movement of any contaminant would, in large part, depend on the original location o the contaminant at the IEL site. Available data also indicate a downward flow component; consequently, contaminants present at the site could flow laterally within the local flow patterns and vertically downward within the flow systems. 8 refs., 6 figs.

  19. Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers

    USGS Publications Warehouse

    Shoemaker, W.B.; Cunningham, K.J.; Kuniansky, E.L.; Dixon, J.

    2008-01-01

    A conduit flow process (CFP) for the Modular Finite Difference Ground-Water Flow model, MODFLOW-2005, has been created by the U.S. Geological Survey. An application of the CFP on a carbonate aquifer in southern Florida is described; this application examines (1) the potential for turbulent groundwater flow and (2) the effects of turbulent flow on hydraulic heads and parameter sensitivities. Turbulent flow components were spatially extensive in preferential groundwater flow layers, with horizontal hydraulic conductivities of about 5,000,000 m d-1, mean void diameters equal to about 3.5 cm, groundwater temperature equal to about 25??C, and critical Reynolds numbers less than or equal to 400. Turbulence either increased or decreased simulated heads from their laminar elevations. Specifically, head differences from laminar elevations ranged from about -18 to +27 cm and were explained by the magnitude of net flow to the finite difference model cell. Turbulence also affected the sensitivities of model parameters. Specifically, the composite-scaled sensitivities of horizontal hydraulic conductivities decreased by as much as 70% when turbulence was essentially removed. These hydraulic head and sensitivity differences due to turbulent groundwater flow highlight potential errors in models based on the equivalent porous media assumption, which assumes laminar flow in uniformly distributed void spaces. Copyright 2008 by the American Geophysical Union.

  20. Joint Calibration of Submarine Groundwater Discharge (SGD) with Tidal Pumping: Modeling Variable-density Groundwater Flow in Unconfined Coastal Aquifer of Apalachee Bay, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Li, X.; Hu, B.; Burnett, W.; Santos, I.

    2008-05-01

    Submarine Groundwater Discharge (SGD) as an unseen phenomenon is now recognized as an important pathway between land and sea. These discharges typically display significant spatial and temporal variability making quantification difficult. Groundwater seepage is patchy, diffuse, and temporally variable, and thus makes the estimation of its magnitude and components is a challenging enterprise. A two-dimensional hydrogeological model is developed to the near-shore environment of an unconfined aquifer at a Florida coastal area in the northeastern Gulf of Mexico. Intense geological survey and slug tests are set to investigate the heterogeneity of this layered aquifer. By applying SEAWAT2000, considering the uncertainties caused by changes of boundary conditions, a series of variable-density-flow models incorporates the tidal-influenced seawater recirculation and the freshwater-saltwater mixing zone under the dynamics of tidal pattern, tidal amplitude and variation of water table. These are thought as the contributing factors of tidal pumping and hydraulic gradient which are the driven forces of SGD. A tidal-influenced mixing zone in the near-shore aquifer shows the importance of tidal mechanism to flow and salt transport in the process of submarine pore water exchange. Freshwater ratio in SGD is also analyzed through the comparison of Submarine Groundwater Recharge and freshwater inflow. The joint calibration with other methods (natural tracer model and seepage meter) is also discussed.

  1. Documentation of finite-difference model for simulation of three-dimensional ground-water flow

    USGS Publications Warehouse

    Trescott, Peter C.; Larson, S.P.

    1976-01-01

    User experience has indicated that the documentation of the model of three-dimensional ground-water flow (Trescott and Larson, 1975) should be expanded. This supplement is intended to fulfill that need. The original report emphasized the theory of the strongly implicit procedure, instructions for using the groundwater-flow model, and practical considerations for application. (See also W76-02962 and W76-13085) (Woodard-USGS)

  2. Rapid intrusion of magma into wet rock: groundwater flow due to pore pressure increases.

    USGS Publications Warehouse

    Delaney, P.T.

    1982-01-01

    Analytical and numerical solutions are developed to simulate the pressurization, expansion, and flow of groundwater contained within saturated, intact host rocks subject to sudden heating from the planar surface of an igneous intrusion. For most rocks, water diffuses more rapidly than heat, assuring that groundwater is not heated along a constant-volume pressure path and that thermal expansion and pressurization adjacent to the intrusion drives a flow that extends well beyond the heated region. -from Author

  3. Using MODFLOW drains to simulate groundwater flow in a karst environment

    SciTech Connect

    Quinn, J.; Tomasko, D.; Glennon, M.A.; Miller, S.F.; McGinnis, L.D.

    1998-07-01

    Modeling groundwater flow in a karst environment is both numerically challenging and highly uncertain because of potentially complex flowpaths and a lack of site-specific information. This study presents the results of MODFLOW numerical modeling in which drain cells in a finite-difference model are used as analogs for preferential flowpaths or conduits in karst environments. In this study, conduits in mixed-flow systems are simulated by assigning connected pathways of drain cells from the locations of tracer releases, sinkholes, or other karst features to outlet springs along inferred flowpaths. These paths are determined by the locations of losing stream segments, ephemeral stream beds, geophysical surveys, fracture lineaments, or other surficial characteristics, combined with the results of dye traces. The elevations of the drains at the discharge ends of the inferred flowpaths are estimated from field data and are adjusted when necessary during model calibration. To simulate flow in a free-flowing conduit, a high conductance is assigned to each drain to eliminate the need for drain-specific information that would be very difficult to obtain. Calculations were performed for a site near Hohenfels, Germany. The potentiometric surface produced by the simulations agreed well with field data. The head contours in the vicinity of the karst features behaved in a manner consistent with a flow system having both diffuse and conduit components, and the sum of the volumetric flow out of the drain cells agreed closely with spring discharges and stream flows. Because of the success of this approach, it is recommended for regional studies in which little site-specific information (e.g., location, number, size, and conductivity of fractures and conduits) is available, and general flow characteristics are desired.

  4. Uncertainty quantification of surface-water/groundwater exchange estimates in large wetland systems using Python

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Metz, P. A.

    2014-12-01

    Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss

  5. Is Regional Groundwater Flow a Significant Component of the Water Budget in a River Basin?

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Fan, Y.

    2007-12-01

    The spatial organization and temporal memory of the groundwater reservoir, and its interaction with the surface water has an integral role in the lateral transport of continental water and energy, affecting soil moisture distributions, evapotranspiration, precipitation and stream discharge across the land surface. The current climate models are unable to account for this lateral component, and route Precipitation (P) minus Evapotranspiration (ET) directly to stream discharge; hence, a separation of groundwater flow from surface water flow is necessary to asses the relative importance of each reservoir across a given continent. Here we use the ratio of P-ET (surface recharge, or R) to stream discharge (Qr) to evaluate the importance of the groundwater component within a given basin; where Qr/R = 1 we surmise that all the atmospheric surplus exits a basin through river discharge; where Qr/R < 1, a basin is considered a groundwater exporter; and where Qr/R > 1, a basin is considered a groundwater importer. In this study, 39 years of USGS HCDN annual mean observed stream discharge (naturalized) from 1555 basins across the continental U.S are removed from total surface recharge, derived from VIC simulation, yielding the portion of surface recharge leaving a basin via subsurface pathways. It was found that the Qr/R ratio deviates significantly from 1 across the contiguous 48 U.S. states. Detailed investigations of individual basins across the continent suggest that deviations of the Qr/R ratio from 1 are primarily a function of the subsurface geology, while climate and basin scale influence the magnitude of those deviations. Further, a marked incongruity between the surface drainage flow direction and groundwater flow direction is apparent where regional groundwater flow has developed, suggesting that surface drainage as a result of elevation is only partially indicative of subsurface flow regimes. This apparent significance of the groundwater component reinforces the

  6. The Experience at Russian Nuclear Sites of Modeling Groundwater Flow on Different Scales

    NASA Astrophysics Data System (ADS)

    Zinin, A.; Zinina, G.; Samsanova, L.; Vasilkova, N.; Alexandrova, L.; Drozhko, E.

    2001-12-01

    The experience of developing models of different scales to predict contaminant plume migration in ground waters is analyzed. The method of developing a three-dimensional transient model is demonstrated to estimate high-density solutions migrating from the surface storage of liquid radioactive waste, using a two-dimensional regional model for setting boundary conditions (Lake Karachay, PA "Mayak", Russia). The model is used to calculate three-dimensional transient distribution of pressure, density and concentrations of the dissolved admixtures in the non-confined aquifers. Interpolation is also specified to calculate boundary conditions parameters of the inserted models. The method of constructing a local filtration model is described to predict the contaminant plume spreading from the operating ground of deep burial of liquid radioactive wastes (The Siberian Chemical Plant, Seversk). The local model uses smaller grid gaps over time and space and a more detailed stratiographic division of the section as compared to the regional model intended to be used for estimating groundwater resourses. The flow distribution within the local model boundaries is described as the products of an average annual flow and periodical time function (function of monthly fluctuations) and the function of spatial variables. The parameters of the distribution function, represented on the local model grid by the values, were determined by solving the inverse problem. The sensivity analysis of the target function of the inverse problem to the small variations of the average annual flows is described.

  7. Rapid exchange effects on isotope ratios in groundwater systems: 2. Flow investigation using Sr isotope ratios

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas M.; Depaolo, Donald J.

    1997-01-01

    Sr isotope ratios were measured in groundwater, whole rock digestions, and cation exchange extracts from a clay-rich groundwater system at Ernest O. Lawrence Berkeley National Laboratory and were used to constrain flow velocities and search for preferential flow paths. In the Orinda formation siltstone, 87Sr/86Sr increases strongly over tens of meters along presumed flow paths, indicating slow groundwater flow. Dissolved Sr is close to isotopic equilibrium with the exchangeable Sr in the clays, and the observed 87Sr/86Sr increase is interpreted as a cation exchange front moving slowly through the unit combined with dissolution of minerals with relatively high 87Sr/86Sr ratios. The data are inverted using a one-dimensional transport-dissolution-exchange model; the results indicate long-term average flow velocities of less than 0.2 m/yr which are consistent with 14C measurements. The data suggest a lack of strong preferential flow paths through this unit.

  8. Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico

    NASA Astrophysics Data System (ADS)

    González-Herrera, Roger; Sánchez-y-Pinto, Ismael; Gamboa-Vargas, José

    2002-09-01

    The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity. Résumé. Le modèle conceptuel classique de l'aquifère karstique libre de la péninsule du Yucatan (Mexique) consiste en une lentille d'eau douce flottant sur une eau salée plus dense qui pénètre à plus de 40 km à l'intérieur des terres. La transmissivité de l'aquifère est très élevée, en sorte que le gradient hydraulique est très faible, compris entre 7 et 10 mm/km dans la plus grande partie du nord de la péninsule. Le modèle AQUIFER a été utilisé pour explorer les écoulements souterrains régionaux dans cet

  9. Sructural Control Of Groundwater Flow In The Sinai Peninsula: Integrated Studies

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Sultan, M.; Farag, A. Z. A.

    2014-12-01

    The crystalline complex and overlying sedimentary sequences in southern and central Sinai are highly dissected by numerous faults, shear systems, and dikes, hereafter referred to as discontinuities. Understanding the distribution of these discontinuities, their cross cutting relations, and the hydraulic gradient gives clues as to the distribution of water resources in the area. In the study area, extensional tectonics has been active as early as the Precambrian era as evidenced by the widely distributed dikes, bimodal volcanics, and dip-slip faults and shear zones of varying ages. These extensional tectonics and associated structural elements enhance the porosity and permeability of Sinai's basement and overlying sedimentary sequences. To investigate the impact of the discontinuities on groundwater flow, the following steps were conducted: 1) the spatial and temporal precipitation events over the basement complex were identified from TRMM data; 2) observations extracted from temporal change in backscattering coefficient in radar (Envisat ASAR radar scenes) were used to identify water-bearing discontinuities; 3) the discontinuities were delineated using false color images that were generated from ASTER, SIR C and band ratio images, 4) field observations, Very Low Frequency (VLF), magnetic investigations, and stable isotopic analyses for groundwater samples were then applied to refine satellite-based observations and selections, test the validity of our satellite-based methodologies for locating sub-vertical discontinuities, and decipher their role as conduits or barriers for groundwater flow. Findings include: (1) sub-vertical faults and shear zones and highly weathered chilled margins of sub-vertical mafic dykes are water-bearing and are conducive for groundwater flow; felsic dykes are massive (do not promote groundwater flow), (2) groundwater flow generally follows the topographic relief, but locally the flow is controlled by the discontinuities, (3

  10. Simulation of three-dimensional groundwater flow: Chapter A–Supplement 4

    USGS Publications Warehouse

    Suárez-Soto, René J.; Jones, Elliott; Maslia, Morris L.

    2013-01-01

    The purpose of the study described in this supplement of Chapter A (Supplement 4) is to construct, simulate, and calibrate a groundwater-flow model that represents the hydro-geologic framework and related groundwater-flow conditions described by Faye (2012) and Faye et al. (2013) within the vicinity of the Hadnot Point–Holcomb Boulevard (HPHB) study area, U.S. Marine Corp Base (USMCB) Camp Lejeune (Figure S4.1). Multiple variants of the groundwater-flow model were constructed and are described herein. The models simulate groundwater-flow conditions in the Brewster Boulevard, Tarawa Terrace, and Upper and Middle Castle Hayne aquifer systems from January 1942 to June 2008. Much of the discussion and analyses described herein parallel and partially duplicate methods and approaches described in similar reports of groundwater-flow investigations at Tarawa Terrace (TT) and vicinity by Faye and Valenzuela (2007). Model results were eventually used within several contaminant fate and transport models described by Jones et al. (2013) and Jang et al. (2013) for the historical reconstruction of finished-water3 concentrations within the service areas of the Hadnot Point and Holcomb Boulevard water treatment plants (HPWTP and HBWTP, respectively). This supplement focuses on the description of groundwater-flow model geometry, boundaries, hydraulic properties, calibration, and sensitivity analyses. 

  11. Hydrogeology and simulation of groundwater flow in the Arbuckle-Simpson aquifer, south-central Oklahoma

    USGS Publications Warehouse

    Christenson, Scott; Osborn, Noel I.; Neel, Christopher R.; Faith, Jason R.; Blome, Charles D.; Puckette, James; Pantea, Michael P.

    2011-01-01

    Groundwater in the aquifer moves from areas of high head (altitude) to areas of low head along streams and springs. The potentiometric surface in the eastern Arbuckle-Simpson aquifer generally slopes from a topographic high from northwest to the southeast, indicating that regional groundwater flow is predominantly toward the southeast. Freshwater is known to extend beyond the aquifer outcrop near the City of Sulphur, Oklahoma, and Chickasaw National Recreation Area, where groundwater flows west from the outcrop of the eastern Arbuckle-Simpson aquifer and becomes confin

  12. On methods of estimating cosmological bulk flows

    NASA Astrophysics Data System (ADS)

    Nusser, Adi

    2016-01-01

    We explore similarities and differences between several estimators of the cosmological bulk flow, B, from the observed radial peculiar velocities of galaxies. A distinction is made between two theoretical definitions of B as a dipole moment of the velocity field weighted by a radial window function. One definition involves the three-dimensional (3D) peculiar velocity, while the other is based on its radial component alone. Different methods attempt at inferring B for either of these definitions which coincide only for the case of a velocity field which is constant in space. We focus on the Wiener Filtering (WF) and the Constrained Minimum Variance (CMV) methodologies. Both methodologies require a prior expressed in terms of the radial velocity correlation function. Hoffman et al. compute B in Top-Hat windows from a WF realization of the 3D peculiar velocity field. Feldman et al. infer B directly from the observed velocities for the second definition of B. The WF methodology could easily be adapted to the second definition, in which case it will be equivalent to the CMV with the exception of the imposed constraint. For a prior with vanishing correlations or very noisy data, CMV reproduces the standard Maximum Likelihood estimation for B of the entire sample independent of the radial weighting function. Therefore, this estimator is likely more susceptible to observational biases that could be present in measurements of distant galaxies. Finally, two additional estimators are proposed.

  13. Estimating the Regional Flux of Nitrate and Agricultural Herbicide Compounds from Groundwater to Headwater Streams of the Northern Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Ator, S.; Denver, J. M.

    2011-12-01

    Agriculture is common in the Northern Atlantic Coastal Plain (NACP, including New Jersey through North Carolina), and groundwater discharge provides nitrogen (primarily in the form of nitrate) and herbicide compounds from agricultural sources along with the majority of flow to NACP streams. Poor water quality has contributed to ecological degradation of tidal streams and estuaries along much of the adjacent mid-Atlantic coast. Although statistical models have provided estimates of total instream nutrient flux in the Coastal Plain, the regional flux of nitrogen and herbicides during base flow is less well understood. We estimated the regional flux of nitrate and selected commonly used herbicide compounds from groundwater to non-tidal headwater streams of the NACP on the basis of late-winter or spring base-flow samples from 174 such streams. Sampled streams were selected using an unequal-probability random approach, and flux estimates are based on resulting population estimates rather than empirical models, which are commonly used for such estimates. Base-flow flux in the estimated 8,834 NACP non-tidal headwater streams are an estimated 21,200 kilograms per day of nitrate (as N) and 5.83, 0.565, and 20.7 kilograms per day of alachlor, atrazine, and metolachlor (including selected degradates), respectively. Base-flow flux of alachlor and metolachlor is dominated by degradates; flux of parent compounds is less than 3 percent of the total flux of parent plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications generally varies predictably with regional variations in hydrogeology. Abundant nonpoint (primarily agricultural) sources and hydrogeologic conditions, for example, contribute to particularly large base-flow flux from the Delmarva Peninsula to Chesapeake Bay. In the Delmarva Peninsula part of the Chesapeake Watershed, more than 10 percent of total nonpoint nitrogen applications is transported through groundwater to stream base flow

  14. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Mackay, R.; Nimmo, J. R.

    2012-07-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  15. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge

    USGS Publications Warehouse

    Cuthbert, M.O.; Mackay, R.; Nimmo, J.R.

    2012-01-01

    Results are presented of a detailed study into the vadose zone and shallow water table hydrodynamics of a field site in Shropshire, UK. A conceptual model is developed and tested using a range of numerical models, including a modified soil moisture balance model (SMBM) for estimating groundwater recharge in the presence of both diffuse and preferential flow components. Tensiometry reveals that the loamy sand topsoil wets up via macropore flow and subsequent redistribution of moisture into the soil matrix. Recharge does not occur until near-positive pressures are achieved at the top of the sandy glaciofluvial outwash material that underlies the topsoil, about 1 m above the water table. Once this occurs, very rapid water table rises follow. This threshold behaviour is attributed to the vertical discontinuity in the macropore system due to seasonal ploughing of the topsoil, and a lower permeability plough/iron pan restricting matrix flow between the topsoil and the lower outwash deposits. Although the wetting process in the topsoil is complex, a SMBM is shown to be effective in predicting the initiation of preferential flow from the base of the topsoil into the lower outwash horizon. The rapidity of the response at the water table and a water table rise during the summer period while flow gradients in the unsaturated profile were upward suggest that preferential flow is also occurring within the outwash deposits below the topsoil. A variation of the source-responsive model proposed by Nimmo (2010) is shown to reproduce the observed water table dynamics well in the lower outwash horizon when linked to a SMBM that quantifies the potential recharge from the topsoil. The results reveal new insights into preferential flow processes in cultivated soils and provide a useful and practical approach to accounting for preferential flow in studies of groundwater recharge estimation.

  16. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio; Tiedeman, Claire R.; O'Reilly, Andrew M.; Davis, Jeffery B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The east-central Florida transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration, runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into evapotranspiration, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5

  17. Groundwater flow and water budget in the surficial and Floridan aquifer systems in east-central Florida

    USGS Publications Warehouse

    Sepulveda, Nicasio; Tiedeman, Claire R.; O'Reilly, Andrew M.; Davis, Jeffrey B.; Burger, Patrick

    2012-01-01

    A numerical transient model of the surficial and Floridan aquifer systems in east-central Florida was developed to (1) increase the understanding of water exchanges between the surficial and the Floridan aquifer systems, (2) assess the recharge rates to the surficial aquifer system from infiltration through the unsaturated zone and (3) obtain a simulation tool that could be used by water-resource managers to assess the impact of changes in groundwater withdrawals on spring flows and on the potentiometric surfaces of the hydrogeologic units composing the Floridan aquifer system. The hydrogeology of east-central Florida was evaluated and used to develop and calibrate the groundwater flow model, which simulates the regional fresh groundwater flow system. The U.S. Geological Survey three-dimensional groundwater flow model, MODFLOW-2005, was used to simulate transient groundwater flow in the surficial, intermediate, and Floridan aquifer systems from 1995 to 2006. The East-Central Florida Transient model encompasses an actively simulated area of about 9,000 square miles. Although the model includes surficial processes-rainfall, irrigation, evapotranspiration (ET), runoff, infiltration, lake water levels, and stream water levels and flows-its primary purpose is to characterize and refine the understanding of groundwater flow in the Floridan aquifer system. Model-independent estimates of the partitioning of rainfall into ET, streamflow, and aquifer recharge are provided from a water-budget analysis of the surficial aquifer system. The interaction of the groundwater flow system with the surface environment was simulated using the Green-Ampt infiltration method and the MODFLOW-2005 Unsaturated-Zone Flow, Lake, and Streamflow-Routing Packages. The model is intended to simulate the part of the groundwater system that contains freshwater. The bottom and lateral boundaries of the model were established at the estimated depths where the chloride concentration is 5,000 milligrams

  18. Ramification of Channel Networks Incised by Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Yi, R. S.; Seybold, H. F.; Petroff, A. P.; Devauchelle, O.; Rothman, D.

    2011-12-01

    The geometry of channel networks has been a source of fascination since at least Leonardo da Vinci's time. Yet a comprehensive understanding of ramification---the mechanism of branching by which a stream network acquires its geometric complexity---remains elusive. To investigate the mechanisms of ramification and network growth, we consider channel growth driven by groundwater flow as a model system, analogous to a medical scientist's laboratory rat. We test our theoretical predictions through analysis of a particularly compelling example found on the Florida Panhandle north of Bristol. As our ultimate goal is to understand ramification and growth dynamics of the entire network, we build a computational model based on the following growth hypothesis: Channels grow in the direction that captures the maximum water flux. When there are two such directions, tips bifurcate. The direction of growth can be determined from the expansion of the ground water field around each tip, where each coefficient in this expansion has a physical interpretation. The first coefficient in the expansion determines the ground water discharge, leading to a straight growth of the channel. The second term describes the asymmetry in the water field leading to a bending of the stream in the direction of maximal water flux. The ratio between the first and the third coefficient determines a critical distance rc over which the tip feels inhomogeneities in the ground water table. This initiates then the splitting of the tip. In order to test our growth hypothesis and to determine rc, we grow the Florida network backward. At each time step we calculate the solution of the ground water field and determine the appropriate expansion coefficients around each tip. Comparing this simulation result to the predicted values provides us with a stringent measure for rc and the significance of our growth hypothesis.

  19. The impact of glaciations and glacial processes on groundwater flow dynamics: a numerical investigation

    NASA Astrophysics Data System (ADS)

    Sterckx, A.; Lemieux, J. M.; Vaikmae, R.

    2015-12-01

    Numerical models are widely used to investigate the impact of glaciations on groundwater flow systems because they can simulate complex glacial processes. However, it isn't clear which of these processes are relevant to adequately capture groundwater flow dynamics. Given the complexity of representing these processes in a numerical model and the paucity of field data available for their validation, it is of prime interest to assess how they impact groundwater flow and if any of these processes could be neglected. In order to assess the specific impact of glacial processes on groundwater flow dynamics, those processes were included in the numerical model FEFLOW and simulations were conducted in a simple conceptual model representing a 21 ky glacial cycle in a sedimentary basin. The following processes have been simulated: subglacial recharge, linear and non-linear compaction of the porous medium under the weight of the ice, isostasy, proglacial lakes, as well as permafrost. Solute transport was simulated along with groundwater flow to track groundwater originating from the ice-sheet. To interpret the results, a base case scenario considering only subglacial recharge was selected and compared with the other scenarios, where individual glacial processes were simulated. When comparing the results at the end of the simulations, it appears that most of the aforementioned glacial processes don't lead to a significant difference in meltwater distribution with respect to the base case. Only hydromechanical coupling brings some noticeable change. Conversely, the type and the value of the boundary condition applied at the base of the ice-sheet play a major role in groundwater flow dynamics. The presence of confining hydrogeological units also seems to be a key to understand the long-term effect of glaciations. These results suggest that some of the glacial processes may be neglected for the simulation of groundwater flow dynamics during a glacial period.

  20. Regional groundwater-flow model of the Redwall-Muav, Coconino, and alluvial basin aquifer systems of northern and central Arizona

    USGS Publications Warehouse

    Pool, D.R.; Blasch, Kyle W.; Callegary, James B.; Leake, Stanley A.; Graser, Leslie F.

    2011-01-01

    A numerical flow model (MODFLOW) of the groundwater flow system in the primary aquifers in northern Arizona was developed to simulate interactions between the aquifers, perennial streams, and springs for predevelopment and transient conditions during 1910 through 2005. Simulated aquifers include the Redwall-Muav, Coconino, and basin-fill aquifers. Perennial stream reaches and springs that derive base flow from the aquifers were simulated, including the Colorado River, Little Colorado River, Salt River, Verde River, and perennial reaches of tributary streams. Simulated major springs include Blue Spring, Del Rio Springs, Havasu Springs, Verde River headwater springs, several springs that discharge adjacent to major Verde River tributaries, and many springs that discharge to the Colorado River. Estimates of aquifer hydraulic properties and groundwater budgets were developed from published reports and groundwater-flow models. Spatial extents of aquifers and confining units were developed from geologic data, geophysical models, a groundwater-flow model for the Prescott Active Management Area, drill logs, geologic logs, and geophysical logs. Spatial and temporal distributions of natural recharge were developed by using a water-balance model that estimates recharge from direct infiltration. Additional natural recharge from ephemeral channel infiltration was simulated in alluvial basins. Recharge at wastewater treatment facilities and incidental recharge at agricultural fields and golf courses were also simulated. Estimates of predevelopment rates of groundwater discharge to streams, springs, and evapotranspiration by phreatophytes were derived from previous reports and on the basis of streamflow records at gages. Annual estimates of groundwater withdrawals for agriculture, municipal, industrial, and domestic uses were developed from several sources, including reported withdrawals for nonexempt wells, estimated crop requirements for agricultural wells, and estimated per

  1. Ground-water flow in the Gulf Coast aquifer systems, south-central United States

    USGS Publications Warehouse

    Williamson, A.K.; Grubb, H.F.

    2001-01-01

    The Gulf Coast regional aquifer systems constitute one of the largest, most complicated, and most interdependent aquifer systems in the United States. Ground-water flow in a 230,000-square-mile area of the south-central United States was modeled for the effect of withdrawing freshwater at the rate of nearly 10 billion gallons per day in 1985 from regional aquifers in the Mississippi Embayment, the Texas coastal uplands, and the coastal lowlands aquifer systems. The 1985 rate of pumping was three times the average rate of recharge to the aquifers before development. The report also estimates the effects of even greater withdrawal rates in the aquifer systems. About two-thirds of the water in the aquifers is saline to brine, which complicates the modeling. Land subsidence due to water withdrawal also was modeled.

  2. Simulation of the Groundwater-Flow System in Pierce, Polk, and St. Croix Counties, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    Groundwater is the sole source of residential water supply in Pierce, Polk, and St. Croix Counties, Wisconsin. A regional three-dimensional groundwater-flow model and three associated demonstration inset models were developed to simulate the groundwater-flow systems in the three-county area. The models were developed by the U.S. Geological Survey in cooperation with the three county governments. The objectives of the regional model of Pierce, Polk, and St. Croix Counties were to improve understanding of the groundwaterflow system and to develop a tool suitable for evaluating the effects of potential water-management programs. The regional groundwater-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, groundwater/surface-water interactions, and groundwater withdrawals from high-capacity wells. Results from the regional model indicate that about 82 percent of groundwater in the three counties is from recharge within the counties; 15 percent is from surface-water sources, consisting primarily of recirculated groundwater seepage in areas with abrupt surface-water-level changes, such as near waterfalls, dams, and the downgradient side of reservoirs and lakes; and 4 percent is from inflow across the county boundaries. Groundwater flow out of the counties is to streams (85 percent), outflow across county boundaries (14 percent), and pumping wells (1 percent). These results demonstrate that the primary source of groundwater withdrawn by pumping wells is water that recharges within the counties and would otherwise discharge to local streams and lakes. Under current conditions, the St. Croix and Mississippi Rivers are groundwater discharge locations (gaining reaches) and appear to function as 'fully penetrating' hydraulic boundaries such that groundwater does not cross between Wisconsin and Minnesota beneath them. Being hydraulic boundaries, however, they can change in response to

  3. Application of hydrogeology