Sample records for estimate method based

  1. Growth and mortality of larval sunfish in backwaters of the upper Mississippi River

    USGS Publications Warehouse

    Zigler, S.J.; Jennings, C.A.

    1993-01-01

    The authors estimated the growth and mortality of larval sunfish Lepomis spp. in backwater habitats of the upper Mississippi River with an otolith-based method and a length-based method. Fish were sampled with plankton nets at one station in Navigation Pools 8 and 14 in 1989 and at two stations in Pool 8 in 1990. For both methods, growth was modeled with an exponential equation, and instantaneous mortality was estimated by regressing the natural logarithm of fish catch for each 1-mm size-group against the estimated age of the group, which was derived from the growth equations. At two of the stations, the otolith-based method provided more precise estimates of sunfish growth than the length-based method. We were able to compare length-based and otolith-based estimates of sunfish mortality only at the two stations where we caught the largest numbers of sunfish. Estimates of mortality were similar for both methods in Pool 14, where catches were higher, but the length-based method gave significantly higher estimates in Pool 8, where the catches were lower. The otolith- based method required more laboratory analysis, but provided better estimates of the growth and mortality than the length-based method when catches were low. However, the length-based method was more cost- effective for estimating growth and mortality when catches were large.

  2. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation.

    PubMed

    Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U

    2011-04-01

    In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Shrinkage regression-based methods for microarray missing value imputation.

    PubMed

    Wang, Hsiuying; Chiu, Chia-Chun; Wu, Yi-Ching; Wu, Wei-Sheng

    2013-01-01

    Missing values commonly occur in the microarray data, which usually contain more than 5% missing values with up to 90% of genes affected. Inaccurate missing value estimation results in reducing the power of downstream microarray data analyses. Many types of methods have been developed to estimate missing values. Among them, the regression-based methods are very popular and have been shown to perform better than the other types of methods in many testing microarray datasets. To further improve the performances of the regression-based methods, we propose shrinkage regression-based methods. Our methods take the advantage of the correlation structure in the microarray data and select similar genes for the target gene by Pearson correlation coefficients. Besides, our methods incorporate the least squares principle, utilize a shrinkage estimation approach to adjust the coefficients of the regression model, and then use the new coefficients to estimate missing values. Simulation results show that the proposed methods provide more accurate missing value estimation in six testing microarray datasets than the existing regression-based methods do. Imputation of missing values is a very important aspect of microarray data analyses because most of the downstream analyses require a complete dataset. Therefore, exploring accurate and efficient methods for estimating missing values has become an essential issue. Since our proposed shrinkage regression-based methods can provide accurate missing value estimation, they are competitive alternatives to the existing regression-based methods.

  4. Comparisons of Four Methods for Estimating a Dynamic Factor Model

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R.

    2008-01-01

    Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…

  5. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species

    USGS Publications Warehouse

    Then, Amy Y.; Hoenig, John M; Hall, Norman G.; Hewitt, David A.

    2015-01-01

    Many methods have been developed in the last 70 years to predict the natural mortality rate, M, of a stock based on empirical evidence from comparative life history studies. These indirect or empirical methods are used in most stock assessments to (i) obtain estimates of M in the absence of direct information, (ii) check on the reasonableness of a direct estimate of M, (iii) examine the range of plausible M estimates for the stock under consideration, and (iv) define prior distributions for Bayesian analyses. The two most cited empirical methods have appeared in the literature over 2500 times to date. Despite the importance of these methods, there is no consensus in the literature on how well these methods work in terms of prediction error or how their performance may be ranked. We evaluate estimators based on various combinations of maximum age (tmax), growth parameters, and water temperature by seeing how well they reproduce >200 independent, direct estimates of M. We use tenfold cross-validation to estimate the prediction error of the estimators and to rank their performance. With updated and carefully reviewed data, we conclude that a tmax-based estimator performs the best among all estimators evaluated. The tmax-based estimators in turn perform better than the Alverson–Carney method based on tmax and the von Bertalanffy K coefficient, Pauly’s method based on growth parameters and water temperature and methods based just on K. It is possible to combine two independent methods by computing a weighted mean but the improvement over the tmax-based methods is slight. Based on cross-validation prediction error, model residual patterns, model parsimony, and biological considerations, we recommend the use of a tmax-based estimator (M=4.899tmax−0.916">M=4.899t−0.916maxM=4.899tmax−0.916, prediction error = 0.32) when possible and a growth-based method (M=4.118K0.73L∞−0.33">M=4.118K0.73L−0.33∞M=4.118K0.73L∞−0.33 , prediction error = 0.6, length in cm) otherwise.

  6. Investigating the Importance of the Pocket-estimation Method in Pocket-based Approaches: An Illustration Using Pocket-ligand Classification.

    PubMed

    Caumes, Géraldine; Borrel, Alexandre; Abi Hussein, Hiba; Camproux, Anne-Claude; Regad, Leslie

    2017-09-01

    Small molecules interact with their protein target on surface cavities known as binding pockets. Pocket-based approaches are very useful in all of the phases of drug design. Their first step is estimating the binding pocket based on protein structure. The available pocket-estimation methods produce different pockets for the same target. The aim of this work is to investigate the effects of different pocket-estimation methods on the results of pocket-based approaches. We focused on the effect of three pocket-estimation methods on a pocket-ligand (PL) classification. This pocket-based approach is useful for understanding the correspondence between the pocket and ligand spaces and to develop pharmacological profiling models. We found pocket-estimation methods yield different binding pockets in terms of boundaries and properties. These differences are responsible for the variation in the PL classification results that can have an impact on the detected correspondence between pocket and ligand profiles. Thus, we highlighted the importance of the pocket-estimation method choice in pocket-based approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Comparative Analysis of Various Single-tone Frequency Estimation Techniques in High-order Instantaneous Moments Based Phase Estimation Method

    NASA Astrophysics Data System (ADS)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2010-04-01

    For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.

  8. Hospitalization costs of severe bacterial pneumonia in children: comparative analysis considering different costing methods

    PubMed Central

    Nunes, Sheila Elke Araujo; Minamisava, Ruth; Vieira, Maria Aparecida da Silva; Itria, Alexander; Pessoa, Vicente Porfirio; de Andrade, Ana Lúcia Sampaio Sgambatti; Toscano, Cristiana Maria

    2017-01-01

    ABSTRACT Objective To determine and compare hospitalization costs of bacterial community-acquired pneumonia cases via different costing methods under the Brazilian Public Unified Health System perspective. Methods Cost-of-illness study based on primary data collected from a sample of 59 children aged between 28 days and 35 months and hospitalized due to bacterial pneumonia. Direct medical and non-medical costs were considered and three costing methods employed: micro-costing based on medical record review, micro-costing based on therapeutic guidelines and gross-costing based on the Brazilian Public Unified Health System reimbursement rates. Costs estimates obtained via different methods were compared using the Friedman test. Results Cost estimates of inpatient cases of severe pneumonia amounted to R$ 780,70/$Int. 858.7 (medical record review), R$ 641,90/$Int. 706.90 (therapeutic guidelines) and R$ 594,80/$Int. 654.28 (Brazilian Public Unified Health System reimbursement rates). Costs estimated via micro-costing (medical record review or therapeutic guidelines) did not differ significantly (p=0.405), while estimates based on reimbursement rates were significantly lower compared to estimates based on therapeutic guidelines (p<0.001) or record review (p=0.006). Conclusion Brazilian Public Unified Health System costs estimated via different costing methods differ significantly, with gross-costing yielding lower cost estimates. Given costs estimated by different micro-costing methods are similar and costing methods based on therapeutic guidelines are easier to apply and less expensive, this method may be a valuable alternative for estimation of hospitalization costs of bacterial community-acquired pneumonia in children. PMID:28767921

  9. Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE

    NASA Astrophysics Data System (ADS)

    Itai, Akitoshi; Yasukawa, Hiroshi

    This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.

  10. Groundwater Evapotranspiration from Diurnal Water Table Fluctuation: a Modified White Based Method Using Drainable and Fillable Porosity

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Mylavarapu, R.; Jawitz, J. W.

    2012-12-01

    In shallow unconfined aquifers, the water table usually shows a distinct diurnal fluctuation pattern corresponding to the twenty-four hour solar radiation cycle. This diurnal water table fluctuation (DWTF) signal can be used to estimate the groundwater evapotranspiration (ETg) by vegetation, a method known as the White [1932] method. Water table fluctuations in shallow phreatic aquifers is controlled by two distinct storage parameters, drainable porosity (or specific yield) and the fillable porosity. Yet, it is implicitly assumed in most studies that these two parameters are equal, unless hysteresis effect is considered. The White based method available in the literature is also based on a single drainable porosity parameter to estimate the ETg. In this study, we present a modification of the White based method to estimate ETg from DWTF using separate drainable (λd) and fillable porosity (λf) parameters. Separate analytical expressions based on successive steady state moisture profiles are used to estimate λd and λf, instead of the commonly employed hydrostatic moisture profile approach. The modified method is then applied to estimate ETg using the DWTF data observed in a field in northeast Florida and the results are compared with ET estimations from the standard Penman-Monteith equation. It is found that the modified method resulted in significantly better estimates of ETg than the previously available method that used only a single, hydrostatic-moisture-profile based λd. Furthermore, the modified method is also used to estimate ETg even during rainfall events which produced significantly better estimates of ETg as compared to the single λd parameter method.

  11. Estimation of channel parameters and background irradiance for free-space optical link.

    PubMed

    Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk

    2013-05-10

    Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.

  12. Estimation of selected streamflow statistics for a network of low-flow partial-record stations in areas affected by Base Realignment and Closure (BRAC) in Maryland

    USGS Publications Warehouse

    Ries, Kernell G.; Eng, Ken

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, operated a network of 20 low-flow partial-record stations during 2008 in a region that extends from southwest of Baltimore to the northeastern corner of Maryland to obtain estimates of selected streamflow statistics at the station locations. The study area is expected to face a substantial influx of new residents and businesses as a result of military and civilian personnel transfers associated with the Federal Base Realignment and Closure Act of 2005. The estimated streamflow statistics, which include monthly 85-percent duration flows, the 10-year recurrence-interval minimum base flow, and the 7-day, 10-year low flow, are needed to provide a better understanding of the availability of water resources in the area to be affected by base-realignment activities. Streamflow measurements collected for this study at the low-flow partial-record stations and measurements collected previously for 8 of the 20 stations were related to concurrent daily flows at nearby index streamgages to estimate the streamflow statistics. Three methods were used to estimate the streamflow statistics and two methods were used to select the index streamgages. Of the three methods used to estimate the streamflow statistics, two of them--the Moments and MOVE1 methods--rely on correlating the streamflow measurements at the low-flow partial-record stations with concurrent streamflows at nearby, hydrologically similar index streamgages to determine the estimates. These methods, recommended for use by the U.S. Geological Survey, generally require about 10 streamflow measurements at the low-flow partial-record station. The third method transfers the streamflow statistics from the index streamgage to the partial-record station based on the average of the ratios of the measured streamflows at the partial-record station to the concurrent streamflows at the index streamgage. This method can be used with as few as one pair of streamflow measurements made on a single streamflow recession at the low-flow partial-record station, although additional pairs of measurements will increase the accuracy of the estimates. Errors associated with the two correlation methods generally were lower than the errors associated with the flow-ratio method, but the advantages of the flow-ratio method are that it can produce reasonably accurate estimates from streamflow measurements much faster and at lower cost than estimates obtained using the correlation methods. The two index-streamgage selection methods were (1) selection based on the highest correlation coefficient between the low-flow partial-record station and the index streamgages, and (2) selection based on Euclidean distance, where the Euclidean distance was computed as a function of geographic proximity and the basin characteristics: drainage area, percentage of forested area, percentage of impervious area, and the base-flow recession time constant, t. Method 1 generally selected index streamgages that were significantly closer to the low-flow partial-record stations than method 2. The errors associated with the estimated streamflow statistics generally were lower for method 1 than for method 2, but the differences were not statistically significant. The flow-ratio method for estimating streamflow statistics at low-flow partial-record stations was shown to be independent from the two correlation-based estimation methods. As a result, final estimates were determined for eight low-flow partial-record stations by weighting estimates from the flow-ratio method with estimates from one of the two correlation methods according to the respective variances of the estimates. Average standard errors of estimate for the final estimates ranged from 90.0 to 7.0 percent, with an average value of 26.5 percent. Average standard errors of estimate for the weighted estimates were, on average, 4.3 percent less than the best average standard errors of estima

  13. Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba, Brazil.

    PubMed

    Salganik, Matthew J; Fazito, Dimitri; Bertoni, Neilane; Abdo, Alexandre H; Mello, Maeve B; Bastos, Francisco I

    2011-11-15

    One of the many challenges hindering the global response to the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic is the difficulty of collecting reliable information about the populations most at risk for the disease. Thus, the authors empirically assessed a promising new method for estimating the sizes of most at-risk populations: the network scale-up method. Using 4 different data sources, 2 of which were from other researchers, the authors produced 5 estimates of the number of heavy drug users in Curitiba, Brazil. The authors found that the network scale-up and generalized network scale-up estimators produced estimates 5-10 times higher than estimates made using standard methods (the multiplier method and the direct estimation method using data from 2004 and 2010). Given that equally plausible methods produced such a wide range of results, the authors recommend that additional studies be undertaken to compare estimates based on the scale-up method with those made using other methods. If scale-up-based methods routinely produce higher estimates, this would suggest that scale-up-based methods are inappropriate for populations most at risk of HIV/AIDS or that standard methods may tend to underestimate the sizes of these populations.

  14. Investigation to realize a computationally efficient implementation of the high-order instantaneous-moments-based fringe analysis method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, Gannavarpu; Rastogi, Pramod

    2010-06-01

    Recently, a high-order instantaneous moments (HIM)-operator-based method was proposed for accurate phase estimation in digital holographic interferometry. The method relies on piece-wise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients from the HIM operator using single-tone frequency estimation. The work presents a comparative analysis of the performance of different single-tone frequency estimation techniques, like Fourier transform followed by optimization, estimation of signal parameters by rotational invariance technique (ESPRIT), multiple signal classification (MUSIC), and iterative frequency estimation by interpolation on Fourier coefficients (IFEIF) in HIM-operator-based methods for phase estimation. Simulation and experimental results demonstrate the potential of the IFEIF technique with respect to computational efficiency and estimation accuracy.

  15. Estimating the Entropy of Binary Time Series: Methodology, Some Theory and a Simulation Study

    NASA Astrophysics Data System (ADS)

    Gao, Yun; Kontoyiannis, Ioannis; Bienenstock, Elie

    2008-06-01

    Partly motivated by entropy-estimation problems in neuroscience, we present a detailed and extensive comparison between some of the most popular and effective entropy estimation methods used in practice: The plug-in method, four different estimators based on the Lempel-Ziv (LZ) family of data compression algorithms, an estimator based on the Context-Tree Weighting (CTW) method, and the renewal entropy estimator. METHODOLOGY: Three new entropy estimators are introduced; two new LZ-based estimators, and the “renewal entropy estimator,” which is tailored to data generated by a binary renewal process. For two of the four LZ-based estimators, a bootstrap procedure is described for evaluating their standard error, and a practical rule of thumb is heuristically derived for selecting the values of their parameters in practice. THEORY: We prove that, unlike their earlier versions, the two new LZ-based estimators are universally consistent, that is, they converge to the entropy rate for every finite-valued, stationary and ergodic process. An effective method is derived for the accurate approximation of the entropy rate of a finite-state hidden Markov model (HMM) with known distribution. Heuristic calculations are presented and approximate formulas are derived for evaluating the bias and the standard error of each estimator. SIMULATION: All estimators are applied to a wide range of data generated by numerous different processes with varying degrees of dependence and memory. The main conclusions drawn from these experiments include: (i) For all estimators considered, the main source of error is the bias. (ii) The CTW method is repeatedly and consistently seen to provide the most accurate results. (iii) The performance of the LZ-based estimators is often comparable to that of the plug-in method. (iv) The main drawback of the plug-in method is its computational inefficiency; with small word-lengths it fails to detect longer-range structure in the data, and with longer word-lengths the empirical distribution is severely undersampled, leading to large biases.

  16. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    USGS Publications Warehouse

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  17. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System.

    PubMed

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-02-20

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequencydomain and achieves computational complexity reduction.

  18. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  19. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  20. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales.

    PubMed

    Tie, Qiang; Hu, Hongchang; Tian, Fuqiang; Holbrook, N Michele

    2018-08-15

    Accurately estimating forest evapotranspiration and its components is of great importance for hydrology, ecology, and meteorology. In this study, a comparison of methods for determining forest evapotranspiration and its components at annual, monthly, daily, and diurnal scales was conducted based on in situ measurements in the subhumid mountainous forest of North China. The goal of the study was to evaluate the accuracies and reliabilities of the different methods. The results indicate the following: (1) The sap flow upscaling procedure, taking into account diversities in forest types and tree species, produced component-based forest evapotranspiration estimate that agreed with eddy covariance-based estimate at the temporal scales of year, month, and day, while soil water budget-based forest evapotranspiration estimate was also qualitatively consistent with eddy covariance-based estimate at the daily scale; (2) At the annual scale, catchment water balance-based forest evapotranspiration estimate was significantly higher than eddy covariance-based estimate, which might probably result from non-negligible subsurface runoff caused by the widely distributed regolith and fractured bedrock under the ground; (3) At the sub-daily scale, the diurnal course of sap flow based-canopy transpiration estimate lagged significantly behind eddy covariance-based forest evapotranspiration estimate, which might physiologically be due to stem water storage and stem hydraulic conductivity. The results in this region may have much referential significance for forest evapotranspiration estimation and method evaluation in regions with similar environmental conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Talker Localization Based on Interference between Transmitted and Reflected Audible Sound

    NASA Astrophysics Data System (ADS)

    Nakayama, Masato; Nakasako, Noboru; Shinohara, Toshihiro; Uebo, Tetsuji

    In many engineering fields, distance to targets is very important. General distance measurement method uses a time delay between transmitted and reflected waves, but it is difficult to estimate the short distance. On the other hand, the method using phase interference to measure the short distance has been known in the field of microwave radar. Therefore, we have proposed the distance estimation method based on interference between transmitted and reflected audible sound, which can measure the distance between microphone and target with one microphone and one loudspeaker. In this paper, we propose talker localization method based on distance estimation using phase interference. We expand the distance estimation method using phase interference into two microphones (microphone array) in order to estimate talker position. The proposed method can estimate talker position by measuring the distance and direction between target and microphone array. In addition, talker's speech is regarded as a noise in the proposed method. Therefore, we also propose combination of the proposed method and CSP (Cross-power Spectrum Phase analysis) method which is one of the DOA (Direction Of Arrival) estimation methods. We evaluated the performance of talker localization in real environments. The experimental result shows the effectiveness of the proposed method.

  2. An Improved Azimuth Angle Estimation Method with a Single Acoustic Vector Sensor Based on an Active Sonar Detection System

    PubMed Central

    Zhao, Anbang; Ma, Lin; Ma, Xuefei; Hui, Juan

    2017-01-01

    In this paper, an improved azimuth angle estimation method with a single acoustic vector sensor (AVS) is proposed based on matched filtering theory. The proposed method is mainly applied in an active sonar detection system. According to the conventional passive method based on complex acoustic intensity measurement, the mathematical and physical model of this proposed method is described in detail. The computer simulation and lake experiments results indicate that this method can realize the azimuth angle estimation with high precision by using only a single AVS. Compared with the conventional method, the proposed method achieves better estimation performance. Moreover, the proposed method does not require complex operations in frequency-domain and achieves computational complexity reduction. PMID:28230763

  3. Index cost estimate based BIM method - Computational example for sports fields

    NASA Astrophysics Data System (ADS)

    Zima, Krzysztof

    2017-07-01

    The paper presents an example ofcost estimation in the early phase of the project. The fragment of relative database containing solution, descriptions, geometry of construction object and unit cost of sports facilities was shown. The Index Cost Estimate Based BIM method calculationswith use of Case Based Reasoning were presented, too. The article presentslocal and global similarity measurement and example of BIM based quantity takeoff process. The outcome of cost calculations based on CBR method was presented as a final result of calculations.

  4. Computing travel time when the exact address is unknown: a comparison of point and polygon ZIP code approximation methods.

    PubMed

    Berke, Ethan M; Shi, Xun

    2009-04-29

    Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.

  5. Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†

    PubMed Central

    Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia

    2015-01-01

    Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144

  6. Information fusion methods based on physical laws.

    PubMed

    Rao, Nageswara S V; Reister, David B; Barhen, Jacob

    2005-01-01

    We consider systems whose parameters satisfy certain easily computable physical laws. Each parameter is directly measured by a number of sensors, or estimated using measurements, or both. The measurement process may introduce both systematic and random errors which may then propagate into the estimates. Furthermore, the actual parameter values are not known since every parameter is measured or estimated, which makes the existing sample-based fusion methods inapplicable. We propose a fusion method for combining the measurements and estimators based on the least violation of physical laws that relate the parameters. Under fairly general smoothness and nonsmoothness conditions on the physical laws, we show the asymptotic convergence of our method and also derive distribution-free performance bounds based on finite samples. For suitable choices of the fuser classes, we show that for each parameter the fused estimate is probabilistically at least as good as its best measurement as well as best estimate. We illustrate the effectiveness of this method for a practical problem of fusing well-log data in methane hydrate exploration.

  7. Testing survey-based methods for rapid monitoring of child mortality, with implications for summary birth history data.

    PubMed

    Brady, Eoghan; Hill, Kenneth

    2017-01-01

    Under-five mortality estimates are increasingly used in low and middle income countries to target interventions and measure performance against global development goals. Two new methods to rapidly estimate under-5 mortality based on Summary Birth Histories (SBH) were described in a previous paper and tested with data available. This analysis tests the methods using data appropriate to each method from 5 countries that lack vital registration systems. SBH data are collected across many countries through censuses and surveys, and indirect methods often rely upon their quality to estimate mortality rates. The Birth History Imputation method imputes data from a recent Full Birth History (FBH) onto the birth, death and age distribution of the SBH to produce estimates based on the resulting distribution of child mortality. DHS FBHs and MICS SBHs are used for all five countries. In the implementation, 43 of 70 estimates are within 20% of validation estimates (61%). Mean Absolute Relative Error is 17.7.%. 1 of 7 countries produces acceptable estimates. The Cohort Change method considers the differences in births and deaths between repeated Summary Birth Histories at 1 or 2-year intervals to estimate the mortality rate in that period. SBHs are taken from Brazil's PNAD Surveys 2004-2011 and validated against IGME estimates. 2 of 10 estimates are within 10% of validation estimates. Mean absolute relative error is greater than 100%. Appropriate testing of these new methods demonstrates that they do not produce sufficiently good estimates based on the data available. We conclude this is due to the poor quality of most SBH data included in the study. This has wider implications for the next round of censuses and future household surveys across many low- and middle- income countries.

  8. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  9. Estimation of bio-signal based on human motion for integrated visualization of daily-life.

    PubMed

    Umetani, Tomohiro; Matsukawa, Tsuyoshi; Yokoyama, Kiyoko

    2007-01-01

    This paper describes a method for the estimation of bio-signals based on human motion in daily life for an integrated visualization system. The recent advancement of computers and measurement technology has facilitated the integrated visualization of bio-signals and human motion data. It is desirable to obtain a method to understand the activities of muscles based on human motion data and evaluate the change in physiological parameters according to human motion for visualization applications. We suppose that human motion is generated by the activities of muscles reflected from the brain to bio-signals such as electromyograms. This paper introduces a method for the estimation of bio-signals based on neural networks. This method can estimate the other physiological parameters based on the same procedure. The experimental results show the feasibility of the proposed method.

  10. Adaptive Modal Identification for Flutter Suppression Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.

    2016-01-01

    In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.

  11. An adjoint-based simultaneous estimation method of the asthenosphere's viscosity and afterslip using a fast and scalable finite-element adjoint solver

    NASA Astrophysics Data System (ADS)

    Agata, Ryoichiro; Ichimura, Tsuyoshi; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo

    2018-04-01

    The simultaneous estimation of the asthenosphere's viscosity and coseismic slip/afterslip is expected to improve largely the consistency of the estimation results to observation data of crustal deformation collected in widely spread observation points, compared to estimations of slips only. Such an estimate can be formulated as a non-linear inverse problem of material properties of viscosity and input force that is equivalent to fault slips based on large-scale finite-element (FE) modeling of crustal deformation, in which the degree of freedom is in the order of 109. We formulated and developed a computationally efficient adjoint-based estimation method for this inverse problem, together with a fast and scalable FE solver for the associated forward and adjoint problems. In a numerical experiment that imitates the 2011 Tohoku-Oki earthquake, the advantage of the proposed method is confirmed by comparing the estimated results with those obtained using simplified estimation methods. The computational cost required for the optimization shows that the proposed method enabled the targeted estimation to be completed with moderate amount of computational resources.

  12. Methods for determining time of death.

    PubMed

    Madea, Burkhard

    2016-12-01

    Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.

  13. Parameter estimation methods for gene circuit modeling from time-series mRNA data: a comparative study.

    PubMed

    Fan, Ming; Kuwahara, Hiroyuki; Wang, Xiaolei; Wang, Suojin; Gao, Xin

    2015-11-01

    Parameter estimation is a challenging computational problem in the reverse engineering of biological systems. Because advances in biotechnology have facilitated wide availability of time-series gene expression data, systematic parameter estimation of gene circuit models from such time-series mRNA data has become an important method for quantitatively dissecting the regulation of gene expression. By focusing on the modeling of gene circuits, we examine here the performance of three types of state-of-the-art parameter estimation methods: population-based methods, online methods and model-decomposition-based methods. Our results show that certain population-based methods are able to generate high-quality parameter solutions. The performance of these methods, however, is heavily dependent on the size of the parameter search space, and their computational requirements substantially increase as the size of the search space increases. In comparison, online methods and model decomposition-based methods are computationally faster alternatives and are less dependent on the size of the search space. Among other things, our results show that a hybrid approach that augments computationally fast methods with local search as a subsequent refinement procedure can substantially increase the quality of their parameter estimates to the level on par with the best solution obtained from the population-based methods while maintaining high computational speed. These suggest that such hybrid methods can be a promising alternative to the more commonly used population-based methods for parameter estimation of gene circuit models when limited prior knowledge about the underlying regulatory mechanisms makes the size of the parameter search space vastly large. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. A time-frequency analysis method to obtain stable estimates of magnetotelluric response function based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Cai, Jianhua

    2017-05-01

    The time-frequency analysis method represents signal as a function of time and frequency, and it is considered a powerful tool for handling arbitrary non-stationary time series by using instantaneous frequency and instantaneous amplitude. It also provides a possible alternative to the analysis of the non-stationary magnetotelluric (MT) signal. Based on the Hilbert-Huang transform (HHT), a time-frequency analysis method is proposed to obtain stable estimates of the magnetotelluric response function. In contrast to conventional methods, the response function estimation is performed in the time-frequency domain using instantaneous spectra rather than in the frequency domain, which allows for imaging the response parameter content as a function of time and frequency. The theory of the method is presented and the mathematical model and calculation procedure, which are used to estimate response function based on HHT time-frequency spectrum, are discussed. To evaluate the results, response function estimates are compared with estimates from a standard MT data processing method based on the Fourier transform. All results show that apparent resistivities and phases, which are calculated from the HHT time-frequency method, are generally more stable and reliable than those determined from the simple Fourier analysis. The proposed method overcomes the drawbacks of the traditional Fourier methods, and the resulting parameter minimises the estimation bias caused by the non-stationary characteristics of the MT data.

  15. Comparison Between the Use of SAR and Optical Data for Wheat Yield Estimations Using Crop Model Assimilation

    NASA Astrophysics Data System (ADS)

    Silvestro, Paolo Cosmo; Yang, Hao; Jin, X. L.; Yang, Guijun; Casa, Raffaele; Pignatti, Stefano

    2016-08-01

    The ultimate aim of this work is to develop methods for the assimilation of the biophysical variables estimated by remote sensing in a suitable crop growth model. Two strategies were followed, one based on the use of Leaf Area Index (LAI) estimated by optical data, and the other based on the use of biomass estimated by SAR. The first one estimates LAI from the reflectance measured by the optical sensors on board of HJ1A, HJ1B and Landsat, using a method based on the training of artificial neural networks (ANN) with PROSAIL model simulations. The retrieved LAI is used to improve wheat yield estimation, using assimilation methods based on the Ensemble Kalman Filter, which assimilate the biophysical variables into growth crop model. The second strategy estimates biomass from SAR imagery. Polarimetric decomposition methods were used based on multi-temporal fully polarimetric Radarsat-2 data during the entire growing season. The estimated biomass was assimilating to FAO Aqua crop model for improving the winter wheat yield estimation, with the Particle Swarm Optimization (PSO) method. These procedures were used in a spatial application with data collected in the rural area of Yangling (Shaanxi Province) in 2014 and were validated for a number of wheat fields for which ground yield data had been recorded and according to statistical yield data for the area.

  16. The problem of estimating recent genetic connectivity in a changing world.

    PubMed

    Samarasin, Pasan; Shuter, Brian J; Wright, Stephen I; Rodd, F Helen

    2017-02-01

    Accurate understanding of population connectivity is important to conservation because dispersal can play an important role in population dynamics, microevolution, and assessments of extirpation risk and population rescue. Genetic methods are increasingly used to infer population connectivity because advances in technology have made them more advantageous (e.g., cost effective) relative to ecological methods. Given the reductions in wildlife population connectivity since the Industrial Revolution and more recent drastic reductions from habitat loss, it is important to know the accuracy of and biases in genetic connectivity estimators when connectivity has declined recently. Using simulated data, we investigated the accuracy and bias of 2 common estimators of migration (movement of individuals among populations) rate. We focused on the timing of the connectivity change and the magnitude of that change on the estimates of migration by using a coalescent-based method (Migrate-n) and a disequilibrium-based method (BayesAss). Contrary to expectations, when historically high connectivity had declined recently: (i) both methods over-estimated recent migration rates; (ii) the coalescent-based method (Migrate-n) provided better estimates of recent migration rate than the disequilibrium-based method (BayesAss); (iii) the coalescent-based method did not accurately reflect long-term genetic connectivity. Overall, our results highlight the problems with comparing coalescent and disequilibrium estimates to make inferences about the effects of recent landscape change on genetic connectivity among populations. We found that contrasting these 2 estimates to make inferences about genetic-connectivity changes over time could lead to inaccurate conclusions. © 2016 Society for Conservation Biology.

  17. New methods of testing nonlinear hypothesis using iterative NLLS estimator

    NASA Astrophysics Data System (ADS)

    Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.

    2017-11-01

    This research paper discusses the method of testing nonlinear hypothesis using iterative Nonlinear Least Squares (NLLS) estimator. Takeshi Amemiya [1] explained this method. However in the present research paper, a modified Wald test statistic due to Engle, Robert [6] is proposed to test the nonlinear hypothesis using iterative NLLS estimator. An alternative method for testing nonlinear hypothesis using iterative NLLS estimator based on nonlinear hypothesis using iterative NLLS estimator based on nonlinear studentized residuals has been proposed. In this research article an innovative method of testing nonlinear hypothesis using iterative restricted NLLS estimator is derived. Pesaran and Deaton [10] explained the methods of testing nonlinear hypothesis. This paper uses asymptotic properties of nonlinear least squares estimator proposed by Jenrich [8]. The main purpose of this paper is to provide very innovative methods of testing nonlinear hypothesis using iterative NLLS estimator, iterative NLLS estimator based on nonlinear studentized residuals and iterative restricted NLLS estimator. Eakambaram et al. [12] discussed least absolute deviation estimations versus nonlinear regression model with heteroscedastic errors and also they studied the problem of heteroscedasticity with reference to nonlinear regression models with suitable illustration. William Grene [13] examined the interaction effect in nonlinear models disused by Ai and Norton [14] and suggested ways to examine the effects that do not involve statistical testing. Peter [15] provided guidelines for identifying composite hypothesis and addressing the probability of false rejection for multiple hypotheses.

  18. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  19. A comparison of analysis methods to estimate contingency strength.

    PubMed

    Lloyd, Blair P; Staubitz, Johanna L; Tapp, Jon T

    2018-05-09

    To date, several data analysis methods have been used to estimate contingency strength, yet few studies have compared these methods directly. To compare the relative precision and sensitivity of four analysis methods (i.e., exhaustive event-based, nonexhaustive event-based, concurrent interval, concurrent+lag interval), we applied all methods to a simulated data set in which several response-dependent and response-independent schedules of reinforcement were programmed. We evaluated the degree to which contingency strength estimates produced from each method (a) corresponded with expected values for response-dependent schedules and (b) showed sensitivity to parametric manipulations of response-independent reinforcement. Results indicated both event-based methods produced contingency strength estimates that aligned with expected values for response-dependent schedules, but differed in sensitivity to response-independent reinforcement. The precision of interval-based methods varied by analysis method (concurrent vs. concurrent+lag) and schedule type (continuous vs. partial), and showed similar sensitivities to response-independent reinforcement. Recommendations and considerations for measuring contingencies are identified. © 2018 Society for the Experimental Analysis of Behavior.

  20. Robust Methods for Moderation Analysis with a Two-Level Regression Model.

    PubMed

    Yang, Miao; Yuan, Ke-Hai

    2016-01-01

    Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.

  1. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  2. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  3. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  4. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  5. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  6. What automated age estimation of hand and wrist MRI data tells us about skeletal maturation in male adolescents.

    PubMed

    Urschler, Martin; Grassegger, Sabine; Štern, Darko

    2015-01-01

    Age estimation of individuals is important in human biology and has various medical and forensic applications. Recent interest in MR-based methods aims to investigate alternatives for established methods involving ionising radiation. Automatic, software-based methods additionally promise improved estimation objectivity. To investigate how informative automatically selected image features are regarding their ability to discriminate age, by exploring a recently proposed software-based age estimation method for MR images of the left hand and wrist. One hundred and two MR datasets of left hand images are used to evaluate age estimation performance, consisting of bone and epiphyseal gap volume localisation, computation of one age regression model per bone mapping image features to age and fusion of individual bone age predictions to a final age estimate. Quantitative results of the software-based method show an age estimation performance with a mean absolute difference of 0.85 years (SD = 0.58 years) to chronological age, as determined by a cross-validation experiment. Qualitatively, it is demonstrated how feature selection works and which image features of skeletal maturation are automatically chosen to model the non-linear regression function. Feasibility of automatic age estimation based on MRI data is shown and selected image features are found to be informative for describing anatomical changes during physical maturation in male adolescents.

  7. Human Pose Estimation from Monocular Images: A Comprehensive Survey

    PubMed Central

    Gong, Wenjuan; Zhang, Xuena; Gonzàlez, Jordi; Sobral, Andrews; Bouwmans, Thierry; Tu, Changhe; Zahzah, El-hadi

    2016-01-01

    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used. PMID:27898003

  8. Estimating roadside encroachment rates with the combined strengths of accident- and encroachment-based approaches

    DOT National Transportation Integrated Search

    2001-09-01

    In two recent studies by Miaou, he proposed a method to estimate vehicle roadside encroachment rates using accident-based models. He further illustrated the use of this method to estimate roadside encroachment rates for rural two-lane undivided roads...

  9. A phase match based frequency estimation method for sinusoidal signals

    NASA Astrophysics Data System (ADS)

    Shen, Yan-Lin; Tu, Ya-Qing; Chen, Lin-Jun; Shen, Ting-Ao

    2015-04-01

    Accurate frequency estimation affects the ranging precision of linear frequency modulated continuous wave (LFMCW) radars significantly. To improve the ranging precision of LFMCW radars, a phase match based frequency estimation method is proposed. To obtain frequency estimation, linear prediction property, autocorrelation, and cross correlation of sinusoidal signals are utilized. The analysis of computational complex shows that the computational load of the proposed method is smaller than those of two-stage autocorrelation (TSA) and maximum likelihood. Simulations and field experiments are performed to validate the proposed method, and the results demonstrate the proposed method has better performance in terms of frequency estimation precision than methods of Pisarenko harmonic decomposition, modified covariance, and TSA, which contribute to improving the precision of LFMCW radars effectively.

  10. Distance measures and optimization spaces in quantitative fatty acid signature analysis

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Rode, Karyn D.; Budge, Suzanne M.; Thiemann, Gregory W.

    2015-01-01

    Quantitative fatty acid signature analysis has become an important method of diet estimation in ecology, especially marine ecology. Controlled feeding trials to validate the method and estimate the calibration coefficients necessary to account for differential metabolism of individual fatty acids have been conducted with several species from diverse taxa. However, research into potential refinements of the estimation method has been limited. We compared the performance of the original method of estimating diet composition with that of five variants based on different combinations of distance measures and calibration-coefficient transformations between prey and predator fatty acid signature spaces. Fatty acid signatures of pseudopredators were constructed using known diet mixtures of two prey data sets previously used to estimate the diets of polar bears Ursus maritimus and gray seals Halichoerus grypus, and their diets were then estimated using all six variants. In addition, previously published diets of Chukchi Sea polar bears were re-estimated using all six methods. Our findings reveal that the selection of an estimation method can meaningfully influence estimates of diet composition. Among the pseudopredator results, which allowed evaluation of bias and precision, differences in estimator performance were rarely large, and no one estimator was universally preferred, although estimators based on the Aitchison distance measure tended to have modestly superior properties compared to estimators based on the Kullback-Leibler distance measure. However, greater differences were observed among estimated polar bear diets, most likely due to differential estimator sensitivity to assumption violations. Our results, particularly the polar bear example, suggest that additional research into estimator performance and model diagnostics is warranted.

  11. Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkai; Liu, Yanchen; Cheng, Xun; Zhu, David Z.; Shi, Hanchang; Yuan, Zhiguo

    2018-03-01

    Quantifying rainfall-derived inflow and infiltration (RDII) in a sanitary sewer is difficult when RDII and overflow occur simultaneously. This study proposes a novel conductivity-based method for estimating RDII. The method separately decomposes rainfall-derived inflow (RDI) and rainfall-induced infiltration (RII) on the basis of conductivity data. Fast Fourier transform was adopted to analyze variations in the flow and water quality during dry weather. Nonlinear curve fitting based on the least squares algorithm was used to optimize parameters in the proposed RDII model. The method was successfully applied to real-life case studies, in which inflow and infiltration were successfully estimated for three typical rainfall events with total rainfall volumes of 6.25 mm (light), 28.15 mm (medium), and 178 mm (heavy). Uncertainties of model parameters were estimated using the generalized likelihood uncertainty estimation (GLUE) method and were found to be acceptable. Compared with traditional flow-based methods, the proposed approach exhibits distinct advantages in estimating RDII and overflow, particularly when the two processes happen simultaneously.

  12. Inertia Estimation of Spacecraft Based on Modified Law of Conservation of Angular Momentum

    NASA Astrophysics Data System (ADS)

    Kim, Dong Hoon; Choi, Dae-Gyun; Oh, Hwa-Suk

    2010-12-01

    In general, the information of inertia properties is required to control a spacecraft. The inertia properties are changed by some activities such as consumption of propellant, deployment of solar panel, sloshing, etc. Extensive estimation methods have been investigated to obtain the precise inertia properties. The gyro-based attitude data including noise and bias needs to be compensated for improvement of attitude control accuracy. A modified estimation method based on the law of conservation of angular momentum is suggested to avoid inconvenience like filtering process for noiseeffect compensation. The conventional method is modified and beforehand estimated moment of inertia is applied to improve estimation efficiency of product of inertia. The performance of the suggested method has been verified for the case of STSAT-3, Korea Science Technology Satellite.

  13. Improving cluster-based missing value estimation of DNA microarray data.

    PubMed

    Brás, Lígia P; Menezes, José C

    2007-06-01

    We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is performed iteratively using the recently estimated values. The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation. The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.

  14. Blind third-order dispersion estimation based on fractional Fourier transformation for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-02-01

    In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.

  15. Estimation of phase derivatives using discrete chirp-Fourier-transform-based method.

    PubMed

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-08-15

    Estimation of phase derivatives is an important task in many interferometric measurements in optical metrology. This Letter introduces a method based on discrete chirp-Fourier transform for accurate and direct estimation of phase derivatives, even in the presence of noise. The method is introduced in the context of the analysis of reconstructed interference fields in digital holographic interferometry. We present simulation and experimental results demonstrating the utility of the proposed method.

  16. The special case of the 2 × 2 table: asymptotic unconditional McNemar test can be used to estimate sample size even for analysis based on GEE.

    PubMed

    Borkhoff, Cornelia M; Johnston, Patrick R; Stephens, Derek; Atenafu, Eshetu

    2015-07-01

    Aligning the method used to estimate sample size with the planned analytic method ensures the sample size needed to achieve the planned power. When using generalized estimating equations (GEE) to analyze a paired binary primary outcome with no covariates, many use an exact McNemar test to calculate sample size. We reviewed the approaches to sample size estimation for paired binary data and compared the sample size estimates on the same numerical examples. We used the hypothesized sample proportions for the 2 × 2 table to calculate the correlation between the marginal proportions to estimate sample size based on GEE. We solved the inside proportions based on the correlation and the marginal proportions to estimate sample size based on exact McNemar, asymptotic unconditional McNemar, and asymptotic conditional McNemar. The asymptotic unconditional McNemar test is a good approximation of GEE method by Pan. The exact McNemar is too conservative and yields unnecessarily large sample size estimates than all other methods. In the special case of a 2 × 2 table, even when a GEE approach to binary logistic regression is the planned analytic method, the asymptotic unconditional McNemar test can be used to estimate sample size. We do not recommend using an exact McNemar test. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  18. Methods for estimating population density in data-limited areas: evaluating regression and tree-based models in Peru.

    PubMed

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.

  19. Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru

    PubMed Central

    Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William

    2014-01-01

    Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657

  20. Drogue pose estimation for unmanned aerial vehicle autonomous aerial refueling system based on infrared vision sensor

    NASA Astrophysics Data System (ADS)

    Chen, Shanjun; Duan, Haibin; Deng, Yimin; Li, Cong; Zhao, Guozhi; Xu, Yan

    2017-12-01

    Autonomous aerial refueling is a significant technology that can significantly extend the endurance of unmanned aerial vehicles. A reliable method that can accurately estimate the position and attitude of the probe relative to the drogue is the key to such a capability. A drogue pose estimation method based on infrared vision sensor is introduced with the general goal of yielding an accurate and reliable drogue state estimate. First, by employing direct least squares ellipse fitting and convex hull in OpenCV, a feature point matching and interference point elimination method is proposed. In addition, considering the conditions that some infrared LEDs are damaged or occluded, a missing point estimation method based on perspective transformation and affine transformation is designed. Finally, an accurate and robust pose estimation algorithm improved by the runner-root algorithm is proposed. The feasibility of the designed visual measurement system is demonstrated by flight test, and the results indicate that our proposed method enables precise and reliable pose estimation of the probe relative to the drogue, even in some poor conditions.

  1. Principal axes estimation using the vibration modes of physics-based deformable models.

    PubMed

    Krinidis, Stelios; Chatzis, Vassilios

    2008-06-01

    This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qishi; Berry, M. L..; Grieme, M.

    We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.

  3. Transmission overhaul and replacement predictions using Weibull and renewel theory

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lewicki, D. G.

    1989-01-01

    A method to estimate the frequency of transmission overhauls is presented. This method is based on the two-parameter Weibull statistical distribution for component life. A second method is presented to estimate the number of replacement components needed to support the transmission overhaul pattern. The second method is based on renewal theory. Confidence statistics are applied with both methods to improve the statistical estimate of sample behavior. A transmission example is also presented to illustrate the use of the methods. Transmission overhaul frequency and component replacement calculations are included in the example.

  4. Generalized Ordinary Differential Equation Models 1

    PubMed Central

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-01-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787

  5. Generalized Ordinary Differential Equation Models.

    PubMed

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  6. Bootstrap-based methods for estimating standard errors in Cox's regression analyses of clustered event times.

    PubMed

    Xiao, Yongling; Abrahamowicz, Michal

    2010-03-30

    We propose two bootstrap-based methods to correct the standard errors (SEs) from Cox's model for within-cluster correlation of right-censored event times. The cluster-bootstrap method resamples, with replacement, only the clusters, whereas the two-step bootstrap method resamples (i) the clusters, and (ii) individuals within each selected cluster, with replacement. In simulations, we evaluate both methods and compare them with the existing robust variance estimator and the shared gamma frailty model, which are available in statistical software packages. We simulate clustered event time data, with latent cluster-level random effects, which are ignored in the conventional Cox's model. For cluster-level covariates, both proposed bootstrap methods yield accurate SEs, and type I error rates, and acceptable coverage rates, regardless of the true random effects distribution, and avoid serious variance under-estimation by conventional Cox-based standard errors. However, the two-step bootstrap method over-estimates the variance for individual-level covariates. We also apply the proposed bootstrap methods to obtain confidence bands around flexible estimates of time-dependent effects in a real-life analysis of cluster event times.

  7. Use of Flood Seasonality in Pooling-Group Formation and Quantile Estimation: An Application in Great Britain

    NASA Astrophysics Data System (ADS)

    Formetta, Giuseppe; Bell, Victoria; Stewart, Elizabeth

    2018-02-01

    Regional flood frequency analysis is one of the most commonly applied methods for estimating extreme flood events at ungauged sites or locations with short measurement records. It is based on: (i) the definition of a homogeneous group (pooling-group) of catchments, and on (ii) the use of the pooling-group data to estimate flood quantiles. Although many methods to define a pooling-group (pooling schemes, PS) are based on catchment physiographic similarity measures, in the last decade methods based on flood seasonality similarity have been contemplated. In this paper, two seasonality-based PS are proposed and tested both in terms of the homogeneity of the pooling-groups they generate and in terms of the accuracy in estimating extreme flood events. The method has been applied in 420 catchments in Great Britain (considered as both gauged and ungauged) and compared against the current Flood Estimation Handbook (FEH) PS. Results for gauged sites show that, compared to the current PS, the seasonality-based PS performs better both in terms of homogeneity of the pooling-group and in terms of the accuracy of flood quantile estimates. For ungauged locations, a national-scale hydrological model has been used for the first time to quantify flood seasonality. Results show that in 75% of the tested locations the seasonality-based PS provides an improvement in the accuracy of the flood quantile estimates. The remaining 25% were located in highly urbanized, groundwater-dependent catchments. The promising results support the aspiration that large-scale hydrological models complement traditional methods for estimating design floods.

  8. ESTIMATION OF THE RATE OF VOC EMISSIONS FROM SOLVENT-BASED INDOOR COATING MATERIALS BASED ON PRODUCT FORMULATION

    EPA Science Inventory

    Two computational methods are proposed for estimation of the emission rate of volatile organic compounds (VOCs) from solvent-based indoor coating materials based on the knowledge of product formulation. The first method utilizes two previously developed mass transfer models with ...

  9. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC).

    PubMed

    Kwon, Deukwoo; Reis, Isildinha M

    2015-08-12

    When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles. We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014). In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution. ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.

  10. Nonlinear least squares regression for single image scanning electron microscope signal-to-noise ratio estimation.

    PubMed

    Sim, K S; Norhisham, S

    2016-11-01

    A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  11. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method.

    PubMed

    Polidori, David; Rowley, Clarence

    2014-07-22

    The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method.

  12. Automated nodule location and size estimation using a multi-scale Laplacian of Gaussian filtering approach.

    PubMed

    Jirapatnakul, Artit C; Fotin, Sergei V; Reeves, Anthony P; Biancardi, Alberto M; Yankelevitz, David F; Henschke, Claudia I

    2009-01-01

    Estimation of nodule location and size is an important pre-processing step in some nodule segmentation algorithms to determine the size and location of the region of interest. Ideally, such estimation methods will consistently find the same nodule location regardless of where the the seed point (provided either manually or by a nodule detection algorithm) is placed relative to the "true" center of the nodule, and the size should be a reasonable estimate of the true nodule size. We developed a method that estimates nodule location and size using multi-scale Laplacian of Gaussian (LoG) filtering. Nodule candidates near a given seed point are found by searching for blob-like regions with high filter response. The candidates are then pruned according to filter response and location, and the remaining candidates are sorted by size and the largest candidate selected. This method was compared to a previously published template-based method. The methods were evaluated on the basis of stability of the estimated nodule location to changes in the initial seed point and how well the size estimates agreed with volumes determined by a semi-automated nodule segmentation method. The LoG method exhibited better stability to changes in the seed point, with 93% of nodules having the same estimated location even when the seed point was altered, compared to only 52% of nodules for the template-based method. Both methods also showed good agreement with sizes determined by a nodule segmentation method, with an average relative size difference of 5% and -5% for the LoG and template-based methods respectively.

  13. Compressive Video Recovery Using Block Match Multi-Frame Motion Estimation Based on Single Pixel Cameras

    PubMed Central

    Bi, Sheng; Zeng, Xiao; Tang, Xin; Qin, Shujia; Lai, King Wai Chiu

    2016-01-01

    Compressive sensing (CS) theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%. PMID:26950127

  14. [The estimation method of compounds opiate activity based on universal three-dimensional model of the nonselective opiate pharmacophore].

    PubMed

    Kuz'mina, N E; Iashkir, V A; Merkulov, V A; Osipova, E S

    2012-01-01

    Created by means alternative strategy of structural similarity search universal three-dimensional model of the nonselective opiate pharmacophore and the estimation method of agonistic and antagonistic properties of opiate receptors ligands based on its were described. The examples of the present method use are given for opiate activity estimation of compounds essentially distinguished on the structure from opiates and traditional opioids.

  15. An optical flow-based method for velocity field of fluid flow estimation

    NASA Astrophysics Data System (ADS)

    Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz

    2017-06-01

    The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.

  16. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model

    NASA Astrophysics Data System (ADS)

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO2 leaks and associated concentrations from geological CO2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems.

  17. Performance comparison of first-order conditional estimation with interaction and Bayesian estimation methods for estimating the population parameters and its distribution from data sets with a low number of subjects.

    PubMed

    Pradhan, Sudeep; Song, Byungjeong; Lee, Jaeyeon; Chae, Jung-Woo; Kim, Kyung Im; Back, Hyun-Moon; Han, Nayoung; Kwon, Kwang-Il; Yun, Hwi-Yeol

    2017-12-01

    Exploratory preclinical, as well as clinical trials, may involve a small number of patients, making it difficult to calculate and analyze the pharmacokinetic (PK) parameters, especially if the PK parameters show very high inter-individual variability (IIV). In this study, the performance of a classical first-order conditional estimation with interaction (FOCE-I) and expectation maximization (EM)-based Markov chain Monte Carlo Bayesian (BAYES) estimation methods were compared for estimating the population parameters and its distribution from data sets having a low number of subjects. In this study, 100 data sets were simulated with eight sampling points for each subject and with six different levels of IIV (5%, 10%, 20%, 30%, 50%, and 80%) in their PK parameter distribution. A stochastic simulation and estimation (SSE) study was performed to simultaneously simulate data sets and estimate the parameters using four different methods: FOCE-I only, BAYES(C) (FOCE-I and BAYES composite method), BAYES(F) (BAYES with all true initial parameters and fixed ω 2 ), and BAYES only. Relative root mean squared error (rRMSE) and relative estimation error (REE) were used to analyze the differences between true and estimated values. A case study was performed with a clinical data of theophylline available in NONMEM distribution media. NONMEM software assisted by Pirana, PsN, and Xpose was used to estimate population PK parameters, and R program was used to analyze and plot the results. The rRMSE and REE values of all parameter (fixed effect and random effect) estimates showed that all four methods performed equally at the lower IIV levels, while the FOCE-I method performed better than other EM-based methods at higher IIV levels (greater than 30%). In general, estimates of random-effect parameters showed significant bias and imprecision, irrespective of the estimation method used and the level of IIV. Similar performance of the estimation methods was observed with theophylline dataset. The classical FOCE-I method appeared to estimate the PK parameters more reliably than the BAYES method when using a simple model and data containing only a few subjects. EM-based estimation methods can be considered for adapting to the specific needs of a modeling project at later steps of modeling.

  18. On the Methods for Estimating the Corneoscleral Limbus.

    PubMed

    Jesus, Danilo A; Iskander, D Robert

    2017-08-01

    The aim of this study was to develop computational methods for estimating limbus position based on the measurements of three-dimensional (3-D) corneoscleral topography and ascertain whether corneoscleral limbus routinely estimated from the frontal image corresponds to that derived from topographical information. Two new computational methods for estimating the limbus position are proposed: One based on approximating the raw anterior eye height data by series of Zernike polynomials and one that combines the 3-D corneoscleral topography with the frontal grayscale image acquired with the digital camera in-built in the profilometer. The proposed methods are contrasted against a previously described image-only-based procedure and to a technique of manual image annotation. The estimates of corneoscleral limbus radius were characterized with a high precision. The group average (mean ± standard deviation) of the maximum difference between estimates derived from all considered methods was 0.27 ± 0.14 mm and reached up to 0.55 mm. The four estimating methods lead to statistically significant differences (nonparametric ANOVA (the Analysis of Variance) test, p 0.05). Precise topographical limbus demarcation is possible either from the frontal digital images of the eye or from the 3-D topographical information of corneoscleral region. However, the results demonstrated that the corneoscleral limbus estimated from the anterior eye topography does not always correspond to that obtained through image-only based techniques. The experimental findings have shown that 3-D topography of anterior eye, in the absence of a gold standard, has the potential to become a new computational methodology for estimating the corneoscleral limbus.

  19. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  20. Comparison of methods for estimating the attributable risk in the context of survival analysis.

    PubMed

    Gassama, Malamine; Bénichou, Jacques; Dartois, Laureen; Thiébaut, Anne C M

    2017-01-23

    The attributable risk (AR) measures the proportion of disease cases that can be attributed to an exposure in the population. Several definitions and estimation methods have been proposed for survival data. Using simulations, we compared four methods for estimating AR defined in terms of survival functions: two nonparametric methods based on Kaplan-Meier's estimator, one semiparametric based on Cox's model, and one parametric based on the piecewise constant hazards model, as well as one simpler method based on estimated exposure prevalence at baseline and Cox's model hazard ratio. We considered a fixed binary exposure with varying exposure probabilities and strengths of association, and generated event times from a proportional hazards model with constant or monotonic (decreasing or increasing) Weibull baseline hazard, as well as from a nonproportional hazards model. We simulated 1,000 independent samples of size 1,000 or 10,000. The methods were compared in terms of mean bias, mean estimated standard error, empirical standard deviation and 95% confidence interval coverage probability at four equally spaced time points. Under proportional hazards, all five methods yielded unbiased results regardless of sample size. Nonparametric methods displayed greater variability than other approaches. All methods showed satisfactory coverage except for nonparametric methods at the end of follow-up for a sample size of 1,000 especially. With nonproportional hazards, nonparametric methods yielded similar results to those under proportional hazards, whereas semiparametric and parametric approaches that both relied on the proportional hazards assumption performed poorly. These methods were applied to estimate the AR of breast cancer due to menopausal hormone therapy in 38,359 women of the E3N cohort. In practice, our study suggests to use the semiparametric or parametric approaches to estimate AR as a function of time in cohort studies if the proportional hazards assumption appears appropriate.

  1. Dynamic characteristics of oxygen consumption.

    PubMed

    Ye, Lin; Argha, Ahmadreza; Yu, Hairong; Celler, Branko G; Nguyen, Hung T; Su, Steven

    2018-04-23

    Previous studies have indicated that oxygen uptake ([Formula: see text]) is one of the most accurate indices for assessing the cardiorespiratory response to exercise. In most existing studies, the response of [Formula: see text] is often roughly modelled as a first-order system due to the inadequate stimulation and low signal to noise ratio. To overcome this difficulty, this paper proposes a novel nonparametric kernel-based method for the dynamic modelling of [Formula: see text] response to provide a more robust estimation. Twenty healthy non-athlete participants conducted treadmill exercises with monotonous stimulation (e.g., single step function as input). During the exercise, [Formula: see text] was measured and recorded by a popular portable gas analyser ([Formula: see text], COSMED). Based on the recorded data, a kernel-based estimation method was proposed to perform the nonparametric modelling of [Formula: see text]. For the proposed method, a properly selected kernel can represent the prior modelling information to reduce the dependence of comprehensive stimulations. Furthermore, due to the special elastic net formed by [Formula: see text] norm and kernelised [Formula: see text] norm, the estimations are smooth and concise. Additionally, the finite impulse response based nonparametric model which estimated by the proposed method can optimally select the order and fit better in terms of goodness-of-fit comparing to classical methods. Several kernels were introduced for the kernel-based [Formula: see text] modelling method. The results clearly indicated that the stable spline (SS) kernel has the best performance for [Formula: see text] modelling. Particularly, based on the experimental data from 20 participants, the estimated response from the proposed method with SS kernel was significantly better than the results from the benchmark method [i.e., prediction error method (PEM)] ([Formula: see text] vs [Formula: see text]). The proposed nonparametric modelling method is an effective method for the estimation of the impulse response of VO 2 -Speed system. Furthermore, the identified average nonparametric model method can dynamically predict [Formula: see text] response with acceptable accuracy during treadmill exercise.

  2. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  3. A simple linear model for estimating ozone AOT40 at forest sites from raw passive sampling data.

    PubMed

    Ferretti, Marco; Cristofolini, Fabiana; Cristofori, Antonella; Gerosa, Giacomo; Gottardini, Elena

    2012-08-01

    A rapid, empirical method is described for estimating weekly AOT40 from ozone concentrations measured with passive samplers at forest sites. The method is based on linear regression and was developed after three years of measurements in Trentino (northern Italy). It was tested against an independent set of data from passive sampler sites across Italy. It provides good weekly estimates compared with those measured by conventional monitors (0.85 ≤R(2)≤ 0.970; 97 ≤ RMSE ≤ 302). Estimates obtained using passive sampling at forest sites are comparable to those obtained by another estimation method based on modelling hourly concentrations (R(2) = 0.94; 131 ≤ RMSE ≤ 351). Regression coefficients of passive sampling are similar to those obtained with conventional monitors at forest sites. Testing against an independent dataset generated by passive sampling provided similar results (0.86 ≤R(2)≤ 0.99; 65 ≤ RMSE ≤ 478). Errors tend to accumulate when weekly AOT40 estimates are summed to obtain the total AOT40 over the May-July period, and the median deviation between the two estimation methods based on passive sampling is 11%. The method proposed does not require any assumptions, complex calculation or modelling technique, and can be useful when other estimation methods are not feasible, either in principle or in practice. However, the method is not useful when estimates of hourly concentrations are of interest.

  4. Background estimation and player detection in badminton video clips using histogram of pixel values along temporal dimension

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Ma, Xiao; Gao, Xinyu; Zhou, Fangxu

    2015-12-01

    Computer vision is an important tool for sports video processing. However, its application in badminton match analysis is very limited. In this study, we proposed a straightforward but robust histogram-based background estimation and player detection methods for badminton video clips, and compared the results with the naive averaging method and the mixture of Gaussians methods, respectively. The proposed method yielded better background estimation results than the naive averaging method and more accurate player detection results than the mixture of Gaussians player detection method. The preliminary results indicated that the proposed histogram-based method could estimate the background and extract the players accurately. We conclude that the proposed method can be used for badminton player tracking and further studies are warranted for automated match analysis.

  5. Sport fishing: a comparison of three indirect methods for estimating benefits.

    Treesearch

    Darrell L. Hueth; Elizabeth J. Strong; Roger D. Fight

    1988-01-01

    Three market-based methods for estimating values of sport fishing were compared by using a common data base. The three approaches were the travel-cost method, the hedonic travel-cost method, and the household-production method. A theoretical comparison of the resulting values showed that the results were not fully comparable in several ways. The comparison of empirical...

  6. Estimation of Comfort/Disconfort Based on EEG in Massage by Use of Clustering according to Correration and Incremental Learning type NN

    NASA Astrophysics Data System (ADS)

    Teramae, Tatsuya; Kushida, Daisuke; Takemori, Fumiaki; Kitamura, Akira

    Authors proposed the estimation method combining k-means algorithm and NN for evaluating massage. However, this estimation method has a problem that discrimination ratio is decreased to new user. There are two causes of this problem. One is that generalization of NN is bad. Another one is that clustering result by k-means algorithm has not high correlation coefficient in a class. Then, this research proposes k-means algorithm according to correlation coefficient and incremental learning for NN. The proposed k-means algorithm is method included evaluation function based on correlation coefficient. Incremental learning is method that NN is learned by new data and initialized weight based on the existing data. The effect of proposed methods are verified by estimation result using EEG data when testee is given massage.

  7. Estimating Tree Height-Diameter Models with the Bayesian Method

    PubMed Central

    Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733

  8. Estimating tree height-diameter models with the Bayesian method.

    PubMed

    Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.

  9. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  10. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  11. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  12. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation.

    PubMed

    Lee, Jewon; Moon, Seokbae; Jeong, Hyeyun; Kim, Sang Woo

    2015-11-20

    This paper proposes a diagnosis method for a multipole permanent magnet synchronous motor (PMSM) under an interturn short circuit fault. Previous works in this area have suffered from the uncertainties of the PMSM parameters, which can lead to misdiagnosis. The proposed method estimates the q-axis inductance (Lq) of the faulty PMSM to solve this problem. The proposed method also estimates the faulty phase and the value of G, which serves as an index of the severity of the fault. The q-axis current is used to estimate the faulty phase, the values of G and Lq. For this reason, two open-loop observers and an optimization method based on a particle-swarm are implemented. The q-axis current of a healthy PMSM is estimated by the open-loop observer with the parameters of a healthy PMSM. The Lq estimation significantly compensates for the estimation errors in high-speed operation. The experimental results demonstrate that the proposed method can estimate the faulty phase, G, and Lq besides exhibiting robustness against parameter uncertainties.

  13. Estimation of power lithium-ion battery SOC based on fuzzy optimal decision

    NASA Astrophysics Data System (ADS)

    He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.

  14. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.

    PubMed

    Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben

    2018-02-22

    This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  15. An elusive paleodemography? A comparison of two methods for estimating the adult age distribution of deaths at late Classic Copan, Honduras.

    PubMed

    Storey, Rebecca

    2007-01-01

    Comparison of different adult age estimation methods on the same skeletal sample with unknown ages could forward paleodemographic inference, while researchers sort out various controversies. The original aging method for the auricular surface (Lovejoy et al., 1985a) assigned an age estimation based on several separate characteristics. Researchers have found this original method hard to apply. It is usually forgotten that before assigning an age, there was a seriation, an ordering of all available individuals from youngest to oldest. Thus, age estimation reflected the place of an individual within its sample. A recent article (Buckberry and Chamberlain, 2002) proposed a revised method that scores theses various characteristics into age stages, which can then be used with a Bayesian method to estimate an adult age distribution for the sample. Both methods were applied to the adult auricular surfaces of a Pre-Columbian Maya skeletal population from Copan, Honduras and resulted in age distributions with significant numbers of older adults. However, contrary to the usual paleodemographic distribution, one Bayesian estimation based on uniform prior probabilities yielded a population with 57% of the ages at death over 65, while another based on a high mortality life table still had 12% of the individuals aged over 75 years. The seriation method yielded an age distribution more similar to that known from preindustrial historical situations, without excessive longevity of adults. Paleodemography must still wrestle with its elusive goal of accurate adult age estimation from skeletons, a necessary base for demographic study of past populations. (c) 2006 Wiley-Liss, Inc

  16. Estimation of scattering object characteristics for image reconstruction using a nonzero background.

    PubMed

    Jin, Jing; Astheimer, Jeffrey; Waag, Robert

    2010-06-01

    Two methods are described to estimate the boundary of a 2-D penetrable object and the average sound speed in the object. One method is for circular objects centered in the coordinate system of the scattering observation. This method uses an orthogonal function expansion for the scattering. The other method is for noncircular, essentially convex objects. This method uses cross correlation to obtain time differences that determine a family of parabolas whose envelope is the boundary of the object. A curve-fitting method and a phase-based method are described to estimate and correct the offset of an uncentered radial or elliptical object. A method based on the extinction theorem is described to estimate absorption in the object. The methods are applied to calculated scattering from a circular object with an offset and to measured scattering from an offset noncircular object. The results show that the estimated boundaries, sound speeds, and absorption slopes agree very well with independently measured or true values when the assumptions of the methods are reasonably satisfied.

  17. Estimating survival of radio-tagged birds

    USGS Publications Warehouse

    Bunck, C.M.; Pollock, K.H.; Lebreton, J.-D.; North, P.M.

    1993-01-01

    Parametric and nonparametric methods for estimating survival of radio-tagged birds are described. The general assumptions of these methods are reviewed. An estimate based on the assumption of constant survival throughout the period is emphasized in the overview of parametric methods. Two nonparametric methods, the Kaplan-Meier estimate of the survival funcrion and the log rank test, are explained in detail The link between these nonparametric methods and traditional capture-recapture models is discussed aloag with considerations in designing studies that use telemetry techniques to estimate survival.

  18. Estimates of recharge to unconfined aquifers and leakage to confined aquifers in the seven-county metropolitan area of Minneapolis-St. Paul, Minnesota

    USGS Publications Warehouse

    Ruhl, James F.; Kanivetsky, Roman; Shmagin, Boris

    2002-01-01

    Recharge estimates, which generally varied within 10 in./yr for each of the methods, generally were largest based on the precipitation, ground-water level fluctuation, and age dating of shallow ground water methods, slightly smaller based on the streamflow-recession displacement method, and smallest based on the watershed characteristics method. Leakage, which was less than 1 in./yr, varied within 1 order of magnitude based on the ground-water level fluctuation method and as much as 4 orders of magnitude based on analyses of vertical-hydraulic gradients.

  19. Sodium and potassium content of 24 h urinary collections: a comparison between field- and laboratory-based analysers.

    PubMed

    Yin, Xuejun; Neal, Bruce; Tian, Maoyi; Li, Zhifang; Petersen, Kristina; Komatsu, Yuichiro; Feng, Xiangxian; Wu, Yangfeng

    2018-04-01

    Measurement of mean population Na and K intakes typically uses laboratory-based assays, which can add significant logistical burden and costs. A valid field-based measurement method would be a significant advance. In the current study, we used 24 h urine samples to compare estimates of Na, K and Na:K ratio based upon assays done using the field-based Horiba twin meter v. laboratory-based methods. The performance of the Horiba twin meter was determined by comparing field-based estimates of mean Na and K against those obtained using laboratory-based methods. The reported 95 % limits of agreement of Bland-Altman plots were calculated based on a regression approach for non-uniform differences. The 24 h urine samples were collected as part of an ongoing study being done in rural China. One hundred and sixty-six complete 24 h urine samples were qualified for estimating 24 h urinary Na and K excretion. Mean Na and K excretion were estimated as 170·4 and 37·4 mmol/d, respectively, using the meter-based assays; and 193·4 and 43·8 mmol/d, respectively, using the laboratory-based assays. There was excellent relative reliability (intraclass correlation coefficient) for both Na (0·986) and K (0·986). Bland-Altman plots showed moderate-to-good agreement between the two methods. Na and K intake estimations were moderately underestimated using assays based upon the Horiba twin meter. Compared with standard laboratory-based methods, the portable device was more practical and convenient.

  20. [A method to estimate the short-term fractal dimension of heart rate variability based on wavelet transform].

    PubMed

    Zhonggang, Liang; Hong, Yan

    2006-10-01

    A new method of calculating fractal dimension of short-term heart rate variability signals is presented. The method is based on wavelet transform and filter banks. The implementation of the method is: First of all we pick-up the fractal component from HRV signals using wavelet transform. Next, we estimate the power spectrum distribution of fractal component using auto-regressive model, and we estimate parameter 7 using the least square method. Finally according to formula D = 2- (gamma-1)/2 estimate fractal dimension of HRV signal. To validate the stability and reliability of the proposed method, using fractional brown movement simulate 24 fractal signals that fractal value is 1.6 to validate, the result shows that the method has stability and reliability.

  1. Optimal back-extrapolation method for estimating plasma volume in humans using the indocyanine green dilution method

    PubMed Central

    2014-01-01

    Background The indocyanine green dilution method is one of the methods available to estimate plasma volume, although some researchers have questioned the accuracy of this method. Methods We developed a new, physiologically based mathematical model of indocyanine green kinetics that more accurately represents indocyanine green kinetics during the first few minutes postinjection than what is assumed when using the traditional mono-exponential back-extrapolation method. The mathematical model is used to develop an optimal back-extrapolation method for estimating plasma volume based on simulated indocyanine green kinetics obtained from the physiological model. Results Results from a clinical study using the indocyanine green dilution method in 36 subjects with type 2 diabetes indicate that the estimated plasma volumes are considerably lower when using the traditional back-extrapolation method than when using the proposed back-extrapolation method (mean (standard deviation) plasma volume = 26.8 (5.4) mL/kg for the traditional method vs 35.1 (7.0) mL/kg for the proposed method). The results obtained using the proposed method are more consistent with previously reported plasma volume values. Conclusions Based on the more physiological representation of indocyanine green kinetics and greater consistency with previously reported plasma volume values, the new back-extrapolation method is proposed for use when estimating plasma volume using the indocyanine green dilution method. PMID:25052018

  2. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods

    Treesearch

    Zhaodi Guo; Jingyun Fang; Yude Pan; Richard Birdsey

    2010-01-01

    Several studies have reported different estimates for forest biomass carbon (C) stocks in China. The discrepancy among these estimates may be largely attributed to the methods used. In this study, we used three methods [mean biomass density method (MBM), mean ratio method (MRM), and continuous biomass expansion factor (BEF) method (abbreviated as CBM)] applied to...

  3. Comparing capacity value estimation techniques for photovoltaic solar power

    DOE PAGES

    Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul

    2012-09-28

    In this paper, we estimate the capacity value of photovoltaic (PV) solar plants in the western U.S. Our results show that PV plants have capacity values that range between 52% and 93%, depending on location and sun-tracking capability. We further compare more robust but data- and computationally-intense reliability-based estimation techniques with simpler approximation methods. We show that if implemented properly, these techniques provide accurate approximations of reliability-based methods. Overall, methods that are based on the weighted capacity factor of the plant provide the most accurate estimate. As a result, we also examine the sensitivity of PV capacity value to themore » inclusion of sun-tracking systems.« less

  4. Comparison of 3 estimation methods of mycophenolic acid AUC based on a limited sampling strategy in renal transplant patients.

    PubMed

    Hulin, Anne; Blanchet, Benoît; Audard, Vincent; Barau, Caroline; Furlan, Valérie; Durrbach, Antoine; Taïeb, Fabrice; Lang, Philippe; Grimbert, Philippe; Tod, Michel

    2009-04-01

    A significant relationship between mycophenolic acid (MPA) area under the plasma concentration-time curve (AUC) and the risk for rejection has been reported. Based on 3 concentration measurements, 3 approaches have been proposed for the estimation of MPA AUC, involving either a multilinear regression approach model (MLRA) or a Bayesian estimation using either gamma absorption or zero-order absorption population models. The aim of the study was to compare the 3 approaches for the estimation of MPA AUC in 150 renal transplant patients treated with mycophenolate mofetil and tacrolimus. The population parameters were determined in 77 patients (learning study). The AUC estimation methods were compared in the learning population and in 73 patients from another center (validation study). In the latter study, the reference AUCs were estimated by the trapezoidal rule on 8 measurements. MPA concentrations were measured by liquid chromatography. The gamma absorption model gave the best fit. In the learning study, the AUCs estimated by both Bayesian methods were very similar, whereas the multilinear approach was highly correlated but yielded estimates about 20% lower than Bayesian methods. This resulted in dosing recommendations differing by 250 mg/12 h or more in 27% of cases. In the validation study, AUC estimates based on the Bayesian method with gamma absorption model and multilinear regression approach model were, respectively, 12% higher and 7% lower than the reference values. To conclude, the bicompartmental model with gamma absorption rate gave the best fit. The 3 AUC estimation methods are highly correlated but not concordant. For a given patient, the same estimation method should always be used.

  5. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  6. Child Mortality Estimation 2013: An Overview of Updates in Estimation Methods by the United Nations Inter-Agency Group for Child Mortality Estimation

    PubMed Central

    Alkema, Leontine; New, Jin Rou; Pedersen, Jon; You, Danzhen

    2014-01-01

    Background In September 2013, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) published an update of the estimates of the under-five mortality rate (U5MR) and under-five deaths for all countries. Compared to the UN IGME estimates published in 2012, updated data inputs and a new method for estimating the U5MR were used. Methods We summarize the new U5MR estimation method, which is a Bayesian B-spline Bias-reduction model, and highlight differences with the previously used method. Differences in UN IGME U5MR estimates as published in 2012 and those published in 2013 are presented and decomposed into differences due to the updated database and differences due to the new estimation method to explain and motivate changes in estimates. Findings Compared to the previously used method, the new UN IGME estimation method is based on a different trend fitting method that can track (recent) changes in U5MR more closely. The new method provides U5MR estimates that account for data quality issues. Resulting differences in U5MR point estimates between the UN IGME 2012 and 2013 publications are small for the majority of countries but greater than 10 deaths per 1,000 live births for 33 countries in 2011 and 19 countries in 1990. These differences can be explained by the updated database used, the curve fitting method as well as accounting for data quality issues. Changes in the number of deaths were less than 10% on the global level and for the majority of MDG regions. Conclusions The 2013 UN IGME estimates provide the most recent assessment of levels and trends in U5MR based on all available data and an improved estimation method that allows for closer-to-real-time monitoring of changes in the U5MR and takes account of data quality issues. PMID:25013954

  7. Efficient data assimilation algorithm for bathymetry application

    NASA Astrophysics Data System (ADS)

    Ghorbanidehno, H.; Lee, J. H.; Farthing, M.; Hesser, T.; Kitanidis, P. K.; Darve, E. F.

    2017-12-01

    Information on the evolving state of the nearshore zone bathymetry is crucial to shoreline management, recreational safety, and naval operations. The high cost and complex logistics of using ship-based surveys for bathymetry estimation have encouraged the use of remote sensing techniques. Data assimilation methods combine the remote sensing data and nearshore hydrodynamic models to estimate the unknown bathymetry and the corresponding uncertainties. In particular, several recent efforts have combined Kalman Filter-based techniques such as ensembled-based Kalman filters with indirect video-based observations to address the bathymetry inversion problem. However, these methods often suffer from ensemble collapse and uncertainty underestimation. Here, the Compressed State Kalman Filter (CSKF) method is used to estimate the bathymetry based on observed wave celerity. In order to demonstrate the accuracy and robustness of the CSKF method, we consider twin tests with synthetic observations of wave celerity, while the bathymetry profiles are chosen based on surveys taken by the U.S. Army Corps of Engineer Field Research Facility (FRF) in Duck, NC. The first test case is a bathymetry estimation problem for a spatially smooth and temporally constant bathymetry profile. The second test case is a bathymetry estimation problem for a temporally evolving bathymetry from a smooth to a non-smooth profile. For both problems, we compare the results of CSKF with those obtained by the local ensemble transform Kalman filter (LETKF), which is a popular ensemble-based Kalman filter method.

  8. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  9. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  10. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on binary outcomes

    PubMed Central

    2018-01-01

    Propensity score methods are increasingly being used to estimate the effects of treatments and exposures when using observational data. The propensity score was initially developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (eg, dose or quantity of medication, income, or years of education). We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. We examined both the use of ordinary least squares to estimate the propensity function and the use of the covariate balancing propensity score algorithm. The use of methods based on the GPS was compared with the use of G‐computation. All methods resulted in essentially unbiased estimation of the population dose‐response function. However, GPS‐based weighting tended to result in estimates that displayed greater variability and had higher mean squared error when the magnitude of confounding was strong. Of the methods based on the GPS, covariate adjustment using the GPS tended to result in estimates with lower variability and mean squared error when the magnitude of confounding was strong. We illustrate the application of these methods by estimating the effect of average neighborhood income on the probability of death within 1 year of hospitalization for an acute myocardial infarction. PMID:29508424

  11. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on binary outcomes.

    PubMed

    Austin, Peter C

    2018-05-20

    Propensity score methods are increasingly being used to estimate the effects of treatments and exposures when using observational data. The propensity score was initially developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (eg, dose or quantity of medication, income, or years of education). We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of continuous exposures on binary outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. We examined both the use of ordinary least squares to estimate the propensity function and the use of the covariate balancing propensity score algorithm. The use of methods based on the GPS was compared with the use of G-computation. All methods resulted in essentially unbiased estimation of the population dose-response function. However, GPS-based weighting tended to result in estimates that displayed greater variability and had higher mean squared error when the magnitude of confounding was strong. Of the methods based on the GPS, covariate adjustment using the GPS tended to result in estimates with lower variability and mean squared error when the magnitude of confounding was strong. We illustrate the application of these methods by estimating the effect of average neighborhood income on the probability of death within 1 year of hospitalization for an acute myocardial infarction. © 2018 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  12. A hierarchical estimator development for estimation of tire-road friction coefficient

    PubMed Central

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified “magic formula” tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method. PMID:28178332

  13. A hierarchical estimator development for estimation of tire-road friction coefficient.

    PubMed

    Zhang, Xudong; Göhlich, Dietmar

    2017-01-01

    The effect of vehicle active safety systems is subject to the friction force arising from the contact of tires and the road surface. Therefore, an adequate knowledge of the tire-road friction coefficient is of great importance to achieve a good performance of these control systems. This paper presents a tire-road friction coefficient estimation method for an advanced vehicle configuration, four-motorized-wheel electric vehicles, in which the longitudinal tire force is easily obtained. A hierarchical structure is adopted for the proposed estimation design. An upper estimator is developed based on unscented Kalman filter to estimate vehicle state information, while a hybrid estimation method is applied as the lower estimator to identify the tire-road friction coefficient using general regression neural network (GRNN) and Bayes' theorem. GRNN aims at detecting road friction coefficient under small excitations, which are the most common situations in daily driving. GRNN is able to accurately create a mapping from input parameters to the friction coefficient, avoiding storing an entire complex tire model. As for large excitations, the estimation algorithm is based on Bayes' theorem and a simplified "magic formula" tire model. The integrated estimation method is established by the combination of the above-mentioned estimators. Finally, the simulations based on a high-fidelity CarSim vehicle model are carried out on different road surfaces and driving maneuvers to verify the effectiveness of the proposed estimation method.

  14. Quantification of histone modification ChIP-seq enrichment for data mining and machine learning applications

    PubMed Central

    2011-01-01

    Background The advent of ChIP-seq technology has made the investigation of epigenetic regulatory networks a computationally tractable problem. Several groups have applied statistical computing methods to ChIP-seq datasets to gain insight into the epigenetic regulation of transcription. However, methods for estimating enrichment levels in ChIP-seq data for these computational studies are understudied and variable. Since the conclusions drawn from these data mining and machine learning applications strongly depend on the enrichment level inputs, a comparison of estimation methods with respect to the performance of statistical models should be made. Results Various methods were used to estimate the gene-wise ChIP-seq enrichment levels for 20 histone methylations and the histone variant H2A.Z. The Multivariate Adaptive Regression Splines (MARS) algorithm was applied for each estimation method using the estimation of enrichment levels as predictors and gene expression levels as responses. The methods used to estimate enrichment levels included tag counting and model-based methods that were applied to whole genes and specific gene regions. These methods were also applied to various sizes of estimation windows. The MARS model performance was assessed with the Generalized Cross-Validation Score (GCV). We determined that model-based methods of enrichment estimation that spatially weight enrichment based on average patterns provided an improvement over tag counting methods. Also, methods that included information across the entire gene body provided improvement over methods that focus on a specific sub-region of the gene (e.g., the 5' or 3' region). Conclusion The performance of data mining and machine learning methods when applied to histone modification ChIP-seq data can be improved by using data across the entire gene body, and incorporating the spatial distribution of enrichment. Refinement of enrichment estimation ultimately improved accuracy of model predictions. PMID:21834981

  15. A predictive estimation method for carbon dioxide transport by data-driven modeling with a physically-based data model.

    PubMed

    Jeong, Jina; Park, Eungyu; Han, Weon Shik; Kim, Kue-Young; Jun, Seong-Chun; Choung, Sungwook; Yun, Seong-Taek; Oh, Junho; Kim, Hyun-Jun

    2017-11-01

    In this study, a data-driven method for predicting CO 2 leaks and associated concentrations from geological CO 2 sequestration is developed. Several candidate models are compared based on their reproducibility and predictive capability for CO 2 concentration measurements from the Environment Impact Evaluation Test (EIT) site in Korea. Based on the data mining results, a one-dimensional solution of the advective-dispersive equation for steady flow (i.e., Ogata-Banks solution) is found to be most representative for the test data, and this model is adopted as the data model for the developed method. In the validation step, the method is applied to estimate future CO 2 concentrations with the reference estimation by the Ogata-Banks solution, where a part of earlier data is used as the training dataset. From the analysis, it is found that the ensemble mean of multiple estimations based on the developed method shows high prediction accuracy relative to the reference estimation. In addition, the majority of the data to be predicted are included in the proposed quantile interval, which suggests adequate representation of the uncertainty by the developed method. Therefore, the incorporation of a reasonable physically-based data model enhances the prediction capability of the data-driven model. The proposed method is not confined to estimations of CO 2 concentration and may be applied to various real-time monitoring data from subsurface sites to develop automated control, management or decision-making systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Estimation of the genome sizes of the chigger mites Leptotrombidium pallidum and Leptotrombidium scutellare based on quantitative PCR and k-mer analysis

    PubMed Central

    2014-01-01

    Background Leptotrombidium pallidum and Leptotrombidium scutellare are the major vector mites for Orientia tsutsugamushi, the causative agent of scrub typhus. Before these organisms can be subjected to whole-genome sequencing, it is necessary to estimate their genome sizes to obtain basic information for establishing the strategies that should be used for genome sequencing and assembly. Method The genome sizes of L. pallidum and L. scutellare were estimated by a method based on quantitative real-time PCR. In addition, a k-mer analysis of the whole-genome sequences obtained through Illumina sequencing was conducted to verify the mutual compatibility and reliability of the results. Results The genome sizes estimated using qPCR were 191 ± 7 Mb for L. pallidum and 262 ± 13 Mb for L. scutellare. The k-mer analysis-based genome lengths were estimated to be 175 Mb for L. pallidum and 286 Mb for L. scutellare. The estimates from these two independent methods were mutually complementary and within a similar range to those of other Acariform mites. Conclusions The estimation method based on qPCR appears to be a useful alternative when the standard methods, such as flow cytometry, are impractical. The relatively small estimated genome sizes should facilitate whole-genome analysis, which could contribute to our understanding of Arachnida genome evolution and provide key information for scrub typhus prevention and mite vector competence. PMID:24947244

  17. A Novel Method for Block Size Forensics Based on Morphological Operations

    NASA Astrophysics Data System (ADS)

    Luo, Weiqi; Huang, Jiwu; Qiu, Guoping

    Passive forensics analysis aims to find out how multimedia data is acquired and processed without relying on pre-embedded or pre-registered information. Since most existing compression schemes for digital images are based on block processing, one of the fundamental steps for subsequent forensics analysis is to detect the presence of block artifacts and estimate the block size for a given image. In this paper, we propose a novel method for blind block size estimation. A 2×2 cross-differential filter is first applied to detect all possible block artifact boundaries, morphological operations are then used to remove the boundary effects caused by the edges of the actual image contents, and finally maximum-likelihood estimation (MLE) is employed to estimate the block size. The experimental results evaluated on over 1300 nature images show the effectiveness of our proposed method. Compared with existing gradient-based detection method, our method achieves over 39% accuracy improvement on average.

  18. Relationship and variation of qPCR and culturable enterococci estimates in ambient surface waters are predictable

    USGS Publications Warehouse

    Whitman, Richard L.; Ge, Zhongfu; Nevers, Meredith B.; Boehm, Alexandria B.; Chern, Eunice C.; Haugland, Richard A.; Lukasik, Ashley M.; Molina, Marirosa; Przybyla-Kelly, Kasia; Shively, Dawn A.; White, Emily M.; Zepp, Richard G.; Byappanahalli, Muruleedhara N.

    2010-01-01

    The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based methods, the U.S. Environmental Protection Agency is currently considering its use as a basis for revised ambient water quality criteria. In anticipation of this possibility, we sought to examine the relationship between qPCR-based and culture-based estimates of enterococci in surface waters. Using data from several research groups, we compared enterococci estimates by the two methods in water samples collected from 37 sites across the United States. A consistent linear pattern in the relationship between cell equivalents (CCE), based on the qPCR method, and colony-forming units (CFU), based on the traditional culturable method, was significant (P 10CFU > 2.0/100 mL) while uncertainty increases at lower CFU values. It was further noted that the relative error in replicated qPCR estimates was generally higher than that in replicated culture counts even at relatively high target levels, suggesting a greater need for replicated analyses in the qPCR method to reduce relative error. Further studies evaluating the relationship between culture and qPCR should take into account analytical uncertainty as well as potential differences in results of these methods that may arise from sample variability, different sources of pollution, and environmental factors.

  19. Comparison of methods for estimating ground-water recharge and base flow at a small watershed underlain by fractured bedrock in the Eastern United States

    USGS Publications Warehouse

    Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.

    2005-01-01

    This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.

  20. Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks

    NASA Astrophysics Data System (ADS)

    Shi, Ying; Jian, Shaoyong

    2018-03-01

    an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.

  1. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  2. A method to estimate weight and dimensions of aircraft gas turbine engines. Volume 1: Method of analysis

    NASA Technical Reports Server (NTRS)

    Pera, R. J.; Onat, E.; Klees, G. W.; Tjonneland, E.

    1977-01-01

    Weight and envelope dimensions of aircraft gas turbine engines are estimated within plus or minus 5% to 10% using a computer method based on correlations of component weight and design features of 29 data base engines. Rotating components are estimated by a preliminary design procedure where blade geometry, operating conditions, material properties, shaft speed, hub-tip ratio, etc., are the primary independent variables used. The development and justification of the method selected, the various methods of analysis, the use of the program, and a description of the input/output data are discussed.

  3. DRAINWAT--Based Methods For Estimating Nitrogen Transport in Poorly Drained Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glenn P. Fernandez; R. Wayne Skaggs; J.W. Gilliam

    2004-01-01

    Methods are needed to quantify effects of land use and management practices on nutrient and sediment loads at the watershed scale. Two methods were used to apply a DRAINMOD-based watershed-scale model (DRAINWAT) to estimate total nitrogen (N) transport from a poorly drained, forested watershed. In both methods, in-stream retention or losses of N were calculated with a...

  4. Comparison of SOC estimates and uncertainties from aerosol chemical composition and gas phase data in Atlanta

    NASA Astrophysics Data System (ADS)

    Pachon, Jorge E.; Balachandran, Sivaraman; Hu, Yongtao; Weber, Rodney J.; Mulholland, James A.; Russell, Armistead G.

    2010-10-01

    In the Southeastern US, organic carbon (OC) comprises about 30% of the PM 2.5 mass. A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM 2.5 chemical composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the regression methods, which rely on the use of tracer species of primary and secondary OC formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary and secondary fractions based on source profiles and statistically-derived common factors, respectively. CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method having the lowest uncertainty among the four methods. We compared the estimates with the water soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is negligible, and found a similar trend with SOC estimates from the regression method. The regression method also showed the strongest correlation with daily SOC estimates from CMB using molecular markers. The regression method shows advantages over the other methods in the calculation of a long-term series of SOC estimates.

  5. Child mortality estimation 2013: an overview of updates in estimation methods by the United Nations Inter-agency Group for Child Mortality Estimation.

    PubMed

    Alkema, Leontine; New, Jin Rou; Pedersen, Jon; You, Danzhen

    2014-01-01

    In September 2013, the United Nations Inter-agency Group for Child Mortality Estimation (UN IGME) published an update of the estimates of the under-five mortality rate (U5MR) and under-five deaths for all countries. Compared to the UN IGME estimates published in 2012, updated data inputs and a new method for estimating the U5MR were used. We summarize the new U5MR estimation method, which is a Bayesian B-spline Bias-reduction model, and highlight differences with the previously used method. Differences in UN IGME U5MR estimates as published in 2012 and those published in 2013 are presented and decomposed into differences due to the updated database and differences due to the new estimation method to explain and motivate changes in estimates. Compared to the previously used method, the new UN IGME estimation method is based on a different trend fitting method that can track (recent) changes in U5MR more closely. The new method provides U5MR estimates that account for data quality issues. Resulting differences in U5MR point estimates between the UN IGME 2012 and 2013 publications are small for the majority of countries but greater than 10 deaths per 1,000 live births for 33 countries in 2011 and 19 countries in 1990. These differences can be explained by the updated database used, the curve fitting method as well as accounting for data quality issues. Changes in the number of deaths were less than 10% on the global level and for the majority of MDG regions. The 2013 UN IGME estimates provide the most recent assessment of levels and trends in U5MR based on all available data and an improved estimation method that allows for closer-to-real-time monitoring of changes in the U5MR and takes account of data quality issues.

  6. Modeling, estimation and identification methods for static shape determination of flexible structures. [for large space structure design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Scheid, R. E., Jr.

    1986-01-01

    This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.

  7. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    PubMed

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods.

  8. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

    PubMed Central

    Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  9. Gray-world-assumption-based illuminant color estimation using color gamuts with high and low chroma

    NASA Astrophysics Data System (ADS)

    Kawamura, Harumi; Yonemura, Shunichi; Ohya, Jun; Kojima, Akira

    2013-02-01

    A new approach is proposed for estimating illuminant colors from color images under an unknown scene illuminant. The approach is based on a combination of a gray-world-assumption-based illuminant color estimation method and a method using color gamuts. The former method, which is one we had previously proposed, improved on the original method that hypothesizes that the average of all the object colors in a scene is achromatic. Since the original method estimates scene illuminant colors by calculating the average of all the image pixel values, its estimations are incorrect when certain image colors are dominant. Our previous method improves on it by choosing several colors on the basis of an opponent-color property, which is that the average color of opponent colors is achromatic, instead of using all colors. However, it cannot estimate illuminant colors when there are only a few image colors or when the image colors are unevenly distributed in local areas in the color space. The approach we propose in this paper combines our previous method and one using high chroma and low chroma gamuts, which makes it possible to find colors that satisfy the gray world assumption. High chroma gamuts are used for adding appropriate colors to the original image and low chroma gamuts are used for narrowing down illuminant color possibilities. Experimental results obtained using actual images show that even if the image colors are localized in a certain area in the color space, the illuminant colors are accurately estimated, with smaller estimation error average than that generated in the conventional method.

  10. The Event Detection and the Apparent Velocity Estimation Based on Computer Vision

    NASA Astrophysics Data System (ADS)

    Shimojo, M.

    2012-08-01

    The high spatial and time resolution data obtained by the telescopes aboard Hinode revealed the new interesting dynamics in solar atmosphere. In order to detect such events and estimate the velocity of dynamics automatically, we examined the estimation methods of the optical flow based on the OpenCV that is the computer vision library. We applied the methods to the prominence eruption observed by NoRH, and the polar X-ray jet observed by XRT. As a result, it is clear that the methods work well for solar images if the images are optimized for the methods. It indicates that the optical flow estimation methods in the OpenCV library are very useful to analyze the solar phenomena.

  11. Near-Field Source Localization by Using Focusing Technique

    NASA Astrophysics Data System (ADS)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  12. Estimation of the size of the female sex worker population in Rwanda using three different methods

    PubMed Central

    Kayitesi, Catherine; Gwiza, Aimé; Ruton, Hinda; Koleros, Andrew; Gupta, Neil; Balisanga, Helene; Riedel, David J; Nsanzimana, Sabin

    2014-01-01

    HIV prevalence is disproportionately high among female sex workers compared to the general population. Many African countries lack useful data on the size of female sex worker populations to inform national HIV programmes. A female sex worker size estimation exercise using three different venue-based methodologies was conducted among female sex workers in all provinces of Rwanda in August 2010. The female sex worker national population size was estimated using capture–recapture and enumeration methods, and the multiplier method was used to estimate the size of the female sex worker population in Kigali. A structured questionnaire was also used to supplement the data. The estimated number of female sex workers by the capture–recapture method was 3205 (95% confidence interval: 2998–3412). The female sex worker size was estimated at 3348 using the enumeration method. In Kigali, the female sex worker size was estimated at 2253 (95% confidence interval: 1916–2524) using the multiplier method. Nearly 80% of all female sex workers in Rwanda were found to be based in the capital, Kigali. This study provided a first-time estimate of the female sex worker population size in Rwanda using capture–recapture, enumeration, and multiplier methods. The capture–recapture and enumeration methods provided similar estimates of female sex worker in Rwanda. Combination of such size estimation methods is feasible and productive in low-resource settings and should be considered vital to inform national HIV programmes. PMID:25336306

  13. Estimation of the size of the female sex worker population in Rwanda using three different methods.

    PubMed

    Mutagoma, Mwumvaneza; Kayitesi, Catherine; Gwiza, Aimé; Ruton, Hinda; Koleros, Andrew; Gupta, Neil; Balisanga, Helene; Riedel, David J; Nsanzimana, Sabin

    2015-10-01

    HIV prevalence is disproportionately high among female sex workers compared to the general population. Many African countries lack useful data on the size of female sex worker populations to inform national HIV programmes. A female sex worker size estimation exercise using three different venue-based methodologies was conducted among female sex workers in all provinces of Rwanda in August 2010. The female sex worker national population size was estimated using capture-recapture and enumeration methods, and the multiplier method was used to estimate the size of the female sex worker population in Kigali. A structured questionnaire was also used to supplement the data. The estimated number of female sex workers by the capture-recapture method was 3205 (95% confidence interval: 2998-3412). The female sex worker size was estimated at 3348 using the enumeration method. In Kigali, the female sex worker size was estimated at 2253 (95% confidence interval: 1916-2524) using the multiplier method. Nearly 80% of all female sex workers in Rwanda were found to be based in the capital, Kigali. This study provided a first-time estimate of the female sex worker population size in Rwanda using capture-recapture, enumeration, and multiplier methods. The capture-recapture and enumeration methods provided similar estimates of female sex worker in Rwanda. Combination of such size estimation methods is feasible and productive in low-resource settings and should be considered vital to inform national HIV programmes. © The Author(s) 2015.

  14. Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores

    ERIC Educational Resources Information Center

    Douglas, Karen M.; Mislevy, Robert J.

    2010-01-01

    Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…

  15. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  16. A comparison of moment-based methods of estimation for the log Pearson type 3 distribution

    NASA Astrophysics Data System (ADS)

    Koutrouvelis, I. A.; Canavos, G. C.

    2000-06-01

    The log Pearson type 3 distribution is a very important model in statistical hydrology, especially for modeling annual flood series. In this paper we compare the various methods based on moments for estimating quantiles of this distribution. Besides the methods of direct and mixed moments which were found most successful in previous studies and the well-known indirect method of moments, we develop generalized direct moments and generalized mixed moments methods and a new method of adaptive mixed moments. The last method chooses the orders of two moments for the original observations by utilizing information contained in the sample itself. The results of Monte Carlo experiments demonstrated the superiority of this method in estimating flood events of high return periods when a large sample is available and in estimating flood events of low return periods regardless of the sample size. In addition, a comparison of simulation and asymptotic results shows that the adaptive method may be used for the construction of meaningful confidence intervals for design events based on the asymptotic theory even with small samples. The simulation results also point to the specific members of the class of generalized moments estimates which maintain small values for bias and/or mean square error.

  17. A simple method for processing data with least square method

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning

    2017-08-01

    The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.

  18. Estimating the number of people in crowded scenes

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Kim, Wonjun; Kim, Changick

    2011-01-01

    This paper presents a method to estimate the number of people in crowded scenes without using explicit object segmentation or tracking. The proposed method consists of three steps as follows: (1) extracting space-time interest points using eigenvalues of the local spatio-temporal gradient matrix, (2) generating crowd regions based on space-time interest points, and (3) estimating the crowd density based on the multiple regression. In experimental results, the efficiency and robustness of our proposed method are demonstrated by using PETS 2009 dataset.

  19. Spatial Estimation of Sub-Hour Global Horizontal Irradiance Based on Official Observations and Remote Sensors

    PubMed Central

    Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús

    2014-01-01

    This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations). PMID:24732102

  20. Spatial estimation of sub-hour Global Horizontal Irradiance based on official observations and remote sensors.

    PubMed

    Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús

    2014-04-11

    This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations).

  1. Estimating uncertainty in respondent-driven sampling using a tree bootstrap method.

    PubMed

    Baraff, Aaron J; McCormick, Tyler H; Raftery, Adrian E

    2016-12-20

    Respondent-driven sampling (RDS) is a network-based form of chain-referral sampling used to estimate attributes of populations that are difficult to access using standard survey tools. Although it has grown quickly in popularity since its introduction, the statistical properties of RDS estimates remain elusive. In particular, the sampling variability of these estimates has been shown to be much higher than previously acknowledged, and even methods designed to account for RDS result in misleadingly narrow confidence intervals. In this paper, we introduce a tree bootstrap method for estimating uncertainty in RDS estimates based on resampling recruitment trees. We use simulations from known social networks to show that the tree bootstrap method not only outperforms existing methods but also captures the high variability of RDS, even in extreme cases with high design effects. We also apply the method to data from injecting drug users in Ukraine. Unlike other methods, the tree bootstrap depends only on the structure of the sampled recruitment trees, not on the attributes being measured on the respondents, so correlations between attributes can be estimated as well as variability. Our results suggest that it is possible to accurately assess the high level of uncertainty inherent in RDS.

  2. Comparison of anatomical, functional and regression methods for estimating the rotation axes of the forearm.

    PubMed

    Fraysse, François; Thewlis, Dominic

    2014-11-07

    Numerous methods exist to estimate the pose of the axes of rotation of the forearm. These include anatomical definitions, such as the conventions proposed by the ISB, and functional methods based on instantaneous helical axes, which are commonly accepted as the modelling gold standard for non-invasive, in-vivo studies. We investigated the validity of a third method, based on regression equations, to estimate the rotation axes of the forearm. We also assessed the accuracy of both ISB methods. Axes obtained from a functional method were considered as the reference. Results indicate a large inter-subject variability in the axes positions, in accordance with previous studies. Both ISB methods gave the same level of accuracy in axes position estimations. Regression equations seem to improve estimation of the flexion-extension axis but not the pronation-supination axis. Overall, given the large inter-subject variability, the use of regression equations cannot be recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Consistency of extreme flood estimation approaches

    NASA Astrophysics Data System (ADS)

    Felder, Guido; Paquet, Emmanuel; Penot, David; Zischg, Andreas; Weingartner, Rolf

    2017-04-01

    Estimations of low-probability flood events are frequently used for the planning of infrastructure as well as for determining the dimensions of flood protection measures. There are several well-established methodical procedures to estimate low-probability floods. However, a global assessment of the consistency of these methods is difficult to achieve, the "true value" of an extreme flood being not observable. Anyway, a detailed comparison performed on a given case study brings useful information about the statistical and hydrological processes involved in different methods. In this study, the following three different approaches for estimating low-probability floods are compared: a purely statistical approach (ordinary extreme value statistics), a statistical approach based on stochastic rainfall-runoff simulation (SCHADEX method), and a deterministic approach (physically based PMF estimation). These methods are tested for two different Swiss catchments. The results and some intermediate variables are used for assessing potential strengths and weaknesses of each method, as well as for evaluating the consistency of these methods.

  4. An estimation of distribution method for infrared target detection based on Copulas

    NASA Astrophysics Data System (ADS)

    Wang, Shuo; Zhang, Yiqun

    2015-10-01

    Track-before-detect (TBD) based target detection involves a hypothesis test of merit functions which measure each track as a possible target track. Its accuracy depends on the precision of the distribution of merit functions, which determines the threshold for a test. Generally, merit functions are regarded Gaussian, and on this basis the distribution is estimated, which is true for most methods such as the multiple hypothesis tracking (MHT). However, merit functions for some other methods such as the dynamic programming algorithm (DPA) are non-Guassian and cross-correlated. Since existing methods cannot reasonably measure the correlation, the exact distribution can hardly be estimated. If merit functions are assumed Guassian and independent, the error between an actual distribution and its approximation may occasionally over 30 percent, and is divergent by propagation. Hence, in this paper, we propose a novel estimation of distribution method based on Copulas, by which the distribution can be estimated precisely, where the error is less than 1 percent without propagation. Moreover, the estimation merely depends on the form of merit functions and the structure of a tracking algorithm, and is invariant to measurements. Thus, the distribution can be estimated in advance, greatly reducing the demand for real-time calculation of distribution functions.

  5. Use of soil moisture probes to estimate ground water recharge at an oil spill site

    USGS Publications Warehouse

    Delin, G.N.; Herkelrath, W.N.

    2005-01-01

    Soil moisture data collected using an automated data logging system were used to estimate ground water recharge at a crude oil spill research site near Bemidji, Minnesota. Three different soil moisture probes were tested in the laboratory as well as the field conditions of limited power supply and extreme weather typical of northern Minnesota: a self-contained reflectometer probe, and two time domain reflectometry (TDR) probes, 30 and 50 cm long. Recharge was estimated using an unsaturated zone water balance method. Recharge estimates for 1999 using the laboratory calibrations were 13 to 30 percent greater than estimates based on the factory calibrations. Recharge indicated by the self-contained probes was 170 percent to 210 percent greater than the estimates for the TDR probes regardless of calibration method. Results indicate that the anomalously large recharge estimates for the self-contained probes are not the result of inaccurate measurements of volumetric moisture content, but result from the presence of crude oil, or bore-hole leakage. Of the probes tested, the 50 cm long TDR probe yielded recharge estimates that compared most favorably to estimates based on a method utilizing water table fluctuations. Recharge rates for this probe represented 24 to 27 percent of 1999 precipitation. Recharge based on the 30 cm long horizontal TDR probes was 29 to 37 percent of 1999 precipitation. By comparison, recharge based on the water table fluctuation method represented about 29 percent of precipitation. (JAWRA) (Copyright ?? 2005).

  6. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  7. An adaptive state of charge estimation approach for lithium-ion series-connected battery system

    NASA Astrophysics Data System (ADS)

    Peng, Simin; Zhu, Xuelai; Xing, Yinjiao; Shi, Hongbing; Cai, Xu; Pecht, Michael

    2018-07-01

    Due to the incorrect or unknown noise statistics of a battery system and its cell-to-cell variations, state of charge (SOC) estimation of a lithium-ion series-connected battery system is usually inaccurate or even divergent using model-based methods, such as extended Kalman filter (EKF) and unscented Kalman filter (UKF). To resolve this problem, an adaptive unscented Kalman filter (AUKF) based on a noise statistics estimator and a model parameter regulator is developed to accurately estimate the SOC of a series-connected battery system. An equivalent circuit model is first built based on the model parameter regulator that illustrates the influence of cell-to-cell variation on the battery system. A noise statistics estimator is then used to attain adaptively the estimated noise statistics for the AUKF when its prior noise statistics are not accurate or exactly Gaussian. The accuracy and effectiveness of the SOC estimation method is validated by comparing the developed AUKF and UKF when model and measurement statistics noises are inaccurate, respectively. Compared with the UKF and EKF, the developed method shows the highest SOC estimation accuracy.

  8. Developing an Efficient Computational Method that Estimates the Ability of Students in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2012-01-01

    This paper presents a computational method that can efficiently estimate the ability of students from the log files of a Web-based learning environment capturing their problem solving processes. The computational method developed in this study approximates the posterior distribution of the student's ability obtained from the conventional Bayes…

  9. Improving causal inference with a doubly robust estimator that combines propensity score stratification and weighting.

    PubMed

    Linden, Ariel

    2017-08-01

    When a randomized controlled trial is not feasible, health researchers typically use observational data and rely on statistical methods to adjust for confounding when estimating treatment effects. These methods generally fall into 3 categories: (1) estimators based on a model for the outcome using conventional regression adjustment; (2) weighted estimators based on the propensity score (ie, a model for the treatment assignment); and (3) "doubly robust" (DR) estimators that model both the outcome and propensity score within the same framework. In this paper, we introduce a new DR estimator that utilizes marginal mean weighting through stratification (MMWS) as the basis for weighted adjustment. This estimator may prove more accurate than treatment effect estimators because MMWS has been shown to be more accurate than other models when the propensity score is misspecified. We therefore compare the performance of this new estimator to other commonly used treatment effects estimators. Monte Carlo simulation is used to compare the DR-MMWS estimator to regression adjustment, 2 weighted estimators based on the propensity score and 2 other DR methods. To assess performance under varied conditions, we vary the level of misspecification of the propensity score model as well as misspecify the outcome model. Overall, DR estimators generally outperform methods that model one or the other components (eg, propensity score or outcome). The DR-MMWS estimator outperforms all other estimators when both the propensity score and outcome models are misspecified and performs equally as well as other DR estimators when only the propensity score is misspecified. Health researchers should consider using DR-MMWS as the principal evaluation strategy in observational studies, as this estimator appears to outperform other estimators in its class. © 2017 John Wiley & Sons, Ltd.

  10. A Comparison of the Approaches of Generalizability Theory and Item Response Theory in Estimating the Reliability of Test Scores for Testlet-Composed Tests

    ERIC Educational Resources Information Center

    Lee, Guemin; Park, In-Yong

    2012-01-01

    Previous assessments of the reliability of test scores for testlet-composed tests have indicated that item-based estimation methods overestimate reliability. This study was designed to address issues related to the extent to which item-based estimation methods overestimate the reliability of test scores composed of testlets and to compare several…

  11. Depth estimation and camera calibration of a focused plenoptic camera for visual odometry

    NASA Astrophysics Data System (ADS)

    Zeller, Niclas; Quint, Franz; Stilla, Uwe

    2016-08-01

    This paper presents new and improved methods of depth estimation and camera calibration for visual odometry with a focused plenoptic camera. For depth estimation we adapt an algorithm previously used in structure-from-motion approaches to work with images of a focused plenoptic camera. In the raw image of a plenoptic camera, scene patches are recorded in several micro-images under slightly different angles. This leads to a multi-view stereo-problem. To reduce the complexity, we divide this into multiple binocular stereo problems. For each pixel with sufficient gradient we estimate a virtual (uncalibrated) depth based on local intensity error minimization. The estimated depth is characterized by the variance of the estimate and is subsequently updated with the estimates from other micro-images. Updating is performed in a Kalman-like fashion. The result of depth estimation in a single image of the plenoptic camera is a probabilistic depth map, where each depth pixel consists of an estimated virtual depth and a corresponding variance. Since the resulting image of the plenoptic camera contains two plains: the optical image and the depth map, camera calibration is divided into two separate sub-problems. The optical path is calibrated based on a traditional calibration method. For calibrating the depth map we introduce two novel model based methods, which define the relation of the virtual depth, which has been estimated based on the light-field image, and the metric object distance. These two methods are compared to a well known curve fitting approach. Both model based methods show significant advantages compared to the curve fitting method. For visual odometry we fuse the probabilistic depth map gained from one shot of the plenoptic camera with the depth data gained by finding stereo correspondences between subsequent synthesized intensity images of the plenoptic camera. These images can be synthesized totally focused and thus finding stereo correspondences is enhanced. In contrast to monocular visual odometry approaches, due to the calibration of the individual depth maps, the scale of the scene can be observed. Furthermore, due to the light-field information better tracking capabilities compared to the monocular case can be expected. As result, the depth information gained by the plenoptic camera based visual odometry algorithm proposed in this paper has superior accuracy and reliability compared to the depth estimated from a single light-field image.

  12. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  13. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, J.; Lee, J.; Yadav, V.

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of 2. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  14. Empirical Likelihood-Based Estimation of the Treatment Effect in a Pretest-Posttest Study.

    PubMed

    Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A

    2008-09-01

    The pretest-posttest study design is commonly used in medical and social science research to assess the effect of a treatment or an intervention. Recently, interest has been rising in developing inference procedures that improve efficiency while relaxing assumptions used in the pretest-posttest data analysis, especially when the posttest measurement might be missing. In this article we propose a semiparametric estimation procedure based on empirical likelihood (EL) that incorporates the common baseline covariate information to improve efficiency. The proposed method also yields an asymptotically unbiased estimate of the response distribution. Thus functions of the response distribution, such as the median, can be estimated straightforwardly, and the EL method can provide a more appealing estimate of the treatment effect for skewed data. We show that, compared with existing methods, the proposed EL estimator has appealing theoretical properties, especially when the working model for the underlying relationship between the pretest and posttest measurements is misspecified. A series of simulation studies demonstrates that the EL-based estimator outperforms its competitors when the working model is misspecified and the data are missing at random. We illustrate the methods by analyzing data from an AIDS clinical trial (ACTG 175).

  15. Empirical Likelihood-Based Estimation of the Treatment Effect in a Pretest–Posttest Study

    PubMed Central

    Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.

    2013-01-01

    The pretest–posttest study design is commonly used in medical and social science research to assess the effect of a treatment or an intervention. Recently, interest has been rising in developing inference procedures that improve efficiency while relaxing assumptions used in the pretest–posttest data analysis, especially when the posttest measurement might be missing. In this article we propose a semiparametric estimation procedure based on empirical likelihood (EL) that incorporates the common baseline covariate information to improve efficiency. The proposed method also yields an asymptotically unbiased estimate of the response distribution. Thus functions of the response distribution, such as the median, can be estimated straightforwardly, and the EL method can provide a more appealing estimate of the treatment effect for skewed data. We show that, compared with existing methods, the proposed EL estimator has appealing theoretical properties, especially when the working model for the underlying relationship between the pretest and posttest measurements is misspecified. A series of simulation studies demonstrates that the EL-based estimator outperforms its competitors when the working model is misspecified and the data are missing at random. We illustrate the methods by analyzing data from an AIDS clinical trial (ACTG 175). PMID:23729942

  16. Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system

    NASA Astrophysics Data System (ADS)

    Wang, Daobin; Yuan, Lihua; Lei, Jingli; wu, Gang; Li, Suoping; Ding, Runqi; Wang, Dongye

    2017-12-01

    In this paper, we focus on analysis of the preamble-based joint estimation for channel and laser-frequency offset (LFO) in coherent optical filter bank multicarrier systems with offset quadrature amplitude modulation (CO-FBMC/OQAM). In order to reduce the noise impact on the estimation accuracy, we proposed an estimation method based on inter-frame averaging. This method averages the cross-correlation function of real-valued pilots within multiple FBMC frames. The laser-frequency offset is estimated according to the phase of this average. After correcting LFO, the final channel response is also acquired by averaging channel estimation results within multiple frames. The principle of the proposed method is analyzed theoretically, and the preamble structure is thoroughly designed and optimized to suppress the impact of inherent imaginary interference (IMI). The effectiveness of our method is demonstrated numerically using different fiber and LFO values. The obtained results show that the proposed method can improve transmission performance significantly.

  17. A comparison between Gauss-Newton and Markov chain Monte Carlo basedmethods for inverting spectral induced polarization data for Cole-Coleparameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong; Kemna, Andreas; Hubbard, Susan S.

    2008-05-15

    We develop a Bayesian model to invert spectral induced polarization (SIP) data for Cole-Cole parameters using Markov chain Monte Carlo (MCMC) sampling methods. We compare the performance of the MCMC based stochastic method with an iterative Gauss-Newton based deterministic method for Cole-Cole parameter estimation through inversion of synthetic and laboratory SIP data. The Gauss-Newton based method can provide an optimal solution for given objective functions under constraints, but the obtained optimal solution generally depends on the choice of initial values and the estimated uncertainty information is often inaccurate or insufficient. In contrast, the MCMC based inversion method provides extensive globalmore » information on unknown parameters, such as the marginal probability distribution functions, from which we can obtain better estimates and tighter uncertainty bounds of the parameters than with the deterministic method. Additionally, the results obtained with the MCMC method are independent of the choice of initial values. Because the MCMC based method does not explicitly offer single optimal solution for given objective functions, the deterministic and stochastic methods can complement each other. For example, the stochastic method can first be used to obtain the means of the unknown parameters by starting from an arbitrary set of initial values and the deterministic method can then be initiated using the means as starting values to obtain the optimal estimates of the Cole-Cole parameters.« less

  18. Comparison of gestational dating methods and implications for exposure-outcome associations: an example with PM2.5 and preterm birth

    EPA Science Inventory

    OBJECTIVES: Estimating gestational age is usually based on date of last menstrual period (LMP) or clinical estimation (CE); both approaches introduce potential bias. Differences in methods of estimation may lead to misclassificat ion and inconsistencies in risk estimates, particu...

  19. Parameter estimation in linear models of the human operator in a closed loop with application of deterministic test signals

    NASA Technical Reports Server (NTRS)

    Vanlunteren, A.; Stassen, H. G.

    1973-01-01

    Parameter estimation techniques are discussed with emphasis on unbiased estimates in the presence of noise. A distinction between open and closed loop systems is made. A method is given based on the application of external forcing functions consisting of a sun of sinusoids; this method is thus based on the estimation of Fourier coefficients and is applicable for models with poles and zeros in open and closed loop systems.

  20. Using Grain-Size Distribution Methods for Estimation of Air Permeability.

    PubMed

    Wang, Tiejun; Huang, Yuanyang; Chen, Xunhong; Chen, Xi

    2016-01-01

    Knowledge of air permeability (ka ) at dry conditions is critical for the use of air flow models in porous media; however, it is usually difficult and time consuming to measure ka at dry conditions. It is thus desirable to estimate ka at dry conditions from other readily obtainable properties. In this study, the feasibility of using information derived from grain-size distributions (GSDs) for estimating ka at dry conditions was examined. Fourteen GSD-based equations originally developed for estimating saturated hydraulic conductivity were tested using ka measured at dry conditions in both undisturbed and disturbed river sediment samples. On average, the estimated ka from all the equations, except for the method of Slichter, differed by less than ± 4 times from the measured ka for both undisturbed and disturbed groups. In particular, for the two sediment groups, the results given by the methods of Terzaghi and Hazen-modified were comparable to the measured ka . In addition, two methods (e.g., Barr and Beyer) for the undisturbed samples and one method (e.g., Hazen-original) for the undisturbed samples were also able to produce comparable ka estimates. Moreover, after adjusting the values of the coefficient C in the GSD-based equations, the estimation of ka was significantly improved with the differences between the measured and estimated ka less than ±4% on average (except for the method of Barr). As demonstrated by this study, GSD-based equations may provide a promising and efficient way to estimate ka at dry conditions. © 2015, National Ground Water Association.

  1. Unscented Kalman filter with parameter identifiability analysis for the estimation of multiple parameters in kinetic models

    PubMed Central

    2011-01-01

    In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison. PMID:21989173

  2. Sieve estimation of Cox models with latent structures.

    PubMed

    Cao, Yongxiu; Huang, Jian; Liu, Yanyan; Zhao, Xingqiu

    2016-12-01

    This article considers sieve estimation in the Cox model with an unknown regression structure based on right-censored data. We propose a semiparametric pursuit method to simultaneously identify and estimate linear and nonparametric covariate effects based on B-spline expansions through a penalized group selection method with concave penalties. We show that the estimators of the linear effects and the nonparametric component are consistent. Furthermore, we establish the asymptotic normality of the estimator of the linear effects. To compute the proposed estimators, we develop a modified blockwise majorization descent algorithm that is efficient and easy to implement. Simulation studies demonstrate that the proposed method performs well in finite sample situations. We also use the primary biliary cirrhosis data to illustrate its application. © 2016, The International Biometric Society.

  3. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.

  4. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi

    2014-04-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m -2 yr -1 and total NPP in the range of 318–490more » Tg C yr -1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m -2 yr -1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m -2 yr -1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. Finally, we suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.« less

  5. Comparing cropland net primary production estimates from inventory, a satellite-based model, and a process-based model in the Midwest of the United States

    USGS Publications Warehouse

    Li, Zhengpeng; Liu, Shuguang; Tan, Zhengxi; Bliss, Norman B.; Young, Claudia J.; West, Tristram O.; Ogle, Stephen M.

    2014-01-01

    Accurately quantifying the spatial and temporal variability of net primary production (NPP) for croplands is essential to understand regional cropland carbon dynamics. We compared three NPP estimates for croplands in the Midwestern United States: inventory-based estimates using crop yield data from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS); estimates from the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) NPP product; and estimates from the General Ensemble biogeochemical Modeling System (GEMS) process-based model. The three methods estimated mean NPP in the range of 469–687 g C m−2 yr−1and total NPP in the range of 318–490 Tg C yr−1 for croplands in the Midwest in 2007 and 2008. The NPP estimates from crop yield data and the GEMS model showed the mean NPP for croplands was over 650 g C m−2 yr−1 while the MODIS NPP product estimated the mean NPP was less than 500 g C m−2 yr−1. MODIS NPP also showed very different spatial variability of the cropland NPP from the other two methods. We found these differences were mainly caused by the difference in the land cover data and the crop specific information used in the methods. Our study demonstrated that the detailed mapping of the temporal and spatial change of crop species is critical for estimating the spatial and temporal variability of cropland NPP. We suggest that high resolution land cover data with species–specific crop information should be used in satellite-based and process-based models to improve carbon estimates for croplands.

  6. Paule‐Mandel estimators for network meta‐analysis with random inconsistency effects

    PubMed Central

    Veroniki, Areti Angeliki; Law, Martin; Tricco, Andrea C.; Baker, Rose

    2017-01-01

    Network meta‐analysis is used to simultaneously compare multiple treatments in a single analysis. However, network meta‐analyses may exhibit inconsistency, where direct and different forms of indirect evidence are not in agreement with each other, even after allowing for between‐study heterogeneity. Models for network meta‐analysis with random inconsistency effects have the dual aim of allowing for inconsistencies and estimating average treatment effects across the whole network. To date, two classical estimation methods for fitting this type of model have been developed: a method of moments that extends DerSimonian and Laird's univariate method and maximum likelihood estimation. However, the Paule and Mandel estimator is another recommended classical estimation method for univariate meta‐analysis. In this paper, we extend the Paule and Mandel method so that it can be used to fit models for network meta‐analysis with random inconsistency effects. We apply all three estimation methods to a variety of examples that have been used previously and we also examine a challenging new dataset that is highly heterogenous. We perform a simulation study based on this new example. We find that the proposed Paule and Mandel method performs satisfactorily and generally better than the previously proposed method of moments because it provides more accurate inferences. Furthermore, the Paule and Mandel method possesses some advantages over likelihood‐based methods because it is both semiparametric and requires no convergence diagnostics. Although restricted maximum likelihood estimation remains the gold standard, the proposed methodology is a fully viable alternative to this and other estimation methods. PMID:28585257

  7. Model-based cartilage thickness measurement in the submillimeter range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streekstra, G. J.; Strackee, S. D.; Maas, M.

    2007-09-15

    Current methods of image-based thickness measurement in thin sheet structures utilize second derivative zero crossings to locate the layer boundaries. It is generally acknowledged that the nonzero width of the point spread function (PSF) limits the accuracy of this measurement procedure. We propose a model-based method that strongly reduces PSF-induced bias by incorporating the PSF into the thickness estimation method. We estimated the bias in thickness measurements in simulated thin sheet images as obtained from second derivative zero crossings. To gain insight into the range of sheet thickness where our method is expected to yield improved results, sheet thickness wasmore » varied between 0.15 and 1.2 mm with an assumed PSF as present in the high-resolution modes of current computed tomography (CT) scanners [full width at half maximum (FWHM) 0.5-0.8 mm]. Our model-based method was evaluated in practice by measuring layer thickness from CT images of a phantom mimicking two parallel cartilage layers in an arthrography procedure. CT arthrography images of cadaver wrists were also evaluated, and thickness estimates were compared to those obtained from high-resolution anatomical sections that served as a reference. The thickness estimates from the simulated images reveal that the method based on second derivative zero crossings shows considerable bias for layers in the submillimeter range. This bias is negligible for sheet thickness larger than 1 mm, where the size of the sheet is more than twice the FWHM of the PSF but can be as large as 0.2 mm for a 0.5 mm sheet. The results of the phantom experiments show that the bias is effectively reduced by our method. The deviations from the true thickness, due to random fluctuations induced by quantum noise in the CT images, are of the order of 3% for a standard wrist imaging protocol. In the wrist the submillimeter thickness estimates from the CT arthrography images correspond within 10% to those estimated from the anatomical sections. We present a method that yields virtually unbiased thickness estimates of cartilage layers in the submillimeter range. The good agreement of thickness estimates from CT images with estimates from anatomical sections is promising for clinical application of the method in cartilage integrity staging of the wrist and the ankle.« less

  8. Analytical Fuselage and Wing Weight Estimation of Transport Aircraft

    DOT National Transportation Integrated Search

    1996-05-01

    A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of comp...

  9. A maximum power point prediction method for group control of photovoltaic water pumping systems based on parameter identification

    NASA Astrophysics Data System (ADS)

    Chen, B.; Su, J. H.; Guo, L.; Chen, J.

    2017-06-01

    This paper puts forward a maximum power estimation method based on the photovoltaic array (PVA) model to solve the optimization problems about group control of the PV water pumping systems (PVWPS) at the maximum power point (MPP). This method uses the improved genetic algorithm (GA) for model parameters estimation and identification in view of multi P-V characteristic curves of a PVA model, and then corrects the identification results through least square method. On this basis, the irradiation level and operating temperature under any condition are able to estimate so an accurate PVA model is established and the MPP none-disturbance estimation is achieved. The simulation adopts the proposed GA to determine parameters, and the results verify the accuracy and practicability of the methods.

  10. Motion Estimation System Utilizing Point Cloud Registration

    NASA Technical Reports Server (NTRS)

    Chen, Qi (Inventor)

    2016-01-01

    A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.

  11. Covariance-based direction-of-arrival estimation of wideband coherent chirp signals via sparse representation.

    PubMed

    Sha, Zhichao; Liu, Zhengmeng; Huang, Zhitao; Zhou, Yiyu

    2013-08-29

    This paper addresses the problem of direction-of-arrival (DOA) estimation of multiple wideband coherent chirp signals, and a new method is proposed. The new method is based on signal component analysis of the array output covariance, instead of the complicated time-frequency analysis used in previous literatures, and thus is more compact and effectively avoids possible signal energy loss during the hyper-processes. Moreover, the a priori information of signal number is no longer a necessity for DOA estimation in the new method. Simulation results demonstrate the performance superiority of the new method over previous ones.

  12. Tchebichef moment based restoration of Gaussian blurred images.

    PubMed

    Kumar, Ahlad; Paramesran, Raveendran; Lim, Chern-Loon; Dass, Sarat C

    2016-11-10

    With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.

  13. Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation.

    PubMed

    Lee, Soojeong; Chang, Joon-Hyuk

    2017-11-01

    This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These indicate that the proposed method actually enhances the performance by 9.18% and 10.88% compared with the DBN-DNN single estimator. The proposed methodology improves the accuracy of BP estimation and reduces the uncertainty for BP estimation. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A method for analyzing clustered interval-censored data based on Cox's model.

    PubMed

    Kor, Chew-Teng; Cheng, Kuang-Fu; Chen, Yi-Hau

    2013-02-28

    Methods for analyzing interval-censored data are well established. Unfortunately, these methods are inappropriate for the studies with correlated data. In this paper, we focus on developing a method for analyzing clustered interval-censored data. Our method is based on Cox's proportional hazard model with piecewise-constant baseline hazard function. The correlation structure of the data can be modeled by using Clayton's copula or independence model with proper adjustment in the covariance estimation. We establish estimating equations for the regression parameters and baseline hazards (and a parameter in copula) simultaneously. Simulation results confirm that the point estimators follow a multivariate normal distribution, and our proposed variance estimations are reliable. In particular, we found that the approach with independence model worked well even when the true correlation model was derived from Clayton's copula. We applied our method to a family-based cohort study of pandemic H1N1 influenza in Taiwan during 2009-2010. Using the proposed method, we investigate the impact of vaccination and family contacts on the incidence of pH1N1 influenza. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Restoration of out-of-focus images based on circle of confusion estimate

    NASA Astrophysics Data System (ADS)

    Vivirito, Paolo; Battiato, Sebastiano; Curti, Salvatore; La Cascia, M.; Pirrone, Roberto

    2002-11-01

    In this paper a new method for a fast out-of-focus blur estimation and restoration is proposed. It is suitable for CFA (Color Filter Array) images acquired by typical CCD/CMOS sensor. The method is based on the analysis of a single image and consists of two steps: 1) out-of-focus blur estimation via Bayer pattern analysis; 2) image restoration. Blur estimation is based on a block-wise edge detection technique. This edge detection is carried out on the green pixels of the CFA sensor image also called Bayer pattern. Once the blur level has been estimated the image is restored through the application of a new inverse filtering technique. This algorithm gives sharp images reducing ringing and crisping artifact, involving wider region of frequency. Experimental results show the effectiveness of the method, both in subjective and numerical way, by comparison with other techniques found in literature.

  16. Bayesian dose-response analysis for epidemiological studies with complex uncertainty in dose estimation.

    PubMed

    Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian E; Simon, Steven L

    2016-02-10

    Most conventional risk analysis methods rely on a single best estimate of exposure per person, which does not allow for adjustment for exposure-related uncertainty. Here, we propose a Bayesian model averaging method to properly quantify the relationship between radiation dose and disease outcomes by accounting for shared and unshared uncertainty in estimated dose. Our Bayesian risk analysis method utilizes multiple realizations of sets (vectors) of doses generated by a two-dimensional Monte Carlo simulation method that properly separates shared and unshared errors in dose estimation. The exposure model used in this work is taken from a study of the risk of thyroid nodules among a cohort of 2376 subjects who were exposed to fallout from nuclear testing in Kazakhstan. We assessed the performance of our method through an extensive series of simulations and comparisons against conventional regression risk analysis methods. When the estimated doses contain relatively small amounts of uncertainty, the Bayesian method using multiple a priori plausible draws of dose vectors gave similar results to the conventional regression-based methods of dose-response analysis. However, when large and complex mixtures of shared and unshared uncertainties are present, the Bayesian method using multiple dose vectors had significantly lower relative bias than conventional regression-based risk analysis methods and better coverage, that is, a markedly increased capability to include the true risk coefficient within the 95% credible interval of the Bayesian-based risk estimate. An evaluation of the dose-response using our method is presented for an epidemiological study of thyroid disease following radiation exposure. Copyright © 2015 John Wiley & Sons, Ltd.

  17. A comparison of consumptive-use estimates derived from the simplified surface energy balance approach and indirect reporting methods

    USGS Publications Warehouse

    Maupin, Molly A.; Senay, Gabriel B.; Kenny, Joan F.; Savoca, Mark E.

    2012-01-01

    Recent advances in remote-sensing technology and Simplified Surface Energy Balance (SSEB) methods can provide accurate and repeatable estimates of evapotranspiration (ET) when used with satellite observations of irrigated lands. Estimates of ET are generally considered equivalent to consumptive use (CU) because they represent the part of applied irrigation water that is evaporated, transpired, or otherwise not available for immediate reuse. The U.S. Geological Survey compared ET estimates from SSEB methods to CU data collected for 1995 using indirect methods as part of the National Water Use Information Program (NWUIP). Ten-year (2000-2009) average ET estimates from SSEB methods were derived using Moderate Resolution Imaging Spectroradiometer (MODIS) 1-kilometer satellite land surface temperature and gridded weather datasets from the Global Data Assimilation System (GDAS). County-level CU estimates for 1995 were assembled and referenced to 1-kilometer grid cells to synchronize with the SSEB ET estimates. Both datasets were seasonally and spatially weighted to represent the irrigation season (June-September) and those lands that were identified in the county as irrigated. A strong relation (R2 greater than 0.7) was determined between NWUIP CU and SSEB ET data. Regionally, the relation is stronger in arid western states than in humid eastern states, and positive and negative biases are both present at state-level comparisons. SSEB ET estimates can play a major role in monitoring and updating county-based CU estimates by providing a quick and cost-effective method to detect major year-to-year changes at county levels, as well as providing a means to disaggregate county-based ET estimates to sub-county levels. More research is needed to identify the causes for differences in state-based relations.

  18. Assessing an ensemble Kalman filter inference of Manning's n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC

    NASA Astrophysics Data System (ADS)

    Siripatana, Adil; Mayo, Talea; Sraj, Ihab; Knio, Omar; Dawson, Clint; Le Maitre, Olivier; Hoteit, Ibrahim

    2017-08-01

    Bayesian estimation/inversion is commonly used to quantify and reduce modeling uncertainties in coastal ocean model, especially in the framework of parameter estimation. Based on Bayes rule, the posterior probability distribution function (pdf) of the estimated quantities is obtained conditioned on available data. It can be computed either directly, using a Markov chain Monte Carlo (MCMC) approach, or by sequentially processing the data following a data assimilation approach, which is heavily exploited in large dimensional state estimation problems. The advantage of data assimilation schemes over MCMC-type methods arises from the ability to algorithmically accommodate a large number of uncertain quantities without significant increase in the computational requirements. However, only approximate estimates are generally obtained by this approach due to the restricted Gaussian prior and noise assumptions that are generally imposed in these methods. This contribution aims at evaluating the effectiveness of utilizing an ensemble Kalman-based data assimilation method for parameter estimation of a coastal ocean model against an MCMC polynomial chaos (PC)-based scheme. We focus on quantifying the uncertainties of a coastal ocean ADvanced CIRCulation (ADCIRC) model with respect to the Manning's n coefficients. Based on a realistic framework of observation system simulation experiments (OSSEs), we apply an ensemble Kalman filter and the MCMC method employing a surrogate of ADCIRC constructed by a non-intrusive PC expansion for evaluating the likelihood, and test both approaches under identical scenarios. We study the sensitivity of the estimated posteriors with respect to the parameters of the inference methods, including ensemble size, inflation factor, and PC order. A full analysis of both methods, in the context of coastal ocean model, suggests that an ensemble Kalman filter with appropriate ensemble size and well-tuned inflation provides reliable mean estimates and uncertainties of Manning's n coefficients compared to the full posterior distributions inferred by MCMC.

  19. Generalized Redistribute-to-the-Right Algorithm: Application to the Analysis of Censored Cost Data

    PubMed Central

    CHEN, SHUAI; ZHAO, HONGWEI

    2013-01-01

    Medical cost estimation is a challenging task when censoring of data is present. Although researchers have proposed methods for estimating mean costs, these are often derived from theory and are not always easy to understand. We provide an alternative method, based on a replace-from-the-right algorithm, for estimating mean costs more efficiently. We show that our estimator is equivalent to an existing one that is based on the inverse probability weighting principle and semiparametric efficiency theory. We also propose an alternative method for estimating the survival function of costs, based on the redistribute-to-the-right algorithm, that was originally used for explaining the Kaplan–Meier estimator. We show that this second proposed estimator is equivalent to a simple weighted survival estimator of costs. Finally, we develop a more efficient survival estimator of costs, using the same redistribute-to-the-right principle. This estimator is naturally monotone, more efficient than some existing survival estimators, and has a quite small bias in many realistic settings. We conduct numerical studies to examine the finite sample property of the survival estimators for costs, and show that our new estimator has small mean squared errors when the sample size is not too large. We apply both existing and new estimators to a data example from a randomized cardiovascular clinical trial. PMID:24403869

  20. A terrain-based site characterization map of California with implications for the contiguous United States

    USGS Publications Warehouse

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  1. SU-E-I-08: Investigation of Deconvolution Methods for Blocker-Based CBCT Scatter Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, C; Jin, M; Ouyang, L

    2015-06-15

    Purpose: To investigate whether deconvolution methods can improve the scatter estimation under different blurring and noise conditions for blocker-based scatter correction methods for cone-beam X-ray computed tomography (CBCT). Methods: An “ideal” projection image with scatter was first simulated for blocker-based CBCT data acquisition by assuming no blurring effect and no noise. The ideal image was then convolved with long-tail point spread functions (PSF) with different widths to mimic the blurring effect from the finite focal spot and detector response. Different levels of noise were also added. Three deconvolution Methods: 1) inverse filtering; 2) Wiener; and 3) Richardson-Lucy, were used tomore » recover the scatter signal in the blocked region. The root mean square error (RMSE) of estimated scatter serves as a quantitative measure for the performance of different methods under different blurring and noise conditions. Results: Due to the blurring effect, the scatter signal in the blocked region is contaminated by the primary signal in the unblocked region. The direct use of the signal in the blocked region to estimate scatter (“direct method”) leads to large RMSE values, which increase with the increased width of PSF and increased noise. The inverse filtering is very sensitive to noise and practically useless. The Wiener and Richardson-Lucy deconvolution methods significantly improve scatter estimation compared to the direct method. For a typical medium PSF and medium noise condition, both methods (∼20 RMSE) can achieve 4-fold improvement over the direct method (∼80 RMSE). The Wiener method deals better with large noise and Richardson-Lucy works better on wide PSF. Conclusion: We investigated several deconvolution methods to recover the scatter signal in the blocked region for blocker-based scatter correction for CBCT. Our simulation results demonstrate that Wiener and Richardson-Lucy deconvolution can significantly improve the scatter estimation compared to the direct method.« less

  2. FHWA infrastructure carbon estimator : final report and user’s guide.

    DOT National Transportation Integrated Search

    2014-09-01

    This study developed a method of estimating energy and GHG emissions from construction and maintenance of transportation systems. Designed as a spreadsheet-based model for practitioners, FHWAs Infrastructure Carbon Estimator is based on data colle...

  3. Pose estimation of industrial objects towards robot operation

    NASA Astrophysics Data System (ADS)

    Niu, Jie; Zhou, Fuqiang; Tan, Haishu; Cao, Yu

    2017-10-01

    With the advantages of wide range, non-contact and high flexibility, the visual estimation technology of target pose has been widely applied in modern industry, robot guidance and other engineering practices. However, due to the influence of complicated industrial environment, outside interference factors, lack of object characteristics, restrictions of camera and other limitations, the visual estimation technology of target pose is still faced with many challenges. Focusing on the above problems, a pose estimation method of the industrial objects is developed based on 3D models of targets. By matching the extracted shape characteristics of objects with the priori 3D model database of targets, the method realizes the recognition of target. Thus a pose estimation of objects can be determined based on the monocular vision measuring model. The experimental results show that this method can be implemented to estimate the position of rigid objects based on poor images information, and provides guiding basis for the operation of the industrial robot.

  4. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  5. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study.

    PubMed

    Austin, Peter C; Schuster, Tibor

    2016-10-01

    Observational studies are increasingly being used to estimate the effect of treatments, interventions and exposures on outcomes that can occur over time. Historically, the hazard ratio, which is a relative measure of effect, has been reported. However, medical decision making is best informed when both relative and absolute measures of effect are reported. When outcomes are time-to-event in nature, the effect of treatment can also be quantified as the change in mean or median survival time due to treatment and the absolute reduction in the probability of the occurrence of an event within a specified duration of follow-up. We describe how three different propensity score methods, propensity score matching, stratification on the propensity score and inverse probability of treatment weighting using the propensity score, can be used to estimate absolute measures of treatment effect on survival outcomes. These methods are all based on estimating marginal survival functions under treatment and lack of treatment. We then conducted an extensive series of Monte Carlo simulations to compare the relative performance of these methods for estimating the absolute effects of treatment on survival outcomes. We found that stratification on the propensity score resulted in the greatest bias. Caliper matching on the propensity score and a method based on earlier work by Cole and Hernán tended to have the best performance for estimating absolute effects of treatment on survival outcomes. When the prevalence of treatment was less extreme, then inverse probability of treatment weighting-based methods tended to perform better than matching-based methods. © The Author(s) 2014.

  6. Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Greeley, R.; Goettelman, R.

    1974-01-01

    Two methods are described which are used to estimate soil moisture remotely using the 0.4- to 14.0 micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).

  7. Use of visible, near-infrared, and thermal infrared remote sensing to study soil moisture

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Greeley, R.; Goettelman, R.

    1974-01-01

    Two methods are used to estimate soil moisture remotely using the 0.4- to 14.0-micron wavelength region: (1) measurement of spectral reflectance, and (2) measurement of soil temperature. The reflectance method is based on observations which show that directional reflectance decreases as soil moisture increases for a given material. The soil temperature method is based on observations which show that differences between daytime and nighttime soil temperatures decrease as moisture content increases for a given material. In some circumstances, separate reflectance or temperature measurements yield ambiguous data, in which case these two methods may be combined to obtain a valid soil moisture determination. In this combined approach, reflectance is used to estimate low moisture levels; and thermal inertia (or thermal diffusivity) is used to estimate higher levels. The reflectance method appears promising for surface estimates of soil moisture, whereas the temperature method appears promising for estimates of near-subsurface (0 to 10 cm).

  8. Improving estimates of genetic maps: a meta-analysis-based approach.

    PubMed

    Stewart, William C L

    2007-07-01

    Inaccurate genetic (or linkage) maps can reduce the power to detect linkage, increase type I error, and distort haplotype and relationship inference. To improve the accuracy of existing maps, I propose a meta-analysis-based method that combines independent map estimates into a single estimate of the linkage map. The method uses the variance of each independent map estimate to combine them efficiently, whether the map estimates use the same set of markers or not. As compared with a joint analysis of the pooled genotype data, the proposed method is attractive for three reasons: (1) it has comparable efficiency to the maximum likelihood map estimate when the pooled data are homogeneous; (2) relative to existing map estimation methods, it can have increased efficiency when the pooled data are heterogeneous; and (3) it avoids the practical difficulties of pooling human subjects data. On the basis of simulated data modeled after two real data sets, the proposed method can reduce the sampling variation of linkage maps commonly used in whole-genome linkage scans. Furthermore, when the independent map estimates are also maximum likelihood estimates, the proposed method performs as well as or better than when they are estimated by the program CRIMAP. Since variance estimates of maps may not always be available, I demonstrate the feasibility of three different variance estimators. Overall, the method should prove useful to investigators who need map positions for markers not contained in publicly available maps, and to those who wish to minimize the negative effects of inaccurate maps. Copyright 2007 Wiley-Liss, Inc.

  9. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  10. Residual uncertainty estimation using instance-based learning with applications to hydrologic forecasting

    NASA Astrophysics Data System (ADS)

    Wani, Omar; Beckers, Joost V. L.; Weerts, Albrecht H.; Solomatine, Dimitri P.

    2017-08-01

    A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts as a post-processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-based learning, it uses a k nearest-neighbour search for similar historical hydrometeorological conditions to determine uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: the Severn and Brue. Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative uncertainty estimators: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability coverage. Analysis also shows that the performance of this technique depends on the choice of search space. Nevertheless, the accuracy and reliability of uncertainty intervals generated using kNN resampling are at least comparable to those produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post-processors, like QR and UNEEC, for estimating forecast uncertainty. Apart from its concept being simple and well understood, an advantage of this method is that it is relatively easy to implement.

  11. Similar negative impacts of temperature on global wheat yield estimated by three independent methods

    USDA-ARS?s Scientific Manuscript database

    The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation approaches. Here we show that grid-based simulations, point-based simulations, and statistical regressions produce similar estimates of temperature ...

  12. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation

    PubMed Central

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2013-01-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method. PMID:23750314

  13. Adaptive distributed video coding with correlation estimation using expectation propagation

    NASA Astrophysics Data System (ADS)

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  14. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.

    PubMed

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-15

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  15. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  16. A physics-based fractional order model and state of energy estimation for lithium ion batteries. Part II: Parameter identification and state of energy estimation for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello

    2017-11-01

    State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.

  17. Self-rated health: small area large area comparisons amongst older adults at the state, district and sub-district level in India.

    PubMed

    Hirve, Siddhivinayak; Vounatsou, Penelope; Juvekar, Sanjay; Blomstedt, Yulia; Wall, Stig; Chatterji, Somnath; Ng, Nawi

    2014-03-01

    We compared prevalence estimates of self-rated health (SRH) derived indirectly using four different small area estimation methods for the Vadu (small) area from the national Study on Global AGEing (SAGE) survey with estimates derived directly from the Vadu SAGE survey. The indirect synthetic estimate for Vadu was 24% whereas the model based estimates were 45.6% and 45.7% with smaller prediction errors and comparable to the direct survey estimate of 50%. The model based techniques were better suited to estimate the prevalence of SRH than the indirect synthetic method. We conclude that a simplified mixed effects regression model can produce valid small area estimates of SRH. © 2013 Published by Elsevier Ltd.

  18. Adaptive estimation of state of charge and capacity with online identified battery model for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2016-11-01

    Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.

  19. Estimation of group means when adjusting for covariates in generalized linear models.

    PubMed

    Qu, Yongming; Luo, Junxiang

    2015-01-01

    Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Cable Overheating Risk Warning Method Based on Impedance Parameter Estimation in Distribution Network

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xiaohui, Song; Jianfang, Li; Fei, Gao

    2017-05-01

    Cable overheating will lead to the cable insulation level reducing, speed up the cable insulation aging, even easy to cause short circuit faults. Cable overheating risk identification and warning is nessesary for distribution network operators. Cable overheating risk warning method based on impedance parameter estimation is proposed in the paper to improve the safty and reliability operation of distribution network. Firstly, cable impedance estimation model is established by using least square method based on the data from distribiton SCADA system to improve the impedance parameter estimation accuracy. Secondly, calculate the threshold value of cable impedance based on the historical data and the forecast value of cable impedance based on the forecasting data in future from distribiton SCADA system. Thirdly, establish risks warning rules library of cable overheating, calculate the cable impedance forecast value and analysis the change rate of impedance, and then warn the overheating risk of cable line based on the overheating risk warning rules library according to the variation relationship between impedance and line temperature rise. Overheating risk warning method is simulated in the paper. The simulation results shows that the method can identify the imedance and forecast the temperature rise of cable line in distribution network accurately. The result of overheating risk warning can provide decision basis for operation maintenance and repair.

  1. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1989-01-01

    The method proposed for estimating sensitivity derivatives is based on the Recursive Quadratic Programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This method is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RQP algorithm. Initial testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity.

  2. An Empirical Comparison of Heterogeneity Variance Estimators in 12,894 Meta-Analyses

    ERIC Educational Resources Information Center

    Langan, Dean; Higgins, Julian P. T.; Simmonds, Mark

    2015-01-01

    Heterogeneity in meta-analysis is most commonly estimated using a moment-based approach described by DerSimonian and Laird. However, this method has been shown to produce biased estimates. Alternative methods to estimate heterogeneity include the restricted maximum likelihood approach and those proposed by Paule and Mandel, Sidik and Jonkman, and…

  3. Estimating Measures of Pass-Fail Reliability from Parallel Half-Tests.

    ERIC Educational Resources Information Center

    Woodruff, David J.; Sawyer, Richard L.

    Two methods for estimating measures of pass-fail reliability are derived, by which both theta and kappa may be estimated from a single test administration. The methods require only a single test administration and are computationally simple. Both are based on the Spearman-Brown formula for estimating stepped-up reliability. The non-distributional…

  4. On using sample selection methods in estimating the price elasticity of firms' demand for insurance.

    PubMed

    Marquis, M Susan; Louis, Thomas A

    2002-01-01

    We evaluate a technique based on sample selection models that has been used by health economists to estimate the price elasticity of firms' demand for insurance. We demonstrate that, this technique produces inflated estimates of the price elasticity. We show that alternative methods lead to valid estimates.

  5. New spatial upscaling methods for multi-point measurements: From normal to p-normal

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Xin

    2017-12-01

    Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.

  6. Low-complexity DOA estimation from short data snapshots for ULA systems using the annihilating filter technique

    NASA Astrophysics Data System (ADS)

    Bellili, Faouzi; Amor, Souheib Ben; Affes, Sofiène; Ghrayeb, Ali

    2017-12-01

    This paper addresses the problem of DOA estimation using uniform linear array (ULA) antenna configurations. We propose a new low-cost method of multiple DOA estimation from very short data snapshots. The new estimator is based on the annihilating filter (AF) technique. It is non-data-aided (NDA) and does not impinge therefore on the whole throughput of the system. The noise components are assumed temporally and spatially white across the receiving antenna elements. The transmitted signals are also temporally and spatially white across the transmitting sources. The new method is compared in performance to the Cramér-Rao lower bound (CRLB), the root-MUSIC algorithm, the deterministic maximum likelihood estimator and another Bayesian method developed precisely for the single snapshot case. Simulations show that the new estimator performs well over a wide SNR range. Prominently, the main advantage of the new AF-based method is that it succeeds in accurately estimating the DOAs from short data snapshots and even from a single snapshot outperforming by far the state-of-the-art techniques both in DOA estimation accuracy and computational cost.

  7. Estimating monthly temperature using point based interpolation techniques

    NASA Astrophysics Data System (ADS)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  8. Estimating time-based instantaneous total mortality rate based on the age-structured abundance index

    NASA Astrophysics Data System (ADS)

    Wang, Yingbin; Jiao, Yan

    2015-05-01

    The instantaneous total mortality rate ( Z) of a fish population is one of the important parameters in fisheries stock assessment. The estimation of Z is crucial to fish population dynamics analysis, abundance and catch forecast, and fisheries management. A catch curve-based method for estimating time-based Z and its change trend from catch per unit effort (CPUE) data of multiple cohorts is developed. Unlike the traditional catch-curve method, the method developed here does not need the assumption of constant Z throughout the time, but the Z values in n continuous years are assumed constant, and then the Z values in different n continuous years are estimated using the age-based CPUE data within these years. The results of the simulation analyses show that the trends of the estimated time-based Z are consistent with the trends of the true Z, and the estimated rates of change from this approach are close to the true change rates (the relative differences between the change rates of the estimated Z and the true Z are smaller than 10%). Variations of both Z and recruitment can affect the estimates of Z value and the trend of Z. The most appropriate value of n can be different given the effects of different factors. Therefore, the appropriate value of n for different fisheries should be determined through a simulation analysis as we demonstrated in this study. Further analyses suggested that selectivity and age estimation are also two factors that can affect the estimated Z values if there is error in either of them, but the estimated change rates of Z are still close to the true change rates. We also applied this approach to the Atlantic cod ( Gadus morhua) fishery of eastern Newfoundland and Labrador from 1983 to 1997, and obtained reasonable estimates of time-based Z.

  9. Aircraft wing weight build-up methodology with modification for materials and construction techniques

    NASA Technical Reports Server (NTRS)

    York, P.; Labell, R. W.

    1980-01-01

    An aircraft wing weight estimating method based on a component buildup technique is described. A simplified analytically derived beam model, modified by a regression analysis, is used to estimate the wing box weight, utilizing a data base of 50 actual airplane wing weights. Factors representing materials and methods of construction were derived and incorporated into the basic wing box equations. Weight penalties to the wing box for fuel, engines, landing gear, stores and fold or pivot are also included. Methods for estimating the weight of additional items (secondary structure, control surfaces) have the option of using details available at the design stage (i.e., wing box area, flap area) or default values based on actual aircraft from the data base.

  10. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    NASA Astrophysics Data System (ADS)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  11. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Gross domestic product estimation based on electricity utilization by artificial neural network

    NASA Astrophysics Data System (ADS)

    Stevanović, Mirjana; Vujičić, Slađana; Gajić, Aleksandar M.

    2018-01-01

    The main goal of the paper was to estimate gross domestic product (GDP) based on electricity estimation by artificial neural network (ANN). The electricity utilization was analyzed based on different sources like renewable, coal and nuclear sources. The ANN network was trained with two training algorithms namely extreme learning method and back-propagation algorithm in order to produce the best prediction results of the GDP. According to the results it can be concluded that the ANN model with extreme learning method could produce the acceptable prediction of the GDP based on the electricity utilization.

  13. Comparison of two methods for estimating the number of undocumented Mexican adults in Los Angeles County.

    PubMed

    Heer, D M; Passel, J F

    1987-01-01

    This article compares 2 different methods for estimating the number of undocumented Mexican adults in Los Angeles County. The 1st method, the survey-based method, uses a combination of 1980 census data and the results of a survey conducted in Los Angeles County in 1980 and 1981. A sample was selected from babies born in Los Angeles County who had a mother or father of Mexican origin. The survey included questions about the legal status of the baby's parents and certain other relatives. The resulting estimates of undocumented Mexican immigrants are for males aged 18-44 and females aged 18-39. The 2nd method, the residual method, involves comparison of census figures for aliens counted with estimates of legally-resident aliens developed principally with data from the Immigration and Naturalization Service (INS). For this study, estimates by age, sex, and period of entry were produced for persons born in Mexico and living in Los Angeles County. The results of this research indicate that it is possible to measure undocumented immigration with different techniques, yet obtain results that are similar. Both techniques presented here are limited in that they represent estimates of undocumented aliens based on the 1980 census. The number of additional undocumented aliens not counted remains a subject of conjecture. The fact that the proportions undocumented shown in the survey (228,700) are quite similar to the residual estimates (317,800) suggests that the number of undocumented aliens not counted in the census may not be an extremely large fraction of the undocumented population. The survey-based estimates have some significant advantages over the residual estimates. The survey provides tabulations of the undocumented population by characteristics other than the limited demographic information provided by the residual technique. On the other hand, the survey-based estimates require that a survey be conducted and, if national or regional estimates are called for, they may require a number of surveys. The residual technique, however, also requires a data source other than the census. However, the INS discontinued the annual registration of aliens after 1981. Thus, estimates of undocumented aliens based on the residual technique will probably not be possible for subnational areas using the 1990 census unless the registration program is reinstituted. Perhaps the best information on the undocumented population in the 1990 census will come from an improved version of the survey-based technique described here applied in selected local areas.

  14. Development of nondestructive methods for measurement of slab thickness and modulus of rupture in concrete pavements.

    DOT National Transportation Integrated Search

    2005-01-01

    This report describes work to develop non-destructive testing methods for concrete pavements. Two methods, for pavement thickness and in-place strength estimation, respectively, were developed and evaluated. The thickness estimation method is based o...

  15. Adaptive Window Zero-Crossing-Based Instantaneous Frequency Estimation

    NASA Astrophysics Data System (ADS)

    Sekhar, S. Chandra; Sreenivas, TV

    2004-12-01

    We address the problem of estimating instantaneous frequency (IF) of a real-valued constant amplitude time-varying sinusoid. Estimation of polynomial IF is formulated using the zero-crossings of the signal. We propose an algorithm to estimate nonpolynomial IF by local approximation using a low-order polynomial, over a short segment of the signal. This involves the choice of window length to minimize the mean square error (MSE). The optimal window length found by directly minimizing the MSE is a function of the higher-order derivatives of the IF which are not available a priori. However, an optimum solution is formulated using an adaptive window technique based on the concept of intersection of confidence intervals. The adaptive algorithm enables minimum MSE-IF (MMSE-IF) estimation without requiring a priori information about the IF. Simulation results show that the adaptive window zero-crossing-based IF estimation method is superior to fixed window methods and is also better than adaptive spectrogram and adaptive Wigner-Ville distribution (WVD)-based IF estimators for different signal-to-noise ratio (SNR).

  16. Using Empirical Mode Decomposition to process Marine Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jegen, M. D.; Heincke, B. H.; Moorkamp, M.

    2014-12-01

    The magnetotelluric (MT) data always exhibits nonstationarities due to variations of source mechanisms causing MT variations on different time and spatial scales. An additional non-stationary component is introduced through noise, which is particularly pronounced in marine MT data through motion induced noise caused by time-varying wave motion and currents. We present a new heuristic method for dealing with the non-stationarity of MT time series based on Empirical Mode Decomposition (EMD). The EMD method is used in combination with the derived instantaneous spectra to determine impedance estimates. The procedure is tested on synthetic and field MT data. In synthetic tests the reliability of impedance estimates from EMD-based method is compared to the synthetic responses of a 1D layered model. To examine how estimates are affected by noise, stochastic stationary and non-stationary noise are added on the time series. Comparisons reveal that estimates by the EMD-based method are generally more stable than those by simple Fourier analysis. Furthermore, the results are compared to those derived by a commonly used Fourier-based MT data processing software (BIRRP), which incorporates additional sophisticated robust estimations to deal with noise issues. It is revealed that the results from both methods are already comparable, even though no robust estimate procedures are implemented in the EMD approach at present stage. The processing scheme is then applied to marine MT field data. Testing is performed on short, relatively quiet segments of several data sets, as well as on long segments of data with many non-stationary noise packages. Compared to BIRRP, the new method gives comparable or better impedance estimates, furthermore, the estimates are extended to lower frequencies and less noise biased estimates with smaller error bars are obtained at high frequencies. The new processing methodology represents an important step towards deriving a better resolved Earth model to greater depth underneath the seafloor.

  17. Motion estimation using point cluster method and Kalman filter.

    PubMed

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal instantaneous frequencies.

  18. Vehicle Lateral State Estimation Based on Measured Tyre Forces

    PubMed Central

    Tuononen, Ari J.

    2009-01-01

    Future active safety systems need more accurate information about the state of vehicles. This article proposes a method to evaluate the lateral state of a vehicle based on measured tyre forces. The tyre forces of two tyres are estimated from optically measured tyre carcass deflections and transmitted wirelessly to the vehicle body. The two remaining tyres are so-called virtual tyre sensors, the forces of which are calculated from the real tyre sensor estimates. The Kalman filter estimator for lateral vehicle state based on measured tyre forces is presented, together with a simple method to define adaptive measurement error covariance depending on the driving condition of the vehicle. The estimated yaw rate and lateral velocity are compared with the validation sensor measurements. PMID:22291535

  19. Tree Biomass Estimation of Chinese fir (Cunninghamia lanceolata) Based on Bayesian Method

    PubMed Central

    Zhang, Jianguo

    2013-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass. PMID:24278198

  20. Tree biomass estimation of Chinese fir (Cunninghamia lanceolata) based on Bayesian method.

    PubMed

    Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo

    2013-01-01

    Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.

  1. Data-based hybrid tension estimation and fault diagnosis of cold rolling continuous annealing processes.

    PubMed

    Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe

    2011-12-01

    The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.

  2. BME Estimation of Residential Exposure to Ambient PM10 and Ozone at Multiple Time Scales

    PubMed Central

    Yu, Hwa-Lung; Chen, Jiu-Chiuan; Christakos, George; Jerrett, Michael

    2009-01-01

    Background Long-term human exposure to ambient pollutants can be an important contributing or etiologic factor of many chronic diseases. Spatiotemporal estimation (mapping) of long-term exposure at residential areas based on field observations recorded in the U.S. Environmental Protection Agency’s Air Quality System often suffer from missing data issues due to the scarce monitoring network across space and the inconsistent recording periods at different monitors. Objective We developed and compared two upscaling methods: UM1 (data aggregation followed by exposure estimation) and UM2 (exposure estimation followed by data aggregation) for the long-term PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) and ozone exposure estimations and applied them in multiple time scales to estimate PM and ozone exposures for the residential areas of the Health Effects of Air Pollution on Lupus (HEAPL) study. Method We used Bayesian maximum entropy (BME) analysis for the two upscaling methods. We performed spatiotemporal cross-validations at multiple time scales by UM1 and UM2 to assess the estimation accuracy across space and time. Results Compared with the kriging method, the integration of soft information by the BME method can effectively increase the estimation accuracy for both pollutants. The spatiotemporal distributions of estimation errors from UM1 and UM2 were similar. The cross-validation results indicated that UM2 is generally better than UM1 in exposure estimations at multiple time scales in terms of predictive accuracy and lack of bias. For yearly PM10 estimations, both approaches have comparable performance, but the implementation of UM1 is associated with much lower computation burden. Conclusion BME-based upscaling methods UM1 and UM2 can assimilate core and site-specific knowledge bases of different formats for long-term exposure estimation. This study shows that UM1 can perform reasonably well when the aggregation process does not alter the spatiotemporal structure of the original data set; otherwise, UM2 is preferable. PMID:19440491

  3. Adaptive compressed sensing of multi-view videos based on the sparsity estimation

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Li, Xilong; Chong, Xin

    2017-11-01

    The conventional compressive sensing for videos based on the non-adaptive linear projections, and the measurement times is usually set empirically. As a result, the quality of videos reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was described. Then an estimation method for the sparsity of multi-view videos was proposed based on the two dimensional discrete wavelet transform (2D DWT). With an energy threshold given beforehand, the DWT coefficients were processed with both energy normalization and sorting by descending order, and the sparsity of the multi-view video can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of video frame effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparsity estimated with the energy threshold provided, the proposed method can ensure the reconstruction quality of multi-view videos.

  4. Invited commentary: Lost in estimation--searching for alternatives to markov chains to fit complex Bayesian models.

    PubMed

    Molitor, John

    2012-03-01

    Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.

  5. IMU-based online kinematic calibration of robot manipulator.

    PubMed

    Du, Guanglong; Zhang, Ping

    2013-01-01

    Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods.

  6. A method for estimating both the solubility parameters and molar volumes of liquids

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1974-01-01

    Development of an indirect method of estimating the solubility parameter of high molecular weight polymers. The proposed method of estimating the solubility parameter, like Small's method, is based on group additive constants, but is believed to be superior to Small's method for two reasons: (1) the contribution of a much larger number of functional groups have been evaluated, and (2) the method requires only a knowledge of structural formula of the compound.

  7. Unfolding sphere size distributions with a density estimator based on Tikhonov regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weese, J.; Korat, E.; Maier, D.

    1997-12-01

    This report proposes a method for unfolding sphere size distributions given a sample of radii that combines the advantages of a density estimator with those of Tikhonov regularization methods. The following topics are discusses in this report to achieve this method: the relation between the profile and the sphere size distribution; the method for unfolding sphere size distributions; the results based on simulations; and the experimental data comparison.

  8. Differential estimates of southern flying squirrel (Glaucomys volans) population structure based on capture method

    Treesearch

    Kevin S. Laves; Susan C. Loeb

    2005-01-01

    It is commonly assumed that population estimates derived from trapping small mammals are accurate and unbiased or that estimates derived from different capture methods are comparable. We captured southern flying squirrels (Glaucmrtys volam) using two methods to study their effect on red-cockaded woodpecker (Picoides bumah) reproductive success. Southern flying...

  9. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars

    NASA Astrophysics Data System (ADS)

    Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.

    2015-12-01

    Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.

  10. Base Pressure at Supersonic Speeds on Two-dimensional Airfoils and on Bodies of Revolution with and Without Fins Having Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    LOVE EUGENE S

    1957-01-01

    An analysis has been made of available experimental data to show the effects of most of the variables that are more predominant in determining base pressure at supersonic speeds. The analysis covers base pressures for two-dimensional airfoils and for bodies of revolution with and without stabilizing fins and is restricted to turbulent boundary layers. The present status of available experimental information is summarized as are the existing methods for predicting base pressure. A simple semiempirical method is presented for estimating base pressure. For two-dimensional bases, this method stems from an analogy established between the base-pressure phenomena and the peak pressure rise associated with the separation of the boundary layer. An analysis made for axially symmetric flow indicates that the base pressure for bodies of revolution is subject to the same analogy. Based upon the methods presented, estimations are made of such effects as Mach number, angle of attack, boattailing, fineness ratio, and fins. These estimations give fair predictions of experimental results. (author)

  11. An investigation of new methods for estimating parameter sensitivities

    NASA Technical Reports Server (NTRS)

    Beltracchi, Todd J.; Gabriele, Gary A.

    1988-01-01

    Parameter sensitivity is defined as the estimation of changes in the modeling functions and the design variables due to small changes in the fixed parameters of the formulation. There are currently several methods for estimating parameter sensitivities requiring either difficult to obtain second order information, or do not return reliable estimates for the derivatives. Additionally, all the methods assume that the set of active constraints does not change in a neighborhood of the estimation point. If the active set does in fact change, than any extrapolations based on these derivatives may be in error. The objective here is to investigate more efficient new methods for estimating parameter sensitivities when the active set changes. The new method is based on the recursive quadratic programming (RQP) method and in conjunction a differencing formula to produce estimates of the sensitivities. This is compared to existing methods and is shown to be very competitive in terms of the number of function evaluations required. In terms of accuracy, the method is shown to be equivalent to a modified version of the Kuhn-Tucker method, where the Hessian of the Lagrangian is estimated using the BFS method employed by the RPQ algorithm. Inital testing on a test set with known sensitivities demonstrates that the method can accurately calculate the parameter sensitivity. To handle changes in the active set, a deflection algorithm is proposed for those cases where the new set of active constraints remains linearly independent. For those cases where dependencies occur, a directional derivative is proposed. A few simple examples are included for the algorithm, but extensive testing has not yet been performed.

  12. Accurate estimation of human body orientation from RGB-D sensors.

    PubMed

    Liu, Wu; Zhang, Yongdong; Tang, Sheng; Tang, Jinhui; Hong, Richang; Li, Jintao

    2013-10-01

    Accurate estimation of human body orientation can significantly enhance the analysis of human behavior, which is a fundamental task in the field of computer vision. However, existing orientation estimation methods cannot handle the various body poses and appearances. In this paper, we propose an innovative RGB-D-based orientation estimation method to address these challenges. By utilizing the RGB-D information, which can be real time acquired by RGB-D sensors, our method is robust to cluttered environment, illumination change and partial occlusions. Specifically, efficient static and motion cue extraction methods are proposed based on the RGB-D superpixels to reduce the noise of depth data. Since it is hard to discriminate all the 360 (°) orientation using static cues or motion cues independently, we propose to utilize a dynamic Bayesian network system (DBNS) to effectively employ the complementary nature of both static and motion cues. In order to verify our proposed method, we build a RGB-D-based human body orientation dataset that covers a wide diversity of poses and appearances. Our intensive experimental evaluations on this dataset demonstrate the effectiveness and efficiency of the proposed method.

  13. Estimating psychiatric manpower requirements based on patients' needs.

    PubMed

    Faulkner, L R; Goldman, C R

    1997-05-01

    To provide a better understanding of the complexities of estimating psychiatric manpower requirements, the authors describe several approaches to estimation and present a method based on patients' needs. A five-step method for psychiatric manpower estimation is used, with estimates of data pertinent to each step, to calculate the total psychiatric manpower requirements for the United States. The method is also used to estimate the hours of psychiatric service per patient per year that might be available under current psychiatric practice and under a managed care scenario. Depending on assumptions about data at each step in the method, the total psychiatric manpower requirements for the U.S. population range from 2,989 to 358,696 full-time-equivalent psychiatrists. The number of available hours of psychiatric service per patient per year is 14.1 hours under current psychiatric practice and 2.8 hours under the managed care scenario. The key to psychiatric manpower estimation lies in clarifying the assumptions that underlie the specific method used. Even small differences in assumptions mean large differences in estimates. Any credible manpower estimation process must include discussions and negotiations between psychiatrists, other clinicians, administrators, and patients and families to clarify the treatment needs of patients and the roles, responsibilities, and job description of psychiatrists.

  14. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation

    PubMed Central

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395

  15. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    PubMed

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.

  16. What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries

    PubMed Central

    Sasieni, P D; Shelton, J; Ormiston-Smith, N; Thomson, C S; Silcocks, P B

    2011-01-01

    Background: The ‘lifetime risk' of cancer is generally estimated by combining current incidence rates with current all-cause mortality (‘current probability' method) rather than by describing the experience of a birth cohort. As individuals may get more than one type of cancer, what is generally estimated is the average (mean) number of cancers over a lifetime. This is not the same as the probability of getting cancer. Methods: We describe a method for estimating lifetime risk that corrects for the inclusion of multiple primary cancers in the incidence rates routinely published by cancer registries. The new method applies cancer incidence rates to the estimated probability of being alive without a previous cancer. The new method is illustrated using data from the Scottish Cancer Registry and is compared with ‘gold-standard' estimates that use (unpublished) data on first primaries. Results: The effect of this correction is to make the estimated ‘lifetime risk' smaller. The new estimates are extremely similar to those obtained using incidence based on first primaries. The usual ‘current probability' method considerably overestimates the lifetime risk of all cancers combined, although the correction for any single cancer site is minimal. Conclusion: Estimation of the lifetime risk of cancer should either be based on first primaries or should use the new method. PMID:21772332

  17. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  18. On the estimation of jet-induced fountain lift and additional suckdown in hover for two-jet configurations

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Bellavia, David C.; Corsiglia, Victor R.; Wardwell, Douglas A.

    1991-01-01

    Currently available methods for estimating the net suckdown induced on jet V/STOL aircraft hovering in ground effect are based on a correlation of available force data and are, therefore, limited to configurations similar to those in the data base. Experience with some of these configurations has shown that both the fountain lift and additional suckdown are overestimated but these effects cancel each other for configurations within the data base. For other configurations, these effects may not cancel and the net suckdown could be grossly overestimated or underestimated. Also, present methods do not include the prediction of the pitching moments associated with the suckdown induced in ground effect. An attempt to develop a more logically based method for estimating the fountain lift and suckdown based on the jet-induced pressures is initiated. The analysis is based primarily on the data from a related family of three two-jet configurations (all using the same jet spacing) and limited data from two other two-jet configurations. The current status of the method, which includes expressions for estimating the maximum pressure induced in the fountain regions, and the sizes of the fountain and suckdown regions is presented. Correlating factors are developed to be used with these areas and pressures to estimate the fountain lift, the suckdown, and the related pitching moment increments.

  19. A comparison of estimators from self-controlled case series, case-crossover design, and sequence symmetry analysis for pharmacoepidemiological studies.

    PubMed

    Takeuchi, Yoshinori; Shinozaki, Tomohiro; Matsuyama, Yutaka

    2018-01-08

    Despite the frequent use of self-controlled methods in pharmacoepidemiological studies, the factors that may bias the estimates from these methods have not been adequately compared in real-world settings. Here, we comparatively examined the impact of a time-varying confounder and its interactions with time-invariant confounders, time trends in exposures and events, restrictions, and misspecification of risk period durations on the estimators from three self-controlled methods. This study analyzed self-controlled case series (SCCS), case-crossover (CCO) design, and sequence symmetry analysis (SSA) using simulated and actual electronic medical records datasets. We evaluated the performance of the three self-controlled methods in simulated cohorts for the following scenarios: 1) time-invariant confounding with interactions between the confounders, 2) time-invariant and time-varying confounding without interactions, 3) time-invariant and time-varying confounding with interactions among the confounders, 4) time trends in exposures and events, 5) restricted follow-up time based on event occurrence, and 6) patient restriction based on event history. The sensitivity of the estimators to misspecified risk period durations was also evaluated. As a case study, we applied these methods to evaluate the risk of macrolides on liver injury using electronic medical records. In the simulation analysis, time-varying confounding produced bias in the SCCS and CCO design estimates, which aggravated in the presence of interactions between the time-invariant and time-varying confounders. The SCCS estimates were biased by time trends in both exposures and events. Erroneously short risk periods introduced bias to the CCO design estimate, whereas erroneously long risk periods introduced bias to the estimates of all three methods. Restricting the follow-up time led to severe bias in the SSA estimates. The SCCS estimates were sensitive to patient restriction. The case study showed that although macrolide use was significantly associated with increased liver injury occurrence in all methods, the value of the estimates varied. The estimations of the three self-controlled methods depended on various underlying assumptions, and the violation of these assumptions may cause non-negligible bias in the resulting estimates. Pharmacoepidemiologists should select the appropriate self-controlled method based on how well the relevant key assumptions are satisfied with respect to the available data.

  20. COMPARISON OF TAXONOMIC, COLONY MORPHOTYPE AND PCR-RFLP METHODS TO CHARACTERIZE MICROFUNGAL DIVERSITY

    EPA Science Inventory

    We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological ...

  1. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.

    Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.

  2. Artificial Neural Network Based Group Contribution Method for Estimating Cetane and Octane Numbers of Hydrocarbons and Oxygenated Organic Compounds

    DOE PAGES

    Kubic, William Louis; Jenkins, Rhodri W.; Moore, Cameron M.; ...

    2017-09-28

    Chemical pathways for converting biomass into fuels produce compounds for which key physical and chemical property data are unavailable. We developed an artificial neural network based group contribution method for estimating cetane and octane numbers that captures the complex dependence of fuel properties of pure compounds on chemical structure and is statistically superior to current methods.

  3. Partial volume correction of brain perfusion estimates using the inherent signal data of time-resolved arterial spin labeling.

    PubMed

    Ahlgren, André; Wirestam, Ronnie; Petersen, Esben Thade; Ståhlberg, Freddy; Knutsson, Linda

    2014-09-01

    Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial volume effects (PVEs), arising due to voxel signal cross-contamination between different compartments. To address this issue, several partial volume correction (PVC) methods have been presented. Most previous methods rely on segmentation of a high-resolution T1 -weighted morphological image volume that is coregistered to the low-resolution ASL data, making the result sensitive to errors in the segmentation and coregistration. In this work, we present a methodology for partial volume estimation and correction, using only low-resolution ASL data acquired with the QUASAR sequence. The methodology consists of a T1 -based segmentation method, with no spatial priors, and a modified PVC method based on linear regression. The presented approach thus avoids prior assumptions about the spatial distribution of brain compartments, while also avoiding coregistration between different image volumes. Simulations based on a digital phantom as well as in vivo measurements in 10 volunteers were used to assess the performance of the proposed segmentation approach. The simulation results indicated that QUASAR data can be used for robust partial volume estimation, and this was confirmed by the in vivo experiments. The proposed PVC method yielded probable perfusion maps, comparable to a reference method based on segmentation of a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the reference method failed to completely eliminate the dependence of perfusion estimates on the volume fraction, the novel approach produced GM perfusion values independent of GM volume fraction. The intra-subject coefficient of variation of corrected perfusion values was lowest for the proposed PVC method. As shown in this work, low-resolution partial volume estimation in connection with ASL perfusion estimation is feasible, and provides a promising tool for decoupling perfusion and tissue volume. Copyright © 2014 John Wiley & Sons, Ltd.

  4. A source number estimation method for single optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Hu, Junpeng; Huang, Zhiping; Su, Shaojing; Zhang, Yimeng; Liu, Chunwu

    2015-10-01

    The single-channel blind source separation (SCBSS) technique makes great significance in many fields, such as optical fiber communication, sensor detection, image processing and so on. It is a wide range application to realize blind source separation (BSS) from a single optical fiber sensor received data. The performance of many BSS algorithms and signal process methods will be worsened with inaccurate source number estimation. Many excellent algorithms have been proposed to deal with the source number estimation in array signal process which consists of multiple sensors, but they can not be applied directly to the single sensor condition. This paper presents a source number estimation method dealing with the single optical fiber sensor received data. By delay process, this paper converts the single sensor received data to multi-dimension form. And the data covariance matrix is constructed. Then the estimation algorithms used in array signal processing can be utilized. The information theoretic criteria (ITC) based methods, presented by AIC and MDL, Gerschgorin's disk estimation (GDE) are introduced to estimate the source number of the single optical fiber sensor's received signal. To improve the performance of these estimation methods at low signal noise ratio (SNR), this paper make a smooth process to the data covariance matrix. By the smooth process, the fluctuation and uncertainty of the eigenvalues of the covariance matrix are reduced. Simulation results prove that ITC base methods can not estimate the source number effectively under colored noise. The GDE method, although gets a poor performance at low SNR, but it is able to accurately estimate the number of sources with colored noise. The experiments also show that the proposed method can be applied to estimate the source number of single sensor received data.

  5. Single image super-resolution reconstruction algorithm based on eage selection

    NASA Astrophysics Data System (ADS)

    Zhang, Yaolan; Liu, Yijun

    2017-05-01

    Super-resolution (SR) has become more important, because it can generate high-quality high-resolution (HR) images from low-resolution (LR) input images. At present, there are a lot of work is concentrated on developing sophisticated image priors to improve the image quality, while taking much less attention to estimating and incorporating the blur model that can also impact the reconstruction results. We present a new reconstruction method based on eager selection. This method takes full account of the factors that affect the blur kernel estimation and accurately estimating the blur process. When comparing with the state-of-the-art methods, our method has comparable performance.

  6. Using effort information with change-in-ratio data for population estimation

    USGS Publications Warehouse

    Udevitz, Mark S.; Pollock, Kenneth H.

    1995-01-01

    Most change-in-ratio (CIR) methods for estimating fish and wildlife population sizes have been based only on assumptions about how encounter probabilities vary among population subclasses. When information on sampling effort is available, it is also possible to derive CIR estimators based on assumptions about how encounter probabilities vary over time. This paper presents a generalization of previous CIR models that allows explicit consideration of a range of assumptions about the variation of encounter probabilities among subclasses and over time. Explicit estimators are derived under this model for specific sets of assumptions about the encounter probabilities. Numerical methods are presented for obtaining estimators under the full range of possible assumptions. Likelihood ratio tests for these assumptions are described. Emphasis is on obtaining estimators based on assumptions about variation of encounter probabilities over time.

  7. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding

    PubMed Central

    Tosteson, Tor D.; Morden, Nancy E.; Stukel, Therese A.; O'Malley, A. James

    2014-01-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival. PMID:25506259

  8. Using instrumental variables to estimate a Cox's proportional hazards regression subject to additive confounding.

    PubMed

    MacKenzie, Todd A; Tosteson, Tor D; Morden, Nancy E; Stukel, Therese A; O'Malley, A James

    2014-06-01

    The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival.

  9. a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.

  10. Statistical inference for remote sensing-based estimates of net deforestation

    Treesearch

    Ronald E. McRoberts; Brian F. Walters

    2012-01-01

    Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because...

  11. An improved parameter estimation scheme for image modification detection based on DCT coefficient analysis.

    PubMed

    Yu, Liyang; Han, Qi; Niu, Xiamu; Yiu, S M; Fang, Junbin; Zhang, Ye

    2016-02-01

    Most of the existing image modification detection methods which are based on DCT coefficient analysis model the distribution of DCT coefficients as a mixture of a modified and an unchanged component. To separate the two components, two parameters, which are the primary quantization step, Q1, and the portion of the modified region, α, have to be estimated, and more accurate estimations of α and Q1 lead to better detection and localization results. Existing methods estimate α and Q1 in a completely blind manner, without considering the characteristics of the mixture model and the constraints to which α should conform. In this paper, we propose a more effective scheme for estimating α and Q1, based on the observations that, the curves on the surface of the likelihood function corresponding to the mixture model is largely smooth, and α can take values only in a discrete set. We conduct extensive experiments to evaluate the proposed method, and the experimental results confirm the efficacy of our method. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports.

    PubMed

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Mester, Joachim; Eskofier, Bjoern M

    2016-11-01

    The amount of total body water (TBW) can be estimated based on bioimpedance measurements of the human body. In sports, TBW estimations are of importance because mild water losses can impair muscular strength and aerobic endurance. Severe water losses can even be life threatening. TBW estimations based on bioimpedance, however, fail during sports because the increased body temperature corrupts bioimpedance measurements. Therefore, this paper proposes a machine learning method that eliminates the effects of increased temperature on bioimpedance and, consequently, reveals the changes in bioimpedance that are due to TBW loss. This is facilitated by utilizing changes in skin and core temperature. The method was evaluated in a study in which bioimpedance, temperature, and TBW loss were recorded every 15 min during a 2-h running workout. The evaluation demonstrated that the proposed method is able to reduce the error of TBW loss estimation by up to 71%, compared to the state of art. In the future, the proposed method in combination with portable bioimpedance devices might facilitate the development of wearable systems for continuous and noninvasive TBW loss monitoring during sports.

  13. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing.

    PubMed

    Li, Jun; Lin, Qiu-Hua; Kang, Chun-Yu; Wang, Kai; Yang, Xiu-Ting

    2018-03-18

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets.

  14. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars.

    PubMed

    Huang, Jiyan; Zhang, Ying; Luo, Shan

    2017-12-15

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer-Rao lower bound (CRLB) are derived. The simulation results verified the proposed method.

  15. An Efficient Estimator for Moving Target Localization Using Multi-Station Dual-Frequency Radars

    PubMed Central

    Zhang, Ying; Luo, Shan

    2017-01-01

    Localization of a moving target in a dual-frequency radars system has now gained considerable attention. The noncoherent localization approach based on a least squares (LS) estimator has been addressed in the literature. Compared with the LS method, a novel localization method based on a two-step weighted least squares estimator is proposed to increase positioning accuracy for a multi-station dual-frequency radars system in this paper. The effects of signal noise ratio and the number of samples on the performance of range estimation are also analyzed in the paper. Furthermore, both the theoretical variance and Cramer–Rao lower bound (CRLB) are derived. The simulation results verified the proposed method. PMID:29244727

  16. A comparison study of size-specific dose estimate calculation methods.

    PubMed

    Parikh, Roshni A; Wien, Michael A; Novak, Ronald D; Jordan, David W; Klahr, Paul; Soriano, Stephanie; Ciancibello, Leslie; Berlin, Sheila C

    2018-01-01

    The size-specific dose estimate (SSDE) has emerged as an improved metric for use by medical physicists and radiologists for estimating individual patient dose. Several methods of calculating SSDE have been described, ranging from patient thickness or attenuation-based (automated and manual) measurements to weight-based techniques. To compare the accuracy of thickness vs. weight measurement of body size to allow for the calculation of the size-specific dose estimate (SSDE) in pediatric body CT. We retrospectively identified 109 pediatric body CT examinations for SSDE calculation. We examined two automated methods measuring a series of level-specific diameters of the patient's body: method A used the effective diameter and method B used the water-equivalent diameter. Two manual methods measured patient diameter at two predetermined levels: the superior endplate of L2, where body width is typically most thin, and the superior femoral head or iliac crest (for scans that did not include the pelvis), where body width is typically most thick; method C averaged lateral measurements at these two levels from the CT projection scan, and method D averaged lateral and anteroposterior measurements at the same two levels from the axial CT images. Finally, we used body weight to characterize patient size, method E, and compared this with the various other measurement methods. Methods were compared across the entire population as well as by subgroup based on body width. Concordance correlation (ρ c ) between each of the SSDE calculation methods (methods A-E) was greater than 0.92 across the entire population, although the range was wider when analyzed by subgroup (0.42-0.99). When we compared each SSDE measurement method with CTDI vol, there was poor correlation, ρ c <0.77, with percentage differences between 20.8% and 51.0%. Automated computer algorithms are accurate and efficient in the calculation of SSDE. Manual methods based on patient thickness provide acceptable dose estimates for pediatric patients <30 cm in body width. Body weight provides a quick and practical method to identify conversion factors that can be used to estimate SSDE with reasonable accuracy in pediatric patients with body width ≥20 cm.

  17. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance

    Treesearch

    Chelcy R. Ford; Robert M. Hubbard; Brian D. Kloeppel; James M. Vose

    2007-01-01

    Many researchers are using sap flux to estimate tree-level transpiration, and to scale to stand- and catchment-level transpiration; yet studies evaluating the comparability of sap flux-based estimates of transpiration (E) with alternative methods for estimating Et at this spatial scale are rare. Our ability to...

  18. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles.

    PubMed

    Wu, Zhihong; Lu, Ke; Zhu, Yuan

    2015-01-01

    The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment.

  19. A Practical Torque Estimation Method for Interior Permanent Magnet Synchronous Machine in Electric Vehicles

    PubMed Central

    Zhu, Yuan

    2015-01-01

    The torque output accuracy of the IPMSM in electric vehicles using a state of the art MTPA strategy highly depends on the accuracy of machine parameters, thus, a torque estimation method is necessary for the safety of the vehicle. In this paper, a torque estimation method based on flux estimator with a modified low pass filter is presented. Moreover, by taking into account the non-ideal characteristic of the inverter, the torque estimation accuracy is improved significantly. The effectiveness of the proposed method is demonstrated through MATLAB/Simulink simulation and experiment. PMID:26114557

  20. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less

  1. Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Murzionak, Aliaksandr

    A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.

  2. Heading Estimation for Pedestrian Dead Reckoning Based on Robust Adaptive Kalman Filtering.

    PubMed

    Wu, Dongjin; Xia, Linyuan; Geng, Jijun

    2018-06-19

    Pedestrian dead reckoning (PDR) using smart phone-embedded micro-electro-mechanical system (MEMS) sensors plays a key role in ubiquitous localization indoors and outdoors. However, as a relative localization method, it suffers from the problem of error accumulation which prevents it from long term independent running. Heading estimation error is one of the main location error sources, and therefore, in order to improve the location tracking performance of the PDR method in complex environments, an approach based on robust adaptive Kalman filtering (RAKF) for estimating accurate headings is proposed. In our approach, outputs from gyroscope, accelerometer, and magnetometer sensors are fused using the solution of Kalman filtering (KF) that the heading measurements derived from accelerations and magnetic field data are used to correct the states integrated from angular rates. In order to identify and control measurement outliers, a maximum likelihood-type estimator (M-estimator)-based model is used. Moreover, an adaptive factor is applied to resist the negative effects of state model disturbances. Extensive experiments under static and dynamic conditions were conducted in indoor environments. The experimental results demonstrate the proposed approach provides more accurate heading estimates and supports more robust and dynamic adaptive location tracking, compared with methods based on conventional KF.

  3. A state space based approach to localizing single molecules from multi-emitter images.

    PubMed

    Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J

    2017-01-28

    Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.

  4. A new experimental method for the determination of the effective orifice area based on the acoustical source term

    NASA Astrophysics Data System (ADS)

    Kadem, L.; Knapp, Y.; Pibarot, P.; Bertrand, E.; Garcia, D.; Durand, L. G.; Rieu, R.

    2005-12-01

    The effective orifice area (EOA) is the most commonly used parameter to assess the severity of aortic valve stenosis as well as the performance of valve substitutes. Particle image velocimetry (PIV) may be used for in vitro estimation of valve EOA. In the present study, we propose a new and simple method based on Howe’s developments of Lighthill’s aero-acoustic theory. This method is based on an acoustical source term (AST) to estimate the EOA from the transvalvular flow velocity measurements obtained by PIV. The EOAs measured by the AST method downstream of three sharp-edged orifices were in excellent agreement with the EOAs predicted from the potential flow theory used as the reference method in this study. Moreover, the AST method was more accurate than other conventional PIV methods based on streamlines, inflexion point or vorticity to predict the theoretical EOAs. The superiority of the AST method is likely due to the nonlinear form of the AST. There was also an excellent agreement between the EOAs measured by the AST method downstream of the three sharp-edged orifices as well as downstream of a bioprosthetic valve with those obtained by the conventional clinical method based on Doppler-echocardiographic measurements of transvalvular velocity. The results of this study suggest that this new simple PIV method provides an accurate estimation of the aortic valve flow EOA. This new method may thus be used as a reference method to estimate the EOA in experimental investigation of the performance of valve substitutes and to validate Doppler-echocardiographic measurements under various physiologic and pathologic flow conditions.

  5. NASA Software Cost Estimation Model: An Analogy Based Estimation Model

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Juster, Leora; Menzies, Tim; Mathew, George; Johnson, James

    2015-01-01

    The cost estimation of software development activities is increasingly critical for large scale integrated projects such as those at DOD and NASA especially as the software systems become larger and more complex. As an example MSL (Mars Scientific Laboratory) developed at the Jet Propulsion Laboratory launched with over 2 million lines of code making it the largest robotic spacecraft ever flown (Based on the size of the software). Software development activities are also notorious for their cost growth, with NASA flight software averaging over 50% cost growth. All across the agency, estimators and analysts are increasingly being tasked to develop reliable cost estimates in support of program planning and execution. While there has been extensive work on improving parametric methods there is very little focus on the use of models based on analogy and clustering algorithms. In this paper we summarize our findings on effort/cost model estimation and model development based on ten years of software effort estimation research using data mining and machine learning methods to develop estimation models based on analogy and clustering. The NASA Software Cost Model performance is evaluated by comparing it to COCOMO II, linear regression, and K-­ nearest neighbor prediction model performance on the same data set.

  6. 13C-Labeled Gluconate Tracing as a Direct and Accurate Method for Determining the Pentose Phosphate Pathway Split Ratio in Penicillium chrysogenum

    PubMed Central

    Kleijn, Roelco J.; van Winden, Wouter A.; Ras, Cor; van Gulik, Walter M.; Schipper, Dick; Heijnen, Joseph J.

    2006-01-01

    In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-13C]gluconate, followed by measurement of the mass isotopomers of the intracellular metabolites surrounding the 6-phosphogluconate node. The gluconate tracer method was used with a penicillin G-producing chemostat culture of the filamentous fungus Penicillium chrysogenum. For comparison, a 13C-labeling-based metabolic flux analysis (MFA) was performed for glycolysis and the PPP of P. chrysogenum. For the first time mass isotopomer measurements of 13C-labeled primary metabolites are reported for P. chrysogenum and used for a 13C-based MFA. Estimation of the PPP split ratio of P. chrysogenum at a growth rate of 0.02 h−1 yielded comparable values for the gluconate tracer method and the 13C-based MFA method, 51.8% and 51.1%, respectively. A sensitivity analysis of the estimated PPP split ratios showed that the 95% confidence interval was almost threefold smaller for the gluconate tracer method than for the 13C-based MFA method (40.0 to 63.5% and 46.0 to 56.5%, respectively). From these results we concluded that the gluconate tracer method permits accurate determination of the PPP split ratio but provides no information about the remaining cellular metabolism, while the 13C-based MFA method permits estimation of multiple fluxes but provides a less accurate estimate of the PPP split ratio. PMID:16820467

  7. Comparison of Climatological Planetary Boundary Layer Depth Estimates Using the GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Mcgrath-Spangler, Erica Lynn; Molod, Andrea M.

    2014-01-01

    Planetary boundary layer (PBL) processes, including those influencing the PBL depth, control many aspects of weather and climate and accurate models of these processes are important for forecasting changes in the future. However, evaluation of model estimates of PBL depth are difficult because no consensus on PBL depth definition currently exists and various methods for estimating this parameter can give results that differ by hundreds of meters or more. In order to facilitate comparisons between the Goddard Earth Observation System (GEOS-5) and other modeling and observational systems, seven PBL depth estimation methods are used to produce PBL depth climatologies and are evaluated and compared here. All seven methods evaluate the same atmosphere so all differences are related solely to the definition chosen. These methods depend on the scalar diffusivity, bulk and local Richardson numbers, and the diagnosed horizontal turbulent kinetic energy (TKE). Results are aggregated by climate class in order to allow broad generalizations. The various PBL depth estimations give similar midday results with some exceptions. One method based on horizontal turbulent kinetic energy produces deeper PBL depths in the winter associated with winter storms. In warm, moist conditions, the method based on a bulk Richardson number gives results that are shallower than those given by the methods based on the scalar diffusivity. The impact of turbulence driven by radiative cooling at cloud top is most significant during the evening transition and along several regions across the oceans and methods sensitive to this cooling produce deeper PBL depths where it is most active. Additionally, Richardson number-based methods collapse better at night than methods that depend on the scalar diffusivity. This feature potentially affects tracer transport.

  8. Estimating the Occupational Morbidity for Migrant and Seasonal Farmworkers in New York State: a Comparison of Two Methods

    PubMed Central

    Earle-Richardson, Giulia B.; Brower, Melissa A.; Jones, Amanda M.; May, John J.; Jenkins, Paul L.

    2008-01-01

    Purpose To compare occupational morbidity estimates for migrant and seasonal farmworkers obtained from survey methods versus chart review methods, and to estimate the proportion of morbidity treated at federally recognized migrant health centers (MHCs) in a highly agricultural region of New York. Methods Researchers simultaneously conducted: a) an occupational injury and illness survey among agricultural workers; b) MHC chart review; and c) hospital emergency room (ER) chart reviews. Results Of the 24 injuries reported by 550 survey subjects, 54.2% received treatment MHCs 16.7% at ERs, 16.7% at some other facility, and 12.5% were untreated. For injuries treated at MHCs or ERs, the incidence density based on survey methods was 29.3 injuries per 10,000 worker-weeks versus 27.4 by chart review. The standardized morbidity ratio (SMR) for this comparison was 1.07 (95% CI = 0.65 – 1.77). Conclusion Survey data indicate that 71% of agricultural injury and illness can be captured with MHC and ER chart review. MHC and ER incidence density estimates show strong correspondence between the two methods. A chart review-based surveillance system, in conjunction with a correction factor based on periodic worker surveys, would provide a cost-effective estimate of the occupational illness and injury rate in this population. PMID:18063238

  9. Audiovisual quality estimation of mobile phone video cameras with interpretation-based quality approach

    NASA Astrophysics Data System (ADS)

    Radun, Jenni E.; Virtanen, Toni; Olives, Jean-Luc; Vaahteranoksa, Mikko; Vuori, Tero; Nyman, Göte

    2007-01-01

    We present an effective method for comparing subjective audiovisual quality and the features related to the quality changes of different video cameras. Both quantitative estimation of overall quality and qualitative description of critical quality features are achieved by the method. The aim was to combine two image quality evaluation methods, the quantitative Absolute Category Rating (ACR) method with hidden reference removal and the qualitative Interpretation- Based Quality (IBQ) method in order to see how they complement each other in audiovisual quality estimation tasks. 26 observers estimated the audiovisual quality of six different cameras, mainly mobile phone video cameras. In order to achieve an efficient subjective estimation of audiovisual quality, only two contents with different quality requirements were recorded with each camera. The results show that the subjectively important quality features were more related to the overall estimations of cameras' visual video quality than to the features related to sound. The data demonstrated two significant quality dimensions related to visual quality: darkness and sharpness. We conclude that the qualitative methodology can complement quantitative quality estimations also with audiovisual material. The IBQ approach is valuable especially, when the induced quality changes are multidimensional.

  10. Using Remote Sensing to Estimate Crop Water Use to Improve Irrigation Water Management

    NASA Astrophysics Data System (ADS)

    Reyes-Gonzalez, Arturo

    Irrigation water is scarce. Hence, accurate estimation of crop water use is necessary for proper irrigation managements and water conservation. Satellite-based remote sensing is a tool that can estimate crop water use efficiently. Several models have been developed to estimate crop water requirement or actual evapotranspiration (ETa) using remote sensing. One of them is the Mapping EvapoTranspiration at High Resolution using Internalized Calibration (METRIC) model. This model has been compared with other methods for ET estimations including weighing lysimeters, pan evaporation, Bowen Ratio Energy Balance System (BREBS), Eddy Covariance (EC), and sap flow. However, comparison of METRIC model outputs to an atmometer for ETa estimation has not yet been attempted in eastern South Dakota. The results showed a good relationship between ETa estimated by the METRIC model and estimated with atmometer (r2 = 0.87 and RMSE = 0.65 mm day-1). However, ETa values from atmometer were consistently lower than ET a values from METRIC. The verification of remotely sensed estimates of surface variables is essential for any remote-sensing study. The relationships between LAI, Ts, and ETa estimated using the remote sensing-based METRIC model and in-situ measurements were established. The results showed good agreement between the variables measured in situ and estimated by the METRIC model. LAI showed r2 = 0.76, and RMSE = 0.59 m2 m -2, Ts had r2 = 0.87 and RMSE 1.24 °C and ETa presented r2= 0.89 and RMSE = 0.71 mm day -1. Estimation of ETa using energy balance method can be challenging and time consuming. Thus, there is a need to develop a simple and fast method to estimate ETa using minimum input parameters. Two methods were used, namely 1) an energy balance method (EB method) that used input parameters of the Landsat image, weather data, a digital elevation map, and a land cover map and 2) a Kc-NDVI method that use two input parameters: the Landsat image and weather data. A strong relationship was found between the two methods with r2 of 0.97 and RMSE of 0.37 mm day -1. Hence, the Kc-NDVI method performed well for ET a estimations, indicating that Kc-NDVI method can be a robust and reliable method to estimate ETa in a short period of time. Estimation of crop evapotranspiration (ETc) using satellite remote sensing-based vegetation index such as the Normalized Difference Vegetation Index (NDVI). The NDVI was calculated using near-infrared and red wavebands. The relationship between NDVI and tabulated Kc's was used to generate Kc maps. ETc maps were developed as an output of Kc maps multiplied by reference evapotranspiration (ETr). Daily ETc maps helped to explain the variability of crop water use during the growing season. Based on the results we can conclude that ETc maps developed from remotely sensed multispectral vegetation indices are a useful tool for quantifying crop water use at regional and field scales.

  11. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    EPA Science Inventory

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  12. Peaks Over Threshold (POT): A methodology for automatic threshold estimation using goodness of fit p-value

    NASA Astrophysics Data System (ADS)

    Solari, Sebastián.; Egüen, Marta; Polo, María. José; Losada, Miguel A.

    2017-04-01

    Threshold estimation in the Peaks Over Threshold (POT) method and the impact of the estimation method on the calculation of high return period quantiles and their uncertainty (or confidence intervals) are issues that are still unresolved. In the past, methods based on goodness of fit tests and EDF-statistics have yielded satisfactory results, but their use has not yet been systematized. This paper proposes a methodology for automatic threshold estimation, based on the Anderson-Darling EDF-statistic and goodness of fit test. When combined with bootstrapping techniques, this methodology can be used to quantify both the uncertainty of threshold estimation and its impact on the uncertainty of high return period quantiles. This methodology was applied to several simulated series and to four precipitation/river flow data series. The results obtained confirmed its robustness. For the measured series, the estimated thresholds corresponded to those obtained by nonautomatic methods. Moreover, even though the uncertainty of the threshold estimation was high, this did not have a significant effect on the width of the confidence intervals of high return period quantiles.

  13. Time difference of arrival estimation of microseismic signals based on alpha-stable distribution

    NASA Astrophysics Data System (ADS)

    Jia, Rui-Sheng; Gong, Yue; Peng, Yan-Jun; Sun, Hong-Mei; Zhang, Xing-Li; Lu, Xin-Ming

    2018-05-01

    Microseismic signals are generally considered to follow the Gauss distribution. A comparison of the dynamic characteristics of sample variance and the symmetry of microseismic signals with the signals which follow α-stable distribution reveals that the microseismic signals have obvious pulse characteristics and that the probability density curve of the microseismic signal is approximately symmetric. Thus, the hypothesis that microseismic signals follow the symmetric α-stable distribution is proposed. On the premise of this hypothesis, the characteristic exponent α of the microseismic signals is obtained by utilizing the fractional low-order statistics, and then a new method of time difference of arrival (TDOA) estimation of microseismic signals based on fractional low-order covariance (FLOC) is proposed. Upon applying this method to the TDOA estimation of Ricker wavelet simulation signals and real microseismic signals, experimental results show that the FLOC method, which is based on the assumption of the symmetric α-stable distribution, leads to enhanced spatial resolution of the TDOA estimation relative to the generalized cross correlation (GCC) method, which is based on the assumption of the Gaussian distribution.

  14. Anomaly Monitoring Method for Key Components of Satellite

    PubMed Central

    Fan, Linjun; Xiao, Weidong; Tang, Jun

    2014-01-01

    This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703

  15. Estimating patient dose from CT exams that use automatic exposure control: Development and validation of methods to accurately estimate tube current values.

    PubMed

    McMillan, Kyle; Bostani, Maryam; Cagnon, Christopher H; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H; McNitt-Gray, Michael F

    2017-08-01

    The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable. The purpose of this work was to develop and validate methods to accurately estimate the tube current values prescribed by one manufacturer's AEC system to enable accurate estimates of patient dose. Methods were developed that took into account available patient attenuation information, user selected image quality reference parameters and x-ray system limits to estimate tube current values for patient scans. Methods consistent with AAPM Report 220 were developed that used patient attenuation data that were: (a) supplied by the manufacturer in the CT localizer radiograph and (b) based on a simulated CT localizer radiograph derived from image data. For comparison, actual tube current values were extracted from the projection data of each patient. Validation of each approach was based on data collected from 40 pediatric and adult patients who received clinically indicated chest (n = 20) and abdomen/pelvis (n = 20) scans on a 64 slice multidetector row CT (Sensation 64, Siemens Healthcare, Forchheim, Germany). For each patient dataset, the following were collected with Institutional Review Board (IRB) approval: (a) projection data containing actual tube current values at each projection view, (b) CT localizer radiograph (topogram) and (c) reconstructed image data. Tube current values were estimated based on the actual topogram (actual-topo) as well as the simulated topogram based on image data (sim-topo). Each of these was compared to the actual tube current values from the patient scan. In addition, to assess the accuracy of each method in estimating patient organ doses, Monte Carlo simulations were performed by creating voxelized models of each patient, identifying key organs and incorporating tube current values into the simulations to estimate dose to the lungs and breasts (females only) for chest scans and the liver, kidney, and spleen for abdomen/pelvis scans. Organ doses from simulations using the actual tube current values were compared to those using each of the estimated tube current values (actual-topo and sim-topo). When compared to the actual tube current values, the average error for tube current values estimated from the actual topogram (actual-topo) and simulated topogram (sim-topo) was 3.9% and 5.8% respectively. For Monte Carlo simulations of chest CT exams using the actual tube current values and estimated tube current values (based on the actual-topo and sim-topo methods), the average differences for lung and breast doses ranged from 3.4% to 6.6%. For abdomen/pelvis exams, the average differences for liver, kidney, and spleen doses ranged from 4.2% to 5.3%. Strong agreement between organ doses estimated using actual and estimated tube current values provides validation of both methods for estimating tube current values based on data provided in the topogram or simulated from image data. © 2017 American Association of Physicists in Medicine.

  16. Efficient multidimensional regularization for Volterra series estimation

    NASA Astrophysics Data System (ADS)

    Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan

    2018-05-01

    This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.

  17. Research on bathymetry estimation by Worldview-2 based with the semi-analytical model

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Bai, J.; Zhou, G.-W.; Zhao, Y.; Li, Y.-C.

    2015-04-01

    South Sea Islands of China are far away from the mainland, the reefs takes more than 95% of south sea, and most reefs scatter over interested dispute sensitive area. Thus, the methods of obtaining the reefs bathymetry accurately are urgent to be developed. Common used method, including sonar, airborne laser and remote sensing estimation, are limited by the long distance, large area and sensitive location. Remote sensing data provides an effective way for bathymetry estimation without touching over large area, by the relationship between spectrum information and bathymetry. Aimed at the water quality of the south sea of China, our paper develops a bathymetry estimation method without measured water depth. Firstly the semi-analytical optimization model of the theoretical interpretation models has been studied based on the genetic algorithm to optimize the model. Meanwhile, OpenMP parallel computing algorithm has been introduced to greatly increase the speed of the semi-analytical optimization model. One island of south sea in China is selected as our study area, the measured water depth are used to evaluate the accuracy of bathymetry estimation from Worldview-2 multispectral images. The results show that: the semi-analytical optimization model based on genetic algorithm has good results in our study area;the accuracy of estimated bathymetry in the 0-20 meters shallow water area is accepted.Semi-analytical optimization model based on genetic algorithm solves the problem of the bathymetry estimation without water depth measurement. Generally, our paper provides a new bathymetry estimation method for the sensitive reefs far away from mainland.

  18. Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks.

    PubMed

    Nariai, N; Kim, S; Imoto, S; Miyano, S

    2004-01-01

    We propose a statistical method to estimate gene networks from DNA microarray data and protein-protein interactions. Because physical interactions between proteins or multiprotein complexes are likely to regulate biological processes, using only mRNA expression data is not sufficient for estimating a gene network accurately. Our method adds knowledge about protein-protein interactions to the estimation method of gene networks under a Bayesian statistical framework. In the estimated gene network, a protein complex is modeled as a virtual node based on principal component analysis. We show the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle data. The proposed method improves the accuracy of the estimated gene networks, and successfully identifies some biological facts.

  19. vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments

    PubMed Central

    2010-01-01

    Background The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Results Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Conclusions Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/. PMID:20482791

  20. vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments.

    PubMed

    Ma, Jingming; Dykes, Carrie; Wu, Tao; Huang, Yangxin; Demeter, Lisa; Wu, Hulin

    2010-05-18

    The replication rate (or fitness) between viral variants has been investigated in vivo and in vitro for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness. Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1). Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at http://bis.urmc.rochester.edu/vFitness/.

  1. Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.

    PubMed

    Liu, Jing; Zhou, Weidong; Juwono, Filbert H

    2017-05-08

    Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.

  2. Satellite-based estimation of cloud-base updrafts for convective clouds and stratocumulus

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Rosenfeld, D.; Li, Z.

    2017-12-01

    Updraft speeds of thermals have always been notoriously difficult to measure, despite significant roles they play in transporting pollutants and in cloud formation and precipitation. To our knowledge, no attempt to date has been made to estimate updraft speed from satellite information. In this study, we introduce three methods of retrieving updraft speeds at cloud base () for convective clouds and marine stratocumulus with VIIRS onboard Suomi-NPP satellite. The first method uses ground-air temperature difference to characterize the surface sensible heat flux, which is found to be correlated with updraft speeds measured by the Doppler lidar over the Southern Great Plains (SGP). Based on the relationship, we use the satellite-retrieved surface skin temperature and reanalysis surface air temperature to estimate the updrafts. The second method is based on a good linear correlation between cloud base height and updrafts, which was found over the SGP, the central Amazon, and on board a ship sailing between Honolulu and Los Angeles. We found a universal relationship for both land and ocean. The third method is for marine stratocumulus. A statistically significant relationship between Wb and cloud-top radiative cooling rate (CTRC) is found from measurements over northeastern Pacific and Atlantic. Based on this relation, satellite- and reanalysis-derived CTRC is utilized to infer the Wb of stratocumulus clouds. Evaluations against ground-based Doppler lidar measurements show estimation errors of 24%, 21% and 22% for the three methods, respectively.

  3. Ancestry estimation and control of population stratification for sequence-based association studies.

    PubMed

    Wang, Chaolong; Zhan, Xiaowei; Bragg-Gresham, Jennifer; Kang, Hyun Min; Stambolian, Dwight; Chew, Emily Y; Branham, Kari E; Heckenlively, John; Fulton, Robert; Wilson, Richard K; Mardis, Elaine R; Lin, Xihong; Swaroop, Anand; Zöllner, Sebastian; Abecasis, Gonçalo R

    2014-04-01

    Estimating individual ancestry is important in genetic association studies where population structure leads to false positive signals, although assigning ancestry remains challenging with targeted sequence data. We propose a new method for the accurate estimation of individual genetic ancestry, based on direct analysis of off-target sequence reads, and implement our method in the publicly available LASER software. We validate the method using simulated and empirical data and show that the method can accurately infer worldwide continental ancestry when used with sequencing data sets with whole-genome shotgun coverage as low as 0.001×. For estimates of fine-scale ancestry within Europe, the method performs well with coverage of 0.1×. On an even finer scale, the method improves discrimination between exome-sequenced study participants originating from different provinces within Finland. Finally, we show that our method can be used to improve case-control matching in genetic association studies and to reduce the risk of spurious findings due to population structure.

  4. Transient Stability Output Margin Estimation Based on Energy Function Method

    NASA Astrophysics Data System (ADS)

    Miwa, Natsuki; Tanaka, Kazuyuki

    In this paper, a new method of estimating critical generation margin (CGM) in power systems is proposed from the viewpoint of transient stability diagnostic. The proposed method has the capability to directly compute the stability limit output for a given contingency based on transient energy function method (TEF). Since CGM can be directly obtained by the limit output using estimated P-θ curves and is easy to understand, it is more useful rather than conventional critical clearing time (CCT) of energy function method. The proposed method can also estimate CGM as its negative value that means unstable in present load profile, then negative CGM can be directly utilized as generator output restriction. The proposed method is verified its accuracy and fast solution ability by applying to simple 3-machine model and IEEJ EAST10-machine standard model. Furthermore the useful application to severity ranking of transient stability for a lot of contingency cases is discussed by using CGM.

  5. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    NASA Technical Reports Server (NTRS)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  6. Similar estimates of temperature impacts on global wheat yield by three independent methods

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  7. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence.

    PubMed

    Taylor, Terence E; Lacalle Muls, Helena; Costello, Richard W; Reilly, Richard B

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically beneficial for inhaler technique training and the remote monitoring of patient adherence.

  8. Estimation of inhalation flow profile using audio-based methods to assess inhaler medication adherence

    PubMed Central

    Lacalle Muls, Helena; Costello, Richard W.; Reilly, Richard B.

    2018-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) patients are required to inhale forcefully and deeply to receive medication when using a dry powder inhaler (DPI). There is a clinical need to objectively monitor the inhalation flow profile of DPIs in order to remotely monitor patient inhalation technique. Audio-based methods have been previously employed to accurately estimate flow parameters such as the peak inspiratory flow rate of inhalations, however, these methods required multiple calibration inhalation audio recordings. In this study, an audio-based method is presented that accurately estimates inhalation flow profile using only one calibration inhalation audio recording. Twenty healthy participants were asked to perform 15 inhalations through a placebo Ellipta™ DPI at a range of inspiratory flow rates. Inhalation flow signals were recorded using a pneumotachograph spirometer while inhalation audio signals were recorded simultaneously using the Inhaler Compliance Assessment device attached to the inhaler. The acoustic (amplitude) envelope was estimated from each inhalation audio signal. Using only one recording, linear and power law regression models were employed to determine which model best described the relationship between the inhalation acoustic envelope and flow signal. Each model was then employed to estimate the flow signals of the remaining 14 inhalation audio recordings. This process repeated until each of the 15 recordings were employed to calibrate single models while testing on the remaining 14 recordings. It was observed that power law models generated the highest average flow estimation accuracy across all participants (90.89±0.9% for power law models and 76.63±2.38% for linear models). The method also generated sufficient accuracy in estimating inhalation parameters such as peak inspiratory flow rate and inspiratory capacity within the presence of noise. Estimating inhaler inhalation flow profiles using audio based methods may be clinically beneficial for inhaler technique training and the remote monitoring of patient adherence. PMID:29346430

  9. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations

    PubMed Central

    2013-01-01

    Background Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Methods Our method consisted of multiplying (i) manual counts of assumed residential structures on a satellite image and (ii) estimates of the mean number of people per structure (structure occupancy) obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons’ camps and two urban neighbourhoods with a mixture of residents and displaced) ranging in population from 1,969 to 90,547, and compared these to “gold standard” reference population figures from census or other robust methods. Results Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of <10% in four sites and 10–30% in three sites, but severely over-estimated the population in an Ethiopian camp with implausible occupancy data and two post-earthquake Haiti sites featuring dense and complex residential layout. For each site, estimates were produced in 2–5 working person-days. Conclusions In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method’s development. PMID:23343099

  10. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations.

    PubMed

    Checchi, Francesco; Stewart, Barclay T; Palmer, Jennifer J; Grundy, Chris

    2013-01-23

    Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Our method consisted of multiplying (i) manual counts of assumed residential structures on a satellite image and (ii) estimates of the mean number of people per structure (structure occupancy) obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons' camps and two urban neighbourhoods with a mixture of residents and displaced) ranging in population from 1,969 to 90,547, and compared these to "gold standard" reference population figures from census or other robust methods. Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of <10% in four sites and 10-30% in three sites, but severely over-estimated the population in an Ethiopian camp with implausible occupancy data and two post-earthquake Haiti sites featuring dense and complex residential layout. For each site, estimates were produced in 2-5 working person-days. In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method's development.

  11. A dynamic programming approach to estimate the capacity value of energy storage

    DOE PAGES

    Sioshansi, Ramteen; Madaeni, Seyed Hossein; Denholm, Paul

    2013-09-17

    Here, we present a method to estimate the capacity value of storage. Our method uses a dynamic program to model the effect of power system outages on the operation and state of charge of storage in subsequent periods. We combine the optimized dispatch from the dynamic program with estimated system loss of load probabilities to compute a probability distribution for the state of charge of storage in each period. This probability distribution can be used as a forced outage rate for storage in standard reliability-based capacity value estimation methods. Our proposed method has the advantage over existing approximations that itmore » explicitly captures the effect of system shortage events on the state of charge of storage in subsequent periods. We also use a numerical case study, based on five utility systems in the U.S., to demonstrate our technique and compare it to existing approximation methods.« less

  12. An improved principal component analysis based region matching method for fringe direction estimation

    NASA Astrophysics Data System (ADS)

    He, A.; Quan, C.

    2018-04-01

    The principal component analysis (PCA) and region matching combined method is effective for fringe direction estimation. However, its mask construction algorithm for region matching fails in some circumstances, and the algorithm for conversion of orientation to direction in mask areas is computationally-heavy and non-optimized. We propose an improved PCA based region matching method for the fringe direction estimation, which includes an improved and robust mask construction scheme, and a fast and optimized orientation-direction conversion algorithm for the mask areas. Along with the estimated fringe direction map, filtered fringe pattern by automatic selective reconstruction modification and enhanced fast empirical mode decomposition (ASRm-EFEMD) is used for Hilbert spiral transform (HST) to demodulate the phase. Subsequently, windowed Fourier ridge (WFR) method is used for the refinement of the phase. The robustness and effectiveness of proposed method are demonstrated by both simulated and experimental fringe patterns.

  13. Robust gaze-steering of an active vision system against errors in the estimated parameters

    NASA Astrophysics Data System (ADS)

    Han, Youngmo

    2015-01-01

    Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.

  14. Comparison of Methods for Estimating Evapotranspiration using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Beamer, J. P.; Morton, C.; Huntington, J. L.; Pohll, G.

    2010-12-01

    Estimating the annual evapotranspiration (ET) in arid and semi-arid environments is important for managing water resources. In this study we use remote sensing methods to estimate ET from different areas located in western and eastern Nevada. Surface energy balance (SEB) and vegetation indices (VI) are two common methods for estimating ET using satellite data. The purpose of this study is to compare these methods for estimating annual ET and highlight strengths and weaknesses in both methods. The SEB approach used is based on the Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC) model, which estimates ET as a residual of the energy balance. METRIC has been shown to produce accurate results in agricultural and riparian settings. The VI approach used is based on statistical relationships between annual ET and various VI’s. The VI approaches have also shown to produce fairly accurate estimates of ET for various vegetation types, however consideration for spatial variations in potential ET and precipitation amount are generally ignored, leading to restrictions in their application. In this work we develop a VI approach that considers the study area potential ET and precipitation amount and compare this approach to METRIC and flux tower estimates of annual ET for several arid phreatophyte shrubs and irrigated agriculture settings.

  15. Statistical Bayesian method for reliability evaluation based on ADT data

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  16. A novel method of estimation of lipophilicity using distance-based topological indices: dominating role of equalized electronegativity.

    PubMed

    Agrawal, Vijay K; Gupta, Madhu; Singh, Jyoti; Khadikar, Padmakar V

    2005-03-15

    Attempt is made to propose yet another method of estimating lipophilicity of a heterogeneous set of 223 compounds. The method is based on the use of equalized electronegativity along with topological indices. It was observed that excellent results are obtained in multiparametric regression upon introduction of indicator parameters. The results are discussed critically on the basis various statistical parameters.

  17. In situ nondestructive imaging of functional pigments in Micro-Tom tomato fruits by multi spectral imaging based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika

    2013-05-01

    To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.

  18. 3D motion and strain estimation of the heart: initial clinical findings

    NASA Astrophysics Data System (ADS)

    Barbosa, Daniel; Hristova, Krassimira; Loeckx, Dirk; Rademakers, Frank; Claus, Piet; D'hooge, Jan

    2010-03-01

    The quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. As such, tissue Doppler imaging and speckle tracking based methods have been introduced to estimate local myocardial strain. Recently, volumetric ultrasound has become more readily available, allowing therefore the 3D estimation of motion and myocardial deformation. Our lab has previously presented a method based on spatio-temporal elastic registration of ultrasound volumes to estimate myocardial motion and deformation in 3D, overcoming the spatial limitations of the existing methods. This method was optimized on simulated data sets in previous work and is currently tested in a clinical setting. In this manuscript, 10 healthy volunteers, 10 patient with myocardial infarction and 10 patients with arterial hypertension were included. The cardiac strain values extracted with the proposed method were compared with the ones estimated with 1D tissue Doppler imaging and 2D speckle tracking in all patient groups. Although the absolute values of the 3D strain components assessed by this new methodology were not identical to the reference methods, the relationship between the different patient groups was similar.

  19. Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.

    PubMed

    Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2013-10-01

    We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.

  20. R package to estimate intracluster correlation coefficient with confidence interval for binary data.

    PubMed

    Chakraborty, Hrishikesh; Hossain, Akhtar

    2018-03-01

    The Intracluster Correlation Coefficient (ICC) is a major parameter of interest in cluster randomized trials that measures the degree to which responses within the same cluster are correlated. There are several types of ICC estimators and its confidence intervals (CI) suggested in the literature for binary data. Studies have compared relative weaknesses and advantages of ICC estimators as well as its CI for binary data and suggested situations where one is advantageous in practical research. The commonly used statistical computing systems currently facilitate estimation of only a very few variants of ICC and its CI. To address the limitations of current statistical packages, we developed an R package, ICCbin, to facilitate estimating ICC and its CI for binary responses using different methods. The ICCbin package is designed to provide estimates of ICC in 16 different ways including analysis of variance methods, moments based estimation, direct probabilistic methods, correlation based estimation, and resampling method. CI of ICC is estimated using 5 different methods. It also generates cluster binary data using exchangeable correlation structure. ICCbin package provides two functions for users. The function rcbin() generates cluster binary data and the function iccbin() estimates ICC and it's CI. The users can choose appropriate ICC and its CI estimate from the wide selection of estimates from the outputs. The R package ICCbin presents very flexible and easy to use ways to generate cluster binary data and to estimate ICC and it's CI for binary response using different methods. The package ICCbin is freely available for use with R from the CRAN repository (https://cran.r-project.org/package=ICCbin). We believe that this package can be a very useful tool for researchers to design cluster randomized trials with binary outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A revised load estimation procedure for the Susquehanna, Potomac, Patuxent, and Choptank rivers

    USGS Publications Warehouse

    Yochum, Steven E.

    2000-01-01

    The U.S. Geological Survey?s Chesapeake Bay River Input Program has updated the nutrient and suspended-sediment load data base for the Susquehanna, Potomac, Patuxent, and Choptank Rivers using a multiple-window, center-estimate regression methodology. The revised method optimizes the seven-parameter regression approach that has been used historically by the program. The revised method estimates load using the fifth or center year of a sliding 9-year window. Each year a new model is run for each site and constituent, the most recent year is added, and the previous 4 years of estimates are updated. The fifth year in the 9-year window is considered the best estimate and is kept in the data base. The last year of estimation shows the most change from the previous year?s estimate and this change approaches a minimum at the fifth year. Differences between loads computed using this revised methodology and the loads populating the historical data base have been noted but the load estimates do not typically change drastically. The data base resulting from the application of this revised methodology is populated by annual and monthly load estimates that are known with greater certainty than in the previous load data base.

  2. Rainfall Measurement with a Ground Based Dual Frequency Radar

    NASA Technical Reports Server (NTRS)

    Takahashi, Nobuhiro; Horie, Hiroaki; Meneghini, Robert

    1997-01-01

    Dual frequency methods are one of the most useful ways to estimate precise rainfall rates. However, there are some difficulties in applying this method to ground based radars because of the existence of a blind zone and possible error in the radar calibration. Because of these problems, supplemental observations such as rain gauges or satellite link estimates of path integrated attenuation (PIA) are needed. This study shows how to estimate rainfall rate with a ground based dual frequency radar with rain gauge and satellite link data. Applications of this method to stratiform rainfall is also shown. This method is compared with single wavelength method. Data were obtained from a dual frequency (10 GHz and 35 GHz) multiparameter radar radiometer built by the Communications Research Laboratory (CRL), Japan, and located at NASA/GSFC during the spring of 1997. Optical rain gauge (ORG) data and broadcasting satellite signal data near the radar t location were also utilized for the calculation.

  3. A Method to Estimate Sunshine Duration Using Cloud Classification Data from a Geostationary Meteorological Satellite (FY-2D) over the Heihe River Basin.

    PubMed

    Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yu, Mingzhao; Yan, Nana; Xing, Qiang

    2016-11-04

    Sunshine duration is an important variable that is widely used in atmospheric energy balance studies, analysis of the thermal loadings on buildings, climate research, and the evaluation of agricultural resources. In most cases, it is calculated using an interpolation method based on regional-scale meteorological data from field stations. Accurate values in the field are difficult to obtain without ground measurements. In this paper, a satellite-based method to estimate sunshine duration is introduced and applied over the Heihe River Basin. This method is based on hourly cloud classification product data from the FY-2D geostationary meteorological satellite (FY-2D). A new index-FY-2D cloud type sunshine factor-is proposed, and the Shuffled Complex Evolution Algorithm (SCE-UA) was used to calibrate sunshine factors from different coverage types based on ground measurement data from the Heihe River Basin in 2007. The estimated sunshine duration from the proposed new algorithm was validated with ground observation data for 12 months in 2008, and the spatial distribution was compared with the results of an interpolation method over the Heihe River Basin. The study demonstrates that geostationary satellite data can be used to successfully estimate sunshine duration. Potential applications include climate research, energy balance studies, and global estimations of evapotranspiration.

  4. A Method to Estimate Sunshine Duration Using Cloud Classification Data from a Geostationary Meteorological Satellite (FY-2D) over the Heihe River Basin

    PubMed Central

    Wu, Bingfang; Liu, Shufu; Zhu, Weiwei; Yu, Mingzhao; Yan, Nana; Xing, Qiang

    2016-01-01

    Sunshine duration is an important variable that is widely used in atmospheric energy balance studies, analysis of the thermal loadings on buildings, climate research, and the evaluation of agricultural resources. In most cases, it is calculated using an interpolation method based on regional-scale meteorological data from field stations. Accurate values in the field are difficult to obtain without ground measurements. In this paper, a satellite-based method to estimate sunshine duration is introduced and applied over the Heihe River Basin. This method is based on hourly cloud classification product data from the FY-2D geostationary meteorological satellite (FY-2D). A new index—FY-2D cloud type sunshine factor—is proposed, and the Shuffled Complex Evolution Algorithm (SCE-UA) was used to calibrate sunshine factors from different coverage types based on ground measurement data from the Heihe River Basin in 2007. The estimated sunshine duration from the proposed new algorithm was validated with ground observation data for 12 months in 2008, and the spatial distribution was compared with the results of an interpolation method over the Heihe River Basin. The study demonstrates that geostationary satellite data can be used to successfully estimate sunshine duration. Potential applications include climate research, energy balance studies, and global estimations of evapotranspiration. PMID:27827935

  5. A method for estimating direct normal solar irradiation from satellite data for a tropical environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjai, Serm

    In order to investigate a potential use of concentrating solar power technologies and select an optimum site for these technologies, it is necessary to obtain information on the geographical distribution of direct normal solar irradiation over an area of interest. In this work, we have developed a method for estimating direct normal irradiation from satellite data for a tropical environment. The method starts with the estimation of global irradiation on a horizontal surface from MTSAT-1R satellite data and other ground-based ancillary data. Then a satellite-based diffuse fraction model was developed and used to estimate the diffuse component of the satellite-derivedmore » global irradiation. Based on this estimated global and diffuse irradiation and the solar radiation incident angle, the direct normal irradiation was finally calculated. To evaluate its performance, the method was used to estimate the monthly average hourly direct normal irradiation at seven pyrheliometer stations in Thailand. It was found that values of monthly average hourly direct normal irradiation from the measurements and those estimated from the proposed method are in reasonable agreement, with a root mean square difference of 16% and a mean bias of -1.6%, with respect to mean measured values. After the validation, this method was used to estimate the monthly average hourly direct normal irradiation over Thailand by using MTSAT-1R satellite data for the period from June 2005 to December 2008. Results from the calculation were displayed as hourly and yearly irradiation maps. These maps reveal that the direct normal irradiation in Thailand was strongly affected by the tropical monsoons and local topography of the country. (author)« less

  6. A weight modification sequential method for VSC-MTDC power system state estimation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaonan; Zhang, Hao; Li, Qiang; Guo, Ziming; Zhao, Kun; Li, Xinpeng; Han, Feng

    2017-06-01

    This paper presents an effective sequential approach based on weight modification for VSC-MTDC power system state estimation, called weight modification sequential method. The proposed approach simplifies the AC/DC system state estimation algorithm through modifying the weight of state quantity to keep the matrix dimension constant. The weight modification sequential method can also make the VSC-MTDC system state estimation calculation results more ccurate and increase the speed of calculation. The effectiveness of the proposed weight modification sequential method is demonstrated and validated in modified IEEE 14 bus system.

  7. Comparison of Methods for Estimating Low Flow Characteristics of Streams

    USGS Publications Warehouse

    Tasker, Gary D.

    1987-01-01

    Four methods for estimating the 7-day, 10-year and 7-day, 20-year low flows for streams are compared by the bootstrap method. The bootstrap method is a Monte Carlo technique in which random samples are drawn from an unspecified sampling distribution defined from observed data. The nonparametric nature of the bootstrap makes it suitable for comparing methods based on a flow series for which the true distribution is unknown. Results show that the two methods based on hypothetical distribution (Log-Pearson III and Weibull) had lower mean square errors than did the G. E. P. Box-D. R. Cox transformation method or the Log-W. C. Boughton method which is based on a fit of plotting positions.

  8. A rotor-aerodynamics-based wind estimation method using a quadrotor

    NASA Astrophysics Data System (ADS)

    Song, Yao; Luo, Bing; Meng, Qing-Hao

    2018-02-01

    Attempts to estimate horizontal wind by the quadrotor are reviewed. Wind estimations are realized by utilizing the quadrotor’s thrust change, which is caused by the wind’s effect on the rotors. The basis of the wind estimation method is the aerodynamic formula for the rotor’s thrust, which is verified and calibrated by experiments. A hardware-in-the-loop simulation (HILS) system was built as a testbed; its dynamic model and control structure are demonstrated. Verification experiments on the HILS system proved that the wind estimation method was effective.

  9. Combining Ratio Estimation for Low Density Parity Check (LDPC) Coding

    NASA Technical Reports Server (NTRS)

    Mahmoud, Saad; Hi, Jianjun

    2012-01-01

    The Low Density Parity Check (LDPC) Code decoding algorithm make use of a scaled receive signal derived from maximizing the log-likelihood ratio of the received signal. The scaling factor (often called the combining ratio) in an AWGN channel is a ratio between signal amplitude and noise variance. Accurately estimating this ratio has shown as much as 0.6 dB decoding performance gain. This presentation briefly describes three methods for estimating the combining ratio: a Pilot-Guided estimation method, a Blind estimation method, and a Simulation-Based Look-Up table. The Pilot Guided Estimation method has shown that the maximum likelihood estimates of signal amplitude is the mean inner product of the received sequence and the known sequence, the attached synchronization marker (ASM) , and signal variance is the difference of the mean of the squared received sequence and the square of the signal amplitude. This method has the advantage of simplicity at the expense of latency since several frames worth of ASMs. The Blind estimation method s maximum likelihood estimator is the average of the product of the received signal with the hyperbolic tangent of the product combining ratio and the received signal. The root of this equation can be determined by an iterative binary search between 0 and 1 after normalizing the received sequence. This method has the benefit of requiring one frame of data to estimate the combining ratio which is good for faster changing channels compared to the previous method, however it is computationally expensive. The final method uses a look-up table based on prior simulated results to determine signal amplitude and noise variance. In this method the received mean signal strength is controlled to a constant soft decision value. The magnitude of the deviation is averaged over a predetermined number of samples. This value is referenced in a look up table to determine the combining ratio that prior simulation associated with the average magnitude of the deviation. This method is more complicated than the Pilot-Guided Method due to the gain control circuitry, but does not have the real-time computation complexity of the Blind Estimation method. Each of these methods can be used to provide an accurate estimation of the combining ratio, and the final selection of the estimation method depends on other design constraints.

  10. Weighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses

    PubMed Central

    Bayzid, Md Shamsuzzoha; Mirarab, Siavash; Boussau, Bastien; Warnow, Tandy

    2015-01-01

    Because biological processes can result in different loci having different evolutionary histories, species tree estimation requires multiple loci from across multiple genomes. While many processes can result in discord between gene trees and species trees, incomplete lineage sorting (ILS), modeled by the multi-species coalescent, is considered to be a dominant cause for gene tree heterogeneity. Coalescent-based methods have been developed to estimate species trees, many of which operate by combining estimated gene trees, and so are called "summary methods". Because summary methods are generally fast (and much faster than more complicated coalescent-based methods that co-estimate gene trees and species trees), they have become very popular techniques for estimating species trees from multiple loci. However, recent studies have established that summary methods can have reduced accuracy in the presence of gene tree estimation error, and also that many biological datasets have substantial gene tree estimation error, so that summary methods may not be highly accurate in biologically realistic conditions. Mirarab et al. (Science 2014) presented the "statistical binning" technique to improve gene tree estimation in multi-locus analyses, and showed that it improved the accuracy of MP-EST, one of the most popular coalescent-based summary methods. Statistical binning, which uses a simple heuristic to evaluate "combinability" and then uses the larger sets of genes to re-calculate gene trees, has good empirical performance, but using statistical binning within a phylogenomic pipeline does not have the desirable property of being statistically consistent. We show that weighting the re-calculated gene trees by the bin sizes makes statistical binning statistically consistent under the multispecies coalescent, and maintains the good empirical performance. Thus, "weighted statistical binning" enables highly accurate genome-scale species tree estimation, and is also statistically consistent under the multi-species coalescent model. New data used in this study are available at DOI: http://dx.doi.org/10.6084/m9.figshare.1411146, and the software is available at https://github.com/smirarab/binning. PMID:26086579

  11. Detection of osmotic damages in GRP boat hulls

    NASA Astrophysics Data System (ADS)

    Krstulović-Opara, L.; Domazet, Ž.; Garafulić, E.

    2013-09-01

    Infrared thermography as a tool of non-destructive testing is method enabling visualization and estimation of structural anomalies and differences in structure's topography. In presented paper problem of osmotic damage in submerged glass reinforced polymer structures is addressed. The osmotic damage can be detected by a simple humidity gauging, but for proper evaluation and estimation testing methods are restricted and hardly applicable. In this paper it is demonstrated that infrared thermography, based on estimation of heat wave propagation, can be used. Three methods are addressed; Pulsed thermography, Fast Fourier Transform and Continuous Morlet Wavelet. An additional image processing based on gradient approach is applied on all addressed methods. It is shown that the Continuous Morlet Wavelet is the most appropriate method for detection of osmotic damage.

  12. Estimating Body Composition in Adolescent Sprint Athletes: Comparison of Different Methods in a 3 Years Longitudinal Design

    PubMed Central

    Aerenhouts, Dirk

    2015-01-01

    A recommended field method to assess body composition in adolescent sprint athletes is currently lacking. Existing methods developed for non-athletic adolescents were not longitudinally validated and do not take maturation status into account. This longitudinal study compared two field methods, i.e., a Bio Impedance Analysis (BIA) and a skinfold based equation, with underwater densitometry to track body fat percentage relative to years from age at peak height velocity in adolescent sprint athletes. In this study, adolescent sprint athletes (34 girls, 35 boys) were measured every 6 months during 3 years (age at start = 14.8 ± 1.5yrs in girls and 14.7 ± 1.9yrs in boys). Body fat percentage was estimated in 3 different ways: 1) using BIA with the TANITA TBF 410; 2) using a skinfold based equation; 3) using underwater densitometry which was considered as the reference method. Height for age since birth was used to estimate age at peak height velocity. Cross-sectional analyses were performed using repeated measures ANOVA and Pearson correlations between measurement methods at each occasion. Data were analyzed longitudinally using a multilevel cross-classified model with the PROC Mixed procedure. In boys, compared to underwater densitometry, the skinfold based formula revealed comparable values for body fatness during the study period whereas BIA showed a different pattern leading to an overestimation of body fatness starting from 4 years after age at peak height velocity. In girls, both the skinfold based formula and BIA overestimated body fatness across the whole range of years from peak height velocity. The skinfold based method appears to give an acceptable estimation of body composition during growth as compared to underwater densitometry in male adolescent sprinters. In girls, caution is warranted when interpreting estimations of body fatness by both BIA and a skinfold based formula since both methods tend to give an overestimation. PMID:26317426

  13. Estimation of the proteomic cancer co-expression sub networks by using association estimators.

    PubMed

    Erdoğan, Cihat; Kurt, Zeyneb; Diri, Banu

    2017-01-01

    In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators' performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists.

  14. Comprehensive analysis of proton range uncertainties related to stopping-power-ratio estimation using dual-energy CT imaging

    NASA Astrophysics Data System (ADS)

    Li, B.; Lee, H. C.; Duan, X.; Shen, C.; Zhou, L.; Jia, X.; Yang, M.

    2017-09-01

    The dual-energy CT-based (DECT) approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation as compared to the conventional stoichiometric calibration approach. The objective of this study was to analyze the factors contributing to uncertainty in SPR estimation using the DECT-based approach and to derive a comprehensive estimate of the range uncertainty associated with SPR estimation in treatment planning. Two state-of-the-art DECT-based methods were selected and implemented on a Siemens SOMATOM Force DECT scanner. The uncertainties were first divided into five independent categories. The uncertainty associated with each category was estimated for lung, soft and bone tissues separately. A single composite uncertainty estimate was eventually determined for three tumor sites (lung, prostate and head-and-neck) by weighting the relative proportion of each tissue group for that specific site. The uncertainties associated with the two selected DECT methods were found to be similar, therefore the following results applied to both methods. The overall uncertainty (1σ) in SPR estimation with the DECT-based approach was estimated to be 3.8%, 1.2% and 2.0% for lung, soft and bone tissues, respectively. The dominant factor contributing to uncertainty in the DECT approach was the imaging uncertainties, followed by the DECT modeling uncertainties. Our study showed that the DECT approach can reduce the overall range uncertainty to approximately 2.2% (2σ) in clinical scenarios, in contrast to the previously reported 1%.

  15. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    NASA Technical Reports Server (NTRS)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  16. Bio-Optics Based Sensation Imaging for Breast Tumor Detection Using Tissue Characterization

    PubMed Central

    Lee, Jong-Ha; Kim, Yoon Nyun; Park, Hee-Jun

    2015-01-01

    The tissue inclusion parameter estimation method is proposed to measure the stiffness as well as geometric parameters. The estimation is performed based on the tactile data obtained at the surface of the tissue using an optical tactile sensation imaging system (TSIS). A forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of tissue inclusion using finite element modeling (FEM). This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile data. We utilize the artificial neural network (ANN) for the inversion algorithm. The proposed estimation method was validated by a realistic tissue phantom with stiff inclusions. The experimental results showed that the proposed estimation method can measure the size, depth, and Young's modulus of a tissue inclusion with 0.58%, 3.82%, and 2.51% relative errors, respectively. The obtained results prove that the proposed method has potential to become a useful screening and diagnostic method for breast cancer. PMID:25785306

  17. A Simple Joint Estimation Method of Residual Frequency Offset and Sampling Frequency Offset for DVB Systems

    NASA Astrophysics Data System (ADS)

    Kwon, Ki-Won; Cho, Yongsoo

    This letter presents a simple joint estimation method for residual frequency offset (RFO) and sampling frequency offset (STO) in OFDM-based digital video broadcasting (DVB) systems. The proposed method selects a continual pilot (CP) subset from an unsymmetrically and non-uniformly distributed CP set to obtain an unbiased estimator. Simulation results show that the proposed method using a properly selected CP subset is unbiased and performs robustly.

  18. Cross-correlation analysis of pulse wave propagation in arteries: in vitro validation and in vivo feasibility.

    PubMed

    Nauleau, Pierre; Apostolakis, Iason; McGarry, Matthew; Konofagou, Elisa

    2018-05-29

    The stiffness of the arteries is known to be an indicator of the progression of various cardiovascular diseases. Clinically, the pulse wave velocity (PWV) is used as a surrogate for arterial stiffness. Pulse wave imaging (PWI) is a non-invasive, ultrasound-based imaging technique capable of mapping the motion of the vessel walls, allowing the local assessment of arterial properties. Conventionally, a distinctive feature of the displacement wave (e.g. the 50% upstroke) is tracked across the map to estimate the PWV. However, the presence of reflections, such as those generated at the carotid bifurcation, can bias the PWV estimation. In this paper, we propose a two-step cross-correlation based method to characterize arteries using the information available in the PWI spatio-temporal map. First, the area under the cross-correlation curve is proposed as an index for locating the regions of different properties. Second, a local peak of the cross-correlation function is tracked to obtain a less biased estimate of the PWV. Three series of experiments were conducted in phantoms to evaluate the capabilities of the proposed method compared with the conventional method. In the ideal case of a homogeneous phantom, the two methods performed similarly and correctly estimated the PWV. In the presence of reflections, the proposed method provided a more accurate estimate than conventional processing: e.g. for the soft phantom, biases of  -0.27 and -0.71 m · s -1 were observed. In a third series of experiments, the correlation-based method was able to locate two regions of different properties with an error smaller than 1 mm. It also provided more accurate PWV estimates than conventional processing (biases:  -0.12 versus -0.26 m · s -1 ). Finally, the in vivo feasibility of the proposed method was demonstrated in eleven healthy subjects. The results indicate that the correlation-based method might be less precise in vivo but more accurate than the conventional method.

  19. Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing.

    PubMed

    Kong, Fanpeng; Polo, Manuel Cegarra; Lambert, Andrew

    2017-08-10

    Using center of gravity to estimate the centroid of the spot in a Shack-Hartmann wavefront sensor, the measurement corrupts with photon and detector noise. Parameters, like window size, often require careful optimization to balance the noise error, dynamic range, and linearity of the response coefficient under different photon flux. It also needs to be substituted by the correlation method for extended sources. We propose a centroid estimator based on stream processing, where the center of gravity calculation window floats with the incoming pixel from the detector. In comparison with conventional methods, we show that the proposed estimator simplifies the choice of optimized parameters, provides a unit linear coefficient response, and reduces the influence of background and noise. It is shown that the stream-based centroid estimator also works well for limited size extended sources. A hardware implementation of the proposed estimator is discussed.

  20. Estimation and Mitigation of Channel Non-Reciprocity in Massive MIMO

    NASA Astrophysics Data System (ADS)

    Raeesi, Orod; Gokceoglu, Ahmet; Valkama, Mikko

    2018-05-01

    Time-division duplex (TDD) based massive MIMO systems rely on the reciprocity of the wireless propagation channels when calculating the downlink precoders based on uplink pilots. However, the effective uplink and downlink channels incorporating the analog radio front-ends of the base station (BS) and user equipments (UEs) exhibit non-reciprocity due to non-identical behavior of the individual transmit and receive chains. When downlink precoder is not aware of such channel non-reciprocity (NRC), system performance can be significantly degraded due to NRC induced interference terms. In this work, we consider a general TDD-based massive MIMO system where frequency-response mismatches at both the BS and UEs, as well as the mutual coupling mismatch at the BS large-array system all coexist and induce channel NRC. Based on the NRC-impaired signal models, we first propose a novel iterative estimation method for acquiring both the BS and UE side NRC matrices and then also propose a novel NRC-aware downlink precoder design which utilizes the obtained estimates. Furthermore, an efficient pilot signaling scheme between the BS and UEs is introduced in order to facilitate executing the proposed estimation method and the NRC-aware precoding technique in practical systems. Comprehensive numerical results indicate substantially improved spectral efficiency performance when the proposed NRC estimation and NRC-aware precoding methods are adopted, compared to the existing state-of-the-art methods.

  1. Bounded influence function based inference in joint modelling of ordinal partial linear model and accelerated failure time model.

    PubMed

    Chakraborty, Arindom

    2016-12-01

    A common objective in longitudinal studies is to characterize the relationship between a longitudinal response process and a time-to-event data. Ordinal nature of the response and possible missing information on covariates add complications to the joint model. In such circumstances, some influential observations often present in the data may upset the analysis. In this paper, a joint model based on ordinal partial mixed model and an accelerated failure time model is used, to account for the repeated ordered response and time-to-event data, respectively. Here, we propose an influence function-based robust estimation method. Monte Carlo expectation maximization method-based algorithm is used for parameter estimation. A detailed simulation study has been done to evaluate the performance of the proposed method. As an application, a data on muscular dystrophy among children is used. Robust estimates are then compared with classical maximum likelihood estimates. © The Author(s) 2014.

  2. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols.

    PubMed

    Yoon, Ki Young; Park, Chul Woo; Byeon, Jeong Hoon; Hwang, Jungho

    2010-03-01

    We proposed a rapid method to estimate the efficacies of air controlling devices in situ using ATP bioluminescence in combination with an inertial impactor. The inertial impactor was designed to have 1 mum of cutoff diameter, and its performance was estimated analytically, numerically, and experimentally. The proposed method was characterized using Staphylococcus epidermidis, which was aerosolized with a nebulizer. The bioaerosol concentrations were estimated within 25 min using the proposed method without a culturing process, which requires several days for colony formation. A linear relationship was obtained between the results of the proposed ATP method (RLU/m(3)) and the conventional culture-based method (CFU/m(3)), with R(2) 0.9283. The proposed method was applied to estimate the concentration of indoor bioaerosols, which were identified as a mixture of various microbial species including bacteria, fungi, and actinomycetes, in an occupational indoor environment, controlled by mechanical ventilation and an air cleaner. Consequently, the proposed method showed a linearity with the culture-based method for indoor bioaerosols with R(2) 0.8189, even though various kinds of microorganisms existed in the indoor air. The proposed method may be effective in monitoring the changes of relative concentration of indoor bioaerosols and estimating the effectiveness of air control devices in indoor environments.

  3. Evaluation of collection method and diet effects on apparent digestibility and energy values of swine diets.

    PubMed

    Li, Y S; Tran, H; Bundy, J W; Burkey, T E; Kerr, B J; Nielsen, M K; Miller, P S

    2016-06-01

    Two experiments were conducted to investigate the effects of collection method and diet type on digestibility coefficients. In Exp. 1, 24 barrows were fed either a corn-soybean meal (CSBM) diet or CSBM with 20% dried distillers' grains with solubles (CSBM-DDGS). In Exp. 2, the effects of basal diet and collection method on determination of dried distillers' grains with solubles (DDGS) digestibility were studied using 24 barrows. The 4 diets used in Exp. 2 were: a CSBM (basal 1) , a barley-canola meal (BCM; basal 2), 80% basal 1 with 20% DDGS (CSBM-DDGS), and 80% basal 2 with 20% DDGS (BCM-DDGS). In both experiments, feces were collected using a time-based collection method (DY) or a "marker-to-marker" collection method (MM). Diets contained 0.5% of titanium dioxide (TiO) for estimating digestibility using the index marker approach (IM). The apparent total tract digestibility (ATTD) of DM and GE were lower ( < 0.05) in the CSBM-DDGS diet than in the CSBM diet in Exp. 1 but were not different in Exp. 2. All the estimates of BCM-based diets were consistently lower ( < 0.05) than those of CSBM-based diets. In Exp. 1, digestibility coefficients determined by the DY and MM were not different from each other, whereas those estimates were lower ( < 0.05) using the IM than those using the total collection approach (TC; DY and MM). In Exp. 2, interactions ( < 0.05) were observed between diet type and method for dietary digestibility coefficients. Digestibility and energy values estimated by the DY and MM were not different in pigs fed CSBM-based diets and the BCM-DDGS diet, whereas those estimates were greater ( < 0.05) using the DY than those using the MM in pigs fed the BCM. There were no interactions between basal diet and method for estimating DDGS digestibility. The ATTD of DM and GE of DDGS using the MM were greater ( < 0.05) than those using the IM, and ATTD of N tended to be greater ( < 0.10) using the MM than that using the IM. All estimates using the DY were not different from those using the MM or the IM, except that DE of DDGS was greater ( < 0.05) using the DY than when using the IM. Digestibility estimates of DDGS were not affected by basal diets. The mean DE and ME (as-fed basis) of DDGS were 3,994 and 3,688 kcal/kg, respectively, when estimated using the basal 1 diet and were 3,919 and 3,547 kcal/kg, respectively, when estimated using the basal 2 diet. In conclusion, both collection methods can be used to estimate energy and nutrient digestibility of diets and DDGS when using CSBM-based diets.

  4. Development of Advanced Methods of Structural and Trajectory Analysis for Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1996-01-01

    In this report the author describes: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of flight path optimization. A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT bas traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight.

  5. Robust Estimation of Electron Density From Anatomic Magnetic Resonance Imaging of the Brain Using a Unifying Multi-Atlas Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Shangjie; Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California; Hara, Wendy

    Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a referencemore » anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.« less

  6. Point Cloud Based Relative Pose Estimation of a Satellite in Close Range

    PubMed Central

    Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming

    2016-01-01

    Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633

  7. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  8. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.

    PubMed

    Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin

    2018-04-25

    Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  9. Fusion of visible and near-infrared images based on luminance estimation by weighted luminance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhun; Cheng, Feiyan; Shi, Junsheng; Huang, Xiaoqiao

    2018-01-01

    In a low-light scene, capturing color images needs to be at a high-gain setting or a long-exposure setting to avoid a visible flash. However, such these setting will lead to color images with serious noise or motion blur. Several methods have been proposed to improve a noise-color image through an invisible near infrared flash image. A novel method is that the luminance component and the chroma component of the improved color image are estimated from different image sources [1]. The luminance component is estimated mainly from the NIR image via a spectral estimation, and the chroma component is estimated from the noise-color image by denoising. However, it is challenging to estimate the luminance component. This novel method to estimate the luminance component needs to generate the learning data pairs, and the processes and algorithm are complex. It is difficult to achieve practical application. In order to reduce the complexity of the luminance estimation, an improved luminance estimation algorithm is presented in this paper, which is to weight the NIR image and the denoised-color image and the weighted coefficients are based on the mean value and standard deviation of both images. Experimental results show that the same fusion effect at aspect of color fidelity and texture quality is achieved, compared the proposed method with the novel method, however, the algorithm is more simple and practical.

  10. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  11. Using State Estimation Residuals to Detect Abnormal SCADA Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Jian; Chen, Yousu; Huang, Zhenyu

    2010-04-30

    Detection of abnormal supervisory control and data acquisition (SCADA) data is critically important for safe and secure operation of modern power systems. In this paper, a methodology of abnormal SCADA data detection based on state estimation residuals is presented. Preceded with a brief overview of outlier detection methods and bad SCADA data detection for state estimation, the framework of the proposed methodology is described. Instead of using original SCADA measurements as the bad data sources, the residuals calculated based on the results of the state estimator are used as the input for the outlier detection algorithm. The BACON algorithm ismore » applied to the outlier detection task. The IEEE 118-bus system is used as a test base to evaluate the effectiveness of the proposed methodology. The accuracy of the BACON method is compared with that of the 3-σ method for the simulated SCADA measurements and residuals.« less

  12. 3D-Subspace-Based Auto-Paired Azimuth Angle, Elevation Angle, and Range Estimation for 24G FMCW Radar with an L-Shaped Array

    PubMed Central

    Nam, HyungSoo; Choi, ByungGil; Oh, Daegun

    2018-01-01

    In this paper, a three-dimensional (3D)-subspace-based azimuth angle, elevation angle, and range estimation method with auto-pairing is proposed for frequency-modulated continuous waveform (FMCW) radar with an L-shaped array. The proposed method is designed to exploit the 3D shift-invariant structure of the stacked Hankel snapshot matrix for auto-paired azimuth angle, elevation angle, and range estimation. The effectiveness of the proposed method is verified through a variety of experiments conducted in a chamber. For the realization of the proposed method, K-band FMCW radar is implemented with an L-shaped antenna. PMID:29621193

  13. Real-time hydraulic interval state estimation for water transport networks: a case study

    NASA Astrophysics Data System (ADS)

    Vrachimis, Stelios G.; Eliades, Demetrios G.; Polycarpou, Marios M.

    2018-03-01

    Hydraulic state estimation in water distribution networks is the task of estimating water flows and pressures in the pipes and nodes of the network based on some sensor measurements. This requires a model of the network as well as knowledge of demand outflow and tank water levels. Due to modeling and measurement uncertainty, standard state estimation may result in inaccurate hydraulic estimates without any measure of the estimation error. This paper describes a methodology for generating hydraulic state bounding estimates based on interval bounds on the parametric and measurement uncertainties. The estimation error bounds provided by this method can be applied to determine the existence of unaccounted-for water in water distribution networks. As a case study, the method is applied to a modified transport network in Cyprus, using actual data in real time.

  14. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  15. Event-Based Stereo Depth Estimation Using Belief Propagation.

    PubMed

    Xie, Zhen; Chen, Shengyong; Orchard, Garrick

    2017-01-01

    Compared to standard frame-based cameras, biologically-inspired event-based sensors capture visual information with low latency and minimal redundancy. These event-based sensors are also far less prone to motion blur than traditional cameras, and still operate effectively in high dynamic range scenes. However, classical framed-based algorithms are not typically suitable for these event-based data and new processing algorithms are required. This paper focuses on the problem of depth estimation from a stereo pair of event-based sensors. A fully event-based stereo depth estimation algorithm which relies on message passing is proposed. The algorithm not only considers the properties of a single event but also uses a Markov Random Field (MRF) to consider the constraints between the nearby events, such as disparity uniqueness and depth continuity. The method is tested on five different scenes and compared to other state-of-art event-based stereo matching methods. The results show that the method detects more stereo matches than other methods, with each match having a higher accuracy. The method can operate in an event-driven manner where depths are reported for individual events as they are received, or the network can be queried at any time to generate a sparse depth frame which represents the current state of the network.

  16. DETECTORS AND EXPERIMENTAL METHODS: Heuristic approach for peak regions estimation in gamma-ray spectra measured by a NaI detector

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua; Liu, Liang-Gang; You, Zhong; Xu, Ao-Ao

    2009-03-01

    In this paper, a heuristic approach based on Slavic's peak searching method has been employed to estimate the width of peak regions for background removing. Synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectrum, we find it is simple and effective enough to be used together with the Statistics-sensitive Nonlinear Iterative Peak-Clipping method.

  17. Ground target recognition using rectangle estimation.

    PubMed

    Grönwall, Christina; Gustafsson, Fredrik; Millnert, Mille

    2006-11-01

    We propose a ground target recognition method based on 3-D laser radar data. The method handles general 3-D scattered data. It is based on the fact that man-made objects of complex shape can be decomposed to a set of rectangles. The ground target recognition method consists of four steps; 3-D size and orientation estimation, target segmentation into parts of approximately rectangular shape, identification of segments that represent the target's functional/main parts, and target matching with CAD models. The core in this approach is rectangle estimation. The performance of the rectangle estimation method is evaluated statistically using Monte Carlo simulations. A case study on tank recognition is shown, where 3-D data from four fundamentally different types of laser radar systems are used. Although the approach is tested on rather few examples, we believe that the approach is promising.

  18. [Theory, method and application of method R on estimation of (co)variance components].

    PubMed

    Liu, Wen-Zhong

    2004-07-01

    Theory, method and application of Method R on estimation of (co)variance components were reviewed in order to make the method be reasonably used. Estimation requires R values,which are regressions of predicted random effects that are calculated using complete dataset on predicted random effects that are calculated using random subsets of the same data. By using multivariate iteration algorithm based on a transformation matrix,and combining with the preconditioned conjugate gradient to solve the mixed model equations, the computation efficiency of Method R is much improved. Method R is computationally inexpensive,and the sampling errors and approximate credible intervals of estimates can be obtained. Disadvantages of Method R include a larger sampling variance than other methods for the same data,and biased estimates in small datasets. As an alternative method, Method R can be used in larger datasets. It is necessary to study its theoretical properties and broaden its application range further.

  19. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2017-02-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight-tube configurations. Then we show how the method can be used in a 3D computation where the target geometry is coming from medical image of a human aorta.

  20. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.

  1. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-04-14

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method.

  2. Error vector magnitude based parameter estimation for digital filter back-propagation mitigating SOA distortions in 16-QAM.

    PubMed

    Amiralizadeh, Siamak; Nguyen, An T; Rusch, Leslie A

    2013-08-26

    We investigate the performance of digital filter back-propagation (DFBP) using coarse parameter estimation for mitigating SOA nonlinearity in coherent communication systems. We introduce a simple, low overhead method for parameter estimation for DFBP based on error vector magnitude (EVM) as a figure of merit. The bit error rate (BER) penalty achieved with this method has negligible penalty as compared to DFBP with fine parameter estimation. We examine different bias currents for two commercial SOAs used as booster amplifiers in our experiments to find optimum operating points and experimentally validate our method. The coarse parameter DFBP efficiently compensates SOA-induced nonlinearity for both SOA types in 80 km propagation of 16-QAM signal at 22 Gbaud.

  3. Vehicle Speed and Length Estimation Using Data from Two Anisotropic Magneto-Resistive (AMR) Sensors

    PubMed Central

    Markevicius, Vytautas; Navikas, Dangirutis; Valinevicius, Algimantas; Zilys, Mindaugas

    2017-01-01

    Methods for estimating a car’s length are presented in this paper, as well as the results achieved by using a self-designed system equipped with two anisotropic magneto-resistive (AMR) sensors, which were placed on a road lane. The purpose of the research was to compare the lengths of mid-size cars, i.e., family cars (hatchbacks), saloons (sedans), station wagons and SUVs. Four methods were used in the research: a simple threshold based method, a threshold method based on moving average and standard deviation, a two-extreme-peak detection method and a method based on the amplitude and time normalization using linear extrapolation (or interpolation). The results were achieved by analyzing changes in the magnitude and in the absolute z-component of the magnetic field as well. The tests, which were performed in four different Earth directions, show differences in the values of estimated lengths. The magnitude-based results in the case when cars drove from the South to the North direction were even up to 1.2 m higher than the other results achieved using the threshold methods. Smaller differences in lengths were observed when the distances were measured between two extreme peaks in the car magnetic signatures. The results were summarized in tables and the errors of estimated lengths were presented. The maximal errors, related to real lengths, were up to 22%. PMID:28771171

  4. Comparison of methods for estimating density of forest songbirds from point counts

    Treesearch

    Jennifer L. Reidy; Frank R. Thompson; J. Wesley. Bailey

    2011-01-01

    New analytical methods have been promoted for estimating the probability of detection and density of birds from count data but few studies have compared these methods using real data. We compared estimates of detection probability and density from distance and time-removal models and survey protocols based on 5- or 10-min counts and outer radii of 50 or 100 m. We...

  5. A Direct Latent Variable Modeling Based Method for Point and Interval Estimation of Coefficient Alpha

    ERIC Educational Resources Information Center

    Raykov, Tenko; Marcoulides, George A.

    2015-01-01

    A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…

  6. An adaptive finite element method for the inequality-constrained Reynolds equation

    NASA Astrophysics Data System (ADS)

    Gustafsson, Tom; Rajagopal, Kumbakonam R.; Stenberg, Rolf; Videman, Juha

    2018-07-01

    We present a stabilized finite element method for the numerical solution of cavitation in lubrication, modeled as an inequality-constrained Reynolds equation. The cavitation model is written as a variable coefficient saddle-point problem and approximated by a residual-based stabilized method. Based on our recent results on the classical obstacle problem, we present optimal a priori estimates and derive novel a posteriori error estimators. The method is implemented as a Nitsche-type finite element technique and shown in numerical computations to be superior to the usually applied penalty methods.

  7. IMU-Based Online Kinematic Calibration of Robot Manipulator

    PubMed Central

    2013-01-01

    Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods. PMID:24302854

  8. A Practical Guide to Calibration of a GSSHA Hydrologic Model Using ERDC Automated Model Calibration Software - Effective and Efficient Stochastic Global Optimization

    DTIC Science & Technology

    2012-02-01

    parameter estimation method, but rather to carefully describe how to use the ERDC software implementation of MLSL that accommodates the PEST model...model independent LM method based parameter estimation software PEST (Doherty, 2004, 2007a, 2007b), which quantifies model to measure- ment misfit...et al. (2011) focused on one drawback associated with LM-based model independent parameter estimation as implemented in PEST ; viz., that it requires

  9. View Estimation Based on Value System

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasutake; Shimada, Kouki; Asada, Minoru

    Estimation of a caregiver's view is one of the most important capabilities for a child to understand the behavior demonstrated by the caregiver, that is, to infer the intention of behavior and/or to learn the observed behavior efficiently. We hypothesize that the child develops this ability in the same way as behavior learning motivated by an intrinsic reward, that is, he/she updates the model of the estimated view of his/her own during the behavior imitated from the observation of the behavior demonstrated by the caregiver based on minimizing the estimation error of the reward during the behavior. From this view, this paper shows a method for acquiring such a capability based on a value system from which values can be obtained by reinforcement learning. The parameters of the view estimation are updated based on the temporal difference error (hereafter TD error: estimation error of the state value), analogous to the way such that the parameters of the state value of the behavior are updated based on the TD error. Experiments with simple humanoid robots show the validity of the method, and the developmental process parallel to young children's estimation of its own view during the imitation of the observed behavior of the caregiver is discussed.

  10. Network modelling methods for FMRI.

    PubMed

    Smith, Stephen M; Miller, Karla L; Salimi-Khorshidi, Gholamreza; Webster, Matthew; Beckmann, Christian F; Nichols, Thomas E; Ramsey, Joseph D; Woolrich, Mark W

    2011-01-15

    There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    NASA Technical Reports Server (NTRS)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  12. Monte Carlo Perturbation Theory Estimates of Sensitivities to System Dimensions

    DOE PAGES

    Burke, Timothy P.; Kiedrowski, Brian C.

    2017-12-11

    Here, Monte Carlo methods are developed using adjoint-based perturbation theory and the differential operator method to compute the sensitivities of the k-eigenvalue, linear functions of the flux (reaction rates), and bilinear functions of the forward and adjoint flux (kinetics parameters) to system dimensions for uniform expansions or contractions. The calculation of sensitivities to system dimensions requires computing scattering and fission sources at material interfaces using collisions occurring at the interface—which is a set of events with infinitesimal probability. Kernel density estimators are used to estimate the source at interfaces using collisions occurring near the interface. The methods for computing sensitivitiesmore » of linear and bilinear ratios are derived using the differential operator method and adjoint-based perturbation theory and are shown to be equivalent to methods previously developed using a collision history–based approach. The methods for determining sensitivities to system dimensions are tested on a series of fast, intermediate, and thermal critical benchmarks as well as a pressurized water reactor benchmark problem with iterated fission probability used for adjoint-weighting. The estimators are shown to agree within 5% and 3σ of reference solutions obtained using direct perturbations with central differences for the majority of test problems.« less

  13. A new gradient shimming method based on undistorted field map of B0 inhomogeneity.

    PubMed

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Slope angle estimation method based on sparse subspace clustering for probe safe landing

    NASA Astrophysics Data System (ADS)

    Li, Haibo; Cao, Yunfeng; Ding, Meng; Zhuang, Likui

    2018-06-01

    To avoid planetary probes landing on steep slopes where they may slip or tip over, a new method of slope angle estimation based on sparse subspace clustering is proposed to improve accuracy. First, a coordinate system is defined and established to describe the measured data of light detection and ranging (LIDAR). Second, this data is processed and expressed with a sparse representation. Third, on this basis, the data is made to cluster to determine which subspace it belongs to. Fourth, eliminating outliers in subspace, the correct data points are used for the fitting planes. Finally, the vectors normal to the planes are obtained using the plane model, and the angle between the normal vectors is obtained through calculation. Based on the geometric relationship, this angle is equal in value to the slope angle. The proposed method was tested in a series of experiments. The experimental results show that this method can effectively estimate the slope angle, can overcome the influence of noise and obtain an exact slope angle. Compared with other methods, this method can minimize the measuring errors and further improve the estimation accuracy of the slope angle.

  15. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  16. Accurate position estimation methods based on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.

    2017-08-01

    Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.

  17. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  18. Online Detection of Broken Rotor Bar Fault in Induction Motors by Combining Estimation of Signal Parameters via Min-norm Algorithm and Least Square Method

    NASA Astrophysics Data System (ADS)

    Wang, Pan-Pan; Yu, Qiang; Hu, Yong-Jun; Miao, Chang-Xin

    2017-11-01

    Current research in broken rotor bar (BRB) fault detection in induction motors is primarily focused on a high-frequency resolution analysis of the stator current. Compared with a discrete Fourier transformation, the parametric spectrum estimation technique has a higher frequency accuracy and resolution. However, the existing detection methods based on parametric spectrum estimation cannot realize online detection, owing to the large computational cost. To improve the efficiency of BRB fault detection, a new detection method based on the min-norm algorithm and least square estimation is proposed in this paper. First, the stator current is filtered using a band-pass filter and divided into short overlapped data windows. The min-norm algorithm is then applied to determine the frequencies of the fundamental and fault characteristic components with each overlapped data window. Next, based on the frequency values obtained, a model of the fault current signal is constructed. Subsequently, a linear least squares problem solved through singular value decomposition is designed to estimate the amplitudes and phases of the related components. Finally, the proposed method is applied to a simulated current and an actual motor, the results of which indicate that, not only parametric spectrum estimation technique.

  19. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  20. Analytical Fuselage and Wing Weight Estimation of Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Chambers, Mark C.; Ardema, Mark D.; Patron, Anthony P.; Hahn, Andrew S.; Miura, Hirokazu; Moore, Mark D.

    1996-01-01

    A method of estimating the load-bearing fuselage weight and wing weight of transport aircraft based on fundamental structural principles has been developed. This method of weight estimation represents a compromise between the rapid assessment of component weight using empirical methods based on actual weights of existing aircraft, and detailed, but time-consuming, analysis using the finite element method. The method was applied to eight existing subsonic transports for validation and correlation. Integration of the resulting computer program, PDCYL, has been made into the weights-calculating module of the AirCraft SYNThesis (ACSYNT) computer program. ACSYNT has traditionally used only empirical weight estimation methods; PDCYL adds to ACSYNT a rapid, accurate means of assessing the fuselage and wing weights of unconventional aircraft. PDCYL also allows flexibility in the choice of structural concept, as well as a direct means of determining the impact of advanced materials on structural weight. Using statistical analysis techniques, relations between the load-bearing fuselage and wing weights calculated by PDCYL and corresponding actual weights were determined.

  1. Comparative Evaluation of Two Methods to Estimate Natural Gas Production in Texas

    EIA Publications

    2003-01-01

    This report describes an evaluation conducted by the Energy Information Administration (EIA) in August 2003 of two methods that estimate natural gas production in Texas. The first method (parametric method) was used by EIA from February through August 2003 and the second method (multinomial method) replaced it starting in September 2003, based on the results of this evaluation.

  2. Improved protein model quality assessments by changing the target function.

    PubMed

    Uziela, Karolis; Menéndez Hurtado, David; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2018-06-01

    Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates. © 2018 Wiley Periodicals, Inc.

  3. Estimating HIV Incidence Using a Cross-Sectional Survey: Comparison of Three Approaches in a Hyperendemic Setting, Ndhiwa Subcounty, Kenya, 2012.

    PubMed

    Blaizot, Stéphanie; Kim, Andrea A; Zeh, Clement; Riche, Benjamin; Maman, David; De Cock, Kevin M; Etard, Jean-François; Ecochard, René

    2017-05-01

    Estimating HIV incidence is critical for identifying groups at risk for HIV infection, planning and targeting interventions, and evaluating these interventions over time. The use of reliable estimation methods for HIV incidence is thus of high importance. The aim of this study was to compare methods for estimating HIV incidence in a population-based cross-sectional survey. The incidence estimation methods evaluated included assay-derived methods, a testing history-derived method, and a probability-based method applied to data from the Ndhiwa HIV Impact in Population Survey (NHIPS). Incidence rates by sex and age and cumulative incidence as a function of age were presented. HIV incidence ranged from 1.38 [95% confidence interval (CI) 0.67-2.09] to 3.30 [95% CI 2.78-3.82] per 100 person-years overall; 0.59 [95% CI 0.00-1.34] to 2.89 [95% CI 0.86-6.45] in men; and 1.62 [95% CI 0.16-6.04] to 4.03 [95% CI 3.30-4.77] per 100 person-years in women. Women had higher incidence rates than men for all methods. Incidence rates were highest among women aged 15-24 and 25-34 years and highest among men aged 25-34 years. Comparison of different methods showed variations in incidence estimates, but they were in agreement to identify most-at-risk groups. The use and comparison of several distinct approaches for estimating incidence are important to provide the best-supported estimate of HIV incidence in the population.

  4. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  5. Comparison of Sample Size by Bootstrap and by Formulas Based on Normal Distribution Assumption.

    PubMed

    Wang, Zuozhen

    2018-01-01

    Bootstrapping technique is distribution-independent, which provides an indirect way to estimate the sample size for a clinical trial based on a relatively smaller sample. In this paper, sample size estimation to compare two parallel-design arms for continuous data by bootstrap procedure are presented for various test types (inequality, non-inferiority, superiority, and equivalence), respectively. Meanwhile, sample size calculation by mathematical formulas (normal distribution assumption) for the identical data are also carried out. Consequently, power difference between the two calculation methods is acceptably small for all the test types. It shows that the bootstrap procedure is a credible technique for sample size estimation. After that, we compared the powers determined using the two methods based on data that violate the normal distribution assumption. To accommodate the feature of the data, the nonparametric statistical method of Wilcoxon test was applied to compare the two groups in the data during the process of bootstrap power estimation. As a result, the power estimated by normal distribution-based formula is far larger than that by bootstrap for each specific sample size per group. Hence, for this type of data, it is preferable that the bootstrap method be applied for sample size calculation at the beginning, and that the same statistical method as used in the subsequent statistical analysis is employed for each bootstrap sample during the course of bootstrap sample size estimation, provided there is historical true data available that can be well representative of the population to which the proposed trial is planning to extrapolate.

  6. Methodology of automated ionosphere front velocity estimation for ground-based augmentation of GNSS

    NASA Astrophysics Data System (ADS)

    Bang, Eugene; Lee, Jiyun

    2013-11-01

    ionospheric anomalies occurring during severe ionospheric storms can pose integrity threats to Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS). Ionospheric anomaly threat models for each region of operation need to be developed to analyze the potential impact of these anomalies on GBAS users and develop mitigation strategies. Along with the magnitude of ionospheric gradients, the speed of the ionosphere "fronts" in which these gradients are embedded is an important parameter for simulation-based GBAS integrity analysis. This paper presents a methodology for automated ionosphere front velocity estimation which will be used to analyze a vast amount of ionospheric data, build ionospheric anomaly threat models for different regions, and monitor ionospheric anomalies continuously going forward. This procedure automatically selects stations that show a similar trend of ionospheric delays, computes the orientation of detected fronts using a three-station-based trigonometric method, and estimates speeds for the front using a two-station-based method. It also includes fine-tuning methods to improve the estimation to be robust against faulty measurements and modeling errors. It demonstrates the performance of the algorithm by comparing the results of automated speed estimation to those manually computed previously. All speed estimates from the automated algorithm fall within error bars of ± 30% of the manually computed speeds. In addition, this algorithm is used to populate the current threat space with newly generated threat points. A larger number of velocity estimates helps us to better understand the behavior of ionospheric gradients under geomagnetic storm conditions.

  7. Detection of sea otters in boat-based surveys of Prince William Sound, Alaska

    USGS Publications Warehouse

    Udevitz, Mark S.; Bodkin, James L.; Costa, Daniel P.

    1995-01-01

    Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.

  8. Rectal temperature-based death time estimation in infants.

    PubMed

    Igari, Yui; Hosokai, Yoshiyuki; Funayama, Masato

    2016-03-01

    In determining the time of death in infants based on rectal temperature, the same methods used in adults are generally used. However, whether the methods for adults are suitable for infants is unclear. In this study, we examined the following 3 methods in 20 infant death cases: computer simulation of rectal temperature based on the infinite cylinder model (Ohno's method), computer-based double exponential approximation based on Marshall and Hoare's double exponential model with Henssge's parameter determination (Henssge's method), and computer-based collinear approximation based on extrapolation of the rectal temperature curve (collinear approximation). The interval between the last time the infant was seen alive and the time that he/she was found dead was defined as the death time interval and compared with the estimated time of death. In Ohno's method, 7 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80 min. The results of both Henssge's method and collinear approximation were apparently inferior to the results of Ohno's method. The corrective factor was set within the range of 0.7-1.3 in Henssge's method, and a modified program was newly developed to make it possible to change the corrective factors. Modification A, in which the upper limit of the corrective factor range was set as the maximum value in each body weight, produced the best results: 8 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80min. There was a possibility that the influence of thermal isolation on the actual infants was stronger than that previously shown by Henssge. We conclude that Ohno's method and Modification A are useful for death time estimation in infants. However, it is important to accept the estimated time of death with certain latitude considering other circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. An adaptive angle-doppler compensation method for airborne bistatic radar based on PAST

    NASA Astrophysics Data System (ADS)

    Hang, Xu; Jun, Zhao

    2018-05-01

    Adaptive angle-Doppler compensation method extract the requisite information based on the data itself adaptively, thus avoiding the problem of performance degradation caused by inertia system error. However, this method requires estimation and egiendecomposition of sample covariance matrix, which has a high computational complexity and limits its real-time application. In this paper, an adaptive angle Doppler compensation method based on projection approximation subspace tracking (PAST) is studied. The method uses cyclic iterative processing to quickly estimate the positions of the spectral center of the maximum eigenvector of each range cell, and the computational burden of matrix estimation and eigen-decompositon is avoided, and then the spectral centers of all range cells is overlapped by two dimensional compensation. Simulation results show the proposed method can effectively reduce the no homogeneity of airborne bistatic radar, and its performance is similar to that of egien-decomposition algorithms, but the computation load is obviously reduced and easy to be realized.

  10. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors

    PubMed Central

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-01-01

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison. PMID:29614028

  11. Semantic Edge Based Disparity Estimation Using Adaptive Dynamic Programming for Binocular Sensors.

    PubMed

    Zhu, Dongchen; Li, Jiamao; Wang, Xianshun; Peng, Jingquan; Shi, Wenjun; Zhang, Xiaolin

    2018-04-03

    Disparity calculation is crucial for binocular sensor ranging. The disparity estimation based on edges is an important branch in the research of sparse stereo matching and plays an important role in visual navigation. In this paper, we propose a robust sparse stereo matching method based on the semantic edges. Some simple matching costs are used first, and then a novel adaptive dynamic programming algorithm is proposed to obtain optimal solutions. This algorithm makes use of the disparity or semantic consistency constraint between the stereo images to adaptively search parameters, which can improve the robustness of our method. The proposed method is compared quantitatively and qualitatively with the traditional dynamic programming method, some dense stereo matching methods, and the advanced edge-based method respectively. Experiments show that our method can provide superior performance on the above comparison.

  12. Experimental verification of a GPC-LPV method with RLS and P1-TS fuzzy-based estimation for limiting the transient and residual vibration of a crane system

    NASA Astrophysics Data System (ADS)

    Smoczek, Jaroslaw

    2015-10-01

    The paper deals with the problem of reducing the residual vibration and limiting the transient oscillations of a flexible and underactuated system with respect to the variation of operating conditions. The comparative study of generalized predictive control (GPC) and fuzzy scheduling scheme developed based on the P1-TS fuzzy theory, local pole placement method and interval analysis of closed-loop system polynomial coefficients is addressed to the problem of flexible crane control. The two alternatives of a GPC-based method are proposed that enable to realize this technique either with or without a sensor of payload deflection. The first control technique is based on the recursive least squares (RLS) method applied to on-line estimate the parameters of a linear parameter varying (LPV) model of a crane dynamic system. The second GPC-based approach is based on a payload deflection feedback estimated using a pendulum model with the parameters interpolated using the P1-TS fuzzy system. Feasibility and applicability of the developed methods were confirmed through experimental verification performed on a laboratory scaled overhead crane.

  13. Quantifying atmospheric pollutant emissions from open biomass burning with multiple methods: a case study for Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhao, Y.

    2017-12-01

    To understand the differences and their origins of emission inventories based on various methods for the source, emissions of PM10, PM2.5, OC, BC, CH4, VOCs, CO, CO2, NOX, SO2 and NH3 from open biomass burning (OBB) in Yangtze River Delta (YRD) are calculated for 2005-2012 using three (bottom-up, FRP-based and constraining) approaches. The inter-annual trends in emissions with FRP-based and constraining methods are similar with the fire counts in 2005-2012, while that with bottom-up method is different. For most years, emissions of all species estimated with constraining method are smaller than those with bottom-up method (except for VOCs), while they are larger than those with FRP-based (except for EC, CH4 and NH3). Such discrepancies result mainly from different masses of crop residues burned in the field (CRBF) estimated in the three methods. Among the three methods, the simulated concentrations from chemistry transport modeling with the constrained emissions are the closest to available observations, implying the result from constraining method is the best estimation for OBB emissions. CO emissions in the three methods are compared with other studies. Similar temporal variations were found for the constrained emissions, FRP-based emissions, GFASv1.0 and GFEDv4.1s, with the largest and the lowest emissions estimated for 2012 and 2006, respectively. The constrained CO emissions in this study are smaller than those in other studies based on bottom-up method and larger than those based on burned area and FRP derived from satellite. The contributions of OBB to two particulate pollution events in 2010 and 2012 are analyzed with the brute-force method. The average contribution of OBB to PM10 mass concentrations in June 8-14 2012 was estimated at 38.9% (74.8 μg m-3), larger than that in June 17-24, 2010 at 23.6 % (38.5 μg m-3). Influences of diurnal curves and meteorology on air pollution caused by OBB are also evaluated, and the results suggest that air pollution caused by OBB will become heavier if the meteorological conditions are unfavorable, and that more attention should be paid to the supervision in night. Quantified with the Monte-Carlo simulation, the uncertainties of OBB emissions with constraining method are significantly lower than those with bottom-up or FRP-based methods.

  14. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266

  15. Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.

    PubMed

    Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne

    2016-04-01

    We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.

  16. Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm

    NASA Astrophysics Data System (ADS)

    Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd

    2018-04-01

    Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.

  17. A reference estimator based on composite sensor pattern noise for source device identification

    NASA Astrophysics Data System (ADS)

    Li, Ruizhe; Li, Chang-Tsun; Guan, Yu

    2014-02-01

    It has been proved that Sensor Pattern Noise (SPN) can serve as an imaging device fingerprint for source camera identification. Reference SPN estimation is a very important procedure within the framework of this application. Most previous works built reference SPN by averaging the SPNs extracted from 50 images of blue sky. However, this method can be problematic. Firstly, in practice we may face the problem of source camera identification in the absence of the imaging cameras and reference SPNs, which means only natural images with scene details are available for reference SPN estimation rather than blue sky images. It is challenging because the reference SPN can be severely contaminated by image content. Secondly, the number of available reference images sometimes is too few for existing methods to estimate a reliable reference SPN. In fact, existing methods lack consideration of the number of available reference images as they were designed for the datasets with abundant images to estimate the reference SPN. In order to deal with the aforementioned problem, in this work, a novel reference estimator is proposed. Experimental results show that our proposed method achieves better performance than the methods based on the averaged reference SPN, especially when few reference images used.

  18. Utilizing Expert Knowledge in Estimating Future STS Costs

    NASA Technical Reports Server (NTRS)

    Fortner, David B.; Ruiz-Torres, Alex J.

    2004-01-01

    A method of estimating the costs of future space transportation systems (STSs) involves classical activity-based cost (ABC) modeling combined with systematic utilization of the knowledge and opinions of experts to extend the process-flow knowledge of existing systems to systems that involve new materials and/or new architectures. The expert knowledge is particularly helpful in filling gaps that arise in computational models of processes because of inconsistencies in historical cost data. Heretofore, the costs of planned STSs have been estimated following a "top-down" approach that tends to force the architectures of new systems to incorporate process flows like those of the space shuttles. In this ABC-based method, one makes assumptions about the processes, but otherwise follows a "bottoms up" approach that does not force the new system architecture to incorporate a space-shuttle-like process flow. Prototype software has been developed to implement this method. Through further development of software, it should be possible to extend the method beyond the space program to almost any setting in which there is a need to estimate the costs of a new system and to extend the applicable knowledge base in order to make the estimate.

  19. DOA Estimation for Underwater Wideband Weak Targets Based on Coherent Signal Subspace and Compressed Sensing

    PubMed Central

    2018-01-01

    Direction of arrival (DOA) estimation is the basis for underwater target localization and tracking using towed line array sonar devices. A method of DOA estimation for underwater wideband weak targets based on coherent signal subspace (CSS) processing and compressed sensing (CS) theory is proposed. Under the CSS processing framework, wideband frequency focusing is accompanied by a two-sided correlation transformation, allowing the DOA of underwater wideband targets to be estimated based on the spatial sparsity of the targets and the compressed sensing reconstruction algorithm. Through analysis and processing of simulation data and marine trial data, it is shown that this method can accomplish the DOA estimation of underwater wideband weak targets. Results also show that this method can considerably improve the spatial spectrum of weak target signals, enhancing the ability to detect them. It can solve the problems of low directional resolution and unreliable weak-target detection in traditional beamforming technology. Compared with the conventional minimum variance distortionless response beamformers (MVDR), this method has many advantages, such as higher directional resolution, wider detection range, fewer required snapshots and more accurate detection for weak targets. PMID:29562642

  20. Application of wavelet-based multi-model Kalman filters to real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Chou, Chien-Ming; Wang, Ru-Yih

    2004-04-01

    This paper presents the application of a multimodel method using a wavelet-based Kalman filter (WKF) bank to simultaneously estimate decomposed state variables and unknown parameters for real-time flood forecasting. Applying the Haar wavelet transform alters the state vector and input vector of the state space. In this way, an overall detail plus approximation describes each new state vector and input vector, which allows the WKF to simultaneously estimate and decompose state variables. The wavelet-based multimodel Kalman filter (WMKF) is a multimodel Kalman filter (MKF), in which the Kalman filter has been substituted for a WKF. The WMKF then obtains M estimated state vectors. Next, the M state-estimates, each of which is weighted by its possibility that is also determined on-line, are combined to form an optimal estimate. Validations conducted for the Wu-Tu watershed, a small watershed in Taiwan, have demonstrated that the method is effective because of the decomposition of wavelet transform, the adaptation of the time-varying Kalman filter and the characteristics of the multimodel method. Validation results also reveal that the resulting method enhances the accuracy of the runoff prediction of the rainfall-runoff process in the Wu-Tu watershed.

  1. An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia.

    PubMed

    Kidney, Darren; Rawson, Benjamin M; Borchers, David L; Stevenson, Ben C; Marques, Tiago A; Thomas, Len

    2016-01-01

    Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers' estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.

  2. Five Methods for Estimating Angoff Cut Scores with IRT

    ERIC Educational Resources Information Center

    Wyse, Adam E.

    2017-01-01

    This article illustrates five different methods for estimating Angoff cut scores using item response theory (IRT) models. These include maximum likelihood (ML), expected a priori (EAP), modal a priori (MAP), and weighted maximum likelihood (WML) estimators, as well as the most commonly used approach based on translating ratings through the test…

  3. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    USDA-ARS?s Scientific Manuscript database

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  4. Battery state-of-charge estimation using approximate least squares

    NASA Astrophysics Data System (ADS)

    Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.

    2015-03-01

    In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.

  5. Moving Sound Source Localization Based on Sequential Subspace Estimation in Actual Room Environments

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Suyama, Kenji

    This paper presents a novel method for moving sound source localization and its performance evaluation in actual room environments. The method is based on the MUSIC (MUltiple SIgnal Classification) which is one of the most high resolution localization methods. When using the MUSIC, a computation of eigenvectors of correlation matrix is required for the estimation. It needs often a high computational costs. Especially, in the situation of moving source, it becomes a crucial drawback because the estimation must be conducted at every the observation time. Moreover, since the correlation matrix varies its characteristics due to the spatial-temporal non-stationarity, the matrix have to be estimated using only a few observed samples. It makes the estimation accuracy degraded. In this paper, the PAST (Projection Approximation Subspace Tracking) is applied for sequentially estimating the eigenvectors spanning the subspace. In the PAST, the eigen-decomposition is not required, and therefore it is possible to reduce the computational costs. Several experimental results in the actual room environments are shown to present the superior performance of the proposed method.

  6. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    PubMed

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  7. Estimating Rooftop Suitability for PV: A Review of Methods, Patents, and Validation Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melius, J.; Margolis, R.; Ong, S.

    2013-12-01

    A number of methods have been developed using remote sensing data to estimate rooftop area suitable for the installation of photovoltaics (PV) at various geospatial resolutions. This report reviews the literature and patents on methods for estimating rooftop-area appropriate for PV, including constant-value methods, manual selection methods, and GIS-based methods. This report also presents NREL's proposed method for estimating suitable rooftop area for PV using Light Detection and Ranging (LiDAR) data in conjunction with a GIS model to predict areas with appropriate slope, orientation, and sunlight. NREL's method is validated against solar installation data from New Jersey, Colorado, and Californiamore » to compare modeled results to actual on-the-ground measurements.« less

  8. A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data.

    PubMed

    Fang, Yun; Wu, Hulin; Zhu, Li-Xing

    2011-07-01

    We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.

  9. Incorporating structure from motion uncertainty into image-based pose estimation

    NASA Astrophysics Data System (ADS)

    Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen

    2015-05-01

    A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.

  10. Estimation of the proteomic cancer co-expression sub networks by using association estimators

    PubMed Central

    Kurt, Zeyneb; Diri, Banu

    2017-01-01

    In this study, the association estimators, which have significant influences on the gene network inference methods and used for determining the molecular interactions, were examined within the co-expression network inference concept. By using the proteomic data from five different cancer types, the hub genes/proteins within the disease-associated gene-gene/protein-protein interaction sub networks were identified. Proteomic data from various cancer types is collected from The Cancer Proteome Atlas (TCPA). Correlation and mutual information (MI) based nine association estimators that are commonly used in the literature, were compared in this study. As the gold standard to measure the association estimators’ performance, a multi-layer data integration platform on gene-disease associations (DisGeNET) and the Molecular Signatures Database (MSigDB) was used. Fisher's exact test was used to evaluate the performance of the association estimators by comparing the created co-expression networks with the disease-associated pathways. It was observed that the MI based estimators provided more successful results than the Pearson and Spearman correlation approaches, which are used in the estimation of biological networks in the weighted correlation network analysis (WGCNA) package. In correlation-based methods, the best average success rate for five cancer types was 60%, while in MI-based methods the average success ratio was 71% for James-Stein Shrinkage (Shrink) and 64% for Schurmann-Grassberger (SG) association estimator, respectively. Moreover, the hub genes and the inferred sub networks are presented for the consideration of researchers and experimentalists. PMID:29145449

  11. Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise.

    PubMed

    Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan

    2018-03-09

    This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.

  12. Meta-Analysis of Rare Binary Adverse Event Data

    PubMed Central

    Bhaumik, Dulal K.; Amatya, Anup; Normand, Sharon-Lise; Greenhouse, Joel; Kaizar, Eloise; Neelon, Brian; Gibbons, Robert D.

    2013-01-01

    We examine the use of fixed-effects and random-effects moment-based meta-analytic methods for analysis of binary adverse event data. Special attention is paid to the case of rare adverse events which are commonly encountered in routine practice. We study estimation of model parameters and between-study heterogeneity. In addition, we examine traditional approaches to hypothesis testing of the average treatment effect and detection of the heterogeneity of treatment effect across studies. We derive three new methods, simple (unweighted) average treatment effect estimator, a new heterogeneity estimator, and a parametric bootstrapping test for heterogeneity. We then study the statistical properties of both the traditional and new methods via simulation. We find that in general, moment-based estimators of combined treatment effects and heterogeneity are biased and the degree of bias is proportional to the rarity of the event under study. The new methods eliminate much, but not all of this bias. The various estimators and hypothesis testing methods are then compared and contrasted using an example dataset on treatment of stable coronary artery disease. PMID:23734068

  13. Simultaneous quaternion estimation (QUEST) and bias determination

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1989-01-01

    Tests of a new method for the simultaneous estimation of spacecraft attitude and sensor biases, based on a quaternion estimation algorithm minimizing Wahba's loss function are presented. The new method is compared with a conventional batch least-squares differential correction algorithm. The estimates are based on data from strapdown gyros and star trackers, simulated with varying levels of Gaussian noise for both inertially-fixed and Earth-pointing reference attitudes. Both algorithms solve for the spacecraft attitude and the gyro drift rate biases. They converge to the same estimates at the same rate for inertially-fixed attitude, but the new algorithm converges more slowly than the differential correction for Earth-pointing attitude. The slower convergence of the new method for non-zero attitude rates is believed to be due to the use of an inadequate approximation for a partial derivative matrix. The new method requires about twice the computational effort of the differential correction. Improving the approximation for the partial derivative matrix in the new method is expected to improve its convergence at the cost of increased computational effort.

  14. Robust Angle Estimation for MIMO Radar with the Coexistence of Mutual Coupling and Colored Noise

    PubMed Central

    Wang, Junxiang; Wang, Xianpeng; Xu, Dingjie; Bi, Guoan

    2018-01-01

    This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method. PMID:29522499

  15. Measuring diet cost at the individual level: a comparison of three methods.

    PubMed

    Monsivais, P; Perrigue, M M; Adams, S L; Drewnowski, A

    2013-11-01

    Household-level food spending data are not suitable for population-based studies of the economics of nutrition. This study compared three methods of deriving diet cost at the individual level. Adult men and women (n=164) completed 4-day diet diaries and a food frequency questionnaire (FFQ). Food expenditures over 4 weeks and supermarket prices for 384 foods were obtained. Diet costs (US$/day) were estimated using: (1) diet diaries and expenditures; (2) diet diaries and supermarket prices; and (3) FFQs and supermarket prices. Agreement between the three methods was assessed on the basis of Pearson correlations and limits of agreement. Income-related differences in diet costs were estimated using general linear models. Diet diaries yielded mean (s.d.) diet costs of $10.04 (4.27) based on Method 1 and $8.28 (2.32) based on Method 2. FFQs yielded mean diet costs of $7.66 (2.72) based on Method 3. Correlations between energy intakes and costs were highest for Method 3 (r(2)=0.66), lower for Method 2 (r(2)=0.24) and lowest for Method 1 (r(2)=0.06). Cost estimates were significantly associated with household incomes. The weak association between food expenditures and food intake using Method 1 makes it least suitable for diet and health research. However, merging supermarket food prices with standard dietary assessment tools can provide estimates of individual diet cost that are more closely associated with food consumed. The derivation of individual diet cost can provide insights into some of the economic determinants of food choice, diet quality and health.

  16. Estimates of monthly streamflow characteristics at selected sites in the upper Missouri River basin, Montana, base period water years 1937-86

    USGS Publications Warehouse

    Parrett, Charles; Johnson, D.R.; Hull, J.A.

    1989-01-01

    Estimates of streamflow characteristics (monthly mean flow that is exceeded 90, 80, 50, and 20 percent of the time for all years of record and mean monthly flow) were made and are presented in tabular form for 312 sites in the Missouri River basin in Montana. Short-term gaged records were extended to the base period of water years 1937-86, and were used to estimate monthly streamflow characteristics at 100 sites. Data from 47 gaged sites were used in regression analysis relating the streamflow characteristics to basin characteristics and to active-channel width. The basin-characteristics equations, with standard errors of 35% to 97%, were used to estimate streamflow characteristics at 179 ungaged sites. The channel-width equations, with standard errors of 36% to 103%, were used to estimate characteristics at 138 ungaged sites. Streamflow measurements were correlated with concurrent streamflows at nearby gaged sites to estimate streamflow characteristics at 139 ungaged sites. In a test using 20 pairs of gages, the standard errors ranged from 31% to 111%. At 139 ungaged sites, the estimates from two or more of the methods were weighted and combined in accordance with the variance of individual methods. When estimates from three methods were combined the standard errors ranged from 24% to 63 %. A drainage-area-ratio adjustment method was used to estimate monthly streamflow characteristics at seven ungaged sites. The reliability of the drainage-area-ratio adjustment method was estimated to be about equal to that of the basin-characteristics method. The estimate were checked for reliability. Estimates of monthly streamflow characteristics from gaged records were considered to be most reliable, and estimates at sites with actual flow record from 1937-86 were considered to be completely reliable (zero error). Weighted-average estimates were considered to be the most reliable estimates made at ungaged sites. (USGS)

  17. High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method

    PubMed Central

    Jiang, Jie; Yu, Wenbo; Zhang, Guangjun

    2017-01-01

    Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179

  18. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  19. Experimental Quasi-Microwave Whole-Body Averaged SAR Estimation Method Using Cylindrical-External Field Scanning

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoshifumi; Hikage, Takashi; Nojima, Toshio

    The aim of this study is to develop a new whole-body averaged specific absorption rate (SAR) estimation method based on the external-cylindrical field scanning technique. This technique is adopted with the goal of simplifying the dosimetry estimation of human phantoms that have different postures or sizes. An experimental scaled model system is constructed. In order to examine the validity of the proposed method for realistic human models, we discuss the pros and cons of measurements and numerical analyses based on the finite-difference time-domain (FDTD) method. We consider the anatomical European human phantoms and plane-wave in the 2GHz mobile phone frequency band. The measured whole-body averaged SAR results obtained by the proposed method are compared with the results of the FDTD analyses.

  20. A method for evaluating horizontal well pumping tests.

    PubMed

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  1. Shear wave elastography using Wigner-Ville distribution: a simulated multilayer media study.

    PubMed

    Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan

    2016-08-01

    Shear Wave Elastography (SWE) is a quantitative ultrasound-based imaging modality for distinguishing normal and abnormal tissue types by estimating the local viscoelastic properties of the tissue. These properties have been estimated in many studies by propagating ultrasound shear wave within the tissue and estimating parameters such as speed of wave. Vast majority of the proposed techniques are based on the cross-correlation of consecutive ultrasound images. In this study, we propose a new method of wave detection based on time-frequency (TF) analysis of the ultrasound signal. The proposed method is a modified version of the Wigner-Ville Distribution (WVD) technique. The TF components of the wave are detected in a propagating ultrasound wave within a simulated multilayer tissue and the local properties are estimated based on the detected waves. Image processing techniques such as Alternative Sequential Filters (ASF) and Circular Hough Transform (CHT) have been utilized to improve the estimation of TF components. This method has been applied to a simulated data from Wave3000™ software (CyberLogic Inc., New York, NY). This data simulates the propagation of an acoustic radiation force impulse within a two-layer tissue with slightly different viscoelastic properties between the layers. By analyzing the local TF components of the wave, we estimate the longitudinal and shear elasticities and viscosities of the media. This work shows that our proposed method is capable of distinguishing between different layers of a tissue.

  2. Combining remote sensing and water-balance evapotranspiration estimates for the conterminous United States

    USGS Publications Warehouse

    Reitz, Meredith; Senay, Gabriel; Sanford, Ward E.

    2017-01-01

    Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the same temporal resolution. Here we combine long-term ET estimates from a water-balance approach with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product for 2000–2015. We test the new combined method, the original SSEBop product, and another remote sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product showed advantages especially in non-irrigated areas where the new method showed a coefficient of determination R2 of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly data set will be a useful, unique contribution to ET estimation, due to its combination of remote sensing-based variability and ground-based long-term water balance constraints.

  3. Can we improve C IV-based single epoch black hole mass estimations?

    NASA Astrophysics Data System (ADS)

    Mejía-Restrepo, J. E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.

    2018-05-01

    In large optical surveys at high redshifts (z > 2), the C IV broad emission line is the most practical alternative to estimate the mass (MBH) of active super-massive black holes (SMBHs). However, mass determinations obtained with this line are known to be highly uncertain. In this work we use the Sloan Digital Sky Survey Data Release 7 and 12 quasar catalogues to statistically test three alternative methods put forward in the literature to improve C IV-based MBH estimations. These methods are constructed from correlations between the ratio of the C IV line-width to the low ionization line-widths (Hα, Hβ and Mg II) and several other properties of rest-frame UV emission lines. Our analysis suggests that these correction methods are of limited applicability, mostly because all of them depend on correlations that are driven by the linewidth of the C IV profile itself and not by an interconnection between the linewidth of the C IV line with the linewidth of the low ionization lines. Our results show that optical C IV-based mass estimates at high redshift cannot be a proper replacement for estimates based on IR spectroscopy of low ionization lines like Hα, Hβ and Mg II.

  4. A hybrid patient-specific biomechanical model based image registration method for the motion estimation of lungs.

    PubMed

    Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C

    2017-07-01

    This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Near Real-time GNSS-based Ionospheric Model using Expanded Kriging in the East Asia Region

    NASA Astrophysics Data System (ADS)

    Choi, P. H.; Bang, E.; Lee, J.

    2016-12-01

    Many applications which utilize radio waves (e.g. navigation, communications, and radio sciences) are influenced by the ionosphere. The technology to provide global ionospheric maps (GIM) which show ionospheric Total Electron Content (TEC) has been progressed by processing GNSS data. However, the GIMs have limited spatial resolution (e.g. 2.5° in latitude and 5° in longitude), because they are generated using globally-distributed and thus relatively sparse GNSS reference station networks. This study presents a near real-time and high spatial resolution TEC model over East Asia by using ionospheric observables from both International GNSS Service (IGS) and local GNSS networks and the expanded kriging method. New signals from multi-constellation (e.g,, GPS L5, Galileo E5) were also used to generate high-precision TEC estimates. The newly proposed estimation method is based on the universal kriging interpolation technique, but integrates TEC data from previous epochs to those from the current epoch to improve the TEC estimation performance by increasing ionospheric observability. To propagate previous measurements to the current epoch, we implemented a Kalman filter whose dynamic model was derived by using the first-order Gauss-Markov process which characterizes temporal ionospheric changes under the nominal ionospheric conditions. Along with the TEC estimates at grids, the method generates the confidence bounds on the estimates using resulting estimation covariance. We also suggest to classify the confidence bounds into several categories to allow users to recognize the quality levels of TEC estimates according to the requirements for user's applications. This paper examines the performance of the proposed method by obtaining estimation results for both nominal and disturbed ionospheric conditions, and compares these results to those provided by GIM of the NASA Jet propulsion Laboratory. In addition, the estimation results based on the expanded kriging method are compared to the results from the universal kriging method for both nominal and disturbed ionospheric conditions.

  6. Benefit-based tree valuation

    Treesearch

    E.G. McPherson

    2007-01-01

    Benefit-based tree valuation provides alternative estimates of the fair and reasonable value of trees while illustrating the relative contribution of different benefit types. This study compared estimates of tree value obtained using cost- and benefit-based approaches. The cost-based approach used the Council of Landscape and Tree Appraisers trunk formula method, and...

  7. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.

    A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.

  8. Climate reconstruction analysis using coexistence likelihood estimation (CRACLE): a method for the estimation of climate using vegetation.

    PubMed

    Harbert, Robert S; Nixon, Kevin C

    2015-08-01

    • Plant distributions have long been understood to be correlated with the environmental conditions to which species are adapted. Climate is one of the major components driving species distributions. Therefore, it is expected that the plants coexisting in a community are reflective of the local environment, particularly climate.• Presented here is a method for the estimation of climate from local plant species coexistence data. The method, Climate Reconstruction Analysis using Coexistence Likelihood Estimation (CRACLE), is a likelihood-based method that employs specimen collection data at a global scale for the inference of species climate tolerance. CRACLE calculates the maximum joint likelihood of coexistence given individual species climate tolerance characterization to estimate the expected climate.• Plant distribution data for more than 4000 species were used to show that this method accurately infers expected climate profiles for 165 sites with diverse climatic conditions. Estimates differ from the WorldClim global climate model by less than 1.5°C on average for mean annual temperature and less than ∼250 mm for mean annual precipitation. This is a significant improvement upon other plant-based climate-proxy methods.• CRACLE validates long hypothesized interactions between climate and local associations of plant species. Furthermore, CRACLE successfully estimates climate that is consistent with the widely used WorldClim model and therefore may be applied to the quantitative estimation of paleoclimate in future studies. © 2015 Botanical Society of America, Inc.

  9. Projected 1981 exposure estimates using iterative proportional fitting

    DOT National Transportation Integrated Search

    1985-10-01

    1981 VMT estimates categorized by eight driver, vehicle, and environmental : variables are produced. These 1981 estimates are produced using analytical : methods developed in a previous report. The estimates are based on 1977 : NPTS data (the latest ...

  10. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Treesearch

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  11. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  12. Comparison between deterministic and statistical wavelet estimation methods through predictive deconvolution: Seismic to well tie example from the North Sea

    NASA Astrophysics Data System (ADS)

    de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode

    2017-01-01

    Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.

  13. Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates

    USGS Publications Warehouse

    Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.

    2008-01-01

    Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.

  14. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins

    PubMed Central

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-01-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose ‘PockDrug-Server’ to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. PMID:25956651

  15. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.

    PubMed

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-07-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing

    NASA Astrophysics Data System (ADS)

    Gao, Shengguo; Zhu, Zhongli; Liu, Shaomin; Jin, Rui; Yang, Guangchao; Tan, Lei

    2014-10-01

    Soil moisture (SM) plays a fundamental role in the land-atmosphere exchange process. Spatial estimation based on multi in situ (network) data is a critical way to understand the spatial structure and variation of land surface soil moisture. Theoretically, integrating densely sampled auxiliary data spatially correlated with soil moisture into the procedure of spatial estimation can improve its accuracy. In this study, we present a novel approach to estimate the spatial pattern of soil moisture by using the BME method based on wireless sensor network data and auxiliary information from ASTER (Terra) land surface temperature measurements. For comparison, three traditional geostatistic methods were also applied: ordinary kriging (OK), which used the wireless sensor network data only, regression kriging (RK) and ordinary co-kriging (Co-OK) which both integrated the ASTER land surface temperature as a covariate. In Co-OK, LST was linearly contained in the estimator, in RK, estimator is expressed as the sum of the regression estimate and the kriged estimate of the spatially correlated residual, but in BME, the ASTER land surface temperature was first retrieved as soil moisture based on the linear regression, then, the t-distributed prediction interval (PI) of soil moisture was estimated and used as soft data in probability form. The results indicate that all three methods provide reasonable estimations. Co-OK, RK and BME can provide a more accurate spatial estimation by integrating the auxiliary information Compared to OK. RK and BME shows more obvious improvement compared to Co-OK, and even BME can perform slightly better than RK. The inherent issue of spatial estimation (overestimation in the range of low values and underestimation in the range of high values) can also be further improved in both RK and BME. We can conclude that integrating auxiliary data into spatial estimation can indeed improve the accuracy, BME and RK take better advantage of the auxiliary information compared to Co-OK, and BME outperforms RK by integrating the auxiliary data in a probability form.

  17. Sector-Based Detection for Hands-Free Speech Enhancement in Cars

    NASA Astrophysics Data System (ADS)

    Lathoud, Guillaume; Bourgeois, Julien; Freudenberger, Jürgen

    2006-12-01

    Adaptation control of beamforming interference cancellation techniques is investigated for in-car speech acquisition. Two efficient adaptation control methods are proposed that avoid target cancellation. The "implicit" method varies the step-size continuously, based on the filtered output signal. The "explicit" method decides in a binary manner whether to adapt or not, based on a novel estimate of target and interference energies. It estimates the average delay-sum power within a volume of space, for the same cost as the classical delay-sum. Experiments on real in-car data validate both methods, including a case with[InlineEquation not available: see fulltext.] km/h background road noise.

  18. A note on the kappa statistic for clustered dichotomous data.

    PubMed

    Zhou, Ming; Yang, Zhao

    2014-06-30

    The kappa statistic is widely used to assess the agreement between two raters. Motivated by a simulation-based cluster bootstrap method to calculate the variance of the kappa statistic for clustered physician-patients dichotomous data, we investigate its special correlation structure and develop a new simple and efficient data generation algorithm. For the clustered physician-patients dichotomous data, based on the delta method and its special covariance structure, we propose a semi-parametric variance estimator for the kappa statistic. An extensive Monte Carlo simulation study is performed to evaluate the performance of the new proposal and five existing methods with respect to the empirical coverage probability, root-mean-square error, and average width of the 95% confidence interval for the kappa statistic. The variance estimator ignoring the dependence within a cluster is generally inappropriate, and the variance estimators from the new proposal, bootstrap-based methods, and the sampling-based delta method perform reasonably well for at least a moderately large number of clusters (e.g., the number of clusters K ⩾50). The new proposal and sampling-based delta method provide convenient tools for efficient computations and non-simulation-based alternatives to the existing bootstrap-based methods. Moreover, the new proposal has acceptable performance even when the number of clusters is as small as K = 25. To illustrate the practical application of all the methods, one psychiatric research data and two simulated clustered physician-patients dichotomous data are analyzed. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Estimation of slip distribution using an inverse method based on spectral decomposition of Green's function utilizing Global Positioning System (GPS) data

    NASA Astrophysics Data System (ADS)

    Jin, Honglin; Kato, Teruyuki; Hori, Muneo

    2007-07-01

    An inverse method based on the spectral decomposition of the Green's function was employed for estimating a slip distribution. We conducted numerical simulations along the Philippine Sea plate (PH) boundary in southwest Japan using this method to examine how to determine the essential parameters which are the number of deformation function modes and their coefficients. Japanese GPS Earth Observation Network (GEONET) Global Positioning System (GPS) data were used for three years covering 1997-1999 to estimate interseismic back slip distribution in this region. The estimated maximum back slip rate is about 7 cm/yr, which is consistent with the Philippine Sea plate convergence rate. Areas of strong coupling are confined between depths of 10 and 30 km and three areas of strong coupling were delineated. These results are consistent with other studies that have estimated locations of coupling distribution.

  20. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  1. Methods for estimating expected blood alcohol concentration.

    DOT National Transportation Integrated Search

    1980-12-01

    Estimates of blood alcohol concentration (BAC) typically are based on the amount of alcohol consumed per pound body weight. This method fails to consider food intake and body composition, which significantly affect BAC. A laboratory experiment was co...

  2. Methods for estimating expected blood alcohol concentration

    DOT National Transportation Integrated Search

    1980-08-01

    Estimates of blood alcohol concentration (BAC) typically are based on the amount of alcohol consumed per pound bodyweight. This method fails to consider either food intake or body composition, factors which significantly affect BAC. A laboratory expe...

  3. Reader reaction to "a robust method for estimating optimal treatment regimes" by Zhang et al. (2012).

    PubMed

    Taylor, Jeremy M G; Cheng, Wenting; Foster, Jared C

    2015-03-01

    A recent article (Zhang et al., 2012, Biometrics 168, 1010-1018) compares regression based and inverse probability based methods of estimating an optimal treatment regime and shows for a small number of covariates that inverse probability weighted methods are more robust to model misspecification than regression methods. We demonstrate that using models that fit the data better reduces the concern about non-robustness for the regression methods. We extend the simulation study of Zhang et al. (2012, Biometrics 168, 1010-1018), also considering the situation of a larger number of covariates, and show that incorporating random forests into both regression and inverse probability weighted based methods improves their properties. © 2014, The International Biometric Society.

  4. Low-Cost 3-D Flow Estimation of Blood With Clutter.

    PubMed

    Wei, Siyuan; Yang, Ming; Zhou, Jian; Sampson, Richard; Kripfgans, Oliver D; Fowlkes, J Brian; Wenisch, Thomas F; Chakrabarti, Chaitali

    2017-05-01

    Volumetric flow rate estimation is an important ultrasound medical imaging modality that is used for diagnosing cardiovascular diseases. Flow rates are obtained by integrating velocity estimates over a cross-sectional plane. Speckle tracking is a promising approach that overcomes the angle dependency of traditional Doppler methods, but suffers from poor lateral resolution. Recent work improves lateral velocity estimation accuracy by reconstructing a synthetic lateral phase (SLP) signal. However, the estimation accuracy of such approaches is compromised by the presence of clutter. Eigen-based clutter filtering has been shown to be effective in removing the clutter signal; but it is computationally expensive, precluding its use at high volume rates. In this paper, we propose low-complexity schemes for both velocity estimation and clutter filtering. We use a two-tiered motion estimation scheme to combine the low complexity sum-of-absolute-difference and SLP methods to achieve subpixel lateral accuracy. We reduce the complexity of eigen-based clutter filtering by processing in subgroups and replacing singular value decomposition with less compute-intensive power iteration and subspace iteration methods. Finally, to improve flow rate estimation accuracy, we use kernel power weighting when integrating the velocity estimates. We evaluate our method for fast- and slow-moving clutter for beam-to-flow angles of 90° and 60° using Field II simulations, demonstrating high estimation accuracy across scenarios. For instance, for a beam-to-flow angle of 90° and fast-moving clutter, our estimation method provides a bias of -8.8% and standard deviation of 3.1% relative to the actual flow rate.

  5. Bias correction of nutritional status estimates when reported age is used for calculating WHO indicators in children under five years of age.

    PubMed

    Quezada, Amado D; García-Guerra, Armando; Escobar, Leticia

    2016-06-01

    To assess the performance of a simple correction method for nutritional status estimates in children under five years of age when exact age is not available from the data. The proposed method was based on the assumption of symmetry of age distributions within a given month of age and validated in a large population-based survey sample of Mexican preschool children. The main distributional assumption was consistent with the data. All prevalence estimates derived from the correction method showed no statistically significant bias. In contrast, failing to correct attained age resulted in an underestimation of stunting in general and an overestimation of overweight or obesity among the youngest. The proposed method performed remarkably well in terms of bias correction of estimates and could be easily applied in situations in which either birth or interview dates are not available from the data.

  6. Discrete wavelength selection for the optical readout of a metamaterial biosensing system for glucose concentration estimation via a support vector regression model.

    PubMed

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2015-01-01

    In this contribution, a method to select discrete wavelengths that allow an accurate estimation of the glucose concentration in a biosensing system based on metamaterials is presented. The sensing concept is adapted to the particular application of ophthalmic glucose sensing by covering the metamaterial with a glucose-sensitive hydrogel and the sensor readout is performed optically. Due to the fact that in a mobile context a spectrometer is not suitable, few discrete wavelengths must be selected to estimate the glucose concentration. The developed selection methods are based on nonlinear support vector regression (SVR) models. Two selection methods are compared and it is shown that wavelengths selected by a sequential forward feature selection algorithm achieves an estimation improvement. The presented method can be easily applied to different metamaterial layouts and hydrogel configurations.

  7. An LFMCW detector with new structure and FRFT based differential distance estimation method.

    PubMed

    Yue, Kai; Hao, Xinhong; Li, Ping

    2016-01-01

    This paper describes a linear frequency modulated continuous wave (LFMCW) detector which is designed for a collision avoidance radar. This detector can estimate distance between the detector and pedestrians or vehicles, thereby it will help to reduce the likelihood of traffic accidents. The detector consists of a transceiver and a signal processor. A novel structure based on the intermediate frequency signal (IFS) is designed for the transceiver which is different from the traditional LFMCW transceiver using the beat frequency signal (BFS) based structure. In the signal processor, a novel fractional Fourier transform (FRFT) based differential distance estimation (DDE) method is used to detect the distance. The new IFS based structure is beneficial for the FRFT based DDE method to reduce the computation complexity, because it does not need the scan of the optimal FRFT order. Low computation complexity ensures the feasibility of practical applications. Simulations are carried out and results demonstrate the efficiency of the detector designed in this paper.

  8. Human Body 3D Posture Estimation Using Significant Points and Two Cameras

    PubMed Central

    Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin

    2014-01-01

    This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422

  9. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  10. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation

    NASA Astrophysics Data System (ADS)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.

    2017-02-01

    This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.

  11. Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended kalman filter

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ma, Zilin; Tang, Gongyou; Chen, Zheng; Zhang, Nong

    2016-07-01

    Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery, the predicted performance of power battery, especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV. However, the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected. A variable structure extended kalman filter(VSEKF)-based estimation method, which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition, is presented. First, the general lower-order battery equivalent circuit model(GLM), which includes column accumulation model, open circuit voltage model and the SOC output model, is established, and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data. Next, a VSEKF estimation method of SOC, which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method, is executed with different adaptive weighting coefficients, which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes. According to the experimental analysis, the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV. The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method. In Summary, the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system, which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method. The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.

  12. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.« less

  13. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.

    PubMed

    Vargas-Meléndez, Leandro; Boada, Beatriz L; Boada, María Jesús L; Gauchía, Antonio; Díaz, Vicente

    2016-08-31

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a "pseudo-roll angle" through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors' estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator.

  14. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation

    PubMed Central

    Vargas-Meléndez, Leandro; Boada, Beatriz L.; Boada, María Jesús L.; Gauchía, Antonio; Díaz, Vicente

    2016-01-01

    This article presents a novel estimator based on sensor fusion, which combines the Neural Network (NN) with a Kalman filter in order to estimate the vehicle roll angle. The NN estimates a “pseudo-roll angle” through variables that are easily measured from Inertial Measurement Unit (IMU) sensors. An IMU is a device that is commonly used for vehicle motion detection, and its cost has decreased during recent years. The pseudo-roll angle is introduced in the Kalman filter in order to filter noise and minimize the variance of the norm and maximum errors’ estimation. The NN has been trained for J-turn maneuvers, double lane change maneuvers and lane change maneuvers at different speeds and road friction coefficients. The proposed method takes into account the vehicle non-linearities, thus yielding good roll angle estimation. Finally, the proposed estimator has been compared with one that uses the suspension deflections to obtain the pseudo-roll angle. Experimental results show the effectiveness of the proposed NN and Kalman filter-based estimator. PMID:27589763

  15. Reference interval estimation: Methodological comparison using extensive simulations and empirical data.

    PubMed

    Daly, Caitlin H; Higgins, Victoria; Adeli, Khosrow; Grey, Vijay L; Hamid, Jemila S

    2017-12-01

    To statistically compare and evaluate commonly used methods of estimating reference intervals and to determine which method is best based on characteristics of the distribution of various data sets. Three approaches for estimating reference intervals, i.e. parametric, non-parametric, and robust, were compared with simulated Gaussian and non-Gaussian data. The hierarchy of the performances of each method was examined based on bias and measures of precision. The findings of the simulation study were illustrated through real data sets. In all Gaussian scenarios, the parametric approach provided the least biased and most precise estimates. In non-Gaussian scenarios, no single method provided the least biased and most precise estimates for both limits of a reference interval across all sample sizes, although the non-parametric approach performed the best for most scenarios. The hierarchy of the performances of the three methods was only impacted by sample size and skewness. Differences between reference interval estimates established by the three methods were inflated by variability. Whenever possible, laboratories should attempt to transform data to a Gaussian distribution and use the parametric approach to obtain the most optimal reference intervals. When this is not possible, laboratories should consider sample size and skewness as factors in their choice of reference interval estimation method. The consequences of false positives or false negatives may also serve as factors in this decision. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  16. METAPHOR: Probability density estimation for machine learning based photometric redshifts

    NASA Astrophysics Data System (ADS)

    Amaro, V.; Cavuoti, S.; Brescia, M.; Vellucci, C.; Tortora, C.; Longo, G.

    2017-06-01

    We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare).

  17. Data-based estimates of the ocean carbon sink variability - results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)

    NASA Astrophysics Data System (ADS)

    Rödenbeck, Christian; Bakker, Dorothee; Gruber, Nicolas; Iida, Yosuke; Jacobson, Andy; Jones, Steve; Landschützer, Peter; Metzl, Nicolas; Nakaoka, Shin-ichiro; Olsen, Are; Park, Geun-Ha; Peylin, Philippe; Rodgers, Keith; Sasse, Tristan; Schuster, Ute; Shutler, James; Valsala, Vinu; Wanninkhof, Rik; Zeng, Jiye

    2016-04-01

    Using measurements of the surface-ocean COtwo partial pressure (pCOtwo) from the SOCAT and LDEO data bases and 14 different pCOtwo mapping methods recently collated by the Surface Ocean pCOtwo Mapping intercomparison (SOCOM) initiative, variations in regional and global sea-air COtwo fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCOtwo seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the Eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types - taking variability either directly from the pCOtwo data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea-air COtwo flux of IAVampl (standard deviation over AnalysisPeriod), which is larger than simulated by biogeochemical process models. On a decadal perspective, the global ocean COtwo uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean COtwo sink estimated by the SOCOM ensemble is -1.75 UPgCyr (AnalysisPeriod), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trends. Using data-based sea-air COtwo fluxes in atmospheric COtwo inversions also helps to better constrain land-atmosphere COtwo fluxes.

  18. Force estimation from OCT volumes using 3D CNNs.

    PubMed

    Gessert, Nils; Beringhoff, Jens; Otte, Christoph; Schlaefer, Alexander

    2018-07-01

    Estimating the interaction forces of instruments and tissue is of interest, particularly to provide haptic feedback during robot-assisted minimally invasive interventions. Different approaches based on external and integrated force sensors have been proposed. These are hampered by friction, sensor size, and sterilizability. We investigate a novel approach to estimate the force vector directly from optical coherence tomography image volumes. We introduce a novel Siamese 3D CNN architecture. The network takes an undeformed reference volume and a deformed sample volume as an input and outputs the three components of the force vector. We employ a deep residual architecture with bottlenecks for increased efficiency. We compare the Siamese approach to methods using difference volumes and two-dimensional projections. Data were generated using a robotic setup to obtain ground-truth force vectors for silicon tissue phantoms as well as porcine tissue. Our method achieves a mean average error of [Formula: see text] when estimating the force vector. Our novel Siamese 3D CNN architecture outperforms single-path methods that achieve a mean average error of [Formula: see text]. Moreover, the use of volume data leads to significantly higher performance compared to processing only surface information which achieves a mean average error of [Formula: see text]. Based on the tissue dataset, our methods shows good generalization in between different subjects. We propose a novel image-based force estimation method using optical coherence tomography. We illustrate that capturing the deformation of subsurface structures substantially improves force estimation. Our approach can provide accurate force estimates in surgical setups when using intraoperative optical coherence tomography.

  19. Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Qi; Liu, Jing

    2016-01-01

    In this paper, a novel sparsity-aware direction of arrival (DOA) estimation scheme for a noncircular source is proposed in multiple-input multiple-output (MIMO) radar. In the proposed method, the reduced-dimensional transformation technique is adopted to eliminate the redundant elements. Then, exploiting the noncircularity of signals, a joint sparsity-aware scheme based on the reweighted l1 norm penalty is formulated for DOA estimation, in which the diagonal elements of the weight matrix are the coefficients of the noncircular MUSIC-like (NC MUSIC-like) spectrum. Compared to the existing l1 norm penalty-based methods, the proposed scheme provides higher angular resolution and better DOA estimation performance. Results from numerical experiments are used to show the effectiveness of our proposed method. PMID:27089345

  20. Evaluating a Pivot-Based Approach for Bilingual Lexicon Extraction

    PubMed Central

    Kim, Jae-Hoon; Kwon, Hong-Seok; Seo, Hyeong-Won

    2015-01-01

    A pivot-based approach for bilingual lexicon extraction is based on the similarity of context vectors represented by words in a pivot language like English. In this paper, in order to show validity and usability of the pivot-based approach, we evaluate the approach in company with two different methods for estimating context vectors: one estimates them from two parallel corpora based on word association between source words (resp., target words) and pivot words and the other estimates them from two parallel corpora based on word alignment tools for statistical machine translation. Empirical results on two language pairs (e.g., Korean-Spanish and Korean-French) have shown that the pivot-based approach is very promising for resource-poor languages and this approach observes its validity and usability. Furthermore, for words with low frequency, our method is also well performed. PMID:25983745

  1. Estimating population size with correlated sampling unit estimates

    Treesearch

    David C. Bowden; Gary C. White; Alan B. Franklin; Joseph L. Ganey

    2003-01-01

    Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on mark–recapture or distance sampling methods occur...

  2. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-01-01

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri–Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method. PMID:26569241

  3. Real-Valued Covariance Vector Sparsity-Inducing DOA Estimation for Monostatic MIMO Radar.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Liu, Jing

    2015-11-10

    In this paper, a real-valued covariance vector sparsity-inducing method for direction of arrival (DOA) estimation is proposed in monostatic multiple-input multiple-output (MIMO) radar. Exploiting the special configuration of monostatic MIMO radar, low-dimensional real-valued received data can be obtained by using the reduced-dimensional transformation and unitary transformation technique. Then, based on the Khatri-Rao product, a real-valued sparse representation framework of the covariance vector is formulated to estimate DOA. Compared to the existing sparsity-inducing DOA estimation methods, the proposed method provides better angle estimation performance and lower computational complexity. Simulation results verify the effectiveness and advantage of the proposed method.

  4. Mixed H2/H∞-Based Fusion Estimation for Energy-Limited Multi-Sensors in Wearable Body Networks

    PubMed Central

    Li, Chao; Zhang, Zhenjiang; Chao, Han-Chieh

    2017-01-01

    In wireless sensor networks, sensor nodes collect plenty of data for each time period. If all of data are transmitted to a Fusion Center (FC), the power of sensor node would run out rapidly. On the other hand, the data also needs a filter to remove the noise. Therefore, an efficient fusion estimation model, which can save the energy of the sensor nodes while maintaining higher accuracy, is needed. This paper proposes a novel mixed H2/H∞-based energy-efficient fusion estimation model (MHEEFE) for energy-limited Wearable Body Networks. In the proposed model, the communication cost is firstly reduced efficiently while keeping the estimation accuracy. Then, the parameters in quantization method are discussed, and we confirm them by an optimization method with some prior knowledge. Besides, some calculation methods of important parameters are researched which make the final estimates more stable. Finally, an iteration-based weight calculation algorithm is presented, which can improve the fault tolerance of the final estimate. In the simulation, the impacts of some pivotal parameters are discussed. Meanwhile, compared with the other related models, the MHEEFE shows a better performance in accuracy, energy-efficiency and fault tolerance. PMID:29280950

  5. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses.

    PubMed

    Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A

    2018-01-01

    Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.

  6. The "Tracked Roaming Transect" and distance sampling methods increase the efficiency of underwater visual censuses

    PubMed Central

    2018-01-01

    Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887

  7. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  8. Efficiency and precision for estimating timber and non-timber attributes using Landsat-based stratification methods in two-phase sampling in northwest California

    Treesearch

    Antti T. Kaartinen; Jeremy S. Fried; Paul A. Dunham

    2002-01-01

    Three Landsat TM-based GIS layers were evaluated as alternatives to conventional, photointerpretation-based stratification of FIA field plots. Estimates for timberland area, timber volume, and volume of down wood were calculated for California's North Coast Survey Unit of 2.5 million hectares. The estimates were compared on the basis of standard errors,...

  9. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort.

    PubMed

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai

    2017-01-13

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.

  10. Continuous Space Estimation: Increasing WiFi-Based Indoor Localization Resolution without Increasing the Site-Survey Effort †

    PubMed Central

    Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai

    2017-01-01

    Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773

  11. Real-Time Rotational Activity Detection in Atrial Fibrillation

    PubMed Central

    Ríos-Muñoz, Gonzalo R.; Arenal, Ángel; Artés-Rodríguez, Antonio

    2018-01-01

    Rotational activations, or spiral waves, are one of the proposed mechanisms for atrial fibrillation (AF) maintenance. We present a system for assessing the presence of rotational activity from intracardiac electrograms (EGMs). Our system is able to operate in real-time with multi-electrode catheters of different topologies in contact with the atrial wall, and it is based on new local activation time (LAT) estimation and rotational activity detection methods. The EGM LAT estimation method is based on the identification of the highest sustained negative slope of unipolar signals. The method is implemented as a linear filter whose output is interpolated on a regular grid to match any catheter topology. Its operation is illustrated on selected signals and compared to the classical Hilbert-Transform-based phase analysis. After the estimation of the LAT on the regular grid, the detection of rotational activity in the atrium is done by a novel method based on the optical flow of the wavefront dynamics, and a rotation pattern match. The methods have been validated using in silico and real AF signals. PMID:29593566

  12. Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters.

    PubMed

    Chung, SungWon; Lu, Ying; Henry, Roland G

    2006-11-01

    Bootstrap is an empirical non-parametric statistical technique based on data resampling that has been used to quantify uncertainties of diffusion tensor MRI (DTI) parameters, useful in tractography and in assessing DTI methods. The current bootstrap method (repetition bootstrap) used for DTI analysis performs resampling within the data sharing common diffusion gradients, requiring multiple acquisitions for each diffusion gradient. Recently, wild bootstrap was proposed that can be applied without multiple acquisitions. In this paper, two new approaches are introduced called residual bootstrap and repetition bootknife. We show that repetition bootknife corrects for the large bias present in the repetition bootstrap method and, therefore, better estimates the standard errors. Like wild bootstrap, residual bootstrap is applicable to single acquisition scheme, and both are based on regression residuals (called model-based resampling). Residual bootstrap is based on the assumption that non-constant variance of measured diffusion-attenuated signals can be modeled, which is actually the assumption behind the widely used weighted least squares solution of diffusion tensor. The performances of these bootstrap approaches were compared in terms of bias, variance, and overall error of bootstrap-estimated standard error by Monte Carlo simulation. We demonstrate that residual bootstrap has smaller biases and overall errors, which enables estimation of uncertainties with higher accuracy. Understanding the properties of these bootstrap procedures will help us to choose the optimal approach for estimating uncertainties that can benefit hypothesis testing based on DTI parameters, probabilistic fiber tracking, and optimizing DTI methods.

  13. Method paper--distance and travel time to casualty clinics in Norway based on crowdsourced postcode coordinates: a comparison with other methods.

    PubMed

    Raknes, Guttorm; Hunskaar, Steinar

    2014-01-01

    We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.

  14. Investigation of methods for estimating hand bone dimensions using X-ray hand anthropometric data.

    PubMed

    Kong, Yong-Ku; Freivalds, Andris; Kim, Dae-Min; Chang, Joonho

    2017-06-01

    This study examined two conversion methods, M1 and M2, to predict finger/phalange bone lengths based on finger/phalange surface lengths. Forty-one Korean college students (25 males and 16 females) were recruited and their finger/phalange surface lengths, bone lengths and grip strengths were measured using a vernier caliper, an X-ray generator and a double-handle force measurement system, respectively. M1 and M2 were defined as formulas able to estimate finger/phalange bone lengths based on one dimension (i.e., surface hand length) and four finger dimensions (surface finger lengths), respectively. As a result of conversion, the estimation errors by M1 presented mean 1.22 mm, which was smaller than those (1.29 mm) by M2. The bone lengths estimated by M1 (mean r = 0.81) presented higher correlations with the measured bone lengths than those estimated by M2 (0.79). Thus, the M1 method was recommended in the present study, based on conversion simplicity and accuracy.

  15. Methods for Sexually Transmitted Disease Prevention Programs to Estimate the Health and Medical Cost Impact of Changes in Their Budget.

    PubMed

    Chesson, Harrell W; Ludovic, Jennifer A; Berruti, Andrés A; Gift, Thomas L

    2018-01-01

    The purpose of this article was to describe methods that sexually transmitted disease (STD) programs can use to estimate the potential effects of changes in their budgets in terms of disease burden and direct medical costs. We proposed 2 distinct approaches to estimate the potential effect of changes in funding on subsequent STD burden, one based on an analysis of state-level STD prevention funding and gonorrhea case rates and one based on analyses of the effect of Disease Intervention Specialist (DIS) activities on gonorrhea case rates. We also illustrated how programs can estimate the impact of budget changes on intermediate outcomes, such as partner services. Finally, we provided an example of the application of these methods for a hypothetical state STD prevention program. The methods we proposed can provide general approximations of how a change in STD prevention funding might affect the level of STD prevention services provided, STD incidence rates, and the direct medical cost burden of STDs. In applying these methods to a hypothetical state, a reduction in annual funding of US $200,000 was estimated to lead to subsequent increases in STDs of 1.6% to 3.6%. Over 10 years, the reduction in funding totaled US $2.0 million, whereas the cumulative, additional direct medical costs of the increase in STDs totaled US $3.7 to US $8.4 million. The methods we proposed, though subject to important limitations, can allow STD prevention personnel to calculate evidence-based estimates of the effects of changes in their budget.

  16. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  17. Robust Regression for Slope Estimation in Curriculum-Based Measurement Progress Monitoring

    ERIC Educational Resources Information Center

    Mercer, Sterett H.; Lyons, Alina F.; Johnston, Lauren E.; Millhoff, Courtney L.

    2015-01-01

    Although ordinary least-squares (OLS) regression has been identified as a preferred method to calculate rates of improvement for individual students during curriculum-based measurement (CBM) progress monitoring, OLS slope estimates are sensitive to the presence of extreme values. Robust estimators have been developed that are less biased by…

  18. Asteroid mass estimation with Markov-chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Siltala, L.; Granvik, M.

    2017-09-01

    We have developed a new Markov-chain Monte Carlo-based algorithm for asteroid mass estimation based on mutual encounters and tested it for several different asteroids. Our results are in line with previous literature values but suggest that uncertainties of prior estimates may be misleading as a consequence of using linearized methods.

  19. Assessing the performance of the generalized propensity score for estimating the effect of quantitative or continuous exposures on survival or time-to-event outcomes.

    PubMed

    Austin, Peter C

    2018-01-01

    Propensity score methods are frequently used to estimate the effects of interventions using observational data. The propensity score was originally developed for use with binary exposures. The generalized propensity score (GPS) is an extension of the propensity score for use with quantitative or continuous exposures (e.g. pack-years of cigarettes smoked, dose of medication, or years of education). We describe how the GPS can be used to estimate the effect of continuous exposures on survival or time-to-event outcomes. To do so we modified the concept of the dose-response function for use with time-to-event outcomes. We used Monte Carlo simulations to examine the performance of different methods of using the GPS to estimate the effect of quantitative exposures on survival or time-to-event outcomes. We examined covariate adjustment using the GPS and weighting using weights based on the inverse of the GPS. The use of methods based on the GPS was compared with the use of conventional G-computation and weighted G-computation. Conventional G-computation resulted in estimates of the dose-response function that displayed the lowest bias and the lowest variability. Amongst the two GPS-based methods, covariate adjustment using the GPS tended to have the better performance. We illustrate the application of these methods by estimating the effect of average neighbourhood income on the probability of survival following hospitalization for an acute myocardial infarction.

  20. Genetic algorithm-based improved DOA estimation using fourth-order cumulants

    NASA Astrophysics Data System (ADS)

    Ahmed, Ammar; Tufail, Muhammad

    2017-05-01

    Genetic algorithm (GA)-based direction of arrival (DOA) estimation is proposed using fourth-order cumulants (FOC) and ESPRIT principle which results in Multiple Invariance Cumulant ESPRIT algorithm. In the existing FOC ESPRIT formulations, only one invariance is utilised to estimate DOAs. The unused multiple invariances (MIs) must be exploited simultaneously in order to improve the estimation accuracy. In this paper, a fitness function based on a carefully designed cumulant matrix is developed which incorporates MIs present in the sensor array. Better DOA estimation can be achieved by minimising this fitness function. Moreover, the effectiveness of Newton's method as well as GA for this optimisation problem has been illustrated. Simulation results show that the proposed algorithm provides improved estimation accuracy compared to existing algorithms, especially in the case of low SNR, less number of snapshots, closely spaced sources and high signal and noise correlation. Moreover, it is observed that the optimisation using Newton's method is more likely to converge to false local optima resulting in erroneous results. However, GA-based optimisation has been found attractive due to its global optimisation capability.

  1. Estimation and Partitioning of Heritability in Human Populations using Whole Genome Analysis Methods

    PubMed Central

    Vinkhuyzen, Anna AE; Wray, Naomi R; Yang, Jian; Goddard, Michael E; Visscher, Peter M

    2014-01-01

    Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. But major questions remain unanswered: how much phenotypic variation is genetic, how much of the genetic variation is additive and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLM) to estimate genetic variation, using the relationship between close or distant relatives based on pedigree or SNPs. We discuss theory, estimation procedures, bias and precision of each method and review recent advances in the dissection of additive genetic variation of complex traits in human populations that are based upon the application of MLM. Using genome wide data, SNPs account for far more of the genetic variation than the highly significant SNPs associated with a trait, but they do not account for all of the genetic variance estimated by pedigree based methods. We explain possible reasons for this ‘missing’ heritability. PMID:23988118

  2. Estimating population trends with a linear model

    USGS Publications Warehouse

    Bart, Jonathan; Collins, Brian D.; Morrison, R.I.G.

    2003-01-01

    We describe a simple and robust method for estimating trends in population size. The method may be used with Breeding Bird Survey data, aerial surveys, point counts, or any other program of repeated surveys at permanent locations. Surveys need not be made at each location during each survey period. The method differs from most existing methods in being design based, rather than model based. The only assumptions are that the nominal sampling plan is followed and that sample size is large enough for use of the t-distribution. Simulations based on two bird data sets from natural populations showed that the point estimate produced by the linear model was essentially unbiased even when counts varied substantially and 25% of the complete data set was missing. The estimating-equation approach, often used to analyze Breeding Bird Survey data, performed similarly on one data set but had substantial bias on the second data set, in which counts were highly variable. The advantages of the linear model are its simplicity, flexibility, and that it is self-weighting. A user-friendly computer program to carry out the calculations is available from the senior author.

  3. Characteristic features of a high-energy x-ray spectra estimation method based on the Waggener iterative perturbation principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaki, Akira; Kubota, Mamoru; Hirota, Junichi

    2006-11-15

    We have redeveloped a high-energy x-ray spectra estimation method reported by Iwasaki et al. [A. Iwasaki, H. Matsutani, M. Kubota, A. Fujimori, K. Suzaki, and Y. Abe, Radiat. Phys. Chem. 67, 81-91 (2003)]. The method is based on the iterative perturbation principle to minimize differences between measured and calculated transmission curves, originally proposed by Waggener et al. [R. G. Waggener, M. M. Blough, J. A. Terry, D. Chen, N. E. Lee, S. Zhang, and W. D. McDavid, Med. Phys. 26, 1269-1278 (1999)]. The method can estimate spectra applicable for media at least from water to lead using only about tenmore » energy bins. Estimating spectra of 4-15 MV x-ray beams from a linear accelerator, we describe characteristic features of the method with regard to parameters including the prespectrum, number of transmission measurements, number of energy bins, energy bin widths, and artifactual bipeaked spectrum production.« less

  4. Piecewise SALT sampling for estimating suspended sediment yields

    Treesearch

    Robert B. Thomas

    1989-01-01

    A probability sampling method called SALT (Selection At List Time) has been developed for collecting and summarizing data on delivery of suspended sediment in rivers. It is based on sampling and estimating yield using a suspended-sediment rating curve for high discharges and simple random sampling for low flows. The method gives unbiased estimates of total yield and...

  5. Reliability of Summed Item Scores Using Structural Equation Modeling: An Alternative to Coefficient Alpha

    ERIC Educational Resources Information Center

    Green, Samuel B.; Yang, Yanyun

    2009-01-01

    A method is presented for estimating reliability using structural equation modeling (SEM) that allows for nonlinearity between factors and item scores. Assuming the focus is on consistency of summed item scores, this method for estimating reliability is preferred to those based on linear SEM models and to the most commonly reported estimate of…

  6. Predicting missing links via correlation between nodes

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Zeng, An; Zhang, Yi-Cheng

    2015-10-01

    As a fundamental problem in many different fields, link prediction aims to estimate the likelihood of an existing link between two nodes based on the observed information. Since this problem is related to many applications ranging from uncovering missing data to predicting the evolution of networks, link prediction has been intensively investigated recently and many methods have been proposed so far. The essential challenge of link prediction is to estimate the similarity between nodes. Most of the existing methods are based on the common neighbor index and its variants. In this paper, we propose to calculate the similarity between nodes by the Pearson correlation coefficient. This method is found to be very effective when applied to calculate similarity based on high order paths. We finally fuse the correlation-based method with the resource allocation method, and find that the combined method can substantially outperform the existing methods, especially in sparse networks.

  7. A biomechanical model for fibril recruitment: Evaluation in tendons and arteries.

    PubMed

    Bevan, Tim; Merabet, Nadege; Hornsby, Jack; Watton, Paul N; Thompson, Mark S

    2018-06-06

    Simulations of soft tissue mechanobiological behaviour are increasingly important for clinical prediction of aneurysm, tendinopathy and other disorders. Mechanical behaviour at low stretches is governed by fibril straightening, transitioning into load-bearing at recruitment stretch, resulting in a tissue stiffening effect. Previous investigations have suggested theoretical relationships between stress-stretch measurements and recruitment probability density function (PDF) but not derived these rigorously nor evaluated these experimentally. Other work has proposed image-based methods for measurement of recruitment but made use of arbitrary fibril critical straightness parameters. The aim of this work was to provide a sound theoretical basis for estimating recruitment PDF from stress-stretch measurements and to evaluate this relationship using image-based methods, clearly motivating the choice of fibril critical straightness parameter in rat tail tendon and porcine artery. Rigorous derivation showed that the recruitment PDF may be estimated from the second stretch derivative of the first Piola-Kirchoff tissue stress. Image-based fibril recruitment identified the fibril straightness parameter that maximised Pearson correlation coefficients (PCC) with estimated PDFs. Using these critical straightness parameters the new method for estimating recruitment PDF showed a PCC with image-based measures of 0.915 and 0.933 for tendons and arteries respectively. This method may be used for accurate estimation of fibril recruitment PDF in mechanobiological simulation where fibril-level mechanical parameters are important for predicting cell behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Performance Evaluation of EnKF-based Hydrogeological Site Characterization using Color Coherent Vectors

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.

    2017-12-01

    Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.

  9. State Estimation for Tensegrity Robots

    NASA Technical Reports Server (NTRS)

    Caluwaerts, Ken; Bruce, Jonathan; Friesen, Jeffrey M.; Sunspiral, Vytas

    2016-01-01

    Tensegrity robots are a class of compliant robots that have many desirable traits when designing mass efficient systems that must interact with uncertain environments. Various promising control approaches have been proposed for tensegrity systems in simulation. Unfortunately, state estimation methods for tensegrity robots have not yet been thoroughly studied. In this paper, we present the design and evaluation of a state estimator for tensegrity robots. This state estimator will enable existing and future control algorithms to transfer from simulation to hardware. Our approach is based on the unscented Kalman filter (UKF) and combines inertial measurements, ultra wideband time-of-flight ranging measurements, and actuator state information. We evaluate the effectiveness of our method on the SUPERball, a tensegrity based planetary exploration robotic prototype. In particular, we conduct tests for evaluating both the robot's success in estimating global position in relation to fixed ranging base stations during rolling maneuvers as well as local behavior due to small-amplitude deformations induced by cable actuation.

  10. Comparison of Methods for Estimating Prevalence of Chronic Diseases and Health Behaviors for Small Geographic Areas: Boston Validation Study, 2013

    PubMed Central

    Holt, James B.; Zhang, Xingyou; Lu, Hua; Shah, Snehal N.; Dooley, Daniel P.; Matthews, Kevin A.; Croft, Janet B.

    2017-01-01

    Introduction Local health authorities need small-area estimates for prevalence of chronic diseases and health behaviors for multiple purposes. We generated city-level and census-tract–level prevalence estimates of 27 measures for the 500 largest US cities. Methods To validate the methodology, we constructed multilevel logistic regressions to predict 10 selected health indicators among adults aged 18 years or older by using 2013 Behavioral Risk Factor Surveillance System (BRFSS) data; we applied their predicted probabilities to census population data to generate city-level, neighborhood-level, and zip-code–level estimates for the city of Boston, Massachusetts. Results By comparing the predicted estimates with their corresponding direct estimates from a locally administered survey (Boston BRFSS 2010 and 2013), we found that our model-based estimates for most of the selected health indicators at the city level were close to the direct estimates from the local survey. We also found strong correlation between the model-based estimates and direct survey estimates at neighborhood and zip code levels for most indicators. Conclusion Findings suggest that our model-based estimates are reliable and valid at the city level for certain health outcomes. Local health authorities can use the neighborhood-level estimates if high quality local health survey data are not otherwise available. PMID:29049020

  11. Method for rapid estimation of scour at highway bridges based on limited site data

    USGS Publications Warehouse

    Holnbeck, S.R.; Parrett, Charles

    1997-01-01

    Limited site data were used to develop a method for rapid estimation of scour at highway bridges. The estimates can be obtained in a matter of hours rather than several days as required by more-detailed methods. Such a method is important because scour assessments are needed to identify scour-critical bridges throughout the United States. Using detailed scour-analysis methods and scour-prediction equations recommended by the Federal Highway Administration, the U.S. Geological Survey, in cooperation with the Montana Department of Transportation, obtained contraction, pier, and abutment scour-depth data for sites from 10 States.The data were used to develop relations between scour depth and hydraulic variables that can be rapidly measured in the field. Relations between scour depth and hydraulic variables, in the form of envelope curves, were based on simpler forms of detailed scour-prediction equations. To apply the rapid-estimation method, a 100-year recurrence interval peak discharge is determined, and bridge- length data are used in the field with graphs relating unit discharge to velocity and velocity to bridge backwater as a basis for estimating flow depths and other hydraulic variables that can then be applied using the envelope curves. The method was tested in the field. Results showed good agreement among individuals involved and with results from more-detailed methods. Although useful for identifying potentially scour-critical bridges, themethod does not replace more-detailed methods used for design purposes. Use of the rapid- estimation method should be limited to individuals having experience in bridge scour, hydraulics, and flood hydrology, and some training in use of the method.

  12. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  13. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    Reliable estimation of the size or density of wild animal populations is very important for effective wildlife management, conservation and ecology. Currently, the most widely used methods for obtaining such estimates involve either sighting animals from transect lines or some form of capture-recapture on marked or uniquely identifiable individuals. However, many species are difficult to sight, and cannot be easily marked or recaptured. Some of these species produce readily identifiable sounds, providing an opportunity to use passive acoustic data to estimate animal density. In addition, even for species for which other visually based methods are feasible, passive acoustic methods offer the potential for greater detection ranges in some environments (e.g. underwater or in dense forest), and hence potentially better precision. Automated data collection means that surveys can take place at times and in places where it would be too expensive or dangerous to send human observers. Here, we present an overview of animal density estimation using passive acoustic data, a relatively new and fast-developing field. We review the types of data and methodological approaches currently available to researchers and we provide a framework for acoustics-based density estimation, illustrated with examples from real-world case studies. We mention moving sensor platforms (e.g. towed acoustics), but then focus on methods involving sensors at fixed locations, particularly hydrophones to survey marine mammals, as acoustic-based density estimation research to date has been concentrated in this area. Primary among these are methods based on distance sampling and spatially explicit capture-recapture. The methods are also applicable to other aquatic and terrestrial sound-producing taxa. We conclude that, despite being in its infancy, density estimation based on passive acoustic data likely will become an important method for surveying a number of diverse taxa, such as sea mammals, fish, birds, amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144

  14. Testing an automated method to estimate ground-water recharge from streamflow records

    USGS Publications Warehouse

    Rutledge, A.T.; Daniel, C.C.

    1994-01-01

    The computer program, RORA, allows automated analysis of streamflow hydrographs to estimate ground-water recharge. Output from the program, which is based on the recession-curve-displacement method (often referred to as the Rorabaugh method, for whom the program is named), was compared to estimates of recharge obtained from a manual analysis of 156 years of streamflow record from 15 streamflow-gaging stations in the eastern United States. Statistical tests showed that there was no significant difference between paired estimates of annual recharge by the two methods. Tests of results produced by the four workers who performed the manual method showed that results can differ significantly between workers. Twenty-two percent of the variation between manual and automated estimates could be attributed to having different workers perform the manual method. The program RORA will produce estimates of recharge equivalent to estimates produced manually, greatly increase the speed od analysis, and reduce the subjectivity inherent in manual analysis.

  15. Photometric redshift estimation via deep learning. Generalized and pre-classification-less, image based, fully probabilistic redshifts

    NASA Astrophysics Data System (ADS)

    D'Isanto, A.; Polsterer, K. L.

    2018-01-01

    Context. The need to analyze the available large synoptic multi-band surveys drives the development of new data-analysis methods. Photometric redshift estimation is one field of application where such new methods improved the results, substantially. Up to now, the vast majority of applied redshift estimation methods have utilized photometric features. Aims: We aim to develop a method to derive probabilistic photometric redshift directly from multi-band imaging data, rendering pre-classification of objects and feature extraction obsolete. Methods: A modified version of a deep convolutional network was combined with a mixture density network. The estimates are expressed as Gaussian mixture models representing the probability density functions (PDFs) in the redshift space. In addition to the traditional scores, the continuous ranked probability score (CRPS) and the probability integral transform (PIT) were applied as performance criteria. We have adopted a feature based random forest and a plain mixture density network to compare performances on experiments with data from SDSS (DR9). Results: We show that the proposed method is able to predict redshift PDFs independently from the type of source, for example galaxies, quasars or stars. Thereby the prediction performance is better than both presented reference methods and is comparable to results from the literature. Conclusions: The presented method is extremely general and allows us to solve of any kind of probabilistic regression problems based on imaging data, for example estimating metallicity or star formation rate of galaxies. This kind of methodology is tremendously important for the next generation of surveys.

  16. Ultrasound coefficient of nonlinearity imaging.

    PubMed

    van Sloun, Ruud; Demi, Libertario; Shan, Caifeng; Mischi, Massimo

    2015-07-01

    Imaging the acoustical coefficient of nonlinearity, β, is of interest in several healthcare interventional applications. It is an important feature that can be used for discriminating tissues. In this paper, we propose a nonlinearity characterization method with the goal of locally estimating the coefficient of nonlinearity. The proposed method is based on a 1-D solution of the nonlinear lossy Westerfelt equation, thereby deriving a local relation between β and the pressure wave field. Based on several assumptions, a β imaging method is then presented that is based on the ratio between the harmonic and fundamental fields, thereby reducing the effect of spatial amplitude variations of the speckle pattern. By testing the method on simulated ultrasound pressure fields and an in vitro B-mode ultrasound acquisition, we show that the designed algorithm is able to estimate the coefficient of nonlinearity, and that the tissue types of interest are well discriminable. The proposed imaging method provides a new approach to β estimation, not requiring a special measurement setup or transducer, that seems particularly promising for in vivo imaging.

  17. Measuring diet cost at the individual level: a comparison of three methods

    PubMed Central

    Monsivais, P; Perrigue, M M; Adams, S L; Drewnowski, A

    2013-01-01

    Background/objectives: Household-level food spending data are not suitable for population-based studies of the economics of nutrition. This study compared three methods of deriving diet cost at the individual level. Subjects/methods: Adult men and women (n=164) completed 4-day diet diaries and a food frequency questionnaire (FFQ). Food expenditures over 4 weeks and supermarket prices for 384 foods were obtained. Diet costs (US$/day) were estimated using: (1) diet diaries and expenditures; (2) diet diaries and supermarket prices; and (3) FFQs and supermarket prices. Agreement between the three methods was assessed on the basis of Pearson correlations and limits of agreement. Income-related differences in diet costs were estimated using general linear models. Results: Diet diaries yielded mean (s.d.) diet costs of $10.04 (4.27) based on Method 1 and $8.28 (2.32) based on Method 2. FFQs yielded mean diet costs of $7.66 (2.72) based on Method 3. Correlations between energy intakes and costs were highest for Method 3 (r2=0.66), lower for Method 2 (r2=0.24) and lowest for Method 1 (r2=0.06). Cost estimates were significantly associated with household incomes. Conclusion: The weak association between food expenditures and food intake using Method 1 makes it least suitable for diet and health research. However, merging supermarket food prices with standard dietary assessment tools can provide estimates of individual diet cost that are more closely associated with food consumed. The derivation of individual diet cost can provide insights into some of the economic determinants of food choice, diet quality and health. PMID:24045791

  18. Sparse Covariance Matrix Estimation With Eigenvalue Constraints

    PubMed Central

    LIU, Han; WANG, Lie; ZHAO, Tuo

    2014-01-01

    We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866

  19. Novel blood pressure and pulse pressure estimation based on pulse transit time and stroke volume approximation.

    PubMed

    Lee, Joonnyong; Sohn, JangJay; Park, Jonghyun; Yang, SeungMan; Lee, Saram; Kim, Hee Chan

    2018-06-18

    Non-invasive continuous blood pressure monitors are of great interest to the medical community due to their value in hypertension management. Recently, studies have shown the potential of pulse pressure as a therapeutic target for hypertension, but not enough attention has been given to non-invasive continuous monitoring of pulse pressure. Although accurate pulse pressure estimation can be of direct value to hypertension management and indirectly to the estimation of systolic blood pressure, as it is the sum of pulse pressure and diastolic blood pressure, only a few inadequate methods of pulse pressure estimation have been proposed. We present a novel, non-invasive blood pressure and pulse pressure estimation method based on pulse transit time and pre-ejection period. Pre-ejection period and pulse transit time were measured non-invasively using electrocardiogram, seismocardiogram, and photoplethysmogram measured from the torso. The proposed method used the 2-element Windkessel model to model pulse pressure with the ratio of stroke volume, approximated by pre-ejection period, and arterial compliance, estimated by pulse transit time. Diastolic blood pressure was estimated using pulse transit time, and systolic blood pressure was estimated as the sum of the two estimates. The estimation method was verified in 11 subjects in two separate conditions with induced cardiovascular response and the results were compared against a reference measurement and values obtained from a previously proposed method. The proposed method yielded high agreement with the reference (pulse pressure correlation with reference R ≥ 0.927, diastolic blood pressure correlation with reference R ≥ 0.854, systolic blood pressure correlation with reference R ≥ 0.914) and high estimation accuracy in pulse pressure (mean root-mean-squared error ≤ 3.46 mmHg) and blood pressure (mean root-mean-squared error ≤ 6.31 mmHg for diastolic blood pressure and ≤ 8.41 mmHg for systolic blood pressure) over a wide range of hemodynamic changes. The proposed pulse pressure estimation method provides accurate estimates in situations with and without significant changes in stroke volume. The proposed method improves upon the currently available systolic blood pressure estimation methods by providing accurate pulse pressure estimates.

  20. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  1. Bio-inspired vision based robot control using featureless estimations of time-to-contact.

    PubMed

    Zhang, Haijie; Zhao, Jianguo

    2017-01-31

    Marvelous vision based dynamic behaviors of insects and birds such as perching, landing, and obstacle avoidance have inspired scientists to propose the idea of time-to-contact, which is defined as the time for a moving observer to contact an object or surface if the current velocity is maintained. Since with only a vision sensor, time-to-contact can be directly estimated from consecutive images, it is widely used for a variety of robots to fulfill various tasks such as obstacle avoidance, docking, chasing, perching and landing. However, most of existing methods to estimate the time-to-contact need to extract and track features during the control process, which is time-consuming and cannot be applied to robots with limited computation power. In this paper, we adopt a featureless estimation method, extend this method to more general settings with angular velocities, and improve the estimation results using Kalman filtering. Further, we design an error based controller with gain scheduling strategy to control the motion of mobile robots. Experiments for both estimation and control are conducted using a customized mobile robot platform with low-cost embedded systems. Onboard experimental results demonstrate the effectiveness of the proposed approach, with the robot being controlled to successfully dock in front of a vertical wall. The estimation and control methods presented in this paper can be applied to computation-constrained miniature robots for agile locomotion such as landing, docking, or navigation.

  2. The friction cost method: a comment.

    PubMed

    Johannesson, M; Karlsson, G

    1997-04-01

    The friction cost method has been proposed as an alternative to the human-capital approach of estimating indirect costs. We argue that the friction cost method is based on implausible assumptions not supported by neoclassical economic theory. Furthermore consistently applying the friction cost method would mean that the method should also be applied in the estimation of direct costs, which would mean that the costs of health care programmes are substantially decreased. It is concluded that the friction cost method does not seem to be a useful alternative to the human-capital approach in the estimation of indirect costs.

  3. Disaster debris estimation using high-resolution polarimetric stereo-SAR

    NASA Astrophysics Data System (ADS)

    Koyama, Christian N.; Gokon, Hideomi; Jimbo, Masaru; Koshimura, Shunichi; Sato, Motoyuki

    2016-10-01

    This paper addresses the problem of debris estimation which is one of the most important initial challenges in the wake of a disaster like the Great East Japan Earthquake and Tsunami. Reasonable estimates of the debris have to be made available to decision makers as quickly as possible. Current approaches to obtain this information are far from being optimal as they usually rely on manual interpretation of optical imagery. We have developed a novel approach for the estimation of tsunami debris pile heights and volumes for improved emergency response. The method is based on a stereo-synthetic aperture radar (stereo-SAR) approach for very high-resolution polarimetric SAR. An advanced gradient-based optical-flow estimation technique is applied for optimal image coregistration of the low-coherence non-interferometric data resulting from the illumination from opposite directions and in different polarizations. By applying model based decomposition of the coherency matrix, only the odd bounce scattering contributions are used to optimize echo time computation. The method exclusively considers the relative height differences from the top of the piles to their base to achieve a very fine resolution in height estimation. To define the base, a reference point on non-debris-covered ground surface is located adjacent to the debris pile targets by exploiting the polarimetric scattering information. The proposed technique is validated using in situ data of real tsunami debris taken on a temporary debris management site in the tsunami affected area near Sendai city, Japan. The estimated height error is smaller than 0.6 m RMSE. The good quality of derived pile heights allows for a voxel-based estimation of debris volumes with a RMSE of 1099 m3. Advantages of the proposed method are fast computation time, and robust height and volume estimation of debris piles without the need for pre-event data or auxiliary information like DEM, topographic maps or GCPs.

  4. Error analysis and new dual-cosine window for estimating the sensor frequency response function from the step response data

    NASA Astrophysics Data System (ADS)

    Yang, Shuang-Long; Liang, Li-Ping; Liu, Hou-De; Xu, Ke-Jun

    2018-03-01

    Aiming at reducing the estimation error of the sensor frequency response function (FRF) estimated by the commonly used window-based spectral estimation method, the error models of interpolation and transient errors are derived in the form of non-parameter models. Accordingly, window effects on the errors are analyzed and reveal that the commonly used hanning window leads to smaller interpolation error which can also be significantly eliminated by the cubic spline interpolation method when estimating the FRF from the step response data, and window with smaller front-end value can restrain more transient error. Thus, a new dual-cosine window with its non-zero discrete Fourier transform bins at -3, -1, 0, 1, and 3 is constructed for FRF estimation. Compared with the hanning window, the new dual-cosine window has the equivalent interpolation error suppression capability and better transient error suppression capability when estimating the FRF from the step response; specifically, it reduces the asymptotic property of the transient error from O(N-2) of the hanning window method to O(N-4) while only increases the uncertainty slightly (about 0.4 dB). Then, one direction of a wind tunnel strain gauge balance which is a high order, small damping, and non-minimum phase system is employed as the example for verifying the new dual-cosine window-based spectral estimation method. The model simulation result shows that the new dual-cosine window method is better than the hanning window method for FRF estimation, and compared with the Gans method and LPM method, it has the advantages of simple computation, less time consumption, and short data requirement; the actual data calculation result of the balance FRF is consistent to the simulation result. Thus, the new dual-cosine window is effective and practical for FRF estimation.

  5. Superresolution SAR Imaging Algorithm Based on Mvm and Weighted Norm Extrapolation

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Chen, Q.; Li, Z.; Tang, Z.; Liu, J.; Zhao, L.

    2013-08-01

    In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and actual measured data.

  6. A Hybrid Method to Estimate Specific Differential Phase and Rainfall With Linear Programming and Physics Constraints

    DOE PAGES

    Huang, Hao; Zhang, Guifu; Zhao, Kun; ...

    2016-10-20

    A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (K DP) and to improve rain estimation. Moreover, the hybrid K DP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δ hv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and K DP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid K DP estimatormore » over existing methods.« less

  7. An activity-based methodology for operations cost analysis

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David; Bilby, Curt; Frizzell, R. A.

    1991-01-01

    This report describes an activity-based cost estimation method, proposed for the Space Exploration Initiative (SEI), as an alternative to NASA's traditional mass-based cost estimation method. A case study demonstrates how the activity-based cost estimation technique can be used to identify the operations that have a significant impact on costs over the life cycle of the SEI. The case study yielded an operations cost of $101 billion for the 20-year span of the lunar surface operations for the Option 5a program architecture. In addition, the results indicated that the support and training costs for the missions were the greatest contributors to the annual cost estimates. A cost-sensitivity analysis of the cultural and architectural drivers determined that the length of training and the amount of support associated with the ground support personnel for mission activities are the most significant cost contributors.

  8. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    NASA Astrophysics Data System (ADS)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  9. Dereverberation and denoising based on generalized spectral subtraction by multi-channel LMS algorithm using a small-scale microphone array

    NASA Astrophysics Data System (ADS)

    Wang, Longbiao; Odani, Kyohei; Kai, Atsuhiko

    2012-12-01

    A blind dereverberation method based on power spectral subtraction (SS) using a multi-channel least mean squares algorithm was previously proposed to suppress the reverberant speech without additive noise. The results of isolated word speech recognition experiments showed that this method achieved significant improvements over conventional cepstral mean normalization (CMN) in a reverberant environment. In this paper, we propose a blind dereverberation method based on generalized spectral subtraction (GSS), which has been shown to be effective for noise reduction, instead of power SS. Furthermore, we extend the missing feature theory (MFT), which was initially proposed to enhance the robustness of additive noise, to dereverberation. A one-stage dereverberation and denoising method based on GSS is presented to simultaneously suppress both the additive noise and nonstationary multiplicative noise (reverberation). The proposed dereverberation method based on GSS with MFT is evaluated on a large vocabulary continuous speech recognition task. When the additive noise was absent, the dereverberation method based on GSS with MFT using only 2 microphones achieves a relative word error reduction rate of 11.4 and 32.6% compared to the dereverberation method based on power SS and the conventional CMN, respectively. For the reverberant and noisy speech, the dereverberation and denoising method based on GSS achieves a relative word error reduction rate of 12.8% compared to the conventional CMN with GSS-based additive noise reduction method. We also analyze the effective factors of the compensation parameter estimation for the dereverberation method based on SS, such as the number of channels (the number of microphones), the length of reverberation to be suppressed, and the length of the utterance used for parameter estimation. The experimental results showed that the SS-based method is robust in a variety of reverberant environments for both isolated and continuous speech recognition and under various parameter estimation conditions.

  10. Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.

    PubMed

    Jain, Ram B

    2016-08-01

    Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.

  11. Curriculum-Based Measurement of Oral Reading: Evaluation of Growth Estimates Derived with Pre-Post Assessment Methods

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Monaghen, Barbara D.; Zopluoglu, Cengiz; Van Norman, Ethan R.

    2013-01-01

    Curriculum-based measurement of oral reading (CBM-R) is used to index the level and rate of student growth across the academic year. The method is frequently used to set student goals and monitor student progress. This study examined the diagnostic accuracy and quality of growth estimates derived from pre-post measurement using CBM-R data. A…

  12. Research on Estimates of Xi’an City Life Garbage Pay-As-You-Throw Based on Two-part Tariff method

    NASA Astrophysics Data System (ADS)

    Yaobo, Shi; Xinxin, Zhao; Fuli, Zheng

    2017-05-01

    Domestic waste whose pricing can’t be separated from the pricing of public economics category is quasi public goods. Based on Two-part Tariff method on urban public utilities, this paper designs the pricing model in order to match the charging method and estimates the standard of pay-as-you-throw using data of the past five years in Xi’an. Finally, this paper summarizes the main results and proposes corresponding policy recommendations.

  13. A Method of the UMTS-FDD Network Design Based on Universal Load Characteristics

    NASA Astrophysics Data System (ADS)

    Gajewski, Slawomir

    In the paper an original method of the UMTS radio network design was presented. The method is based on simple way of capacity-coverage trade-off estimation for WCDMA/FDD radio interface. This trade-off is estimated by using universal load characteristics and normalized coverage characteristics. The characteristics are useful for any propagation environment as well as for any service performance requirements. The practical applications of these characteristics on radio network planning and maintenance were described.

  14. Sparse Method for Direction of Arrival Estimation Using Denoised Fourth-Order Cumulants Vector.

    PubMed

    Fan, Yangyu; Wang, Jianshu; Du, Rui; Lv, Guoyun

    2018-06-04

    Fourth-order cumulants (FOCs) vector-based direction of arrival (DOA) estimation methods of non-Gaussian sources may suffer from poor performance for limited snapshots or difficulty in setting parameters. In this paper, a novel FOCs vector-based sparse DOA estimation method is proposed. Firstly, by utilizing the concept of a fourth-order difference co-array (FODCA), an advanced FOCs vector denoising or dimension reduction procedure is presented for arbitrary array geometries. Then, a novel single measurement vector (SMV) model is established by the denoised FOCs vector, and efficiently solved by an off-grid sparse Bayesian inference (OGSBI) method. The estimation errors of FOCs are integrated in the SMV model, and are approximately estimated in a simple way. A necessary condition regarding the number of identifiable sources of our method is presented that, in order to uniquely identify all sources, the number of sources K must fulfill K ≤ ( M 4 - 2 M 3 + 7 M 2 - 6 M ) / 8 . The proposed method suits any geometry, does not need prior knowledge of the number of sources, is insensitive to associated parameters, and has maximum identifiability O ( M 4 ) , where M is the number of sensors in the array. Numerical simulations illustrate the superior performance of the proposed method.

  15. Crowd density estimation based on convolutional neural networks with mixed pooling

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Hong; Zhang, Ying; Zhang, Dongming

    2017-09-01

    Crowd density estimation is an important topic in the fields of machine learning and video surveillance. Existing methods do not provide satisfactory classification accuracy; moreover, they have difficulty in adapting to complex scenes. Therefore, we propose a method based on convolutional neural networks (CNNs). The proposed method improves performance of crowd density estimation in two key ways. First, we propose a feature pooling method named mixed pooling to regularize the CNNs. It replaces deterministic pooling operations with a parameter that, by studying the algorithm, could combine the conventional max pooling with average pooling methods. Second, we present a classification strategy, in which an image is divided into two cells and respectively categorized. The proposed approach was evaluated on three datasets: two ground truth image sequences and the University of California, San Diego, anomaly detection dataset. The results demonstrate that the proposed approach performs more effectively and easily than other methods.

  16. Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problem

    NASA Astrophysics Data System (ADS)

    Bazán, Fermín S. V.; Bedin, Luciano; Borges, Leonardo S.

    2017-05-01

    In this work, a method for estimating the space-dependent perfusion coefficient parameter in a 2D bioheat transfer model is presented. In the method, the bioheat transfer model is transformed into a time-dependent semidiscrete system of ordinary differential equations involving perfusion coefficient values as parameters, and the estimation problem is solved through a nonlinear least squares technique. In particular, the bioheat problem is solved by the method of lines based on a highly accurate pseudospectral approach, and perfusion coefficient values are estimated by the regularized Gauss-Newton method coupled with a proper regularization parameter. The performance of the method on several test problems is illustrated numerically.

  17. Application of a hybrid model to reduce bias and improve precision in population estimates for elk (Cervus elaphus) inhabiting a cold desert ecosystem

    USGS Publications Warehouse

    Schoenecker, Kathryn A.; Lubow, Bruce C.

    2016-01-01

    Accurately estimating the size of wildlife populations is critical to wildlife management and conservation of species. Raw counts or “minimum counts” are still used as a basis for wildlife management decisions. Uncorrected raw counts are not only negatively biased due to failure to account for undetected animals, but also provide no estimate of precision on which to judge the utility of counts. We applied a hybrid population estimation technique that combined sightability modeling, radio collar-based mark-resight, and simultaneous double count (double-observer) modeling to estimate the population size of elk in a high elevation desert ecosystem. Combining several models maximizes the strengths of each individual model while minimizing their singular weaknesses. We collected data with aerial helicopter surveys of the elk population in the San Luis Valley and adjacent mountains in Colorado State, USA in 2005 and 2007. We present estimates from 7 alternative analyses: 3 based on different methods for obtaining a raw count and 4 based on different statistical models to correct for sighting probability bias. The most reliable of these approaches is a hybrid double-observer sightability model (model MH), which uses detection patterns of 2 independent observers in a helicopter plus telemetry-based detections of radio collared elk groups. Data were fit to customized mark-resight models with individual sighting covariates. Error estimates were obtained by a bootstrapping procedure. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to double-observer modeling. The resulting population estimate corrected for multiple sources of undercount bias that, if left uncorrected, would have underestimated the true population size by as much as 22.9%. Our comparison of these alternative methods demonstrates how various components of our method contribute to improving the final estimate and demonstrates why each is necessary.

  18. A machine learning approach as a surrogate of finite element analysis-based inverse method to estimate the zero-pressure geometry of human thoracic aorta.

    PubMed

    Liang, Liang; Liu, Minliang; Martin, Caitlin; Sun, Wei

    2018-05-09

    Advances in structural finite element analysis (FEA) and medical imaging have made it possible to investigate the in vivo biomechanics of human organs such as blood vessels, for which organ geometries at the zero-pressure level need to be recovered. Although FEA-based inverse methods are available for zero-pressure geometry estimation, these methods typically require iterative computation, which are time-consuming and may be not suitable for time-sensitive clinical applications. In this study, by using machine learning (ML) techniques, we developed an ML model to estimate the zero-pressure geometry of human thoracic aorta given 2 pressurized geometries of the same patient at 2 different blood pressure levels. For the ML model development, a FEA-based method was used to generate a dataset of aorta geometries of 3125 virtual patients. The ML model, which was trained and tested on the dataset, is capable of recovering zero-pressure geometries consistent with those generated by the FEA-based method. Thus, this study demonstrates the feasibility and great potential of using ML techniques as a fast surrogate of FEA-based inverse methods to recover zero-pressure geometries of human organs. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Robust estimation of the proportion of treatment effect explained by surrogate marker information.

    PubMed

    Parast, Layla; McDermott, Mary M; Tian, Lu

    2016-05-10

    In randomized treatment studies where the primary outcome requires long follow-up of patients and/or expensive or invasive obtainment procedures, the availability of a surrogate marker that could be used to estimate the treatment effect and could potentially be observed earlier than the primary outcome would allow researchers to make conclusions regarding the treatment effect with less required follow-up time and resources. The Prentice criterion for a valid surrogate marker requires that a test for treatment effect on the surrogate marker also be a valid test for treatment effect on the primary outcome of interest. Based on this criterion, methods have been developed to define and estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on the surrogate marker. These methods aim to identify useful statistical surrogates that capture a large proportion of the treatment effect. However, current methods to estimate this proportion usually require restrictive model assumptions that may not hold in practice and thus may lead to biased estimates of this quantity. In this paper, we propose a nonparametric procedure to estimate the proportion of treatment effect on the primary outcome that is explained by the treatment effect on a potential surrogate marker and extend this procedure to a setting with multiple surrogate markers. We compare our approach with previously proposed model-based approaches and propose a variance estimation procedure based on a perturbation-resampling method. Simulation studies demonstrate that the procedure performs well in finite samples and outperforms model-based procedures when the specified models are not correct. We illustrate our proposed procedure using a data set from a randomized study investigating a group-mediated cognitive behavioral intervention for peripheral artery disease participants. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Operational Retrievals of Evapotranspiration: Are we there yet?

    NASA Astrophysics Data System (ADS)

    Neale, C. M. U.; Anderson, M. C.; Hain, C.; Schull, M.; Isidro, C., Sr.; Goncalves, I. Z.

    2017-12-01

    Remote sensing based retrievals of evapotranspiration (ET) have progressed significantly over the last two decades with the improvement of methods and algorithms and the availability of multiple satellite sensors with shortwave and thermal infrared bands on polar orbiting platforms. The modeling approaches include simpler vegetation index (VI) based methods such as the reflectance-based crop coefficient approach coupled with surface reference evapotranspiration estimates to derive actual evapotranspiration of crops or, direct inputs to the Penman-Monteith equation through VI relationships with certain input variables. Methods that are more complex include one-layer or two-layer energy balance approaches that make use of both shortwave and longwave spectral band information to estimate different inputs to the energy balance equation. These models mostly differ in the estimation of sensible heat fluxes. For continental and global scale applications, other satellite-based products such as solar radiation, vegetation leaf area and cover are used as inputs, along with gridded re-analysis weather information. This presentation will review the state-of-the-art in satellite-based evapotranspiration estimation, giving examples of existing efforts to obtain operational ET retrievals over continental and global scales and discussing difficulties and challenges.

Top