Science.gov

Sample records for estimate unperturbed temperatures

  1. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements

    PubMed Central

    Kim, Kwang S.; Max, Ludo

    2014-01-01

    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated. PMID:25426056

  2. Comparison of Temperature Trends Using an Unperturbed Subset of The U.S. Historical Climatology Network

    NASA Astrophysics Data System (ADS)

    Watts, A. W.; Jones, E. M.; Nielsen-Gammon, J. W.; Christy, J. R.

    2015-12-01

    Climate observations are affected by variations in land use and land cover at all scales, including the microscale.A 410-station subset of U.S. Historical Climatology Network (version 2.5) stations is identified that experienced no changes in time of observation or station moves during the 1979-2008 period. These stations are classified based on proximity to artificial surfaces, buildings, and other such objects with unnatural thermal mass using guidelines established by Leroy (2010). The relatively few stations in the classes with minimal artificial impact are found to have raw temperature trends that are collectively about 2/3 as large as stations in the classes with greater expected artificial impact. The trend differences are largest for minimum temperatures and are statistically significant even at the regional scale and across different types of instrumentation and degrees of urbanization. The homogeneity adjustments applied by the National Centers for Environmental Information (formerly the National Climatic Data Center) greatly reduce those differences but produce trends that are more consistent with the stations with greater expected artificial impact. Trend differences between the Cooperative Observer Network and the Climate Reference Network are not found during the 2005-2014 sub-period of relatively stable temperatures, suggesting that the observed differences are caused by a physical mechanism that is directly or indirectly caused by changing temperatures.

  3. Reservoir Temperature Estimator

    SciTech Connect

    Palmer, Carl D.

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist's Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of the weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.

  4. Magnetic nanoparticle temperature estimation.

    PubMed

    Weaver, John B; Rauwerdink, Adam M; Hansen, Eric W

    2009-05-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 degree K between 20 and 50 degrees C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  5. Magnetic nanoparticle temperature estimation

    PubMed Central

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-01-01

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 °K between 20 and 50 °C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution. PMID:19544801

  6. Regulation of Unperturbed DNA Replication by Ubiquitylation.

    PubMed

    Moreno, Sara Priego; Gambus, Agnieszka

    2015-06-25

    Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation) represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.

  7. Unperturbed Schelling Segregation in Two or Three Dimensions

    NASA Astrophysics Data System (ADS)

    Barmpalias, George; Elwes, Richard; Lewis-Pye, Andrew

    2016-09-01

    Schelling's models of segregation, first described in 1969 (Am Econ Rev 59:488-493, 1969) are among the best known models of self-organising behaviour. Their original purpose was to identify mechanisms of urban racial segregation. But his models form part of a family which arises in statistical mechanics, neural networks, social science, and beyond, where populations of agents interact on networks. Despite extensive study, unperturbed Schelling models have largely resisted rigorous analysis, prior results generally focusing on variants in which noise is introduced into the dynamics, the resulting system being amenable to standard techniques from statistical mechanics or stochastic evolutionary game theory (Young in Individual strategy and social structure: an evolutionary theory of institutions, Princeton University Press, Princeton, 1998). A series of recent papers (Brandt et al. in: Proceedings of the 44th annual ACM symposium on theory of computing (STOC 2012), 2012); Barmpalias et al. in: 55th annual IEEE symposium on foundations of computer science, Philadelphia, 2014, J Stat Phys 158:806-852, 2015), has seen the first rigorous analyses of 1-dimensional unperturbed Schelling models, in an asymptotic framework largely unknown in statistical mechanics. Here we provide the first such analysis of 2- and 3-dimensional unperturbed models, establishing most of the phase diagram, and answering a challenge from Brandt et al. in: Proceedings of the 44th annual ACM symposium on theory of computing (STOC 2012), 2012).

  8. Estimation Method of Body Temperature from Upper Arm Temperature

    NASA Astrophysics Data System (ADS)

    Suzuki, Arata; Ryu, Kazuteru; Kanai, Nobuyuki

    This paper proposes a method for estimation of a body temperature by using a relation between the upper arm temperature and the atmospheric temperature. Conventional method has measured by armpit or oral, because the body temperature from the body surface is influenced by the atmospheric temperature. However, there is a correlation between the body surface temperature and the atmospheric temperature. By using this correlation, the body temperature can estimated from the body surface temperature. Proposed method enables to measure body temperature by the temperature sensor that is embedded in the blood pressure monitor cuff. Therefore, simultaneous measurement of blood pressure and body temperature can be realized. The effectiveness of the proposed method is verified through the actual body temperature experiment. The proposed method might contribute to reduce the medical staff's workloads in the home medical care, and more.

  9. Precise determination of the unperturbed 8B neutrino spectrum.

    PubMed

    Roger, T; Büscher, J; Bastin, B; Kirsebom, O S; Raabe, R; Alcorta, M; Äystö, J; Borge, M J G; Carmona-Gallardo, M; Cocolios, T E; Cruz, J; Dendooven, P; Fraile, L M; Fynbo, H O U; Galaviz, D; Gasques, L R; Giri, G S; Huyse, M; Hyldegaard, S; Jungmann, K; Kruithof, W L; Lantz, M; Perea, A; Riisager, K; Saastamoinen, A; Santra, B; Shidling, P D; Sohani, M; Sørensen, A J; Tengblad, O; Traykov, E; van der Hoek, D J; Van Duppen, P; Versolato, O O; Wilschut, H W

    2012-04-20

    A measurement of the final state distribution of the (8)B β decay, obtained by implanting a (8)B beam in a double-sided silicon strip detector, is reported here. The present spectrum is consistent with a recent independent precise measurement performed by our collaboration at the IGISOL facility, Jyväskylä [O. S. Kirsebom et al., Phys. Rev. C 83, 065802 (2011)]. It shows discrepancies with previously measured spectra, leading to differences in the derived neutrino spectrum. Thanks to a low detection threshold, the neutrino spectrum is for the first time directly extracted from the measured final state distribution, thus avoiding the uncertainties related to the extrapolation of R-matrix fits. Combined with the IGISOL data, this leads to an improvement of the overall errors and the extension of the neutrino spectrum at high energy. The new unperturbed neutrino spectrum represents a benchmark for future measurements of the solar neutrino flux as a function of energy.

  10. Temperature estimation using ultrasonic spatial compound imaging.

    PubMed

    Pernot, Matlieu; Tanter, Mickael; Bercoff, Jeremy; Waters, Kendall R; Fink, Mathias

    2004-05-01

    The feasibility of temperature estimation during high-intensity focused ultrasound therapy using pulse-echo diagnostic ultrasound data has been demonstrated. This method is based upon the measurement of thermally-induced modifications in backscattered RF echoes due to thermal expansion and local changes in the speed of sound. It has been shown that strong ripple artifacts due to the thermo-acoustic lens effect severely corrupt the temperature estimates behind the heated region. We propose here a new imaging technique that improves the temperature estimation behind the heated region and reduces the variance of the temperature estimates in the entire image. We replaced the conventional beamforming on transmit with multiple steered plane wave insonifications using several subapertures. A two-dimensional temperature map is estimated from axial displacement maps between consecutive RF images of identically steered plane wave insonifications. Temperature estimation is then improved by averaging the two-dimensional maps from the multiple steered plane wave insonifications. Experiments were conducted in a tissue-mimicking gelatin-based phantom and in fresh bovine liver.

  11. Validation of Core Temperature Estimation Algorithm

    DTIC Science & Technology

    2016-01-29

    rate measured at one minute intervals. The initial core temperature can be measured at the start of an exercise or assumed to be 37.1ºC. Properly...manually reviewed for indications that eating or drinking disturbed the measurements. This was indicated by sharp declines in core temperature...Consider a case in which a person starts exercising from rest (let CT0 = 37.1°C) and maintains a steady heart rate. The core temperature estimate will

  12. Stream Temperature Estimation From Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Handcock, R. N.; Kay, J. E.; Gillespie, A.; Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Booth, D. B.

    2001-12-01

    Stream temperature is an important water quality indicator in the Pacific Northwest where endangered fish populations are sensitive to elevated water temperature. Cold water refugia are essential for the survival of threatened salmon when events such as the removal of riparian vegetation result in elevated stream temperatures. Regional assessment of stream temperatures is limited by sparse sampling of temperatures in both space and time. If critical watersheds are to be properly managed it is necessary to have spatially extensive temperature measurements of known accuracy. Remotely sensed thermal infrared (TIR) imagery can be used to derive spatially distributed estimates of the skin temperature (top 100 nm) of streams. TIR imagery has long been used to estimate skin temperatures of the ocean, where split-window techniques have been used to compensate for atmospheric affects. Streams are a more complex environment because 1) most are unresolved in typical TIR images, and 2) the near-bank environment of stream corridors may consist of tall trees or hot rocks and soils that irradiate the stream surface. As well as compensating for atmospheric effects, key problems to solve in estimating stream temperatures include both subpixel unmixing and multiple scattering. Additionally, fine resolution characteristics of the stream surface such as evaporative cooling due to wind, and water surface roughness, will effect measurements of radiant skin temperatures with TIR devices. We apply these corrections across the Green River and Yakima River watersheds in Washington State to assess the accuracy of remotely sensed stream surface temperature estimates made using fine resolution TIR imagery from a ground-based sensor (FLIR), medium resolution data from the airborne MASTER sensor, and coarse-resolution data from the Terra-ASTER satellite. We use linear spectral mixture analysis to isolate the fraction of land-leaving radiance originating from unresolved streams. To compensate the

  13. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  14. Precise Determination of the Unperturbed B8 Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Roger, T.; Büscher, J.; Bastin, B.; Kirsebom, O. S.; Raabe, R.; Alcorta, M.; Äystö, J.; Borge, M. J. G.; Carmona-Gallardo, M.; Cocolios, T. E.; Cruz, J.; Dendooven, P.; Fraile, L. M.; Fynbo, H. O. U.; Galaviz, D.; Gasques, L. R.; Giri, G. S.; Huyse, M.; Hyldegaard, S.; Jungmann, K.; Kruithof, W. L.; Lantz, M.; Perea, A.; Riisager, K.; Saastamoinen, A.; Santra, B.; Shidling, P. D.; Sohani, M.; Sørensen, A. J.; Tengblad, O.; Traykov, E.; van der Hoek, D. J.; Duppen, P. Van; Versolato, O. O.; Wilschut, H. W.

    2012-04-01

    A measurement of the final state distribution of the B8 β decay, obtained by implanting a B8 beam in a double-sided silicon strip detector, is reported here. The present spectrum is consistent with a recent independent precise measurement performed by our collaboration at the IGISOL facility, Jyväskylä [O. S. Kirsebom , Phys. Rev. C 83, 065802 (2011)PRVCAN0556-281310.1103/PhysRevC.83.065802]. It shows discrepancies with previously measured spectra, leading to differences in the derived neutrino spectrum. Thanks to a low detection threshold, the neutrino spectrum is for the first time directly extracted from the measured final state distribution, thus avoiding the uncertainties related to the extrapolation of R-matrix fits. Combined with the IGISOL data, this leads to an improvement of the overall errors and the extension of the neutrino spectrum at high energy. The new unperturbed neutrino spectrum represents a benchmark for future measurements of the solar neutrino flux as a function of energy.

  15. External auditory canal temperature as an estimate of core temperature.

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.

    1972-01-01

    Measurement of rectal (T sub re), auditory canal (T sub ac), positioned 8 to 10 mm from the tympanic membrane, and mean skin temperature (mean T sub sk) in five men during various exercise regimens at an ambient temperature (T sub a) of 25 C (phase one) and in two men during rest and exercise at 5, 15, 25, and 35 C T sub a (phase two). The purpose was to determine if T sub ac can be used as an accurate estimate of core temperature. Previous observations that T sub ac was highly correlated with T sub re but T sub ac was consistently lower than T sub re are confirmed; the mean difference varied from 0.4 C at rest to 1.1 C at the end of exercise. It is concluded that auditory canal temperature cannot be utilized as an estimate of core temperature, but T sub ac may be used to estimate mean body temperature where very accurate measurements are not required.

  16. Improved Estimation Model of Lunar Surface Temperature

    NASA Astrophysics Data System (ADS)

    Zheng, Y.

    2015-12-01

    Lunar surface temperature (LST) is of great scientific interest both uncovering the thermal properties and designing the lunar robotic or manned landing missions. In this paper, we proposed the improved LST estimation model based on the one-dimensional partial differential equation (PDE). The shadow and surface tilts effects were combined into the model. Using the Chang'E (CE-1) DEM data from the Laser Altimeter (LA), the topographic effect can be estimated with an improved effective solar irradiance (ESI) model. In Fig. 1, the highest LST of the global Moon has been estimated with the spatial resolution of 1 degree /pixel, applying the solar albedo data derived from Clementine UV-750nm in solving the PDE function. The topographic effect is significant in the LST map. It can be identified clearly the maria, highland, and craters. The maximum daytime LST presents at the regions with low albedo, i.g. mare Procellarum, mare Serenitatis and mare Imbrium. The results are consistent with the Diviner's measurements of the LRO mission. Fig. 2 shows the temperature variations at the center of the disk in one year, assuming the Moon to be standard spherical. The seasonal variation of LST at the equator is about 10K. The highest LST occurs in early May. Fig.1. Estimated maximum surface temperatures of the global Moon in spatial resolution of 1 degree /pixel

  17. Laser weld penetration estimation using temperature measurements

    SciTech Connect

    Lankalapalli, K.N.; Tu, J.F.; Leong, K.H.; Gartner, M.

    1997-10-01

    Penetration depth is an important factor critical to the quality of a laser weld. This paper examines the feasibility of using temperature measurements on the bottom surface of the work-piece to estimate weld penetration. A three-dimensional analytical model relating penetration depth, weld bead width and welding speed to temperature distribution at the bottom surface of the workpiece is developed. Temperatures on the bottom surface of the workpiece are measured using infrared thermocouples located behind the laser beam. Experimental results from bead-on-plate welds on low carbon steel plates of varying thickness at different levels of laser power and speeds validate the model and show that the temperature on the bottom surface is a sensitive indicator of penetration depth. The proposed model is computationally efficient and is suitable for on-line process monitoring application.

  18. Low-Temperature Hydrothermal Resource Potential Estimate

    SciTech Connect

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  19. Electron-ion temperature ratio estimations in the summer polar mesosphere when subject to HF radio wave heating

    NASA Astrophysics Data System (ADS)

    Pinedo, H.; La Hoz, C.; Havnes, O.; Rietveld, M.

    2014-10-01

    We have inferred the electron temperature enhancements above mesospheric altitudes under Polar Mesospheric Summer Echoes (PMSE) conditions when the ionosphere is exposed to artificial HF radio wave heating. The proposed method uses the dependence of the radar cross section on the electron-to-ion temperature ratio to infer the heating factor from incoherent scatter radar (ISR) power measurements above 90 km. Model heating temperatures match our ISR estimations between 90 and 130 km with 0.94 Pearson correlation index. The PMSE strength measured by the MORRO MST radar is about 50% weaker during the heater-on period when the modeled electron-to-ion mesospheric temperature is approximately 10 times greater than the unperturbed value. No PMSE weakening is found when the mesospheric temperature enhancement is by a factor of three or less. The PMSE weakening and its absence are consistent with the modeled mesospheric electron temperatures. This consistency supports to the proposed method for estimating mesospheric electron temperatures achieved by independent MST and ISR radar measurements.

  20. Estimating pre-industrial global temperature

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; Ortega, Pablo; Suckling, Emma; Schurer, Andrew; Hegerl, Gabi; Jones, Phil; Joshi, Manoj; Osborn, Tim; Mignot, Juliette; Thorne, Peter; van Oldenborgh, Geert Jan

    2016-04-01

    The United Nations Framework Convention on Climate Change (UNFCCC) process has recently agreed to try and limit global temperature rise to `well below 2°C above pre-industrial levels'. But what period is `pre-industrial'? Remarkably, perhaps, this is not defined within the UNFCCC or its many agreements and protocols. Neither was the term used in the IPCC's fifth assessment report (AR5) when discussing when particular temperature levels might be reached, due to the lack of a robust definition. Here, we discuss the important factors to consider when defining a period to call pre-industrial, based on estimates of historical radiative forcings and the availability of climate observations. There is no perfect period to choose, but we suggest that 1720-1800 is the optimal choice. We also attempt to estimate the change in global temperatures since this pre-industrial period using a range of approaches based on observations, radiative forcings, global climate model simulations and proxy evidence. We discuss how such an assessment might be improved in future and conclude that 2015 was likely the first year in which global temperatures were more than 1°C above pre-industrial levels.

  1. Holographic estimates of the deconfinement temperature

    SciTech Connect

    Katanaeva, Alisa; Afonin, Sergey

    2016-01-22

    The problem of self-consistent estimates of the deconfinement temperature T{sub c} in the framework of the bottom-up holographic approach to QCD is observed. It is shown that the standard soft wall model gives T{sub c} around 260 MeV for planar gluodynamics in a good agreement with the lattice data. The extensions of soft wall model adjusted for descriptions of realistic meson spectra result in a broad range of predictions. This variability is related to a poor experimental information on the radially excited mesons.

  2. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  3. Estimation of Thermal Sensation Based on Wrist Skin Temperatures.

    PubMed

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-03-23

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one's thermal environment.

  4. Estimation of Thermal Sensation Based on Wrist Skin Temperatures

    PubMed Central

    Sim, Soo Young; Koh, Myung Jun; Joo, Kwang Min; Noh, Seungwoo; Park, Sangyun; Kim, Youn Ho; Park, Kwang Suk

    2016-01-01

    Thermal comfort is an essential environmental factor related to quality of life and work effectiveness. We assessed the feasibility of wrist skin temperature monitoring for estimating subjective thermal sensation. We invented a wrist band that simultaneously monitors skin temperatures from the wrist (i.e., the radial artery and ulnar artery regions, and upper wrist) and the fingertip. Skin temperatures from eight healthy subjects were acquired while thermal sensation varied. To develop a thermal sensation estimation model, the mean skin temperature, temperature gradient, time differential of the temperatures, and average power of frequency band were calculated. A thermal sensation estimation model using temperatures of the fingertip and wrist showed the highest accuracy (mean root mean square error [RMSE]: 1.26 ± 0.31). An estimation model based on the three wrist skin temperatures showed a slightly better result to the model that used a single fingertip skin temperature (mean RMSE: 1.39 ± 0.18). When a personalized thermal sensation estimation model based on three wrist skin temperatures was used, the mean RMSE was 1.06 ± 0.29, and the correlation coefficient was 0.89. Thermal sensation estimation technology based on wrist skin temperatures, and combined with wearable devices may facilitate intelligent control of one’s thermal environment. PMID:27023538

  5. Estimating missing daily temperature extremes in Jaffna, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Thevakaran, A.; Sonnadara, D. U. J.

    2017-02-01

    The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.

  6. Estimating Circumnuclear Disk temperatures using ALMA data

    NASA Astrophysics Data System (ADS)

    Gima, Kevin; Mills, Elisabeth A.; Rosero, Viviana A.; Liu, Hauyu Baobab; Harada, Nanase; Requena Torres, Miguel A.; Morris, Mark; Riquelme, Denise; Zhao, Jun-Hui; Moser, Lydia; Martin, Sergio; Ho, Paul T. P.; Ginsburg, Adam; Wardle, M.; Guesten, Rolf

    2016-01-01

    The Circumnuclear Disk(CND) is a gas disk with an inner radius of approximately 1.5-2 pc surrounding Sagittarius A*, the supermassive black hole at the center of our galaxy. Observations of the CND were made using the ALMA telescope in bands 3 and 6 with a spatial resolution of 1-3 km/s. Two noteworthy clumps of molecular gas were detected. These clumps possess high abundances of CH3CCH but no CH3CN was detected. Via the population diagram method we derived CH3CCH column densities and temperatures for both sources. We then discuss the physical and chemical nature of the gas clumps. Future work will constrain temperature values across the entire CND. Along with HC3N observations, this work will yield refined values of the gas density and mass of the CND. This is essential for finding its future impact on star formation and black hole accretion.

  7. Validation of Core Temperature Estimation Algorithm

    DTIC Science & Technology

    2016-01-20

    qualitatively expected behavior. Field data were taken from a study of 33 young male military personnel who tested six prototype uniforms over the...developer used to evaluate the algorithm. USARIEM has evaluated the algorithm accuracy on over 52,000 core temperature measurements from nine laboratory...were carried over from the previous time resulting in a continuation of the algorithm as if no gap existed. For time gaps of greater than 10 minutes

  8. Transformations of the perturbed two-body problem to unperturbed harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Szebehely, V.; Bond, V.

    1983-01-01

    Singular, nonlinear, and Liapunov unstable equations are made regular and linear through transformations that change the perturbed planar problem of two bodies into unperturbed and undamped harmonic oscillators with constant coefficients, so that the stable solution may be immediately written in terms of the new variables. The use of arbitrary and special functions for the transformations allows the systematic discussion of previously introduced and novel anomalies. For the case of the unperturbed two-body problem, it is proved that if transformations are power functions of the radial variable, only the eccentric and the true anomalies (with the corresponding transformations of the radial variable) will result in harmonic oscillators. The present method significantly reduces computation requirements in autonomous space operations.

  9. Estimating temperature exposure of burnt bone - A methodological review.

    PubMed

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez; Taylor, Gillian

    2015-05-01

    Forensic anthropologists are frequently confronted with the need to interpret burnt bone. Regardless of the context, one of the key factors for the correct interpretation of the remains and a reconstruction of the incidents leading to incineration is the estimation of the maximum exposure temperature. The recent years have seen an influx in experimental research focusing on temperature estimation, spanning from colour assessment, mechanical strength measurements, histology and structural observations, biochemical changes and crystallinity studies, vastly advancing the understanding of heat induced changes in bone, thus facilitating a more accurate interpretation. This paper draws together and evaluates all currently available methodologies for temperature estimation.

  10. Inverse estimation of near-field temperature and surface heat flux via single point temperature measurement

    NASA Astrophysics Data System (ADS)

    Wu, Chen-Wu; Shu, Yong-Hua; Xie, Ji-Jia; Jiang, Jian-Zheng; Fan, Jing

    2017-02-01

    A concept was developed to inversely estimate the near-field temperature as well as the surface heat flux for the transient heat conduction problem with boundary condition of the unknown heat flux. The mathematical formula was derived for the inverse estimation of the near-field temperature and surface heat flux via a single point temperature measurement. The experiments were carried out in a vacuum chamber and the theoretically predicted temperatures were justified in specific positions. The inverse estimation principle was validated and the estimation deviation was evaluated for the present configuration.

  11. US Low-Temperature EGS Resource Potential Estimate

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Shapefile of shallow, low-temperature EGS resources for the United States, and accompanying paper (submitted to GRC 2016) describing the methodology and analysis. These data are part of a very rough estimate created for use in the U.S. Department of Energy Geothermal Technology Office's Vision Study. They are not a robust estimate of low-temperature EGS resources in the U.S, and should be used accordingly.

  12. Comparing techniques for estimating flame temperature of prescribed fires

    Treesearch

    Deborah K. Kennard; Kenneth W. Outcalt; David Jones; Joseph J. O' Brien

    2005-01-01

    A variety of techniques that estimate temperature and/or heat output during fires are available. We assessed the predictive ability of metal and tile pyrometers, calorimeters of different sizes, and fuel consumption to time-temperature metrics derived from thick and thin thermocouples at 140 points distributed over 9 management-scale burns in a longleaf pine forest in...

  13. Estimation of base temperatures for nine weed species.

    PubMed

    Steinmaus, S J; Prather, T S; Holt, J S

    2000-02-01

    Experiments were conducted to test several methods for estimating low temperature thresholds for seed germination. Temperature responses of nine weeds common in annual agroecosystems were assessed in temperature gradient experiments. Species included summer annuals (Amaranthus albus, A. palmeri, Digitaria sanguinalis, Echinochloa crus-galli, Portulaca oleracea, and Setaria glauca), winter annuals (Hirschfeldia incana and Sonchus oleraceus), and Conyza canadensis, which is classified as a summer or winter annual. The temperature below which development ceases (Tbase) was estimated as the x-intercept of four conventional germination rate indices regressed on temperature, by repeated probit analysis, and by a mathematical approach. An overall Tbase estimate for each species was the average across indices weighted by the reciprocal of the variance associated with the estimate. Germination rates increased linearly with temperature between 15 degrees C and 30 degrees C for all species. Consistent estimates of Tbase were obtained for most species using several indices. The most statistically robust and biologically relevant method was the reciprocal time to median germination, which can also be used to estimate other biologically meaningful parameters. The mean Tbase for summer annuals (13.8 degrees C) was higher than that for winter annuals (8.3 degrees C). The two germination response characteristics, Tbase and slope (rate), influence a species' germination behaviour in the field since the germination inhibiting effects of a high Tbase may be offset by the germination promoting effects of a rapid germination response to temperature. Estimates of Tbase may be incorporated into predictive thermal time models to assist weed control practitioners in making management decisions.

  14. Temperature and oxygen visual estimator for carbonization process control

    NASA Astrophysics Data System (ADS)

    Martínez, Fredy; Martínez, Fernando; Montiel, Holman

    2017-02-01

    This paper proposes a visual estimator for temperature and oxygen content for closed loop control of carbonization furnace in the production of activated carbon. The carbonization process involves thermal decomposition of vegetal material in the absence of air; this requires rigorous sensing and control of these two variables. The system consists of two cameras, a thermographic camera to estimate the temperature, and a traditional digital camera to estimate the oxygen content. In both cases we use similarity measures between images to estimate the value of the variables into the furnace, estimation that is used to control the furnace flame. The algorithm is tested with reference photos taken at the production plant, and the experimental results prove the performance of the proposed technique.

  15. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  16. Real-time calibration of temperature estimates during radiofrequency ablation.

    PubMed

    Varghese, T; Daniels, M J

    2004-07-01

    Radiofrequency ablation is an interstitial focal ablative therapy that can be used in a percutaneous fashion and permits in situ destruction of hepatic tumors. Recurrence rates after rf therapy are as high as 34-55%, due to difficulties in accurately identifying the zone of necrosis (thermal lesion) because of the low intrinsic acoustic contrast between normal and ablated liver tissue. Our goal is to provide real-time ultrasonic tracking of temperature changes over the large range of temperatures traditionally used (40-100 degrees C) in rfablation procedures using an external ultrasound transducer. Temperature estimates are obtained using a cross-correlation algorithm applied to rf ultrasound echo signal data acquired at discrete intervals during heating. Apparent tissue displacement estimates obtained at these discrete time-intervals are accumulated to obtain a cumulative displacement map, whose gradient provides after appropriate scaling provides a temperature map at the specified elapsed ablation duration. Temperature maps are used to display the initial temperature rise and to continuously update a thermal map of the treated region. In this paper, we develop calibration curves that relate the echo shift due to the change in the speed of sound and thermal expansion to the corresponding temperature increase on in-vitro tissue specimens. These calibration curves can then be utilized for the real time calibration and analysis of temperature estimates obtained from the rf echo signals during ablation. Temperature maps obtained using the calibration curve compare favorably to temperature estimates observed using the invasive thermosensor readings on the ablation electrode and previous results that utilized a linear calibration factor.

  17. Global near-surface temperature estimation using statistical reconstruction techniques

    NASA Astrophysics Data System (ADS)

    Morice, C. P.; Rayner, N. A.; Kennedy, J.

    2015-12-01

    Incomplete and non-uniform observational coverage of the globe is a prominent source of uncertainty in instrumental records of global near-surface temperature change. In this study the capabilities of a range of statistical analysis methods are assessed in producing improved estimates of global near-surface temperature change since the mid 19th century for observational coverage in the HadCRUT4 data set. Methods used include those that interpolate according to local correlation structure (kriging) and reduced space methods that learn large-scale temperature patterns. The performance of each method in estimating regional and global temperature changes has been benchmarked in application to a subset of CMIP5 simulations. Model fields are sub-sampled and simulated observational errors added to emulate observational data, permitting assessment of temperature field reconstruction algorithms in controlled tests in which globally complete temperature fields are known. The reconstruction methods have also been applied to the HadCRUT4 data set, yielding a range of estimates of global near-surface temperature change since the mid 19th century. Results show relatively increased warming in the global average over the 21st century owing to reconstruction of temperatures in high northern latitudes, supporting the findings of Cowtan & Way (2014) and Karl et al. (2015). While there is broad agreement between estimates of global and hemispheric changes throughout much of the 20th and 21st century, agreement is reduced in the 19th and early 20th century. This finding is supported by the climate model trials that highlight uncertainty in reconstructing data sparse regions, most notably in the Southern Hemisphere in the 19th century. These results underline the importance of continued data rescue activities, such as those of the International Surface Temperature Initiative and ACRE. The results of this study will form an addition to the HadCRUT4 global near-surface temperature data

  18. Non-invasive estimation of hyperthermia temperatures with ultrasound.

    PubMed

    Arthur, R M; Straube, W L; Trobaugh, J W; Moros, E G

    2005-09-01

    Ultrasound is an attractive modality for temperature monitoring because it is non-ionizing, convenient, inexpensive and has relatively simple signal processing requirements. This modality may be useful for temperature estimation if a temperature-dependent ultrasonic parameter can be identified, measured and calibrated. The most prominent methods for using ultrasound as a non-invasive thermometer exploit either (1) echo shifts due to changes in tissue thermal expansion and speed of sound (SOS), (2) variation in the attenuation coefficient or (3) change in backscattered energy from tissue inhomogeneities. The use of echo shifts has received the most attention in the last decade. By tracking scattering volumes and measuring the time shift of received echoes, investigators have been able to predict the temperature from a region of interest both theoretically and experimentally in phantoms, in isolated tissue regions in vitro and preliminary in vivo studies. A limitation of this method for general temperature monitoring is that prior knowledge of both SOS and thermal-expansion coefficients is necessary. Acoustic attenuation is dependent on temperature, but with significant changes occurring only at temperatures above 50 degrees C, which may lead to its use in thermal ablation therapies. Minimal change in attenuation, however, below this temperature range reduces its attractiveness for use in clinical hyperthermia. Models and measurements of the change in backscattered energy suggest that, over the clinical hyperthermia temperature range, changes in backscattered energy are dependent on the properties of individual scatterers or scattering regions. Calibration of the backscattered energy from different tissue regions is an important goal of this approach. All methods must be able to cope with motion of the image features on which temperature estimates are based. A crucial step in identifying a viable ultrasonic approach to temperature estimation is its performance during

  19. Estimation of Daily Stream Temperatures in a Mountain River Network

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Benjankar, R. M.; Isaak, D.; Wenger, S.; Tonina, D.

    2013-12-01

    Stream temperature plays an important role in aquatic ecosystems. Concentrations of dissolved oxygen, water and spawning habitat quality, growth of fish populations are functions of stream temperature. Therefore, accurate estimates of daily stream temperatures can provide beneficial information for water resource managers and decision makers. Here, we develop a model for precise daily water temperature estimates that is applicable even in places lacking various meteorological and hydrological data. The water temperature model in this study is a piecewise model that considers both linear and non-linear relationships between dependent and independent variables including maximum and minimum temperature (meteorological derivers) and precipitation (hydrological deriver). We demonstrated the model in the Boise River Basin, in central Idaho, USA. The hydrology of this basin is snow-dominated and complex due to the mountainous terrain. We predicted daily stream temperature at 34 sites using 12 weather and Snowtel stations for deriving variables. Results of the stream temperature model indicate average Root Mean Square Error of 1.28 degree of Celsius along with average 0.91 of Nash-Sutcliffe coefficient for all stations. Comparison of the results of this study to Mohseni et al.'s model (1998), which is widely applied in water temperature studies, shows better performance of the model presented in this study. Our approach can be used to provide historical reconstructions of daily stream temperatures or projections of stream temperatures under climate change scenarios in any location with at least one year of daily stream temperature observations and with contemporaneous regional air temperature and precipitation data.

  20. Gaussian interferometric power and Black box estimation of Unruh temperature

    SciTech Connect

    Wang, Jieci; Cao, Haixin; Jing, Jiliang

    2016-10-15

    We present a black box estimation paradigm of Unruh temperature in a relativistic bosonic continuous-variable setting. It is shown that the guaranteed precision for the estimation of Unruh temperature can be evaluated by the Gaussian interferometric power for a given probe state. We demonstrate that the amount of interferometric power is always beyond the entanglement type quantum correlations in a relativistic setting. It is found that due to the fact that Unruh radiation acts as a thermal bath on the probe system, it destroys available resources of the probe system and reduces the guaranteed precision of the estimation of Unruh temperature. We also find that the thermal noise induced by Unruh effect will generate interferometric power between accelerated Bob and his auxiliary partner anti-Bob, while it does not generate any correlation between inertial Alice and anti-Bob.

  1. Estimating upper ocean phosphate concentrations using ARGO float temperature profiles

    NASA Astrophysics Data System (ADS)

    Kamykowski, Daniel

    2008-11-01

    The ARGO free-drifting profiling float array, with >3125 floats deployed between 60°N and 60°S latitudes at about 3° resolution as of May 2008 and each float profiling through 2000 m every 10 days, provides a comprehensive four-dimensional view of temperature and salinity in the world ocean. The resulting dataset complements satellite-based sea surface temperature (SST) measurements and similarly will complement future satellite-based sea surface salinity measurements. Although plans exist to add biogeochemical sensors to future floats, cost and depth restrictions may limit comprehensive upgrades to a fraction of all floats deployed after 2008. Temperature-nutrient (TN) relationships provide a mechanism to estimate nutrient concentrations from temperature to supplement sparser nutrient concentration measurements potentially obtained using non-chemical approaches like ISUS-based nitrate. Both negative and positive aspects of applying a temperature-phosphate (TP) linear regression matrix with global coverage (70°N and 70°S) are examined. The TP linear regression matrix was derived by combining an existing 1° latitude and longitude table of phosphate depletion temperatures (PDT) or X-intercepts with representative TP linear regression slopes derived from the GEOSECS dataset. Temperatures from datasets with associated latitude and longitude coordinates and, in some cases, measured phosphate concentrations ([PO 4]) were matched with calculated TP linear regression slopes and Y-intercepts in the global matrix with 1° resolution using MSExcel Lookup worksheet functions to calculate TP-estimated [PO 4]. The mean deviation of TP-estimated [PO 4] <3.0 μM from measured [PO 4] is 0.18±0.18 μM at Hawaii (HOT) and 0.04±0.08 μM at Bermuda (BATS) time series stations and 0.28±0.27 μM over all considered World Ocean Circulation Experiment (WOCE) stations representing the different ocean basins. In general, TP-estimated [PO 4] represents measured [PO 4] more accurately

  2. Estimation of laser solid forming process based on temperature measurement

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Chen, Jing; Zhang, Fengying; Lin, Xin; Huang, Weidong

    2010-02-01

    By using a moving disc heat source model, an analytical model was developed to describe laser solid forming (LSF) process with the feedback of the surface temperature of the molten pool, which can be used to estimate the geometric characterizations (width and height) of the clad layer rapidly. An on-line temperature measurement system was established and some single-pass cladding experiments were conducted while the molten pool temperature was monitored. It was found that the estimated geometric characterizations agreed well with the experimental results. In addition, the power consumed by conduction, convection, radiation, evaporation and absorption during LSF were also estimated by the model. It was shown that the majority of the total absorbed power was conducted to the substrate. The effective model can not only be used to optimize the processing parameters but also potentially applied to the real-time feedback control.

  3. Gaussian interferometric power and Black box estimation of Unruh temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Cao, Haixin; Jing, Jiliang

    2016-10-01

    We present a black box estimation paradigm of Unruh temperature in a relativistic bosonic continuous-variable setting. It is shown that the guaranteed precision for the estimation of Unruh temperature can be evaluated by the Gaussian interferometric power for a given probe state. We demonstrate that the amount of interferometric power is always beyond the entanglement type quantum correlations in a relativistic setting. It is found that due to the fact that Unruh radiation acts as a thermal bath on the probe system, it destroys available resources of the probe system and reduces the guaranteed precision of the estimation of Unruh temperature. We also find that the thermal noise induced by Unruh effect will generate interferometric power between accelerated Bob and his auxiliary partner anti-Bob, while it does not generate any correlation between inertial Alice and anti-Bob.

  4. Unperturbed Posttranscriptional Regulatory Rev Protein Function and HIV-1 Replication in Astrocytes

    PubMed Central

    Chauhan, Ashok

    2014-01-01

    Astrocytes protect neurons, but also evoke proinflammatory responses to injury and viral infections, including HIV. There is a prevailing notion that HIV-1 Rev protein function in astrocytes is perturbed, leading to restricted viral replication. In earlier studies, our finding of restricted viral entry into astrocytes led us to investigate whether there are any intracellular restrictions, including crippled Rev function, in astrocytes. Despite barely detectable levels of DDX3 (Rev-supporting RNA helicase) and TRBP (anti-PKR) in primary astrocytes compared to astrocytic cells, Rev function was unperturbed in wild-type, but not DDX3-ablated astrocytes. As in permissive cells, after HIV-1 entry bypass in astrocytes, viral-encoded Tat and Rev proteins had robust regulatory activities, leading to efficient viral replication. Productive HIV-1 infection in astrocytes persisted for several weeks. Our findings on HIV-1 entry bypass in astrocytes demonstrated that the intracellular environment is conducive to viral replication and that Tat and Rev functions are unperturbed. PMID:25188302

  5. Estimation of Sea Surface Temperature (SST) Using Marine Seismic Data

    NASA Astrophysics Data System (ADS)

    Sinha, Satish Kumar; Dewangan, Pawan; Sain, Kalachand

    2016-04-01

    Not much attention is given to direct wave arrivals in marine seismic data that are acquired for petroleum exploration and prospecting. These direct arrivals are usually muted out in routine seismic data processing. In the present study, we process these direct arrivals to accurately estimate soundspeed in near-surface seawater and invert for sea surface temperature. The established empirical equation describing the relationships among temperature, salinity, pressure and soundspeed is used for the inversion. We also discuss processing techniques, such as first-break picking and cross-correlation for the estimation of soundspeed, that are well known among petroleum-industry geophysicists. The accuracy of the methods is directly linked to the data quality and signal processing. The novelty in our approach is in the data conditioning, which consists essentially of spectral balancing based on a wavelet transform that compensates for spherical spreading and increases the signal-to-noise ( S/ N) ratio. The 2D seismic data used in this paper are from the offshore Krishna-Godavari Basin east of India. We observe a significantly higher soundspeed of 1545 m/s for near-surface water than the commonly used value of ~1500 m/s. The estimated temperature (from velocity) is about 30 °C. Interestingly, the estimated temperature matches well with the temperature recorded in the CTD profile acquired in the study area during the month of May, the month corresponding to the acquisition of seismic data. Furthermore, the estimated temperatures during different times of data acquisition correlate well with the expected diurnal variation in temperature.

  6. Two Methods for Remote Estimation of Complete Urban Surface Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Zhan, W.; Zou, Z.

    2017-09-01

    Complete urban surface temperature (TC) is a key parameter for evaluating the energy exchange between the urban surface and atmosphere. At the present stage, the estimation of TC still needs detailed 3D structure information of the urban surface, however, it is often difficult to obtain the geometric structure and composition of the corresponding temperature of urban surface, so that there is still lack of concise and efficient method for estimating the TC by remote sensing. Based on the four typical urban surface scale models, combined with the Envi-met model, thermal radiant directionality forward modeling and kernel model, we analyzed a complete day and night cycle hourly component temperature and radiation temperature in each direction of two seasons of summer and winter, and calculated hemispherical integral temperature and TC. The conclusion is obtained by examining the relationship of directional radiation temperature, hemispherical integral temperature and TC: (1) There is an optimal angle of radiation temperature approaching the TC in a single observation direction when viewing zenith angle is 45-60°, the viewing azimuth near the vertical surface of the sun main plane, the average absolute difference is about 1.1 K in the daytime. (2) There are several (3-5 times) directional temperatures of different view angle, under the situation of using the thermal radiation directionality kernel model can more accurately calculate the hemispherical integral temperature close to TC, the mean absolute error is about 1.0 K in the daytime. This study proposed simple and effective strategies for estimating TC by remote sensing, which are expected to improve the quantitative level of remote sensing of urban thermal environment.

  7. Temperature of the Magnetic Nanoparticle Microenvironment: Estimation from Relaxation Times

    PubMed Central

    Perreard, IM; Reeves, DB; Zhang, X; Kuehlert, E; Forauer, ER; Weaver, JB

    2014-01-01

    Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium. PMID:24556943

  8. Estimating Arrhenius parameters using temperature programmed molecular dynamics

    NASA Astrophysics Data System (ADS)

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-01

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  9. Estimating Arrhenius parameters using temperature programmed molecular dynamics.

    PubMed

    Imandi, Venkataramana; Chatterjee, Abhijit

    2016-07-21

    Kinetic rates at different temperatures and the associated Arrhenius parameters, whenever Arrhenius law is obeyed, are efficiently estimated by applying maximum likelihood analysis to waiting times collected using the temperature programmed molecular dynamics method. When transitions involving many activated pathways are available in the dataset, their rates may be calculated using the same collection of waiting times. Arrhenius behaviour is ascertained by comparing rates at the sampled temperatures with ones from the Arrhenius expression. Three prototype systems with corrugated energy landscapes, namely, solvated alanine dipeptide, diffusion at the metal-solvent interphase, and lithium diffusion in silicon, are studied to highlight various aspects of the method. The method becomes particularly appealing when the Arrhenius parameters can be used to find rates at low temperatures where transitions are rare. Systematic coarse-graining of states can further extend the time scales accessible to the method. Good estimates for the rate parameters are obtained with 500-1000 waiting times.

  10. Ultrasonic noninvasive temperature estimation using echoshift gradient maps: simulation results.

    PubMed

    Techavipoo, Udomchai; Chen, Quan; Varghese, Tomy

    2005-07-01

    Percutaneous ultrasound-image-guided radiofrequency (rf) ablation is an effective treatment for patients with hepatic malignancies that are excluded from surgical resection due to other complications. However, ablated regions are not clearly differentiated from normal untreated regions using conventional ultrasound imaging due to similar echogenic tissue properties. In this paper, we investigate the statistics that govern the relationship between temperature elevation and the corresponding temperature map obtained from the gradient of the echoshifts obtained using consecutive ultrasound radiofrequency signals. A relationship derived using experimental data on the sound speed and tissue expansion variations measured on canine liver tissue samples at different elevated temperatures is utilized to generate ultrasound radiofrequency simulated data. The simulated data set is then utilized to statistically estimate the accuracy and precision of the temperature distributions obtained. The results show that temperature increases between 37 and 67 degrees C can be estimated with standard deviations of +/- 3 degrees C. Our results also indicate that the correlation coefficient between consecutive radiofrequency signals should be greater than 0.85 to obtain accurate temperature estimates.

  11. Stream temperature estimated in situ from thermal-infrared images: best estimate and uncertainty

    NASA Astrophysics Data System (ADS)

    Iezzi, F.; Todisco, M. T.

    2015-11-01

    The paper aims to show a technique to estimate in situ the stream temperature from thermal-infrared images deepening its best estimate and uncertainty. Stream temperature is an important indicator of water quality and nowadays its assessment is important particularly for thermal pollution monitoring in water bodies. Stream temperature changes are especially due to the anthropogenic heat input from urban wastewater and from water used as a coolant by power plants and industrial manufacturers. The stream temperatures assessment using ordinary techniques (e.g. appropriate thermometers) is limited by sparse sampling in space due to a spatial discretization necessarily punctual. Latest and most advanced techniques assess the stream temperature using thermal-infrared remote sensing based on thermal imagers placed usually on aircrafts or using satellite images. These techniques assess only the surface water temperature and they are suitable to detect the temperature of vast water bodies but do not allow a detailed and precise surface water temperature assessment in limited areas of the water body. The technique shown in this research is based on the assessment of thermal-infrared images obtained in situ via portable thermal imager. As in all thermographic techniques, also in this technique, it is possible to estimate only the surface water temperature. A stream with the presence of a discharge of urban wastewater is proposed as case study to validate the technique and to show its application limits. Since the technique analyzes limited areas in extension of the water body, it allows a detailed and precise assessment of the water temperature. In general, the punctual and average stream temperatures are respectively uncorrected and corrected. An appropriate statistical method that minimizes the errors in the average stream temperature is proposed. The correct measurement of this temperature through the assessment of thermal- infrared images obtained in situ via portable

  12. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  13. Estimation of soil moisture from diurnal surface temperature observations

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Camillo, P. J.

    1986-01-01

    A coupled heat and moisture balance model was used to determine the thermal inertia of a grass covered top soil under different meteorological conditions. Relations between thermal inertia and soil moisture were established using the De Vries models for thermal conductivity and heat capacity to relate soil moisture and thermal inertia as a function of soil type. A sensitivity study of the surface roughness length and thermal inertia on diurnal surface temperature shows the necessity of focusing on the night time surface temperature rather than on the day time surface temperature, in order to estimate the soil moisture content of the top soil.

  14. Estimation of soil moisture from diurnal surface temperature observations

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Camillo, P. J.

    1986-01-01

    A coupled heat and moisture balance model was used to determine the thermal inertia of a grass covered top soil under different meteorological conditions. Relations between thermal inertia and soil moisture were established using the De Vries models for thermal conductivity and heat capacity to relate soil moisture and thermal inertia as a function of soil type. A sensitivity study of the surface roughness length and thermal inertia on diurnal surface temperature shows the necessity of focusing on the night time surface temperature rather than on the day time surface temperature, in order to estimate the soil moisture content of the top soil.

  15. Non-Invasive In Vivo Ultrasound Temperature Estimation

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi

    New emerging technologies in thermal therapy require precise monitoring and control of the delivered thermal dose in a variety of situations. The therapeutic temperature changes in target tissues range from few degrees for releasing chemotherapy drugs encapsulated in the thermosensitive liposomes to boiling temperatures in complete ablation of tumors via cell necrosis. High intensity focused ultrasound (HIFU) has emerged as a promising modality for noninvasive surgery due to its ability to create precise mechanical and thermal effects at the target without affecting surrounding tissues. An essential element in all these procedures, however, is accurate estimation of the target tissue temperature during the procedure to ensure its safety and efficacy. The advent of diagnostic imaging tools for guidance of thermal therapy was a key factor in the clinical acceptance of these minimally invasive or noninvasive methods. More recently, ultrasound and magnetic resonance (MR) thermography techniques have been proposed for guidance, monitoring, and control of noninvasive thermal therapies. MR thermography has shown acceptable sensitivity and accuracy in imaging temperature change and it is currently FDA-approved on clinical HIFU units. However, it suffers from limitations like cost of integration with ultrasound therapy system and slow rate of imaging for real time guidance. Ultrasound, on the other hand, has the advantage of real time imaging and ease of integration with the therapy system. An infinitesimal model for imaging temperature change using pulse-echo ultrasound has been demonstrated, including in vivo small-animal imaging. However, this model suffers from limitations that prevent demonstration in more clinically-relevant settings. One limitation stems from the infinitesimal nature of the model, which results in spatial inconsistencies of the estimated temperature field. Another limitation is the sensitivity to tissue motion and deformation during in vivo, which

  16. Estimating urban temperature bias using polar-orbiting satellite data

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory L.; Davis, Jerry M.; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.; Tarpley, J. Dan; Bloomfield, Peter

    1994-01-01

    Urban temperature bias, defined to be the difference between a shelter temperature reading of unknown but suspected urban influence and some appropriate rural reference temperature, is estimated through the use of polar-orbiting satellite data. Predicted rural temperatures, based on a method developed using sounding data, are shown to be of reasonable accuracy in many cases for urban bias assessments using minimum temperature data from selected urban regions in the United States in July 1989. Assessments of predicted urban bias were based on comparisons with observed bias, as well as independent measures of urban heat island influence, such as population statistics and urban-rural differences in a vegetation index. This technique provides a means of determining urban bias in regions where few if any rural reference stations are available, or where inhomogeneities exist in land surface characteristics or rural station locations.

  17. Estimating urban temperature bias using polar-orbiting satellite data

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory L.; Davis, Jerry M.; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.; Tarpley, J. Dan; Bloomfield, Peter

    1994-01-01

    Urban temperature bias, defined to be the difference between a shelter temperature reading of unknown but suspected urban influence and some appropriate rural reference temperature, is estimated through the use of polar-orbiting satellite data. Predicted rural temperatures, based on a method developed using sounding data, are shown to be of reasonable accuracy in many cases for urban bias assessments using minimum temperature data from selected urban regions in the United States in July 1989. Assessments of predicted urban bias were based on comparisons with observed bias, as well as independent measures of urban heat island influence, such as population statistics and urban-rural differences in a vegetation index. This technique provides a means of determining urban bias in regions where few if any rural reference stations are available, or where inhomogeneities exist in land surface characteristics or rural station locations.

  18. Estimation of river and stream temperature trends under haphazard sampling

    USGS Publications Warehouse

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao

    2015-01-01

    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  19. A retractable electron emitter for the creation of unperturbed pure electron plasmas.

    PubMed

    Berkery, John W; Pedersen, Thomas Sunn; Sampedro, Luis

    2007-01-01

    A retractable electron emitter has been constructed for the creation of unperturbed pure electron plasmas on magnetic surfaces in the Columbia Non-neutral Torus stellarator. The previous method of electron emission using emitters mounted on stationary rods limited the confinement time to 20 ms. A pneumatically driven system that can retract from the magnetic axis to the last closed flux surface in less than 20 ms while filling the surfaces with electrons was designed. The motion of the retractable emitter was modeled with a system of dynamical equations. The measured position versus time of the emitter agrees well with the model and the fastest axis-to-edge retraction was measured to be 20 ms with 40 psig helium gas driving the pneumatic piston.

  20. Nontraditional method for determining unperturbed orbits of unknown space objects using incomplete optical observational data

    NASA Astrophysics Data System (ADS)

    Perov, N. I.

    1985-02-01

    A physical-geometrical method for computing the orbits of earth satellites on the basis of an inadequate number of angular observations (N3) was developed. Specifically, a new method has been developed for calculating the elements of Keplerian orbits of unidentified artificial satellites using two angular observations (alpha sub k, S sub k, k = 1). The first section gives procedures for determining the topocentric distance to AES on the basis of one optical observation. This is followed by description of a very simple method for determining unperturbed orbits using two satellite position vectors and a time interval which is applicable even in the case of antiparallel AED position vectors, a method designated the R sub 2 iterations method.

  1. Unperturbed Chandler Motion and Perturbation Theory of the Rotation Motion of Deformable Celestial Bodies

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    New unperturbed motions are suggested for the study of the rotational motion of deformable celestial bodies. This motion describes the rotation of an isolated celestial body deformed by its own rotation. By some natural simplifications and by using special forms of canonical variables (similar to Andoyer's variables) the problem is reduced to the classical Euler-Poinsot problem for a rigid body, but with different moments of inertia. The suggested unpertubed motion describes Chandler's pole motion and we shall call it Chandler or Euler-Chandler motion. The development of the unperturbed theory is described in this paper. The solution of the Chandler problem (Andoyer's variables, components of angular velocity of the body's axes, and their direction cosines) is presented in elliptical and - functions, and in the form of Fourier series in the angle-action variables. Similar Fourier series were obtained for products and squares of the diraction cosines. The coefficients of these series are expressed through full elliptical integrals of the first, second and third kinds with modulus which is the defining function of the action variables. It is the principal peculiarity of these series. As an illustration we give a application of this unperturbed theory to the study of the Earth's rotation (the principal properties of the Earth's rotation and perturbations). So, the unperturbed motion describes the following phenomena of the Earth's rotation: Chandler's motion of the pole of the Earth's axis of rotation; the ellipticity of the trajectory of the Earth's pole; the non-uniformity of the pole motion along the elliptical trajectory; the variation with Chandler's period of the modulus of the Earth's angular velocity. Theory of the perturbed rotational motion of the Earth is constructed on the basis of the special forms of equations of the rotation of a deformable body (in angle-action variables and their modifications for the Chandler-Euler problem). For the construction of

  2. Estimation of ground temperature from GFCR radiometric signal

    NASA Technical Reports Server (NTRS)

    Gupia, S. K.; Tiwari, S. N.

    1977-01-01

    A procedure was developed which demonstrates the feasibility of estimating actual surface temperature from the effective brightness temperature which can be conveniently measured by a radiometer from remote sensing platforms. Atmospheric corrections to the effective brightness temperature are computed corresponding to the 'base model' atmosphere and several modifications of this caused by deviations of the various atmospheric or surface parameters from their base model values. Simple analytical relations were established between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of several parameters also were examined. Use of these analytical relations, instead of radiative transfer calculations, results in tremendous savings in data reduction costs.

  3. Estimation of Lunar Surface Temperatures: a Numerical Model

    NASA Astrophysics Data System (ADS)

    Bauch, K.; Hiesinger, H.; Helbert, J.

    2009-04-01

    About 40 years after the Apollo and other lunar missions, several nations return to the Moon. Indian, Chinese, Japanese and American missions are already in orbit or will soon be launched, and the possibility of a "Made in Germany" mission (Lunar Exploration Orbiter - LEO) looms on the horizon [1]. In preparation of this mission, which will include a thermal infrared spectrometer (SERTIS - SElenological Radiometer and Thermal infrared Imaging Spectrometer), accurate temperature maps of the lunar surface are required. Because the orbiter will be imaging the Moon's surface at different times of the lunar day, an accurate estimation of the thermal variations of the surface with time is necessary to optimize signal-to-noise ratios and define optimal measurement areas. In this study we present new global temperature estimates for sunrise, noontime and sunset. This work provides new and updated research on the temperature variations of the lunar surface, by taking into account the surface and subsurface bulk thermophysical properties, namely their bulk density, heat capacity, thermal conductivity, emissivity and albedo. These properties have been derived from previous spacecraft-based observations, in-situ measurements and returned samples [e.g. 2-4]. In order to determine surface and subsurface temperatures, the one-dimensional heat conduction equation is solved for a resolution of about 0.4°, which is better by a factor of 2 compared to the Clementine measurement and temperature modeling described in [2]. Our work expands on the work of Lawson et al. [2], who calculated global brightness temperatures of subsolar points from the instantaneous energy balance equation assuming the Moon to be a spherical object [2]. Surface daytime temperatures are mainly controlled by their surface albedo and angle of incidence. On the other hand nighttime temperatures are affected by the thermal inertia of the observed surface. Topographic effects are expected to cause earlier or later

  4. Using remotely sensed temperature to estimate climate response functions

    NASA Astrophysics Data System (ADS)

    Heft-Neal, Sam; Lobell, David B.; Burke, Marshall

    2017-01-01

    Temperature data are commonly used to estimate the sensitivity of many societally relevant outcomes, including crop yields, mortality, and economic output, to ongoing climate changes. In many tropical regions, however, temperature measures are often very sparse and unreliable, limiting our ability to understand climate change impacts. Here we evaluate satellite measures of near-surface temperature (Ts) as an alternative to traditional air temperatures (Ta) from weather stations, and in particular their ability to replace Ta in econometric estimation of climate response functions. We show that for maize yields in Africa and the United States, and for economic output in the United States, regressions that use Ts produce very similar results to those using Ta, despite the fact that daily correlation between the two temperature measures is often low. Moreover, for regions such as Africa with poor station coverage, we find that models with Ts outperform models with Ta, as measured by both R 2 values and out-of-sample prediction error. The results indicate that Ts can be used to study climate impacts in areas with limited station data, and should enable faster progress in assessing risks and adaptation needs in these regions.

  5. Estimation of high temperature metal-silicate partition coefficients

    NASA Technical Reports Server (NTRS)

    Jones, John H.; Capobianco, Christopher J.; Drake, Michael J.

    1992-01-01

    It has been known for some time that abundances of siderophile elements in the upper mantle of the Earth are far in excess of those expected from equilibrium between metal and silicate at low pressures and temperatures. Murthy (1991) has re-examined this excess of siderophile element problem by estimating liquid metal/liquid silicate partition coefficients reduces from their measured values at a lower temperature, implying that siderophile elements become much less siderophilic at high temperatures. Murthy then draws the important conclusion that metal/silicate equilibrium at high temperatures can account for the abundances of siderophile elements in the Earth's mantle. Of course, his conclusion is critically dependent on the small values of the partition coefficients he calculates. Because the numerical values of most experimentally-determined partition coefficients increase with increasing temperature at both constant oxygen fugacity and at constant redox buffer, we think it is important to try an alternative extrapolation for comparison. We have computed high temperature metal/silicate partition coefficients under a different set of assumptions and show that such long temperature extrapolations yield values which are critically dependent upon the presumed chemical behavior of the siderophile elements in the system.

  6. A nonintrusive temperature measuring system for estimating deep body temperature in bed.

    PubMed

    Sim, S Y; Lee, W K; Baek, H J; Park, K S

    2012-01-01

    Deep body temperature is an important indicator that reflects human being's overall physiological states. Existing deep body temperature monitoring systems are too invasive to apply to awake patients for a long time. Therefore, we proposed a nonintrusive deep body temperature measuring system. To estimate deep body temperature nonintrusively, a dual-heat-flux probe and double-sensor probes were embedded in a neck pillow. When a patient uses the neck pillow to rest, the deep body temperature can be assessed using one of the thermometer probes embedded in the neck pillow. We could estimate deep body temperature in 3 different sleep positions. Also, to reduce the initial response time of dual-heat-flux thermometer which measures body temperature in supine position, we employed the curve-fitting method to one subject. And thereby, we could obtain the deep body temperature in a minute. This result shows the possibility that the system can be used as practical temperature monitoring system with appropriate curve-fitting model. In the next study, we would try to establish a general fitting model that can be applied to all of the subjects. In addition, we are planning to extract meaningful health information such as sleep structure analysis from deep body temperature data which are acquired from this system.

  7. Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures

    NASA Technical Reports Server (NTRS)

    Svehla, Roger A.

    1962-01-01

    Viscosities and thermal conductivities, suitable for heat-transfer calculations, were estimated for about 200 gases in the ground state from 100 to 5000 K and 1-atmosphere pressure. Free radicals were included, but excited states and ions were not. Calculations for the transport coefficients were based upon the Lennard-Jones (12-6) potential for all gases. This potential was selected because: (1) It is one of the most realistic models available and (2) intermolecular force constants can be estimated from physical properties or by other techniques when experimental data are not available; such methods for estimating force constants are not as readily available for other potentials. When experimental viscosity data were available, they were used to obtain the force constants; otherwise the constants were estimated. These constants were then used to calculate both the viscosities and thermal conductivities tabulated in this report. For thermal conductivities of polyatomic gases an Eucken-type correction was made to correct for exchange between internal and translational energies. Though this correction may be rather poor at low temperatures, it becomes more satisfactory with increasing temperature. It was not possible to obtain force constants from experimental thermal conductivity data except for the inert atoms, because most conductivity data are available at low temperatures only (200 to 400 K), the temperature range where the Eucken correction is probably most in error. However, if the same set of force constants is used for both viscosity and thermal conductivity, there is a large degree of cancellation of error when these properties are used in heat-transfer equations such as the Dittus-Boelter equation. It is therefore concluded that the properties tabulated in this report are suitable for heat-transfer calculations of gaseous systems.

  8. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements

    SciTech Connect

    Hunter, C.H.

    1999-11-18

    The heat stress management program at the Department of Energy''s Savannah River Site (SRS) requires implementation of protective controls on outdoor work based on observed values of wet bulb globe temperature (WBGT). To ensure continued compliance with heat stress program requirements, a computer algorithm was developed which calculates an estimate of WBGT using standard meteorological measurements. In addition, scripts were developed to generate a calculation every 15 minutes and post the results to an Intranet web site.

  9. Estimating Hardness from the USDC Tool-Bit Temperature Rise

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrit, Stewart

    2008-01-01

    A method of real-time quantification of the hardness of a rock or similar material involves measurement of the temperature, as a function of time, of the tool bit of an ultrasonic/sonic drill corer (USDC) that is being used to drill into the material. The method is based on the idea that, other things being about equal, the rate of rise of temperature and the maximum temperature reached during drilling increase with the hardness of the drilled material. In this method, the temperature is measured by means of a thermocouple embedded in the USDC tool bit near the drilling tip. The hardness of the drilled material can then be determined through correlation of the temperature-rise-versus-time data with time-dependent temperature rises determined in finite-element simulations of, and/or experiments on, drilling at various known rates of advance or known power levels through materials of known hardness. The figure presents an example of empirical temperature-versus-time data for a particular 3.6-mm USDC bit, driven at an average power somewhat below 40 W, drilling through materials of various hardness levels. The temperature readings from within a USDC tool bit can also be used for purposes other than estimating the hardness of the drilled material. For example, they can be especially useful as feedback to control the driving power to prevent thermal damage to the drilled material, the drill bit, or both. In the case of drilling through ice, the temperature readings could be used as a guide to maintaining sufficient drive power to prevent jamming of the drill by preventing refreezing of melted ice in contact with the drill.

  10. Noninvasive tissue temperature estimation using nonlinear ultrasound harmonics

    NASA Astrophysics Data System (ADS)

    Maraghechi, Borna; Kolios, Michael C.; Tavakkoli, Jahan

    2017-03-01

    Non-invasive tissue temperature estimation is important in thermal therapies for having an efficient treatment. A noninvasive ultrasonic technique for monitoring tissue temperature changes is proposed based on the changes in the harmonics of ultrasound backscatter as a function of temperature. The backscattered pressure amplitudes of the fundamental frequency (p1), the second (p2) and the third (p3) harmonics generated by nonlinear ultrasound propagation and the ratios of the second and the third harmonics over the fundamental frequency (p2/p1 and p3/p1) were investigated as a function of temperature. The acoustic harmonics were generated and detected with a commercial high frequency ultrasound imaging system in pulse-echo mode. The experiments were performed on tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The temperature was increased from 26°C to 46°C in increments of 2°C. The average values of p1, p2, p3, p2/p1, p3/p1 increased by 14%, 50%, 117%, 37% and 92% for the gel phantoms, and for the tissue samples increased by 29%, 50%, 170%, 10% and 109%, respectively. The results indicate that the harmonic amplitudes and their ratios are highly sensitive to propagation medium's temperature and could potentially be used for noninvasive ultrasound thermometry.

  11. Using optimal estimation method for upper atmospheric Lidar temperature retrieval

    NASA Astrophysics Data System (ADS)

    Zou, Rongshi; Pan, Weilin; Qiao, Shuai

    2016-07-01

    Conventional ground based Rayleigh lidar temperature retrieval use integrate technique, which has limitations that necessitate abandoning temperatures retrieved at the greatest heights due to the assumption of a seeding value required to initialize the integration at the highest altitude. Here we suggests the use of a method that can incorporate information from various sources to improve the quality of the retrieval result. This approach inverts lidar equation via optimal estimation method(OEM) based on Bayesian theory together with Gaussian statistical model. It presents many advantages over the conventional ones: 1) the possibility of incorporating information from multiple heterogeneous sources; 2) provides diagnostic information about retrieval qualities; 3) ability of determining vertical resolution and maximum height to which the retrieval is mostly independent of the a priori profile. This paper compares one-hour temperature profiles retrieved using conventional and optimal estimation methods at Golmud, Qinghai province, China. Results show that OEM results show a better agreement with SABER profile compared with conventional one, in some region it is much lower than SABER profile, which is a very different results compared with previous studies, further studies are needed to explain this phenomenon. The success of applying OEM on temperature retrieval is a validation for using as retrieval framework in large synthetic observation systems including various active remote sensing instruments by incorporating all available measurement information into the model and analyze groups of measurements simultaneously to improve the results.

  12. Apply a hydrological model to estimate local temperature trends

    NASA Astrophysics Data System (ADS)

    Igarashi, Masao; Shinozawa, Tatsuya

    2014-03-01

    Continuous times series {f(x)} such as a depth of water is written f(x) = T(x)+P(x)+S(x)+C(x) in hydrological science where T(x),P(x),S(x) and C(x) are called the trend, periodic, stochastic and catastrophic components respectively. We simplify this model and apply it to the local temperature data such as given E. Halley (1693), the UK (1853-2010), Germany (1880-2010), Japan (1876-2010). We also apply the model to CO2 data. The model coefficients are evaluated by a symbolic computation by using a standard personal computer. The accuracy of obtained nonlinear curve is evaluated by the arithmetic mean of relative errors between the data and estimations. E. Halley estimated the temperature of Gresham College from 11/1692 to 11/1693. The simplified model shows that the temperature at the time rather cold compared with the recent of London. The UK and Germany data sets show that the maximum and minimum temperatures increased slowly from the 1890s to 1940s, increased rapidly from the 1940s to 1980s and have been decreasing since the 1980s with the exception of a few local stations. The trend of Japan is similar to these results.

  13. Accuracy of the Estimated Core Temperature (ECTemp) Algorithm in Estimating Circadian Rhythm Indicators

    DTIC Science & Technology

    2017-04-12

    5 Figure 2. Scatter plot of observed core temperatures over time of day. .......................... 9...Figure 3. Scatter plot of observed heart rates over time of day. .................................... 10 Figure 4. Scatter plot of ECTempTM by CT...coefficients were assessed between ECTempTM and observed CT. The results of this investigation showed that ECTempTM provided reasonable estimates of

  14. Estimating cell temperature in a concentrating photovoltaic system

    NASA Astrophysics Data System (ADS)

    Yandt, M. D.; Wheeldon, J. F.; Cook, J.; Beal, R.; Walker, A. W.; Thériault, O.; Schriemer, H.; Hall, T. J.; Hinzer, K.

    2012-10-01

    A temperature calibrated equivalent circuit model of a high efficiency CPV solar cell is used to simulate a measured six-cell module J-V curve to estimate its average operating temperature. The simulation is based on a two diode equivalent circuit model for each subcell of a representative triple junction cell. Module J-V curves in a real CPV system were measured with a test station that performs continuous voltage sweeps allowing cells to reach a well defined thermal equilibrium during measurement. The average electrical power extracted during measurement is then used to determine the cell temperature when they are operating at their maximum power point. It is shown that the cells would operate at 42 ± 2 C° above ambient (32 ± 2°C abs.) given the ambient conditions during the measurement.

  15. Shade estimation over streams using distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Petrides, A. C.; Huff, J.; Arik, A.; van de Giesen, N.; Kennedy, A. M.; Thomas, C. K.; Selker, J. S.

    2011-07-01

    The characterization of temporal and spatial distribution of sunlight is essential for understanding energy transport in natural ecosystems. Fiber-optic distributed temperature sensing (DTS) allows meter resolution measurements of temperature at subminute resolution. The difference in temperature due to absorption and reflection of a pair of helically twisted black and white fiber-optic cables was measured with a DTS to document areas exposed to sunlight over the Walla Walla River. A high correlation (R2 = 0.99) was found between DTS-based results and manual field observations of effective shade. These preliminary results provide proof of the concept that this method can be used for estimating the effective shade at fine spatial resolutions. Potential shortcomings and the need for a more quantitative physical model are suggested for further research.

  16. On estimating total daily evapotranspiration from remote surface temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.; Buffum, Martha J.

    1989-01-01

    A method for calculating daily evapotranspiration from the daily surface energy budget using remotely sensed surface temperature and several meteorological variables is presented. Vaules of the coefficients are determined from simulations with a one-dimensional boundary layer model with vegetation cover. Model constants are obtained for vegetation and bare soil at two air temperature and wind speed levels over a range of surface roughness and wind speeds. A different means of estimating the daily evapotranspiration based on the time rate of increase of surface temperature during the morning is also considered. Both the equations using our model-derived constants and field measurements are evaluated, and a discussion of sources of error in the use of the formulation is given.

  17. Transient emission wavelength estimation for DFB laser with temperature tuning

    NASA Astrophysics Data System (ADS)

    Li, Jin-yi; Qiao, Chen-zhi; Song, Li-mei; Guo, Qing-hua

    2017-03-01

    The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode (LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback (DFB) LD. The absorption spectra of mixture gas of CO2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.

  18. MODIS Sea-Surface Temperature retrieval by Optimal Estimation

    NASA Astrophysics Data System (ADS)

    Szczodrak, G.; Minnett, P. J.

    2016-12-01

    We employ Optimal Estimation approach to retrieve Sea Surface Temperature (SST) from the measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS). The Optimal Estimation (OE) approach uses a prior knowledge or estimation of the state of a system as an input of a forward model to simulate `observations' (known as prior observations) and seeks to minimize the difference between these simulated observation and actual measurements in the space of the state variables. In our case of SST estimation from MODIS observations the system is the ocean surface and the atmosphere between the ocean surface and the satellite. Following previous research (Merchant et al., 2008 and 2009) we introduced a reduced state consisting of variables to which the channel brightness temperatures are expected to be most sensitive, SST and the total column water vapor (TCWV). The actual observations are brightness temperature measurements in MODIS channels with center wavelengths of 11 and 12 microns. The prior knowledge of the state of the atmosphere comes from the European Center for Medium Range Weather Forecast interim reanalysis fields (ECMWF, Dee et al., 2011) for the atmospheric variables and from Reynolds high resolution sea surface temperature analysis fields (Reynolds et al., 2007) for the SST. The forward model in our case is the Line-by-Line Radiative Transfer Model (LBLRTM) of Clough et al., 2005. Our a priori data set consists of 38400 data points for each month of 2009 representing the state of atmosphere and ocean with 0.5 × 0.5 resolution on the 1st and 16th day of the month at two times a day 00Z and 12Z. We performed LBLRTM simulation for all a priori state data resulting in top of atmosphere infrared spectra. The simulated spectra were integrated with the MODIS 4, 11 and 12 micron channels relative spectral response functions and thus a set of MODIS channels brightness temperatures corresponding to the a priori states was obtained. These simulated brightness

  19. Uncertainties in temperature based estimates of stream-aquifer flux

    NASA Astrophysics Data System (ADS)

    Soto, C. D.; Meixner, T.; Ferre, T. A.

    2009-12-01

    The use of temperature to quantify stream-aquifer interactions has become a common scientific measurement technique. Diurnal air temperature fluctuations force diurnal temperature fluctuations in surface waters. These oscillations force continuous pulses of heat that propagate downward through streambed sediments. Many researchers have developed methods to analyze time series of temperature beneath the streambed to estimate the direction and/or magnitude of water fluxes between surface and ground waters. One such method uses measurements of changes in amplitude and phase of the temperature signal at different depths beneath the stream. The measurements are analyzed using numerical, analytical, or approximate solutions to the coupled water flow and heat transport equations. These methods rely on correctly identifying the thermal properties of the streambed sediments and the water. While some of these property values are readily available (e.g. thermal conductivity, heat capacity of water), others are less well defined (e.g. thermal dispersivity). While there has been considerable use and examination of these temperature methods, none have considered the impacts of temperature measurement uncertainty on the inferred water flux. Without consideration of these errors, previous researchers have reported that the water flux can be inferred reliably for fluxes ranging over ±10 m/day or ±1.157x10^-2 cm/s based on paired temperature measurements made with sensors at different depths. We use a numerical model (HYDRUS1D) to develop a “true” time series of temperature fluctuations in a stream and the subsurface. Uncertainty is added in the form of normally distributed noise with a mean of zero. This synthetic data is analyzed using a commonly applied analytical solution to infer the water flux. The inferred flux is compared to the “known” flux to calculate the error. The uncertainty is determined for multiple error realizations and true fluxes. Results show that the

  20. Estimating Surface Temperature of a Calibration Apparatus for Contact Surface Thermometers from Its Internal Temperature Profile

    NASA Astrophysics Data System (ADS)

    Saito, I.; Nakano, T.; Tamba, J.

    2017-10-01

    A calibration apparatus for contact surface thermometers was developed. Temperature of the upper surface of a copper cube of the calibration apparatus was used as reference surface temperature, which was estimated at around 50 {°}C, 100 {°}C, and 150 {°}C by not only two conventional industrial platinum resistance thermometers (IPRTs) but also five small-sized platinum resistance thermometers (SSPRTs) calibrated based on the International Temperature Scale of 1990 (ITS-90). These thermometers were inserted horizontally into the copper cube and aligned along the center axis of the copper cube. In the case of a no-load state without anything on the upper surface, the temperature profile inside the copper cube linearly decreased from the lower part to the upper surface, which suggests that the heat conduction inside the copper cube can be regarded as a one-dimensional steady state. On the other hand, in the case of a transient state just after the contact surface thermometer was applied to the upper surface, the temperature profile became a round shape. We obtained good agreement between the curvature of the temperature profiles and the results estimated by using an error function used for a one-dimensional transient heat conduction problem. The temperature difference between the estimated temperature by linear extrapolation using two IPRTs and that by extrapolation using the error function was within 0.2 {°}C in the transient state at around 150 {°}C. Over 10 min after the contact surface thermometer was applied, the temperature profile showed a linear shape again, which indicated that linear extrapolation using two IPRTs was well for the estimation of the reference surface temperature because the heat conduction state inside the copper cube came back to the one-dimensional steady state. Difference between the surface temperature and temperature detected by the contact surface thermometer was also observed after the contact surface thermometer touched on the

  1. MRG15-mediated tethering of PALB2 to unperturbed chromatin protects active genes from genotoxic stress

    PubMed Central

    Bleuyard, Jean-Yves; Fournier, Marjorie; Nakato, Ryuichiro; Couturier, Anthony M.; Katou, Yuki; Ralf, Christine; Hester, Svenja S.; Dominguez, Daniel; Rhodes, Daniela; Humphrey, Timothy C.; Shirahige, Katsuhiko

    2017-01-01

    The partner and localiser of BRCA2 (PALB2) plays important roles in the maintenance of genome integrity and protection against cancer. Although PALB2 is commonly described as a repair factor recruited to sites of DNA breaks, recent studies provide evidence that PALB2 also associates with unperturbed chromatin. Here, we investigated the previously poorly described role of chromatin-associated PALB2 in undamaged cells. We found that PALB2 associates with active genes through its major binding partner, MRG15, which recognizes histone H3 trimethylated at lysine 36 (H3K36me3) by the SETD2 methyltransferase. Missense mutations that ablate PALB2 binding to MRG15 confer elevated sensitivity to the topoisomerase inhibitor camptothecin (CPT) and increased levels of aberrant metaphase chromosomes and DNA stress in gene bodies, which were suppressed by preventing DNA replication. Remarkably, the level of PALB2 at genic regions was frequently decreased, rather than increased, upon CPT treatment. We propose that the steady-state presence of PALB2 at active genes, mediated through the SETD2/H3K36me3/MRG15 axis, ensures an immediate response to DNA stress and therefore effective protection of these regions during DNA replication. This study provides a conceptual advance in demonstrating that the constitutive chromatin association of repair factors plays a key role in the maintenance of genome stability and furthers our understanding of why PALB2 defects lead to human genome instability syndromes. PMID:28673974

  2. Timeless Maintains Genomic Stability and Suppresses Sister Chromatid Exchange during Unperturbed DNA Replication.

    PubMed

    Urtishak, Karen A; Smith, Kevin D; Chanoux, Rebecca A; Greenberg, Roger A; Johnson, F Brad; Brown, Eric J

    2009-03-27

    Genome integrity is maintained during DNA replication by coordination of various replisome-regulated processes. Although it is known that Timeless (Tim) is a replisome component that participates in replication checkpoint responses to genotoxic stress, its importance for genome maintenance during normal DNA synthesis has not been reported. Here we demonstrate that Tim reduction leads to genomic instability during unperturbed DNA replication, culminating in increased chromatid breaks and translocations (triradials, quadriradials, and fusions). Tim deficiency led to increased H2AX phosphorylation and Rad51 and Rad52 foci formation selectively during DNA synthesis and caused a 3-4-fold increase in sister chromatid exchange. The sister chromatid exchange events stimulated by Tim reduction were largely mediated via a Brca2/Rad51-dependent mechanism and were additively increased by deletion of the Blm helicase. Therefore, Tim deficiency leads to an increased reliance on homologous recombination for proper continuation of DNA synthesis. Together, these results indicate a pivotal role for Tim in maintaining genome stability throughout normal DNA replication.

  3. Rectal temperature-based death time estimation in infants.

    PubMed

    Igari, Yui; Hosokai, Yoshiyuki; Funayama, Masato

    2016-03-01

    In determining the time of death in infants based on rectal temperature, the same methods used in adults are generally used. However, whether the methods for adults are suitable for infants is unclear. In this study, we examined the following 3 methods in 20 infant death cases: computer simulation of rectal temperature based on the infinite cylinder model (Ohno's method), computer-based double exponential approximation based on Marshall and Hoare's double exponential model with Henssge's parameter determination (Henssge's method), and computer-based collinear approximation based on extrapolation of the rectal temperature curve (collinear approximation). The interval between the last time the infant was seen alive and the time that he/she was found dead was defined as the death time interval and compared with the estimated time of death. In Ohno's method, 7 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80 min. The results of both Henssge's method and collinear approximation were apparently inferior to the results of Ohno's method. The corrective factor was set within the range of 0.7-1.3 in Henssge's method, and a modified program was newly developed to make it possible to change the corrective factors. Modification A, in which the upper limit of the corrective factor range was set as the maximum value in each body weight, produced the best results: 8 cases were within the death time interval, and the average deviation in the other 12 cases was approximately 80min. There was a possibility that the influence of thermal isolation on the actual infants was stronger than that previously shown by Henssge. We conclude that Ohno's method and Modification A are useful for death time estimation in infants. However, it is important to accept the estimated time of death with certain latitude considering other circumstances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Estimation of emittances and surface temperatures from AVHRR data

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Holben, Brent N.

    1991-01-01

    An approach to the estimation of surface temperatures and emissivities using AVHRR (Advanced Very High Resolution Radiometer) data acquired near noon is presented. Thermal data in channels 3, 4, and 5 were used to estimate the reflective component in 3. For three water bodies in Oregon the average emittances found for channels 3 and 4 were 0.979 and 0.991, respectively. Also studied were agricultural sites and forests, comprising both primary (PF) and secondary (SF) types. For the agricultural sites, the average emittances were 0.919 and 0.943 for channels 3 and 4. For the PF and SF the results were 0.976 and 0.983 for channel 3 and 0.988 and 0.995 for channel 4.

  5. Estimating past precipitation and temperature from fossil ostracodes

    SciTech Connect

    Smith, A.J.; Forester, R.M.

    1994-12-31

    The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of living ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.

  6. Estimating trends in the global mean temperature record

    NASA Astrophysics Data System (ADS)

    Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.

    2017-06-01

    Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the

  7. Improving Multiyear Ice Concentration Estimates with Reanalysis Air Temperatures

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Shokr, M.; Heygster, G.; Spreen, G.

    2015-12-01

    Multiyear ice (MYI) characteristics can be retrieved from passive or active microwave remote sensing observations. One of the algorithms that combine both of observations to identify partial concentrations of ice types (including MYI) is the Environment Canada's Ice Concentration Extractor (ECICE). However, cycles of warm/cold air temperature trigger wet-refreeze cycles of the snow cover on MYI ice surface. Under wet snow conditions, anomalous brightness temperature and backscatter, similar to those of first year ice (FYI) are observed. This leads to misidentification of MYI as being FYI, hence decreasing the estimated MYI concentration suddenly. The purpose of this study is to introduce a correction scheme to restore the MYI concentration under this condition. The correction is based on air temperature records. It utilizes the fact that the warm spell in autumn lasts for a short period of time (a few days). The correction is applied to MYI concentration results from ECICE using an input of combined QuikSCAT and AMSR-E data; acquired over the Arctic region in a series of autumn seasons from 2003 to 2008. The correction works well by replacing anomalous MYI concentrations with interpolated ones. For September of the six years, it introduces over 0.1×106 km2 MYI area except for 2005. Due to the regional effect of the warm air spells, the correction could be important in the operational applications where small and meso scale ice concentrations are crucial.

  8. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.

    PubMed

    Toebes, Marcel J P; Hoozemans, Marco J M; Dekker, Joost; van Dieën, Jaap H

    2014-01-01

    This study assessed effects of unilateral leg muscle fatigue (ULMF) on balance control in gait during the stance and swing phases of the fatigued leg in healthy elderly, to test the assumption that leg muscle strength limits balance control during the stance-phase. Ten subjects (aged 63.4, SD 5.5 years) walked on a treadmill in 4 conditions: unperturbed unfatigued, unperturbed fatigued, perturbed unfatigued, and perturbed fatigued. The perturbations were lateral trunk pulls just before contralateral heel contact. ULMF was evoked by unilateral squat exercise until task failure. Isometric knee extension strength was measured to verify the presence of muscle fatigue. Between-stride standard deviations and Lyapunov exponents of trunk kinematics were used as indicators of balance control. Required perturbation force and the deviation of trunk kinematics from unperturbed gait were used to assess perturbation responses. Knee extension strength decreased considerably (17.3% SD 8.6%) as a result ULMF. ULMF did not affect steady-state gait balance. Less force was required to perturb subjects when the fatigued leg was in the stance-phase compared to the swing-phase. Subjects showed a faster return to the unperturbed gait pattern in the fatigued than in the unfatigued condition, after perturbations in swing and stance of the fatigued leg. The results of this study are not in line with the hypothesized effects of leg muscle fatigue on balance in gait. The healthy elderly subjects were able to cope with substantial ULMF during steady-state gait and demonstrated faster balance recovery after laterally directed mechanical perturbations in the fatigued than in the unfatigued condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Estimation of abnormal temperature effects on elderly mortality in South Korea using the temperature deviation index

    NASA Astrophysics Data System (ADS)

    Choi, Giehae; Bae, Hyun-Joo; Lim, Youn-Hee

    2017-07-01

    Recent studies have revealed that the effect of temperature on mortality has changed over time. One of the major contributors to the changes is adaptation. We aimed to understand the relationship between elderly mortality and temperature anomaly using the temperature deviation index (TDI), which considers exposure history. Summertime (May to September) mortality data from 1996 to 2014 and meteorological data from 1971 to 2014 were obtained for 16 regions covering South Korea. The TDI was defined as the target day's temperature abnormality compared to previous 25 years' apparent temperature (AT). The relationship between the TDI and elderly mortality for each region was examined by generalized linear modeling with Poisson distribution. Pooled estimates were computed to yield a national effect estimate. Stratified analyses were performed using the percentiles of AT and TDI. Most regions showed positive linear associations, and the associations ranged from 0.4 to 4.3% increase per unit increase of the TDI. In the pooled analyses, a unit increase of the TDI was associated with a 1.4% increase (95% confidence interval [CI] 0.93-1.87) in elderly mortality. In the stratified analysis, the relationship between the TDI and elderly mortality was significant at or above the 75th percentile of AT (1.32% increase; 95% CI 0.47-2.22). We suggest a positive association between the TDI and elderly mortality in South Korea. The association observed particularly in the highest percentile of AT in the stratified analysis suggests independent effects of temperature anomaly in addition to those of absolute AT.

  10. Estimation of abnormal temperature effects on elderly mortality in South Korea using the temperature deviation index

    NASA Astrophysics Data System (ADS)

    Choi, Giehae; Bae, Hyun-Joo; Lim, Youn-Hee

    2017-02-01

    Recent studies have revealed that the effect of temperature on mortality has changed over time. One of the major contributors to the changes is adaptation. We aimed to understand the relationship between elderly mortality and temperature anomaly using the temperature deviation index (TDI), which considers exposure history. Summertime (May to September) mortality data from 1996 to 2014 and meteorological data from 1971 to 2014 were obtained for 16 regions covering South Korea. The TDI was defined as the target day's temperature abnormality compared to previous 25 years' apparent temperature (AT). The relationship between the TDI and elderly mortality for each region was examined by generalized linear modeling with Poisson distribution. Pooled estimates were computed to yield a national effect estimate. Stratified analyses were performed using the percentiles of AT and TDI. Most regions showed positive linear associations, and the associations ranged from 0.4 to 4.3% increase per unit increase of the TDI. In the pooled analyses, a unit increase of the TDI was associated with a 1.4% increase (95% confidence interval [CI] 0.93-1.87) in elderly mortality. In the stratified analysis, the relationship between the TDI and elderly mortality was significant at or above the 75th percentile of AT (1.32% increase; 95% CI 0.47-2.22). We suggest a positive association between the TDI and elderly mortality in South Korea. The association observed particularly in the highest percentile of AT in the stratified analysis suggests independent effects of temperature anomaly in addition to those of absolute AT.

  11. Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal.

    PubMed

    Nakada, Hirofumi; Horie, Seichi; Kawanami, Shoko; Inoue, Jinro; Iijima, Yoshinori; Sato, Kiyoharu; Abe, Takeshi

    2017-04-08

    We aimed to develop a practical method to estimate oesophageal temperature by measuring multi-locational auditory canal temperatures. This method can be applied to prevent heatstroke by simultaneously and continuously monitoring the core temperatures of people working under hot environments. We asked 11 healthy male volunteers to exercise, generating 80 W for 45 min in a climatic chamber set at 24, 32 and 40 °C, at 50% relative humidity. We also exposed the participants to radiation at 32 °C. We continuously measured temperatures at the oesophagus, rectum and three different locations along the external auditory canal. We developed equations for estimating oesophageal temperatures from auditory canal temperatures and compared their fitness and errors. The rectal temperature increased or decreased faster than oesophageal temperature at the start or end of exercise in all conditions. Estimated temperature showed good similarity with oesophageal temperature, and the square of the correlation coefficient of the best fitting model reached 0.904. We observed intermediate values between rectal and oesophageal temperatures during the rest phase. Even under the condition with radiation, estimated oesophageal temperature demonstrated concordant movement with oesophageal temperature at around 0.1 °C overestimation. Our method measured temperatures at three different locations along the external auditory canal. We confirmed that the approach can credibly estimate the oesophageal temperature from 24 to 40 °C for people performing exercise in the same place in a windless environment.

  12. Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal

    NASA Astrophysics Data System (ADS)

    Nakada, Hirofumi; Horie, Seichi; Kawanami, Shoko; Inoue, Jinro; Iijima, Yoshinori; Sato, Kiyoharu; Abe, Takeshi

    2017-04-01

    We aimed to develop a practical method to estimate oesophageal temperature by measuring multi-locational auditory canal temperatures. This method can be applied to prevent heatstroke by simultaneously and continuously monitoring the core temperatures of people working under hot environments. We asked 11 healthy male volunteers to exercise, generating 80 W for 45 min in a climatic chamber set at 24, 32 and 40 °C, at 50% relative humidity. We also exposed the participants to radiation at 32 °C. We continuously measured temperatures at the oesophagus, rectum and three different locations along the external auditory canal. We developed equations for estimating oesophageal temperatures from auditory canal temperatures and compared their fitness and errors. The rectal temperature increased or decreased faster than oesophageal temperature at the start or end of exercise in all conditions. Estimated temperature showed good similarity with oesophageal temperature, and the square of the correlation coefficient of the best fitting model reached 0.904. We observed intermediate values between rectal and oesophageal temperatures during the rest phase. Even under the condition with radiation, estimated oesophageal temperature demonstrated concordant movement with oesophageal temperature at around 0.1 °C overestimation. Our method measured temperatures at three different locations along the external auditory canal. We confirmed that the approach can credibly estimate the oesophageal temperature from 24 to 40 °C for people performing exercise in the same place in a windless environment.

  13. Model-based estimation of changes in air temperature seasonality

    NASA Astrophysics Data System (ADS)

    Barbosa, Susana; Trigo, Ricardo

    2010-05-01

    Seasonality is a ubiquitous feature in climate time series. Climate change is expected to involve not only changes in the mean of climate parameters but also changes in the characteristics of the corresponding seasonal cycle. Therefore the identification and quantification of changes in seasonality is a highly relevant topic in climate analysis, particularly in a global warming context. However, the analysis of seasonality is far from a trivial task. A key challenge is the discrimination between long-term changes in the mean and long-term changes in the seasonal pattern itself, which requires the use of appropriate statistical approaches in order to be able to distinguish between overall trends in the mean and trends in the seasons. Model based approaches are particularly suitable for the analysis of seasonality, enabling to assess uncertainties in the amplitude and phase of seasonal patterns within a well defined statistical framework. This work addresses the changes in the seasonality of air temperature over the 20th century. The analysed data are global air temperature values close to surface (2m above ground) and mid-troposphere (500 hPa geopotential height) from the recently developed 20th century reanalysis. This new 3-D Reanalysis dataset is available since 1891, considerably extending all other Reanalyses currently in use (e.g. NCAR, ECWMF), and was obtained with the Ensemble Filter (Compo et al., 2006) by assimilation of pressure observations into a state-of-the-art atmospheric general circulation model that includes the radiative effects of historical time-varying CO2 concentrations, volcanic aerosol emissions and solar output variations. A modeling approach based on autoregression (Barbosa et al, 2008; Barbosa, 2009) is applied within a Bayesian framework for the estimation of a time varying seasonal pattern and further quantification of changes in the amplitude and phase of air temperature over the 20th century. Barbosa, SM, Silva, ME, Fernandes, MJ

  14. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  15. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  16. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature.

    PubMed

    Torres-Rua, Alfonso

    2017-06-26

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called "AggieAir", developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon") and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m²/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m²/sr/um) for all s

  17. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature

    PubMed Central

    2017-01-01

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon”) and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr/um) for all s

  18. Influence of spatial temperature estimation method in ecohydrologic modeling in the western Oregon Cascades

    Treesearch

    E. Garcia; C.L. Tague; J. Choate

    2013-01-01

    Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...

  19. Estimation of Land Surface Temperature Under All Sky Conditions

    NASA Astrophysics Data System (ADS)

    Inamdar, A.; Knapp, K. R.

    2016-12-01

    Land surface temperature (LST) is a key parameter in the initialization of climate models, many environmental studies and in applications related to water resources management over agricultural sites. Conventionally remote sensing data from infrared sensors aboard polar orbiting and geostationary satellites have been used in the retrieval of LST. But bulk, if not all of the retrieval techniques are limited to clear sky conditions. In the present work, we make use of a companion study which estimates the net surface solar radiation (NSSR) under all-sky conditions from remote sensing of geostationary visible channel data to deduce a simple relationship between the diurnal evolution of NSSR and LST. This approach has been demonstrated by combining with a two-channel LST retrieval scheme using the gridded GOES-12 data available at National Center for Environmental Information (NCEI) for year 2007 merged with the Moderate Resolution Imaging Spectroradiometer (MODIS) data, over the contiguous United States region. Validation of diurnal LST is performed employing in-situ measurements over all of the NOAA Surface Radiation Measurement Network (SURFRAD) sites.

  20. Bloch-Nordsieck estimates of high-temperature QED

    SciTech Connect

    Fried, H. M.; Sheu, Y.-M.; Grandou, T.

    2008-05-15

    In anticipation of a subsequent application to QCD, we consider the case of QED at high temperature. We introduce a Fradkin representation into the exact, Schwingerian, functional expression of a fermion propagator, as well as a new and relevant version of the Bloch-Nordsieck model, which extracts the soft contributions of every perturbative graph, in contradistinction to the assumed separation of energy scales of previous semiperturbative treatments. Our results are applicable to the absorption of a fast particle which enters a heat bath, as well as to the propagation of a symmetric pulse within the thermal medium due to the appearance of an instantaneous, shockwave-like source acting in the medium. An exponentially decreasing time dependence of the incident particle's initial momentum combines with a stronger decrease in the particle's energy, estimated by a sum over all Matsubara frequencies, to model an initial 'fireball', which subsequently decays in a Gaussian fashion. When extended to QCD, qualitative applications could be made to RHIC scattering, in which a fireball appears, expands, and is damped away.

  1. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters

  2. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the

  3. Estimation of the gelatinization temperature of noodles from water sorption curves under temperature-programmed heating conditions.

    PubMed

    Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji

    2012-01-01

    A novel method in which the water sorption curve is observed under linearly temperature-raising conditions was proposed to estimate the gelatinization temperature of starch-containing foods, it was applied in an estimation of the gelatinization temperatures of dried noodles. The gelatinization temperatures of two kinds of spaghetti, dried at high and low temperature, were 52.3 and 53.1 °C, and those of udon, kishimen, juwari-soba, hachiwari-soba, so-called common soba, Malony(®), and kuzukiri were 57.0, 57.8, 61.1, 59.6, 57.4, 48.4, and 49.1 °C. The gelatinization temperatures estimated by the method were between the onset and peak temperatures obtained by differential scanning calorimetric measurement.

  4. Hydrogen maser wall shift experiments and determination of the unperturbed hyperfine frequency of the ground state of the hydrogen atom

    SciTech Connect

    Cheng, Y.M.; Hua, Y.L.; Chen, C.B.; Gao, J.H.; Shen, W.

    1980-12-01

    Experiments on hydrogen maser wall shift are described in detail. Values of K(40 C) -293 + or - 17 mHz.cm and a(40 C) (-17 + or 2) x 10 to the -3rd per deg C were obtained. The unperturbed hyperfine frequency of the ground state of the hydrogen atom was obtained by comparing five hydrogen masers to Loran C signals for one month. The average value with respect to TAI is 1,420,405,751.768 + or - 0.002 Hz.

  5. Water geochemistry to estimate reservoir temperature of Stabio springs, Switzerland

    NASA Astrophysics Data System (ADS)

    Pera, Sebastian; Soma, Linda

    2017-04-01

    The Mendrisiotto region located in Southern Switzerland and close to the Italian border, is characterized by the presence of a thick sequence of Mesozoic limestones and dolostones above a volcanic rocks from Permian (Bernoulli, 1964). Within the carbonates, fractures and dissolution processes increased limestone permeability and favored the widespread presence of springs. The presence of few localized H2S and CH4 bearing springs is known from historical times in Stabio. Its localization is related to the faulting affecting the area (Balderer et Al., 2007). These waters were classified by Greber et Al. (1997) as Na-(Ca)-(Mg)-HCO3-Cl-(SO4) type with having a total dissolved solid content in the range of 0.8 and 1.2 gl-1. According with Balderer et Al. (2007) the stable isotopic composition deviates from the global meteoric water line (IAEA, 1984) being the values of δ18O and δ2H respectively 0.8 ‰ and 5‰ lower than the normal shallow groundwater of the area. The values of δ13C of TDIC (-1.54‰ 1.44 ) indicate exchange with CO2 of thermo - metamorphic or even Mantle origin. While 14C in TDIC (7.95, 26.0 pMC) and 3H (1.1 ±0.7, 3.1±0.7 TU) indicates uprising of deep water along faults with some mixing. To estimate reservoir temperature, a new sampling was conducted in 2015 for chemical and isotopic analysis. The sampling was carried out from the only source that allows getting water directly from the dolostone in order to avoid mixing. Although some differences are noticed respect to previous studies, the results show a substantial agreement for stable isotopic composition of water, δ13C and 14C of TDIC. Reservoir temperature was calculated by using several geothermometers. The results show a great variability ranging from 60 ˚ C using Silica to more than 500 ˚ C using cationic ( Na - Ca) geothermometers; indicating that besides mixing, exchange processes and chemical reactions along flow path affect results. This study was partially funded by Azienda

  6. Structure impact of two galactomannan fractions on their viscosity properties in dilute solution, unperturbed state and gel state.

    PubMed

    Gillet, Sébastien; Aguedo, Mario; Petrut, Raul; Olive, Gilles; Anastas, Paul; Blecker, Christophe; Richel, Aurore

    2017-03-01

    Two fractions of carob galactomannans (GM25 and GM80) were extracted at respectively 25°C and 80°C from crude locust bean gum. Those fractions having slightly different chemical structures, previously characterized, were studied for their viscosity properties over a wide range of concentrations: diluted solution, unperturbed state and gel state. For each of the physical properties, links to the chemical fine structure could be established, expanding knowledge on the topic: in dilute solution, GM25 is more soluble in water while GM80 seems to tend to self-association due to its structure as highlighted by intrinsic viscosity measurements ([η]GM25=9.96dLg(-1) and [η]GM80=4.04dLg(-1)). In unperturbed state, initial viscosities η0 were more important for GM80 fractions at 1% and 2% due to greater hyperentanglements (η0(GM80,1%)=9.9Pas; η0(GM80,2%)=832.0; Pa.s η0(GM25,1%)=3.1Pas; η0(GM25,2%)=45.1Pas). In gel state, hydrogels obtained from GM80 were also stronger (hardness GM80 (2%)=0.51N and hardness GM25 (2%)=0.11N), suggesting a much more important number of junction areas within the gel network. The findings discussed herein demonstrate the potential for new applications.

  7. New method of estimating temperatures near the mesopause region using meteor radar observations

    NASA Astrophysics Data System (ADS)

    Lee, Changsup; Kim, Jeong-Han; Jee, Geonhwa; Lee, Wonseok; Song, In-Sun; Kim, Yong Ha

    2016-10-01

    We present a novel method of estimating temperatures near the mesopause region using meteor radar observations. The method utilizes the linear relationship between the full width at half maximum (FWHM) of the meteor height distribution and the temperature at the meteor peak height. Once the proportionality constant of the linear relationship is determined from independent temperature measurements performed over a specific period of time by the Microwave Limb Sounder (MLS) instrument on board the Aura satellite, the temperature can be estimated continuously according to the measurements of the FWHM alone without additional information. The temperatures estimated from the FWHM are consistent with the MLS temperatures throughout the study period within a margin of 3.0%. Although previous methods are based on temperature gradient or pressure assumptions, the new method does not require such assumptions, which allows us to estimate the temperature at approximately 90 km with better precision.

  8. New estimates for Io eruption temperatures: Implications for the interior

    USGS Publications Warehouse

    Keszthelyi, L.; Jaeger, W.; Milazzo, M.; Radebaugh, J.; Davies, A.G.; Mitchell, K.L.

    2007-01-01

    The initial interpretation of Galileo data from Jupiter's moon, Io, suggested eruption temperatures ≥1600°C. Tidal heating models have difficulties explaining Io's prodigious heat flow if the mantle is >1300°C, although we suggest that temperatures up to ~1450°C may be possible. In general, Io eruption temperatures have been overestimated because the incorrect thermal model has been applied. Much of the thermal emission from high-temperature hot spots comes from lava fountains but lava flow models were utilized. We apply a new lava fountain model to the highest reported eruption temperature, the SSI observation of the 1997 eruption at Pillan. This resets the lower temperature limit for the eruption from ~1600 to ~1340°C . Additionally, viscous heating of the magma may have increased eruption temperature by ~50-100°C as a result of the strong compressive stresses in the ionian lithosphere. While further work is needed, it appears that the discrepancy between observations and interior models is largely resolved.

  9. High Resolution Temperature Estimation During Laser Cladding of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Devesse, Wim; De Baere, Dieter; Hinderdael, Michaël; Guillaume, Patrick

    Laser cladding is a technique that is used for the coating, repair and production of metallic parts. Material is added to the surface of the part by injecting a flow of powder into a melt pool that is created with a high power laser beam. When the beam scans the surface of the substrate, strong local heating and cooling results. A good knowledge of the temperature distribution history during the laser cladding process is vital to predict and optimize the material properties of the final part. This paper presents a contactless temperature measurement system with high temporal and spatial resolution based on a hyperspectral line camera. High temperature measurements were made during laser cladding of AISI 316L stainless steel. A good correlation is shown between the temperature measurements and microscope images taken after creation of the clad.

  10. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  11. Estimating of equilibrium formation temperature by curve fitting method and it's problems

    SciTech Connect

    Kenso Takai; Masami Hyodo; Shinji Takasugi

    1994-01-20

    Determination of true formation temperature from measured bottom hole temperature is important for geothermal reservoir evaluation after completion of well drilling. For estimation of equilibrium formation temperature, we studied non-linear least squares fitting method adapting the Middleton Model (Chiba et al., 1988). It was pointed out that this method was applicable as simple and relatively reliable method for estimation of the equilibrium formation temperature after drilling. As a next step, we are studying the estimation of equilibrium formation temperature from bottom hole temperature data measured by MWD (measurement while drilling system). In this study, we have evaluated availability of nonlinear least squares fitting method adapting curve fitting method and the numerical simulator (GEOTEMP2) for estimation of the equilibrium formation temperature while drilling.

  12. Estimating atmospheric temperature profile by an airborne microwave radiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xu, Jian; Kenntner, Mareike; Schreier, Franz; Doicu, Adrian

    2017-04-01

    As the rising atmospheric issues such as climate change, air pollution, and ozone depletion have extracted extensive attraction worldwide, observing and modeling of atmospheric quantities becomes critical to our understanding of the environment. This work focuses on the performance of an airborne passive microwave radiometer called MTP (Microwave Temperature Profiler). We aim to obtain vertically distributed atmospheric temperature from intensities measured by the instrument in terms of three frequencies and ten viewing angles. A retrieval program TIRAMISU (Temperature InveRsion Algorithm for MIcrowave SoUnding) has been utilized for processing the MTP data. To solve this severely ill-posed inverse problem, an analysis of different ways of constructing the penalty term onto the Tikhonov-type objective function is conducted. This numerical analysis can help us to better understand pros and cons of these regularization methods and to investigate the measurement capabilities of MTP.

  13. Nanoparticle temperature estimation in combined ac and dc magnetic fields

    PubMed Central

    Rauwerdink, Adam M; Hansen, Eric W; Weaver, John B

    2013-01-01

    The harmonics produced by the nonlinear magnetization of superparamagnetic nanoparticles have been utilized in a number of budding medical devices. Here we expand on an earlier technique for quantitatively measuring nanoparticle temperature in a purely ac field by including the presence of a static field. The ability to quantify nanoparticle temperature by tracking changes in the 4th/2nd harmonic ratio is presented and shown to achieve an accuracy of 0.79 K. The advantage of even harmonics, issues with odd harmonics in the presence of a static field and the potential for future incorporation into an imaging system are discussed. PMID:19741275

  14. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    SciTech Connect

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  15. Estimation of subsurface thermal structure using sea surface height and sea surface temperature

    NASA Technical Reports Server (NTRS)

    Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)

    2012-01-01

    A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.

  16. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  17. An algorithm for the estimation of water temperatures from thermal multispectral airborne remotely sensed data

    NASA Technical Reports Server (NTRS)

    Jaggi, S.; Quattrochi, D.; Baskin, R.

    1992-01-01

    A method for water temperature estimation on the basis of thermal data is presented and tested against NASA's Thermal IR Multispectral Scanner. Using realistic bounds on emissivities, temperature bounds are calculated and refined to estimate a tighter bound on the emissivity of the source. The method is useful only when a realistic set of bounds can be obtained for the emissivities of the data.

  18. Feasibility of estimation of surface air temperature from meteorological satellite data test plan

    NASA Technical Reports Server (NTRS)

    Phinney, D. E.

    1978-01-01

    A conceptual system designed to estimate daily surface air temperatures utilizing radiometric data obtained from polar orbiting meteorological satellites is discussed in this memorandum. The Surface Air Temperature Estimation System is an outgrowth of previous developmental and operational systems. The system represents an effort to integrate both satellite and surface meteorological observations into an operational framework which would be usable worldwide.

  19. Esophageal and rectal temperatures as estimates of core temperature during therapeutic whole-body hypothermia.

    PubMed

    Sarkar, Subrata; Donn, Steven M; Bhagat, Indira; Dechert, Ronald E; Barks, John D

    2013-01-01

    We monitored whole-body cooling concurrently by both esophageal and rectal probes. Esophageal temperature was significantly higher compared with simultaneous rectal temperature during cooling, with a temperature gradient ranging from 0.46 to 1.03°C (median, 0.8°C; IQR, 0.6-0.8°C). During rewarming, this temperature difference disappeared.

  20. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects.

    PubMed

    Sim, Soo Young; Joo, Kwang Min; Kim, Han Byul; Jang, Seungjin; Kim, Beomoh; Hong, Seungbum; Kim, Sungwan; Park, Kwang Suk

    2017-03-01

    Core body temperature is a reliable marker for circadian rhythm. As characteristics of the circadian body temperature rhythm change during diverse health problems, such as sleep disorder and depression, body temperature monitoring is often used in clinical diagnosis and treatment. However, the use of current thermometers in circadian rhythm monitoring is impractical in daily life. As heart rate is a physiological signal relevant to thermoregulation, we investigated the feasibility of heart rate monitoring in estimating circadian body temperature rhythm. Various heart rate parameters and core body temperature were simultaneously acquired in 21 healthy, ambulatory subjects during their routine life. The performance of regression analysis and the extended Kalman filter on daily body temperature and circadian indicator (mesor, amplitude, and acrophase) estimation were evaluated. For daily body temperature estimation, mean R-R interval (RRI), mean heart rate (MHR), or normalized MHR provided a mean root mean square error of approximately 0.40 °C in both techniques. The mesor estimation regression analysis showed better performance than the extended Kalman filter. However, the extended Kalman filter, combined with RRI or MHR, provided better accuracy in terms of amplitude and acrophase estimation. We suggest that this noninvasive and convenient method for estimating the circadian body temperature rhythm could reduce discomfort during body temperature monitoring in daily life. This, in turn, could facilitate more clinical studies based on circadian body temperature rhythm.

  1. Estimated temperatures of organic materials in the TMI-2 reactor building during hydrogen burn

    SciTech Connect

    Schutz, H.W.; Nagata, P.K.

    1982-12-01

    Maximum surface temperatures attained by certain materials during the hydrogen burn associated with the March 1979 accident at TMI-2 are estimated, using photographs and material samples from the reactor building. Thermal degradation, melting, and charring noted in the photographs, and the chemical and thermal analyses of polymeric and organic materials indicated an increase in temperature with elevation in the reactor building. The maximum material surface temperatures estimated ranged from 360 to 500/sup 0/F (455 to 533/sup 0/K). Analyses were performed to estimate the damage to electrical cables and insulation. Based on temperatures reached and approximate duration, greater than 90% of cable insulation life remains.

  2. Estimation Uncertainty in the Determinatin of the Master Curve Reference Temperature

    SciTech Connect

    TL Sham; DR Eno

    2006-11-15

    The Master Curve Reference Temperature, T{sub 0}, characterizes the fracture performance of structural steels in the ductile-to-brittle transition region. For a given material, this reference temperature is estimated via fracture toughness testing. A methodology is presented to compute the standard error of an estimated T{sub 0} value from a finite sample of toughness data, in a unified manner for both constant temperature and multiple temperature test methods. Using the asymptotic properties of maximum likelihood estimators, closed-form expressions for the standard error of the estimate of T{sub 0} are presented for both test methods. This methodology includes statistically rigorous treatment of censored data, which represents an advance over the current ASTM E1921 methodology. Through Monte Carlo simulations of realistic constant temperature and multiple temperature test plans, the recommended likelihood-based procedure is shown to provide better statistical performance than the methods in the ASTM E1920 standards.

  3. Estimation of uncertainty for fatigue growth rate at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Nyilas, Arman; Weiss, Klaus P.; Urbach, Elisabeth; Marcinek, Dawid J.

    2014-01-01

    Fatigue crack growth rate (FCGR) measurement data for high strength austenitic alloys at cryogenic environment suffer in general from a high degree of data scatter in particular at ΔK regime below 25 MPa√m. Using standard mathematical smoothing techniques forces ultimately a linear relationship at stage II regime (crack propagation rate versus ΔK) in a double log field called Paris law. However, the bandwidth of uncertainty relies somewhat arbitrary upon the researcher's interpretation. The present paper deals with the use of the uncertainty concept on FCGR data as given by GUM (Guidance of Uncertainty in Measurements), which since 1993 is a recommended procedure to avoid subjective estimation of error bands. Within this context, the lack of a true value addresses to evaluate the best estimate by a statistical method using the crack propagation law as a mathematical measurement model equation and identifying all input parameters. Each parameter necessary for the measurement technique was processed using the Gaussian distribution law by partial differentiation of the terms to estimate the sensitivity coefficients. The combined standard uncertainty determined for each term with its computed sensitivity coefficients finally resulted in measurement uncertainty of the FCGR test result. The described procedure of uncertainty has been applied within the framework of ITER on a recent FCGR measurement for high strength and high toughness Type 316LN material tested at 7 K using a standard ASTM proportional compact tension specimen. The determined values of Paris law constants such as C0 and the exponent m as best estimate along with the their uncertainty value may serve a realistic basis for the life expectancy of cyclic loaded members.

  4. Direct Emissivity Measurements of Painted Metals for Improved Temperature Estimation During Laser Damage Testing

    DTIC Science & Technology

    2014-03-27

    DIRECT EMISSIVITY MEASUREMENTS OF PAINTED METALS FOR IMPROVED TEMPERATURE ESTIMATION DURING LASER DAMAGE TESTING THESIS Sean M. Baumann, Civilian...radiance measurement, and fitted spectral radiance results, of one pixel on the back surface of a painted metal sample, far from laser burn-through hole...parabolic mirror NET noise-equivalent temperature xv DIRECT EMISSIVITY MEASUREMENTS OF PAINTED METALS FOR IMPROVED TEMPERATURE ESTIMATION DURING LASER DAMAGE

  5. Validation of temperature methods for the estimation of pre-appearance interval in carrion insects.

    PubMed

    Matuszewski, Szymon; Mądra-Bielewicz, Anna

    2016-03-01

    The pre-appearance interval (PAI) is an interval preceding appearance of an insect taxon on a cadaver. It decreases with an increase in temperature in several forensically-relevant insects. Therefore, forensic entomologists developed temperature methods for the estimation of PAI. In the current study these methods were tested in the case of adult and larval Necrodes littoralis (Coleoptera: Silphidae), adult and larval Creophilus maxillosus (Coleoptera: Staphylinidae), adult Necrobia rufipes (Coleoptera: Cleridae), adult Saprinus semistriatus (Coleoptera: Histeridae) and adult Stearibia nigriceps (Diptera: Piophilidae). Moreover, factors affecting accuracy of estimation and techniques for the approximation and correction of predictor temperature were studied using results of a multi-year pig carcass study. It was demonstrated that temperature methods outperform conventional methods. The accuracy of estimation was strongly related to the quality of the temperature model for PAI and the quality of temperature data used for the estimation. Models for larval stage performed better than models for adult stage. Mean temperature for the average seasonal PAI was a good initial approximation of predictor temperature. Moreover, iterative estimation of PAI was found to effectively correct predictor temperature, although some pitfalls were identified in this respect. Implications for the estimation of PAI are discussed.

  6. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wilby, R. L.

    2013-12-01

    Development agencies often face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in data sparse regions with few meteorological stations, complex topography and extreme weather events. At the same time, these regions are also often highly vulnerable to climate risks. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the Highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet-days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of growing season rainfall totals. We conclude that local terrain and remotely sensed variables can be used to infer annual mean temperature and precipitation across the most populous, south-west area of Yemen. Important features of the daily and seasonal weather can also be simulated at the site scale, but more rigorous validation is ultimately constrained by lack of data. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  7. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Yu, D.

    2013-10-01

    Humanitarian and development agencies face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in regions with few meteorological stations, complex topography and extreme weather events. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of the growing season's rainfall totals. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  8. Rainfall and temperature estimation for a data sparse region

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Yu, D.

    2013-06-01

    Agencies face difficult decisions about where and how to prioritise climate risk reduction measures. These tasks are especially challenging in regions with few meteorological stations, complex topography and extreme weather events. In this study, we blend surface meteorological observations, remotely sensed (TRMM and NDVI) data, physiographic indices, and regression techniques to produce gridded maps of annual mean precipitation and temperature, as well as parameters for site-specific, daily weather generation in Yemen. Maps of annual means were cross-validated and tested against independent observations. These replicated known features such as peak rainfall totals in the Highlands and western escarpment, as well as maximum temperatures along the coastal plains and interior. The weather generator reproduced daily and annual diagnostics when run with parameters from observed meteorological series for a test site at Taiz. However, when run with interpolated parameters, the frequency of wet-days, mean wet-day amount, annual totals and variability were underestimated. Stratification of sites for model calibration improved representation of growing season rainfall totals. Future work should focus on a wider range of model inputs to better discriminate controls exerted by different landscape units.

  9. An Improved Estimation of COMS-based Sea Surface Temperature

    NASA Astrophysics Data System (ADS)

    Huh, M.; Seo, M.; Han, K. S.; Shin, J.; Shin, I.

    2016-12-01

    The objective of this paper is to implement retrieving Sea Surface Temperature (SST) using geostationary satellite of Korea, Communication, Ocean and Meteorological Satellite/Meteorological Imager (COMS/MI). In this study, IR channels of COMS are corrected using the Global Space-Based Inter-Calibration System (GSICS) that produces consistent accuracy of thermal infrared (IR) channels of satellite measurements. The new retrieval method is adopted the Multi-Channel Sea Surface Temperature (MCSST) `split-window' algorithm with First Guess and the quality controlled in-situ buoy data are used the reference data. The new MCSST_FG results are showed that RMSE is 0.85 ºC in day time (0.747 ºC in night time) by comparison with 0.92 ºC (0.827 ºC in night time) of MCSST which is the current operational retrieval method. We found the regional biases are reduced on MCSST_FG algorithm though, there are the skewness and outliers in the analysis of differences retrieved SST and in-situ. It is significant efforts reprocessing and improvement of the satellite COMS SST that expects the COMS SST is made use of thematic climate data record such as Global essential climate variables.

  10. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    NASA Astrophysics Data System (ADS)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  11. Estimation of maximum and minimum air temperatures in urban areas using MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Yoo, Cheolhee; Im, Jungho

    2017-04-01

    Urban air temperature is highly related to the various urban issues such as urban heat island effect, air pollutions, and human mortality. Especially, the urban maximum and minimum air temperatures are important variables in populated areas as they are directly related to fatal disasters such as heat waves and tropical nights strike. Due to the complex landscape of a typical city, urban air temperature has spatial heterogeneity. Therefore, it is difficult to estimate the spatial distribution of air temperature within a city simply based on in situ measurements at sparsely located stations. Satellite data can be a good alternative as they provide land surface temperature (LST) over vast areas. In recent years, some studies estimated air temperature at a specific time using satellite-derived LST time series data. However, since daily maximum and minimum temperatures do not occur at any particular time, it is more challenging to estimate them from satellite-derived LST. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) LST time series data were used to estimate daily maximum and minimum temperatures of two major cities with different climate characteristics, Seoul in South Korea and Los Angeles in the United States. Elevation, aspect, latitude, longitude, impervious area, solar radiation and normalized difference vegetation index (NDVI) were used as ancillary data. Random forest, a widely used machine learning approach, was used to estimate daily maximum and minimum temperatures in this study. The results through 10-folds cross-validation showed Root Mean Square Errors (RMSE) of 1.2 and 1.7°C and correlation coefficients of 0.83 and 0.92 for estimating the daily maximum temperatures of Seoul and Los Angeles and RMSE of 1.2 and 1.3°C and correlation coefficients of both 0.87 for estimating the daily minimum temperatures of two cities, Seoul and Los Angeles.

  12. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  13. Estimation of early postmortem intervals by a multiple regression analysis using rectal temperature and non-temperature based postmortem changes.

    PubMed

    Honjyo, Kohji; Yonemitsu, Kosei; Tsunenari, Shigeyuki

    2005-10-01

    Five general methods based on rectal temperature and a multiple regression analysis using rectal temperature and non-temperature based postmortem changes were applied to 212 postmortem cases of within 24h postmortem (PM) intervals. Non-temperature based postmortem changes of rigidity, hypostasis and corneal turbidity were numerically categorized and used with rectal temperatures as four statistical variables in the multiple regression analysis. The correlation coefficient values between true and calculated postmortem intervals were 0.78-0.82 in the five general methods based on rectal temperature. The multiple regression analysis produced a multiple correlation coefficient value of 0.89 and according to the error ranges of the PM intervals, 72% of the cases were estimated within the error of +/-1.0 h and 92% within +/-5.0 h. Although assessments of non-temperature based PM changes are mostly subjective and have a wide variation, the present study demonstrated a usefulness of non-temperature based PM changes in the estimation of PM intervals.

  14. Inverse heat conduction estimation of inner wall temperature fluctuations under turbulent penetration

    NASA Astrophysics Data System (ADS)

    Guo, Zhouchao; Lu, Tao; Liu, Bo

    2017-04-01

    Turbulent penetration can occur when hot and cold fluids mix in a horizontal T-junction pipe at nuclear plants. Caused by the unstable turbulent penetration, temperature fluctuations with large amplitude and high frequency can lead to time-varying wall thermal stress and even thermal fatigue on the inner wall. Numerous cases, however, exist where inner wall temperatures cannot be measured and only outer wall temperature measurements are feasible. Therefore, it is one of the popular research areas in nuclear science and engineering to estimate temperature fluctuations on the inner wall from measurements of outer wall temperatures without damaging the structure of the pipe. In this study, both the one-dimensional (1D) and the two-dimensional (2D) inverse heat conduction problem (IHCP) were solved to estimate the temperature fluctuations on the inner wall. First, numerical models of both the 1D and the 2D direct heat conduction problem (DHCP) were structured in MATLAB, based on the finite difference method with an implicit scheme. Second, both the 1D IHCP and the 2D IHCP were solved by the steepest descent method (SDM), and the DHCP results of temperatures on the outer wall were used to estimate the temperature fluctuations on the inner wall. Third, we compared the temperature fluctuations on the inner wall estimated by the 1D IHCP with those estimated by the 2D IHCP in four cases: (1) when the maximum disturbance of temperature of fluid inside the pipe was 3°C, (2) when the maximum disturbance of temperature of fluid inside the pipe was 30°C, (3) when the maximum disturbance of temperature of fluid inside the pipe was 160°C, and (4) when the fluid temperatures inside the pipe were random from 50°C to 210°C.

  15. New procedures to estimate water temperatures and water depths for application in climate-dengue modeling.

    PubMed

    Cheng, S; Kalkstein, L S; Focks, D A; Nnaji, A

    1998-09-01

    Two new approaches have been developed to estimate water temperatures and water depths in containers that commonly are used as breeding sites for mosquitoes, the primary vectors of dengue viruses. These estimates are incorporated in recently developed stochastic simulation models used to describe the daily dynamics of dengue virus transmission in the urban environment. Water temperature estimates are provided through a regression model that includes meteorological variables not previously used; results show that they are significantly better than those used in previous dengue transmission models. Water depth models use a climatic water budget approach which estimates moisture storage within containers. The water depth models are less precise than those developed for water temperature; however, results are superior to those used in previous models. These new approaches should improve estimates of the impact of water conditions on dengue vectors.

  16. A method for temperature estimation in high-temperature geothermal reservoirs by using synthetic fluid inclusions

    NASA Astrophysics Data System (ADS)

    Ruggieri, Giovanni; Orlando, Andrea; Chiarantini, Laura; Borrini, Daniele; Weisenberger, Tobias B.

    2016-04-01

    Super-hot geothermal systems in magmatic areas are a possible target for the future geothermal exploration either for the direct exploitation of fluids or as a potential reservoirs of Enhanced Geothermal Systems. Reservoir temperature measurements are crucial for the assessment of the geothermal resources, however temperature determination in the high-temperature (>380°C) zone of super-hot geothermal systems is difficult or impossible by using either mechanical temperature and pressure gauges (Kuster device) and electronic devices. In the framework of Integrated Methods for Advanced Geothermal Exploration (IMAGE) project, we developed a method to measure high reservoir temperature by the production of synthetic fluid inclusions within an apparatus that will be placed in the high-temperature zone of geothermal wells. First experiments were carried out by placing a gold capsule containing pre-fractured quartz and an aqueous solution (10 wt.% NaCl + 0.4 wt.% NaOH) in an externally heated pressure vessel. Experimental pressure-temperature conditions (i.e. 80-300 bars and 280-400°C) were set close to the liquid/vapour curve of pure H2O or along the H2O critical isochore. The experiments showed that synthetic fluid inclusions form within a relatively short time (even in 48 hours) and that temperatures calculated from homogenization temperatures and isochores of newly formed inclusions are close to experimental temperatures. A second set of laboratory experiments were carried out by using a stainless steel micro-rector in which a gold capsule (containing the pre-fractured quartz and the aqueous solution) was inserted together with an amount of distilled water corresponding to the critical density of water. These experiments were conducted by leaving the new micro-reactor within a furnace at 400°C and were aimed to reproduce the temperature existing in super-hot geothermal wells. Synthetic fluid inclusions formed during the experiments had trapping temperature

  17. Calculations of atmospheric transmittance in the 11 micrometer window for estimating skin temperature from VISSR infrared brightness temperatures

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1984-01-01

    An algorithm for calculating the atmospheric transmittance in the 10 to 20 micro m spectral band from a known temperature and dewpoint profile, and then using this transmittance to estimate the surface (skin) temperature from a VISSR observation in the 11 micro m window is presented. Parameterizations are drawn from the literature for computing the molecular absorption due to the water vapor continuum, water vapor lines, and carbon dioxide lines. The FORTRAN code is documented for this application, and the sensitivity of the derived skin temperature to variations in the model's parameters is calculated. The VISSR calibration uncertainties are identified as the largest potential source of error.

  18. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  19. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    PubMed Central

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa. PMID:24977219

  20. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    PubMed

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  1. Similar negative impacts of temperature on global wheat yield estimated by three independent methods

    USDA-ARS?s Scientific Manuscript database

    The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation approaches. Here we show that grid-based simulations, point-based simulations, and statistical regressions produce similar estimates of temperature ...

  2. Generalizations of the Orr-Sommerfeld problem for the case in which the unperturbed shear motion is nonsteady

    NASA Astrophysics Data System (ADS)

    Georgievskii, D. V.; Müller, W. H.; Abali, B. E.

    2014-04-01

    We consider problems of the linearized theory of hydrodynamic stability for the case in which the unperturbed plane-parallel-flow of a viscous incompressible fluid in a layer is substantially unsteady. We analyze the Orr-Sommerfeld equation, which is generalized for this case, with different combinations of the four boundary conditions specified on the straight parts of the boundaries of the layer. Using the apparatus of integral relations, including, in particular, the analysis of the minimization problem for quadratic functionals, we derive upper bounds for the growth or decay of kinematic perturbations with respect to the integral measure. A special attention is paid to the longitudinal oscillation mode of the layer, to the power-law acceleration or deceleration, and also to the process similar to the diffusion of the vortex layer. An investigation of the reducibility of the three-dimensional picture of perturbations imposed on a plane-parallel unsteady shift to a two-dimensional picture in the plane of this shift is carried out. Generalizations of the Squire theorem are established.

  3. The impact of threat of shock on the framing effect and temporal discounting: executive functions unperturbed by acute stress?

    PubMed

    Robinson, Oliver J; Bond, Rebecca L; Roiser, Jonathan P

    2015-01-01

    Anxiety and stress-related disorders constitute a large global health burden, but are still poorly understood. Prior work has demonstrated clear impacts of stress upon basic cognitive function: biasing attention toward unexpected and potentially threatening information and instantiating a negative affective bias. However, the impact that these changes have on higher-order, executive, decision-making processes is unclear. In this study, we examined the impact of a translational within-subjects stress induction (threat of unpredictable shock) on two well-established executive decision-making biases: the framing effect (N = 83), and temporal discounting (N = 36). In both studies, we demonstrate (a) clear subjective effects of stress, and (b) clear executive decision-making biases but (c) no impact of stress on these decision-making biases. Indeed, Bayes factor analyses confirmed substantial preference for decision-making models that did not include stress. We posit that while stress may induce subjective mood change and alter low-level perceptual and action processes (Robinson et al., 2013c), some higher-level executive processes remain unperturbed by these impacts. As such, although stress can induce a transient affective biases and altered mood, these need not result in poor financial decision-making.

  4. The impact of threat of shock on the framing effect and temporal discounting: executive functions unperturbed by acute stress?

    PubMed Central

    Robinson, Oliver J.; Bond, Rebecca L.; Roiser, Jonathan P.

    2015-01-01

    Anxiety and stress-related disorders constitute a large global health burden, but are still poorly understood. Prior work has demonstrated clear impacts of stress upon basic cognitive function: biasing attention toward unexpected and potentially threatening information and instantiating a negative affective bias. However, the impact that these changes have on higher-order, executive, decision-making processes is unclear. In this study, we examined the impact of a translational within-subjects stress induction (threat of unpredictable shock) on two well-established executive decision-making biases: the framing effect (N = 83), and temporal discounting (N = 36). In both studies, we demonstrate (a) clear subjective effects of stress, and (b) clear executive decision-making biases but (c) no impact of stress on these decision-making biases. Indeed, Bayes factor analyses confirmed substantial preference for decision-making models that did not include stress. We posit that while stress may induce subjective mood change and alter low-level perceptual and action processes (Robinson et al., 2013c), some higher-level executive processes remain unperturbed by these impacts. As such, although stress can induce a transient affective biases and altered mood, these need not result in poor financial decision-making. PMID:26441705

  5. Estimation of the global average temperature with optimally weighted point gauges

    NASA Technical Reports Server (NTRS)

    Hardin, James W.; Upson, Robert B.

    1993-01-01

    This paper considers the minimum mean squared error (MSE) incurred in estimating an idealized Earth's global average temperature with a finite network of point gauges located over the globe. We follow the spectral MSE formalism given by North et al. (1992) and derive the optimal weights for N gauges in the problem of estimating the Earth's global average temperature. Our results suggest that for commonly used configurations the variance of the estimate due to sampling error can be reduced by as much as 50%.

  6. Estimating daily air temperatures over the Tibetan Plateau by dynamically integrating MODIS LST data

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Zhang, Fan; Ye, Ming; Che, Tao; Zhang, Guoqing

    2016-10-01

    Recently, remotely sensed land surface temperature (LST) data have been used to estimate air temperatures because of the sparseness of station measurements in remote mountainous areas. Due to the availability and accuracy of Moderate Resolution Imaging Spectroradiometer (MODIS) LST data, the use of a single term or a fixed combination of terms (e.g., Terra/Aqua night and Terra/Aqua day), as used in previous estimation methods, provides only limited practical application. Furthermore, the estimation accuracy may be affected by different combinations and variable data quality among the MODIS LST terms and models. This study presents a method that dynamically integrates the available LST terms to estimate the daily mean air temperature and simultaneously considers model selection, data quality, and estimation accuracy. The results indicate that the differences in model performance are related to the combinations of LST terms and their data quality. The spatially averaged cloud cover of 14% for the developed product between 2003 and 2010 is much lower than the 35-54% for single LST terms. The average cross-validation root-mean-square difference values are approximately 2°C. This study identifies the best LST combinations and statistical models and provides an efficient method for daily air temperature estimation with low cloud blockage over the Tibetan Plateau (TP). The developed data set and the method proposed in this study can help alleviate the problem of sparse air temperature data over the TP.

  7. Estimation of percolation flux from borehole temperature data at Yucca Mountain, Nevada.

    PubMed

    Bodvarsson, G S; Kwicklis, E; Shan, C; Wu, Y S

    2003-01-01

    Temperature data from the unsaturated zone (UZ) at Yucca Mountain are analyzed to estimate percolation-flux rates and overall heat flux. A multilayer, one-dimensional analytical solution is presented for determining percolation flux from temperature data. Case studies have shown that the analytical solution agrees very well with results from the numerical code, TOUGH2. The results of the analysis yield percolation fluxes in the range from 0 to 20 mm/year for most of the deep boreholes. This range is in good agreement with the results of infiltration studies at Yucca Mountain. Percolation flux for the shallower boreholes, however, cannot be accurately determined from temperature data alone because large gas flow in the shallow system alters the temperature profiles. Percolation-flux estimates for boreholes located near or intersecting major faults are significantly higher than those for other boreholes. These estimates may be affected by gas flow in the faults.

  8. Estimation of the equilibrium formation temperature in the presence of bore fluid invasion

    NASA Astrophysics Data System (ADS)

    Poulsen, Søren Erbs; Nielsen, Søren Bom; Balling, Niels

    2012-09-01

    Bottom hole temperatures (BHTs) measured during drilling operations are thermally disturbed by the drilling process. This paper presents a method, CSMI (Cylindrical Source Model with Invasion of bore mud filtrate), for estimating equilibrium formation temperatures with probability distributions from BHT measurements in the presence of bore fluid invasion. The scheme is based on finite element analysis in conjunction with Markov chain Monte Carlo inversion. The axisymmetric forward model assumes a cylindrical source of finite radius and contrasting thermal parameters, which includes the possibility of invasion (advection) of mud filtrate into the formation. In a synthetic example, it is demonstrated that given bore fluid invasion and a low and high temperature of the bore mud and formation, respectively, the equilibrium formation temperature and the uncertainty hereon is underestimated by correction schemes based on purely conductive models. The influence of the borehole radius and fluid invasion on the temperature measured at the borehole axis attenuates over time. It is further demonstrated that the invasion radius and the matrix thermal conductivity cannot be estimated simultaneously with the CSMI scheme. The analysis of five BHT records measured onshore Denmark, for which the equilibrium formation temperature is known, shows that CSMI temperatures based on single datum records are highly uncertain because of a strong negative coupling between the temperature of the mud filtrate and the equilibrium formation temperature. For records with multiple temperature measurements, the CSMI scheme matches statistically the measured equilibrium formation temperatures. It is further shown that additional negative bias is added to Horner plot temperatures if bore fluid invasion has occurred. Allowing for bore fluid invasion in addition to a borehole of finite radius and contrasting thermal parameters, increases temperature estimates by 5 per cent (4-7 per cent) on average

  9. Estimating transient climate response using consistent temperature reconstruction methods in models and observations

    NASA Astrophysics Data System (ADS)

    Richardson, M.; Cowtan, K.; Hawkins, E.; Stolpe, M.

    2015-12-01

    Observational temperature records such as HadCRUT4 typically have incomplete geographical coverage and blend air temperature over land with sea surface temperatures over ocean, in contrast to model output which is commonly reported as global air temperature. This complicates estimation of properties such as the transient climate response (TCR). Observation-based estimates of TCR have been made using energy-budget constraints applied to time series of historical radiative forcing and surface temperature changes, while model TCR is formally derived from simulations where CO2 increases at 1% per year. We perform a like-with-like comparison using three published energy-budget methods to derive modelled TCR from historical CMIP5 temperature series sampled in a manner consistent with HadCRUT4. Observation-based TCR estimates agree to within 0.12 K of the multi-model mean in each case and for 2 of the 3 energy-budget methods the observation-based TCR is higher than the multi-model mean. For one energy-budget method, using the HadCRUT4 blending method leads to a TCR underestimate of 0.3±0.1 K, relative to that estimated using global near-surface air temperatures.

  10. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2017-02-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  11. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  12. Using pairs of physiological models to estimate temporal variation in amphibian body temperature.

    PubMed

    Roznik, Elizabeth A; Alford, Ross A

    2014-10-01

    Physical models are often used to estimate ectotherm body temperatures, but designing accurate models for amphibians is difficult because they can vary in cutaneous resistance to evaporative water loss. To account for this variability, a recently published technique requires a pair of agar models that mimic amphibians with 0% and 100% resistance to evaporative water loss; the temperatures of these models define the lower and upper boundaries of possible amphibian body temperatures for the location in which they are placed. The goal of our study was to develop a method for using these pairs of models to estimate parameters describing the distributions of body temperatures of frogs under field conditions. We radiotracked green-eyed treefrogs (Litoria serrata) and collected semi-continuous thermal data using both temperature-sensitive radiotransmitters with an automated datalogging receiver, and pairs of agar models placed in frog locations, and we collected discrete thermal data using a non-contact infrared thermometer when frogs were located. We first examined the accuracy of temperature-sensitive transmitters in estimating frog body temperatures by comparing transmitter data with direct temperature measurements taken simultaneously for the same individuals. We then compared parameters (mean, minimum, maximum, standard deviation) characterizing the distributions of temperatures of individual frogs estimated from data collected using each of the three methods. We found strong relationships between thermal parameters estimated from data collected using automated radiotelemetry and both types of thermal models. These relationships were stronger for data collected using automated radiotelemetry and impermeable thermal models, suggesting that in the field, L. serrata has a relatively high resistance to evaporative water loss. Our results demonstrate that placing pairs of thermal models in frog locations can provide accurate estimates of the distributions of temperatures

  13. Estimating Synthetic Temperature Profiles from Altimetry in the Intra-Americas Sea

    NASA Astrophysics Data System (ADS)

    Barth, S. C.; Leben, R. L.

    2001-12-01

    Satellite altimetry measurements are used to estimate synthetic temperature profiles in the Gulf of Mexico based on a synthesis of satellite and model data. Temporal and spatial means are removed from the modeled dynamic height and temperature profile measurements to develop statistical models for estimating both the temperature profile anomaly and the mean temperature profile as a function of location within the gulf. The model data is from a seven-year simulation of the gulf circulation using a general circulation model (GCM) with realistic forcing. Singular value decompositions of the GCM dynamic height and temperature anomalies are performed at 1/12° resolution to derive vertical empirical orthogonal functions (EOFs) for use as basis functions in the regression models. EOFs are identified for up to six modes, and each mode is estimated independently using a combination of variables, including dynamic height anomaly, Julian date, and location in the case of time variability, and dynamic height anomaly and location for spatial variability of the mean. The spatially varying mean temperature profile is based on the statistical model for the mean variations and the 7-year mean dynamic height from a hindcast simulation of the gulf using the same GCM assimilating TOPEX/POSEIDON and ERS-1&2 altimetry. Altimetric sea surface height anomalies are used to estimate the subsurface temperature profile anomalies and combined with the estimated mean profiles to give the full profile at standard depths. These synthetic temperature profiles are evaluated using over 2100 temperature profiles collected by PALACE floats deployed in the Gulf between April 8, 1998 and May 31, 2001. We will discuss the applicability of the technique to the Caribbean Sea and applications to hurricane and climate modeling.

  14. A Promising New Method to Estimate Drug-Polymer Solubility at Room Temperature.

    PubMed

    Knopp, Matthias Manne; Gannon, Natasha; Porsch, Ilona; Rask, Malte Bille; Olesen, Niels Erik; Langguth, Peter; Holm, René; Rades, Thomas

    2016-09-01

    The established methods to predict drug-polymer solubility at room temperature either rely on extrapolation over a long temperature range or are limited by the availability of a liquid analogue of the polymer. To overcome these issues, this work investigated a new methodology where the drug-polymer solubility is estimated from the solubility of the drug in a solution of the polymer at room temperature using the shake-flask method. Thus, the new polymer in solution method does not rely on temperature extrapolations and only requires the polymer and a solvent, in which the polymer is soluble, that does not affect the molecular structure of the drug and polymer relative to that in the solid state. Consequently, as this method has the potential to provide fast and precise estimates of drug-polymer solubility at room temperature, we encourage the scientific community to further investigate this principle both fundamentally and practically.

  15. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  16. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy.

    PubMed

    Liu, Hao-Li; Li, Meng-Lin; Shih, Tzu-Ching; Huang, Sheng-Min; Lu, I-Yeh; Lin, Deng-Yn; Lin, Shi-Ming; Ju, Kuen-Cheng

    2009-10-01

    Focused ultrasound thermal therapy relies on temperature monitoring for treatment guidance and assurance of targeting and dose control. One potential approach is to monitor temperature change through ultrasonic-backscattered signal processing. The current approach involves the detection of echo time-shifts based on cross-correlation processing from segmented radiofrequency (RF) data. In this study, we propose a novel ultrasonic temperature-measurement approach that detects changes in instantaneous frequency along the imaging beam direction. Focused ultrasound was used as the heating source, and the 1-D beamformed RF signals provided from an ultrasound imager were used to verify the proposed algorithm for temperature change estimation. For comparison, a conventional cross-correlation technique was also evaluated. Heating experiments testing tissue-mimicking phantoms and ex vivo porcine muscles were conducted. The results showed that temperature can be well estimated by the proposed algorithm in the temperature range, where the relationship of sound speed versus temperature is linear. Compared with the cross-correlation-based algorithm, the proposed new algorithm yields a six-fold increase in computational efficiency, along with comparable contrast-detection ability and precision. This new algorithm may serve as an alternative method for implementing temperature estimation into a clinical ultrasound imager for thermal therapy guidance.

  17. Estimating internal tissue temperature using microwave radiometry data and bioheat models

    NASA Astrophysics Data System (ADS)

    Xu, Jingyu; Kelly, Patrick

    2017-03-01

    An ability to noninvasively measure the temperature of internal tissue regions would be valuable for applications including the detection of malignancy, inflammation, or ischemia. The output power of a microwave radiometer with an antenna at the skin surface is a weighted average of temperature in a tissue volume beneath the antenna. It is difficult, however, to translate radiometric measurements into temperature estimates for specific internal tissue regions. The chief difficulty is insufficient data: in a realistic system there are no more than a few measurements to characterize the entire volume. Efficient use must be made of available prior information together with the radiometric data in order to generate a useful temperature map. In this work we assume that we know the tissue configuration (obtained from another modality), along with arterial blood temperature, skin temperature, and nominal tissue-specific values for metabolic and blood perfusion rates, thermal conductivity, and dielectric constants. The Pennes bioheat equation can then be used to construct a nominal temperature map, and electromagnetic simulation software to construct the radiometric weighting functions for any given radiometer configuration. We show that deviations from the nominal conditions in localized regions (due, e.g., to the presence of a tumor) lead to changes in the tissue temperature that can also be approximated in terms of the nominal bioheat model. This enables the development of algorithms that use the nominal model along with radiometric data to detect areas of elevated temperature and estimate the temperature in specified tissue regions.

  18. Borehole Temperatures and a Baseline for 20th-Century Global Warming Estimates

    PubMed

    Harris; Chapman

    1997-03-14

    Lack of a 19th-century baseline temperature against which 20th-century warming can be referenced constitutes a deficiency in understanding recent climate change. Combination of borehole temperature profiles, which contain a memory of surface temperature changes in previous centuries, with the meteorological archive of surface air temperatures can provide a 19th-century baseline temperature tied to the current observational record. A test case in Utah, where boreholes are interspersed with meteorological stations belonging to the Historical Climatological Network, yields a noise reduction in estimates of 20th-century warming and a baseline temperature that is 0.6° ± 0.1°C below the 1951 to 1970 mean temperature for the region.

  19. New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator

    NASA Astrophysics Data System (ADS)

    Gabarro, Carolina; Turiel, Antonio; Elosegui, Pedro; Pla-Resina, Joaquim A.; Portabella, Marcos

    2017-08-01

    Monitoring sea ice concentration is required for operational and climate studies in the Arctic Sea. Technologies used so far for estimating sea ice concentration have some limitations, for instance the impact of the atmosphere, the physical temperature of ice, and the presence of snow and melting. In the last years, L-band radiometry has been successfully used to study some properties of sea ice, remarkably sea ice thickness. However, the potential of satellite L-band observations for obtaining sea ice concentration had not yet been explored. In this paper, we present preliminary evidence showing that data from the Soil Moisture Ocean Salinity (SMOS) mission can be used to estimate sea ice concentration. Our method, based on a maximum-likelihood estimator (MLE), exploits the marked difference in the radiative properties of sea ice and seawater. In addition, the brightness temperatures of 100 % sea ice and 100 % seawater, as well as their combined values (polarization and angular difference), have been shown to be very stable during winter and spring, so they are robust to variations in physical temperature and other geophysical parameters. Therefore, we can use just two sets of tie points, one for summer and another for winter, for calculating sea ice concentration, leading to a more robust estimate. After analysing the full year 2014 in the entire Arctic, we have found that the sea ice concentration obtained with our method is well determined as compared to the Ocean and Sea Ice Satellite Application Facility (OSI SAF) dataset. However, when thin sea ice is present (ice thickness ≲ 0.6 m), the method underestimates the actual sea ice concentration. Our results open the way for a systematic exploitation of SMOS data for monitoring sea ice concentration, at least for specific seasons. Additionally, SMOS data can be synergistically combined with data from other sensors to monitor pan-Arctic sea ice conditions.

  20. Estimation of time since death by vitreous humor hypoxanthine, potassium, and ambient temperature.

    PubMed

    Rognum, T O; Holmen, S; Musse, M A; Dahlberg, P S; Stray-Pedersen, A; Saugstad, O D; Opdal, S H

    2016-05-01

    Measurement of vitreous humor potassium (K(+)) has since the 1960s been recognized as an adjunct for estimation of time since death. In 1991 we introduced hypoxanthine (Hx) as a new marker. Furthermore we demonstrated that time since death estimation was more accurate when ambient temperature was included in the calculations, both for K(+) and for Hx. In this paper we present a refined method. The subjects consist of 132 cases with known time of death and ambient temperature. One sample from each subject was used in the calculations. Vitreous humor Hx levels were available in all subjects, while K(+) was measured in 106 of the subjects, due to insufficient volume of vitreous humor. Linear regression analysis was applied to model the correlation between vitreous humor Hx and K(+), taking the interactions with temperature into consideration. The diagrams published in 1991, which also included ambient temperature, estimated median time since death with range between the 10th and 90th percentile, whereas the linear regression analysis presented in this paper estimates mean time since death with a corresponding 95% interval of confidence. We conclude that time since death may be estimated with relatively high precision applying vitreous humor Hx and K(+) concentrations combined with ambient temperature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Confidence interval of intrinsic optimum temperature estimated using thermodynamic SSI model.

    PubMed

    Ikemoto, Takaya; Kurahashi, Issei; Shi, Pei-Jian

    2013-06-01

    The intrinsic optimum temperature for the development of ectotherms is one of the most important factors not only for their physiological processes but also for ecological and evolutional processes. The Sharpe-Schoolfield-Ikemoto (SSI) model succeeded in defining the temperature that can thermodynamically meet the condition that at a particular temperature the probability of an active enzyme reaching its maximum activity is realized. Previously, an algorithm was developed by Ikemoto (Tropical malaria does not mean hot environments. Journal of Medical Entomology, 45, 963-969) to estimate model parameters, but that program was computationally very time consuming. Now, investigators can use the SSI model more easily because a full automatic computer program was designed by Shi et al. (A modified program for estimating the parameters of the SSI model. Environmental Entomology, 40, 462-469). However, the statistical significance of the point estimate of the intrinsic optimum temperature for each ectotherm has not yet been determined. Here, we provided a new method for calculating the confidence interval of the estimated intrinsic optimum temperature by modifying the approximate bootstrap confidence intervals method. For this purpose, it was necessary to develop a new program for a faster estimation of the parameters in the SSI model, which we have also done.

  2. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    SciTech Connect

    Greig, A. Charles, C.; Boswell, R. W.

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are higher than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.

  3. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  4. Mathematical model of cycad cones' thermogenic temperature responses: inverse calorimetry to estimate metabolic heating rates.

    PubMed

    Roemer, R B; Booth, D; Bhavsar, A A; Walter, G H; Terry, L I

    2012-12-21

    A mathematical model based on conservation of energy has been developed and used to simulate the temperature responses of cones of the Australian cycads Macrozamia lucida and Macrozamia. macleayi during their daily thermogenic cycle. These cones generate diel midday thermogenic temperature increases as large as 12 °C above ambient during their approximately two week pollination period. The cone temperature response model is shown to accurately predict the cones' temperatures over multiple days as based on simulations of experimental results from 28 thermogenic events from 3 different cones, each simulated for either 9 or 10 sequential days. The verified model is then used as the foundation of a new, parameter estimation based technique (termed inverse calorimetry) that estimates the cones' daily metabolic heating rates from temperature measurements alone. The inverse calorimetry technique's predictions of the major features of the cones' thermogenic metabolism compare favorably with the estimates from conventional respirometry (indirect calorimetry). Because the new technique uses only temperature measurements, and does not require measurements of oxygen consumption, it provides a simple, inexpensive and portable complement to conventional respirometry for estimating metabolic heating rates. It thus provides an additional tool to facilitate field and laboratory investigations of the bio-physics of thermogenic plants.

  5. A Microfluidic Device for Temporally Controlled Gene Expression and Long-Term Fluorescent Imaging in Unperturbed Dividing Yeast Cells

    PubMed Central

    Charvin, Gilles; Cross, Frederick R.; Siggia, Eric D.

    2008-01-01

    Background Imaging single cells with fluorescent markers over multiple cell cycles is a powerful tool for unraveling the mechanism and dynamics of the cell cycle. Over the past ten years, microfluidic techniques in cell biology have emerged that allow for good control of growth environment. Yet the control and quantification of transient gene expression in unperturbed dividing cells has received less attention. Methodology/Principal Findings Here, we describe a microfluidic flow cell to grow Saccharomyces Cerevisiae for more than 8 generations (≈12 hrs) starting with single cells, with controlled flow of the growth medium. This setup provides two important features: first, cells are tightly confined and grow in a remarkably planar array. The pedigree can thus be determined and single-cell fluorescence measured with 3 minutes resolution for all cells, as a founder cell grows to a micro-colony of more than 200 cells. Second, we can trigger and calibrate rapid and transient gene expression using reversible administration of inducers that control the GAL1 or MET3 promoters. We then show that periodic 10–20 minutes gene induction pulses can drive many cell division cycles with complete coherence across the cell cluster, with either a G1/S trigger (cln1 cln2 cln3 MET3-CLN2) or a mitotic trigger (cdc20 GALL-CDC20). Conclusions/Significance In addition to evident cell cycle applications, this device can be used to directly measure the amount and duration of any fluorescently scorable signal-transduction or gene-induction response over a long time period. The system allows direct correlation of cell history (e.g., hysteresis or epigenetics) or cell cycle position with the measured response. PMID:18213377

  6. Real-time estimation of battery internal temperature based on a simplified thermoelectric model

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Li, Kang; Deng, Jing

    2016-01-01

    Li-ion batteries have been widely used in the EVs, and the battery thermal management is a key but challenging part of the battery management system. For EV batteries, only the battery surface temperature can be measured in real-time. However, it is the battery internal temperature that directly affects the battery performance, and large temperature difference may exist between surface and internal temperatures, especially in high power demand applications. In this paper, an online battery internal temperature estimation method is proposed based on a novel simplified thermoelectric model. The battery thermal behaviour is first described by a simplified thermal model, and battery electrical behaviour by an electric model. Then, these two models are interrelated to capture the interactions between battery thermal and electrical behaviours, thus offer a comprehensive description of the battery behaviour that is useful for battery management. Finally, based on the developed model, the battery internal temperature is estimated using an extended Kalman filter. The experimental results confirm the efficacy of the proposed method, and it can be used for online internal temperature estimation which is a key indicator for better real-time battery thermal management.

  7. Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery

    NASA Astrophysics Data System (ADS)

    Chavula, Geoffrey; Brezonik, Patrick; Thenkabail, Prasad; Johnson, Thomas; Bauer, Marvin

    This paper discusses the potential offered by both Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery in estimating lake surface temperature. The findings from regression analysis show that MODIS/Terra Land Surface Temperature data (MOD11A1) and Ocean Color MODIS/Terra Sea Surface Temperature (SST)-SeaDAS data are closely related to in situ data as evidenced by a relatively high correlation coefficient ( r2 values of 0.7 and 0.74, respectively). In the light of the above, the developed algorithm may be used for estimating lake surface temperature over Lake Malawi from MODIS satellite imagery. Maps of temperature distribution that were generated for the lake from MODIS satellite imagery show that the circulation pattern of Lake Malawi is very complex, with no clear set pattern of temperature distribution over the entire lake. However, the persistence of a cold water zone between Salima and the northern part of Nkhotakota may be indicative of an upwelling region, ideal for the development of fishery industry. Inadequate satellite data made it difficult to assess whether or not the triple window equation previously developed by Wooster et al. [Wooster, M., Patterson, G., Loftie, R., Sear, C., 2001. Derivation and validation of the seasonal thermal structure of Lake Malawi using multi-satellite AVHRR observations. International Journal of Remote Sensing 22(15), 2953-2972] for estimating lake surface temperature using AVHRR was applicable to the entire lake.

  8. Accuracy comparison of spatial interpolation methods for estimation of air temperatures in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Shim, K.; Jung, M.; Kim, S.

    2013-12-01

    Because of complex terrain, micro- as well as meso-climate variability is extreme by locations in Korea. In particular, air temperature of agricultural fields are influenced by topographic features of the surroundings making accurate interpolation of regional meteorological data from point-measured data. This study was conducted to compare accuracy of a spatial interpolation method to estimate air temperature in Korean Peninsula with the rugged terrains in South Korea. Four spatial interpolation methods including Inverse Distance Weighting (IDW), Spline, Kriging and Cokriging were tested to estimate monthly air temperature of unobserved stations. Monthly measured data sets (minimum and maximum air temperature) from 456 automatic weather station (AWS) locations in South Korea were used to generate the gridded air temperature surface. Result of cross validation showed that using Exponential theoretical model produced a lower root mean square error (RMSE) than using Gaussian theoretical model in case of Kriging and Cokriging and Spline produced the lowest RMSE of spatial interpolation methods in both maximum and minimum air temperature estimation. In conclusion, Spline showed the best accuracy among the methods, but further experiments which reflect topography effects such as temperature lapse rate are necessary to improve the prediction.

  9. Estimation of temperature-dependent thermal conductivity of a packed bed of 13X molecular sieves

    SciTech Connect

    Vyas, R.K.; Kumar, S.

    1995-11-01

    Modeling and simulation of packed bed systems operating non-isothermally require sufficiently accurate knowledge of thermal transport properties.Effective thermal conductivity (k) of packed bed of molecular sieves is rarely reported. In this paper, dependence of k on temperature for a packed bed of 13X molecular sieves has been determined. An electrical heater embedded coaxially in the bed was used to heat it, and the radical temperature profiles thus obtained under transient conditions were utilized for estimation. The estimated relationship is k = 8.17635 {times} 10{sup {minus}5} + 10.915427 {times} 10{sup {minus}7}(T {minus} T{sub 0}). Statistical analysis of the estimated parameters has also been carried out. The deviations between experimental and predicted temperatures are less than 5%.

  10. A temperature-based model for estimating monthly average daily global solar radiation in China.

    PubMed

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China.

  11. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields.

    PubMed

    Jones, R E; Zimmerman, J A; Oswald, J; Belytschko, T

    2011-01-12

    In this work we apply a material-frame, kernel-based estimator of continuum fields to atomic data in order to estimate the J-integral for the analysis of an atomically sharp crack at finite temperatures. Instead of the potential energy appropriate for zero temperature calculations, we employ the quasi-harmonic free energy as an estimator of the Helmholtz free energy required by the Eshelby stress in isothermal conditions. We employ the simplest of the quasi-harmonic models, the local harmonic model of LeSar and co-workers, and verify that it is adequate for correction of the zero temperature J-integral expression for various deformation states for our Lennard-Jones test material. We show that this method has the properties of: consistency among the energy, stress and deformation fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation with linear elastic fracture mechanics theory.

  12. An atomistic J-integral at finite temperature based on Hardy estimates of continuum fields

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Zimmerman, J. A.; Oswald, J.; Belytschko, T.

    2011-01-01

    In this work we apply a material-frame, kernel-based estimator of continuum fields to atomic data in order to estimate the J-integral for the analysis of an atomically sharp crack at finite temperatures. Instead of the potential energy appropriate for zero temperature calculations, we employ the quasi-harmonic free energy as an estimator of the Helmholtz free energy required by the Eshelby stress in isothermal conditions. We employ the simplest of the quasi-harmonic models, the local harmonic model of LeSar and co-workers, and verify that it is adequate for correction of the zero temperature J-integral expression for various deformation states for our Lennard-Jones test material. We show that this method has the properties of: consistency among the energy, stress and deformation fields; path independence of the contour integrals of the Eshelby stress; and excellent correlation with linear elastic fracture mechanics theory.

  13. Accurate estimation of cardinal growth temperatures of Escherichia coli from optimal dynamic experiments.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2008-11-30

    Prediction of the microbial growth rate as a response to changing temperatures is an important aspect in the control of food safety and food spoilage. Accurate model predictions of the microbial evolution ask for correct model structures and reliable parameter values with good statistical quality. Given the widely accepted validity of the Cardinal Temperature Model with Inflection (CTMI) [Rosso, L., Lobry, J. R., Bajard, S. and Flandrois, J. P., 1995. Convenient model to describe the combined effects of temperature and pH on microbial growth, Applied and Environmental Microbiology, 61: 610-616], this paper focuses on the accurate estimation of its four parameters (T(min), T(opt), T(max) and micro(opt)) by applying the technique of optimal experiment design for parameter estimation (OED/PE). This secondary model describes the influence of temperature on the microbial specific growth rate from the minimum to the maximum temperature for growth. Dynamic temperature profiles are optimized within two temperature regions ([15 degrees C, 43 degrees C] and [15 degrees C, 45 degrees C]), focusing on the minimization of the parameter estimation (co)variance (D-optimal design). The optimal temperature profiles are implemented in a computer controlled bioreactor, and the CTMI parameters are identified from the resulting experimental data. Approximately equal CTMI parameter values were derived irrespective of the temperature region, except for T(max). The latter could only be estimated accurately from the optimal experiments within [15 degrees C, 45 degrees C]. This observation underlines the importance of selecting the upper temperature constraint for OED/PE as close as possible to the true T(max). Cardinal temperature estimates resulting from designs within [15 degrees C, 45 degrees C] correspond with values found in literature, are characterized by a small uncertainty error and yield a good result during validation. As compared to estimates from non-optimized dynamic

  14. Estimation of maximum temperature in a package subjected to hypothetical-accident thermal-test conditions

    SciTech Connect

    Shah, V.L.

    1996-05-01

    A simple reading-the-graph procedure has been developed to provide a quick estimate of maximum temperature in a package during hypothetical-accident thermal-test conditions. The procedure, based on applying the analytical solutions of a transient thermal-diffusion equation for temperatures in a semi-infinite solid and in an infinitely long circular cylinder subjected to step surface temperature boundary conditions, is applicable to all packages, with or without an internal heat source, that are protected by rectangular or cylindrical thermal insulating overpacks. Simple to follow, the procedure provides a conservative estimate of package maximum temperatures during hypothetical-accident thermal-test conditions. To demonstrate its applicability, the procedure is applied to the Mound 9859 tritium trap package and two values of the thermal diffusivity of the insulation in the overpack.

  15. Estimation of firing temperature of some archaeological pottery shreds excavated recently in Tamilnadu, India.

    PubMed

    Velraj, G; Janaki, K; Musthafa, A Mohamed; Palanivel, R

    2009-05-01

    An attempt has been made in the present work to estimate the firing temperature of the archaeological pottery shreds excavated from the three archaeological sites namely Maligaimedu, Thiruverkadu and Palur in the state of Tamilnadu in INDIA. The lower limit of firing temperature of the Archaeological pottery shreds were estimated by refiring the samples to different temperatures and recording the corresponding FT-IR spectrum. The firing methods and conditions of firing were inferred from the characteristic absorption positions and the bands observed due to the presence of magnetite and hematite in the samples. In addition, the Scanning Electron Microscopic analysis were carried out to study the internal morphology, vitrification factor and the upper limit of the firing temperature of the potteries fired at the time of manufacture.

  16. Estimation of firing temperature of some archaeological pottery shreds excavated recently in Tamilnadu, India

    NASA Astrophysics Data System (ADS)

    Velraj, G.; Janaki, K.; Musthafa, A. Mohamed; Palanivel, R.

    2009-05-01

    An attempt has been made in the present work to estimate the firing temperature of the archaeological pottery shreds excavated from the three archaeological sites namely Maligaimedu, Thiruverkadu and Palur in the state of Tamilnadu in INDIA. The lower limit of firing temperature of the Archaeological pottery shreds were estimated by refiring the samples to different temperatures and recording the corresponding FT-IR spectrum. The firing methods and conditions of firing were inferred from the characteristic absorption positions and the bands observed due to the presence of magnetite and hematite in the samples. In addition, the Scanning Electron Microscopic analysis were carried out to study the internal morphology, vitrification factor and the upper limit of the firing temperature of the potteries fired at the time of manufacture.

  17. Estimation of Temperature Dependent Parameters of a Batch Alcoholic Fermentation Process

    NASA Astrophysics Data System (ADS)

    de Andrade, Rafael Ramos; Rivera, Elmer Ccopa; Costa, Aline C.; Atala, Daniel I. P.; Filho, Francisco Maugeri; Filho, Rubens Maciel

    In this work, a procedure was established to develop a mathematical model considering the effect of temperature on reaction kinetics. Experiments were performed in batch mode in temperatures from 30 to 38°C. The microorganism used was Saccharomyces cerevisiae and the culture media, sugarcane molasses. The objective is to assess the difficulty in updating the kinetic parameters when there are changes in fermentation conditions. We conclude that, although the re-estimation is a time-consuming task, it is possible to accurately describe the process when there are changes in raw material composition if a re-estimation of parameters is performed.

  18. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    SciTech Connect

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  19. A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors

    NASA Astrophysics Data System (ADS)

    Dezhdar, Tara; Moshourab, Rabih A.; Fründ, Ingo; Lewin, Gary R.; Schmuker, Michael

    2015-12-01

    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails.

  20. A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors

    PubMed Central

    Dezhdar, Tara; Moshourab, Rabih A.; Fründ, Ingo; Lewin, Gary R.; Schmuker, Michael

    2015-01-01

    The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor’s temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails. PMID:26638830

  1. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks

    PubMed Central

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M.; Aguiar, Javier M.; Carro, Belén

    2012-01-01

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed. PMID:23202032

  2. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  3. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    PubMed

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  4. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang

    2017-02-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.

  5. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study.

    PubMed

    Maass-Moreno, R; Damianou, C A; Sanghvi, N T

    1996-10-01

    Time shifts in echo signals returning from a heated volume of tissue correlate well with the temperature changes. In this study the relationship between these time shifts (or delays) and the tissue temperature was investigated in excised muscle tissue (turkey breast) as a possible dosimetric method. Heat was induced by the repeated activation of a sharply focused high-intensity ultrasound beam. Pulse echoes were sent and received with a confocal diagnostic transducer during the brief periods when the high-intensity ultrasonic beam was inactive. The change in transit time between echoes collected at different temperatures was estimated using cross-correlation techniques. With spatial-peak temporal-peak intensities (ISPTP) of less than 950W/cm2, the delay versus temperature relationship was fit to a linear equation with highly reproducible coefficients. The results confirmed that for spatial-peak temperature increases of approximately 10 degrees C, temperature-dependent changes in velocity were the single most important factor determining the observed delay, and a linear approximation could produce accurate temperature estimations. Nonlinear phenomena that occurred during the high-intensity irradiation had no significant effect on the measured delay. At ISPTP of 1115-2698 W/cm2, the delay-temperature relationship showed a similar monotonically decreasing pattern, but as the temperature peaked its slope gradually increased. This may reflect the curvilinear nature of the velocity-temperature relationship, but it may also be related to irreversible tissue modifications and to the use of the spatial-peak temperature to experimentally characterize the temperature changes. Overall, the results were consistent with theoretical predictions and encourage further experimental work to validate other aspects of the technique.

  6. Estimation of body temperature rhythm based on heart activity parameters in daily life.

    PubMed

    Sooyoung Sim; Heenam Yoon; Hosuk Ryou; Kwangsuk Park

    2014-01-01

    Body temperature contains valuable health related information such as circadian rhythm and menstruation cycle. Also, it was discovered from previous studies that body temperature rhythm in daily life is related with sleep disorders and cognitive performances. However, monitoring body temperature with existing devices during daily life is not easy because they are invasive, intrusive, or expensive. Therefore, the technology which can accurately and nonintrusively monitor body temperature is required. In this study, we developed body temperature estimation model based on heart rate and heart rate variability parameters. Although this work was inspired by previous research, we originally identified that the model can be applied to body temperature monitoring in daily life. Also, we could find out that normalized Mean heart rate (nMHR) and frequency domain parameters of heart rate variability showed better performance than other parameters. Although we should validate the model with more number of subjects and consider additional algorithms to decrease the accumulated estimation error, we could verify the usefulness of this approach. Through this study, we expect that we would be able to monitor core body temperature and circadian rhythm from simple heart rate monitor. Then, we can obtain various health related information derived from daily body temperature rhythm.

  7. Analytical solution and computer program (FAST) to estimate fluid fluxes from subsurface temperature profiles

    NASA Astrophysics Data System (ADS)

    Kurylyk, Barret L.; Irvine, Dylan J.

    2016-02-01

    This study details the derivation and application of a new analytical solution to the one-dimensional, transient conduction-advection equation that is applied to trace vertical subsurface fluid fluxes. The solution employs a flexible initial condition that allows for nonlinear temperature-depth profiles, providing a key improvement over most previous solutions. The boundary condition is composed of any number of superimposed step changes in surface temperature, and thus it accommodates intermittent warming and cooling periods due to long-term changes in climate or land cover. The solution is verified using an established numerical model of coupled groundwater flow and heat transport. A new computer program FAST (Flexible Analytical Solution using Temperature) is also presented to facilitate the inversion of this analytical solution to estimate vertical groundwater flow. The program requires surface temperature history (which can be estimated from historic climate data), subsurface thermal properties, a present-day temperature-depth profile, and reasonable initial conditions. FAST is written in the Python computing language and can be run using a free graphical user interface. Herein, we demonstrate the utility of the analytical solution and FAST using measured subsurface temperature and climate data from the Sendia Plain, Japan. Results from these illustrative examples highlight the influence of the chosen initial and boundary conditions on estimated vertical flow rates.

  8. Quantitative estimates of tropical temperature change in lowland Central America during the last 42 ka

    NASA Astrophysics Data System (ADS)

    Grauel, Anna-Lena; Hodell, David A.; Bernasconi, Stefano M.

    2016-03-01

    Determining the magnitude of tropical temperature change during the last glacial period is a fundamental problem in paleoclimate research. Large discrepancies exist in estimates of tropical cooling inferred from marine and terrestrial archives. Here we present a reconstruction of temperature for the last 42 ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. We compared three independent methods of glacial temperature reconstruction: pollen-based temperature estimates, tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, and clumped isotope thermometry. Pollen provides a near-continuous record of temperature change for most of the glacial period but the occurrence of a no-analog pollen assemblage during cold, dry stadials renders temperature estimates unreliable for these intervals. In contrast, the gypsum hydration and clumped isotope methods are limited mainly to the stadial periods when gypsum and biogenic carbonate co-occur. The combination of palynological and geochemical methods leads to a continuous record of tropical temperature change in lowland Central America over the last 42 ka. Furthermore, the gypsum hydration water method and clumped isotope thermometry provide independent estimates of not only temperature, but also the δ18O of lake water that is dependent on the hydrologic balance between evaporation and precipitation over the lake surface and its catchment. The results show that average glacial temperature was cooler in lowland Central America by 5-10 °C relative to the Holocene. The coldest and driest times occurred during North Atlantic stadial events, particularly Heinrich stadials (HSs), when temperature decreased by up to 6 to 10 °C relative to today. This magnitude of cooling is much greater than estimates derived from Caribbean marine records and model simulations. The extreme dry and cold conditions during HSs in the lowland Central America were associated

  9. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  10. A technique for optimal temperature estimation for modeling sunrise/sunset thermal snap disturbance torque

    NASA Technical Reports Server (NTRS)

    Zimbelman, D. F.; Dennehy, C. J.; Welch, R. V.; Born, G. H.

    1990-01-01

    A predictive temperature estimation technique which can be used to drive a model of the Sunrise/Sunset thermal 'snap' disturbance torque experienced by low Earth orbiting spacecraft is described. The twice per orbit impulsive disturbance torque is attributed to vehicle passage in and out of the Earth's shadow cone (umbra), during which large flexible appendages undergo rapidly changing thermal conditions. Flexible members, in particular solar arrays, experience rapid cooling during umbra entrance (Sunset) and rapid heating during exit (Sunrise). The thermal 'snap' phenomena has been observed during normal on-orbit operations of both the LANDSAT-4 satellite and the Communications Technology Satellite (CTS). Thermal 'snap' has also been predicted to be a dominant source of error for the TOPEX satellite. The fundamental equations used to model the Sunrise/Sunset thermal 'snap' disturbance torque for a typical solar array like structure will be described. For this derivation the array is assumed to be a thin, cantilevered beam. The time varying thermal gradient is shown to be the driving force behind predicting the thermal 'snap' disturbance torque and therefore motivates the need for accurate estimates of temperature. The development of a technique to optimally estimate appendage surface temperature is highlighted. The objective analysis method used is structured on the Gauss-Markov Theorem and provides an optimal temperature estimate at a prescribed location given data from a distributed thermal sensor network. The optimally estimated surface temperatures could then be used to compute the thermal gradient across the body. The estimation technique is demonstrated using a typical satellite solar array.

  11. An improved estimation of mean body temperature using combined direct calorimetry and thermometry.

    PubMed

    Snellen, J W

    2000-06-01

    The conventional method used to estimate the change in mean body temperature (dMBT) is by taking X% of a body core temperature and (1-X)% of weighted mean skin temperature, the value of X being dependent upon ambient temperature. This technique is used widely, despite opposition from calorimetrists. In the present paper we attempt to provide a better method. Minute-by-minute changes in dMBT, as assessed using calorimetry, and 21 (20 if esophageal temperature was unavailable) various regional temperatures (dRBTs), as assessed using thermometry, including 6 subcutaneous measures, were collected from 7 young male adults at 6 calorimeter temperatures. Since a calorimeter measures only changes in heat storage, which can be converted to dMBT, all body temperatures are expressed as changes from the reasonably constant pre-exposure temperatures. The following three aspects were investigated. (1) The prediction of dMBT from the 21 (or 20) dRBTs with multi-linear regression analysis (MLR). This yields two results, model A with rectal temperature (dTre) alone, and model B with dTre and esophageal temperature (dTes). (2) The prediction of dMBT from dTre with or without dTes and 13 skin surface temperatures combined to one weighted mean skin temperature (dTsk), using MLR. This results in models C and D. Six more models (E-J) were added, representing the above two sets in various combinations with four factors. (3) The conventional method calculated with four values for X. Model A predicted better than 0.3 degree C in 70% of the cases. Model I was the best amongst the models with 13 weighted skin temperatures (better than 0.3 degree C in 60% of the cases). The conventional method was erratic.

  12. Estimating the temperature and height of overshooting thunderstorm tops from geostationary satellite infrared data

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Negri, A. J.; Markus, M. J.; Byrd, G. P.

    1982-01-01

    Information is presented on the extent to which the brightness temperature is overestimated. A revised version of the technique proposed by Adler and Markus (1982) for overcoming this problem is discussed, together with aspects of its application. GOES IR thunderstorm top observations are compared with high-resolution data. The technique described here to estimate the small-scale cloud top temperature from the GOES data corrects for most of the field-of-view effect but requires additional analysis and testing. When applied to a time sequence of a growing thunderstorm, the calculated cloud top temperature time profile is found to agree very well with a similar profile derived from stereo measurements.

  13. Steam-leak cost estimation using thermographically acquired pipe temperature data

    NASA Astrophysics Data System (ADS)

    Madding, Robert P.; MacNamara, Neal A.

    1997-04-01

    Predictive maintenance practitioners readily diagnose steam leaks through drain using infrared thermography, often supplemented with ultrasonic probe verification. Typically, a pipe carries the leaking steam to a flash tank or directly to the condenser. Thus, the energy used to create the steam is what is lost, not the steam itself. However, the cost of steam production is not inexpensive. We have found steam leaks we estimate cost $30 K/year. As a part of the Electric Power Research Institute's (EPRI's) Boiler, Condenser and Steam Cycle Applications Project, the EPRI M&D (Monitoring & Diagnostic) Centers have begun acquiring steam leak data at several electric utilities. Estimates of steam leak costs are key to evaluating cost savings and recommendation of corrective action, but are hampered by lack of knowledge of the steam flow in the line. These lines are usually not instrumented because typically there is no flow. Consequently, we must derive an indirect method of estimating steam flow. This can be done for uninsulated pipes given knowledge of the pipe surface temperature gradient over a known distance. For single phase conditions, the mass flow of steam equals the heat lost from a length of pipe divided by the temperature drop along the length and the heat capacity of the steam. Pipe heat loss is calculated knowing the pipe diameter, pipe surface temperature, ambient air temperature and using American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) tabulated values. The temperatures are derived from thermographic data. Distances can also be derived from thermal imaging radiometer data, depending on the type of system employed. To facilitate calculation of steam leak cost estimates, we have developed a Microsoft ExcelTM spreadsheet macro. The user can interface directly with the spreadsheet, entering appropriate temperatures, distances, pipe diameter, heat rate, cost of power, etc. Or, the analyst can use thermal imaging radiometer

  14. Temperature estimation for the most upper part of magmatic chamber of the Elbrus volcano

    NASA Astrophysics Data System (ADS)

    Likhodeev, Dmitry

    2013-04-01

    The results of theoretical and experimental studies on thermal processes in the Elbrus volcanic center and adjacent territories are presented. Distributed temperature measurements on the Elbrus volcano and near the Maloye Azau glacier by means of temperature data loggers («High Capacity Temperature Loggers iButton» and «Rejim-avtomat-termo-10-100») have been performed. The comparative time series analysis is provided. On the basis of the Geophysical Observatory in Northern Caucasus, in the laboratory located some 20 km from the Elbrus volcano in the tunnel at a depth of 4 km the array of temperature sensors has been deployed. Results of continuous observations over variations of underground temperatures, including pin-point measurements in the vicinity of sources of carbonaceous mineral waters are presented and discussed. Temperature estimations for the most upper part of the shallow magmatic chamber of the of the Elbrus volcano were obtained on the basis of experimental measurements in the 180-meter deep borehole drilled through the glacier on the western plateau of Mount Elbrus. The estimations of deep temperatures have confirmed the possibility of existence of the magmatic chamber at depths of 0-1 km below sea level. At the same time the magnitudes of local heat flux were identified with enhanced precision. Thus, the original scientific results provide significant extension to our knowledge on possible resumption of volcanic activity in the vicinity of Mount Elbrus.

  15. Groundwater flow estimation using temperature-depth profiles in a complex environment and a changing climate.

    PubMed

    Irvine, Dylan J; Kurylyk, Barret L; Cartwright, Ian; Bonham, Mariah; Post, Vincent E A; Banks, Eddie W; Simmons, Craig T

    2017-01-01

    Obtaining reliable estimates of vertical groundwater flows remains a challenge but is of critical importance to the management of groundwater resources. When large scale land clearing or groundwater extraction occurs, methods based on water table fluctuations or water chemistry are unreliable. As an alternative, a number of methods based on temperature-depth (T-z) profiles are available to provide vertical groundwater flow estimates from which recharge rates may be calculated. However, methods that invoke steady state assumptions have been shown to be inappropriate for sites that have experienced land surface warming. Analytical solutions that account for surface warming are available, but they typically include unrealistic or restrictive assumptions (e.g. no flow initial conditions or linear surface warming). Here, we use a new analytical solution and associated computer program (FAST) that provides flexible initial and boundary conditions to estimate fluxes using T-z profiles from the Willunga Super Science Site, a complex, but densely instrumented groundwater catchment in South Australia. T-z profiles from seven wells (ranging from high elevation to near sea level) were utilised, in addition to mean annual air temperatures at nearby weather stations to estimate boundary conditions, and thermal properties were estimated from down borehole geophysics. Temperature based flux estimates were 5 to 23mmy(-1), which are similar to those estimated using chloride mass balance. This study illustrates that T-z profiles can be studied to estimate recharge in environments where more commonly applied methods fail. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Temperature-Based Bioimpedance Correction for Water Loss Estimation During Sports.

    PubMed

    Ring, Matthias; Lohmueller, Clemens; Rauh, Manfred; Mester, Joachim; Eskofier, Bjoern M

    2016-11-01

    The amount of total body water (TBW) can be estimated based on bioimpedance measurements of the human body. In sports, TBW estimations are of importance because mild water losses can impair muscular strength and aerobic endurance. Severe water losses can even be life threatening. TBW estimations based on bioimpedance, however, fail during sports because the increased body temperature corrupts bioimpedance measurements. Therefore, this paper proposes a machine learning method that eliminates the effects of increased temperature on bioimpedance and, consequently, reveals the changes in bioimpedance that are due to TBW loss. This is facilitated by utilizing changes in skin and core temperature. The method was evaluated in a study in which bioimpedance, temperature, and TBW loss were recorded every 15 min during a 2-h running workout. The evaluation demonstrated that the proposed method is able to reduce the error of TBW loss estimation by up to 71%, compared to the state of art. In the future, the proposed method in combination with portable bioimpedance devices might facilitate the development of wearable systems for continuous and noninvasive TBW loss monitoring during sports.

  17. Estimation of the biphasic property in a female's menstrual cycle from cutaneous temperature measured during sleep.

    PubMed

    Chen, Wenxi; Kitazawa, Masumi; Togawa, Tatsuo

    2009-09-01

    This paper proposes a method to estimate a woman's menstrual cycle based on the hidden Markov model (HMM). A tiny device was developed that attaches around the abdominal region to measure cutaneous temperature at 10-min intervals during sleep. The measured temperature data were encoded as a two-dimensional image (QR code, i.e., quick response code) and displayed in the LCD window of the device. A mobile phone captured the QR code image, decoded the information and transmitted the data to a database server. The collected data were analyzed by three steps to estimate the biphasic temperature property in a menstrual cycle. The key step was an HMM-based step between preprocessing and postprocessing. A discrete Markov model, with two hidden phases, was assumed to represent higher- and lower-temperature phases during a menstrual cycle. The proposed method was verified by the data collected from 30 female participants, aged from 14 to 46, over six consecutive months. By comparing the estimated results with individual records from the participants, 71.6% of 190 menstrual cycles were correctly estimated. The sensitivity and positive predictability were 91.8 and 96.6%, respectively. This objective evaluation provides a promising approach for managing premenstrual syndrome and birth control.

  18. Regional Stream Temperature Estimation Using Thermal Infrared Remote Sensing Images From Terra - ASTER And Ground Measurements

    NASA Astrophysics Data System (ADS)

    Naveh, N.; Cherkauer, K. A.; Burges, S. J.; Kay, J. E.; Handcock, R. N.; Gillespie, A.; Booth, D. B.

    2001-12-01

    Stream temperature is a significant water quality concern in the Pacific Northwest, where warm water can be lethal for indigenous fish species and cold water refugia are essential for the survival of threatened and endangered salmon. This necessitates regional-scale assessments of water temperature for compliance monitoring. These assessments have, however, been limited by sparse sampling in both space and time using submerged temperature-recording sensors. In the Puget Sound region, for example, the State of Washington relied on periodic data collected at 76 stations to assess water quality conditions for 12,721 km of streams and rivers (i.e., one station for 167 km of stream). We are evaluating the utility of remotely sensed thermal infrared (TIR) and visible images of streams and stream corridors for increasing the data coverage for stream temperature analysis and assessment. If stream temperatures can be estimated from images with known and acceptable levels of confidence, then regional temperature assessments will be less sensitive to the uncertainty associated with sampling temperature at a relatively small number of ground stations. Stream temperatures, energy and water fluxes are monitored to evaluate their significance to the stream energy balance using a ground-based network of temperature data loggers, stream gauging stations, and meteorological observations. Radiant ("skin") temperatures of streams and rivers are recorded with point measurements to evaluate the relationship between the kinetic and the "skin" temperature of the water in various conditions. TIR images from Terra - ASTER of parts of the Green River basin, Washington State, are processed and analyzed to obtain spatially extensive "skin" water temperature, and to identify the types of stream that are amenable to satellite thermal infrared remote temperature monitoring.

  19. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  20. Estimation of in-situ thermal conductivities from temperature gradient measurements

    SciTech Connect

    Hoang, V.T.

    1980-12-01

    A mathematical model has been developed to study the effect of variable thermal conductivity of the formations, and the wellbore characteristics, on the fluid temperature behavior inside the wellbore during injection or production and after shut-in. During the injection or production period the wellbore fluid temperature is controlled mainly by the fluid flow rate and the heat lost from the fluid to the formation. During the shut-in period, the fluid temperature is strongly affected by differences in the formation thermal conductivities. Based on the results of the present analysis, two methods for estimating in-situ thermal conductivity were derived. First, the line source concept is extended to estimate values of the formation thermal conductivities utilizing the fluid temperature record during the transient period of injection or production and shut-in. The second method is applied when a well is under thermal equilibrium conditions. Values of the formation thermal conductivities can also be estimated by using a continuous temperature gradient log and by measuring the thermal conductivity of the formation at a few selected wellbore locations.

  1. Kalman filter and correction of the temperatures estimated by PRECIS model

    NASA Astrophysics Data System (ADS)

    Porto de Carvalho, José Ruy; Assad, Eduardo Delgado; Pinto, Hilton Silveira

    2011-10-01

    The purpose of this study is to evaluate the accuracy of the estimation the monthly mean temperature simulated by the PRECIS model—scenarios A2 and B2 of the IPCC—for Brazilian regions and to develop a Kalman filter to correct the systematic errors of the model for the months of January to June 2010. With a regionalized model, PRECIS aims to reproduce the main features of the climate in complex terrains. The temperature estimates for January to June 2010 are based on linear regression of PRECIS simulations in each pixel of the domain for two time periods, 1961-1990 and 2070-2100. These initial estimates are adapted to 1142 observing stations by a correction using the vertical temperature gradient of the Standard Atmosphere and the difference between model and real topography. The analysis was performed using monthly observed mean temperature data from meteorological stations, along with 1142 simulated data. The PRECIS model with systematic errors was ameliorated by the application of the filter resulting in an improved mean temperature prediction of 66% above the mean square error for the dry months and above 49% for the wet months, for both scenarios under study. At the half-way point, the improvement was 68% for the A2 scenario and 69% for scenario B2.

  2. Estimation of excitation temperature by duty ratio of observed period in non-equilibrium plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Muraoka, Sumihiro; Nihei, Takashi; Abe, Seiya

    2017-06-01

    We investigated the excitation temperature of atmospheric-pressure non-equilibrium (cold) plasma using a line-pair method. An atmospheric cold plasma was intermittently generated using a quartz tube, a rare gas, and a foil electrode by applying high-voltage alternating current. Because the plasma occurred intermittently, an interval appeared between each generated plasma bullet. We assessed the time-averaged effective intensity from the observed intensity at each wavelength measured using a spectrometer. When the exposure time of the spectrometer is longer than the observed period of the plasma emission light, the time-averaged effective intensity at each wavelength decreases because it includes the interval with no plasma emission light. The difference in intensity between wavelengths changes with frequency, because changing the frequency changes the interval between plasma bullets. Consequently, even if the plasma electron temperature does not depend on the frequency of the applied voltage, the excitation temperature estimated from the difference in intensity changes with the frequency. The plasma electron temperature can be estimated from the duty ratio of the observed period of plasma emission light, and we estimated the electron temperature in the helium and argon cold plasmas to be 1.0 eV.

  3. The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation

    SciTech Connect

    Hamann, Jan; Wong, Yvonne Y Y E-mail: ywong@mppmu.mpg.de

    2008-03-15

    We estimate the effect of the experimental uncertainty in the measurement of the temperature of the cosmic microwave background (CMB) on the extraction of cosmological parameters from future CMB surveys. We find that even for an ideal experiment limited only by cosmic variance up to l=2500 for both the temperature and polarization measurements, the projected cosmological parameter errors are remarkably robust against the uncertainty of 1 mK in the firas CMB temperature monopole measurement. The maximum degradation in sensitivity is 20%, for the baryon density estimate, relative to the case in which the monopole is known infinitely well. While this degradation is acceptable, we note that reducing the uncertainty in the current temperature measurement by a factor of five will bring it down to {approx}1%. We also estimate the effect of the uncertainty in the dipole temperature measurement. Assuming the overall calibration of the data to be dominated by the dipole error of 0.2% from firas, the sensitivity degradation is insignificant and does not exceed 10% in any parameter direction.

  4. Estimation of heat load in waste tanks using average vapor space temperatures

    SciTech Connect

    Crowe, R.D.; Kummerer, M.; Postma, A.K.

    1993-12-01

    This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

  5. The impact of irradiation temperature estimations on the accuracy of dosimetry

    NASA Astrophysics Data System (ADS)

    Desrosiers, M. F.; Ostapenko, T.; Puhl, J. M.

    2009-07-01

    Quality-control dosimetry is important to the routine operation of a radiation processing facility. For many applications this dosimetry must be traceable to a national primary standard. After irradiation at an industrial facility, National Institute of Standards and Technology (NIST)-supplied transfer dosimeters are certified by measurement and dose interpolation from the NIST calibration curve. However, prior to computing the absorbed dose the dosimeter response must be adjusted for the temperature difference between irradiation temperature for the alanine system calibration and the irradiation temperature for the industrial process. For most industrial applications, the temperature is not controlled and varies during the irradiation process. The alanine dosimeter response has a dependence on irradiation temperature, which is compensated for by applying a correction factor to the dosimeter response to compute the absorbed dose. Moreover, there is no consensus protocol to estimate the irradiation temperature and apply this correction. This work approximates industrial temperature profiles using a 60Co source with a temperature-controlled irradiation chamber, and then compares the relative effectiveness of commonly used industrial methods to correct for irradiation temperature influence on the alanine dosimeter response.

  6. Neutral Gas Temperature Estimates in an Inductively Coupled CF4 Plasma by Fitting Diatomic Emission Spectra

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Rao, M. V. V. S.; Sharma, Surendra P.; Meyyappan, M.

    2001-01-01

    This work examines the accuracy of plasma neutral temperature estimates by fitting the rotational band envelope of different diatomic species in emission. Experiments are performed in an inductively coupled CF4 plasma generated in a Gaseous Electronics Conference reference cell. Visible and ultraviolet emission spectra are collected at a power of 300 W (approximately 0.7 W/cc) and pressure of 30 mtorr. The emission bands of several molecules (CF, CN, C2, CO, and SiF) are fit simultaneously for rotational and vibrational temperatures and compared. Four different rotational temperatures are obtained: 1250 K for CF and CN, 1600 K for CO, 1800 K for C2, and 2300 K for SiF. The vibrational temperatures obtained vary from 1750-5950 K, with the higher vibrational temperatures generally corresponding to the lower rotational temperatures. These results suggest that the different species have achieved different degrees of equilibration between the rotational and vibrational modes and may not be equilibrated with the translational temperatures. The different temperatures are also related to the likelihood that the species are produced by ion bombardment of the surface, with etch products like SiF, CO, and C2 having higher temperatures than species expected to have formed in the gas phase.

  7. Estimating soil hydraulic properties from ground based IR soil surface temperature and TDR measurements

    NASA Astrophysics Data System (ADS)

    Steenpass, C.; Vanderborght, J.; Herbst, M.; Vereecken, H.

    2009-12-01

    State variables like the soil water content and soil temperature with location and time contain information about soil specific properties, since soil temperature and the rate of water movement to the soil surface are being determined by properties such as thermal and hydraulic conductivity. By evaporation, latent heat is being removed from the soil in form of water vapor. This cooling effect depends on the water availability in the upper part of the soil. The water availability itself depends on the hydraulic properties of the soil. Therefore, temporal variability of the soil surface temperature should be sensitive to soil hydraulic properties. An experiment has been performed during September 2008 at a test site close to the Research Center Juelich to estimate soil hydraulic properties and correlations to the soil surface temperature, as measured by an IR camera. Soil water content and temperatures have been measured in different depths. To investigate the information content of soil surface temperatures to derive soil hydraulic properties or find out how strong estimated hydraulic properties are being constraint by the soil surface temperature, various numerical experiments have been performed: The general applicability of this method was checked with numerically generated data as well as real measured data. By simulating with a one-material soil profile, we estimated effective soil hydraulic properties to test how good these parameters are in the prediction of the soil water dynamics in deeper soil layers (>10 cm). Usage of a layered soil profile in a simulation allowed us to estimate soil hydraulic properties for different depths, thus being able to match the measured data (soil surface temperature and moisture in different depths) as good as possible. For the numerical modeling we used a one-dimensional coupled heat and water flow model linked to a Markov Chain Monte-Carlo based algorithm. As not only the estimated parameters but also their uncertainties are

  8. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  9. The use of polar-orbiting satellite sounding data to estimate rural maximum and minimum temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory L.; Davis, Jerry M.; Karl, Thomas R.; Mcnab, Alan L.; Tarpley, J. D.; Bloomfield, Peter

    1993-01-01

    Atmospheric sounding products from NOAA's polar-orbiting satellites were used to derive and test predictive equations of rural shelter-level maximum and minimum temperatures. Sounding data from both winter and summer months were combined with surface data from over 5300 cooperative weather stations in the continental United States to develop multiple linear regression equations. Separate equations were developed for both maximum and minimum temperature, using the three types of sounding retrievals (clear, partly cloudy, and cloudy). Clear retrieval models outperformed others, and maximum temperatures were more accurately predicted than minimums. Average standard deviations of observed rural shelter temperatures within sounding search areas were of similar magnitude to root-mean-square errors from satellite estimates for most clear and partly cloudy cases, but were significantly less for cloudy retrieval cases. Model validation for surrogate polar and tropical climatic regions showed success in application of the four clear retrieval models (maximum and minimum temperature, for both winter and summer). This indicates the potential adaptability of these models to estimates of rural shelter temperature in areas outside of the United States.

  10. The use of polar-orbiting satellite sounding data to estimate rural maximum and minimum temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory L.; Davis, Jerry M.; Karl, Thomas R.; Mcnab, Alan L.; Tarpley, J. D.; Bloomfield, Peter

    1993-01-01

    Atmospheric sounding products from NOAA's polar-orbiting satellites were used to derive and test predictive equations of rural shelter-level maximum and minimum temperatures. Sounding data from both winter and summer months were combined with surface data from over 5300 cooperative weather stations in the continental United States to develop multiple linear regression equations. Separate equations were developed for both maximum and minimum temperature, using the three types of sounding retrievals (clear, partly cloudy, and cloudy). Clear retrieval models outperformed others, and maximum temperatures were more accurately predicted than minimums. Average standard deviations of observed rural shelter temperatures within sounding search areas were of similar magnitude to root-mean-square errors from satellite estimates for most clear and partly cloudy cases, but were significantly less for cloudy retrieval cases. Model validation for surrogate polar and tropical climatic regions showed success in application of the four clear retrieval models (maximum and minimum temperature, for both winter and summer). This indicates the potential adaptability of these models to estimates of rural shelter temperature in areas outside of the United States.

  11. Estimating resting metabolic rate by biologging core and subcutaneous temperature in a mammal.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Hetem, Robyn S; Fuller, Andrea; Mitchell, Duncan; Rouanet, Jean-Louis

    2015-05-01

    Tri-axial accelerometry has been used to continuously and remotely assess field metabolic rates in free-living endotherms. However, in cold environments, the use of accelerometry may underestimate resting metabolic rate because cold-induced stimulation of metabolic rate causes no measurable acceleration. To overcome this problem, we investigated if logging the difference between core and subcutaneous temperatures (ΔTc-s) could reveal the metabolic costs associated with cold exposure. Using implanted temperature data loggers, we recorded core and subcutaneous temperatures continuously in eight captive rabbits (Oryctolagus cuniculus) and concurrently measured their resting metabolic rate by indirect calorimetry, at ambient temperatures ranging from -7 to +25°C. ΔTc-s showed no circadian fluctuations in warm (+23°C) or cold (+5°C) environments implying that the ΔTc-s was not affected by an endogenous circadian rhythm in our laboratory conditions. ΔTc-s correlated well with resting metabolic rate (R(2)=0.77) across all ambient temperatures except above the upper limit of the thermoneutral zone (+25°C). Determining ΔTc-s could therefore provide a complementary approach for better estimating resting metabolic rate of animals within and below their thermoneutral zone. Combining data from accelerometers with such measures of body temperature could improve estimates of the overall field metabolic rate of free-living endotherms. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Retrieval of Temperature From a Multiple Channel Rayleigh-Scatter Lidar Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, R. J.; Haefele, A.

    2014-12-01

    The measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperature have several shortcoming which can be overcome using an optimal estimation method (OEM). OEMs are applied to the retrieval of temperature from Rayleigh-scatter lidar measurements using both single and multiple channel measurements. Forward models are presented that completely characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The method allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. This demonstrated success of lidar temperature retrievals using an OEM opens new possibilities in atmospheric science for measurement integration between active and passive remote sensing instruments. We are currently working on extending our method to simultaneously retrieve water vapour and temperature using Raman-scatter lidar measurements.

  13. Exploiting the structure of MWR-derived temperature profile for stable boundary-layer height estimation

    NASA Astrophysics Data System (ADS)

    Saeed, Umar; Rocadenbosch, Francesc

    2015-10-01

    A method for the estimation of Stable Boundary Layer Height (SBLH) using curvature of the potential temperature profiles retrieved by a Microwave Radiometer (MWR) is presented. The vertical resolution of the MWR-derived temperature profile decreases with the height. A spline interpolation is carried-out to obtain a uniformly discretized temperature profile. The curvature parameter is calculated from the first and second order derivatives of the interpolated potential temperature profile. The first minima of the curvature parameter signifies the point where the temperature profile starts changing from the stable to the residual conditions. The performance of the method is analyzed by comparing it against physically idealized models of the stable boundary-layer temperature profile available in the literature. There are five models which include stable-mixed, mixed-linear, linear, polynomial and exponential. For a given temperature profile these five models are fitted using the non-linear least-squares approach. The best fitting model is chosen as the one which fits with the minimum root-mean-square error. Comparison of the SBLH estimates from curvature-based method with the physically idealized models shows that the method works qualitatively and quantitatively well with lower variation. Potential application of this approach is the situation where given temperature profiles are significantly deviant from the idealized models. The method is applied to data from a Humidity-and-Temperature Profiler (HATPRO) MWR collected during the HD(CP)2 Observational Prototype Experiment (HOPE) campaign at Jülich, Germany. Radiosonde data, whenever available, is used as the ground-truth.

  14. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar

  15. Estimation of offshore humidity fluxes from sonic and mean temperature profile data

    NASA Astrophysics Data System (ADS)

    Foreman, R. J.; Emeis, S. M.

    2009-09-01

    A new simple method is employed to estimate the virtual potential temperature flux in marine conditions in the absence of any reliable hygrometry measurements. The estimate is made from a combination of sonic and cup anemometer measurements. Since the measurement of temperature by a sonic is humidity dependent, it overestimates the heat flux by a magnitude of 0.51?w?q?, where ? is the potential temperature in Kelvin and w?q? is the humidity flux. However, the quantity of interest for many applications is the virtual potential temperature flux w???v, which itself overestimates the heat flux by a magnitude of 0.61?w?q?. The virtual potential temperature flux is thus estimated by w-???v = w???s + 0.1?w?q?, (1) where w???s is the measured sonic anemometer heat flux. To properly estimate w?q?, fast response hygrometers are required, but in their absence, mean measurements can be used. While we have access to standard hygrometers, there are reasons to question the validity of results from these. Therefore, we propose that w???v be estimated by equating the stability parameter z?L, where z is the height and L the Obukhov length (which contains w???v and hence eq. (1)) with the bulk Richardson number and solving for w?q?, giving ( 3 --?? ) w-?q? = - 10 u*Rb-+ w-?-s . kzg ?v (2) Upon substituting eq. (2) into (1), and comparing terms on the right hand side of eq. (1), it is found that the contribution of the moisture term is an order of magnitude greater than that of the sonic measurement. This result is broadly consistent with previously published measurements, for example by Sempreviva and Gryning (1996) and Edson et al. (2004), of humidity fluxes using fast-response hygrometers in marine environments. We conclude that moisture effects are the chief determinant of instability in the marine surface layer. Consequently, the not unusual neglect of humidity effects in analytical and modelling efforts will result in a poor estimation of such quantities as the Obukhov length

  16. Analytical method for estimating the thermal expansion coefficient of metals at high temperature

    NASA Astrophysics Data System (ADS)

    Takamoto, S.; Izumi, S.; Nakata, T.; Sakai, S.; Oinuma, S.; Nakatani, Y.

    2015-01-01

    In this paper, we propose an analytical method for estimating the thermal expansion coefficient (TEC) of metals at high-temperature ranges. Although the conventional method based on quasiharmonic approximation (QHA) shows good results at low temperatures, anharmonic effects caused by large-amplitude thermal vibrations reduces its accuracy at high temperatures. Molecular dynamics (MD) naturally includes the anharmonic effect. However, since the computational cost of MD is relatively high, in order to make an interatomic potential capable of reproducing TEC, an analytical method is essential. In our method, analytical formulation of the radial distribution function (RDF) at finite temperature realizes the estimation of the TEC. Each peak of the RDF is approximated by the Gaussian distribution. The average and variance of the Gaussian distribution are formulated by decomposing the fluctuation of interatomic distance into independent elastic waves. We incorporated two significant anharmonic effects into the method. One is the increase in the averaged interatomic distance caused by large amplitude vibration. The second is the variation in the frequency of elastic waves. As a result, the TECs of fcc and bcc crystals estimated by our method show good agreement with those of MD. Our method enables us to make an interatomic potential that reproduces the TEC at high temperature. We developed the GEAM potential for nickel. The TEC of the fitted potential showed good agreement with experimental data from room temperature to 1000 K. As compared with the original potential, it was found that the third derivative of the wide-range curve was modified, while the zeroth, first and second derivatives were unchanged. This result supports the conventional theory of solid state physics. We believe our analytical method and developed interatomic potential will contribute to future high-temperature material development.

  17. Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation.

    PubMed

    Miller, Naomi R; Bamber, Jeffrey C; Meaney, Paul M

    2002-10-01

    Ultrasonic estimation of temperature-induced echo strain has been suggested as a means of predicting the location of thermal lesions formed by focused ultrasound (US) surgery before treatment. Preliminary investigations of this technique have produced optimistic results because they were carried out with rubber phantoms and used room temperature, rather than body temperature, as the baseline. The objective of the present study was to determine, through modelling, the likely feasibility of using ultrasonic temperature imaging to detect and localise the focal region of the heating beam for a medium with a realistic temperature-dependence of sound speed subjected to a realistic temperature rise. We determined the minimum ultrasonic signal-to-noise ratio (SNR) required to visualise the heated region for liver of varying fat content. Due to the small (0.5%) change in sound speed at the focus, the threshold SNR for normal liver (low fat content) was found to be at least 20 dB. This implies that temperature imaging in this tissue type will only be feasible if the effects of electronic noise can be minimised and if other sources of noise, such as cardiac-induced motion, do not substantially reduce the visibility of the focal region. For liver of intermediate fat content, the heated region could not be visualised even when the echo data were noise-free. Tissues with a very high fat content are likely to represent the most favourable conditions for ultrasonic temperature imaging.

  18. Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1982-01-01

    Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.

  19. Online estimation of internal stack temperatures in solid oxide fuel cell power generating units

    NASA Astrophysics Data System (ADS)

    Dolenc, B.; Vrečko, D.; Juričić, Ɖ.; Pohjoranta, A.; Pianese, C.

    2016-12-01

    Thermal stress is one of the main factors affecting the degradation rate of solid oxide fuel cell (SOFC) stacks. In order to mitigate the possibility of fatal thermal stress, stack temperatures and the corresponding thermal gradients need to be continuously controlled during operation. Due to the fact that in future commercial applications the use of temperature sensors embedded within the stack is impractical, the use of estimators appears to be a viable option. In this paper we present an efficient and consistent approach to data-driven design of the estimator for maximum and minimum stack temperatures intended (i) to be of high precision, (ii) to be simple to implement on conventional platforms like programmable logic controllers, and (iii) to maintain reliability in spite of degradation processes. By careful application of subspace identification, supported by physical arguments, we derive a simple estimator structure capable of producing estimates with 3% error irrespective of the evolving stack degradation. The degradation drift is handled without any explicit modelling. The approach is experimentally validated on a 10 kW SOFC system.

  20. Temperature-based estimation of global solar radiation using soft computing methodologies

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  1. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    PubMed Central

    Daniels, Matthew J; Varghese, Tomy

    2010-01-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution. PMID:20671353

  2. Estimating core temperature with external devices after exertional heat stress in thermal protective clothing.

    PubMed

    Pryor, Riana R; Seitz, Jennifer R; Morley, Julia; Suyama, Joe; Guyette, Francis X; Reis, Steven E; Hostler, David

    2012-01-01

    Temperature measurement is important for emergency medical services (EMS) providers when identifying and treating heat illness or infection. Direct measures of body core temperature (T(c)) are often expensive (ingestible capsules) or impractical (rectal probes) in the field. Multiple devices for estimating T(c) have been adopted by EMS providers, with little understanding of the agreement between these devices and T(c). To examine the agreement between the results of five external thermometers and T(c) after subjects experienced physical exertion while wearing protective clothing. Fifty firefighters completed treadmill walking in thermal protective clothing in a hot environment. Measurements of core, temporal, tympanic, forehead, and skin temperatures were obtained during a 20-minute recovery period simulating emergency incident rehabilitation. The mean bias of external thermometers ranged from -1.31°C to -3.28°C when compared with T(c) and exceeded the predetermined clinical cutoff of ±0.5°C from T(c). The 95% limits of agreement ranged from 2.75°C to 5.00°C. External measuring devices failed to accurately predict T(c) in hyperthermic individuals following exertion. Confidence intervals around the bias were too large to allow for reasonable estimation of T(c). EMS providers should exercise caution when using any of these temperature estimation techniques.

  3. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew J.; Varghese, Tomy

    2010-08-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution.

  4. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    PubMed

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual.

  5. Comparison of ET estimations by the three-temperature model, SEBAL model and eddy covariance observations

    NASA Astrophysics Data System (ADS)

    Zhou, Xinyao; Bi, Shaojie; Yang, Yonghui; Tian, Fei; Ren, Dandan

    2014-11-01

    The three-temperature (3T) model is a simple model which estimates plant transpiration from only temperature data. In-situ field experimental results have shown that 3T is a reliable evapotranspiration (ET) estimation model. Despite encouraging results from recent efforts extending the 3T model to remote sensing applications, literature shows limited comparisons of the 3T model with other remote sensing driven ET models. This research used ET obtained from eddy covariance to evaluate the 3T model and in turn compared the model-simulated ET with that of the more traditional SEBAL (Surface Energy Balance Algorithm for Land) model. A field experiment was conducted in the cotton fields of Taklamakan desert oasis in Xinjiang, Northwest China. Radiation and surface temperature were obtained from hyperspectral and thermal infrared images for clear days in 2013. The images covered the time period of 0900-1800 h at four different phenological stages of cotton. Meteorological data were automatically recorded in a station located at the center of the cotton field. Results showed that the 3T model accurately captured daily and seasonal variations in ET. As low dry soil surface temperatures induced significant errors in the 3T model, it was unsuitable for estimating ET in the early morning and late afternoon periods. The model-simulated ET was relatively more accurate for squaring, bolling and boll-opening stages than for seedling stage of cotton during when ET was generally low. Wind speed was apparently not a limiting factor of ET in the 3T model. This was attributed to the fact that surface temperature, a vital input of the model, indirectly accounted for the effect of wind speed on ET. Although the 3T model slightly overestimated ET compared with SEBAL and eddy covariance, it was generally reliable for estimating daytime ET during 0900-1600 h.

  6. Estimation and Modelling of Land Surface Temperature Using Landsat 7 ETM+ Images and Fuzzy System Techniques

    NASA Astrophysics Data System (ADS)

    Bisht, K.; Dodamani, S. S.

    2016-12-01

    Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.

  7. Conditional probability distribution (CPD) method in temperature based death time estimation: Error propagation analysis.

    PubMed

    Hubig, Michael; Muggenthaler, Holger; Mall, Gita

    2014-05-01

    Bayesian estimation applied to temperature based death time estimation was recently introduced as conditional probability distribution or CPD-method by Biermann and Potente. The CPD-method is useful, if there is external information that sets the boundaries of the true death time interval (victim last seen alive and found dead). CPD allows computation of probabilities for small time intervals of interest (e.g. no-alibi intervals of suspects) within the large true death time interval. In the light of the importance of the CPD for conviction or acquittal of suspects the present study identifies a potential error source. Deviations in death time estimates will cause errors in the CPD-computed probabilities. We derive formulae to quantify the CPD error as a function of input error. Moreover we observed the paradox, that in cases, in which the small no-alibi time interval is located at the boundary of the true death time interval, adjacent to the erroneous death time estimate, CPD-computed probabilities for that small no-alibi interval will increase with increasing input deviation, else the CPD-computed probabilities will decrease. We therefore advise not to use CPD if there is an indication of an error or a contra-empirical deviation in the death time estimates, that is especially, if the death time estimates fall out of the true death time interval, even if the 95%-confidence intervals of the estimate still overlap the true death time interval.

  8. Comparison of estimated core body temperature measured with the BioHarness and rectal temperature under several heat stress conditions.

    PubMed

    Seo, Yongsuk; DiLeo, Travis; Powell, Jeffrey B; Kim, Jung-Hyun; Roberge, Raymond J; Coca, Aitor

    2016-08-01

    Monitoring and measuring core body temperature is important to prevent or minimize physiological strain and cognitive dysfunction for workers such as first responders (e.g., firefighters) and military personnel. The purpose of this study is to compare estimated core body temperature (Tco-est), determined by heart rate (HR) data from a wearable chest strap physiology monitor, to standard rectal thermometry (Tre) under different conditions.  Tco-est and Tre measurements were obtained in thermoneutral and heat stress conditions (high temperature and relative humidity) during four different experiments including treadmill exercise, cycling exercise, passive heat stress, and treadmill exercise while wearing personal protective equipment (PPE).  Overall, the mean Tco-est did not differ significantly from Tre across the four conditions. During exercise at low-moderate work rates under heat stress conditions, Tco-est was consistently higher than Tre at all-time points. Tco-est underestimated temperature compared to Tre at rest in heat stress conditions and at a low work rate under heat stress while wearing PPE. The mean differences between the two measurements ranged from -0.1 ± 0.4 to 0.3 ± 0.4°C and Tco-est correlated well with HR (r = 0.795 - 0.849) and mean body temperature (r = 0.637 - 0.861).  These results indicate that, the comparison of Tco-est to Tre may result in over- or underestimation which could possibly lead to heat-related illness during monitoring in certain conditions. Modifications to the current algorithm should be considered to address such issues.

  9. Assessment of model land skin temperature and surface-atmosphere coupling using remotely sensed estimates

    NASA Astrophysics Data System (ADS)

    Trigo, Isabel; Boussetta, Souhail; Balsamo, Gianpaolo; Viterbo, Pedro; Beljaars, Anton; Sandu, Irina

    2016-04-01

    The coupling between land surface and the atmosphere is a key feature in Earth System Modelling for exploiting the predictability of slowly evolving geophysical variables (e.g., soil moisture or vegetation state), and for correctly representing rapid variations within the diurnal cycle, particularly relevant in data assimilation applications. Land Surface Temperature (LST) routinely estimated from Meteosat Second Generation (MSG) by the LandSAF is used to assess the European Centre for Medium-range Weather Forecasts (ECMWF) skin temperature. LST can be interpreted as a radiative temperature of the model surface, which is close to the ECMWF modelled skin temperature. It is shown that the model tends to slightly overestimate skin temperature during night-time and underestimate daytime values. Such underestimation of daily amplitudes is particularly pronounced in (semi-)arid regions, suggesting a misrepresentation of surface energy fluxes in those areas. The LST estimated from MSG is used to evaluate the impact of changes in some of the ECMWF model surface parameters. The introduction of more realistic model vegetation is shown to have a positive, but limited impact on skin temperature: long integration leads to an equilibrium state where changes in the latent heat flux and soil moisture availability compensate each other. Revised surface roughness lengths for heat and momentum, however, lead to overall positive impact on daytime skin temperature, mostly due to a reduction of sensible heat flux. This is particularly relevant in non-vegetated areas, unaffected by model vegetation. The reduction of skin conductivity, a parameter which controls the heat transfer to ground by diffusion, is shown to further improve the model skin temperature. A revision of the vertical soil discretization is also expected to improve the match to the LST, particularly over sparsely vegetated areas. The impact of a finer discretization (10-layer soil) is currently ongoing; preliminary

  10. Using ultrasound CBE imaging without echo shift compensation for temperature estimation.

    PubMed

    Tsui, Po-Hsiang; Chien, Yu-Ting; Liu, Hao-Li; Shu, Yu-Chen; Chen, Wen-Shiang

    2012-09-01

    Clinical trials have demonstrated that hyperthermia improves cancer treatments. Previous studies developed ultrasound temperature imaging methods, based on the changes in backscattered energy (CBE), to monitor temperature variations during hyperthermia. Echo shift, induced by increasing temperature, contaminates the CBE image, and its tracking and compensation should normally ensure that estimations of CBE at each pixel are correct. To obtain a simplified algorithm that would allow real-time computation of CBE images, this study evaluated the usefulness of CBE imaging without echo shift compensation in detecting distributions in temperature. Experiments on phantoms, using different scatterer concentrations, and porcine livers were conducted to acquire raw backscattered data at temperatures ranging from 37°C to 45°C. Tissue samples of pork tenderloin were ablated in vitro by microwave irradiation to evaluate the feasibility of using the CBE image without compensation to monitor tissue ablation. CBE image construction was based on a ratio map obtained from the envelope image divided by the reference envelope image at 37°C. The experimental results demonstrated that the CBE image obtained without echo shift compensation has the ability to estimate temperature variations induced during uniform heating or tissue ablation. The magnitude of the CBE as a function of temperature obtained without compensation is stronger than that with compensation, implying that the CBE image without compensation has a better sensitivity to detect temperature. These findings suggest that echo shift tracking and compensation may be unnecessary in practice, thus simplifying the algorithm required to implement real-time CBE imaging.

  11. Inversion of AMSR-E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature

    NASA Astrophysics Data System (ADS)

    Jiménez, C.; Prigent, C.; Ermida, S. L.; Moncet, J.-L.

    2017-03-01

    Inversions of the Earth Observation Satellite (EOS) Advanced Microwave Scanning Radiometer (AMSR-E) brightness temperatures (Tbs) to derive the land surface temperature (Ts) are presented based on building a global transfer function by neural networks trained with AMSR-E Tbs and retrieved microwave Ts*. The only required inputs are the Tbs and monthly climatological emissivities, minimizing the dependence on ancillary data. The inversions are accompanied by a coarse estimation of retrieval uncertainty, an estimate of the quality of the retrieval, and a series of flags to signal difficult inversion situations. For ˜75% of the land surface the root-mean-square difference (RMSD) between the training target Ts* and the neural network retrieved Ts is below 2.8 K. The RMSD when comparing with the Moderate Resolution Imaging Spectroradiometer (MODIS) clear-sky Ts is below 3.9 K for the same conditions. Over 10 ground stations, AMSR-E and MODIS Ts were compared with the in situ data. Overall, MODIS agrees better with the station Ts than AMSR-E (all-station mean RMSD of 2.4 K for MODIS and 4.0 for AMSR-E), but AMSR-E provides a larger number of Ts estimates by being able to measure under cloudy conditions, with an approximated ratio of 3 to 1 over the analyzed stations. At many stations the RMSD of the AMSR-E clear and cloudy sky are comparable, highlighting the ability of the microwave inversions to provide Ts under most atmospheric conditions. Closest agreement with the in situ Ts happens for stations with dense vegetation, where AMSR-E emissivity is less varying.

  12. Estimating Surface Radiation Fluxes in the Arctic from TOVS Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Schweiger, A. J.; Key, J. R.

    1997-01-01

    A new method for estimating downwelling shortwave and longwave radiation fluxes in the Arctic from TOVS brightness temperatures has been developed. The method employs a neural network to bypass computationally intensive inverse and for-ward radiative transfer calculations, Results from two drifting ice camps (CEAREX, LeadEx) and from one coastal station show that downwelling fluxes can be estimated with r.m.s. errors of 20 W/sq m for longwave radiation and 35 W/sq m for shortwave radiation. Mean errors are less than 4 W/sq m and are well within the bounds required for many climate process studies.

  13. Probabilistic model for estimating snow cover duration from ground temperature measurements in the Austrian Alpine region

    NASA Astrophysics Data System (ADS)

    Teubner, Irene; Haimberger, Leopold; Hantel, Michael; Dorigo, Wouter

    2016-04-01

    Snow cover duration represents a key climate parameter. Trends in the seasonal snow cover duration can be linked to changes of the mean annual air temperature and precipitation pattern and, therefore, can serve as a sentinel for climate change. Snow cover duration is commonly inferred from snow depth or snow water equivalent measurements provided by ground observations or satellites. Recently, methods have been developed to estimate the presence or absence of a snow cover from daily ground temperature variations. This method commonly includes the definition of station-specific thresholds. In our study, we propose to use a probabilistic model for determining a single threshold for the whole dataset. The model takes the daily range and/or the daily mean of ground temperature at 10 cm depth as input and is further calibrated with in situ snow depth observations. Applying the model to 87 measuring sites in the Austrian Alps, we showed that the snow cover estimation was improved when combining the daily range and the mean of ground temperature. Our results suggest that ground temperature records are a valuable source for the validation of satellite-derived snow cover, complementary to traditional ground-based snow measurements.

  14. Estimating EMI shielding effectiveness of graphene-polymer composites at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Saboor, Abdul; Nawaz Khan, Ahmad; Ahmad, Imtiaz

    2017-08-01

    Theoretical EMI shielding performance of few layered graphene-thermoplastic polyurethane composite is predicted based on experimental dielectric characteristics. Initially, the EMI shielding effectiveness is estimated for a range of composites based on graphene nanosheets (GNS) volume fraction (V f) at room temperature. An overall attenuation of ~2 dB is predicted at the maximum GNS concentration (0.0055 V f) mainly due to reflection phenomena as a function of frequency (25 kHz-5 MHz). The electrical network formation at 0.0055 V f GNS is evident from the predicted EMI shielding results. The 0.0055 V f GNS-TPU composite is then evaluated for an estimation of EMI shielding effectiveness at elevated temperatures. An increasing trend in EMI shielding effectiveness is predicted as a function of temperature which reaches ~80 dB (25 kHz) at 453 K. Further increase in temperature (463-473 K) takes attenuation to well above 100 dB. The GNS-GNS interaction at elevated temperatures is responsible for the huge attenuation clearly depicted by the reflection phenomena. The attenuation due to absorption phenomena is quite suppressed in the lower frequency with an increasing trend being observed around 5 MHz.

  15. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    NASA Technical Reports Server (NTRS)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Deryng, Delphine

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  16. Similar estimates of temperature impacts on global wheat yield by three independent methods

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  17. Effects of sample size on estimation of rainfall extremes at high temperatures

    NASA Astrophysics Data System (ADS)

    Boessenkool, Berry; Bürger, Gerd; Heistermann, Maik

    2017-09-01

    High precipitation quantiles tend to rise with temperature, following the so-called Clausius-Clapeyron (CC) scaling. It is often reported that the CC-scaling relation breaks down and even reverts for very high temperatures. In our study, we investigate this reversal using observational climate data from 142 stations across Germany. One of the suggested meteorological explanations for the breakdown is limited moisture supply. Here we argue that, instead, it could simply originate from undersampling. As rainfall frequency generally decreases with higher temperatures, rainfall intensities as dictated by CC scaling are less likely to be recorded than for moderate temperatures. Empirical quantiles are conventionally estimated from order statistics via various forms of plotting position formulas. They have in common that their largest representable return period is given by the sample size. In small samples, high quantiles are underestimated accordingly. The small-sample effect is weaker, or disappears completely, when using parametric quantile estimates from a generalized Pareto distribution (GPD) fitted with L moments. For those, we obtain quantiles of rainfall intensities that continue to rise with temperature.

  18. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    NASA Technical Reports Server (NTRS)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  19. Estimating the Urban Bias of Surface Shelter Temperatures Using Upper-Air and Satellite Data

    NASA Astrophysics Data System (ADS)

    Epperson, David Lee

    An alternative method is presented for estimating the urban bias of surface shelter temperatures due to the effect of the urban heat island Multivariate regression techniques were utilized to predict surface shelter temperatures for the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasting (ECMWF) to represent the background climate, site-specific data to represent the local landscape, and satellite-derived data--the Normalized Difference Vegetation Index (NDVI) and the Defense Meteorological Satellite Program (DMSP) nighttime brightness data--to represent the urban landscape. Models for the United States (US) were developed for mean monthly maximum, mean, and minimum temperatures using data from over 1000 stations in the US Co-operative (COOP) Network and over 1150 stations in the Global Historical Climate Network (GHCN, mean temperatures only). Urban biases for the US and for individual stations were calculated and compared with the results of other research. The urban bias of US temperatures, as derived from all US stations (urban and rural) used in the models, averaged near 0.40 ^circC for minimum temperatures, near 0.25^circC for mean temperatures, and near 0.10^circC for maximum temperatures. On an annual basis, the urban biases of minimum temperatures for individual stations ranged from near -1.1^circC for rural stations to 2.4^circC for stations from the largest urban areas. The urban bias of US mean temperatures in this study (0.25^ circC) was shown to be larger than the US (0.05-0.15^circC) and global (0.01-0.10^circC) urban biases from other studies, where the confidence in the estimated urban biases was less. Thus, there is a need to assess the urban bias that is present in the global temperature record using the methodology presented in this study. The results of this study indicate minimal problems for global application, once the global NDVI and DMSP data become available, as opposed to other studies

  20. Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Majumdar, T. J.; Bhattacharya, Amit K.

    2009-05-01

    Land surface temperature (LST) is an important factor in global change studies, heat balance and as control for climate change. A comparative study of LST over parts of the Singhbhum Shear Zone in India was undertaken using various emissivity and temperature retrieval algorithms applied on visible and near infrared (VNIR), and thermal infrared (TIR) bands of high resolution Landsat-7 ETM+ imagery. LST results obtained from satellite data of October 26, 2001 and November 2, 2001 through various algorithms were validated with ground measurements collected during satellite overpass. In addition, LST products of MODIS and ASTER were compared with Landsat-7 ETM+ and ground truth data to explore the possibility of using multi-sensor approach in LST monitoring. An image-based dark object subtraction (DOS3) algorithm, which is yet to be tested for LST retrieval, was applied on VNIR bands to obtain atmospheric corrected surface reflectance images. Normalized difference vegetation index (NDVI) was estimated from VNIR reflectance image. Various surface emissivity retrieval algorithms based on NDVI and vegetation proportion were applied to ascertain emissivities of the various land cover categories in the study area in the spectral range of 10.4-12.5 μm. A minimum emissivity value of about 0.95 was observed over the reflective rock body with a maximum of about 0.99 over dense forest. A strong correlation was established between Landsat ETM+ reflectance band 3 and emissivity. Single channel based algorithms were adopted for surface radiance and brightness temperature. Finally, emissivity correction was applied on 'brightness temperature' to obtain LST. Estimated LST values obtained from various algorithms were compared with field ground measurements for different land cover categories. LST values obtained after using Valor's emissivity and single channel equations were best correlated with ground truth temperature. Minimum LST is observed over dense forest as about 26 °C and

  1. A method for estimating the temperature in high energy density free electron laser experiments

    NASA Astrophysics Data System (ADS)

    Principi, Emiliano; Ferrante, Carino; Filipponi, Adriano; Bencivenga, Filippo; D'Amico, Francesco; Masciovecchio, Claudio; Di Cicco, Andrea

    2010-09-01

    Present and forthcoming free electron laser (FEL) large scale facilities deliver high fluence ultrafast soft and hard X-ray pulses able to create and probe warm dense matter (WDM). Proper diagnostic for basic physical quantities, like temperature and density, is necessary, but the short lifetime of the WDM state (few ps) makes their measurements a challenging task. In this work we propose a method to estimate the WDM temperature using the experimental information from a slow temperature pyrometric probe exploiting the properties of the heat diffusion equation. Numerical simulations show that for typical thin foil samples, a temperature measurement with 1-10 μs temporal resolution at the distance of about 300-500 μm from the beam center contains sufficient information to retrieve the initial spatial temperature distribution with sufficient accuracy providing information on the temperature reached in the WDM regime. The inversion of the experimental information is obtained by means of a Bayesian approach exploiting a Metropolis Monte Carlo numerical procedure. The model and calculations presented in this work provide the theoretical background for the development of a device for temperature diagnostics of the TIMEX end-station at the Fermi@Elettra FEL facility.

  2. Estimates of Arctic land surface temperatures during the early Pliocene from two novel proxies

    NASA Astrophysics Data System (ADS)

    Csank, Adam Z.; Tripati, Aradhna K.; Patterson, William P.; Eagle, Robert A.; Rybczynski, Natalia; Ballantyne, Ashley P.; Eiler, John M.

    2011-04-01

    During the Pliocene (2.6 to 5 Ma ago) atmospheric CO 2 levels have been estimated as similar to or slightly above present levels (Tripati et al., 2009; Pagani et al., 2010), and yet Earth's climate was considerably different. Recent evidence suggests that although global temperatures were 2-3 °C warmer than pre-industrial, Arctic warming may have been amplified during the Pliocene. Thus precise temperature records of this interval are required to assess the sensitivity of Earth's climate to persistent levels of CO 2 between 365 and 415 ppm.We present records of two independent proxies for terrestrial growing-season temperatures at the Early Pliocene Beaver Pond site on Ellesmere Island. δ 18O values of cellulose from well-preserved peat constrain the δ 18O values of meteoric water to - 20.7 ± 0.3‰, which we combined with δ 18Ovalues of aragonitic freshwater molluscs found within the peat in order to calculate mollusc growth temperatures. This approach results in an average growing-season temperature of 14.2 ± 1.3 °C. Temperatures were independently derived by applying carbonate 'clumped isotope' thermometry to mollusc shells from the same site, indicating an average growing-season temperature of 10.2 ± 1.4 °C. A one-way ANOVA indicates that the differences between the two techniques are not significant as the difference in mean temperatures between both methods is no different than the difference between individual shells using a single technique. Both techniques indicate temperatures ~ 11-16 °C warmer than present (May-Sept temperature = - 1.6 ± 1.3 °C) and represent the first thermodynamic proxy results for Early Pliocene Ellesmere Island.

  3. A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    2002-01-01

    A water-quality standard for temperature is critical for the protection of threatened and endangered salmonids, which need cold, clean water to sustain life. The Idaho Department of Environmental Quality has established temperature standards to protect salmonids, yet little is known about the normal range of temperatures of most Idaho streams. A single temperature standard for all streams does not take into account the natural temperature variation of streams or the existence of naturally warm waters. To address these issues and to help the Idaho Department of Environmental Quality revise the existing State temperature standards for aquatic life, temperature data from more than 200 streams and rivers in the salmon and Clearwater River Basins were collected. From these data, a statistical model was developed for estimating stream temperatures on the basis of subbasin and site characteristics and climatic factors. Stream temperatures were monitored hourly for approximately 58 days during July, August, and September 2000 at relatively undisturbed sites in subbasins in the Salmon and Clearwater River Basins in central Idaho. The monitored subbasins vary widely in size, elevation, drainage area, vegetation cover, and other characteristics. The resulting data were analyzed for statistical correlations with subbasin and site characteristics to establish the most important factors affecting stream temperature. Maximum daily average stream temperatures were strongly correlated with elevation and total upstream drainage area; weaker correlations were noted with stream depth and width and aver-age subbasin slope. Stream temperatures also were correlated with certain types of vegetation cover, but these variables were not significant in the final model. The model takes into account seasonal temperature fluctuations, site elevation, total drainage area, average subbasin slope, and the deviation of daily average air temperature from a 30-year normal daily average air temperature

  4. Temperature-profile methods for estimating percolation rates in arid environments

    USGS Publications Warehouse

    Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward

    2003-01-01

    Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.

  5. A Site Atmospheric State Best Estimate of Temperature for Lauder, New Zealand

    NASA Astrophysics Data System (ADS)

    Tradowsky, J. S.; Bodeker, G. E.; Querel, R.; Builtjes, P. J. H.; Fischer, J.; Lewis, J.

    2015-12-01

    To detect and attribute changes in local and global climate, long-term observations of the atmosphere are essential. The Global Climate Observing System (GCOS) has defined 50 Essential Climate Variables (ECVs), which are fundamental for understanding the climate system. To fill a long recognized need of the climate monitoring community for reference quality measurements of upper air ECVs, the GCOS Reference Upper Air Network (GRUAN) was established and is now operational. This study presents a temporally highly-resolved Site Atmospheric State Best Estimate of temperature (T-SASBE) for the GRUAN site at Lauder, New Zealand. In a SASBE all available measurements of a selected ECV at one specific site (and possibly including estimates obtained from measurements made elsewhere) are merged to produce a best estimate of the value of that ECV and the uncertainty on each datum.The first version of T-SASBE, extending from 1996 to 2006, combines measurements from: (i) weekly radiosondes launched at Lauder, (ii) 10-minute data obtained from the surface weather station at Lauder and (iii) twice-daily radiosondes launched at Invercargill, about 200km south-west of Lauder. Later versions of T-SASBE will extend the time period and include further measurements made at Lauder.The temperature profiles measured at Invercargill are included in T-SASBE to provide an estimate of the vertical structure in temperature at times between the once-weekly radiosonde flights at Lauder. Corrections to the Invercargill measurements were derived by applying a regression model to temperature profiles measured at Lauder and Invercargill within 12 hours of each other. Different predictor variables, including wind speed and surface pressure, were tested and the quality of the regression model was evaluated. The regression model with the best combination of the predictor variables was used to correct the Invercargill temperature profiles and use them as a valid proxy for 12-hourly temperature profiles

  6. Validation of Temperature Histories for Structural Steel Welds Using Estimated Heat-Affected-Zone Edges

    DTIC Science & Technology

    2016-10-12

    Estimated Heat-Affected-Zone Edges October 12, 2016 Approved for public release; distribution is unlimited. S.G. LambrakoS Center for Computational Materials ...Science Materials Science and Technology Division i REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 3. DATES COVERED (From - To) Standard... material properties. This would entail adjustment of model parameters to achieve agreement between predicted and measured temperature histories at

  7. Using Microwave Observations to Estimate Land Surface Temperature during Cloudy Conditions

    NASA Astrophysics Data System (ADS)

    Holmes, T. R.; Crow, W. T.; Hain, C.; Anderson, M. C.

    2014-12-01

    Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and passive microwave observations (MW). TIR is the most commonly used approach and the method of choice to provide standard LST products for various satellite missions. MW-based LST retrievals on the other hand are not as widely adopted for land applications; currently their principle use is in soil moisture retrieval algorithms. MW and TIR technologies present two highly complementary and independent means of measuring LST. MW observations have a high tolerance to clouds but a low spatial resolution, and TIR has a high spatial resolution with temporal sampling restricted to clear skies. The nature of the temperature at the very surface layer of the land makes it difficult to combine temperature estimates between different methods. The skin temperature is characterized by a strong diurnal cycle that is dependant in timing and amplitude on the exact sensing depth and thermal properties of the vegetation. This paper builds on recent progress in characterizing the main structural components of the DTC that explain differences in TIR and MW estimates of LST. Spatial patterns in DTC timing (phase lag with solar noon) and DTC amplitude have been calculated for TIR, MW and compared to weather prediction estimates. Based on these comparisons MW LST can be matched to the TIR record. This paper will compare in situ measurements of LST with satellite estimates from (downscaled) TIR and (reconciled) MW products. By contrasting the validation results of clear sky days with those of cloudy days the expected tolerance to clouds of the MW observations will be tested. The goal of this study is to determine the weather conditions in which MW can supplement the TIR LST record.

  8. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California.

    PubMed

    Flint, Lorraine E; Flint, Alan L

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 +/- 0.6 degrees C at the 95% confidence interval.

  9. Estimation of daily minimum land surface air temperature using MODIS data in southern Iran

    NASA Astrophysics Data System (ADS)

    Didari, Shohreh; Norouzi, Hamidreza; Zand-Parsa, Shahrokh; Khanbilvardi, Reza

    2016-10-01

    Land surface air temperature (LSAT) is a key variable in agricultural, climatological, hydrological, and environmental studies. Many of their processes are affected by LSAT at about 5 cm from the ground surface (LSAT5cm). Most of the previous studies tried to find statistical models to estimate LSAT at 2 m height (LSAT2m) which is considered as a standardized height, and there is not enough study for LSAT5cm estimation models. Accurate measurements of LSAT5cm are generally acquired from meteorological stations, which are sparse in remote areas. Nonetheless, remote sensing data by providing rather extensive spatial coverage can complement the spatiotemporal shortcomings of meteorological stations. The main objective of this study was to find a statistical model from the previous day to accurately estimate spatial daily minimum LSAT5cm, which is very important in agricultural frost, in Fars province in southern Iran. Land surface temperature (LST) data were obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra satellites at daytime and nighttime periods with normalized difference vegetation index (NDVI) data. These data along with geometric temperature and elevation information were used in a stepwise linear model to estimate minimum LSAT5cm during 2003-2011. The results revealed that utilization of MODIS Aqua nighttime data of previous day provides the most applicable and accurate model. According to the validation results, the accuracy of the proposed model was suitable during 2012 (root mean square difference (RMSD) = 3.07 °C, {R}_{adj}^2 = 87 %). The model underestimated (overestimated) high (low) minimum LSAT5cm. The accuracy of estimation in the winter time was found to be lower than the other seasons (RMSD = 3.55 °C), and in summer and winter, the errors were larger than in the remaining seasons.

  10. Worldwide assessment of the Penman-Monteith temperature approach for the estimation of monthly reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Almorox, Javier; Senatore, Alfonso; Quej, Victor H.; Mendicino, Giuseppe

    2016-11-01

    When not all the meteorological data needed for estimating reference evapotranspiration ETo are available, a Penman-Monteith temperature (PMT) equation can be adopted using only measured maximum and minimum air temperature data. The performance of the PMT method is evaluated and compared with the Hargreaves-Samani (HS) equation using the measured long-term monthly data of the FAO global climatic dataset New LocClim. The objective is to evaluate the quality of the PMT method for different climates as represented by the Köppen classification calculated on a monthly time scale. Estimated PMT and HS values are compared with FAO-56 Penman-Monteith ETo values through several statistical performance indices. For the full dataset, the approximated PMT expressions using air temperature alone produce better results than the uncalibrated HS method, and the performance of the PMT method is even more improved adopting corrections depending on the climate class for the estimation of the solar radiation, especially in the tropical climate class.

  11. Estimates of sea surface temperature in the Coral Sea at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Anderson, D. M.; Prell, W. L.; Barratt, N. J.

    1989-12-01

    The CLIMAP [1981] reconstruction of the Coral Sea found relatively little cooling (2°C) in the low latitudes (10°S) but a warming off Australia at about 25°S. The small low-latitude changes are of interest because terrestrial pollen and snowline data from the New Guinea highlands imply that surface temperatures may have been 6° to 9°C colder at the last glacial maximum (LGM). The purpose of this paper is to evaluate these conclusions on the basis of additional core sites, new oxygen isotope stratigraphy, and new sea surface temperature (SST) estimates using the modern analog technique (MAT). In the northern Coral Sea, planktonic foraminifer assemblages consist of tropical-subtropical species that show little change over the past 20 kyr. Quantitative estimates of SST using the modern analog technique (MAT) confirm the CLIMAP [1981] conclusion that little or no temperature change occurred in this tropical region at the LGM, thus reinforcing the conflict with terrestrial evidence. In the southern region (25°S), two cores indicate that foraminifer faunas became more subtropical at the LGM. The MAT estimates for the LGM are 3° to 4°C colder than modern, producing a steeper thermal gradient in the southern Coral Sea. These data remove the warm SST anomaly along the eastern coast of Australia and indicate that during the LGM, cool high- latitude waters were displaced northward along the coast of Australia into the southern Coral Sea.

  12. Assimilation of microwave brightness temperatures for soil moisture estimation using particle filter

    NASA Astrophysics Data System (ADS)

    Bi, H. Y.; Ma, J. W.; Qin, S. X.; Zeng, J. Y.

    2014-03-01

    Soil moisture plays a significant role in global water cycles. Both model simulations and remote sensing observations have their limitations when estimating soil moisture on a large spatial scale. Data assimilation (DA) is a promising tool which can combine model dynamics and remote sensing observations to obtain more precise ground soil moisture distribution. Among various DA methods, the particle filter (PF) can be applied to non-linear and non-Gaussian systems, thus holding great potential for DA. In this study, a data assimilation scheme based on the residual resampling particle filter (RR-PF) was developed to assimilate microwave brightness temperatures into the macro-scale semi-distributed Variance Infiltration Capacity (VIC) Model to estimate surface soil moisture. A radiative transfer model (RTM) was used to link brightness temperatures with surface soil moisture. Finally, the data assimilation scheme was validated by experimental data obtained at Arizona during the Soil Moisture Experiment 2004 (SMEX04). The results show that the estimation accuracy of soil moisture can be improved significantly by RR-PF through assimilating microwave brightness temperatures into VIC model. Both the overall trends and specific values of the assimilation results are more consistent with ground observations compared with model simulation results.

  13. Estimation of Temperature Range for Cryo Cutting of Frozen Mackerel using DSC

    NASA Astrophysics Data System (ADS)

    Okamoto, Kiyoshi; Hagura, Yoshio; Suzuki, Kanichi

    Frozen mackerel flesh was subjected to measurement of its fracture stress (bending energy) in a low temperature range. The optimum conditions for low temperature cutting, "cryo cutting," were estimated from the results of enthalpy changes measured by a differential scanning calorimeter (DSC). There were two enthalpy changes for gross transition on the DSC chart for mackerel, one was at -63°C to -77°C and the other at -96°C to -112°C. Thus we estimated that mackerel was able to cut by bending below -63°C and that there would be a great decrease in bending energy occurring at around -77°C and -112°C. In testing, there were indeed two great decreases of bending energy for the test pieces of mackerel that had been frozen at -40°C, one was at -70°C to -90°C and the other was at -100°C to -120°C. Therefore, the test pieces of mackerel could be cut by bending at -70°C. The results showed that the DSC measurement of mackerel flesh gave a good estimation of the appropriate cutting temperature of mackerel.

  14. Estimating trends in atmospheric water vapor and temperature time series over Germany

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Balidakis, Kyriakos; Dick, Galina; Heise, Stefan; Wickert, Jens

    2017-08-01

    Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods: the first applies least squares to deseasonalized time series and the second uses the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 to 19 years temporal coverage, vary between -1.5 and 2.3 mm decade-1 with standard deviations below 0.25 mm decade-1. These results were validated by estimating the trends from ERA-Interim data over the same time windows, which show similar values. These values of the trend depend on the length and the variations of the time series. Therefore, to give a mean value of the PWV trend over Germany, we estimated the trends using ERA-Interim spanning from 1991 to 2016 (26 years) at 227 synoptic stations over Germany. The ERA-Interim data show positive PWV trends of 0.33 ± 0.06 mm decade-1 with standard errors below 0.03 mm decade-1. The increment in PWV varies between 4.5 and 6.5 % per degree Celsius rise in temperature, which is comparable to the theoretical rate of the Clausius

  15. Estimation Of Rheological Law By Inverse Method From Flow And Temperature Measurements With An Extrusion Die

    NASA Astrophysics Data System (ADS)

    Pujos, Cyril; Regnier, Nicolas; Mousseau, Pierre; Defaye, Guy; Jarny, Yvon

    2007-05-01

    Simulation quality is determined by the knowledge of the parameters of the model. Yet the rheological models for polymer are often not very accurate, since the viscosity measurements are made under approximations as homogeneous temperature and empirical corrections as Bagley one. Furthermore rheological behaviors are often traduced by mathematical laws as the Cross or the Carreau-Yasuda ones, whose parameters are fitted from viscosity values, obtained with corrected experimental data, and not appropriate for each polymer. To correct these defaults, a table-like rheological model is proposed. This choice makes easier the estimation of model parameters, since each parameter has the same order of magnitude. As the mathematical shape of the model is not imposed, the estimation process is appropriate for each polymer. The proposed method consists in minimizing the quadratic norm of the difference between calculated variables and measured data. In this study an extrusion die is simulated, in order to provide us temperature along the extrusion channel, pressure and flow references. These data allow to characterize thermal transfers and flow phenomena, in which the viscosity is implied. Furthermore the different natures of data allow to estimate viscosity for a large range of shear rates. The estimated rheological model improves the agreement between measurements and simulation: for numerical cases, the error on the flow becomes less than 0.1% for non-Newtonian rheology. This method couples measurements and simulation, constitutes a very accurate mean of rheology determination, and allows to improve the prediction abilities of the model.

  16. Improved vertical streambed flux estimation using multiple diurnal temperature methods in series

    USGS Publications Warehouse

    Irvine, Dylan; Briggs, Martin; Cartwright, Ian; Scruggs, Courtney; Lautz, Laura K.

    2017-01-01

    Analytical solutions that use diurnal temperature signals to estimate vertical fluxes between groundwater and surface water based on either amplitude ratios (Ar) or phase shifts (Δϕ) produce results that rarely agree. Analytical solutions that simultaneously utilize Ar and Δϕ within a single solution have more recently been derived, decreasing uncertainty in flux estimates in some applications. Benefits of combined (ArΔϕ) methods also include that thermal diffusivity and sensor spacing can be calculated. However, poor identification of either Ar or Δϕ from raw temperature signals can lead to erratic parameter estimates from ArΔϕ methods. An add-on program for VFLUX 2 is presented to address this issue. Using thermal diffusivity selected from an ArΔϕ method during a reliable time period, fluxes are recalculated using an Ar method. This approach maximizes the benefits of the Ar and ArΔϕ methods. Additionally, sensor spacing calculations can be used to identify periods with unreliable flux estimates, or to assess streambed scour. Using synthetic and field examples, the use of these solutions in series was particularly useful for gaining conditions where fluxes exceeded 1 m/d.

  17. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint

    SciTech Connect

    Mullane, Michelle; Gleason, Michael; McCabe, Kevin; Mooney, Meghan; Reber, Timothy; Young, Katherine R.

    2016-10-01

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources in the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.

  18. TEMPERATURE AND DENSITY ESTIMATES OF EXTREME-ULTRAVIOLET FLARE RIBBONS DERIVED FROM TRACE DIFFRACTION PATTERNS

    SciTech Connect

    Krucker, Saem; Raftery, Claire L.; Hudson, Hugh S.

    2011-06-10

    We report on Transition Region And Coronal Explorer 171 A observations of the GOES X20 class flare on 2001 April 2 that shows EUV flare ribbons with intense diffraction patterns. Between the 11th to 14th order, the diffraction patterns of the compact flare ribbon are dispersed into two sources. The two sources are identified as emission from the Fe IX line at 171.1 A and the combined emission from Fe X lines at 174.5, 175.3, and 177.2 A. The prominent emission of the Fe IX line indicates that the EUV-emitting ribbon has a strong temperature component near the lower end of the 171 A temperature response ({approx}0.6-1.5 MK). Fitting the observation with an isothermal model, the derived temperature is around 0.65 MK. However, the low sensitivity of the 171 A filter to high-temperature plasma does not provide estimates of the emission measure for temperatures above {approx}1.5 MK. Using the derived temperature of 0.65 MK, the observed 171 A flux gives a density of the EUV ribbon of 3 x 10{sup 11} cm{sup -3}. This density is much lower than the density of the hard X-ray producing region ({approx}10{sup 13} to 10{sup 14} cm{sup -3}) suggesting that the EUV sources, though closely related spatially, lie at higher altitudes.

  19. Temperature and Density Estimates of Extreme-ultraviolet Flare Ribbons Derived from TRACE Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Raftery, Claire L.; Hudson, Hugh S.

    2011-06-01

    We report on Transition Region And Coronal Explorer 171 Å observations of the GOES X20 class flare on 2001 April 2 that shows EUV flare ribbons with intense diffraction patterns. Between the 11th to 14th order, the diffraction patterns of the compact flare ribbon are dispersed into two sources. The two sources are identified as emission from the Fe IX line at 171.1 Å and the combined emission from Fe X lines at 174.5, 175.3, and 177.2 Å. The prominent emission of the Fe IX line indicates that the EUV-emitting ribbon has a strong temperature component near the lower end of the 171 Å temperature response (~0.6-1.5 MK). Fitting the observation with an isothermal model, the derived temperature is around 0.65 MK. However, the low sensitivity of the 171 Å filter to high-temperature plasma does not provide estimates of the emission measure for temperatures above ~1.5 MK. Using the derived temperature of 0.65 MK, the observed 171 Å flux gives a density of the EUV ribbon of 3 × 1011 cm-3. This density is much lower than the density of the hard X-ray producing region (~1013 to 1014 cm-3) suggesting that the EUV sources, though closely related spatially, lie at higher altitudes.

  20. Estimation of the lower flammability limit of organic compounds as a function of temperature.

    PubMed

    Rowley, J R; Rowley, R L; Wilding, W V

    2011-02-15

    A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus.

  1. The use of streambed temperatures to estimate transmission losses on an experimental channel.

    SciTech Connect

    Ramon C. Naranjo; Michael H. Young; Richard Niswonger; Julianne J. Miller; Richard H. French

    2001-10-18

    Quantifying channel transmission losses in arid environments is important for a variety of reasons, from engineering design of flood control structures to evaluating recharge. To quantify the losses in an alluvial channel, an experiment was performed on a 2-km reach of an alluvial fan located on the Nevada Test Site. The channel was subjected to three separate flow events. Transmission losses were estimated using standard discharge monitoring and subsurface temperature modeling approach. Four stations were equipped to continuously monitor stage, temperature, and water content. Streambed temperatures measured at 0, 30, 50 and 100 cm depths were used to calibrate VS2DH, a two-dimensional, variably saturated flow model. Average losses based on the difference in flow between each station indicate that 21 percent, 27 percent, and 53 percent of the flow was reduced downgradient of the source. Results from the temperature monitoring identified locations with large thermal gradients, suggesting a conduction-dominated heat transfer on streambed sediments where caliche-cemented surfaces were present. Transmission losses at the lowermost segment corresponded to the smallest thermal gradient, suggesting an advection-dominated heat transfer. Losses predicted by VS2DH are within an order of magnitude of the estimated losses based on discharge measurements. The differences in losses are a result of the spatial extent to which the modeling results are applied and lateral subsurface flow.

  2. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2017-08-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  3. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2016-06-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  4. Fast cosmological parameter estimation from microwave background temperature and polarization power spectra

    NASA Astrophysics Data System (ADS)

    Jimenez, Raul; Verde, Licia; Peiris, Hiranya; Kosowsky, Arthur

    2004-07-01

    We improve the algorithm of Kosowsky, Milosavljevic, and Jimenez for computing power spectra of the cosmic microwave background. The present algorithm computes not only the temperature power spectrum but also the E- and B-mode polarization and the temperature-polarization cross power spectra, providing the accuracy required for current cosmological parameter estimation. Both unlensed and lensed (with non-linear evolution) power spectra are provided up to l=3000 for temperature and polarization signals. We refine the optimum set of cosmological parameters for computing the power spectra as perturbations around a fiducial model, leading to an accuracy better than 0.5% for the temperature power spectrum throughout the region of parameter space within the Wilkinson Microwave Anisotropic Probe’s first-year 3σ confidence region. This accuracy is comparable to the difference between the widely used CMBFAST code of Seljak and Zaldarriaga and Boltzmann codes. Our algorithm (CMBWARP) makes possible a full exploration of the likelihood region for eight cosmological parameters in about one hour on a laptop computer. We provide the code to compute power spectra as well as the Markov chain Monte Carlo algorithm for cosmological parameters estimation at http://www.physics.upenn.edu/˜raulj/CMBwarp.

  5. Estimation of Lattice Strain in ZnO Nanoparticles Produced by Laser Ablation at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Solati, E.; Dorranian, D.

    2017-07-01

    The effects of water temperature on the characteristics of ZnO nanoparticles produced by laser ablation method in water were investigated experimentally. The nanoparticles were prepared by pulsed laser ablation of a zinc metal target in distilled water at different temperatures. The synthesized ZnO nanoparticles were characterized using X-ray diffraction analysis and transmission electron microscopy. The results show that the produced samples are crystalline with a hexagonal wurtzite phase. Transmission electron microscopy has revealed that the ZnO nanoparticles are spherical. The strain and the crystallite size of the nanoparticles were investigated by X-ray peak broadening. The mean crystallite size of the ZnO nanoparticles estimated from the TEM images is in good agreement with three models of the Williamson-Hall method. According to the results, the size distribution of the produced ZnO nanoparticles depends strongly on the temperature of the ablation environment.

  6. Estimating changes in volume-weighted mean body temperature using thermometry with an individualized correction factor.

    PubMed

    Jay, Ollie; DuCharme, Michel B; Webb, Paul; Reardon, Francis D; Kenny, Glen P

    2010-08-01

    This study investigated whether the estimation error of volume-weighted mean body temperature (DeltaT(b)) using changes in core and skin temperature can be accounted for using personal and environmental parameters. Whole body calorimetry was used to directly measure DeltaT(b) in an Experimental group (EG) of 36 participants (24 males, 12 females) and a Validation group (VG) of 20 (9 males, 11 females) throughout 90 min of cycle ergometry at 40 degrees C, 30% relative humidity (RH) (n = 9 EG, 5 VG); 30 degrees C, 30% RH (n = 9 EG, 5 VG); 30 degrees C, 60% RH (n = 9 EG, 5 VG); and 24 degrees C, 30% RH (n = 9 EG, 5 VG). The core of the two-compartment thermometry model was represented by rectal temperature and the shell by a 12-point mean skin temperature (DeltaT(sk)). The estimation error (X(0)) between DeltaT(b) from calorimetry and DeltaT(b) from thermometry using core/shell weightings of 0.66/0.34, 0.79/0.21, and 0.90/0.10 was calculated after 30, 60, and 90 min of exercise, respectively. The association between X(0) and the individual variation in metabolic heat production (M - W), body surface area (BSA), body fat percentage (%fat), and body surface area-to-mass ratio (BSA/BM) as well as differences in environmental conditions (Oxford index) in the EG data were assessed using stepwise linear regression. At all time points and with all core/shell weightings tested, M - W, BSA, and Oxford index independently correlated significantly with the residual variance in X(0), but %fat and BSA/BM did not. The subsequent regression models were used to predict the thermometric estimation error (X(0_pred)) for each individual in the VG. The value estimated for X(0_pred) was then added to the DeltaT(b) estimated using the two-compartment thermometry models yielding an adjusted estimation (DeltaT(b)_(adj)) for the individuals in the VG. When comparing DeltaT(b)_(adj) to the DeltaT(b) derived from calorimetry in the VG, the best performing model used a core/shell weighting of 0

  7. Comparison of single-point and continuous sampling methods for estimating residential indoor temperature and humidity

    PubMed Central

    Johnston, James D.; Magnusson, Brianna M.; Eggett, Dennis; Collingwood, Scott C.; Bernhardt, Scott A.

    2016-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hrs, and 12-days) in 9 northern Utah homes, from March – June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions. PMID:26030088

  8. Comparison of Single-Point and Continuous Sampling Methods for Estimating Residential Indoor Temperature and Humidity.

    PubMed

    Johnston, James D; Magnusson, Brianna M; Eggett, Dennis; Collingwood, Scott C; Bernhardt, Scott A

    2015-01-01

    Residential temperature and humidity are associated with multiple health effects. Studies commonly use single-point measures to estimate indoor temperature and humidity exposures, but there is little evidence to support this sampling strategy. This study evaluated the relationship between single-point and continuous monitoring of air temperature, apparent temperature, relative humidity, and absolute humidity over four exposure intervals (5-min, 30-min, 24-hr, and 12-days) in 9 northern Utah homes, from March-June 2012. Three homes were sampled twice, for a total of 12 observation periods. Continuous data-logged sampling was conducted in homes for 2-3 wks, and simultaneous single-point measures (n = 114) were collected using handheld thermo-hygrometers. Time-centered single-point measures were moderately correlated with short-term (30-min) data logger mean air temperature (r = 0.76, β = 0.74), apparent temperature (r = 0.79, β = 0.79), relative humidity (r = 0.70, β = 0.63), and absolute humidity (r = 0.80, β = 0.80). Data logger 12-day means were also moderately correlated with single-point air temperature (r = 0.64, β = 0.43) and apparent temperature (r = 0.64, β = 0.44), but were weakly correlated with single-point relative humidity (r = 0.53, β = 0.35) and absolute humidity (r = 0.52, β = 0.39). Of the single-point RH measures, 59 (51.8%) deviated more than ±5%, 21 (18.4%) deviated more than ±10%, and 6 (5.3%) deviated more than ±15% from data logger 12-day means. Where continuous indoor monitoring is not feasible, single-point sampling strategies should include multiple measures collected at prescribed time points based on local conditions.

  9. Retrieval of Temperature and Water Vapour from Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2016-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  10. Retrieval of Temperature and Water Vapour From Multiple Channel Lidar Systems Using an Optimal Estimation Method

    NASA Astrophysics Data System (ADS)

    Sica, Robert; Haefele, Alexander

    2015-04-01

    While the application of optimal estimation methods (OEMs) is well-known for the retrieval of atmospheric parameters from passive instruments, active instruments have typically not employed the OEM. For instance, the measurement of temperature in the middle atmosphere with Rayleigh-scatter lidars is an important technique for assessing atmospheric change. Current retrieval schemes for these temperatures have several shortcomings which can be overcome using an OEM. Forward models have been constructed that fully characterize the measurement and allow the simultaneous retrieval of temperature, dead time and background. The OEM allows a full uncertainty budget to be obtained on a per profile basis that includes, in addition to the statistical uncertainties, the smoothing error and uncertainties due to Rayleigh extinction, ozone absorption, the lidar constant, nonlinearity in the counting system, variation of the Rayleigh-scatter cross section with altitude, pressure, acceleration due to gravity and the variation of mean molecular mass with altitude. The vertical resolution of the temperature profile is found at each height, and a quantitative determination is made of the maximum height to which the retrieval is valid. A single temperature profile can be retrieved from measurements with multiple channels that cover different height ranges, vertical resolutions and even different detection methods. The OEM employed is shown to give robust estimates of temperature consistent with previous methods, while requiring minimal computational time. Retrieval of water vapour mixing ratio from vibrational Raman scattering lidar measurements is another example where an OEM offers a considerable advantage over the standard analysis technique, with the same advantages as discussed above for Rayleigh-scatter temperatures but with an additional benefit. The conversion of the lidar measurement into mixing ratio requires a calibration constant to be employed. Using OEM the calibration

  11. Land Surface Temperature estimation using ENVISAT AATSR Data -A study over tropical deciduous forest region.

    NASA Astrophysics Data System (ADS)

    Kvs, Badarinath

    Seasonal vegetation characteristics and other related phenological parameters can be better studies by Combined analysis of reflective and thermal data recorded by coarse resolution and high repetitive satellites. ENVISAT Advanced Along Track Scanning Radiometer (AATSR) data for different seasons from January 04 to April 04 has been analyzed to derive the Normal-ized Difference Vegetation Index (NDVI) and Surface Temperature (ST) images for the forest regions of Nagarjunasagar Srisailam Tiger Reserve (NSTR), India. Temporal variation of NDVI and ST reflected the phenology of the forest area. A negative relationship was observed be-tween the NDVI and ST over all the vegetation types and the proportion of vegetation cover seemed to has bearing on the ST. Scatter plots for NDVI and ST drawn for winter season showed a good separability of land use/land cover types of the study area. AATSR operates in channels with band centers at 0.555, 0.659, 0.858,1.61,3.70,10.85 and 12m. NDVI estimated from AATSR has been taken as a parameter for estimating surface emissivity and algorithm based on nadir and forward scans of brightness temperature in 12m has been used for esti-mating surface temperature. The surface temperature(ST) showed an inverse relation with a maximum for less vegetated areas and minimum from high vegetated areas. NDVI and surface temperature are inversely related and different land use / land cover categories can be segre-gated depending on the date of satellite pass in the TS vs. NDVI relation. Combination of spectral vegetation indices and thermal infrared measurements forms a useful tool in studying the land-atmospheric interactions. The proportion of vegetation cover at pixel level plays an important role in observing surface temperature variations over forest regions. The relation between NDVI and ST depends on vegetation phenology and thus on the availability of mois-ture in forest regions. The study area comprises mostly of deciduous type of forest

  12. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Impedance-based temperature detection (ITD) is a promising approach for rapid estimation of internal cell temperature based on the correlation between temperature and electrochemical impedance. Previously, ITD was used as part of an Extended Kalman Filter (EKF) state-estimator in conjunction with a thermal model to enable estimation of the 1-D temperature distribution of a cylindrical lithium-ion battery. Here, we extend this method to enable estimation of the 2-D temperature field of a battery with temperature gradients in both the radial and axial directions. An EKF using a parameterised 2-D spectral-Galerkin model with ITD measurement input (the imaginary part of the impedance at 215 Hz) is shown to accurately predict the core temperature and multiple surface temperatures of a 32,113 LiFePO4 cell, using current excitation profiles based on an Artemis HEV drive cycle. The method is validated experimentally on a cell fitted with a heat sink and asymmetrically cooled via forced air convection. A novel approach to impedance-temperature calibration is also presented, which uses data from a single drive cycle, rather than measurements at multiple uniform cell temperatures as in previous studies. This greatly reduces the time required for calibration, since it overcomes the need for repeated cell thermal equalization.

  13. Estimating land surface heat flux using radiometric surface temperature without the need for an extra resistance

    NASA Astrophysics Data System (ADS)

    Su, H.; Yang, Y.; Liu, S.

    2015-12-01

    Remotely-sensed land surface temperature (LST) is a key variable in energy balance and is widely used for estimating regional heat flux. However, the inequality between LST and aerodynamic surface temperature (Taero) poses a great challenge for regional heat flux estimation in one -source energy balance models. In this study, a one-source model for land (OSML) was proposed to estimate regional surface heat flux without a need for an empirical extra resistance. The proposed OSML employs both a conceptual VFC/LST trapezoid model and the electrical analogue formula of sensible heat flux (H) to estimate the radiometric-convective resistance (rae) by using a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX), using a remotely-sensed data set at a regional scale. Validated against tower observations, the root mean square deviation (RMSD) of H and latent heat flux (LE) from OSML was 47 W/m2 and 51 W/m2, which is comparable to other published studies. OSML and SEBS (Surface Energy Balance System) compared under the same available energy indicated that LE estimated by OSML is comparable to that derived from the SEBS model. In conducting further inter-comparisons of rae, the aerodynamic resistance derived from SEBS (ra_SEBS), and aerodynamic resistance (ra) derived from Brutsaert et al. (2005) in corn and soybean fields, we found that rae and ra_SEBS are comparable. Most importantly, our study indicates that the OSML method is applicable without having to acquire wind speed or to specify aerodynamic surface characteristics and that it is applicable to heterogeneous areas.

  14. Using IR-measured soil surface temperatures to estimate hydraulic properties of the top soil layer

    NASA Astrophysics Data System (ADS)

    Steenpass, Christian; Vanderborght, Jan; Herbst, Michael; Simunek, Jirka; Vereecken, Harry

    2010-05-01

    The temporal and spatial development of soil surface temperatures (SST) depends on water availability in the near-surface soil layer. Since the soil loses latent heat during evaporation and water available for evaporation depends on soil hydraulic properties (SHP), the temporal variability of SST should contain information about the near-surface SHP. This study was conducted to investigate the information content of soil surface temperatures for estimation of soil hydraulic properties and their uncertainties, and to determine the effect of soil tillage on near-surface SHP. A hydrological model (HYDRUS-1D) coupled with a global optimizer (DREAM) was used to inversely estimate the van Genuchten-Mualem parameters of SHP from infra-red measured SST and TDR-measured water contents. The general applicability of this approach was tested using synthetic data. The same approach was then applied to a real data set, which was collected during September 2008 in Selhausen, Germany. The synthetic data set was generated using HYDRUS-1D for the same initial and boundary conditions and measurement protocol as the real data set. Using synthetic and real data it was found that although estimated SHP are sensitive to SST, their estimates are relatively uncertain when only information about SST is used. These uncertainties can be reduced by additionally considering also measured soil water contents. A comparison of SHP determined in the laboratory on undisturbed soil samples with those estimated from SST and TDR data measured in a harrowed soil showed similar results for the deeper undisturbed soil and large differences for the harrowed part of the soil profile. This shows the important effect of soil tillage on soil hydraulic properties. Application of the method in the field to characterize the hydraulic properties of the upper soil layer may reduce the amount of needed in-soil measurements and therefore allows larger scale observations.

  15. New estimates of tropical temperature and precipitation changes during the last 42ka

    NASA Astrophysics Data System (ADS)

    Grauel, A.; Hodell, D. A.; Bernasconi, S. M.; Correa-Metrio, A.

    2013-12-01

    The amount of cooling in the tropics during the last Ice Age has been a longstanding problem with large discrepancies between terrestrial and marine estimates. Here we present a reconstruction of temperature and precipitation changes over the last 42ka from a lake sediment core from Lake Petén Itzá, Guatemala, located at 17°N in lowland Central America. Previous studies of sediment cores from Lake Petén Itzá showed that alternating layers of clay- and gypsum-rich sediment reflect times of wetter and dryer conditions, respectively. The most arid conditions coincide with stadials, especially those associated with Heinrich events (HEs) when pollen assemblages are dominated by xeric-tolerant taxa. In contrast, interstadials and the last glacial maximum (LGM) are characterized by clay deposition and pollen indicative of temperate pine-oak forest, indicating more humid conditions in the lowland Neotropics. We compared three independent methods to reconstruct glacial temperatures: tandem measurements of δ18O in biogenic carbonate and gypsum hydration water, clumped isotope thermometry, and pollen-based temperature estimates using the Modern Analog Technique (MAT). The temperatures derived by the three methods generally agree during interstadials and some stadials (e.g., HE2 and 3), but diverge during other stadial events (e.g., HE1 and 4). For example, gypsum hydration and clumped isotope methods indicate a severe cooling of 6 to 10°C during HE1 and 4, whereas the pollen MAT suggests more moderate cooling of 3 to 6 °C. The reason for this divergence is likely that no modern analogs exist for the pollen assemblage during these cold, arid stadials when the MAT is not applicable. Although the temperature decrease is similar (6-10°C) for HE1 and 4, deuterium excess is distinctly different (-19 and -14, respectively), perhaps indicating a change in source and/or seasonality of precipitation. The δ18O and δD of the lake water indicate HE1 was the most arid

  16. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    NASA Astrophysics Data System (ADS)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  17. Exploring a simple method to estimate spot temperatures in weak-lined T Tauri stars

    NASA Astrophysics Data System (ADS)

    Koen, Chris

    2016-12-01

    The astronomy literature contains a wealth of photometric measurements of the brightness variations of weak-lined T Tauri stars. Comparing observations through two different filters, the brightness changes of the vast majority of these stars trace straight lines in magnitude-magnitude plots. It is plausible that the slope of the line is determined by a fixed mean starspot temperature, and that changing filling factors cause the linear magnitude-magnitude relations to be described. This is exploited to derive an estimator for the starspot temperature in terms of a linear regression slope, valid for modest starspot filling factors. Simulations are used to demonstrate that such regression slopes first need to be corrected for measurement errors, in order to avoid biased results. The theory is applied to a collection of 45 extensive sets of BVR (and in some cases UBVR) observations of weak-lined T Tauri stars taken from the literature. The results are examined critically, and it is pointed out that there are systematic differences between spot temperatures determined respectively from BV and VR data pairs. The reason for this is not known; possible causes are briefly speculated about. There is generally poor agreement with published spot temperatures, which also vary considerably. The simplest explanation is that the mean temperature of starspots is variable.

  18. Atmospheric corrections of passive microwave data for estimating land surface temperature.

    PubMed

    Liu, Zeng-Lin; Wu, Hua; Tang, Bo-Hui; Qiu, Shi; Li, Zhao-Liang

    2013-07-01

    Quantitative analysis of the atmospheric effects on observations made by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) has been performed. The differences between observed brightness temperatures at the top of the atmosphere and at the bottom of the atmosphere were analyzed using a database of simulated observations, which were configured to replicate AMSR-E data. The differences between observed brightness temperatures at the top of the atmosphere and land surface-emitted brightness temperatures were also computed. Quantitative results show that the atmosphere has different effects on brightness temperatures in different AMSR-E channels. Atmospheric effects can be neglected at 6.925 and 10.65 GHz, when the standard deviation is less than 1 K. However, at other frequencies and polarizations, atmospheric effects on observations should not be neglected. An atmospheric correction algorithm was developed at 18.7 GHz vertical polarization, based on the classic split-window algorithm used in thermal remote sensing. Land surface emission can be estimated with RMSE = 0.99 K using the proposed method. Using the known land surface emissivity, Land Surface Temperature (LST) can be retrieved. The RMSE of retrieved LST is 1.17 K using the simulated data.

  19. Estimation of effective temperatures in a quantum annealer: Towards deep learning applications

    NASA Astrophysics Data System (ADS)

    Realpe-Gómez, John; Benedetti, Marcello; Perdomo-Ortiz, Alejandro

    Sampling is at the core of deep learning and more general machine learning applications; an increase in its efficiency would have a significant impact across several domains. Recently, quantum annealers have been proposed as a potential candidate to speed up these tasks, but several limitations still bar them from being used effectively. One of the main limitations, and the focus of this work, is that using the device's experimentally accessible temperature as a reference for sampling purposes leads to very poor correlation with the Boltzmann distribution it is programmed to sample from. Based on quantum dynamical arguments, one can expect that if the device indeed happens to be sampling from a Boltzmann-like distribution, it will correspond to one with an instance-dependent effective temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling processes. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the quantum-assisted training of Boltzmann machines, which can serve as a building block for deep learning architectures. This work was supported by NASA Ames Research Center.

  20. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.

  1. The temperature during the high speed friction experiments estimated by ESR signals in quartz

    NASA Astrophysics Data System (ADS)

    Usami, T.; Toyoda, S.; Mizoguchi, K.; Shimamoto, T.; Hirose, T.

    2004-12-01

    ESR (electron spin resonance) dating method has been developed to obtain ages of quaternary geological events using calcite, aragonite, hydroxyapatite, and quartz. In natural quartz, paramagnetic (ESR sensitive) defects such as Al center (an Al atom replacing a Si, trapping an electronic hole) and Ti-Li center (a Ti atom replacing a Si, trapping an electron together with Li+ as a charge compensator) are stable for the geological time scale while they decay on heating according to the thermal activation processes. In the present study, we use these ESR signals as indicators of temperature during the high speed friction experiments. The present experiment will also tell the conditions of faulting which completely zero the ESR signals, which is necessary for ESR dating of faulting to work. The gamma ray irradiated quartz grains of 0.5 to 1 mm were sandwitched by two gabrro columns of 25 mm in diameter with a tephron sleeve. The friction expereiments were performed with a load of 30 kg and with speeds of 75 to 300 rotation per minutes. After removing the columns, the crushed quartz powder was divided into three parts, outer, intermediate, and inner parts. ESR measurements were performed by an ESR spectrometer, JEOL PX-2300, at 83-87K, with a microwave power of 5 mW, and with an modulation amplitude of 0.1 mT. The estimated temperatures are higher for outer part where the frictional speed is higher while lower for inside, with systematic difference for different ESR signals, when assuming that the temperature was constant during friction experiments. The temperatures will be estimated again, in the presentation, with considering the temperature change with time while friction experiments, also with taking into account the results of heating experiments.

  2. Potential of thermoluminescence method to estimate the time-temperature condition of fault activity

    NASA Astrophysics Data System (ADS)

    Hasebe, N.; Miura, K.; Ganzawa, Y.

    2016-12-01

    To date the last fault activity by a radiometric dating method, the resetting of dating system, that is a function of time-temperature condition, is inevitable. To see whether a particular dating system was reset by fault activities, we often estimate a temperature rise by frictional heating under the geophysical and geological observations of stress field and displacement length. When the last fault activity occurred beyond the observation era, such attempt is difficult to apply with little knowledge on what happened in the past. Luminescence dating method (TL and OSL datings) has a potential to date the last event of active fault in Quaternary (e.g., Spencer et al., 2012, Ganzawa et al., 2013), for it is easily reset compared to other dating methods with higher closure temperatures over geological time scale. However, if a sample experienced only a partial resetting in luminescence dating system, the obtained ages do not correspond to any events. We propose the potential of thermoluminescence method to estimate the time-temperature condition of the fault-related sample. Thermoluminescence glow curve consists of signals from several traps (e.g., Spooner, et al., 2001). Lifetime (τ) of each trap is calculated from the following equation (Aitken, 1985). τ=s-1exp(E/kT), where s is the frequency factor (/sec), E is trap depth (eV), k is Boltzmann constant (eV/K), and T is temperature (K). When luminescence signal is decreased by the event from I0 to Im, the time (t) necessary for this decrease is estimated by the equation t=τln(I0/Im). If we have two trap sites in a sample, and I0 can be estimated somehow (e.g., from the signal intensity of unaffected higher trap), two unknowns (t and T) can be determined from two sets of equations. In general, signals will be regained after the event owing to annual dose rate and time passed since the event. Therefore present signal intensity (Ip) is described as equation Ip=Ix+Im ,where Ix is the signal built after the event

  3. A nonlinear optimal estimation inverse method for radio occultation measurements of temperature, humidity, and surface pressure

    NASA Astrophysics Data System (ADS)

    Palmer, Paul I.; Barnett, J. J.; Eyre, J. R.; Healy, S. B.

    2000-07-01

    An optimal estimation inverse method is presented which can be used to retrieve simultaneously vertical profiles of temperature and specific humidity, in addition to surface pressure, from satellite-to-satellite radio occultation observations of the Earth's atmosphere. The method is a nonlinear, maximum a posteriori technique which can accommodate most aspects of the real radio occultation problem and is found to be stable and to converge rapidly in most cases. The optimal estimation inverse method has two distinct advantages over the analytic inverse method in that it accounts for some of the effects of horizontal gradients and is able to retrieve optimally temperature and humidity simultaneously from the observations. It is also able to account for observation noise and other sources of error. Combined, these advantages ensure a realistic retrieval of atmospheric quantities. A complete error analysis emerges naturally from the optimal estimation theory, allowing a full characterization of the solution. Using this analysis, a quality control scheme is implemented which allows anomalous retrieval conditions to be recognized and removed, thus preventing gross retrieval errors. The inverse method presented in this paper has been implemented for bending angle measurements derived from GPS/MET radio occultation observations of the Earth. Preliminary results from simulated data suggest that these observations have the potential to improve numerical weather prediction model analyses significantly throughout their vertical range.

  4. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    SciTech Connect

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

  5. Plasma Temperature Estimates from EUV Spectroscopy of an Aluminum Rod pulsed with MA Current

    NASA Astrophysics Data System (ADS)

    Fuelling, Stephan; Awe, Tom J.; Bauer, Bruno S.; Lindemuth, Irvin R.; Siemon, Richard E.; Yates, Kevin C.

    2010-11-01

    Plasma formation on the surface of aluminum rods driven by Zebra, a 1 MA, 100 ns rise time driver, resulting in a magnetic field between 1.5 - 4 MG has been studied. Plasma forms when the surface magnetic field reaches about 2.2 MG. This threshold is important for applications in magneto inertial fusion and magnetic insulated transmission lines of pulsed power systems. In particular, we want to understand the behavior of the inner liner surface in liner compression experiments of a field-reversed-configuration plasma performed at Shiva Star, AFRL, Albuquerque, New Mexico. Extreme ultraviolet (EUV) emission spectra from the aluminum surface were compared to PrismSPECT modeled spectra to determine the plasma temperature. In addition, EUV photodiodes with directly deposited filters were used to measure radiated power. For 1 mm diameter aluminum rods the temperature was estimated as >=15 eV which is in agreement with temperature estimates from measurements in the visible and with radiation-MHD modeling.

  6. Estimation of the temperature dependent interaction between uncharged point defects in Si

    SciTech Connect

    Kamiyama, Eiji; Vanhellemont, Jan; Sueoka, Koji

    2015-01-15

    A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V{sub 2} is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects.

  7. Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.

  8. Effects of Low Energetic Neutral Atoms on Martian and Venusian Dayside Exospheric Temperature Estimations

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Herbert I. M.; Lammer, Helmut; Kulikov, Yuri N.; Kazeminejad, Shahin; Molina-Cuberos, Gregorio H.; Rodrigo, Rafael; Kazeminejad, Bobby; Kirchengast, Gottfried

    2006-10-01

    The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1 102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ˜500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9 12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250 300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190 220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity

  9. Effects of Low Energetic Neutral Atoms on Martian and Venusian Dayside Exospheric Temperature Estimations

    NASA Astrophysics Data System (ADS)

    Lichtenegger, Herbert I. M.; Lammer, Helmut; Kulikov, Yuri N.; Kazeminejad, Shahin; Molina-Cuberos, Gregorio H.; Rodrigo, Rafael; Kazeminejad, Bobby; Kirchengast, Gottfried

    The heating of the Upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1 - 102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-a dayglow observations of up to ˜500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9-12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250-300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle Variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190-220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity

  10. Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Bassam, A.; Santoyo, E.; Andaverde, J.; Hernández, J. A.; Espinoza-Ojeda, O. M.

    2010-09-01

    An artificial neural network (ANN) approach was used to develop a new predictive model for the calculation of static formation temperature (SFT) in geothermal wells. A three-layer ANN architecture was successfully trained using a geothermal borehole database, which contains "statistically normalised" SFT estimates. These estimates were inferred from seven analytical methods commonly used in geothermal industry. Bottom-hole temperature (BHT) measurements and shut-in times were used as main input variables for the ANN training. Transient temperature gradients were used as secondary variables. The Levenberg-Marquardt (LM) learning algorithm, the hyperbolic tangent sigmoid transfer function and the linear transfer function were used for the ANN optimisation. The best training data set was obtained with an ANN architecture composed by five neurons in the hidden layer, which made possible to predict the SFT with a satisfactory efficiency ( R2>0.95). A suitable accuracy of the ANN model was achieved with a percentage error less than ±5%. The SFTs predicted by the ANN model were statistically analyzed and compared with "true" SFTs measured in synthetic experiments and actual BHT logs collected in geothermal boreholes during long shut-in times. These data sets were processed both to validate the new ANN model and to avoid bias. The SFT estimates inferred from the ANN validation process were in good agreement ( R2>0.95) with the "true" SFT data reported for synthetic and field experiments. The results suggest that the new ANN model could be used as a practical tool for the reliable prediction of SFT in geothermal wells using BHT and shut-in time as input data only.

  11. Estimating land-surface temperature under clouds using MSG/SEVIRI observations

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Venus, Valentijn; Skidmore, Andrew; Wang, Tiejun; Luo, Geping

    2011-04-01

    The retrieval of land-surface temperature (LST) from thermal infrared satellite sensor observations is known to suffer from cloud contamination. Hence few studies focus on LST retrieval under cloudy conditions. In this paper a temporal neighboring-pixel approach is presented that reconstructs the diurnal cycle of LST by exploiting the temporal domain offered by geo-stationary satellite observations (i.e. MSG/SEVIRI), and yields LST estimates even for overcast moments when satellite sensor can only record cloud-top temperatures. Contrasting to the neighboring pixel approach as presented by Jin and Dickinson (2002), our approach naturally satisfies all sorts of spatial homogeneity assumptions and is hence more suited for earth surfaces characterized by scattered land-use practices. Validation is performed against in situ measurements of infrared land-surface temperature obtained at two validation sites in Africa. Results vary and show a bias of -3.68 K and a RMSE of 5.55 K for the validation site in Kenya, while results obtained over the site in Burkina Faso are more encouraging with a bias of 0.37 K and RMSE of 5.11 K. Error analysis reveals that uncertainty of the estimation of cloudy sky LST is attributed to errors in estimation of the underlying clear sky LST, all-sky global radiation, and inaccuracies inherent to the 'neighboring pixel' scheme itself. An error propagation model applied for the proposed temporal neighboring-pixel approach reveals that the absolute error of the obtained cloudy sky LST is less than 1.5 K in the best case scenario, and the uncertainty increases linearly with the absolute error of clear sky LST. Despite this uncertainty, the proposed method is practical for retrieving the LST under a cloudy sky condition, and it is promising to reconstruct diurnal LST cycles from geo-stationary satellite observations.

  12. The Use of Streambed Temperatures to Estimate Losses in an Arid Environment

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Young, M. H.; Niswonger, R.; Miller, J. J.; French, R. H.

    2001-12-01

    Quantifying channel transmission losses in arid environments is important for a variety of reasons, ranging from designing flood control mitigation structures to estimating ground water recharge. To quantify the losses in an alluvial channel, an experiment was performed on a 2 km reach of a channel on an alluvial fan, located on the U.S. Department of Energy's Nevada Test Site. The channel was subjected to three separate flow events. Transmission losses were estimated using discharge monitoring and a subsurface temperature modeling approach. Four stations were equipped to continuously monitor stage, temperature. Streambed temperatures measured at 0-, 30-, 50- and 100-cm depths were used to calibrate VS2DH, a two-dimensional, variably saturated flow model (Healy and Ronan, 1996). Average losses based on the difference in flow between each reach indicate that 21, 27, and 53 percent of the flow was reduced down stream of the source. Lower losses occurred within the reaches that contained caliche and the largest losses were measured at the lower reach that mostly contained loosely unconsolidated material. As expected, the thermal gradients corresponded well with the bedload material and the measured losses. Low thermal gradients were detected at the locations were where caliche was present, suggesting conduction-dominated heat transfer. The lower reach corresponded to the smallest thermal gradient, suggesting advection-dominated heat transfer. Losses predicted by VS2DH are within an order of magnitude of the estimated losses based on discharge measurements. The differences in losses are a result of both the spatial extent to which the modeling results are applied and unmeasured lateral subsurface flow. Large thermal gradients were detected at locations where caliche was present, suggesting conduction dominated heat tranfer.

  13. Onset and breakup of summer lake stratification estimated from routine temperature measurements

    NASA Astrophysics Data System (ADS)

    Engelhardt, Christof; Kirillin, Georgiy

    2017-04-01

    The ecological conditions of temperate lakes during stratification differ substantially from those during the preceding and following periods of complete overturn. Hence, the duration of stratification is of crucial ecological importance. Climate change increase stability and duration of summer stratification in the temperate zone. One possibility to estimate the envisaged trends from observational data is to determine experimentally the onset and the end of stratification with the help of long-term measurements. For two temperate lakes in Northern Germany, it is shown that the result of the experimental detection of stratification duration depends on the frequency of data collecting. The number of sensors (spatial resolution of measurements) and the choice of stratification thresholds are of lesser importance than the temporal resolution of routine temperature measurements. At least, daily data are necessary to detect experimentally the length of the stratified period with accuracy sufficient to estimate long-term shifts in these characteristics.

  14. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum.

    PubMed

    Schmittner, Andreas; Urban, Nathan M; Shakun, Jeremy D; Mahowald, Natalie M; Clark, Peter U; Bartlein, Patrick J; Mix, Alan C; Rosell-Melé, Antoni

    2011-12-09

    Assessing the impact of future anthropogenic carbon emissions is currently impeded by uncertainties in our knowledge of equilibrium climate sensitivity to atmospheric carbon dioxide doubling. Previous studies suggest 3 kelvin (K) as the best estimate, 2 to 4.5 K as the 66% probability range, and nonzero probabilities for much higher values, the latter implying a small chance of high-impact climate changes that would be difficult to avoid. Here, combining extensive sea and land surface temperature reconstructions from the Last Glacial Maximum with climate model simulations, we estimate a lower median (2.3 K) and reduced uncertainty (1.7 to 2.6 K as the 66% probability range, which can be widened using alternate assumptions or data subsets). Assuming that paleoclimatic constraints apply to the future, as predicted by our model, these results imply a lower probability of imminent extreme climatic change than previously thought.

  15. Ultrasound simulation of real-time temperature estimation during radiofrequency ablation using finite element models.

    PubMed

    Daniels, M J; Jiang, J; Varghese, T

    2008-03-01

    Radiofrequency ablation is the most common minimally invasive therapy used in the United States to treat hepatocellular carcinoma and liver metastases. The ability to perform real-time temperature imaging while a patient is undergoing ablation therapy may help reduce the high recurrence rates following ablation therapy. Ultrasound echo signals undergo time shifts with increasing temperature due to sound speed and thermal expansion, which are tracked using both 1D cross correlation and 2D block matching based speckle tracking methods. In this paper, we present a quantitative evaluation of the accuracy and precision of temperature estimation using the above algorithms on both simulated and experimental data. A finite element analysis simulation of radiofrequency ablation of hepatic tissue was developed. Finite element analysis provides a method to obtain the exact temperature distribution along with a mapping of the tissue displacement due to thermal expansion. These local displacement maps were combined with the displacement due to speed of sound changes and utilized to generate ultrasound radiofrequency frames at specified time increments over the entire ablation procedure. These echo signals provide an ideal test-bed to evaluate the performance of both speckle tracking methods, since the estimated temperature results can be compared directly to the exact finite element solution. Our results indicate that the 1D cross-correlation (CC) method underestimates the cumulative displacement by 0.20mm, while the underestimation with 2D block matching (BM) is about 0.14 mm after 360 s of ablation. The 1D method also overestimates the size of the ablated region by 5.4% when compared to 2.4% with the 2D method after 720 s of ablation. Hence 2D block matching provides better tracking of temperature variations when compared to the 1D cross-correlation method over the entire duration of the ablation procedure. In addition, results obtained using 1D cross-correlation diverge from

  16. Characterization of low-temperature vapour pressure estimates for secondary organic aerosol applications

    NASA Astrophysics Data System (ADS)

    Schnitzler, Elijah G.; McDonald, Karen M.

    2012-09-01

    Many models of secondary organic aerosol (SOA) formation, adhering to gas-particle equilibrium partitioning theory, require known vapour pressures for low volatility products of volatile organic compound (VOC) oxidation. Since the majority of such products have yet to be isolated and analysed, few experimental determinations of pertinent vapour pressures have been achieved, and models are forced to rely on vapour pressure estimates, such as those available through the common, computer-based SPARC and MPBPWIN property calculators. Thus, the accuracy of the respective estimation methods must be measured and evaluated, in order to determine the consequences in the resulting models. However, published evaluations, and most models themselves, typically focus on moderate to high ambient temperatures, which may not be applicable year-round in colder regions, where the rate of VOC oxidation slows, while the vapour pressures of the products decrease, indicating an increased tendency to condense into the aerosol phase. In this paper, the accuracy of the SPARC and MPBPWIN methods is evaluated over a broad temperature range, from 248.15 to 298.15 K, in five degree intervals using a test set of 45 compounds. The results are reported in terms of mean average error (MAE) and mean bias error (MBE), and given for alcohol, carboxylic acid, aldehyde, and ketone compound classes at each temperature. Specific trends in MAE and MBE with regard to compound class and changing temperature are discussed. More generally, the evaluation indicates that SPARC, with MAE decreasing from 0.288 at 248.15 K to 0.165 at 298.15 K and MBE increasing from -0.180 at 248.15 K to a peak of -0.081 at 293.15 K, is more accurate at low to moderate temperatures than MPBPWIN, with MAE decreasing from 0.436 at 248.15 K to 0.272 at 298.15 K and MBE increasing from -0.328 at 248.15 K to -0.213 at 298.15 K. Decreasing accuracy at lower temperatures emphasizes a need for focused experimental and model efforts in

  17. Using Machine learning method to estimate Air Temperature from MODIS over Berlin

    NASA Astrophysics Data System (ADS)

    Marzban, F.; Preusker, R.; Sodoudi, S.; Taheri, H.; Allahbakhshi, M.

    2015-12-01

    Land Surface Temperature (LST) is defined as the temperature of the interface between the Earth's surface and its atmosphere and thus it is a critical variable to understand land-atmosphere interactions and a key parameter in meteorological and hydrological studies, which is involved in energy fluxes. Air temperature (Tair) is one of the most important input variables in different spatially distributed hydrological, ecological models. The estimation of near surface air temperature is useful for a wide range of applications. Some applications from traffic or energy management, require Tair data in high spatial and temporal resolution at two meters height above the ground (T2m), sometimes in near-real-time. Thus, a parameterization based on boundary layer physical principles was developed that determines the air temperature from remote sensing data (MODIS). Tair is commonly obtained from synoptic measurements in weather stations. However, the derivation of near surface air temperature from the LST derived from satellite is far from straight forward. T2m is not driven directly by the sun, but indirectly by LST, thus T2m can be parameterized from the LST and other variables such as Albedo, NDVI, Water vapor and etc. Most of the previous studies have focused on estimating T2m based on simple and advanced statistical approaches, Temperature-Vegetation index and energy-balance approaches but the main objective of this research is to explore the relationships between T2m and LST in Berlin by using Artificial intelligence method with the aim of studying key variables to allow us establishing suitable techniques to obtain Tair from satellite Products and ground data. Secondly, an attempt was explored to identify an individual mix of attributes that reveals a particular pattern to better understanding variation of T2m during day and nighttime over the different area of Berlin. For this reason, a three layer Feedforward neural networks is considered with LMA algorithm

  18. Estimating water temperatures in small streams in western Oregon using neural network models

    USGS Publications Warehouse

    Risley, John C.; Roehl, Edwin A.; Conrads, Paul A.

    2003-01-01

    Artificial neural network models were developed to estimate water temperatures in small streams using data collected at 148 sites throughout western Oregon from June to September 1999. The sites were located on 1st-, 2nd-, or 3rd-order streams having undisturbed or minimally disturbed conditions. Data collected at each site for model development included continuous hourly water temperature and description of riparian habitat. Additional data pertaining to the landscape characteristics of the basins upstream of the sites were assembled using geographic information system (GIS) techniques. Hourly meteorological time series data collected at 25 locations within the study region also were assembled. Clustering analysis was used to partition 142 sites into 3 groups. Separate models were developed for each group. The riparian habitat, basin characteristic, and meteorological time series data were independent variables and water temperature time series were dependent variables to the models, respectively. Approximately one-third of the data vectors were used for model training, and the remaining two-thirds were used for model testing. Critical input variables included riparian shade, site elevation, and percentage of forested area of the basin. Coefficient of determination and root mean square error for the models ranged from 0.88 to 0.99 and 0.05 to 0.59 oC, respectively. The models also were tested and validated using temperature time series, habitat, and basin landscape data from 6 sites that were separate from the 142 sites that were used to develop the models. The models are capable of estimating water temperatures at locations along 1st-, 2nd-, and 3rd-order streams in western Oregon. The model user must assemble riparian habitat and basin landscape characteristics data for a site of interest. These data, in addition to meteorological data, are model inputs. Output from the models include simulated hourly water temperatures for the June to September period

  19. Vessel wall temperature estimation for novel short term thermal balloon angioplasty: study of thermal environment.

    PubMed

    Kaneko, Kenji; Nakatani, Eriko; Futami, Hikaru; Ogawa, Yoshifumi; Arai, Tsunenori; Fukui, Masaru; Shimamura, Satoshi; Kawabata, Takashi

    2005-01-01

    We have been proposing novel thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PT-DBA). PTDBA realized <10s short term heating that can prevent surrounding tissue thermal injury and low pressure dilatation that can prevent restenosis in chronic phase. We aim to determine the most efficient heating condition suit to individual symptom with pre-operation thermal simulation. We analyzed the flow dynamics and heat convection inside the balloon, and investigated heat conduction of balloon film to establish the temperature estimation method among vessel wall. Compared with ex vivo temperature measurement experiment, we concluded that the factors need to be considered for the establishment would be the heat conduction of the flow inside PTDB, heat conduction at the balloon film, and contact thermal resistance between the balloon film and vessel wall.

  20. An analytical solution for estimating percolation rate by fitting temperature profiles in the Vadose Zone

    SciTech Connect

    Shan, Chao; Bodvarsson, Gudmundur

    2003-03-11

    We present a simple analytical solution for one dimensional steady heat transfer with convection and conduction through a multi-layer system such as a vadose zone. We assume that each layer is homogeneous and has a constant thermal diffusivity. The mass/heat flow direction is perpendicular to the layers, and the mass flow rate is a constant. The analytical solution presented in this study also assumes constant known temperatures at the two boundaries of the system. Although the analytical solution gives the temperature as a function of a few parameters, we focus on the inverse application to estimate the percolation rate to high degree of accuracy (e.g., to mm/y). In some other cases the solution may also be helpful in characterizing potential lateral flow along layer divides.

  1. Estimates of the potential temperature profile from lidar measurements of boundary layer evolution

    NASA Astrophysics Data System (ADS)

    Holder, H. E.; Eichinger, W. E.

    2006-10-01

    The Soil Moisture-Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek Watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high time resolution, continuous record of the mixed layer height at the edge between a soybean and a corn field. The height and thickness of the entrainment zone are used to estimate the vertical potential temperature profile in the boundary layer using surface energy measurements in the Batchvarova-Gryning mixed layer model. Calculated values of potential temperature compared well to radiosonde measurements taken simultaneously with the lidar measurements. The root-mean-square difference between the lidar-derived values and the balloon-based values is 1.20°C.

  2. Quantifying Surface Energy Flux Estimation Uncertainty Using Land Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    French, A. N.; Hunsaker, D.; Thorp, K.; Bronson, K. F.

    2015-12-01

    Remote sensing with thermal infrared is widely recognized as good way to estimate surface heat fluxes, map crop water use, and detect water-stressed vegetation. When combined with net radiation and soil heat flux data, observations of sensible heat fluxes derived from surface temperatures (LST) are indicative of instantaneous evapotranspiration (ET). There are, however, substantial reasons LST data may not provide the best way to estimate of ET. For example, it is well known that observations and models of LST, air temperature, or estimates of transport resistances may be so inaccurate that physically based model nevertheless yield non-meaningful results. Furthermore, using visible and near infrared remote sensing observations collected at the same time as LST often yield physically plausible results because they are constrained by less dynamic surface conditions such as green fractional cover. Although sensitivity studies exist that help identify likely sources of error and uncertainty, ET studies typically do not provide a way to assess the relative importance of modeling ET with and without LST inputs. To better quantify model benefits and degradations due to LST observational inaccuracies, a Bayesian uncertainty study was undertaken using data collected in remote sensing experiments at Maricopa, Arizona. Visible, near infrared and thermal infrared data were obtained from an airborne platform. The prior probability distribution of ET estimates were modeled using fractional cover, local weather data and a Penman-Monteith mode, while the likelihood of LST data was modeled from a two-source energy balance model. Thus the posterior probabilities of ET represented the value added by using LST data. Results from an ET study over cotton grown in 2014 and 2015 showed significantly reduced ET confidence intervals when LST data were incorporated.

  3. Estimations of electron densities and temperatures in He-3 dominated plasmas. [in nuclear pumped lasers

    NASA Technical Reports Server (NTRS)

    Depaola, B. D.; Marcum, S. D.; Wrench, H. K.; Whitten, B. L.; Wells, W. E.

    1979-01-01

    It is very useful to have a method of estimation for electron temperature and electron densities in nuclear pumped plasmas because measurements of such quantities are very difficult. This paper describes a method, based on rate equation analysis of the ionized species in the plasma and the electron energy balance. In addition to the ionized species, certain neutral species must also be calculated. Examples are given for pure helium and a mixture of helium and argon. In the HeAr case, He(+), He2(+), He/2 3S/, Ar(+), Ar2(+), and excited Ar are evaluated.

  4. Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system

    USGS Publications Warehouse

    Bravo, H.R.; Jiang, F.; Hunt, R.J.

    2002-01-01

    Parameter estimation is a powerful way to calibrate models. While head data alone are often insufficient to estimate unique parameters due to model nonuniqueness, flow-and-heat-transport modeling can constrain estimation and allow simultaneous estimation of boundary fluxes and hydraulic conductivity. In this work, synthetic and field models that did not converge when head data were used did converge when head and temperature were used. Furthermore, frequency domain analyses of head and temperature data allowed selection of appropriate modeling timescales. Inflows in the Wilton, Wisconsin, wetlands could be estimated over periods such as a growing season and over periods of a few days when heads were nearly steady and groundwater temperature varied during the day. While this methodology is computationally more demanding than traditional head calibration, the results gained are unobtainable using the traditional approach. These results suggest that temperature can efficiently supplement head data in systems where accurate flux calibration targets are unavailable.

  5. Temperature increase reduces global yields of major crops in four independent estimates.

    PubMed

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-08-29

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  6. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates

    NASA Technical Reports Server (NTRS)

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; hide

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  7. Temperature Estimation and Al Content Prediction Focusing on Microstructural Change in a Thermal Barrier Coating

    NASA Astrophysics Data System (ADS)

    Okada, Mitsutoshi; Hisamatsu, Tohru; Kitamura, Takayuki

    2009-03-01

    A superalloy with a thermal barrier coating (TBC) simulating a gas turbine blade is exposed to a high-temperature environment to develop a method for predicting the local temperature and Al content in a bond coat (BC). The Al content decreases with an increase in the test time due to the Al transport induced by the oxidation of the BC and the interdiffusion between the BC and the substrate. This brings about Al-decreased layer (ADL) at the boundary between the BC and the top coat. The thickness of the ADL increases in proportion to the square root of the test time, and the temperature dependence of the growth rate shows an Arrhenius-type behavior. Based on this relation, the local temperature of an in-service blade can be estimated by measuring the ADL thickness when the operation time is known. The Al content decreases in proportion to the ADL thickness. The prediction method of the Al content based on the relation is also presented.

  8. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change

    NASA Astrophysics Data System (ADS)

    Abraham, J. P.; Baringer, M.; Bindoff, N. L.; Boyer, T.; Cheng, L. J.; Church, J. A.; Conroy, J. L.; Domingues, C. M.; Fasullo, J. T.; Gilson, J.; Goni, G.; Good, S. A.; Gorman, J. M.; Gouretski, V.; Ishii, M.; Johnson, G. C.; Kizu, S.; Lyman, J. M.; Macdonald, A. M.; Minkowycz, W. J.; Moffitt, S. E.; Palmer, M. D.; Piola, A. R.; Reseghetti, F.; Schuckmann, K.; Trenberth, K. E.; Velicogna, I.; Willis, J. K.

    2013-09-01

    evolution of ocean temperature measurement systems is presented with a focus on the development and accuracy of two critical devices in use today (expendable bathythermographs and conductivity-temperature-depth instruments used on Argo floats). A detailed discussion of the accuracy of these devices and a projection of the future of ocean temperature measurements are provided. The accuracy of ocean temperature measurements is discussed in detail in the context of ocean heat content, Earth's energy imbalance, and thermosteric sea level rise. Up-to-date estimates are provided for these three important quantities. The total energy imbalance at the top of atmosphere is best assessed by taking an inventory of changes in energy storage. The main storage is in the ocean, the latest values of which are presented. Furthermore, despite differences in measurement methods and analysis techniques, multiple studies show that there has been a multidecadal increase in the heat content of both the upper and deep ocean regions, which reflects the impact of anthropogenic warming. With respect to sea level rise, mutually reinforcing information from tide gauges and radar altimetry shows that presently, sea level is rising at approximately 3 mm yr-1 with contributions from both thermal expansion and mass accumulation from ice melt. The latest data for thermal expansion sea level rise are included here and analyzed.

  9. Contribution of Modis Satellite Image to Estimate the Daily Air Temperature in the Casablanca City, Morocco

    NASA Astrophysics Data System (ADS)

    Bahi, Hicham; Rhinane, Hassan; Bensalmia, Ahmed

    2016-10-01

    Air temperature is considered to be an essential variable for the study and analysis of meteorological regimes and chronics. However, the implementation of a daily monitoring of this variable is very difficult to achieve. It requires sufficient of measurements stations density, meteorological parks and favourable logistics. The present work aims to establish relationship between day and night land surface temperatures from MODIS data and the daily measurements of air temperature acquired between [2011-20112] and provided by the Department of National Meteorology [DMN] of Casablanca, Morocco. The results of the statistical analysis show significant interdependence during night observations with correlation coefficient of R2=0.921 and Root Mean Square Error RMSE=1.503 for Tmin while the physical magnitude estimated from daytime MODIS observation shows a relatively coarse error with R2=0.775 and RMSE=2.037 for Tmax. A method based on Gaussian process regression was applied to compute the spatial distribution of air temperature from MODIS throughout the city of Casablanca.

  10. A noninvasive, remote and precise method for temperature and concentration estimation using magnetic nanoparticles.

    PubMed

    Zhong, Jing; Liu, Wenzhong; Du, Zhongzhou; César de Morais, Paulo; Xiang, Qing; Xie, Qingguo

    2012-02-24

    This study describes an approach for remote measuring of on-site temperature and particle concentration using magnetic nanoparticles (MNPs) via simulation and also experimentally. The sensor model indicates that under different applied magnetic fields, the magnetization equation of the MNPs can be discretized to give a higher-order nonlinear equation in two variables that consequently separates information regarding temperature and particle concentration. As a result, on-site tissue temperature or nanoparticle concentration can be determined using remote detection of the magnetization. In order to address key issues in the higher-order equation we propose a new solution method of the first-order model from the perspective of the generalized inverse matrix. Simulations for solving the equation, as well as to optimize the solution of higher equations, were carried out. In the final section we describe a prototype experiment used to investigate the measurement of the temperature in which we used a superconducting magnetometer and commercial MNPs. The overall error after nine repeated measurements was found to be less than 0.57 K within 310-350 K, with a corresponding root mean square of less than 0.55 K. A linear relationship was also found between the estimated concentration of MNPs and the sample's mass.

  11. Planetary Temperatures : Early Estimates, Lowell, and the Albedo of the Earth

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    2016-10-01

    While it was recognized by Huygens, as soon as the architecture of the solar system was understood, that outer planets would be much cooler than Earth, quantitative estimation of planetary temperatures only became possible with understanding of radiant heat, and specifically the Stefan law relating heat flux to the fourth power of absolute temperature. This relation appears to have been first applied to planetary temperatures by the Danish physicist Christiansen in 1885, and he derived results for Mars and Saturn of -40 and -180C, rather reasonable values. However, the separate values of the solar constant, absolute planetary albedos (including that of the Earth) and the short- and long-wave transparency of planetary atmospheres were not known, although mountaintop measurements by Langley made some first steps to quantifying these effects. Lowell recognized that the Martian atmosphere was thinner than ours, but had more carbon dioxide, and so considered these factors to cancel out. However, he suggested that the Earth had a reflectivity of some 75%, such that darker Mars would absorb a larger fraction of incident sunlight than the Earth, compensating for Mars' greater distance from the sun and thus allowing clement temperatures. It is difficult not to see this as pushing the numbers to obtain a desired result, and indeed a robust refutation of his calculations swiftly followed by Poynting and Alfred Russel Wallace. I present a brief review of these early days of planetary climate modeling.

  12. On estimation and attribution of long-term temperature trends in the thermosphere

    NASA Astrophysics Data System (ADS)

    Akmaev, R. A.

    2012-09-01

    Recent analyses of long-term time series of ion temperature from two midlatitude incoherent-scatter radars have revealed very strong cooling, which is substantially greater than predicted by models for neutral temperature. There is also an indication that the cooling has substantially accelerated after a breakpoint around 1979 when the ozone hole was discovered. This has prompted a hypothesis that the accelerated cooling might have resulted from the ozone depletion and associated reduction in daytime radiative heating in the stratosphere. A lively discussion on relative roles of different cooling mechanisms has followed. The purpose of this note is to contribute to this discussion from a theoretical and modeling perspective. In particular, a possible misinterpretation of the modeling results behind the ozone hypothesis is clarified. It is also shown that model predictions of neutral temperature trends in the thermosphere agree well with, and hence are tightly constrained by, independent observations including trends in heights of ionospheric layers and in neutral density from satellite drag. However, they are up to an order of magnitude smaller than the observational estimates of trends in ion temperature. These widely different results cannot be quantitatively reconciled regardless of what known cooling mechanisms are invoked. This stark discrepancy should be addressed on the data analysis and theoretical fronts.

  13. Estimation and Attribution of the Temperature Variances in Height Range 60~140 km

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The SABER/TIMED temperatures collected during 2002 2006 are used to estimate for height range 60 120 km the variances of temperature (Temp-VARs) that are contributed from nonstationary perturbations. The estimation results disclose that the height range 60 140 km can be separated into two regions that are characterized by significant differences of the attributions of the Temp-VARs. In the region below 100 km height, the Temp-VARs generally increase with height, the corresponding standard deviations of temperature (Temp-SDEVs) ranges from 4 K at 60 km and 18 K at 100 km. The regions exhibiting intense Temp-VARs appear at the equator and the extra-tropics of both hemispheres. Moreover, these non-stationary temperature disturbances can be accounted primarily by the tidal variances that are derived independently by using the same data-set, in particular by the migrating diurnal, semidiurnal, and terdiurnal tide. It is also found that the region above 100 km is characterized by surprisingly large Temp-VARs with the corresponding Temp-SDEVs greater than 30 K. In a height-latitude cross-section, a stagnant maximum of Temp-SDEVs embraced by the 30-K contour remains over the course of a year at the Equator in a narrow height range 110 125 km. At the same height in Southern hemisphere, the same kind maxima appears at latitudes from the extra-tropics to polar region except during the June solstice. In contrast, the maxima appearing in Northern hemisphere high latitudes exhibits intra-seasonal variations, there such maximum are seen during the course of a year. Further investigation results confirm that the large Temp-VARs have no relevance to the tidal variances, implying the control from other processes, e.g., non-stationary planetary waves. The details will be introduced in the presentation.

  14. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  15. Distortion of Near-Surface Seawater Temperature Structure by a Moored-Buoy Hull and Its Effect on Skin Temperature and Heat Flux Estimates

    PubMed Central

    Kawai, Yoshimi; Ando, Kentaro; Kawamura, Hiroshi

    2009-01-01

    Previous studies have suggested that the accuracy of temperature measurements by surface-moored buoys may be affected by distortions of the near-surface temperature structure by the buoy hull on calm, sunny days. We obtained the first definite observational evidence that the temperature near the hull was not horizontally homogeneous at the same nominal depth. We observed large temperature differences of 1.0 K or more between thermometers at 0.2 m depth. The distortion of the surface temperature field yielded an error in estimates of daytime net surface heat flux up to more than 30 Wm−2. PMID:22454575

  16. Statistical estimation of high-resolution surface air temperature from MODIS over the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Jiang, Zhihong; Dong, Liangpeng; Shen, Suhung

    2017-04-01

    High-resolution surface air temperature data are critical to regional climate modeling in terms of energy balance, urban climate change, and so on. This study demonstrates the feasibility of using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) to estimate air temperature at a high resolution over the Yangtze River Delta region, China. It is found that daytime LST is highly correlated with maximum air temperature, and the linear regression coefficients vary with the type of land surface. The air temperature at a resolution of 1 km is estimated from the MODIS LST with linear regression models. The estimated air temperature shows a clear spatial structure of urban heat islands. Spatial patterns of LST and air temperature differences are detected, indicating maximum differences over urban and forest regions during summer. Validations are performed with independent data samples, demonstrating that the mean absolute error of the estimated air temperature is approximately 2.5°C, and the uncertainty is about 3.1°C, if using all valid LST data. The error is reduced by 0.4°C (15%) if using best-quality LST with errors of less than 1 K. The estimated high-resolution air temperature data have great potential to be used in validating high-resolution climate models and other regional applications.

  17. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    PubMed

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation

  18. SoilDTS: Estimating soil moisture from passive Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, Susan; Rutten, Martine; Owusu-Ansah, Emmanuel; van de Giesen, Nick

    2010-05-01

    SoilDTS is an advanced technique for monitoring soil moisture and temperature in the vadose zone based on distributed temperature sensing (DTS). Using fibre-optic cables, temperatures are measured with a horizontal resolution of 1-2m over cables up to 10km in length. Due to the dependence of soil thermal properties on soil moisture, observations of temperature dynamics in the thermally active zone can yield information about soil moisture content. By providing high-resolution observations over a large area, this innovative technique can be used to bridge the gap in space-time resolution between observations of soil moisture from remote-sensing data (e.g. SMOS) and from conventional in-situ methods. It also allows us to investigate how soil moisture and temperature control hydrological fluxes at different spatial and temporal scales. We recently demonstrated the feasibility of using SoilDTS to estimate soil moisture using an inversion approach. That study also highlighted a number of theoretical and practical challenges. Here, we will present more recent research in which we address each of these challenges. The main practical problems were uncertainty in the cable depths as well as disturbance of the soil. Both of these problems have been addressed by revising the plough design to ensure a smoother installation with minimal soil disturbance. Many of the theoretical problems can be dealt with by using a data assimilation approach in which observations are merged, in an optimal way, with a model. A dual state-parameter ensemble Kalman filter was used to estimate temperature as a state and soil moisture as a parameter of a coupled heat and moisture model. Using the ensemble Kalman filter means that the model is only run in the forward direction, so we can avoid having to infer soil moisture from thermal diffusivity. The EnKF has a modular structure and the model adjoint is not needed. Therefore, it is easy to include additional terms (e.g. advection, source/sink terms

  19. Mantle potential temperature estimates of basalt from the surface of Venus

    NASA Astrophysics Data System (ADS)

    Shellnutt, J. Gregory

    2016-10-01

    The crater density and distribution of Venus indicates the average surface age is younger (≤1 Ga) than most terrestrial planets and satellites in the Solar System. The type and rate (i.e. equilibrium, catastrophic or differential) of volcanism associated with the stagnant lid tectonic system of Venus is a first order problem that has yet to be resolved but is directly related to the thermal conditions of the mantle. The calculated primary melt composition of basalt at the Venera 14 landing site is high-Mg basalt to picrite with a mantle potential temperature estimate similar to terrestrial ambient mantle (1370 ± 70 °C). The calculated accumulated fractional melting curves indicate the olivine compositions from the melt have Mg# of 89-91. The results show that the thermal regime required to generate the primary melt composition of the Venera 14 basalt was not anomalously high (i.e. mantle-plume system) but rather consistent with a lithospheric tensional rift system. The juxtaposition of high thermal regime structures (e.g. Beta Regio) and 'ambient' mantle potential temperature estimates of the Venera 14 basalt suggests that the relatively young surface of Venus is the result of volcanism from a combination of thermal systems that resurfaced the planet at variable rates.

  20. Shallow subsurface temperatures and some estimates of heat flow from the Colorado Plateau of northeastern Arizona

    SciTech Connect

    Sass, J.H.; Stone, C.; Bills, D.J.

    1982-01-01

    Temperature data to depths of a few hundred meters were obtained from 29 wells in northeastern Arizona; 12 in the region surrounding the San Francisco Volcanic Field, 8 in the Black Mesa area, and 9 in the south-central Colorado Plateau which includes the White Mountains. Although there was evidence for local hydrologic disturbances in many temperature profiles, most wells provided an estimate of the conductive thermal gradient at the site. A few thermal conductivities were measured and were combined with published regional averages for the north-central part of the Colorado Plateau to produce crude estimates of regional heat flux. None of the wells was accessible below the regional aquifers. To these depths, heat flow in the area of the San Francisco Volcanic Field appears to be controlled primarily by regional lateral water movement having a significant downward vertical component of velocity. The mean heat flow of 27 +- 5 mWm/sup -2/ is only a third to a quarter of what we would expect in this tectonic setting. The heat that is being carried laterally and downward probably is being discharged at low enthalpy and low elevation in springs and streams of the Colorado Plateau and Mogollon Rim. In the vicinity of Black Mesa, heat-flow averages about 60 mWm/sup -2/, characteristics of the coal interior of the Colorado Plateau. North of the White Mountain Volcanic Field, the average heat flow is about 95 mWm/sup -2/.

  1. Shallow subsurface temperatures and some estimates of heat flow from the Colorado Plateau of northeastern Arizona

    USGS Publications Warehouse

    Sass, J.H.; Stone, Claudia; Bills, D.J.

    1982-01-01

    Temperature data to depths of a few hundred meters were obtained from 29 wells in northeastern Arizona; 12 in the region surrounding the San Francisco Volcanic Field, 8 in the Black Mesa area, and 9 in the south-central Colorado Plateau which includes the White Mountains. Although there was evidence for local hydrologic disturbances in many temperature profiles, most wells provided an estimate of the conductive thermal gradient at the site. A few thermal conductivities were measured and were combined with published regional averages for the north-central part of the Colorado Plateau to produce crude estimates of regional heat flux. None of the wells was accessible below the regional aquifers. To these depths, heat flow in the area of the San Francisco Volcanic Field appears to be controlled primarily by regional lateral water movement having a significant downward vertical component of velocity. The mean heat flow of 27?5 mW^-2 is only a third to a quarter of what we would expect in this tectonic setting. The heat that is being carried laterally and downward probably is being discharged at low enthalpy and low elevation in springs and streams of the Colorado Plateau and Mogollon Rim. In the vicinity of Black Mesa, heat-flow averages about 60 mW^-2, characteristic of the 'cool interior' of the Colorado Plateau. North of the White Mountain Volcanic Field, the average heat flow is about 95 mW^-2.

  2. Temperature Estimates for the Slow Slip Region on the Decollement Underlying the South Flank of Kilauea

    NASA Astrophysics Data System (ADS)

    Spinelli, G. A.

    2013-12-01

    Eleven slow slip events on the decollement beneath the south flank of Kilauea volcano have been documented geodetically since 1998 (Brooks et al., 2006; Montgomery-Brown et al., 2009; 2013). Tectonic tremor has not been observed associated with these events, in contrast to most slow slip events in subduction zones (Montgomery-Brown et al., 2013). The slow slip events occur on the decollement at ~8 km depth, and updip of the 'normal' earthquakes on the fault. Constraining temperatures on Kilauea's decollement allows comparisons between its slow slip events and those in subduction zones. Kilauea's slow slip events (~8 km depth) are significantly shallower than most subduction zone slow slip events. I estimate temperatures in a 2-D cross-section through the south flank of Kilauea by combining methods used in subduction zone thermal models (Wang et al., 1995) with elements of intrusion cooling models of volcanoes (e.g., Civetta et al., 2004). Temperatures in the cross-section are controlled by: 1) heat sources from friction on the decollement, radioactive decay, and volcanic activity, and 2) heat transport by conduction, advection of the volcanic pile to the southeast over the underlying oceanic lithosphere, and advective heat transport associated with groundwater flow. I examine the thermal effects of a range of effective friction coefficients on the fault from 0-0.2. I determine the potential effects of groundwater flow in the upper ~1-2 km of the onshore and near-offshore volcanic pile (e.g., Kauahikaua, 1993; Buttner and Huenges, 2003) on decollement temperatures. Finally, I examine how heat input from Kilauea volcano may result in higher decollement temperatures than at the same depth on plate boundary faults in subduction zones.

  3. Air temperature estimation with MODIS data over the Northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Huang, Fangfang; Ma, Weiqiang; Wang, Binbin; Hu, Zeyong; Ma, Yaoming; Sun, Genhou; Xie, Zhipeng; Lin, Yun

    2017-05-01

    Time series of MODIS land surface temperature ( T s) and normalized difference vegetation index (NDVI) products, combined with digital elevation model (DEM) and meteorological data from 2001 to 2012, were used to map the spatial distribution of monthly mean air temperature over the Northern Tibetan Plateau (NTP). A time series analysis and a regression analysis of monthly mean land surface temperature ( T s) and air temperature ( T a) were conducted using ordinary linear regression (OLR) and geographical weighted regression (GWR). The analyses showed that GWR, which considers MODIS T s, NDVI and elevation as independent variables, yielded much better results [R2 Adj > 0.79; root-mean-square error (RMSE) = 0.51°C-1.12°C] associated with estimating T a compared to those from OLR ( R 2 Adj = 0.40-0.78; RMSE = 1.60°C-4.38°C). In addition, some characteristics of the spatial distribution of monthly T a and the difference between the surface and air temperature ( T d) are as follows. According to the analysis of the 0°C and 10°C isothermals, T a values over the NTP at elevations of 4000-5000 m were greater than 10°C in the summer (from May to October), and T a values at an elevation of 3200 m dropped below 0°C in the winter (from November to April). T a exhibited an increasing trend from northwest to southeast. Except in the southeastern area of the NTP, T d values in other areas were all larger than 0°C in the winter.

  4. A Method to Estimate the Optimum Temperature for the Cryo-Shattering Separation Using a Charpy Impact Tester

    NASA Astrophysics Data System (ADS)

    Hagura, Yoshio; Watanabe, Hisahiko

    A cryo-shattering separation is a recently developed separation method which is applied to collect low-fat meat from fatty fish. This separation method needs to be operated at the optimum temperature for the cryo-shattering. Determining on optimum temperature needs much works and costs. In this study,an easy method to estimate the optimum temperature for cryo-shattering was proposed using a Charpy impact tester. Four kinds of characteristic temperatures observed through impact tests were used to construct a fracture-temperature-map. By use of the map,the optimum temperature for cryo-shattering was obtained without shattering/sieving experiments.

  5. Rock magnetic properties estimated from coercivity - blocking temperature diagram: application to recent volcanic rocks

    NASA Astrophysics Data System (ADS)

    Terada, T.; Sato, M.; Mochizuki, N.; Yamamoto, Y.; Tsunakawa, H.

    2013-12-01

    Magnetic properties of ferromagnetic minerals generally depend on their chemical composition, crystal structure, size, and shape. In the usual paleomagnetic study, we use a bulk sample which is the assemblage of magnetic minerals showing broad distributions of various magnetic properties. Microscopic and Curie-point observations of the bulk sample enable us to identify the constituent magnetic minerals, while other measurements, for example, stepwise thermal and/or alternating field demagnetizations (ThD, AFD) make it possible to estimate size, shape and domain state of the constituent magnetic grains. However, estimation based on stepwise demagnetizations has a limitation that magnetic grains with the same coercivity Hc (or blocking temperature Tb) can be identified as the single population even though they could have different size and shape. Dunlop and West (1969) carried out mapping of grain size and coercivity (Hc) using pTRM. However, it is considered that their mapping method is basically applicable to natural rocks containing only SD grains, since the grain sizes are estimated on the basis of the single domain theory (Neel, 1949). In addition, it is impossible to check thermal alteration due to laboratory heating in their experiment. In the present study we propose a new experimental method which makes it possible to estimate distribution of size and shape of magnetic minerals in a bulk sample. The present method is composed of simple procedures: (1) imparting ARM to a bulk sample, (2) ThD at a certain temperature, (3) stepwise AFD on the remaining ARM, (4) repeating the steps (1) ~ (3) with ThD at elevating temperatures up to the Curie temperature of the sample. After completion of the whole procedures, ARM spectra are calculated and mapped on the HC-Tb plane (hereafter called HC-Tb diagram). We analyze the Hc-Tb diagrams as follows: (1) For uniaxial SD populations, theoretical curve for a certain grain size (or shape anisotropy) is drawn on the Hc

  6. Predicting cement distribution in geothermal sandstone reservoirs based on estimates of precipitation temperatures

    NASA Astrophysics Data System (ADS)

    Olivarius, Mette; Weibel, Rikke; Whitehouse, Martin; Kristensen, Lars; Hjuler, Morten L.; Mathiesen, Anders; Boyce, Adrian J.; Nielsen, Lars H.

    2016-04-01

    Exploitation of geothermal sandstone reservoirs is challenged by pore-cementing minerals since they reduce the fluid flow through the sandstones. Geothermal exploration aims at finding sandstone bodies located at depths that are adequate for sufficiently warm water to be extracted, but without being too cemented for warm water production. The amount of cement is highly variable in the Danish geothermal reservoirs which mainly comprise the Bunter Sandstone, Skagerrak and Gassum formations. The present study involves bulk and in situ stable isotope analyses of calcite, dolomite, ankerite, siderite and quartz in order to estimate at what depth they were formed and enable prediction of where they can be found. The δ18O values measured in the carbonate minerals and quartz overgrowths are related to depth since they are a result of the temperatures of the pore fluid. Thus the values indicate the precipitation temperatures and they fit the relative diagenetic timing identified by petrographical observations. The sandstones deposited during arid climatic conditions contain calcite and dolomite cement that formed during early diagenesis. These carbonate minerals precipitated as a response to different processes, and precipitation of macro-quartz took over at deeper burial. Siderite was the first carbonate mineral that formed in the sandstones that were deposited in a humid climate. Calcite began precipitating at increased burial depth and ankerite formed during deep burial and replaced some of the other phases. Ankerite and quartz formed in the same temperature interval so constrains on the isotopic composition of the pore fluid can be achieved. Differences in δ13C values exist between the sandstones that were deposited in arid versus humid environments, which suggest that different kinds of processes were active. The estimated precipitation temperatures of the different cement types are used to predict which of them are present in geothermal sandstone reservoirs in

  7. Estimation of methane emission from whole waste landfill site using correlation between flux and ground temperature

    NASA Astrophysics Data System (ADS)

    Ishigaki, Tomonori; Yamada, Masato; Nagamori, Masanao; Ono, Yusaku; Inoue, Yuzo

    2005-10-01

    A methodology to estimate a methane emission in a waste landfill site was developed. The methane flux at a waste landfill site in summer, autumn, and winter was within the following ranges: from -1.3×10-2 to 16, from -6.4×10-2 to 7.5, and from -1.6×10-3 to 1.5×10-2 g-CH4 m-2 h-1, respectively. In those seasons, the mean methane emission rate and coefficient of variation were 1.1 g-CH4 m-2 h-1 ±290%, 0.57 g-CH4 m-2 h-1 ±347%, and 5.4×10-2 g-CH4 m-2 h-1 ±370%, respectively. These results simultaneously showed that fluctuations of methane emission from the landfill surface were both of spatial and temporal variability. In each season, an exponential relationship was observed between the methane flux density and the ground temperature. Total methane emissions were estimated to be 5.7×10-2, 7.1×10-3, and 1.7×10-3 g-CH4 m-2 h-1 in the summer, autumn, and winter surveys, respectively, using a temperature surrogated-kriging method. The results of this study would improve upon the labor-intensive closed-chamber method, and could be a more practical way to estimate methane emissions from waste landfills.

  8. Attenuation Estimation and Temperature Imaging Using Backscatter for Extracorporeal HIFU Treatment Planning

    NASA Astrophysics Data System (ADS)

    Civale, John; Bamber, Jeff; Miller, Naomi; Rivens, Ian; ter Haar, Gail

    2007-05-01

    For HIFU to be widely applicable in the clinic, problems relating to treatment planning, delivery and monitoring need to be resolved. The characterisation of the acoustic and thermal properties of specific tissues is an important pre-requisite to determining the optimal exposure parameters for individual treatments. We describe a preliminary evaluation of two methods that may be of use in deriving such planning information prior to HIFU. Both methods have been implemented on a diagnostic ultrasound scanner. One is backscatter attenuation estimation (BAE), which uses pulse-echo data and an axial beam translation substitution method to estimate the average attenuation coefficient of tissue overlying the region to be treated. The second method is backscatter temperature imaging (BTI) applied to a non-lesioning test exposure, which is normally used to determine the focal position but here the observed peak temperature rise is employed to provide an estimate of all case-specific losses involved in delivering a dose of thermal energy. HIFU lesioning experiments were performed in ex vivo bovine liver tissue, and used to test the ability of BAE and BTI to provide accurate information for adjusting the HIFU power so as to compensate for varying ultrasonic attenuation by overlying tissues (mimicked by gels with different attenuation properties). HIFU-induced lesions were made according to two types of exposure regime, (a) without regard for the differing attenuation coefficients of gels placed between the HIFU transducer and the tissue to be treated, and (b) after adjusting the HIFU drive power according to corrections derived from BAE and BTI measurements. Both correction methods were found to improve lesion size reproducibility, as measured from cut lesioned tissue specimens, although BTI performed better than BAE. The paper discusses likely reasons for this, as well as problems to be overcome if either method is to be clinically useful.

  9. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    NASA Astrophysics Data System (ADS)

    Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    2017-06-01

    Past estimates for the age of the Upper Sco Association are typically 11-13 Myr for intermediate-mass stars and 4-5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  11. Validation Study for Precipitation and Surface Temperature in Mexico and Their Estimation for the XXI Century

    NASA Astrophysics Data System (ADS)

    Montero-Martinez, M. J.; Perez-Lopez, J. L.

    2007-12-01

    Nowadays it is known that in order to estimate whatever climate change impact for a given region, it is necessary to work with the results of the ensemble of coupled GCM simulations, especially those that recently participated for the IPCC 4th Assessment Report. However, it is also a known fact that we will have better confidence on those model estimations for the future if we can observe that they are able to reproduce at least the main large scale features of the present-day climatology. A validation study is performed here for the results of that ensemble of models in Mexico in the case of surface temperature and precipitation during the period 1961-1990. We compare the model results with the Climate Research Unit databases for that period, and check whether the models are able or not to reproduce the main large-scale features of precipitation and surface temperature around Mexico. Based on the above results we analyze the XXI Century large time simulations of the ensemble of 23 models for the SRES-A1B and SRES- A2 scenarios and try to look for possible spatial and temporal variations in precipitation and surface temperature in the region. We are also currently working with another approach of making the ensemble of models, the Reliability Ensemble Averaging (REA) method of Giorgi and Mearns (2002), instead of just taking the simple model average. The REA method takes into account the ability of the model in reproducing present-day climate and the convergence of the simulated changes across models to make the ensemble. We will present preliminary results of the comparison between both the simple-average and the REA methods for Mexico.

  12. Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality.

    PubMed

    Loyau, T; Zerjal, T; Rodenburg, T B; Fablet, J; Tixier-Boichard, M; Pinard-van der Laan, M H; Mignon-Grasteau, S

    2016-10-01

    Exposure of laying hens to chronic heat stress results in loss of egg production. It should be possible to improve hen resilience to chronic heat stress by genetic selection but measuring their sensitivity through internal temperature is time consuming and is not very precise. In this study we used infrared thermography to measure the hen's capacity to dissipate heat, in a commercial line of laying hens subjected to cycles of neutral (N, 19.6°C) or high (H, 28.4°C) ambient temperatures. Mean body temperatures (BT) were estimated from 9355 infrared images of wing, comb and shank taken from 1200 hens. Genetic parameters were estimated separately for N and H temperatures. Correlations between BT and plumage condition were also investigated. Wing temperature had low heritability (0.00 to 0.09), consistent with the fact that wing temperature mainly reflects the environmental temperature and is not a zone of heat dissipation. The heritability of comb temperature was higher, from 0.15 to 0.19 in N and H conditions, respectively. Finally, the shank temperature provided the highest heritability estimates, with values of 0.20 to 0.22 in H and N conditions, respectively. Taken together, these results show that heat dissipation is partly under genetic control. Interestingly, the genetic correlation between plumage condition and shank and comb temperatures indicated that birds with poor condition plumage also had the possibility to dissipate heat through featherless areas. Genetic correlations of temperature measurements with egg quality showed that temperatures were correlated with egg width and weight, yolk brightness and yellowness and Haugh units only under H conditions. In contrast, shell colour was correlated with leg temperature only at thermo-neutrality.

  13. Effects of measurement resolution on the analysis of temperature time series for stream-aquifer flux estimation

    NASA Astrophysics Data System (ADS)

    Soto-López, Carlos D.; Meixner, Thomas; Ferré, Ty P. A.

    2011-12-01

    From its inception in the mid-1960s, the use of temperature time series (thermographs) to estimate vertical fluxes has found increasing use in the hydrologic community. Beginning in 2000, researchers have examined the impacts of measurement and parameter uncertainty on the estimates of vertical fluxes. To date, the effects of temperature measurement discretization (resolution), a characteristic of all digital temperature loggers, on the determination of vertical fluxes has not been considered. In this technical note we expand the analysis of recently published work to include the effects of temperature measurement resolution on estimates of vertical fluxes using temperature amplitude and phase shift information. We show that errors in thermal front velocity estimation introduced by discretizing thermographs differ when amplitude or phase shift data are used to estimate vertical fluxes. We also show that under similar circumstances sensor resolution limits the range over which vertical velocities are accurately reproduced more than uncertainty in temperature measurements, uncertainty in sensor separation distance, and uncertainty in the thermal diffusivity combined. These effects represent the baseline error present and thus the best-case scenario when discrete temperature measurements are used to infer vertical fluxes. The errors associated with measurement resolution can be minimized by using the highest-resolution sensors available. But thoughtful experimental design could allow users to select the most cost-effective temperature sensors to fit their measurement needs.

  14. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures

    NASA Astrophysics Data System (ADS)

    Colaizzi, Paul D.; Kustas, William P.; Anderson, Martha C.; Agam, Nurit; Tolk, Judy A.; Evett, Steven R.; Howell, Terry A.; Gowda, Prasanna H.; O'Shaughnessy, Susan A.

    2012-12-01

    The two source energy balance model (TSEB) can estimate evaporation (E), transpiration (T), and evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSEB requires soil (TS) and canopy (TC) surface temperatures to solve the energy budgets of these layers separately. Operationally, usually only composite surface temperature (TR) measurements are available at a single view angle. For surfaces with nonrandom spatial distribution of vegetation such as row crops, TR often includes both soil and vegetation, which may have vastly different temperatures. Therefore, TS and TC must be derived from a single TR measurement using simple linear mixing, where an initial estimate of TC is calculated, and the temperature - resistance network is solved iteratively until energy balance closure is reached. Two versions of the TSEB were evaluated, where a single TR measurement was used (TSEB-TR) and separate measurements of TS and TC were used (TSEB-TC-TS). All surface temperatures (TS, TC, and TR) were measured by stationary infrared thermometers that viewed an irrigated cotton (Gossypium hirsutum L.) crop. The TSEB-TR version used a Penman-Monteith approximation for TC, rather than the Priestley-Taylor-based formulation used in the original TSEB version, because this has been found to result in more accurate partitioning of E and T under conditions of strong advection. Calculations of E, T, and ET by both model versions were compared with measurements using microlysimeters, sap flow gauges, and large monolythic weighing lysimeters, respectively. The TSEB-TR version resulted in similar overall agreement with the TSEB-TC-TS version for calculated and measured E (RMSE = 0.7 mm d-1) and better overall agreement for T (RMSE = 0.9 vs. 1.9 mm d-1), and ET (RMSE = 0.6 vs. 1.1 mm d-1). The TSEB-TC-TS version calculated daily ET up to 1.6 mm d-1 (15%) less early in the season and up to 2.0 mm d-1 (44%) greater

  15. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  16. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise.

    PubMed

    Stott, Peter A; Kettleborough, J A

    2002-04-18

    Predictions of temperature rise over the twenty-first century are necessarily uncertain, both because the sensitivity of the climate system to changing atmospheric greenhouse-gas concentrations, as well as the rate of ocean heat uptake, is poorly quantified and because future influences on climate-of anthropogenic as well as natural origin-are difficult to predict. Past observations have been used to help constrain the range of uncertainties in future warming rates, but under the assumption of a particular scenario of future emissions. Here we investigate the relative importance of the uncertainty in climate response to a particular emissions scenario versus the uncertainty caused by the differences between future emissions scenarios for our estimates of future change. We present probabilistic forecasts of global-mean temperatures for four representative scenarios for future emissions, obtained with a comprehensive climate model. We find that, in the absence of policies to mitigate climate change, global-mean temperature rise is insensitive to the differences in the emissions scenarios over the next four decades. We also show that in the future, as the signal of climate change emerges further, the predictions will become better constrained.

  17. Estimating Density and Temperature Dependence of Juvenile Vital Rates Using a Hidden Markov Model

    PubMed Central

    McElderry, Robert M.

    2017-01-01

    Organisms in the wild have cryptic life stages that are sensitive to changing environmental conditions and can be difficult to survey. In this study, I used mark-recapture methods to repeatedly survey Anaea aidea (Nymphalidae) caterpillars in nature, then modeled caterpillar demography as a hidden Markov process to assess if temporal variability in temperature and density influence the survival and growth of A. aidea over time. Individual encounter histories result from the joint likelihood of being alive and observed in a particular stage, and I have included hidden states by separating demography and observations into parallel and independent processes. I constructed a demographic matrix containing the probabilities of all possible fates for each stage, including hidden states, e.g., eggs and pupae. I observed both dead and live caterpillars with high probability. Peak caterpillar abundance attracted multiple predators, and survival of fifth instars declined as per capita predation rate increased through spring. A time lag between predator and prey abundance was likely the cause of improved fifth instar survival estimated at high density. Growth rates showed an increase with temperature, but the preferred model did not include temperature. This work illustrates how state-space models can include unobservable stages and hidden state processes to evaluate how environmental factors influence vital rates of cryptic life stages in the wild. PMID:28505138

  18. Near infrared spectroscopy to estimate the temperature reached on burned soils: strategies to develop robust models.

    NASA Astrophysics Data System (ADS)

    Guerrero, César; Pedrosa, Elisabete T.; Pérez-Bejarano, Andrea; Keizer, Jan Jacob

    2014-05-01

    The temperature reached on soils is an important parameter needed to describe the wildfire effects. However, the methods for measure the temperature reached on burned soils have been poorly developed. Recently, the use of the near-infrared (NIR) spectroscopy has been pointed as a valuable tool for this purpose. The NIR spectrum of a soil sample contains information of the organic matter (quantity and quality), clay (quantity and quality), minerals (such as carbonates and iron oxides) and water contents. Some of these components are modified by the heat, and each temperature causes a group of changes, leaving a typical fingerprint on the NIR spectrum. This technique needs the use of a model (or calibration) where the changes in the NIR spectra are related with the temperature reached. For the development of the model, several aliquots are heated at known temperatures, and used as standards in the calibration set. This model offers the possibility to make estimations of the temperature reached on a burned sample from its NIR spectrum. However, the estimation of the temperature reached using NIR spectroscopy is due to changes in several components, and cannot be attributed to changes in a unique soil component. Thus, we can estimate the temperature reached by the interaction between temperature and the thermo-sensible soil components. In addition, we cannot expect the uniform distribution of these components, even at small scale. Consequently, the proportion of these soil components can vary spatially across the site. This variation will be present in the samples used to construct the model and also in the samples affected by the wildfire. Therefore, the strategies followed to develop robust models should be focused to manage this expected variation. In this work we compared the prediction accuracy of models constructed with different approaches. These approaches were designed to provide insights about how to distribute the efforts needed for the development of robust

  19. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  20. Soil moisture deficit estimation using satellite multi-angle brightness temperature

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei; Dai, Qiang

    2016-08-01

    Accurate soil moisture information is critically important for hydrological modelling. Although remote sensing soil moisture measurement has become an important data source, it cannot be used directly in hydrological modelling. A novel study based on nonlinear techniques (a local linear regression (LLR) and two feedforward artificial neural networks (ANNs)) is carried out to estimate soil moisture deficit (SMD), using the Soil Moisture and Ocean Salinity (SMOS) multi-angle brightness temperatures (Tbs) with both horizontal (H) and vertical (V) polarisations. The gamma test is used for the first time to determine the optimum number of Tbs required to construct a reliable smooth model for SMD estimation, and the relationship between model input and output is achieved through error variance estimation. The simulated SMD time series in the study area is from the Xinanjiang hydrological model. The results have shown that LLR model is better at capturing the interrelations between SMD and Tbs than ANNs, with outstanding statistical performances obtained during both training (NSE = 0.88, r = 0.94, RMSE = 0.008 m) and testing phases (NSE = 0.85, r = 0.93, RMSE = 0.009 m). Nevertheless, both ANN training algorithms (radial BFGS and conjugate gradient) have performed well in estimating the SMD data and showed excellent performances compared with those derived directly from the SMOS soil moisture products. This study has also demonstrated the informative capability of the gamma test in the input data selection for model development. These results provide interesting perspectives for data-assimilation in flood-forecasting.

  1. Estimation of Daily Reference Evapotranspiration using Temperature Based Models and Remotely Sensed Data over Indian River Basin

    NASA Astrophysics Data System (ADS)

    R, Shwetha H.; D, Nagesh Kumar

    2015-04-01

    Reference evapotranspiration (ETo) is the most significant component of the hydrological budget. Accurate quantification of ETo is vital for proper water management, efficient agricultural activities, irrigation planning and irrigation scheduling. FAO Penman Montieth (FAO-PM) is the widely accepted and used method for the ETo estimation under all climatic conditions, but needs numerous inputs which are difficult to acquire in developing countries. In such conditions, temperature based models such as Hargreaves-Samani (HS) equation and Penman Montieth temperature (PMT) can be used, where only maximum and minimum temperatures are required. Spatial interpolation of meteorological parameters to calculate spatial variation of ETo results in inaccurate estimations at lowly densed weather stations. Hence, there is a necessity of simple and easy method to estimate spatial distribution of ETo. In this regard, remotely sensed data provides viable alternative approach to obtain continuous spatio-temporal ETo. In this study, we used temperature based ETo models with remotely sensed LST data to estimate spatio-temporal variation of ETo. Day and night LST (MYD11A1) data of the year 2010 for the Cauvery basin on a daily basis were obtained from MODIS sensor of Aqua satellite. Firstly, day and night land surface temperatures (LST) with HS and PMT methods were applied to estimate ETo. Secondly, maximum and minimum air temperatures were estimated from day and night LST respectively using simple linear regression and these air temperature data were used to estimate ETo. Estimated results were validated with the ETo calculated using meteorological data obtained from Automatic Weather Stations (AWS) by applying standard FAO-PM. The preliminary results revealed that, HS method with LST overestimated ETo in the study region. Statistical analysis showed PMT method with both LST and air temperatures performed better than the HS method. These two temperature based methods are often used for

  2. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  3. Comparison of ArcGIS and SAS Geostatistical Analyst to Estimate Population-Weighted Monthly Temperature for US Counties.

    PubMed

    Xiaopeng, Q I; Liang, Wei; Barker, Laurie; Lekiachvili, Akaki; Xingyou, Zhang

    Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly-or 30-day-basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R(2), mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R(2) range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects.

  4. Granger causality estimate of information flow in temperature fields is consistent with wind direction

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2014-05-01

    Granger causality analysis is designed to quantify whether one time series is useful in forecasting another. We apply the time domain Granger causality analysis based on autoregressive processes to gridded daily surface air temperature data. For each grid-point pair, the direction and strength of the causal influence were computed with the one-day lag, effectively assessing the direction of the information flow in the temperature field. In order to remove the influence of different distances of the grid-points in the original angularly regular grid of the NCEP/NCAR reanalysis, the data were transformed into an equidistant geodesic grid of 642 grid points. The strongest causalities have been found in the Northern Hemisphere's extratropics, where the temperature information is flowing eastward, in agreement with the prevailing westerlies. In contrast, only weak causalities have been observed in the tropics, which may be arising from higher spatio-temporal homogeneity. In the second step, we quantitatively compared this estimate of information flow with the actual wind directions from NCEP/NCAR reanalysis data transformed onto the equidistant geodesic grid of 642 points. This was done for the surface layer and for the 850, 700, 500, 300 and 100hPa layers. The direction of the information flow matches the flow of the air masses, particularly well in the Northern Hemisphere's extratropics, i.e. for the strongest causalities. This agreement holds throughout the troposphere, slightly increasing with the height up to 500hPa level, then remains the same until bottom stratosphere. The agreement between the information flow in the air temperature field and the flow of air masses suggests the Granger causality as a suitable tools for constructing directed climate networks.

  5. Parameter Measurement and Estimation at Variable Scales: Example of Soil Temperature in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Seyfried, M. S.

    2015-12-01

    The issue of matching measurement scale to application scale is long standing and frequently revisited with advances in instrumentation and computing power. In the past we have emphasized the importance of understanding the dominant processes and amount and nature of parameter variability when addressing these issues. Landscape-scale distribution of carbon and carbon fluxes is a primary focus of the Reynolds Creek Critical Zone Observatory (RC CZO). Soil temperature (Ts) is a critical parameter of generally unknown variability. Estimates of Ts are often based on air temperature (Ta), but it is understood that other factors control Ts, especially in complex terrain, where solar radiation may be a major driver. Data were collected at the Reynolds Creek Experimental Watershed (RCEW), which is 240 km2 in extent and covers a 1000 m elevation range. We used spatially extensive Ts data to evaluate correlations with Ta (915 m elevation gradient) on aspect neutral sites with similar vegetative cover. Effects of complex terrain were evaluated using a combination of fixed point measurements, fiber optic distributed temperature sensing and periodic, spatially distributed point measurements. We found that Ts over the elevation gradient followed Ta closely. However, within small subwatersheds with uniform Ta, Ts may be extremely variable, with a standard deviation of 8° C. This was strongly related to topographically associated land surface units (LSU's) and highly seasonal. Within LSU variability was generally low while there were seasonally significant differences between LSU's. The mean annual soil temperature difference between LSU's was greater than that associated with the 915 m elevation gradient. The seasonality of Ts variability was not directly related to solar radiation effects but rather to variations in cover. Scaling Ts requires high resolution accounting of topography in this environment. Spatial patterns of soil carbon at the RCEW are consistent with this.

  6. Ozone estimates derived from Dobson direct sun measurements: effect of atmospheric temperature variations and scattering.

    PubMed

    Thomas, R W; Holland, A C

    1977-03-01

    We have performed an analysis of the impact of the temperature sensitivity of the ozone absorption coefficients on estimates of total atmospheric ozone obtained by the Dobson spectrophotometer operating in direct sun mode. In general, the higher the mean ozone temperature the greater will be the tendency to overestimate the ozone amount. The spreads in ozone residuals over the temperature models we investigated were 3%, 4%, and 6% for the A, C, and D line pairs, respectively, whereas for coupled line pairs the spread was only about 2%. The A-C-D triplet showed a very small temperature effect, the spread being probably less than 2%. For the A-D system, currently recommended by the WMO, the computed spread was 2.4 +/- 0.5%. A Monte Carlo model was applied to investigate the potential impact of scattered radiation entering the system. The effect has been computed for various conical fields of view. For clear sky conditions with no aerosols present, the error introduced appears to be less than 1%. When a tropospheric aerosol model was inserted, however, significant errors were observed. For the models we studied aerosol attenuation resulted in overestimates of total ozone up to 8%, but the impact of scattered radiation was to reduce the overestimate, and, in some cases, the scattering and attenuation effects may balance for a realistic Dobson system. Both effects increased from the A to the C to the D line pairs. The results indicate that line pair coupling reduces the combined error due to both sources to less than 1%.

  7. S∧4 Reactor: Operating Lifetime and Estimates of Temperature and Burnup Reactivity Coefficients

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The S∧4 reactor has a sectored, Mo-14%Re solid core for avoidance of single point failures in reactor cooling and Closed Brayton Cycle (CBC) energy conversion. The reactor is loaded with UN fuel, cooled with a He-Xe gas mixture at ~1200 K and operates at steady thermal power of 550 kW. Following a launch abort accident, the axial and radial BeO reflectors easily disassemble upon impact so that the bare reactor is subcriticial when submerged in wet sand or seawater and the core voids are filled with seawater. Spectral Shift Absorber (SSA) additives have been shown to increase the UN fuel enrichment and significantly reduce the total mass of the reactor. This paper investigates the effects of SSA additions on the temperature and burnup reactivity coefficients and the operational lifetime of the S∧4 reactor. SSAs slightly decrease the temperature reactivity feedback coefficient, but significantly increase the operating lifetime by decreasing the burnup reactivity coefficient. With no SSAs, fuel enrichment is only 58.5 wt% and the estimated operating lifetime is the shortest (7.6 years) with the highest temperature and burnup reactivity feedback coefficients (-0.2709 ¢/K and -1.3470 $/atom%). With europium-151 and gadolinium-155 additions, the enrichment (91.5 and 94 wt%) and operating lifetime (9.9 and 9.8 years) of the S∧4 reactor are the highest while the temperature and burnup reactivity coefficients (-0.2382 and -0.2447 ¢/K -0.9073 and 0.8502 $/atom%) are the lowest.

  8. Frictional Temperature of Chelungpu Seismic Faulting Estimated from the Taiwan Chelungpu-fault Drilling Project (TCDP)

    NASA Astrophysics Data System (ADS)

    Song, S.; Kuo, L.; Chou, Y.

    2012-12-01

    Two holes, named Hole-A and Hole-B with the depths of 2,003 m and 1,350 m, respectively, were raised by the Taiwan Chelungpu-fault Drilling Project (TCDP) which recovered continuous fresh core samples across the rupture zone of the 1999 Chi-Chi earthquake (Mw7.6). To investigate the coseismic frictional temperature in seismogenic fault zones, we examine the characteristics of core materials including clay, carbonate and magnetic minerals and carbonaceous materials with optical, SEM, TEM and TXM for mineral identifications, and chemical analyses by ICP-MS for geochemical modeling in the Chelungpu-fault zones. The primary slip zone (PSZ), characterized by the isotropic layer in black gouge of those two holes can be recognized at the depth around 1,111 m and 1,136 m with ~20 mm and ~3 mm in thickness, respectively. For the Hole-A, the frictional temperature was calculated from the clay mineral assemblages of FZ1111, which show evidence of melting, and the temperature in a ~2 cm band within the black gouge zone is estimated to be from 900 °C to 1100 °C by comparing the SEM images of in situ natural samples with those of heated materials, and the finding of no recrystallization of kaolinite-amorphous aluminosilicates-spinel in the fault samples. For the Hole-B, the frictional temperature in the FZ1136 was calculated as 400 °C to 900 °C, based on the magnetic mineral variations, de-carbonation of calcite, clay mineral assemblages, and geochemical modeling on trace element variations.

  9. Accuracy of peripheral thermometers for estimating temperature: a systematic review and meta-analysis.

    PubMed

    Niven, Daniel J; Gaudet, Jonathan E; Laupland, Kevin B; Mrklas, Kelly J; Roberts, Derek J; Stelfox, Henry Thomas

    2015-11-17

    Body temperature is commonly used to screen patients for infectious diseases, establish diagnoses, monitor therapy, and guide management decisions. To determine the accuracy of peripheral thermometers for estimating core body temperature in adults and children. MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL Plus from inception to July 2015. Prospective studies comparing the accuracy of peripheral (tympanic membrane, temporal artery, axillary, or oral) thermometers with central (pulmonary artery catheter, urinary bladder, esophageal, or rectal) thermometers. 2 reviewers extracted data on study characteristics, methods, and outcomes and assessed the quality of individual studies. 75 studies (8682 patients) were included. Most studies were at high or unclear risk of patient selection bias (74%) or index test bias (67%). Compared with central thermometers, peripheral thermometers had pooled 95% limits of agreement (random-effects meta-analysis) outside the predefined clinically acceptable range (± 0.5 °C), especially among patients with fever (-1.44 °C to 1.46 °C for adults; -1.49 °C to 0.43 °C for children) and hypothermia (-2.07 °C to 1.90 °C for adults; no data for children). For detection of fever (bivariate random-effects meta-analysis), sensitivity was low (64% [95% CI, 55% to 72%]; I2 = 95.7%; P < 0.001) but specificity was high (96% [CI, 93% to 97%]; I2 = 96.3%; P < 0.001). Only 1 study reported sensitivity and specificity for the detection of hypothermia. High-quality data for some temperature measurement techniques are limited. Pooled data are associated with interstudy heterogeneity that is not fully explained by stratified and metaregression analyses. Peripheral thermometers do not have clinically acceptable accuracy and should not be used when accurate measurement of body temperature will influence clinical decisions. None.

  10. Using Annual Data to Estimate the Public Health Impact of Extreme Temperatures.

    PubMed

    Goggins, William B; Yang, Chunyuh; Hokama, Tomiko; Law, Lewis S K; Chan, Emily Y Y

    2015-07-01

    Short-term associations between both hot and cold ambient temperatures and higher mortality have been found worldwide. Few studies have examined these associations on longer time scales. Age-standardized mortality rates (ASMRs) were calculated for 1976-2012 for Hong Kong SAR, People's Republic of China, defining "annual" time periods in 2 ways: from May through April of the following year and from November through October. Annual frequency and severity of extreme temperatures were summarized by using a degree-days approach with extreme heat expressed as annual degree-days >29.3°C and cold as annual degree-days <27.5°C. For example, a day with a mean temperature of 25.0°C contributes 2.5 cold degree-days to the annual total. Generalized additive models were used to estimate the association between annual hot and cold degree-days and the ASMR, with adjustment for long-term trends. Increases of 10 hot or 200 cold degree-days in an annual period, the approximate interquartile ranges for these variables, were significantly (all P's ≤ 0.011) associated with 1.9% or 3.1% increases, respectively, in the annual ASMR for the May-April analyses and with 2.2% or 2.8% increases, respectively, in the November-October analyses. Associations were stronger for noncancer and elderly mortality. Mortality increases associated with extreme temperature are not simply due to short-term forward displacement of deaths that would have occurred anyway within a few weeks. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Responding to bioterror concerns by increasing milk pasteurization temperature would increase estimated annual deaths from listeriosis.

    PubMed

    Stasiewicz, Matthew J; Martin, Nicole; Laue, Shelley; Gröhn, Yrjo T; Boor, Kathryn J; Wiedmann, Martin

    2014-05-01

    In a 2005 analysis of a potential bioterror attack on the food supply involving a botulinum toxin release into the milk supply, the authors recommended adopting a toxin inactivation step during milk processing. In response, some dairy processors increased the times and temperatures of pasteurization well above the legal minimum for high temperature, short time pasteurization (72 °C for 15 s), with unknown implications for public health. The present study was conducted to determine whether an increase in high temperature, short time pasteurization temperature would affect the growth of Listeria monocytogenes, a potentially lethal foodborne pathogen normally eliminated with proper pasteurization but of concern when milk is contaminated postpasteurization. L. monocytogenes growth during refrigerated storage was higher in milk pasteurized at 82 °C than in milk pasteurized at 72 °C. Specifically, the time lag before exponential growth was decreased and the maximum population density was increased. The public health impact of this change in pasteurization was evaluated using a quantitative microbial risk assessment of deaths from listeriosis attributable to consumption of pasteurized fluid milk that was contaminated postprocessing. Conservative estimates of the effect of pasteurizing all fluid milk at 82 °C rather than 72 °C are that annual listeriosis deaths from consumption of this milk would increase from 18 to 670, a 38-fold increase (8.7- to 96-fold increase, 5th and 95th percentiles). These results exemplify a situation in which response to a rare bioterror threat may have the unintended consequence of putting the public at increased risk of a known, yet severe harm and illustrate the need for a paradigm shift toward multioutcome risk benefit analyses when proposing changes to established food safety practices.

  12. A hybrid downscaling procedure for estimating the vertical distribution of ambient temperature in local scale

    NASA Astrophysics Data System (ADS)

    Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.

    2012-04-01

    The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input

  13. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    NASA Technical Reports Server (NTRS)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  14. Developing first time-series of land surface temperature from AATSR with uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Ghent, Darren; Remedios, John

    2013-04-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Earth Observation satellites provide the opportunity to obtain global coverage of LST approximately every 3 days or less. One such source of satellite retrieved LST has been the Advanced Along-Track Scanning Radiometer (AATSR); with LST retrieval being implemented in the AATSR Instrument Processing Facility in March 2004. Here we present first regional and global time-series of LST data from AATSR with estimates of uncertainty. Mean changes in temperature over the last decade will be discussed along with regional patterns. Although time-series across all three ATSR missions have previously been constructed (Kogler et al., 2012), the use of low resolution auxiliary data in the retrieval algorithm and non-optimal cloud masking resulted in time-series artefacts. As such, considerable ESA supported development has been carried out on the AATSR data to address these concerns. This includes the integration of high resolution auxiliary data into the retrieval algorithm and subsequent generation of coefficients and tuning parameters, plus the development of an improved cloud mask based on the simulation of clear sky conditions from radiance transfer modelling (Ghent et al., in prep.). Any inference on this LST record is though of limited value without the accompaniment of an uncertainty estimate; wherein the Joint Committee for Guides in Metrology quote an uncertainty as "a parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand that is the value of the particular quantity to be measured". Furthermore, pixel level uncertainty fields are a mandatory requirement in the on-going preparation of the LST product for the upcoming Sea and Land Surface Temperature (SLSTR) instrument on-board Sentinel-3

  15. POWER ASYMMETRY IN WMAP AND PLANCK TEMPERATURE SKY MAPS AS MEASURED BY A LOCAL VARIANCE ESTIMATOR

    SciTech Connect

    Akrami, Y.; Fantaye, Y.; Eriksen, H. K.; Hansen, F. K.; Shafieloo, A.; Banday, A. J.; Górski, K. M. E-mail: y.t.fantaye@astro.uio.no

    2014-04-01

    We revisit the question of hemispherical power asymmetry in the WMAP and Planck temperature sky maps by measuring the local variance over the sky and on disks of various sizes. For the 2013 Planck sky map we find that none of the 1000 available isotropic Planck ''Full Focal Plane'' simulations have a larger variance asymmetry than that estimated from the data, suggesting the presence of an anisotropic signature formally significant at least at the 3.3σ level. For the WMAP 9 year data we find that 5 out of 1000 simulations have a larger asymmetry. The preferred direction for the asymmetry from the Planck data is (l, b) = (212°, –13°), in good agreement with previous reports of the same hemispherical power asymmetry.

  16. Pressure and temperature estimates of the 2010 Eyjafjallajökull eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Keiding, J. K.; Sigmarsson, O.

    2010-12-01

    The Eyjafjallajökull volcano, Iceland, began erupting March 20 2010, following almost 200 years of quiescence. The eruption, which was preceded by 4 months of precursory activity, evolved from an initial phase of effusive activity at the pass of Fimmvörduháls through an explosive phase underneath the Eyjafjallajökull glacier, until the cessation of activity in late May. Eruptive products indicate pervasive magma mingling between two endmembers: An early mildly alkaline basalt and a late-stage trachyandesite with 46 wt% and approximately 60 wt% SiO2, respectively. Phenocryst compositions vary greatly with olivines ranging from Fo80 to Fo46, feldspars vary from An69 to An9, and Mg-number of clinopyroxene range from 72 down to 19. We examine mineral and co-existing melt compositions from tephra samples to place preliminary constraints on magma storage depths and crystallization temperatures during the eruption. P-T estimates were computed from the pyroxene + liquid and plagioclase + liquid thermobarometers of Putirka (2008). To avoid crystal-whole-rock pairs unlikely to yield valid P-T estimates, several data filters were employed. Preliminary results show that the early basaltic eruptions at Fimmvörduháls have magmatic temperatures of 1160 (± 25°C) and a narrow temperature range (< 30°C) at any given depth. In contrast, trachyandesite products crystallized at lower temperatures (1020-1060°C) deduced from the most primitive melt-mineral compositions ranging down to 950 °C (± 25°C) for the most evolved plagioclase compositions (An9). Pressure estimates based on clinopyroxene geobarometry (Putirka, 2008) yield an average pressure of 5.1 kbar (± 1.1 kbar) for the basaltic tephra and lower pressure (3.8 kbar) for the trachyandesite. However, the trachyandesite shows larger scatter in calculated pressures ranging down to 1 kbar. The maximum pressure calculated here from the basaltic tephra is consistent with MELTS modelling pointing towards pressures about or

  17. Comparison of ArcGIS and SAS Geostatistical Analyst to Estimate Population-Weighted Monthly Temperature for US Counties

    PubMed Central

    Xiaopeng, QI; Liang, WEI; BARKER, Laurie; LEKIACHVILI, Akaki; Xingyou, ZHANG

    2015-01-01

    Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature’s association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly—or 30-day—basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R2, mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS’s merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects. PMID:26167169

  18. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  19. Last interglacial sea-surface temperature estimates from the California margin; improvements to the modern analog technique

    USGS Publications Warehouse

    Dowsett, Harry J.; Poore, Richard Z.

    1999-01-01

    Total faunal analyses of planktic foraminifer assemblages are used to derive sea surface temperature estimates for the last interglacial from Ocean Drilling Program Sites 1018 and 1020 off northern and central California. Foraminifer assemblage data were transformed to sea-surface temperature (SST) estimates by using the modern analog technique (MAT). In order to improve our ability to estimate SST in this area, the coretop calibration data base used in the MAT was augmented by 13 new age-validated coretop assemblages from the U.S. Pacific Margin.

  20. Global Snow Cover Estimation with Microwave Brightness Temperature Measurements and One-Class in situ Observations

    NASA Astrophysics Data System (ADS)

    Xu, X.; Liu, X.; Li, X.; Shi, Q.

    2016-12-01

    Brightness temperature (BT), which is remotely sensed by the space-borne microwave radiometer, is widely used in snow cover monitoring for its long time series imaging capabilities in all-weather conditions. Traditional linear fitting and stand-alone methods are usually uncertain with respect to the spatial distribution and temporal variation of derived snow cover, as they rarely consider local conditions and scene characteristics but fit the model with static empirical coefficients. In this paper, a novel method utilizing daily ground in situ observations is proposed and evaluated, with the purpose for accurate estimation of long-term daily snow cover. To solve the challenge that ground snow-free records are insufficient, a one-class classifier, namely the presence and background learning (PBL) algorithm, is employed to identify daily global snow cover. Benefiting from daily ground in situ observations on a global scale, the proposed method is temporally and spatially dynamic such that estimation errors are globally independent during the entire study period. The proposed method is applied to the estimation of global daily snow cover from 1987 to 2010; the results are validated by ground in situ observations and compared with available optical-based and microwave-based snow cover products. Promising accuracy and model stability are achieved in daily, monthly and yearly validations as compared against ground observations (global omission error < 0.13, overall accuracy > 0.82 in China region, and keep stable in monthly and yearly averages). The comparison against the MODIS daily snow cover product (MOD10C1) shows good agreement under cloud-free conditions (Cohen's kappa = 0.715). The comparison against the NOAA daily Interactive Multisensor Snow and Ice Mapping System (IMS) dataset suggests promising agreement in the Northern Hemisphere. Another comparison against the AMSR-E daily SWE dataset (AE_DySno) demonstrates the efficiency of the proposed method regarding to

  1. An alternative method to estimate zero flow temperature differences for Granier's thermal dissipation technique.

    PubMed

    Regalado, Carlos M; Ritter, Axel

    2007-08-01

    Calibration of the Granier thermal dissipation technique for measuring stem sap flow in trees requires determination of the temperature difference (DeltaT) between a heated and an unheated probe when sap flow is zero (DeltaT(max)). Classically, DeltaT(max) has been estimated from the maximum predawn DeltaT, assuming that sap flow is negligible at nighttime. However, because sap flow may continue during the night, the maximum predawn DeltaT value may underestimate the true DeltaT(max). No alternative method has yet been proposed to estimate DeltaT(max) when sap flow is non-zero at night. A sensitivity analysis is presented showing that errors in DeltaT(max) may amplify through sap flux density computations in Granier's approach, such that small amounts of undetected nighttime sap flow may lead to large diurnal sap flux density errors, hence the need for a correct estimate of DeltaT(max). By rearranging Granier's original formula, an optimization method to compute DeltaT(max) from simultaneous measurements of diurnal DeltaT and micrometeorological variables, without assuming that sap flow is negligible at night, is presented. Some illustrative examples are shown for sap flow measurements carried out on individuals of Erica arborea L., which has needle-like leaves, and Myrica faya Ait., a broadleaf species. We show that, although DeltaT(max) values obtained by the proposed method may be similar in some instances to the DeltaT(max) predicted at night, in general the values differ. The procedure presented has the potential of being applied not only to Granier's method, but to other heat-based sap flow systems that require a zero flow calibration, such as the Cermák et al. (1973) heat balance method and the T-max heat pulse system of Green et al. (2003).

  2. Estimating deep recharge rates beneath an interlobate moraine using temperature logs.

    PubMed

    Ferguson, Grant; Woodbury, Allan D; Matile, Gaywood L D

    2003-01-01

    The Sandilands area of southeastern Manitoba contains an interlobate moraine that is a major ground water recharge area. Underlying the highly permeable sediments of the moraine are up to 100 m of till and the subcrop of the Winnipeg Formation, which contains a major sandstone aquifer. Ground water flow within the till is examined using high-resolution temperature profiles and solutions to the differential equation for heat flow in porous media. These analyses indicate that recharge to the sandstone aquifer is occurring at a rate of approximately 2 x 10(-8) m/sec beneath the moraine, which is in agreement with recharge rates determined by conventional ground water hydraulics (10(-7) to 10(-10)(m/sec) and another study using multiple environmental tracers (1 x 10(-9) to 6 X 10(-9) m/sec). The use of temperature to determine ground water flux is not limited by half-lives as many environmental tracers are, and this allows for cost-effective estimation of recharge and discharge rates over longer periods.

  3. An empirical method for estimating probability density functions of gridded daily minimum and maximum temperature

    NASA Astrophysics Data System (ADS)

    Lussana, C.

    2013-04-01

    The presented work focuses on the investigation of gridded daily minimum (TN) and maximum (TX) temperature probability density functions (PDFs) with the intent of both characterising a region and detecting extreme values. The empirical PDFs estimation procedure has been realised using the most recent years of gridded temperature analysis fields available at ARPA Lombardia, in Northern Italy. The spatial interpolation is based on an implementation of Optimal Interpolation using observations from a dense surface network of automated weather stations. An effort has been made to identify both the time period and the spatial areas with a stable data density otherwise the elaboration could be influenced by the unsettled station distribution. The PDF used in this study is based on the Gaussian distribution, nevertheless it is designed to have an asymmetrical (skewed) shape in order to enable distinction between warming and cooling events. Once properly defined the occurrence of extreme events, it is possible to straightforwardly deliver to the users the information on a local-scale in a concise way, such as: TX extremely cold/hot or TN extremely cold/hot.

  4. Volcanic explosion clouds - Density, temperature, and particle content estimates from cloud motion

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Self, S.

    1980-01-01

    Photographic records of 10 vulcanian eruption clouds produced during the 1978 eruption of Fuego Volcano in Guatemala have been analyzed to determine cloud velocity and acceleration at successive stages of expansion. Cloud motion is controlled by air drag (dominant during early, high-speed motion) and buoyancy (dominant during late motion when the cloud is convecting slowly). Cloud densities in the range 0.6 to 1.2 times that of the surrounding atmosphere were obtained by fitting equations of motion for two common cloud shapes (spheres and vertical cylinders) to the observed motions. Analysis of the heat budget of a cloud permits an estimate of cloud temperature and particle weight fraction to be made from the density. Model results suggest that clouds generally reached temperatures within 10 K of that of the surrounding air within 10 seconds of formation and that dense particle weight fractions were less than 2% by this time. The maximum sizes of dense particles supported by motion in the convecting clouds range from 140 to 1700 microns.

  5. Estimating the Ocean Flow Field From Combined Sea Surface Temperature and Sea Surface Height Data

    NASA Technical Reports Server (NTRS)

    Stammer, Detlef

    2000-01-01

    The primary focus of this project was on the estimation of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of sea surface temperature (SST) and sea surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. This effort is directly related to an attempt to describe the mechanisms which give rise to observed SST and its variability on seasonal and inter-annual timescales, its relation to ocean-atmosphere interaction, and the dynamical coupling between the ocean mixed layer and the deep interior ocean. This is one of the fundamental climate related questions being pursued currently under the CLIVAR Program. Because of the strong turbulent mixing associated with atmospheric fluxes of momentum, heat and freshwater through the sea surface, the ocean forms a shallow surface boundary layer, the mixed layer which is largely homogeneous in its constituents. The relation between the temperature of the remotely sensed "skin" and the bulk of the mixed layer is largely understood (Reynolds and Smith 1994; Emery et al., 1995). However, because the surface mixed layer is effectively decoupled from the underlying ocean dynamics, an interpretation of satellite SST observations in isolation and in direct use for dynamical studies is very difficult. As a result, the impact of SST data on the understanding of ocean variability.

  6. FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters

    NASA Astrophysics Data System (ADS)

    Boyd, P. W.; Law, C. S.; Hutchins, D. A.; Abraham, E. R.; Croot, P. L.; Ellwood, M.; Frew, R. D.; Hadfield, M.; Hall, J.; Handy, S.; Hare, C.; Higgins, J.; Hill, P.; Hunter, K. A.; Leblanc, K.; Maldonado, M. T.; McKay, R. M.; Mioni, C.; Oliver, M.; Pickmere, S.; Pinkerton, M.; Safi, K.; Sander, S.; Sanudo-Wilhelmy, S. A.; Smith, M.; Strzepek, R.; Tovar-Sanchez, A.; Wilhelm, S. W.

    2005-12-01

    An improved knowledge of iron biogeochemistry is needed to better understand key controls on the functioning of high-nitrate low-chlorophyll (HNLC) oceanic regions. Iron budgets for HNLC waters have been constructed using data from disparate sources ranging from laboratory algal cultures to ocean physics. In summer 2003 we conducted FeCycle, a 10-day mesoscale tracer release in HNLC waters SE of New Zealand, and measured concurrently all sources (with the exception of aerosol deposition) to, sinks of iron from, and rates of iron recycling within, the surface mixed layer. A pelagic iron budget (timescale of days) indicated that oceanic supply terms (lateral advection and vertical diffusion) were relatively small compared to the main sink (downward particulate export). Remote sensing and terrestrial monitoring reveal 13 dust or wildfire events in Australia, prior to and during FeCycle, one of which may have deposited iron at the study location. However, iron deposition rates cannot be derived from such observations, illustrating the difficulties in closing iron budgets without quantification of episodic atmospheric supply. Despite the threefold uncertainties reported for rates of aerosol deposition (Duce et al., 1991), published atmospheric iron supply for the New Zealand region is ˜50-fold (i.e., 7- to 150-fold) greater than the oceanic iron supply measured in our budget, and thus was comparable (i.e., a third to threefold) to our estimates of downward export of particulate iron. During FeCycle, the fluxes due to short term (hours) biological iron uptake and regeneration were indicative of rapid recycling and were tenfold greater than for new iron (i.e. estimated atmospheric and measured oceanic supply), giving an "fe" ratio (uptake of new iron/uptake of new + regenerated iron) of 0.17 (i.e., a range of 0.06 to 0.51 due to uncertainties on aerosol iron supply), and an "Fe" ratio (biogenic Fe export/uptake of new + regenerated iron) of 0.09 (i.e., 0.03 to 0.24).

  7. Estimation of surface heat flux and temperature distributions in a multilayer tissue based on the hyperbolic model of heat conduction.

    PubMed

    Lee, Haw-Long; Chen, Wen-Lih; Chang, Win-Jin; Yang, Yu-Ching

    2015-01-01

    In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to solve the inverse hyperbolic heat conduction problem in estimating the unknown time-dependent surface heat flux in a skin tissue, which is stratified into epidermis, dermis, and subcutaneous layers, from the temperature measurements taken within the medium. Subsequently, the temperature distributions in the tissue can be calculated as well. The concept of finite heat propagation velocity is applied to the modeling of the bioheat transfer problem. The inverse solutions will be justified based on the numerical experiments in which two different heat flux distributions are to be determined. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors on the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent surface heat flux can be obtained for the test cases considered in this study.

  8. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities.

    PubMed

    Davis, Robert E; Hondula, David M; Patel, Anjali P

    2016-06-01

    Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat-mortality relationships. We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature-mortality relationships were associated with maximum temperature, although mean temperature results were comparable. There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature-mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum

  9. How deep, how hot: comparing pressure and temperature estimates from amphibole and rhyolite-MELTS thermobarometry

    NASA Astrophysics Data System (ADS)

    Pamukcu, A. S.; Gualda, G. A.

    2013-12-01

    unreliable for constraining temperature, if not also pressure. Thermobarometry with matrix glass compositions shows: - Rhyolite-MELTS thermobarometry: 190-260 MPa, 780-800 (×40 °C). Many glass compositions used for these simulations did not yield estimates, only low Na, high K analyses were successful. Thus, rhyolite-MELTS also served to pare down analyses affected by alteration or analytical problems. - Glass SiO2 contents (~76.9 wt.% SiO2): 200-250 MPa. - Projection on haplogranitic ternary: 250 (×50) MPa. We find poor agreement between the many calibrations of amphibole and amphibole-plagioclase thermobarometers. These thermobarometers may be useful for broadly identifying where magmas reside in the Earth's crust (lower, middle, upper), but they are likely not accurate enough to resolve pressure differences within the upper crust, where we expect many eruptible magmas to be stored. Results from glass barometry are more consistent and suggest that the Anderson & Smith (1995) calibration is the most accurate for amphibole. Temperatures from the rhyolite-MELTS thermometer are slight overestimates relative to Zr-in-sphene and Ti-in-zircon temperatures of 750 °C. Overall, rhyolite-MELTS thermobarometry shows great promise for determining crystallization conditions of glass-bearing rocks stored in the upper crust.

  10. Optimal estimation of areal values of near-land-surface temperatures for testing global and local spatio-temporal trends

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Yang, Yongguo

    2017-09-01

    This paper provides a solution to the problem of estimating the mean value of near-land-surface temperature over a relatively large area (here, by way of example, applied to mainland Spain covering an area of around half a million square kilometres) from a limited number of weather stations covering a non-representative (biased) range of altitudes. As evidence mounts for altitude-dependent global warming, this bias is a significant problem when temperatures at high altitudes are under-represented. We correct this bias by using altitude as a secondary variable and using a novel clustering method for identifying geographical regions (clusters) that maximize the correlation between altitude and mean temperature. In addition, the paper provides an improved regression kriging estimator, which is optimally determined by the cluster analysis. The optimal areal values of near-land-surface temperature are used to generate time series of areal temperature averages in order to assess regional changes in temperature trends. The methodology is applied to records of annual mean temperatures over the period 1950-2011 across mainland Spain. The robust non-parametric Theil-Sen method is used to test for temperature trends in the regional temperature time series. Our analysis shows that, over the 62-year period of the study, 78% of mainland Spain has had a statistically significant increase in annual mean temperature.

  11. a Simple and Effective Retrieval of Land Surface Temperature Using a New Reflectance Based Emissivity Estimation Technique

    NASA Astrophysics Data System (ADS)

    Nithiyanandam, Y.; Nichol, J. E.

    2016-06-01

    Emissivity is a significant factor in determining land surface temperature (LST) retrieved from the thermal infrared (TIR) satellite images. A new simplified method (reflectance method) for emissivity correction was developed in this study while estimating emissivity values at a spatial resolution of 30 m from the radiance values of the SWIR image. This in turn enables mapping surface temperatures at a much finer spatial resolution (30 m). Temperatures so estimated are validated against surface temperatures measured in the ground by thermocouple data loggers recorded during satellite overpass time. In this study, surface emissivity values are derived directly from the AST_ L1B images. The reflectance method estimates temperature at higher spatial resolution of 30 m when compared to the 90 m spatial resolution of TES and reference channel methods. Temperature determined for the daytime image of 30th November 2007 using different emissivity techniques was compared with the temperatures measured on the field using thermocouple data loggers. It is observed that the estimates from the reflectance method are much closer to the field measurements than the TES and reference channel methods. The temperature difference values range from 0.2 to 2.3 °C, 0.15 to 5.6 °C, and 2.6 to 8.6 °C for the reflectance method, normalization method and reference channel method, respectively. The new reflectance emissivity techniques i.e. reflectance method exhibits the least deviation from the field measured temperature values. While considering the accuracy of data logger (1 °C) the reflectance method enables one to map surface temperature precisely than other two methods.

  12. Real-time temperature estimation and monitoring of HIFU ablation through a combined modeling and passive acoustic mapping approach.

    PubMed

    Jensen, C R; Cleveland, R O; Coussios, C C

    2013-09-07

    Passive acoustic mapping (PAM) has been recently demonstrated as a method of monitoring focused ultrasound therapy by reconstructing the emissions created by inertially cavitating bubbles (Jensen et al 2012 Radiology 262 252-61). The published method sums energy emitted by cavitation from the focal region within the tissue and uses a threshold to determine when sufficient energy has been delivered for ablation. The present work builds on this approach to provide a high-intensity focused ultrasound (HIFU) treatment monitoring software that displays both real-time temperature maps and a prediction of the ablated tissue region. This is achieved by determining heat deposition from two sources: (i) acoustic absorption of the primary HIFU beam which is calculated via a nonlinear model, and (ii) absorption of energy from bubble acoustic emissions which is estimated from measurements. The two sources of heat are used as inputs to the bioheat equation that gives an estimate of the temperature of the tissue as well as estimates of tissue ablation. The method has been applied to ex vivo ox liver samples and the estimated temperature is compared to the measured temperature and shows good agreement, capturing the effect of cavitation-enhanced heating on temperature evolution. In conclusion, it is demonstrated that by using PAM and predictions of heating it is possible to produce an evolving estimate of cell death during exposure in order to guide treatment for monitoring ablative HIFU therapy.

  13. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy

    DOE PAGES

    Serbin, Shawn P.; Singh, Aditya; Desai, Ankur R.; ...

    2015-06-11

    To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation (Vcmax, μmol m–2 s–1). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance spectroscopy could be used to estimate Vcmax at the leaf level. Here, we present evidence that imaging spectroscopy data can be used to simultaneously predict Vcmax and its sensitivity to temperature (EV) at the canopymore » scale. In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contemporaneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression (PLSR) modeling approach was employed to characterize the pixel-level variation in canopy Vcmax (at a standardized canopy temperature of 30 °C) and EV, based on visible and shortwave infrared AVIRIS spectra (414–2447 nm). Our approach yielded parsimonious models with strong predictive capability for Vcmax (at 30 °C) and EV (R2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the field (≥ 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate maps of Vcmax and EV, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns exhibited in the maps were consistent with our in-situ observations. As a result, these findings highlight the considerable promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI mission, to map spatial and temporal variation in key drivers of photosynthetic metabolism in terrestrial vegetation.« less

  14. Remotely estimating photosynthetic capacity, and its response to temperature, in vegetation canopies using imaging spectroscopy

    SciTech Connect

    Serbin, Shawn P.; Singh, Aditya; Desai, Ankur R.; Dubois, Sean G.; Jablonski, Andrew D.; Kingdon, Clayton C.; Kruger, Eric L.; Townsend, Philip A.

    2015-06-11

    To date, the utility of ecosystem and Earth system models (EESMs) has been limited by poor spatial and temporal representation of critical input parameters. For example, EESMs often rely on leaf-scale or literature-derived estimates for a key determinant of canopy photosynthesis, the maximum velocity of RuBP carboxylation (Vcmax, μmol m–2 s–1). Our recent work (Ainsworth et al., 2014; Serbin et al., 2012) showed that reflectance spectroscopy could be used to estimate Vcmax at the leaf level. Here, we present evidence that imaging spectroscopy data can be used to simultaneously predict Vcmax and its sensitivity to temperature (EV) at the canopy scale. In 2013 and 2014, high-altitude Airborne Visible/Infrared Imaging Spectroscopy (AVIRIS) imagery and contemporaneous ground-based assessments of canopy structure and leaf photosynthesis were acquired across an array of monospecific agroecosystems in central and southern California, USA. A partial least-squares regression (PLSR) modeling approach was employed to characterize the pixel-level variation in canopy Vcmax (at a standardized canopy temperature of 30 °C) and EV, based on visible and shortwave infrared AVIRIS spectra (414–2447 nm). Our approach yielded parsimonious models with strong predictive capability for Vcmax (at 30 °C) and EV (R2 of withheld data = 0.94 and 0.92, respectively), both of which varied substantially in the field (≥ 1.7 fold) across the sampled crop types. The models were applied to additional AVIRIS imagery to generate maps of Vcmax and EV, as well as their uncertainties, for agricultural landscapes in California. The spatial patterns exhibited in the maps were consistent with our in-situ observations. As a result, these findings highlight the considerable promise of airborne and, by implication, space-borne imaging spectroscopy, such as the proposed HyspIRI mission, to map spatial and

  15. Dissimilarity between temperature-humidity in the atmospheric surface layer and implications for estimates of evaporation

    NASA Astrophysics Data System (ADS)

    Cancelli, D. M.; Dias, N. L.; Chamecki, M.

    2012-12-01

    In several methods used in water resources to estimate evaporation from land and water surfaces, a fundamental assumption is that temperature (T) and specific humidity (q) fluctuations behave similarly in the atmospheric surface layer (ASL). In the Energy-Budget Bowen Ratio method it is assumed that both eddy diffusivities are equal, while in the variance method it is often assumed that all the Monin-Obukhov Similarity (MOS) functions for the two scalars are equal. However, it is well-known that the T-q similarity does not always hold and that the dissimilarity found in practice can significantly impact the estimates of evaporation. Given the frequent dissimilarity between temperature and humidity, two important problems arise. The first one is related to the choice of the function used to characterize scalar similarity, given that not all commonly used functions are equally capable of identifying scalar dissimilarity. The second problem is associated with the identification of the physical mechanisms behind scalar dissimilarity in each particular case: local advection, nonstationarity, surface heterogeneity, active/passive roles of the scalars, entrainment fluxes at the top of the atmospheric boundary layer are typically cited as possible causes, but seldom a convincing argument is presented. In this work we combine experimental data and numerical simulations to study similarity between T and q in the ASL. Data measured over a lake in Brazil suggests a strong relationship between scalar similarity and the balance between local production and dissipation of scalar variance, which is in practice related to the strength of the surface forcing. Scalar variance and covariance budgets are used to derive a set of dimensionless Scalar Flux numbers that are capable of diagnosing the balance between gradient production and molecular dissipation of scalar variance and covariance. Experimental data shows that these Scalar Flux numbers are good predictors of scalar (dis

  16. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum.

    PubMed

    Tansey, Christine J; Hadfield, Jarrod D; Phillimore, Albert B

    2017-02-10

    One consequence of rising spring temperatures is that the optimum timing of key life-history events may advance. Where this is the case, a population's fate may depend on the degree to which it is able to track a change in the optimum timing either via plasticity or via adaptation. Estimating the effect that temperature change will have on optimum timing using standard approaches is logistically challenging, with the result that very few estimates of this important parameter exist. Here we adopt an alternative statistical method that substitutes space for time to estimate the temperature sensitivity of the optimum timing of 22 plant species based on >200 000 spatiotemporal phenological observations from across the United Kingdom. We find that first leafing and flowering dates are sensitive to forcing (spring) temperatures, with optimum timing advancing by an average of 3 days °C(-1) and plastic responses to forcing between -3 and -8 days °C(-1) . Chilling (autumn/winter) temperatures and photoperiod tend to be important cues for species with early and late phenology, respectively. For most species, we find that plasticity is adaptive, and for seven species, plasticity is sufficient to track geographic variation in the optimum phenology. For four species, we find that plasticity is significantly steeper than the optimum slope that we estimate between forcing temperature and phenology, and we examine possible explanations for this countergradient pattern, including local adaptation.

  17. Temperature Observation Time and Type Influence Estimates of Heat-Related Mortality in Seven U.S. Cities

    PubMed Central

    Davis, Robert E.; Hondula, David M.; Patel, Anjali P.

    2015-01-01

    Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships. Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method. Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series. Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable. Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat

  18. Estimation of Al2O3 critical temperature using a Langmuir probe in laser ablation

    NASA Astrophysics Data System (ADS)

    Yahiaoui, K.; Abdelli-Messaci, S.; Messaoud Aberkane, S.; Kellou, A.

    2016-11-01

    Pulsed laser deposition (PLD) has demonstrated its capacity in thin films growing under the moderate laser intensity. But when the laser intensity increases, the presence of droplets on the thin film limits the PLD efficiency such that the process needs an optimization study. In this way, an experimental study has been conducted in order to correlate between the appearance of those droplets and the laser fluence. The comprehension of the physical mechanism during ablation and the control of the deposition parameters allowed to get a safe process. Our experiment consists in measuring the amount of ejected matter from polycrystalline alumina target as a function of the laser fluence when irradiated by a KrF laser. According to laser fluence, several kinds of ablation regimes have been identified. Below a threshold value found as 12 J/cm2, the mechanism of ablation was assigned to normal evaporation, desorption and nonthermal processes. While above this threshold value, the mechanism of ablation was assigned to phase explosion phenomenon which is responsible of droplets formation when the surface temperature approaches the critical temperature T tc. A negative charge collector was used to collect the positive ions in the plume. Their times of flight (TOF) signal were used to estimate the appropriate T tc for alumina target. Ions yield, current as well as kinetic energy were deduced from the TOF signal. Their evolutions show the occurrence of an optical breakdown in the vapor plume which is well correlated with the onset of the phase explosion phenomenon. At 10 J/cm2, the ions velocities collected by the probe have been compared to those obtained from optical emission spectroscopy diagnostic and were discussed. To prove the occurrence of phase explosion by the appearance of droplets, several thin films were elaborated on Si (100) substrate at different laser fluence into vacuum. They have been characterized by scanning electron microscope. The results were well

  19. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation.

    PubMed

    MacLellan, Christopher J; Fuentes, David; Elliott, Andrew M; Schwartz, Jon; Hazle, John D; Stafford, R Jason

    2014-02-01

    Optically activated nanoparticle-mediated heating for thermal therapy applications is an area of intense research. The ability to characterise the spatio-temporal heating potential of these particles for use in modelling under various exposure conditions can aid in the exploration of new approaches for therapy as well as more quantitative prospective approaches to treatment planning. The purpose of this research was to investigate an inverse solution to the heat equation using magnetic resonance temperature imaging (MRTI) feedback, for providing optical characterisation of two types of nanoparticles (gold-silica nanoshells and gold nanorods). The optical absorption of homogeneous nanoparticle-agar mixtures was measured during exposure to an 808 nm laser using real-time MRTI. A coupled finite element solution of heat transfer was registered with the data and used to solve the inverse problem. The L2 norm of the difference between the temperature increase in the model and MRTI was minimised using a pattern search algorithm by varying the absorption coefficient of the mixture. Absorption fractions were within 10% of literature values for similar nanoparticles. Comparison of temporal and spatial profiles demonstrated good qualitative agreement between the model and the MRTI. The weighted root mean square error was <1.5 σMRTI and the average Dice similarity coefficient for ΔT = 5 °C isotherms was >0.9 over the measured time interval. This research demonstrates the feasibility of using an indirect method for making minimally invasive estimates of nanoparticle absorption that might be expanded to analyse a variety of geometries and particles of interest.

  20. Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Israel.

    PubMed

    Rosenfeld, Adar; Dorman, Michael; Schwartz, Joel; Novack, Victor; Just, Allan C; Kloog, Itai

    2017-08-21

    Meteorological stations measure air temperature (Ta) accurately with high temporal resolution, but usually suffer from limited spatial resolution due to their sparse distribution across rural, undeveloped or less populated areas. Remote sensing satellite-based measurements provide daily surface temperature (Ts) data in high spatial and temporal resolution and can improve the estimation of daily Ta. In this study we developed spatiotemporally resolved models which allow us to predict three daily parameters: Ta Max (day time), 24h mean, and Ta Min (night time) on a fine 1km grid across the state of Israel. We used and compared both the Aqua and Terra MODIS satellites. We used linear mixed effect models, IDW (inverse distance weighted) interpolations and thin plate splines (using a smooth nonparametric function of longitude and latitude) to first calibrate between Ts and Ta in those locations where we have available data for both and used that calibration to fill in neighboring cells without surface monitors or missing Ts. Out-of-sample ten-fold cross validation (CV) was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with and without available Ts observations for both Aqua and Terra (CV Aqua R(2) results for min 0.966, mean 0.986, and max 0.967; CV Terra R(2) results for min 0.965, mean 0.987, and max 0.968). Our research shows that daily min, mean and max Ta can be reliably predicted using daily MODIS Ts data even across Israel, with high accuracy even for days without Ta or Ts data. These predictions can be used as three separate Ta exposures in epidemiology studies for better diurnal exposure assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    PubMed

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  2. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization

    PubMed Central

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771

  3. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation

    PubMed Central

    MacLellan, Christopher J.; Fuentes, David T.; Elliott, Andrew M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason

    2014-01-01

    Purpose Optically activated nanoparticle-mediated heating for thermal therapy applications is an area of intense research. The ability to characterize the spatiotemporal heating potential of these particles for use in modeling under various exposure conditions can aid in the exploration of new approaches for therapy as well as more quantitative prospective approaches to treatment planning. The purpose of this research was to investigate an inverse solution to the heat equation, using magnetic resonance temperature imaging (MRTI) feedback, for providing optical characterization of two types of nanoparticles (gold-silica nanoshells and gold nanorods). Methods The optical absorption of homogeneous nanoparticle-agar mixtures was measured during exposure to an 808nm laser using real-time MRTI. A coupled finite element solution of heat transfer was registered with the data and used to solve the inverse problem. The L2 norm of the difference between the temperature increase in the model and MRTI was minimized using a pattern search algorithm by varying the absorption coefficient of the mixture. Results Absorption fractions were within 10% of literature values for similar nanoparticles. Comparison of temporal and spatial profiles demonstrated good qualitative agreement between the model and the MRTI. The weighted root mean square error was <1.5 σMRTI and the average Dice similarity coefficient for ΔT = 5°C isotherms was > 0.9 over the measured time interval. Conclusion This research demonstrates the feasibility of using an indirect method for making minimally invasive estimates of nanoparticle absorption that might be expanded to analyze a variety of geometries and particles of interest. PMID:24350668

  4. Estimation of deep subsurface temperatures in the Roer Valley Graben, using a new numerical model of borehole temperature recovery

    NASA Astrophysics Data System (ADS)

    Luijendijk, E.; Ter Voorde, M.; van Balen, R. T.; Andriessen, P. A. M.; Verweij, J. M.; Simmelink, E.

    2009-04-01

    Information on the thermal state of the upper crust is a prerequisite for establishing deep geothermal systems. By far the most abundant source of information on deep subsurface temperatures are bottom hole temperatures (BHT), which are routinely taken shortly after drilling in hydrocarbon exploration wells. Sequences of three or more BHTs are then corrected for the effect of drilling fluid using models of thermal recovery, often by highly simplified line-source or Horner-based methods. Unfortunately, assessment of subsurface temperatures using BHTs remains fraught with uncertainty. Studies that compare corrected BHTs to formation temperatures report differences of up to 15 °C. Furthermore, it is unknown whether these errors are related to systematic errors in the correction methods or to uncertainty of the input parameters. Here we present a new 2D finite difference model of the thermal recovery of a borehole after drilling. As the thermal parameters of both the drilling fluid and the lithologies were taken into account, the model has been used to evaluate of the sensitivity of the corrected BHTs to these parameters. The model was applied to a large dataset of BHTs in the Roer Valley Graben, the northwestern branch of the European Cenozoic Rift System. In a number of wells, the simulated formation temperatures have been compared to relatively accurate (~ ±3 °C) drill-stem test temperatures. Model results indicate a total parameter uncertainty of corrected BHTs of ±4 °C. The calculated temperatures were highly sensitive to the assumed duration of circulation of drilling fluid. The sensitivity to the thermal diffusivity of the drilling fluid and the lithology was much lower, approximately 1.5 °C. The simulated temperatures fell within the uncertainty range of the drill-stem test temperatures. This is in line with earlier studies, and shows that a physically based model which takes into account heat flow in both the borehole and the lithologies performs much

  5. Estimation of stream temperature in support of fish production modeling under future climates in the Klamath River Basin

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature

  6. Technical note: Development of Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) at constant temperatures: Applications in estimating postmortem interval.

    PubMed

    Yang, Yong-qiang; Lyu, Zhou; Li, Xue-bo; Li, Kui; Yao, Lan; Wan, Li-hua

    2015-08-01

    Blowflies (Calliphoridae) are recognized as a powerful tool for estimating the minimum postmortem interval (PMImin). The times for blowflies to develop from oviposition to eclosion is mainly controlled by temperature, which can differ between even closely related species. Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) is a blowfly distributed throughout Asia and Australia. However, a systematic determination of the developmental times of H. ligurriens under constant temperature, necessary for estimating the PMImin, is lacking. Such an examination would broaden the forensic importance of the species. Thus, this study explored the growth curves of larval H. ligurriens at 7 constant temperatures (16, 19, 22, 25, 28, 31, and 34°C). Isomegalen and isomorphen diagrams were successfully constructed, depicting the time of larval length or developmental event, respectively, at different temperatures. A thermal summation model was also constructed via regression analysis, by estimating the developmental threshold temperature t and thermal summation constant K. The thermal summation model indicated that t at 8.3°C and K at 5747.5 degree-hours (°Ch) are required for complete development from oviposition to eclosion, and suggested an optimum temperature range of 16-28°C for the development of H. ligurriens. These data establish for the first time the temperature-dependent developmental time of H. ligurriens for forensic entomology application. The 3 developmental models are provided. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Estimates of return levels for extreme events from temperature series subject to trend and changing variability

    SciTech Connect

    Withers, C.S.

    1996-12-31

    Many climate series are subject not only to a changing trend but also to changing variability. This is the case with Auckland temperatures for example. Climate models sometimes include changing trend but have generally neglected to incorporate changing variability. However, the author has shown that statistical models which allow both factors show an unexpected effect on the behavior of extremes: the effect of changing variability dominates the effect of changing trend. Moreover, extremes (and hence 100-year return levels) can behave in a number of different ways depending on: which of the three extreme types that the model`s noise is associated with; the manner in which variability is changing; and the manner in which trend in changing. The model allows for both an arbitrary trend function and an arbitrary scale function. It then follows that there exist standardizing coefficients such that the standardized maximum can be approximated by one of the extreme value distributions. Moreover the same holds when these standardizing coefficients are estimated. This allows the return levels to be approximated. (The concept of a return level is easily extended to the case when a trend is present.)

  8. Estimating the sensitivity of regional dust sources to sea surface temperature patterns

    NASA Astrophysics Data System (ADS)

    Hoffman, Alexis L.; Forest, Chris E.; Li, Wei

    2014-09-01

    Exploring the impact of sea surface temperature (SST) anomaly patterns on local climate in major dust source regions helps clarify our understanding of variability in the global dust cycle. In contrast to previous work, this research focuses explicitly on the influence of SST anomalies on dust emissions and attempts to explain the mechanisms by which SST anomalies affect seasonal dust emissions. This study investigates the seasonal sensitivity of mineral aerosol emissions to SST anomaly patterns from the Bodele Depression, West Africa, Sahel, Kalahari Desert, Arabian Desert, and Lake Eyre basin. The global teleconnection operator, which relates regional climate responses to SST anomaly patterns, is estimated for relevant variables in an ensemble of the National Center for Atmospheric Research Community Atmosphere Model version 5 forced by randomly perturbed climatological SST fields. Variability in dust emissions from major dust sources is linked to tropical SST anomalies, particularly in the Indian and western Pacific Oceans. Teleconnections excited by remote SST anomalies typically impact dust emissions via changes in near-surface wind speeds and friction velocity. However, SST-driven impacts on the threshold friction velocity can be of the same order of magnitude as changes in the friction velocity, suggesting the impact of SST anomalies on precipitation and soil moisture is also significant. Identifying SST anomaly patterns as a component of internal variability in regional dust emissions helps characterize human influences on the dust cycle as well as improve predictions of climate, nutrient cycles, and human environments.

  9. Estimating the regional climate responses over river basins to changes in tropical sea surface temperature patterns

    NASA Astrophysics Data System (ADS)

    Tsai, Chii-Yun; Forest, Chris E.; Wagener, Thorsten

    2015-10-01

    We investigate how to identify and assess teleconnection signals between anomalous patterns of sea surface temperature (SST) changes and climate variables related to hydrologic impacts over different river basins. The regional climate sensitivity to tropical SST anomaly patterns is examined through a linear relationship given by the global teleconnection operator (GTO, also generally called a sensitivity matrix or an empirical Green's function). We assume that the GTO defines a multilinear relation between SST forcing and regional climate response of a target area. The sensitivities are computed based on data from a large ensemble of simulations using the NCAR Community Atmospheric Model version 3.1 (CAM 3.1). The linear approximation is evaluated by comparing the linearly reconstructed response with both the results from the full non-linear atmospheric model and observational data. The results show that the linear approximation can capture regional climate variability that the CAM 3.1 AMIP-style simulations produce at seasonal scales for multiple river basins. The linear method can be used potentially for estimating drought conditions, river flow forecasting, and agricultural water management problems.

  10. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  11. Mathematical models based on transfer functions to estimate tissue temperature during RF cardiac ablation in real time.

    PubMed

    Alba-Martínez, Jose; Trujillo, Macarena; Blasco-Gimenez, Ramon; Berjano, Enrique

    2012-01-01

    Radiofrequency cardiac ablation (RFCA) has been used to treat certain types of cardiac arrhythmias by producing a thermal lesion. Even though a tissue temperature higher than 50ºC is required to destroy the target, thermal mapping is not currently used during RFCA. Our aim was thus to develop mathematical models capable of estimating tissue temperature from tissue characteristics acquired or estimated at the beginning of the procedure (electrical conductivity, thermal conductivity, specific heat and density) and the applied voltage at any time. Biological tissue was considered as a system with an input (applied voltage) and output (tissue temperature), and so the mathematical models were based on transfer functions relating these variables. We used theoretical models based on finite element method to verify the mathematical models. Firstly, we solved finite element models to identify the transfer functions between the temperature at a depth of 4 mm and a constant applied voltage using a 7Fr and 4 mm electrode. The results showed that the relationships can be expressed as first-order transfer functions. Changes in electrical conductivity only affected the static gain of the system, while specific heat variations produced a change in the dynamic system response. In contrast, variations in thermal conductivity modified both the static gain and the dynamic system response. Finally, to assess the performance of the transfer functions obtained, we conducted a new set of computer simulations using a controlled temperature protocol and considering the temperature dependence of the thermal and electrical conductivities, i.e. conditions closer to those found in clinical use. The results showed that the difference between the values estimated from transfer functions and the temperatures obtained from finite element models was less than 4ºC, which suggests that the proposed method could be used to estimate tissue temperature in real time.

  12. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    NASA Astrophysics Data System (ADS)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Alqahtani, Abdullah; Aldhafferi, Nahier

    2016-10-01

    Magnetic refrigeration (MR) technology stands a good chance of replacing the conventional gas compression system (CGCS) of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE) of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC). Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR) hybridized with gravitational search algorithm (GSA). Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  13. Infrared thermal imaging of the inner canthus of the eye as an estimator of body core temperature.

    PubMed

    Teunissen, L P J; Daanen, H A M

    2011-01-01

    Several studies suggest that the temperature of the inner canthus of the eye (T(ca)), determined with infrared thermal imaging, is an appropriate method for core temperature estimation in mass screening of fever. However, these studies used the error prone tympanic temperature as a reference. Therefore, we compared T(ca) to oesophageal temperature (T(es)) as gold standard in 10 subjects during four conditions: rest, exercise, recovery and passive heating. T(ca) and T(es) differed significantly during all conditions (mean ΔT(es) - T(ca) 1.80 ± 0.89°C) and their relationship was inconsistent between conditions. Also within the rest condition alone, intersubject variability was too large for a reliable estimation of core temperature. This poses doubts on the use of T(ca) as a technique for core temperature estimation, although generalization of these results to fever detection should be verified experimentally using febrile patients.

  14. Estimating controls systems for HVAC: A guide to pricing temperature controls systems for commercial buildings

    SciTech Connect

    Edwards, H.J. Jr.

    1986-01-01

    This book covers design, marketing, estimating, managing, specifications, fail-safe considerations, equipment and purchasing. It demonstrates estimating procedures for both controls installation and maintenance contracts - techniques applicable to pneumatic, electric, or hybrid control systems.

  15. Estimation of the postmortem interval by means of ¹H MRS of decomposing brain tissue: influence of ambient temperature.

    PubMed

    Ith, Michael; Scheurer, Eva; Kreis, Roland; Thali, Michael; Dirnhofer, Richard; Boesch, Chris

    2011-08-01

    Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS. Copyright © 2011 John Wiley & Sons, Ltd.

  16. How to estimate exposure when studying the temperature-mortality relationship? A case study of the Paris area.

    PubMed

    Schaeffer, Laura; de Crouy-Chanel, Perrine; Wagner, Vérène; Desplat, Julien; Pascal, Mathilde

    2016-01-01

    Time series studies assessing the effect of temperature on mortality generally use temperatures measured by a single weather station. In the Paris region, there is a substantial measurement network, and a variety of exposure indicators created from multiple stations can be tested. The aim of this study is to test the influence of exposure indicators on the temperature-mortality relationship in the Paris region. The relationship between temperature and non-accidental mortality was assessed based on a time series analysis using Poisson regression and a generalised additive model. Twenty-five stations in Paris and its three neighbouring departments were used to create four exposure indicators. These indicators were (1) the temperature recorded by one reference station, (2) a simple average of the temperatures of all stations, (3) an average weighted on the departmental population and (4) a classification of the stations based on land use and an average weighted on the population in each class. The relative risks and the Akaike criteria were similar for all the exposure indicators. The estimated temperature-mortality relationship therefore did not appear to be significantly affected by the indicator used, regardless of study zone (departments or region) or age group. The increase in temperatures from the 90(th) to the 99(th) percentile of the temperature distribution led to a significant increase in mortality over 75 years (RR = 1.10 [95% CI, 1.07; 1.14]). Conversely, the decrease in temperature between the 10(th) and 1(st) percentile had a significant effect on the mortality under 75 years (RR = 1.04 [95% CI, 1.01; 1.06]). In the Paris area, there is no added value in taking multiple climatic stations into account when estimating exposure in time series studies. Methods to better represent the subtle temperature variations in densely populated areas in epidemiological studies are needed.

  17. How to estimate exposure when studying the temperature-mortality relationship? A case study of the Paris area

    NASA Astrophysics Data System (ADS)

    Schaeffer, Laura; de Crouy-Chanel, Perrine; Wagner, Vérène; Desplat, Julien; Pascal, Mathilde

    2016-01-01

    Time series studies assessing the effect of temperature on mortality generally use temperatures measured by a single weather station. In the Paris region, there is a substantial measurement network, and a variety of exposure indicators created from multiple stations can be tested. The aim of this study is to test the influence of exposure indicators on the temperature-mortality relationship in the Paris region. The relationship between temperature and non-accidental mortality was assessed based on a time series analysis using Poisson regression and a generalised additive model. Twenty-five stations in Paris and its three neighbouring departments were used to create four exposure indicators. These indicators were (1) the temperature recorded by one reference station, (2) a simple average of the temperatures of all stations, (3) an average weighted on the departmental population and (4) a classification of the stations based on land use and an average weighted on the population in each class. The relative risks and the Akaike criteria were similar for all the exposure indicators. The estimated temperature-mortality relationship therefore did not appear to be significantly affected by the indicator used, regardless of study zone (departments or region) or age group. The increase in temperatures from the 90th to the 99th percentile of the temperature distribution led to a significant increase in mortality over 75 years (RR = 1.10 [95 % CI, 1.07; 1.14]). Conversely, the decrease in temperature between the 10th and 1st percentile had a significant effect on the mortality under 75 years (RR = 1.04 [95 % CI, 1.01; 1.06]). In the Paris area, there is no added value in taking multiple climatic stations into account when estimating exposure in time series studies. Methods to better represent the subtle temperature variations in densely populated areas in epidemiological studies are needed.

  18. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars

    NASA Astrophysics Data System (ADS)

    Zapata, D.; Salazar, M.; Chaves, B.; Keller, M.; Hoogenboom, G.

    2015-12-01

    Thermal time models have been used to predict the development of many different species, including grapevine ( Vitis vinifera L.). These models normally assume that there is a linear relationship between temperature and plant development. The goal of this study was to estimate the base temperature and duration in terms of thermal time for predicting veraison for four grapevine cultivars. Historical phenological data for four cultivars that were collected in the Pacific Northwest were used to develop the thermal time model. Base temperatures ( T b) of 0 and 10 °C and the best estimated T b using three different methods were evaluated for predicting veraison in grapevine. Thermal time requirements for each individual cultivar were evaluated through analysis of variance, and means were compared using the Fisher's test. The methods that were applied to estimate T b for the development of wine grapes included the least standard deviation in heat units, the regression coefficient, and the development rate method. The estimated T b varied among methods and cultivars. The development rate method provided the lowest T b values for all cultivars. For the three methods, Chardonnay had the lowest T b ranging from 8.7 to 10.7 °C, while the highest T b values were obtained for Riesling and Cabernet Sauvignon with 11.8 and 12.8 °C, respectively. Thermal time also differed among cultivars, when either the fixed or estimated T b was used. Predictions of the beginning of ripening with the estimated temperature resulted in the lowest variation in real days when compared with predictions using T b = 0 or 10 °C, regardless of the method that was used to estimate the T b.

  19. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  20. Assessment of a Technique for Estimating Total Column Water Vapor Using Measurements of the Infrared Sky Temperature

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Huddleston, Lisa L.

    2014-01-01

    A method for estimating the integrated precipitable water (IPW) content of the atmosphere using measurements of indicated infrared zenith sky temperature was validated over east-central Florida. The method uses inexpensive, commercial off the shelf, hand-held infrared thermometers (IRT). Two such IRTs were obtained from a commercial vendor, calibrated against several laboratory reference sources at KSC, and used to make IR zenith sky temperature measurements in the vicinity of KSC and Cape Canaveral Air Force Station (CCAFS). The calibration and comparison data showed that these inexpensive IRTs provided reliable, stable IR temperature measurements that were well correlated with the NOAA IPW observations.

  1. A new method for the estimation of high temperature radiant heat emittance by means of aero-acoustic levitation

    NASA Astrophysics Data System (ADS)

    Greffrath, Fabian; Prieler, Robert; Telle, Rainer

    2014-11-01

    A new method for the experimental estimation of radiant heat emittance at high temperatures has been developed which involves aero-acoustic levitation of samples, laser heating and contactless temperature measurement. Radiant heat emittance values are determined from the time dependent development of the sample temperature which requires analysis of both the radiant and convective heat transfer towards the surroundings by means of fluid dynamics calculations. First results for the emittance of a corundum sample obtained with this method are presented in this article and found in good agreement with literature values.

  2. Algorithm for Estimating the Plume Centerline Temperature and Ceiling Jet Temperature in the Presence of a Hot Upper Layer

    NASA Technical Reports Server (NTRS)

    Davis, William D.; Notarianni, Kathy A.; Tapper, Phillip Z.

    1998-01-01

    The experiments were designed to provide insight into the behavior of jet fuel fires in aircraft hangars and to study the impact of these fires on the design and operation of a variety of fire protection systems. As a result, the test series included small fires designed to investigate the operation of UV/IR detectors and smoke detectors as well as large fires which were used to investigate the operation of ceiling mounted heat detectors and sprinklers. The impact of the presence or absence of draft curtains was also studied in the 15 m hangar. It is shown that in order to predict the plume centerline temperature within experimental uncertainty, the entrainment of the upper layer gas must be modeled. For large fires, the impact of a changing radiation fraction must also be included in the calculation. The dependence of the radial temperature profile of the ceiling jet as a function of layer development is demonstrated and a ceiling jet temperature algorithm which includes the impact of a growing layer is developed.

  3. Estimation of centerline temperature of the waste form for the rare earth waste generated from pyrochemical process

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Eun, Hee-Chul; Lee, Tae-Kyo; Lee, Ki-Rak; Han, Seung-Youb; Jeon, Min-Ku; Park, Hwan-Seo; Ahn, Do-Hee

    2017-01-01

    Estimation of centerline temperature of nuclear glass waste form for each waste stream is very essential in the period of storage because the centerline temperature being over its glass transition temperature results in the increase of leaching rate of radioactive nuclides due to the devitrification of glass waste form. Here, to verify the effects of waste form diameter and transuranic element content in the rare earth waste on the centerline temperature of the waste form, the surrogate rare earth glass waste generated from pyrochemical process was immobilized with SiO2sbnd Al2O3sbnd B2O3 glass frit system, and thermal properties of the rare earth glass waste form were determined by thermomechanical analysis and thermal conductivity analysis. The estimation of centerline temperature was carried out using the experimental thermal data and steady-state conduction equation in a long and solid cylinder type waste form. It was revealed that thermal stability of waste form in case of 0.3 m diameter was not affected by the TRU content even in the case of 80% TRU recovery ratio in the electrowinning process, meaning that the waste form of 0.3 m diameter is thermally stable due to the low centerline temperature relative to its glass transition temperature of the rare earth glass waste form.

  4. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Trigo, I. F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I.

    2015-12-01

    The coupling between land surface and the atmosphere is a key feature in Earth System Modeling for exploiting the predictability of slowly evolving geophysical variables (e.g., soil moisture or vegetation state), and for correctly representing rapid variations within the diurnal cycle, particularly relevant in data assimilation applications. In this study, land surface temperature (LST) estimated from Meteosat Second Generation (MSG) is used to assess the European Centre for Medium-Range Weather Forecasts (ECMWF) skin temperature, which can be interpreted as a radiative temperature of the model surface. It is shown that the ECMWF model tends to slightly overestimate skin temperature during nighttime and underestimate daytime values. Such underestimation of daily amplitudes is particularly pronounced in (semiarid) arid regions, suggesting a misrepresentation of surface energy fluxes in those areas. The LST estimated from MSG is used to evaluate the impact of changes in some of the ECMWF model surface parameters. The introduction of more realistic model vegetation is shown to have a positive but limited impact on skin temperature: long integration leads to an equilibrium state where changes in the latent heat flux and soil moisture availability compensate each other. Revised surface roughness lengths for heat and momentum, however, lead to overall positive impact on daytime skin temperature, mostly due to a reduction of sensible heat flux. This is particularly relevant in nonvegetated areas, unaffected by model vegetation. The reduction of skin conductivity, a parameter which controls the heat transfer to ground by diffusion, is shown to further improve the model skin temperature.

  5. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area.

    PubMed

    Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja

    2016-07-11

    To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.

  6. Estimation of surface temperature variations due to changes in sky and solar flux with elevation.

    USGS Publications Warehouse

    Hummer-Miller, S.

    1981-01-01

    Sky and solar radiance are of major importance in determining the ground temperature. Knowledge of their behavior is a fundamental part of surface temperature models. These 2 fluxes vary with elevation and this variation produces temperature changes. Therefore, when using thermal-property differences to discriminate geologic materials, these flux variations with elevation need to be considered. -from Author

  7. Temperature estimation in a ferromagnetic Fe-Ni nanowire involving a current-driven domain wall motion.

    PubMed

    Yamaguchi, A; Hirohata, A; Ono, T; Miyajima, H

    2012-01-18

    We observed a magnetic domain wall (DW) motion induced by the spin-polarized pulsed current in a nanoscale Fe(19)Ni(81) wire using a magnetic force microscope. High current density, which is of the order of 10(11) A m(-2), was required for the DW motion. A simple method to estimate the temperature of the wire was developed by comparing the wire resistance measured during the DW motion with the temperature dependence of the wire resistance. Using this method, we found the temperature of the wire was proportional to the square of the current density and became just beneath at the threshold Curie temperature. Our experimental data qualitatively support this analytical model that the temperature is proportional to the resistivity, thickness, width of the wire and the square of the current density, and also inversely proportional to the thermal conductivity.

  8. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Southwest China

    NASA Astrophysics Data System (ADS)

    Li, Mao-Fen; Fan, Li; Liu, Hong-Bin; Guo, Peng-Tao; Wu, Wei

    2013-01-01

    Estimation of daily global solar radiation (Rs) from routinely measured temperature data has been widely developed and used in many different areas of the world. However, many of them are site specific. It is assumed that a general model for estimating daily Rs using temperature variables and geographical parameters could be achieved within a climatic region. This paper made an attempt to develop a general model to estimate daily Rs using routinely measured temperature data (maximum (Tmax, °C) and minimum (Tmin, °C) temperatures) and site geographical parameters (latitude (La, °N), longitude (Ld, °E) and altitude (Alt, m)) for Guizhou and Sichuan basin of southwest China, which was classified into the hot summer and cold winter climate zone. Comparison analysis was carried out through statistics indicators such as root mean squared error of percentage (RMSE%), modeling efficiency (ME), coefficient of residual mass (CRM) and mean bias error (MBE). Site-dependent daily Rs estimating models were calibrated and validated using long-term observed weather data. A general formula was then obtained from site geographical parameters and the better fit site-dependent models with mean RMSE% of 38.68%, mean MBE of 0.381 MJ m-2 d-1, mean CRM of 0.04 and mean ME value of 0.713.

  9. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost.

    Treesearch

    D.J. Nicolsky; V.E. Romanovsky; G.G. Panteleev

    2008-01-01

    A variational data assimilation algorithm is developed to reconstruct thermal properties, porosity, and parametrization of the unfrozen water content for fully saturated soils. The algorithm is tested with simulated synthetic temperatures. The simulations are performed to determine the robustness and sensitivity of algorithm to estimate soil properties from in-situ...

  10. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    USDA-ARS?s Scientific Manuscript database

    The recent paper by Morillas et al. [Morillas, L. et al. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective, Remote Sens. Environ. 136, 234-246, 2013] evaluates the two-source model (TSM) of Norman et al. (1995) with revi...

  11. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: A statistical modeling study.

    PubMed

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2016-04-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1km×1km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts-Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R(2) of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R(2) of 0.969 and a mean squared prediction error (RMSPE) of 1.376°C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Estimating daily air temperature across the Southeastern United States using high-resolution satellite data: a statistical modeling study

    PubMed Central

    Shi, Liuhua; Liu, Pengfei; Kloog, Itai; Lee, Mihye; Kosheleva, Anna; Schwartz, Joel

    2015-01-01

    Accurate estimates of spatio-temporal resolved near-surface air temperature (Ta) are crucial for environmental epidemiological studies. However, values of Ta are conventionally obtained from weather stations, which have limited spatial coverage. Satellite surface temperature (Ts) measurements offer the possibility of local exposure estimates across large domains. The Southeastern United States has different climatic conditions, more small water bodies and wetlands, and greater humidity in contrast to other regions, which add to the challenge of modeling air temperature. In this study, we incorporated satellite Ts to estimate high resolution (1 km × 1 km) daily Ta across the southeastern USA for 2000-2014. We calibrated Ts to Ta measurements using mixed linear models, land use, and separate slopes for each day. A high out-of-sample cross-validated R2 of 0.952 indicated excellent model performance. When satellite Ts were unavailable, linear regression on nearby monitors and spatio-temporal smoothing was used to estimate Ta. The daily Ta estimations were compared to the NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) model. A good agreement with an R2 of 0.969 and a mean squared prediction error (RMSPE) of 1.376 °C was achieved. Our results demonstrate that Ta can be reliably predicted using this Ts-based prediction model, even in a large geographical area with topography and weather patterns varying considerably. PMID:26717080

  13. Use of thermal imagery for estimation of core body temperature during precooling, exertion, and recovery in wildland firefighter protective clothing.

    PubMed

    Bourlai, Thirimachos; Pryor, Riana R; Suyama, Joe; Reis, Steven E; Hostler, David

    2012-01-01

    Monitoring core body temperature to identify heat stress in first responders and in individuals participating in mass gatherings (e.g., marathons) is difficult. This study utilized high-sensitivity thermal imaging technology to predict the core temperature of human subjects at a distance while performing simulated field operations wearing thermal protective garments. Six male subjects participating in a study of precooling prior to exertion in wildland firefighter thermal protective clothing had thermal images of the face captured with a high-resolution thermal imaging camera concomitant with measures of core and skin temperature before, during, and after treadmill exercise in a heated room. Correlations and measures of agreement between core temperature and thermal imaging-based temperature were performed. The subjects walked an average (± standard deviation) of 42.6 (±5.9) minutes and a distance of 4.2 (±0.6) km on the treadmill. Mean heart rate at the end of exercise was 152 (±33) bpm and core body temperature at the end of exercise was 38.3°C (±0.7°C). A visual relationship and a strong correlation between core temperature and thermal imaging of the face were identified in all subjects, with the closest relationship and best agreement occurring during exercise. The Bland-Altman test of agreement during exercise revealed the majority of measurement pairs to be within two standard deviations of the measured temperature. High-resolution thermal imaging in the middle-wave infrared spectrum (3-5 μm) can be used to accurately estimate core body temperature during exertion in a hot room while participants are wearing wildland firefighting garments. Although this technology is promising, it must be refined. Using alternative measurement sites such as the skin over the carotid artery, using multiple measurement sites, or adding pulse detection may improve the estimation of body temperature by thermal imagery.

  14. Toward a "molecular thermometer" to estimate the charring temperature of wildland charcoals derived from different biomass sources.

    PubMed

    Schneider, Maximilian P W; Pyle, Lacey A; Clark, Kenneth L; Hockaday, William C; Masiello, Caroline A; Schmidt, Michael W I

    2013-10-15

    The maximum temperature experienced by biomass during combustion has a strong effect on chemical properties of the resulting charcoal, such as sorption capacity (water and nonpolar materials) and microbial degradability. However, information about the formation temperature of natural charcoal can be difficult to obtain in ecosystems that are not instrumented prior to fires. Benzene polycarboxylic acids (BPCA) are molecular markers specific for pyrogenic carbon (PyC) which can provide information on the degree of aromatic condensation in charcoals. Here we apply the BPCA molecular marker method to a set of 10 charcoals produced during an experimental fire in a Pitch pine-scrub oak forest from litter and bark of pitch pine and inkberry plants in the Pinelands National Reserve in New Jersey, USA. We deployed temperature-sensitive crayons throughout the burn site, which recorded the maximum air temperature and made comparisons to the degree of thermal alteration recorded by BPCA molecular markers. Our results show an increase of the degree of aromatic condensation with monitored temperatures for bark biomass, while for needles no clear trend could be observed. For leaf-derived charcoals at increasing monitored fire temperatures, decreasing degree of aromatic condensation was obtained. This suggests that molecular markers can be used to roughly estimate the maximum fire temperatures experienced by bark and wood materials, but not based on leaf- and needle-derived materials. Possible applications include verifying declared pyrolysis temperatures of biochars and evaluating ecosystem fire temperature postburn.

  15. Real-Time Estimation of Ball-Screw Thermal Elongation Based upon Temperature Distribution of Ball-Screw

    NASA Astrophysics Data System (ADS)

    Kodera, Takehiko; Yokoyama, Kazuhiro; Miyaguchi, Kazuo; Nagai, Yutaka; Suzuki, Takamasa; Masuda, Masami; Yazawa, Takanori

    The optical telemeter system has been developed, which converts the temperature of rotating spindle to the digital data and carries the digital data from LED on the rotating side toward PD on the stationary side by the optical data transmission. Based upon the temperature distribution of hollow ball-screw obtained by the telemeter system, the thermal elongation of the ball-screw is estimated as the one-dimensional thermal elongation. Estimation accuracy, which is the difference between the estimated thermal elongation and the measured thermal elongation, is -3.1∼+3.2µ m for the thermal elongation of 50-60µ m over the length of 935.5mm of the ball-screw.

  16. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.

    PubMed

    Chein, Reiyu; Yang, Yeong Chin; Lin, Yushan

    2006-02-01

    In this study we present simple analytical models that predict the temperature and pressure variations in electrokinetic-driven microchannel flow under the Joule heating effect. For temperature prediction, a simple model shows that the temperature is related to the Joule heating parameter, autothermal Joule heating parameter, external cooling parameter, Peclet number, and the channel length to channel hydraulic diameter ratio. The simple model overpredicted the thermally developed temperature compared with the full numerical simulation, but in good agreement with the experimental measurements. The factors that affect the external cooling parameters, such as the heat transfer coefficient, channel configuration, and channel material are also examined based on this simple model. Based on the mass conservation, a simple model is developed that predicts the pressure variations, including the temperature effect. An adverse pressure gradient is required to satisfy the mass conservation requirement. The temperature effect on the pressure gradient is via the temperature-dependent fluid viscosity and electroosmotic velocity.

  17. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.

    PubMed

    Zhang, Jinzhong; Zhou, Luqun; Ouyang, Qi

    2007-02-15

    We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.

  18. Estimation of tropical forest canopy temperatures, thermal response numbers, and evapotranspiration using an aircraft-based thermal sensor

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Lieberman, Diana; Lieberman, Milton; Hartshorn, Gary S.; Peralta, Rodolfo

    1990-01-01

    Thermal infrared Multispectral Scanner (TIMS) data were collected at a resolution of 5 to 10 m from a tropical rain forest over an elevation gradient from 35 to 2700 m in the Braulio Carrillo National Park in Costa Rica. Flight lines were repeated with a 15 to 30 minute time difference for measurement of forest canopy thermal response over time. Concurrent radiosonde measurements of atmospheric profiles of air temperature and moisture provided inputs to LOWTRAN6 for atmospheric radiance corrections of the TIMS data. Techniques for using calibrated aircraft-based thermal scanner data to examine tropical forest canopy thermal properties are described. Forest canopy temperature changes over time assessed between repeated, duplicated flight lines were combined with estimates of surface radiative energy measurements from towers above the forest canopy to determine temperature spatial variability, calculate Thermal Response Numbers (TRN), and estimate evapotranspiration along the elevation gradient from selected one hectare forest inventory plots.

  19. Estimating changes in mean body temperature for humans during exercise using core and skin temperatures is inaccurate even with a correction factor.

    PubMed

    Jay, Ollie; Reardon, Francis D; Webb, Paul; Ducharme, Michel B; Ramsay, Tim; Nettlefold, Lindsay; Kenny, Glen P

    2007-08-01

    Changes in mean body temperature (DeltaT(b)) estimated by the traditional two-compartment model of "core" and "shell" temperatures and an adjusted two-compartment model incorporating a correction factor were compared with values derived by whole body calorimetry. Sixty participants (31 men, 29 women) cycled at 40% of peak O(2) consumption for 60 or 90 min in the Snellen calorimeter at 24 or 30 degrees C. The core compartment was represented by esophageal, rectal (T(re)), and aural canal temperature, and the shell compartment was represented by a 12-point mean skin temperature (T(sk)). Using T(re) and conventional core-to-shell weightings (X) of 0.66, 0.79, and 0.90, mean DeltaT(b) estimation error (with 95% confidence interval limits in parentheses) for the traditional model was -95.2% (-83.0, -107.3) to -76.6% (-72.8, -80.5) after 10 min and -47.2% (-40.9, -53.5) to -22.6% (-14.5, -30.7) after 90 min. Using T(re), X = 0.80, and a correction factor (X(0)) of 0.40, mean DeltaT(b) estimation error for the adjusted model was +9.5% (+16.9, +2.1) to -0.3% (+11.9, -12.5) after 10 min and +15.0% (+27.2, +2.8) to -13.7% (-4.2, -23.3) after 90 min. Quadratic analyses of calorimetry DeltaT(b) data was subsequently used to derive best-fitting values of X for both models and X(0) for the adjusted model for each measure of core temperature. The most accurate model at any time point or condition only accounted for 20% of the variation observed in DeltaT(b) for the traditional model and 56% for the adjusted model. In conclusion, throughout exercise the estimation of DeltaT(b) using any measure of core temperature together with mean skin temperature irrespective of weighting is inaccurate even with a correction factor customized for the specific conditions.

  20. The Use of Streambed Temperature Profiles to Estimate the Depth, Duration, and Rate of Percolation Beneath Arroyos

    NASA Astrophysics Data System (ADS)

    Constantz, Jim; Thomas, Carole L.

    1996-12-01

    Temporal variations in a streambed temperature profile between 30 and 300 cm beneath Tijeras Arroyo, New Mexico, were analyzed at 30-min intervals for 1990 to estimate the depth, duration, and rate of percolation during streamflows. The depth of percolation was clearly documented by the rapid response of the streambed temperature profile to streamflows. Results indicate that the streambed possessed small thermal gradients with significant diurnal variations from late November to late May, indicating that ephemeral streamflows created continuous, advection-dominated heat transport to depths below 300 cm during this period. Timing and duration of percolation suggested by temporal variations in the temperature profile were verified by comparison with measured streamflow records for the study reach over 1990. Percolation rates were estimated using a technique based on the travel time of the daily maximum temperature into the streambed. Percolation rates were compared with streambed seepage rates determined from measurements of streamflow loss, stream surface area, and stream evaporative loss for the entire study reach. Travel time estimates of streambed percolation rates ranged from 9 to 40 cm/hr, while streamflow estimates of streambed seepage rates ranged from 6 to 26 cm/hr during the study period. Discrepancies between streambed percolation and seepage rates may be caused by differences in the areal extent of measurements for percolation versus seepages rates. In summary, the depth, timing, and duration of streamflow-induced percolation were well documented by temporal variations in a single streambed temperature profile, while rates of percolation based on the temperature profile were about double the seepage rates based on streamflow records for the entire study reach.

  1. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; Irons, J. R.; Allen, R.; Spruce, J.; Underwood, L. W.; Pagnutti, M.

    2006-12-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400 800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30 240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400 m, 600 m, and 800 m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  2. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  3. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  4. The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos

    USGS Publications Warehouse

    Constantz, J.; Thomas, C.L.

    1996-01-01

    Temporal variations in a streambed temperature profile between 30 and 300 cm beneath Tijeras Arroyo, New Mexico, were analyzed at 30-min intervals for 1990 to estimate the depth, duration, and rate of percolation during streamflows. The depth of percolation was clearly documented by the rapid response of the streambed temperature profile to streamflows. Results indicate that the streambed possessed small thermal gradients with significant diurnal variations from late November to late May, indicating that ephemeral streamflows created continuous, advection-dominated beat transport to depths below 300 cm during this period. Timing and duration of percolation suggested by temporal variations in the temperature profile were verified by comparison with measured streamflow records for the study reach over 1990. Percolation rates were estimated using a technique based on the travel time of the daily maximum temperature into the streambed. Percolation rates were compared with streambed seepage rates determined from measurements of streamflow loss, stream surface area, and stream evaporative loss for the entire study reach. Travel time estimates of streambed percolation rates ranged from 9 to 40 cm/hr, while streamflow estimates of streambed seepage rates ranged from 6 to 26 cm/hr during the study period. Discrepancies between streambed percolation and seepage rates may be caused by differences in the areal extent of measurements for percolation versus seepages rates. In summary, the depth, timing, and duration of streamflow- induced percolation were well documented by temporal variations in a single streambed temperature profile, while rates of percolation based on the temperature profile were about double the seepage rates based on streamflow records for the entire study reach.

  5. The post mortem temperature plateau and its role in the estimation of time of death. A review.

    PubMed

    Smart, Jimmy L; Kaliszan, Michał

    2012-03-01

    The purpose of this paper was to examine evidence to seek an explanation of the possible cause(s) or contributing factors to the temperature plateau phenomenon and its influence on time of death (TOD) estimation. The concept of the temperature plateau effect (TPE) is reviewed, and investigation is conducted into its possible prediction under post mortem conditions. The conclusion of this paper is that the appearance of a TPE in postmortem body core temperature decay curves is currently random and cannot be predicted. This unpredictability is based upon the interindividual differences in states (core body temperature, hyperthermia, use of drugs, trauma, etc.) and biomarker concentrations (electrolytes, thyroxine, etc.) at antemortem times, which will ultimately affect the shape of the postmortem temperature decay curve. However, studies indicated that the TPE is diminished or even absent in the head tissues, including eye and ear. The possibility of precise estimation of the TOD in the early post mortem period based on eye temperature measurements is also commented. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. ESTIMATION OF CRACK-ARREST TOUGHNESS TRANSITION AND NDT TEMPERATURES FROM CHARPY FORCE-DISPLACEMENT IMPACT TRACES

    SciTech Connect

    Sokolov, Mikhail A

    2010-01-01

    A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Fa values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.

  7. Maintaining unperturbed cerebral blood flow is key in the study of brain metastasis and its interactions with stress and inflammatory responses.

    PubMed

    Amit, Benbenishty; Niva, Segev-Amzaleg; Lee, Shaashua; Rivka, Melamed; Shamgar, Ben-Eliyahu; Pablo, Blinder

    2017-02-20

    Blood-borne brain metastases are associated with poor prognosis, but little is known about the interplay between cerebral blood flow, surgical stress responses, and the metastatic process. The intra-carotid inoculation approach, traditionally used in animal studies, involves permanent occlusion of the common carotid artery (CCA). Herein we introduced a novel intra-carotid inoculation approach that avoids CCA ligation, namely - assisted external carotid artery inoculation (aECAi) - and compared it to the traditional approach in C57/BL6 mice, assessing cerebral blood flow; particle distribution; blood-brain barrier (BBB) integrity; stress, inflammatory and immune responses; and brain tumor retention and growth. Doppler flowmetry and two-photon imaging confirmed that only in the traditional approach regional and capillary cerebral blood flux were significantly reduced. Corticosterone and plasma IL-6 levels were higher in the traditional approach, splenic numbers of NK, CD3+, granulocytes, and dendritic cells were lower, and many of these indices were more profoundly affected by surgical stress in the traditional approach. BBB integrity was unaffected. Administration of spherical beads indicated that CCA ligation significantly limited brain distribution of injected particles, and inoculation of D122-LLC syngeneic tumor cells resulted in 10-fold lower brain tumor-cell retention in the traditional approach. Last, while most of the injected tumor cells were arrested in extra-cranial head areas, our method improved targeting of brain-tissue by 7-fold. This head versus brain distribution difference, commonly overlooked, cannot be detected using in vivo bioluminescent imaging. Overall, it is crucial to maintain unperturbed cerebral blood flow while studying brain metastasis and interactions with stress and inflammatory responses.

  8. Constraints on Dynamic Topography from Asymmetric Subsidence Across Seafloor Unperturbed by Volcanism Surrounding the Mid-Atlantic Ridge and the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Conrad, C. P.; Watkins, C. E.

    2016-12-01

    Stresses from mantle convection should deflect Earth's surface vertically, with important implications for continental dynamics and sea-level change. However, dynamic topography is difficult to observe directly because it is obscured by isostatic topography. As a result, amplitudes of long wavelength dynamic topography inferred from indirect observations tend to differ significantly from model predictions. In this study we attempt to resolve this discrepancy by analyzing asymmetries in seafloor bathymetry across mid-ocean ridges, which in the absence of dynamic topography should otherwise be symmetrical. We identify dynamic deflections of the seafloor by focusing on seafloor unperturbed by volcanism on both sides the Mid-Atlantic Ridge and the East Pacific Rise. Across both ridges the magnitude of the subsidence is greater on the South American side of the ridge, consistent with patterns predicted by numerical models of long-wavelength dynamic topography. To constrain the amplitude of dynamic topography, we compare bathymetric profiles across both ridges after correcting bathymetry for several different models of dynamic topography with varying amplitudes and spatial patterns. We found that the observed asymmetry in both ridge systems is best explained if bathymetry is deflected by dynamic topography with long-wavelength amplitudes of about 300-500 m, which is about half of the amplitudes predicted by recent mantle flow models. This reduction in amplitude implies that long-wavelength mantle flow is driven primarily by active downwelling associated with subducted slabs in the lower mantle, and less so by active upwelling. This pattern of mantle dynamics is consistent with recent thermochemical convection models of mantle flow.

  9. Small Ubiquitin-related Modifier Ligase Activity of Mms21 Is Required for Maintenance of Chromosome Integrity during the Unperturbed Mitotic Cell Division Cycle in Saccharomyces cerevisiae*

    PubMed Central

    Rai, Ragini; Varma, Satya P. M. V.; Shinde, Nikhil; Ghosh, Shilpa; Kumaran, Srikala P.; Skariah, Geena; Laloraya, Shikha

    2011-01-01

    The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast. PMID:21324902

  10. The inverse Numerical Computer Program FLUX-BOT for estimating Vertical Water Fluxes from Temperature Time-Series.

    NASA Astrophysics Data System (ADS)

    Trauth, N.; Schmidt, C.; Munz, M.

    2016-12-01

    Heat as a natural tracer to quantify water fluxes between groundwater and surface water has evolved to a standard hydrological method. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. Analytical solutions can be easily implemented but assumptions on the boundary conditions have to be made a priori, e.g. sinusoidal upper temperature boundary. Numerical models offer more flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. This also reduced the effort of data preprocessing such as the extraction of the diurnal temperature variation. We developed a software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB which is intended to calculate vertical water fluxes in saturated sediments, based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation. Besides its core inverse numerical routines, FLUX-BOT includes functions visualizing the results and functions for performing uncertainty analysis. We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance.

  11. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the

  12. Estimating the approximate firing temperature of burnt archaeological sediments through an unmixing algorithm applied to hysteresis data

    NASA Astrophysics Data System (ADS)

    Linford, N.; Platzman, E.

    2004-11-01

    Estimating the temperature to which burnt archaeological sediments and soils have been exposed in antiquity is of interest as it may well elucidate the interpretation of specific features. Certain semi-industrial activities, such as metal working or the production of pottery, are often associated with the controlled use of intense high-temperature processes (>500 °C). Exposure to such high-temperatures will, inevitably, lead to the thermal alteration of commonly found iron minerals within the soil. Magnetic measurements made on a series of soil samples subjected to controlled laboratory heating, confirms both the sensitivity of iron minerals to thermal alteration and also suggests a correlation between the maximum exposure temperature and the hysteresis properties. From this data a method for estimating the maximum exposure temperature of burnt archaeological samples, recovered from similar soil types is proposed, based on the application of a linear unmixing model. This model compares hysteresis data from the archaeological samples to an end-member data set created from the laboratory heated soil. The maximum exposure temperature for the archaeological samples is estimated from the relative proportion of known temperature end-members present within the final model describing the experimental hysteresis data. The validity of the model is demonstrated through application to samples recovered from a series of actualistic fire experiments and a range of burnt archaeological features recovered during excavation of a multi-period site at Yarnton, near the city of Oxford, UK. A further application of the method, to determine the fidelity of samples collected for archaeomagnetic dating, is presented from the excavation of a large hearth type features at Whitby, North Yorkshire, UK.

  13. Wet-bulb globe temperature index estimation using meteorological data from São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Maia, Paulo Alves; Ruas, Álvaro Cézar; Bitencourt, Daniel Pires

    2015-10-01

    It is well known that excessive heat exposure causes heat disorders and can lead to death in some situations. Evaluation of heat stress on workers performing indoor and outdoor activities is, nowadays, conducted worldwide by wet-bulb globe temperature (WBGT) index, which calculation parameters are dry-bulb, natural wet-bulb, and globe temperatures, which must be measured at the same time and in location where the worker is conducting his/her activities. However, for some activities performed in large outdoor areas such as those of agricultural ones, it is not feasible to measure directly those temperatures in all work periods and locations where there are workers. Taking this into account, this work aims to introduce a WBGT index estimation using atmospheric variables observed by automatic meteorological stations. In order to support our estimation method, we used, as a test-bed, data recorded in the State of São Paulo (SP), Brazil. By adding the cloudiness factor in the calculation through measurement of solar radiation, the algorithm proved to be as efficient as those mentioned in this work. It was found that this method is viable, with WBGT-estimated values obtained from meteorological data measured by stations with a distance of less than 80 km. This estimate can be used for monitoring heat stress in real time as well as to investigate heat-related disorders and agricultural work.

  14. Estimating more reliable measures of forest canopy temperatures using thermal imaging

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Still, C. J.; Aubrecht, D. M.; Richardson, A. D.

    2014-12-01

    Leaf temperature is critical to plant function, and it can be used to examine forest responses to droughts, heat waves, and storm events. The recent development of thermal infrared (TIR) imaging techniques has offered indirect measurement of forest canopy skin temperature, and it allows for extensive temporal and spatial sampling compared to direct thermocouple-based measurements. However, the accuracy of TIR indirect canopy temperature is not well understood, as few studies have evaluated how TIR-derived temperatures compare to other approaches. The objectives of this study are: (1) to monitor canopy temperatures of a coniferous forest canopy using a TIR camera and in situ sensors; (2) to evaluate the reliability of TIR canopy temperatures by comparing against leaf temperatures measured by thermocouples; (3) to develop and examine methods for improving TIR measures based on corrections of camera's default parameters ("Recalculation") and records of sensitivity by parameter changes ("Data-training"). This study showed the canopy temperatures varied from -5 and 30°C, and the patterns of changes between the TIR and thermocouple measures corresponded well. Overall, TIR canopy temperatures were underestimated against the direct thermocouple measurements with mean absolute error (MAE) of 0.83-1.38°C and root mean square error (RMSE) of 1.11-1.53°C for the study period. The modified TIR temperatures from the "Recalculation" method exhibited MAE of 0.56-0.95°C and RMSE of 0.83-1.15°C, and those by the "Data-training" method resulted in MAE of 0.32-0.50°C and RMSE of 0.53-0.83°C. Our results demonstrate that the TIR technique includes small errors for canopy temperature measurements; however, the range of errors is smaller when correction methods are applied.

  15. Using the product threshold model for estimating separately the effect of temperature on male and female fertility.

    PubMed

    Tusell, L; David, I; Bodin, L; Legarra, A; Rafel, O; López-Bejar, M; Piles, M

    2011-12-01