Science.gov

Sample records for estimated genetic barrier

  1. Estimating the individualized HIV-1 genetic barrier to resistance using a nelfinavir fitness landscape

    PubMed Central

    2010-01-01

    Background Failure on Highly Active Anti-Retroviral Treatment is often accompanied with development of antiviral resistance to one or more drugs included in the treatment. In general, the virus is more likely to develop resistance to drugs with a lower genetic barrier. Previously, we developed a method to reverse engineer, from clinical sequence data, a fitness landscape experienced by HIV-1 under nelfinavir (NFV) treatment. By simulation of evolution over this landscape, the individualized genetic barrier to NFV resistance may be estimated for an isolate. Results We investigated the association of estimated genetic barrier with risk of development of NFV resistance at virological failure, in 201 patients that were predicted fully susceptible to NFV at baseline, and found that a higher estimated genetic barrier was indeed associated with lower odds for development of resistance at failure (OR 0.62 (0.45 - 0.94), per additional mutation needed, p = .02). Conclusions Thus, variation in individualized genetic barrier to NFV resistance may impact effective treatment options available after treatment failure. If similar results apply for other drugs, then estimated genetic barrier may be a new clinical tool for choice of treatment regimen, which allows consideration of available treatment options after virological failure. PMID:20682040

  2. [Resistance profile and genetic barrier of dolutegravir].

    PubMed

    Llibre, Josep M; Clotet, Bonaventura

    2015-03-01

    The resistance profile of dolutegravir differs significantly from those of earlier integrase inhibitors (INI). Dolutegravir displays in vitro activity against mutant HIV-1 harboring any isolated resistance mutations selected during failures to raltegravir or elvitegravir (Y143C/H/, N155H, Q148H/K/R, E92G/Q, T66A/I/K, T97A, E138A/K, G140A/S). Its activity is only compromised by Q148X mutations combined with other mutations, particularly > 1 mutation. The drug has pharmacokinetic/pharmacodynamic properties (plasmatic t1/2 15.3 h, inhibitory quotient 19, dissociative t1/2 from the IN-DNA complex 71 h) that favor a high genetic barrier to resistance. In vitro the selection of HIV-1 resistance to dolutegravir is extremely difficult to achieve. The mutations eventually selected (R263K, H51Y and E138K) do not confer significant resistance, and induce a fitness cost that prevents HIV-1 from evading drug pressure. Suprisingly, HIV-1 is not able to compensate, leading the virus to a previously unnoticed evolutionary pathway with very low chances of developing resistance to INI or the backbone. No treatment-naïve patients starting dolutegravir therapy (+TDF/FTC o ABC/3TC) have selected resistance in IN or against the backbone. No INI- naïve patients with prior virologic failure selected phenotypic dolutegravir resistance. Only 4 out of 354 patients selected resistance mutations in IN, and rates of selection of mutations in IN or against the backbone were significantly lower than with raltegravir. In multitreated patients with widespread resistance including IN resistance, the high efficacy of dolutegravir was confirmed, irrespective of the previous pattern of IN mutations, provided that Q148X associated with other mutations was absent. PMID:25858608

  3. Assessing a landscape barrier using genetic simulation modelling: implications for raccoon rabies management.

    PubMed

    Rees, Erin E; Pond, Bruce A; Cullingham, Catherine I; Tinline, Rowland; Ball, David; Kyle, Christopher J; White, Bradley N

    2008-08-15

    Landscape barriers influence movement patterns of animals, which in turn, affect spatio-temporal spread of infectious wildlife disease. We compare genetic data from computer simulations to those acquired from field samples to measure the effect of a landscape barrier on raccoon (Procyon lotor) movement, enabling risk assessment of raccoon rabies disease spread across the Niagara River from New York State into Ontario, an area currently uninfected by rabies. An individual-based spatially explicit model is used to simulate the expansion of a raccoon population to cross the Niagara River, for different permeabilities of the river to raccoon crossings. Since the model records individual raccoon genetics, the genetic population structure of neutral mitochondrial DNA haplotypes are characterised in the expanding population, every 25 years, using a genetic distance measure, phi ST, Mantel tests and a gene diversity measure. The river barrier effect is assessed by comparing genetic measures computed from model outputs to those calculated from 166 raccoons recently sampled from the same landscape. The "best fit" between modelled scenarios and field data indicate the river prevents 50% of attempts to cross the river. Founder effects dominated the colonizing genetic population structure, and, as the river barrier effect increased, its genetic diversity decreased. Using gene flow to calibrate the effect of the river as a barrier to movement provides an estimate of the effect of a river in reducing the likelihood of cross-river infection. Including individual genetic markers in simulation modelling benefits investigations of disease spread and control.

  4. Exploring barriers to payer utilization of genetic counselors.

    PubMed

    Doyle, Nan; Cirino, Allison; Trivedi, Amber; Flynn, Maureen

    2015-02-01

    Access to genetic counselors' services is neither universal nor automatic, due in part to the gatekeeper role of healthcare payers--the companies and agencies that purchase healthcare services on patients' behalf and control the bulk of healthcare spending. This pilot study surveyed and analyzed the relative importance of barriers to expanded payer coverage of genetic counselors' services. Surveys were mailed to 263 medical directors and quality assurance directors at health insurance carriers throughout the United States. Respondents provided demographic information and indicated the importance of nine possible barriers, plus an optional write-in "other." Twenty-two surveys were analyzed. "Evidence that use of genetic counselors improves health outcomes" led the list of factors having a significant/very significant influence on coverage policy. Sixteen respondents (73 %) rated this factor "4" or "5" on a Likert scale; it also received the most #1 rankings and the highest score using a weighted-mean analysis. Provider practice guidelines, CMS/Medicare regulations, and genetic counselor licensure-all of which are outside of payers' direct control-also ranked highly. The research demonstrates that although the potential barriers to expanded reimbursement for genetic counselors are numerous and complex, some are more consistently identified as important and therefore more deserving of legislative and advocacy resources to effect change. Future research should endeavor to increase survey response and include providers as well as payers. PMID:25138080

  5. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    PubMed

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.

  6. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae

    PubMed Central

    Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.; Will, Jessica L.; Gasch, Audrey P.

    2015-01-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations. PMID:25953281

  7. Ecological and Genetic Barriers Differentiate Natural Populations of Saccharomyces cerevisiae.

    PubMed

    Clowers, Katie J; Heilberger, Justin; Piotrowski, Jeff S; Will, Jessica L; Gasch, Audrey P

    2015-09-01

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causal genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations. PMID:25953281

  8. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns

    PubMed Central

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E.; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P.; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species’ responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals. PMID:26978779

  9. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns.

    PubMed

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species' responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals.

  10. Disentangle the Causes of the Road Barrier Effect in Small Mammals through Genetic Patterns.

    PubMed

    Ascensão, Fernando; Mata, Cristina; Malo, Juan E; Ruiz-Capillas, Pablo; Silva, Catarina; Silva, André P; Santos-Reis, Margarida; Fernandes, Carlos

    2016-01-01

    Road barrier effect is among the foremost negative impacts of roads on wildlife. Knowledge of the factors responsible for the road barrier effect is crucial to understand and predict species' responses to roads, and to improve mitigation measures in the context of management and conservation. We built a set of hypothesis aiming to infer the most probable cause of road barrier effect (traffic effect or road surface avoidance), while controlling for the potentially confounding effects road width, traffic volume and road age. The wood mouse Apodemus sylvaticus was used as a model species of small and forest-dwelling mammals, which are more likely to be affected by gaps in cover such as those resulting from road construction. We confront genetic patterns from opposite and same roadsides from samples of three highways and used computer simulations to infer migration rates between opposite roadsides. Genetic patterns from 302 samples (ca. 100 per highway) suggest that the highway barrier effect for wood mouse is due to road surface avoidance. However, from the simulations we estimated a migration rate of about 5% between opposite roadsides, indicating that some limited gene flow across highways does occur. To reduce highway impact on population genetic diversity and structure, possible mitigation measures could include retrofitting of culverts and underpasses to increase their attractiveness and facilitate their use by wood mice and other species, and setting aside roadside strips without vegetation removal to facilitate establishment and dispersal of small mammals. PMID:26978779

  11. Debris flow impact estimation on a rigid barrier

    NASA Astrophysics Data System (ADS)

    Vagnon, Federico; Segalini, Andrea

    2016-07-01

    The aim of this paper is to analyse debris flow impact against rigid and undrained barrier in order to propose a new formulation for the estimation of acting force after the flow impact to safe design protection structures. For this reason, this work concentrates on the flow impact, by performing a series of small scale tests in a specifically created flume. Flow characteristics (flow height and velocity) and applied loads (dynamic and static) on barrier were measured using four ultrasonic devices, four load cells and a contact surface pressure gauge. The results obtained were compared with main existing models and a new equation is proposed. Furthermore, a brief review of the small scale theory was provided to analyse the scale effects that can affect the results.

  12. Cancer genetics evaluation: barriers to and improvements for referral.

    PubMed

    Brandt, Rachael; Ali, Zonera; Sabel, Allison; McHugh, Terri; Gilman, Paul

    2008-03-01

    Despite the availability of cancer susceptibility testing, little information exists regarding physicians' selection and referral of eligible patients. This study provides insight into whom, why, and when physicians refer for cancer genetics evaluation, as well as their comfort level within this role. Eighty-two physicians (51 primary care, 15 gynecology, 11 surgery and 5 oncology) completed a survey (response rate: 34%) regarding cancer genetics referral practices. Of these, 59% reported an awareness of the hospital's cancer genetics program. Program awareness was greater among oncologists, surgeons, and gynecologists than among primary care physicians (p < 0.0001). Patients were referred for enhanced risk assessment (88%), improved medical management (85%), and concern for family members (83%). Patient eligibility was based on family cancer history (96%), patient cancer history (83%), and patient request (73%). Patients were not referred mainly due to patient disinterest (54%) or physician concern about either insurance coverage (44%) or insurance discrimination (31%). Primary care physicians were less comfortable with identifying patients for referral (p < 0.001) and with discussing genetics (p < 0.002) than specialists. The largest barriers to referral were lack of program awareness and limited knowledge regarding patient eligibility, improved insurance coverage, and antidiscrimination legislation. Physician-targeted marketing and education may improve the referral process. PMID:18373400

  13. Estimation of genetic purging under competitive conditions.

    PubMed

    López-Cortegano, Eugenio; Vilas, Ana; Caballero, Armando; García-Dorado, Aurora

    2016-08-01

    Inbreeding depression for fitness traits is a key issue in evolutionary biology and conservation genetics. The magnitude of inbreeding depression, though, may critically depend on the efficiency of genetic purging, the elimination or recessive deleterious mutations by natural selection after they are exposed by inbreeding. However, the detection and quantification of genetic purging for nonlethal mutations is a rather difficult task. Here, we present two comprehensive sets of experiments with Drosophila aimed at detecting genetic purging in competitive conditions and quantifying its magnitude. We obtain, for the first time in competitive conditions, an estimate for the predictive parameter, the purging coefficient (d), that quantifies the magnitude of genetic purging, either against overall inbreeding depression (d ≈ 0.3), or against the component ascribed to nonlethal alleles (dNL ≈ 0.2). We find that competitive fitness declines at a high rate when inbreeding increases in the absence of purging. However, in moderate size populations under competitive conditions, inbreeding depression need not be too dramatic in the medium to short term, as the efficiency of purging is also very high. Furthermore, we find that purging occurred under competitive conditions also reduced the inbreeding depression that is expressed in the absence of competition. PMID:27302839

  14. Barriers and paths to market for genetically engineered crops.

    PubMed

    Rommens, Caius M

    2010-02-01

    Each year, billions of dollars are invested in efforts to improve crops through genetic engineering (GE). These activities have resulted in a surge of publications and patents on technologies and genes: a momentum in basic research that, unfortunately, is not sustained throughout the subsequent phases of product development. After more than two decades of intensive research, the market for transgenic crops is still dominated by applications of just a handful of methods and genes. This discrepancy between research and development reflects difficulties in understanding and overcoming seven main barriers-to-entry: (1) trait efficacy in the field, (2) critical product concepts, (3) freedom-to-operate, (4) industry support, (5) identity preservation and stewardship, (6) regulatory approval and (7) retail and consumer acceptance. In this review, I describe the various roadblocks to market for transgenic crops and also discuss methods and approaches on how to overcome these, especially in the United States. PMID:19968823

  15. Barriers and paths to market for genetically engineered crops.

    PubMed

    Rommens, Caius M

    2010-02-01

    Each year, billions of dollars are invested in efforts to improve crops through genetic engineering (GE). These activities have resulted in a surge of publications and patents on technologies and genes: a momentum in basic research that, unfortunately, is not sustained throughout the subsequent phases of product development. After more than two decades of intensive research, the market for transgenic crops is still dominated by applications of just a handful of methods and genes. This discrepancy between research and development reflects difficulties in understanding and overcoming seven main barriers-to-entry: (1) trait efficacy in the field, (2) critical product concepts, (3) freedom-to-operate, (4) industry support, (5) identity preservation and stewardship, (6) regulatory approval and (7) retail and consumer acceptance. In this review, I describe the various roadblocks to market for transgenic crops and also discuss methods and approaches on how to overcome these, especially in the United States.

  16. Instrumental noise estimates stabilize and quantify endothelial cell micro-impedance barrier function parameter estimates

    SciTech Connect

    English, Anthony E; Moy, Alan B; Kruse, Kara L; Ward, Richard C; Kirkpatrick, Stacy S; GoldmanM.D., Mitchell H

    2009-04-01

    A novel transcellular micro-impedance biosensor, referred to as the electric cell-substrate impedance sensor or ECIS, has become increasingly applied to the study and quantification of endothelial cell physiology. In principle, frequency dependent impedance measurements obtained from this sensor can be used to estimate the cell cell and cell matrix impedance components of endothelial cell barrier function based on simple geometric models. Few studies, however, have examined the numerical optimization of these barrier function parameters and established their error bounds. This study, therefore, illustrates the implementation of a multi-response Levenberg Marquardt algorithm that includes instrumental noise estimates and applies it to frequency dependent porcine pulmonary artery endothelial cell impedance measurements. The stability of cell cell, cell matrix and membrane impedance parameter estimates based on this approach is carefully examined, and several forms of parameter instability and refinement illustrated. Including frequency dependent noise variance estimates in the numerical optimization reduced the parameter value dependence on the frequency range of measured impedances. The increased stability provided by a multi-response non-linear fit over one-dimensional algorithms indicated that both real and imaginary data should be used in the parameter optimization. Error estimates based on single fits and Monte Carlo simulations showed that the model barrier parameters were often highly correlated with each other. Independently resolving the different parameters can, therefore, present a challenge to the experimentalist and demand the use of non-linear multivariate statistical methods when comparing different sets of parameters.

  17. Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier

    PubMed Central

    Lessios, H.A; Robertson, D.R

    2006-01-01

    The ‘impassable’ Eastern Pacific Barrier (EPB), ca 5000 km of deep water separating the eastern from the central Pacific, is the World's widest marine biogeographic barrier. Sequencing of mitochondrial DNA in 20 reef fish morphospecies encountered on both sides of the barrier revealed cryptic speciation in two. Among the other 18 species only two showed significant differentiation (as revealed by haplotype networks and FST statistics) between the eastern and the central Pacific. Coalescence analyses indicated that genetic similarity in the 18 truly transpacific species resulted from different combinations of ages of most recent invasion and of levels of recurrent gene flow, with estimated times of initial separation ranging from approximately 30 000 to 1 Myr (ago). There is no suggestion of simultaneous interruptions of gene flow among the species. Migration across the EPB was previously thought to be exclusively eastward, but our evidence showed two invasions from east to west and eight cases in which subsequent gene flow possibly proceeded in the same direction. Thus, the EPB is sporadically permeable to propagules originating on either side. PMID:16901840

  18. Mechanisms and genetic control of interspecific crossing barriers in Lycopersicon

    SciTech Connect

    Mutschler, M.A. ); McCormick, S. . Plant Gene Expression Center)

    1993-03-27

    This study employs Lycopersicon esculentum and L. pennellii as model systems to study the interspecific reproductive barriers unilateral incongruity (UI), hybrid breakdown and interspecific aberrant ratio syndrome (IARS).

  19. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier's algorithm.

    PubMed

    Manni, Franz; Guérard, Etienne; Heyer, Evelyne

    2004-04-01

    When sampling locations are known, the association between genetic and geographic distances can be tested by spatial autocorrelation or regression methods. These tests give some clues to the possible shape of the genetic landscape. Nevertheless, correlation analyses fail when attempting to identify where genetic barriers exist, namely, the areas where a given variable shows an abrupt rate of change. To this end, a computational geometry approach is more suitable because it provides the locations and the directions of barriers and because it can show where geographic patterns of two or more variables are similar. In this frame we have implemented Monmonier's (1973) maximum difference algorithm in a new software package to identify genetic barriers. To provide a more realistic representation of the barriers in a genetic landscape, we implemented in the software a significance test by means of bootstrap matrices analysis. As a result, the noise associated with genetic markers can be visualized on a geographic map and the areas where genetic barriers are more robust can be identified. Moreover, this multiple matrices approach can visualize the patterns of variation associated with different markers in the same overall picture. This improved Monmonier's method is highly reliable and can be applied to nongenetic data whenever sampling locations and a distance matrix between corresponding data are available.

  20. A systematic review of factors that act as barriers to patient referral to genetic services

    PubMed Central

    Delikurt, Türem; Williamson, Graham R; Anastasiadou, Violetta; Skirton, Heather

    2015-01-01

    Patients who might benefit from genetic services may be denied access through failure to be referred. To investigate the evidence on barriers to referral to genetic services, we conducted a systematic review of empirical evidence on this topic. Nine studies were included in the review. Barriers related to non-genetic healthcare professionals were: lack of awareness of patient risk factors, failure to obtain adequate family history, lack of knowledge of genetics and genetic conditions, lack of awareness of genetic services, inadequate coordination of referral and lack of genetics workforce. Those related to individuals affected by or at risk of a genetic condition were: lack of awareness of personal risk, lack of knowledge and/or awareness of medical history of family members and lack of knowledge of genetic services. Research on access to genetic services is heterogeneous; stronger empirical evidence is needed on factors that are barriers, and further research is needed to develop ‘targeted interventions' for equitable access to genetic services in a range of populations. PMID:25205405

  1. Method to estimate water storage capacity of capillary barriers - Discussion

    SciTech Connect

    Gee, Glendon W. ); Ward, Anderson L. ); Meyer, Philip D. )

    1998-11-01

    This is a brief comment on a previously published paper. The paper by Stormont and Morris[JGGE 124 (4):297-302] provides an interesting approach to computing water storage capacity of capillary barriers used as landfill covers. They correctly show that available water storage capacity can be increased up to a factor of two for a silt loam soil, when it is used in a capillary barrier as compared to existing as a deep soil profile. For this very reason such a capillary barrier, utilizing silt loam soil, was constructed and successfully tested at the U. S. Department of Energy?s Hanford Site in southeastern Washington State. Silt loam soil provides optimal water storage for capillary barriers and ensures minimal drainage. Less benefits are obtained when capillary barriers utilize more sandy soils. We would endorse a limited application of the method of Stormont and Morris. We suggest that there will be large uncertainties in field capacity, wilting point and water retention characteristics and only when these uncertainties are accounted for can such a method be used to provide sound engineering judgement for cover design. A recommended procedure for using this method would include actual field measurements of the soil hydraulic properties of the cover materials.

  2. Genetic structure of juvenile cohorts of bicolor damselfish ( Stegastes partitus) along the Mesoamerican barrier reef: chaos through time

    NASA Astrophysics Data System (ADS)

    Hepburn, R. I.; Sale, P. F.; Dixon, B.; Heath, Daniel D.

    2009-03-01

    Dispersal in marine systems is a critical component of the ecology, evolution, and conservation of such systems; however, estimating dispersal is logistically difficult, especially in coral reef fish. Juvenile bicolor damselfish ( Stegastes partitus) were sampled at 13 sites along the Mesoamerican Barrier Reef System (MBRS), the barrier reefs on the east coast of Central America extending from the Yucatan, Mexico to Honduras, to evaluate genetic structure among recently settled cohorts. Using genotype data at eight microsatellite loci genetic structure was estimated at large and small spatial scales using exact tests for allele frequency differences and hierarchical analysis of molecular variance (AMOVA). Isolation-by-distance models of divergence were assessed at both spatial scales. Results showed genetic homogeneity of recently settled S. partitus at large geographic scales with subtle, but significant, genetic structure at smaller geographic scales. Genetic temporal stability was tested for using archived juvenile S. partitus collected earlier in the same year (nine sites), and in the previous year (six sites). The temporal analyses indicated that allele frequency differences among sites were not generally conserved over time, nor were pairwise genetic distances correlated through time, indicative of temporal instability. These results indicate that S. partitus larvae undergo high levels of dispersal along the MBRS, and that the structure detected at smaller spatial scales is likely driven by stochastic effects on dispersal coupled with microgeographic effects. Temporal variation in juvenile cohort genetic signature may be a fundamental characteristic of connectivity patterns in coral reef fishes, with various species and populations differing only in the magnitude of that instability. Such a scenario provides a basis for the reconciliation of conflicting views regarding levels of genetic structuring in S. partitus and possibly other coral reef fish species.

  3. Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout

    USGS Publications Warehouse

    Wofford, John E.B.; Gresswell, Robert E.; Banks, M.A.

    2005-01-01

    Because human land use activities often result in increased fragmentation of aquatic and terrestrial habitats, a better understanding of the effects of fragmentation on the genetic heterogeneity of animal populations may be useful for effective management. We used eight microsatellites to examine the genetic structure of coastal cutthroat trout (Oncorhynchus clarki clarki) in Camp Creek, an isolated headwater stream in western Oregon. Our objectives were to determine if coastal cutthroat trout were genetically structured within streams and to assess the effects of natural and anthropogenic barriers on coastal cutthroat trout genetic variation. Fish sampling occurred at 10 locations, and allele frequencies differed significantly among all sampling sections. Dispersal barriers strongly influenced coastal cutthroat trout genetic structure and were associated with reduced genetic diversity and increased genetic differentiation. Results indicate that Camp Creek coastal cutthroat trout exist as many small, partially independent populations that are strongly affected by genetic drift. In headwater streams, barriers to movement can result in genetic and demographic isolation leading to reduced coastal cutthroat trout genetic diversity, and potentially compromising long-term population persistence. When habitat fragmentation eliminates gene flow among small populations, similar results may occur in other species.

  4. Genetic mouse models to study blood–brain barrier development and function

    PubMed Central

    2013-01-01

    The blood–brain barrier (BBB) is a complex physiological structure formed by the blood vessels of the central nervous system (CNS) that tightly regulates the movement of substances between the blood and the neural tissue. Recently, the generation and analysis of different genetic mouse models has allowed for greater understanding of BBB development, how the barrier is regulated during health, and its response to disease. Here we discuss: 1) Genetic mouse models that have been used to study the BBB, 2) Available mouse genetic tools that can aid in the study of the BBB, and 3) Potential tools that if generated could greatly aid in our understanding of the BBB. PMID:23305182

  5. Vicariance and dispersal across an intermittent barrier: population genetic structure of marine animals across the Torres Strait land bridge

    NASA Astrophysics Data System (ADS)

    Mirams, A. G. K.; Treml, E. A.; Shields, J. L.; Liggins, L.; Riginos, C.

    2011-12-01

    Biogeographic barriers, some transitory in duration, are likely to have been important contributing factors to modern marine biodiversity in the Indo-Pacific region. One such barrier was the Torres Strait land bridge between continental Australia and New Guinea that persisted through much of the late Pleistocene and separated Indian and Pacific Ocean taxa. Here, we examine the patterns of mitochondrial DNA diversity for marine animals with present-day distributions spanning the Torres Strait. Specifically, we investigate whether there are concordant signatures across species, consistent with either vicariance or recent colonization from either ocean basin. We survey four species of reef fishes ( Apogon doederleini, Pomacentrus coelestis, Dascyllus trimaculatus, and Acanthurus triostegus) for mtDNA cytochrome oxidase 1 and control region variation and contrast these results to previous mtDNA studies in diverse marine animals with similar distributions. We find substantial genetic partitioning (estimated from F-statistics and coalescent approaches) between Indian and Pacific Ocean populations for many species, consistent with regional persistence through the late Pleistocene in both ocean basins. The species-specific estimates of genetic divergence, however, vary greatly and for reef fishes we estimate substantially different divergence times among species. It is likely that Indian and Pacific Ocean populations have been isolated for multiple glacial cycles for some species, whereas for other species genetic connections have been more recent. Regional estimates of genetic diversity and directionality of gene flow also vary among species. Thus, there is no apparent consistency among historical patterns across the Torres Strait for these co-distributed marine animals.

  6. Restoration of coral populations in light of genetic diversity estimates

    PubMed Central

    Porto, I.; Zubillaga, A. L.

    2012-01-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species (Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10–35 randomly selected local donor colonies will retain at least 50–90% of the genetic diversity of the original population. PMID:22833700

  7. Restoration of coral populations in light of genetic diversity estimates

    NASA Astrophysics Data System (ADS)

    Shearer, T. L.; Porto, I.; Zubillaga, A. L.

    2009-09-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using microsatellites. The mean number of alleles per locus across 72 surveyed scleractinian coral populations was 8.27 (±0.75 SE). In addition, population genetic datasets from four species ( Acropora palmata, Montastraea cavernosa, Montastraea faveolata and Pocillopora damicornis) were analyzed to assess the minimum number of donor colonies required to retain specific proportions of the genetic diversity of the population. Rarefaction analysis of the population genetic datasets indicated that using 10 donor colonies randomly sampled from the original population would retain >50% of the allelic diversity, while 35 colonies would retain >90% of the original diversity. In general, scleractinian coral populations are genetically diverse and restoration methods utilizing few clonal genotypes to re-populate a reef will diminish the genetic integrity of the population. Coral restoration strategies using 10-35 randomly selected local donor colonies will retain at least 50-90% of the genetic diversity of the original population.

  8. How to perform meaningful estimates of genetic effects.

    PubMed

    Alvarez-Castro, José M; Le Rouzic, Arnaud; Carlborg, Orjan

    2008-05-01

    Although the genotype-phenotype map plays a central role both in Quantitative and Evolutionary Genetics, the formalization of a completely general and satisfactory model of genetic effects, particularly accounting for epistasis, remains a theoretical challenge. Here, we use a two-locus genetic system in simulated populations with epistasis to show the convenience of using a recently developed model, NOIA, to perform estimates of genetic effects and the decomposition of the genetic variance that are orthogonal even under deviations from the Hardy-Weinberg proportions. We develop the theory for how to use this model in interval mapping of quantitative trait loci using Halley-Knott regressions, and we analyze a real data set to illustrate the advantage of using this approach in practice. In this example, we show that departures from the Hardy-Weinberg proportions that are expected by sampling alone substantially alter the orthogonal estimates of genetic effects when other statistical models, like F2 or G2A, are used instead of NOIA. Finally, for the first time from real data, we provide estimates of functional genetic effects as sets of effects of natural allele substitutions in a particular genotype, which enriches the debate on the interpretation of genetic effects as implemented both in functional and in statistical models. We also discuss further implementations leading to a completely general genotype-phenotype map. PMID:18451979

  9. Barriers to application of genetically modified lactic acid bacteria.

    PubMed

    Verrips, C T; van den Berg, D J

    1996-10-01

    To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro- intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health.

  10. Analysis of Advantages, Limitations, and Barriers of Genetic Counseling Service Delivery Models.

    PubMed

    Cohen, Stephanie A; Huziak, Rachelle C; Gustafson, Shanna; Grubs, Robin E

    2016-10-01

    Previous studies on genetic counseling service delivery models (SDMs) have shown that genetic counselors (GCs) are incorporating alternate models to address growing service demand and improve access to genetic services. This study sought to identify barriers, limitations and advantages to previously identified genetic counseling SDMs. A qualitative research design was employed, in which 20 practicing GCs who utilize a variety of SDMs were interviewed using an email interview format. Interview transcripts were analyzed using a thematic analysis to identify themes related to implementation and utilization of SDMs. Factors that led GCs to implement SDMs other than in-person genetic counseling included: 1) travel distance, 2) wait time and 3) convenience. Logistical issues such as billing and reimbursement, equipment set up, making arrangements for genetic testing and the inability to see the patient are major limitations to alternative genetic counseling SDMs in clinical practice. However, GCs interviewed stated that the convenience to the patient and genetic counselor of alternative SDMs outweighed these limitations. More research is needed to assess the outcomes of SDMs in practice to demonstrate an impact on the identified barriers of travel distance, wait time and convenience.

  11. Maximum-likelihood estimation of admixture proportions from genetic data.

    PubMed Central

    Wang, Jinliang

    2003-01-01

    For an admixed population, an important question is how much genetic contribution comes from each parental population. Several methods have been developed to estimate such admixture proportions, using data on genetic markers sampled from parental and admixed populations. In this study, I propose a likelihood method to estimate jointly the admixture proportions, the genetic drift that occurred to the admixed population and each parental population during the period between the hybridization and sampling events, and the genetic drift in each ancestral population within the interval between their split and hybridization. The results from extensive simulations using various combinations of relevant parameter values show that in general much more accurate and precise estimates of admixture proportions are obtained from the likelihood method than from previous methods. The likelihood method also yields reasonable estimates of genetic drift that occurred to each population, which translate into relative effective sizes (N(e)) or absolute average N(e)'s if the times when the relevant events (such as population split, admixture, and sampling) occurred are known. The proposed likelihood method also has features such as relatively low computational requirement compared with previous ones, flexibility for admixture models, and marker types. In particular, it allows for missing data from a contributing parental population. The method is applied to a human data set and a wolflike canids data set, and the results obtained are discussed in comparison with those from other estimators and from previous studies. PMID:12807794

  12. Transethnic Genetic-Correlation Estimates from Summary Statistics.

    PubMed

    Brown, Brielin C; Ye, Chun Jimmie; Price, Alkes L; Zaitlen, Noah

    2016-07-01

    The increasing number of genetic association studies conducted in multiple populations provides an unprecedented opportunity to study how the genetic architecture of complex phenotypes varies between populations, a problem important for both medical and population genetics. Here, we have developed a method for estimating the transethnic genetic correlation: the correlation of causal-variant effect sizes at SNPs common in populations. This methods takes advantage of the entire spectrum of SNP associations and uses only summary-level data from genome-wide association studies. This avoids the computational costs and privacy concerns associated with genotype-level information while remaining scalable to hundreds of thousands of individuals and millions of SNPs. We applied our method to data on gene expression, rheumatoid arthritis, and type 2 diabetes and overwhelmingly found that the genetic correlation was significantly less than 1. Our method is implemented in a Python package called Popcorn. PMID:27321947

  13. Commercializing genetically modified crops under EU regulations: objectives and barriers.

    PubMed

    Raybould, Alan; Poppy, Guy M

    2012-01-01

    Agriculture faces serious problems in feeding 9 billion people by 2050: production must be increased and ecosystem services maintained under conditions for growing crops that are predicted to worsen in many parts of the world. A proposed solution is sustainable intensification of agriculture, whereby yields are increased on land that is currently cultivated, so sparing land to deliver other ecosystem services. Genetically modified (GM) crops are already contributing to sustainable intensification through higher yields and lower environmental impacts, and have potential to deliver further significant improvements. Despite their widespread successful use elsewhere, the European Union (EU) has been slow to introduce GM crops: decisions on applications to import GM commodities are lengthy, and decision-making on applications to cultivate GM crops has virtually ceased. Delayed import approvals result in economic losses, particularly in the EU itself as a result of higher commodity prices. Failure to grant cultivation approvals costs EU farmers opportunities to reduce inputs, and results in loss of agricultural research and development from the EU to countries such as the United States and China. Delayed decision-making in the EU ostensibly results from scientific uncertainty about the effects of using GM crops; however, scientific uncertainty may be a means to justify a political decision to restrict cultivation of GM crops in the EU. The problems associated with delayed decision-making will not improve until there is clarity about the EU's agricultural policy objectives, and whether the use of GM crops will be permitted to contribute to achieving those objectives.

  14. Genetic engineering of yellow betalain pigments beyond the species barrier

    PubMed Central

    Nakatsuka, Takashi; Yamada, Eri; Takahashi, Hideyuki; Imamura, Tomohiro; Suzuki, Mariko; Ozeki, Yoshihiro; Tsujimura, Ikuko; Saito, Misa; Sakamoto, Yuichi; Sasaki, Nobuhiro; Nishihara, Masahiro

    2013-01-01

    Betalains are one of the major plant pigment groups found in some higher plants and higher fungi. They are not produced naturally in any plant species outside of the order Caryophyllales, nor are they produced by anthocyanin-accumulating Caryophyllales. Here, we attempted to reconstruct the betalain biosynthetic pathway as a self-contained system in an anthocyanin-producing plant species. The combined expressions of a tyrosinase gene from shiitake mushroom and a DOPA 4,5-dioxygenase gene from the four-o'clock plant resulted in successful betalain production in cultured cells of tobacco BY2 and Arabidopsis T87. Transgenic tobacco BY2 cells were bright yellow because of the accumulation of betaxanthins. LC-TOF-MS analyses showed that proline-betaxanthin (Pro-Bx) accumulated as the major betaxanthin in these transgenic BY2 cells. Transgenic Arabidopsis T87 cells also produced betaxanthins, but produced lower levels than transgenic BY2 cells. These results illustrate the success of a novel genetic engineering strategy for betalain biosynthesis. PMID:23760173

  15. Model-free Estimation of Recent Genetic Relatedness

    PubMed Central

    Conomos, Matthew P.; Reiner, Alexander P.; Weir, Bruce S.; Thornton, Timothy A.

    2016-01-01

    Genealogical inference from genetic data is essential for a variety of applications in human genetics. In genome-wide and sequencing association studies, for example, accurate inference on both recent genetic relatedness, such as family structure, and more distant genetic relatedness, such as population structure, is necessary for protection against spurious associations. Distinguishing familial relatedness from population structure with genotype data, however, is difficult because both manifest as genetic similarity through the sharing of alleles. Existing approaches for inference on recent genetic relatedness have limitations in the presence of population structure, where they either (1) make strong and simplifying assumptions about population structure, which are often untenable, or (2) require correct specification of and appropriate reference population panels for the ancestries in the sample, which might be unknown or not well defined. Here, we propose PC-Relate, a model-free approach for estimating commonly used measures of recent genetic relatedness, such as kinship coefficients and IBD sharing probabilities, in the presence of unspecified structure. PC-Relate uses principal components calculated from genome-screen data to partition genetic correlations among sampled individuals due to the sharing of recent ancestors and more distant common ancestry into two separate components, without requiring specification of the ancestral populations or reference population panels. In simulation studies with population structure, including admixture, we demonstrate that PC-Relate provides accurate estimates of genetic relatedness and improved relationship classification over widely used approaches. We further demonstrate the utility of PC-Relate in applications to three ancestrally diverse samples that vary in both size and genealogical complexity. PMID:26748516

  16. Genetic Parameter Estimation in Seedstock Swine Population for Growth Performances

    PubMed Central

    Choi, Jae Gwan; Cho, Chung Il; Choi, Im Soo; Lee, Seung Soo; Choi, Tae Jeong; Cho, Kwang Hyun; Park, Byoung Ho; Choy, Yun Ho

    2013-01-01

    The objective of this study was to estimate genetic parameters that are to be used for across-herd genetic evaluations of seed stock pigs at GGP level. Performance data with pedigree information collected from swine breeder farms in Korea were provided by Korea Animal Improvement Association (AIAK). Performance data were composed of final body weights at test days and ultrasound measures of back fat thickness (BF), rib eye area (EMA) and retail cut percentage (RCP). Breeds of swine tested were Landrace, Yorkshire and Duroc. Days to 90 kg body weight (DAYS90) were estimated with linear function of age and ADG calculated from body weights at test days. Ultrasound measures were taken with A-mode ultrasound scanners by trained technicians. Number of performance records after censoring outliers and keeping records pigs only born from year 2000 were of 78,068 Duroc pigs, 101,821 Landrace pigs and 281,421 Yorkshire pigs. Models included contemporary groups defined by the same herd and the same seasons of births of the same year, which was regarded as fixed along with the effect of sex for all traits and body weight at test day as a linear covariate for ultrasound measures. REML estimation was processed with REMLF90 program. Heritability estimates were 0.40, 0.32, 0.21 0.39 for DAYS90, ADG, BF, EMA, RCP, respectively for Duroc population. Respective heritability estimates for Landrace population were 0.43, 0.41, 0.22, and 0.43 and for Yorkshire population were 0.36, 0.38, 0.22, and 0.42. Genetic correlation coefficients of DAYS90 with BF, EMA, or RCP were estimated to be 0.00 to 0.09, −0.15 to −0.25, 0.22 to 0.28, respectively for three breeds populations. Genetic correlation coefficients estimated between BF and EMA was −0.33 to −0.39. Genetic correlation coefficient estimated between BF and RCP was high and negative (−0.78 to −0.85) but the environmental correlation coefficients between these two traits was medium and negative (near −0.35), which describes

  17. Can Genetic Estimators Provide Robust Estimates of the Effective Number of Breeders in Small Populations?

    PubMed Central

    Hoehn, Marion; Gruber, Bernd; Sarre, Stephen D.; Lange, Rebecca; Henle, Klaus

    2012-01-01

    The effective population size (Ne) is proportional to the loss of genetic diversity and the rate of inbreeding, and its accurate estimation is crucial for the monitoring of small populations. Here, we integrate temporal studies of the gecko Oedura reticulata, to compare genetic and demographic estimators of Ne. Because geckos have overlapping generations, our goal was to demographically estimate NbI, the inbreeding effective number of breeders and to calculate the NbI/Na ratio (Na = number of adults) for four populations. Demographically estimated NbI ranged from 1 to 65 individuals. The mean reduction in the effective number of breeders relative to census size (NbI/Na) was 0.1 to 1.1. We identified the variance in reproductive success as the most important variable contributing to reduction of this ratio. We used four methods to estimate the genetic based inbreeding effective number of breeders NbI(gen) and the variance effective populations size NeV(gen) estimates from the genotype data. Two of these methods - a temporal moment-based (MBT) and a likelihood-based approach (TM3) require at least two samples in time, while the other two were single-sample estimators - the linkage disequilibrium method with bias correction LDNe and the program ONeSAMP. The genetic based estimates were fairly similar across methods and also similar to the demographic estimates excluding those estimates, in which upper confidence interval boundaries were uninformative. For example, LDNe and ONeSAMP estimates ranged from 14–55 and 24–48 individuals, respectively. However, temporal methods suffered from a large variation in confidence intervals and concerns about the prior information. We conclude that the single-sample estimators are an acceptable short-cut to estimate NbI for species such as geckos and will be of great importance for the monitoring of species in fragmented landscapes. PMID:23139784

  18. Estimated genetic parameters for carcass traits of Brahman cattle.

    PubMed

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2002-04-01

    Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits. PMID:12008662

  19. Estimated genetic parameters for carcass traits of Brahman cattle.

    PubMed

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2002-04-01

    Heritabilities and genetic and phenotypic correlations were estimated from feedlot and carcass data collected from Brahman calves (n = 504) in central Florida from 1996 to 2000. Data were analyzed using animal models in MTDFREML. Models included contemporary group (n = 44; groups of calves of the same sex, fed in the same pen, slaughtered on the same day) as a fixed effect and calf age in days at slaughter as a continuous variable. Estimated feedlot trait heritabilities were 0.64, 0.67, 0.47, and 0.26 for ADG, hip height at slaughter, slaughter weight, and shrink. The USDA yield grade estimated heritability was 0.71; heritabilities for component traits of yield grade, including hot carcass weight, adjusted 12th rib backfat thickness, loin muscle area, and percentage kidney, pelvic, and heart fat were 0.55, 0.63, 0.44, and 0.46, respectively. Heritability estimates for dressing percentage, marbling score, USDA quality grade, cutability, retail yield, and carcass hump height were 0.77, 0.44, 0.47, 0.71, 0.5, and 0.54, respectively. Estimated genetic correlations of adjusted 12th rib backfat thickness with ADG, slaughter weight, marbling score, percentage kidney, pelvic, and heart fat, and yield grade (0.49, 0.46, 0.56, 0.63, and 0.93, respectively) were generally larger than most literature estimates. Estimated genetic correlations of marbling score with ADG, percentage shrink, loin muscle area, percentage kidney, pelvic, and heart fat, USDA yield grade, cutability, retail yield, and carcass hump height were 0.28, 0.49, 0.44, 0.27, 0.45, -0.43, 0.27, and 0.43, respectively. Results indicate that sufficient genetic variation exists within the Brahman breed for design and implementation of effective selection programs for important carcass quality and yield traits.

  20. Estimation of genetic parameters for reproductive traits in alpacas.

    PubMed

    Cruz, A; Cervantes, I; Burgos, A; Morante, R; Gutiérrez, J P

    2015-12-01

    One of the main deficiencies affecting animal breeding programs in Peruvian alpacas is the low reproductive performance leading to low number of animals available to select from, decreasing strongly the selection intensity. Some reproductive traits could be improved by artificial selection, but very few information about genetic parameters exists for these traits in this specie. The aim of this study was to estimate genetic parameters for six reproductive traits in alpacas both in Suri (SU) and Huacaya (HU) ecotypes, as well as their genetic relationship with fiber and morphological traits. Dataset belonging to Pacomarca experimental farm collected between 2000 and 2014 was used. Number of records for age at first service (AFS), age at first calving (AFC), copulation time (CT), pregnancy diagnosis (PD), gestation length (GL), and calving interval (CI) were, respectively, 1704, 854, 19,770, 5874, 4290 and 934. Pedigree consisted of 7742 animals. Regarding reproductive traits, model of analysis included additive and residual random effects for all traits, and also permanent environmental effect for CT, PD, GL and CI traits, with color and year of recording as fixed effects for all the reproductive traits and also age at mating and sex of calf for GL trait. Estimated heritabilities, respectively for HU and SU were 0.19 and 0.09 for AFS, 0.45 and 0.59 for AFC, 0.04 and 0.05 for CT, 0.07 and 0.05 for PD, 0.12 and 0.20 for GL, and 0.14 and 0.09 for CI. Genetic correlations between them ranged from -0.96 to 0.70. No important genetic correlations were found between reproductive traits and fiber or morphological traits in HU. However, some moderate favorable genetic correlations were found between reproductive and either fiber and morphological traits in SU. According to estimated genetic correlations, some reproductive traits might be included as additional selection criteria in HU. PMID:26490188

  1. Estimation of protein folding free energy barriers from calorimetric data by multi-model Bayesian analysis.

    PubMed

    Naganathan, Athi N; Perez-Jimenez, Raul; Muñoz, Victor; Sanchez-Ruiz, Jose M

    2011-10-14

    The realization that folding free energy barriers can be small enough to result in significant population of the species at the barrier top has sprouted in several methods to estimate folding barriers from equilibrium experiments. Some of these approaches are based on fitting the experimental thermogram measured by differential scanning calorimetry (DSC) to a one-dimensional representation of the folding free-energy surface (FES). Different physical models have been used to represent the FES: (1) a Landau quartic polynomial as a function of the total enthalpy, which acts as an order parameter; (2) the projection onto a structural order parameter (i.e. number of native residues or native contacts) of the free energy of all the conformations generated by Ising-like statistical mechanical models; and (3) mean-field models that define conformational entropy and stabilization energy as functions of a continuous local order parameter. The fundamental question that emerges is how can we obtain robust, model-independent estimates of the thermodynamic folding barrier from the analysis of DSC experiments. Here we address this issue by comparing the performance of various FES models in interpreting the thermogram of a protein with a marginal folding barrier. We chose the small α-helical protein PDD, which folds-unfolds in microseconds crossing a free energy barrier previously estimated as ~1 RT. The fits of the PDD thermogram to the various models and assumptions produce FES with a consistently small free energy barrier separating the folded and unfolded ensembles. However, the fits vary in quality as well as in the estimated barrier. Applying Bayesian probabilistic analysis we rank the fit performance using a statistically rigorous criterion that leads to a global estimate of the folding barrier and its precision, which for PDD is 1.3 ± 0.4 kJ mol(-1). This result confirms that PDD folds over a minor barrier consistent with the downhill folding regime. We have further

  2. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    NASA Astrophysics Data System (ADS)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  3. Estimating free-energy barrier heights for an ultrafast folding protein from calorimetric and kinetic data.

    PubMed

    Godoy-Ruiz, Raquel; Henry, Eric R; Kubelka, Jan; Hofrichter, James; Muñoz, Victor; Sanchez-Ruiz, Jose M; Eaton, William A

    2008-05-15

    Differential scanning calorimetry was used to measure the temperature dependence of the absolute heat capacity of the 35-residue subdomain of the villin headpiece, a protein that folds in 5 mus and is therefore assumed to have a small free-energy barrier separating folded and unfolded states. To obtain an estimate of the barrier height from the calorimetric data, two models, a variable-barrier model and an Ising-like model, were used to fit the heat capacity in excess of the folded state over the temperature range 15-125 degrees C. The variable-barrier model is based on an empirical mathematical form for the density of states, with four adjustable parameters and the enthalpy (H) as a reaction coordinate. The Ising-like model is based on the inter-residue contact map of the X-ray structure with exact enumeration of approximately 10(5) possible conformations, with two adjustable parameters in the partition function, and either the fraction of native contacts (Q) or the number of ordered residues (P) as reaction coordinates. The variable-barrier model provides an excellent fit to the data and yields a barrier height at the folding temperature ranging from 0.4 to 1.1 kcal mol(-1), while the Ising-like model provides a less good fit and yields barrier heights of 2.3 +/- 0.1 kcal mol(-1) and 2.1 +/- 0.1 kcal mol(-1) for the Q and P reaction coordinates, respectively. In both models, the barrier to folding increases with increasing temperature. Assuming a sufficiently large activation energy for diffusion on the free-energy surfaces, both models are consistent with the observation of a temperature-independent folding rate in previously published laser temperature-jump experiments. Analysis of this kinetic data, using an approximate form for the pre-exponential factor of Kramers theory and the 70 ns relaxation time for the fast phase that precedes the unfolding/refolding relaxation to determine the diffusion coefficient, results in a barrier height of 1.6 +/- 0.3 kcal mol

  4. Estimation of genetic parameters for reproductive traits in Shall sheep.

    PubMed

    Amou Posht-e-Masari, Hesam; Shadparvar, Abdol Ahad; Ghavi Hossein-Zadeh, Navid; Hadi Tavatori, Mohammad Hossein

    2013-06-01

    The objective of this study was to estimate genetic parameters for reproductive traits in Shall sheep. Data included 1,316 records on reproductive performances of 395 Shall ewes from 41 sires and 136 dams which were collected from 2001 to 2007 in Shall breeding station in Qazvin province at the Northwest of Iran. Studied traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). Test of significance to include fixed effects in the statistical model was performed using the general linear model procedure of SAS. The effects of lambing year and ewe age at lambing were significant (P<0.05). Genetic parameters were estimated using restricted maximum likelihood procedure, under repeatability animal models. Direct heritability estimates were 0.02, 0.01, 0.47, 0.40, 0.15, and 0.03 for LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW, respectively, and corresponding repeatabilities were 0.02, 0.01, 0.73, 0.41, 0.27, and 0.03. Genetic correlation estimates between traits ranged from -0.99 for LSW-LMWLW to 0.99 for LSB-TLWB, LSW-TLWB, and LSW-TLWW. Phenotypic correlations ranged from -0.71 for LSB-LMWLW to 0.98 for LSB-TLWW and environmental correlations ranged from -0.89 for LSB-LMWLW to 0.99 for LSB-TLWW. Results showed that the highest heritability estimates were for LMWLB and LMWLW suggesting that direct selection based on these traits could be effective. Also, strong positive genetic correlations of LMWLB and LMWLW with other traits may improve meat production efficiency in Shall sheep.

  5. Estimation of genetic parameters for reproductive traits in Shall sheep.

    PubMed

    Amou Posht-e-Masari, Hesam; Shadparvar, Abdol Ahad; Ghavi Hossein-Zadeh, Navid; Hadi Tavatori, Mohammad Hossein

    2013-06-01

    The objective of this study was to estimate genetic parameters for reproductive traits in Shall sheep. Data included 1,316 records on reproductive performances of 395 Shall ewes from 41 sires and 136 dams which were collected from 2001 to 2007 in Shall breeding station in Qazvin province at the Northwest of Iran. Studied traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), litter mean weight per lamb weaned (LMWLW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW). Test of significance to include fixed effects in the statistical model was performed using the general linear model procedure of SAS. The effects of lambing year and ewe age at lambing were significant (P<0.05). Genetic parameters were estimated using restricted maximum likelihood procedure, under repeatability animal models. Direct heritability estimates were 0.02, 0.01, 0.47, 0.40, 0.15, and 0.03 for LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW, respectively, and corresponding repeatabilities were 0.02, 0.01, 0.73, 0.41, 0.27, and 0.03. Genetic correlation estimates between traits ranged from -0.99 for LSW-LMWLW to 0.99 for LSB-TLWB, LSW-TLWB, and LSW-TLWW. Phenotypic correlations ranged from -0.71 for LSB-LMWLW to 0.98 for LSB-TLWW and environmental correlations ranged from -0.89 for LSB-LMWLW to 0.99 for LSB-TLWW. Results showed that the highest heritability estimates were for LMWLB and LMWLW suggesting that direct selection based on these traits could be effective. Also, strong positive genetic correlations of LMWLB and LMWLW with other traits may improve meat production efficiency in Shall sheep. PMID:23334381

  6. Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity.

    PubMed

    Eidesen, Pernille Bronken; Ehrich, Dorothee; Bakkestuen, Vegar; Alsos, Inger Greve; Gilg, Oliver; Taberlet, Pierre; Brochmann, Christian

    2013-11-01

    We provide the first comparative multispecies analysis of spatial genetic structure and diversity in the circumpolar Arctic using a common strategy for sampling and genetic analyses. We aimed to identify and explain potential general patterns of genetic discontinuity/connectivity and diversity, and to compare our findings with previously published hypotheses. We collected and analyzed 7707 samples of 17 widespread arctic-alpine plant species for amplified fragment length polymorphisms (AFLPs). Genetic structure, diversity and distinctiveness were analyzed for each species, and extrapolated to cover the geographic range of each species. The resulting maps were overlaid to produce metamaps. The Arctic and Atlantic Oceans, the Greenlandic ice cap, the Urals, and lowland areas between southern mountain ranges and the Arctic were the strongest barriers against gene flow. Diversity was highest in Beringia and gradually decreased into formerly glaciated areas. The highest degrees of distinctiveness were observed in Siberia. We conclude that large-scale general patterns exist in the Arctic, shaped by the Pleistocene glaciations combined with long-standing physical barriers against gene flow. Beringia served as both refugium and source for interglacial (re)colonization, whereas areas further west in Siberia served as refugia, but less as sources for (re)colonization.

  7. Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species.

    PubMed Central

    Rieseberg, L H; Whitton, J; Gardner, K

    1999-01-01

    Genetic analyses of reproductive barriers represent one of the few methods by which theories of speciation can be tested. However, genetic study is often restricted to model organisms that have short generation times and are easily propagated in the laboratory. Replicate hybrid zones with a diversity of recombinant genotypes of varying age offer increased resolution for genetic mapping experiments and expand the pool of organisms amenable to genetic study. Using 88 markers distributed across 17 chromosomes, we analyze the introgression of chromosomal segments of Helianthus petiolaris into H. annuus in three natural hybrid zones. Introgression was significantly reduced relative to neutral expectations for 26 chromosomal segments, suggesting that each segment contains one or more factors that contribute to isolation. Pollen sterility is significantly associated with 16 of these 26 segments, providing a straightforward explanation of why this subset of blocks is disadvantageous in hybrids. In addition, comparison of rates of introgression across colinear vs. rearranged chromosomes indicates that close to 50% of the barrier to introgression is due to chromosomal rearrangements. These results demonstrate the utility of hybrid zones for identifying factors contributing to isolation and verify the prediction of increased resolution relative to controlled crosses. PMID:10353912

  8. [Integral estimation of genetic effects of ionizing radiation].

    PubMed

    Shevchenko, V A

    1997-01-01

    A system of criteria (direct, indirect, extrapolational, integral, populational, evolutional) has been proposed to estimate the consequences of irradiation of flora, fauna and human population. This system makes it possible to obtain the most comprehensive estimate of genetic effects from exposure of live organisms to ionizing radiations. An attempt has been made to use extrapolational approaches for assessing the genetic risk on the basis of the results of cytogenetic examination of the human population in a number of regions exposed to the action of ionizing radiations as a result of the Chernobyl accident, in connection with the activity of the chemical plant Mayak in the Chelyabinsk region, nuclear explosions at the Semipalatinsk nuclear test site, the accident at the Three Mile Island nuclear power plant in the U.S.A. PMID:9599614

  9. Genetic differentiation among populations of the brooding soft coral Clavularia koellikeri on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bastidas, C.; Benzie, J.; Fabricius, K.

    2002-09-01

    The contribution of sexual and asexual reproduction, the spatial patterns of genetic structure, and the potential gene flow among populations were determined for the soft coral Clavularia koellikeri (Octocorallia: Alcyonacea, Clavulariidae) at ten sites among six reefs from two well-separated regions of the Great Barrier Reef (GBR), Australia. Eight allozyme loci indicated that colonies of C. koellikeri separated ≥3 m were produced sexually. Genetic diversity was lower in the southern (18°S) compared with the northern (10°S) populations, suggesting that reefs closer to the southernmost limit of the distribution of C. koellikeri within the GBR (19°S) may represent a more marginal habitat for this species. High levels of genetic differentiation were significant at all spatial scales (sites within reefs, reefs, and regions) from <4 km up to 1,000 km, indicating that C. koellikeri has restricted dispersal, consistent with having brooded larvae.

  10. Estimating genetic parameters in natural populations using the "animal model".

    PubMed Central

    Kruuk, Loeske E B

    2004-01-01

    Estimating the genetic basis of quantitative traits can be tricky for wild populations in natural environments, as environmental variation frequently obscures the underlying evolutionary patterns. I review the recent application of restricted maximum-likelihood "animal models" to multigenerational data from natural populations, and show how the estimation of variance components and prediction of breeding values using these methods offer a powerful means of tackling the potentially confounding effects of environmental variation, as well as generating a wealth of new areas of investigation. PMID:15306404

  11. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.

    PubMed

    Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P

    2015-09-01

    Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances.

  12. Inclusion of African Americans in genetic studies: what is the barrier?

    PubMed

    Hartz, Sarah M; Johnson, Eric O; Saccone, Nancy L; Hatsukami, Dorothy; Breslau, Naomi; Bierut, Laura J

    2011-08-01

    To facilitate an increase in the amount of data on minority subjects collected for genetic databases, the authors attempted to clarify barriers to African-American participation in genetic studies. They randomly sampled 78,072 subjects from the community (Missouri Family Registry, 2002-2007). Of these, 28,658 participated in a telephone screening interview, 3,179 were eligible to participate in the genetic study, and 1,919 participated in the genetic study. Response rates were examined in relation to the proportion of subjects in the area who were African-American according to US Census 2000 zip code demographic data. Compared with zip codes with fewer than 5% African Americans (average = 2% African-American), zip codes with at least 60% African Americans (average = 87% African-American) had higher proportions of subjects with an incorrect address or telephone number but lower proportions of subjects who did not answer the telephone and subjects who refused the telephone interview (P < 0.0001). Based on reported race from the telephone screening, 71% of eligible African Americans and 57% of eligible European Americans participated in the genetic study (P < 0.0001). The results of this study suggest that increasing the number of African Americans in genetic databases may be achieved by increasing efforts to locate and contact them.

  13. Making sense of genetic estimates of effective population size.

    PubMed

    Waples, Robin S

    2016-10-01

    The last decade has seen an explosion of interest in use of genetic markers to estimate effective population size, Ne . Effective population size is important both theoretically (Ne is a key parameter in almost every aspect of evolutionary biology) and for practical application (Ne determines rates of genetic drift and loss of genetic variability and modulates the effectiveness of selection, so it is crucial to consider in conservation). As documented by Palstra & Fraser (), most of the recent growth in Ne estimation can be attributed to development or refinement of methods that can use a single sample of individuals (the older temporal method requires at least two samples separated in time). As with other population genetic methods, performance of new Ne estimators is typically evaluated with simulated data for a few scenarios selected by the author(s). Inevitably, these initial evaluations fail to fully consider the consequences of violating simplifying assumptions, such as discrete generations, closed populations of constant size and selective neutrality. Subsequently, many researchers studying natural or captive populations have reported estimates of Ne for multiple methods; often these estimates are congruent, but that is not always the case. Because true Ne is rarely known in these empirical studies, it is difficult to make sense of the results when estimates differ substantially among methods. What is needed is a rigorous, comparative analysis under realistic scenarios for which true Ne is known. Recently, Gilbert & Whitlock () did just that for both single-sample and temporal methods under a wide range of migration schemes. In the current issue of Molecular Ecology, Wang () uses simulations to evaluate performance of four single-sample Ne estimators. In addition to assessing effects of true Ne , sample size, and number of loci, Wang also evaluated performance under changing abundance, physical linkage and genotyping errors, as well as for some alternative

  14. Performance of default risk model with barrier option framework and maximum likelihood estimation: Evidence from Taiwan

    NASA Astrophysics Data System (ADS)

    Chou, Heng-Chih; Wang, David

    2007-11-01

    We investigate the performance of a default risk model based on the barrier option framework with maximum likelihood estimation. We provide empirical validation of the model by showing that implied default barriers are statistically significant for a sample of construction firms in Taiwan over the period 1994-2004. We find that our model dominates the commonly adopted models, Merton model, Z-score model and ZETA model. Moreover, we test the n-year-ahead prediction performance of the model and find evidence that the prediction accuracy of the model improves as the forecast horizon decreases. Finally, we assess the effect of estimated default risk on equity returns and find that default risk is able to explain equity returns and that default risk is a variable worth considering in asset-pricing tests, above and beyond size and book-to-market.

  15. Estimation of genetic trend in racing performance of thoroughbred horses.

    PubMed

    Gaffney, B; Cunningham, E P

    1988-04-21

    Thoroughbred horses have been bred exclusively for racing in England since Tudor times and thoroughbred horse racing is now practised in over 40 countries and involves more than half-a-million horses worldwide. The genetic origins of the thoroughbred go back largely to horses imported from the Middle East and North Africa to England in the late seventeenth and early eighteenth centuries. Since the establishment of the Stud Book in 1791, the population has been effectively closed to outside sources, and over 80% of the thoroughbred population's gene pool derives from 31 known ancestors from this early period. Despite intense directional selection, especially on the male side, and the generally high heritabilities of various measures of racing performance, winning times of classic races have not improved in recent decades. One possible explanation for this is that additive genetic variance in performance may have been exhausted in the face of strong selection. To test this, we have estimated the genetic trend in performance over the period 1952-77 using TIMEFORM handicap ratings which are based entirely on the horse's own performance, and express its racing merit as a weight in pounds which the compilers believe the horse should carry in an average free-handicap race. These ratings take into account such factors as the firmness of the ground, the distance and the level of the competition. Our results indicate that the failure of winning times to improve is not due to insufficient genetic variance in the thoroughbred population as a whole. PMID:3357536

  16. Using genetic markers to estimate the pollen dispersal curve.

    PubMed

    Austerlitz, Frederic; Dick, Christopher W; Dutech, Cyril; Klein, Etienne K; Oddou-Muratorio, Sylvie; Smouse, Peter E; Sork, Victoria L

    2004-04-01

    Pollen dispersal is a critical process that shapes genetic diversity in natural populations of plants. Estimating the pollen dispersal curve can provide insight into the evolutionary dynamics of populations and is essential background for making predictions about changes induced by perturbations. Specifically, we would like to know whether the dispersal curve is exponential, thin-tailed (decreasing faster than exponential), or fat-tailed (decreasing slower than the exponential). In the latter case, rare events of long-distance dispersal will be much more likely. Here we generalize the previously developed TWOGENER method, assuming that the pollen dispersal curve belongs to particular one- or two-parameter families of dispersal curves and estimating simultaneously the parameters of the dispersal curve and the effective density of reproducing individuals in the population. We tested this method on simulated data, using an exponential power distribution, under thin-tailed, exponential and fat-tailed conditions. We find that even if our estimates show some bias and large mean squared error (MSE), we are able to estimate correctly the general trend of the curve - thin-tailed or fat-tailed - and the effective density. Moreover, the mean distance of dispersal can be correctly estimated with low bias and MSE, even if another family of dispersal curve is used for the estimation. Finally, we consider three case studies based on forest tree species. We find that dispersal is fat-tailed in all cases, and that the effective density estimated by our model is below the measured density in two of the cases. This latter result may reflect the difficulty of estimating two parameters, or it may be a biological consequence of variance in reproductive success of males in the population. Both the simulated and empirical findings demonstrate the strong potential of TWOGENER for evaluating the shape of the dispersal curve and the effective density of the population (d(e)). PMID:15012767

  17. Evaluating noninvasive genetic sampling techniques to estimate large carnivore abundance.

    PubMed

    Mumma, Matthew A; Zieminski, Chris; Fuller, Todd K; Mahoney, Shane P; Waits, Lisette P

    2015-09-01

    Monitoring large carnivores is difficult because of intrinsically low densities and can be dangerous if physical capture is required. Noninvasive genetic sampling (NGS) is a safe and cost-effective alternative to physical capture. We evaluated the utility of two NGS methods (scat detection dogs and hair sampling) to obtain genetic samples for abundance estimation of coyotes, black bears and Canada lynx in three areas of Newfoundland, Canada. We calculated abundance estimates using program capwire, compared sampling costs, and the cost/sample for each method relative to species and study site, and performed simulations to determine the sampling intensity necessary to achieve abundance estimates with coefficients of variation (CV) of <10%. Scat sampling was effective for both coyotes and bears and hair snags effectively sampled bears in two of three study sites. Rub pads were ineffective in sampling coyotes and lynx. The precision of abundance estimates was dependent upon the number of captures/individual. Our simulations suggested that ~3.4 captures/individual will result in a < 10% CV for abundance estimates when populations are small (23-39), but fewer captures/individual may be sufficient for larger populations. We found scat sampling was more cost-effective for sampling multiple species, but suggest that hair sampling may be less expensive at study sites with limited road access for bears. Given the dependence of sampling scheme on species and study site, the optimal sampling scheme is likely to be study-specific warranting pilot studies in most circumstances. PMID:25693632

  18. Estimating microsatellite based genetic diversity in Rhode Island Red chicken.

    PubMed

    Das, A K; Kumar, S; Rahim, A

    2015-01-01

    This study aimed to estimate microsatellite based genetic diversity in two lines (the selected RIR(S) and control line RIR(C)) of Rhode Island Red (RIR) chicken. Genomic DNA of 24 randomly selected birds maintained at Central Avian Research Institute (India) and 24 microsatellite markers were used. Microsatellite alleles were determined on 6% urea-PAGE, recorded using GelDoc system and the samples were genotyped. Nei's heterozygosity and Botstein's polymorphic information content (PIC) at each microsatellite locus were estimated. Wright's fixation indices and gene flow were estimated using POPGENE software. All the microsatellite loci were polymorphic and the estimated PIC ranged from 0.3648 (MCW0059) to 0.7819 (ADL0267) in RIR(S) and from 0.2392 (MCW0059) to 0.8620 (ADL0136) in RIR(C). Most of the loci were highly informative (PIC>0.50) in the both lines, except for five loci in RIR(S) and six loci in RIR(C) line. Nei's heterozygosity per locus ranged from 0.4800 (MCW0059) to 0.8056 (ADL0267) in RIR(S) and from 0.2778 (MCW0059) to 0.875 (ADL0136) in RIR(C). Out of 24 loci, 15 (62.5%) in RIR(S) and 14 loci (58.33%) in RIR(C) revealed moderate to high negative FIS index indicating heterozygote excess for these loci in corresponding lines, but the rest revealed positive FIS indicating heterozygosity deficiency. A mean FIS across the both lines indicated overall 10.77% heterozygosity deficit and a mean FIT indicated 17.19% inbreeding co-efficient favoring homozygosity over the two lines. The mean FST indicated that 10.18% of the microsatellite variation between the two lines was due to their genetic difference. PMID:27175188

  19. A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

    PubMed Central

    Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Zheng, Mingyue; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian

    2015-01-01

    Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797

  20. Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness

    PubMed Central

    Hung, Hsiao-Tung; Koh, Kyunghee; Sowcik, Mallory; Sehgal, Amita; Kelz, Max B.

    2013-01-01

    A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. PMID:24039590

  1. Estimation of recombination frequency in bi-parental genetic populations.

    PubMed

    Sun, Ziqi; Li, Huihui; Zhang, Luyan; Wang, Jiankang

    2012-06-01

    Summary Linkage analysis plays an important role in genetic studies. In linkage analysis, accurate estimation of recombination frequency is essential. Many bi-parental populations have been used, and determining an appropriate population is of great importance in precise recombination frequency. In this study, we investigated the estimation efficiency of recombination frequency in 12 bi-parental populations. The criteria that we used for comparison were LOD score in testing linkage relationship, deviation between estimated and real recombination frequency, standard error (SE) of estimates and the least theoretical population size (PS) required to observe at least one recombinant and to declare the statistically significant linkage relationship. Theoretical and simulation results indicated that larger PS and smaller recombination frequency resulted in higher LOD score and smaller deviation. Lower LOD score, higher deviation and higher SE for estimating the recombination frequency in the advanced backcrossing and selfing populations are larger than those in backcross and F2 populations, respectively. For advanced backcrossing and selfing populations, larger populations were needed in order to observe at least one recombinant and to declare significant linkage. In comparison, in F2 and F3 populations higher LOD score, lower deviation and SE were observed for co-dominant markers. A much larger population was needed to observe at least one recombinant and to detect loose linkage for dominant and recessive markers. Therefore, advanced backcrossing and selfing populations had lower precision in estimating the recombination frequency. F2 and F3 populations together with co-dominant markers represent the ideal situation for linkage analysis and linkage map construction.

  2. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier

    NASA Astrophysics Data System (ADS)

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-01

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.

  3. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier.

    PubMed

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-01

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort. PMID:27609008

  4. Models for estimation of service life of concrete barriers in low-level radioactive waste disposal

    SciTech Connect

    Walton, J.C.; Plansky, L.E.; Smith, R.W. )

    1990-09-01

    Concrete barriers will be used as intimate parts of systems for isolation of low level radioactive wastes subsequent to disposal. This work reviews mathematical models for estimating the degradation rate of concrete in typical service environments. The models considered cover sulfate attack, reinforcement corrosion, calcium hydroxide leaching, carbonation, freeze/thaw, and cracking. Additionally, fluid flow, mass transport, and geochemical properties of concrete are briefly reviewed. Example calculations included illustrate the types of predictions expected of the models. 79 refs., 24 figs., 6 tabs.

  5. Genetic Barrier to Direct Acting Antivirals in HCV Sequences Deposited in the European Databank

    PubMed Central

    Tovo, Cristiane Valle; Gorini da Veiga, Ana Beatriz; Machado, André Luiz; West, John

    2016-01-01

    Background & Aims Development of resistance results from mutations in the viral genome, and the presence of selective drug pressure leads to the emergence of a resistant virus population. The aim of this study was to analyze the impact of genetic variability on the genetic barrier to drug resistance to DAAs. Methods The genetic barrier was quantified based on the number and type of nucleotide mutations required to impart resistance, considering full-length HCV NS3, NS5A and NS5B regions segregated by genotype into subtypes 1a, 1b, 2a, 2b and 3a. This study analyzeds 789 NS3 sequences, 708 sequences and 536 NS5B sequences deposited in the European Hepatitis C Virus Database, in the following resistance-associated positions: NS3: F43/I/L/S/V, Q80K/R, R155K/G, A156G/S/T and D168A/C/E/G/H/N/T/V/Y; NS5A: L/M28A/T/V, Q30E/H/R, L31F/I/M/V, H58D or P58S and Y93C/F/H/N/S; NS5B: S282P/R/T, C316H/N/Y, S368T, Y448C/H, S556G/R, D559R. Results Variants that require only one transversion in NS3 were found in 4 positions and include F43S, R80K, R155K/G and A156T. The genetic barrier to resistance shows subtypic differences at position 155 of the NS3 gene where a single transition is necessary in subtype 1a. In the NS5A gene, 5 positions where only one nucleotide change can confer resistance were found, such as L31M which requires one transversion in all subtypes, except in 0.28% of 1b sequences; and R30H, generated by a single transition, which was found in 10.25% of the sequences of genotype 1b. Other subtypic differences were observed at position 58, where resistance is less likely in genotype 1a because a transversion is required to create the variant 58S. For the NS5B inhibitors, the genetic barrier at positions conferring resistance was nearly identical in subtypes 1a and 1b, and single transitions or transversions were necessary in 5 positions to generate a drug-resistant variant of HCV. The positions C316Y and S556D required only one transition in all genotypes, Y448H and S

  6. Marker-based estimation of genetic parameters in genomics.

    PubMed

    Hu, Zhiqiu; Yang, Rong-Cai

    2014-01-01

    Linear mixed model (LMM) analysis has been recently used extensively for estimating additive genetic variances and narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical procedure known as symmetric differences squared (SDS) as it may serve as a viable alternative when the LMM methods have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable alternative particularly when analyzing 'big' genomic data sets. PMID:25025305

  7. Marker-Based Estimation of Genetic Parameters in Genomics

    PubMed Central

    Hu, Zhiqiu; Yang, Rong-Cai

    2014-01-01

    Linear mixed model (LMM) analysis has been recently used extensively for estimating additive genetic variances and narrow-sense heritability in many genomic studies. While the LMM analysis is computationally less intensive than the Bayesian algorithms, it remains infeasible for large-scale genomic data sets. In this paper, we advocate the use of a statistical procedure known as symmetric differences squared (SDS) as it may serve as a viable alternative when the LMM methods have difficulty or fail to work with large datasets. The SDS procedure is a general and computationally simple method based only on the least squares regression analysis. We carry out computer simulations and empirical analyses to compare the SDS procedure with two commonly used LMM-based procedures. Our results show that the SDS method is not as good as the LMM methods for small data sets, but it becomes progressively better and can match well with the precision of estimation by the LMM methods for data sets with large sample sizes. Its major advantage is that with larger and larger samples, it continues to work with the increasing precision of estimation while the commonly used LMM methods are no longer able to work under our current typical computing capacity. Thus, these results suggest that the SDS method can serve as a viable alternative particularly when analyzing ‘big’ genomic data sets. PMID:25025305

  8. Microgeographic Population Genetic Structure of Baylisascaris procyonis (Nematoda: Ascaroidae) in Western Michigan Indicates the Grand River Is a Barrier to Gene Flow.

    PubMed

    Sarkissian, Christina A; Campbell, Sara K; Dharmarajan, Guha; Jacquot, Joseph; Page, L Kristen; Graham, Douglas H

    2015-12-01

    Baylisascaris procyonis , the raccoon roundworm, is increasingly being recognized for its zoonotic and public health importance. Fine-scale analyses of the population genetics of this species have been hampered due to a lack of appropriate genetic markers. To this end, we developed 8 novel polymorphic microsatellites for B. procyonis and used these markers to elucidate microgeographic structuring of this parasite in a 500-km(2) study area in western Michigan. Our analyses revealed significant levels of genetic differentiation amongst the 74 worms collected from 10 different raccoons. Critically, Bayesian clustering indicated 2 genetically distinct groups, one on either side of the Grand River which bisects our study area. Estimates of F(ST), and results from AMOVA and isolation by distance, further corroborated a scenario whereby the river is acting as a barrier to gene flow, a rather unexpected finding given the high vagility of raccoons and microgeographic scale of the analysis. It is possible that the Grand River is a major dispersal barrier for B. procyonis because raccoons are most likely to disperse across the river when it is frozen, and worm burden in raccoons approaches zero during the winter.

  9. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    PubMed Central

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  10. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach.

    PubMed

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447-2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8-30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  11. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach.

    PubMed

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447-2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8-30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics.

  12. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice

    PubMed Central

    Jiang, Xiao-Hua; Bukhari, Ihtisham; Zheng, Wei; Yin, Shi; Wang, Zheng; Cooke, Howard J; Shi, Qing-Hua

    2014-01-01

    The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives. PMID:24713828

  13. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice.

    PubMed

    Jiang, Xiao-Hua; Bukhari, Ihtisham; Zheng, Wei; Yin, Shi; Wang, Zheng; Cooke, Howard J; Shi, Qing-Hua

    2014-01-01

    The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.

  14. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef

    PubMed Central

    Mellin, Camille; Pratchett, Morgan S.; Hoey, Jessica; Anthony, Kenneth R.N.; Cheal, Alistair J.; Miller, Ian; Sweatman, Hugh; Cowan, Zara L.; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J.

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014. PMID:27635314

  15. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef.

    PubMed

    MacNeil, M Aaron; Mellin, Camille; Pratchett, Morgan S; Hoey, Jessica; Anthony, Kenneth R N; Cheal, Alistair J; Miller, Ian; Sweatman, Hugh; Cowan, Zara L; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  16. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef.

    PubMed

    MacNeil, M Aaron; Mellin, Camille; Pratchett, Morgan S; Hoey, Jessica; Anthony, Kenneth R N; Cheal, Alistair J; Miller, Ian; Sweatman, Hugh; Cowan, Zara L; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014. PMID:27635314

  17. Joint estimation of crown of thorns (Acanthaster planci) densities on the Great Barrier Reef

    PubMed Central

    Mellin, Camille; Pratchett, Morgan S.; Hoey, Jessica; Anthony, Kenneth R.N.; Cheal, Alistair J.; Miller, Ian; Sweatman, Hugh; Cowan, Zara L.; Taylor, Sascha; Moon, Steven; Fonnesbeck, Chris J.

    2016-01-01

    Crown-of-thorns starfish (CoTS; Acanthaster spp.) are an outbreaking pest among many Indo-Pacific coral reefs that cause substantial ecological and economic damage. Despite ongoing CoTS research, there remain critical gaps in observing CoTS populations and accurately estimating their numbers, greatly limiting understanding of the causes and sources of CoTS outbreaks. Here we address two of these gaps by (1) estimating the detectability of adult CoTS on typical underwater visual count (UVC) surveys using covariates and (2) inter-calibrating multiple data sources to estimate CoTS densities within the Cairns sector of the Great Barrier Reef (GBR). We find that, on average, CoTS detectability is high at 0.82 [0.77, 0.87] (median highest posterior density (HPD) and [95% uncertainty intervals]), with CoTS disc width having the greatest influence on detection. Integrating this information with coincident surveys from alternative sampling programs, we estimate CoTS densities in the Cairns sector of the GBR averaged 44 [41, 48] adults per hectare in 2014.

  18. GENETIC FACTORS ASSOCIATED WITH MATING SYSTEM CAUSE A PARTIAL REPRODUCTIVE BARRIER BETWEEN TWO PARAPATRIC SPECIES OF LEAVENWORTHIA (BRASSICACEAE)1

    PubMed Central

    Koelling, Vanessa A.; Mauricio, Rodney

    2010-01-01

    Reproductive barriers play a major role in the origin and maintenance of biodiversity by restricting gene flow between species. Although both pre- and postzygotic barriers often isolate species, prezygotic barriers are thought to contribute more to reproductive isolation. We investigated possible reproductive barriers between Leavenworthia alabamica and L. crassa, parapatric species with high morphological and ecological similarity and the ability to hybridize. Using greenhouse and field experiments, we tested for habitat isolation and genetic incompatibilities. From controlled crosses, we identified unilateral incompatibility (a partial prezygotic barrier associated with the self-incompatibility system), but no evidence of other genetic incompatibilities. We found a small reduction in pollen viability of F1 hybrids and early germination of F1, F2, and BC hybrids relative to L. alabamica and L. crassa in a common garden experiment, but the effect on fitness was not tested. Field studies of hybrid pollen viability and germination are needed to determine if they contribute to reproductive isolation. In a reciprocal transplant, we found no evidence of habitat isolation or reduced hybrid survival (from seedling to adult stage) or reproduction. These data suggest unilateral incompatibility partially reproductively isolates L. alabamica and L. crassa, but no other reproductive barriers could be detected. PMID:20526457

  19. Rise of oceanographic barriers in continuous populations of a cetacean: the genetic structure of harbour porpoises in Old World waters

    PubMed Central

    Fontaine, Michaël C; Baird, Stuart JE; Piry, Sylvain; Ray, Nicolas; Tolley, Krystal A; Duke, Sarah; Birkun, Alexei; Ferreira, Marisa; Jauniaux, Thierry; Llavona, Ángela; Öztürk, Bayram; A Öztürk, Ayaka; Ridoux, Vincent; Rogan, Emer; Sequeira, Marina; Siebert, Ursula; Vikingsson, Gísli A; Bouquegneau, Jean-Marie; Michaux, Johan R

    2007-01-01

    Background Understanding the role of seascape in shaping genetic and demographic population structure is highly challenging for marine pelagic species such as cetaceans for which there is generally little evidence of what could effectively restrict their dispersal. In the present work, we applied a combination of recent individual-based landscape genetic approaches to investigate the population genetic structure of a highly mobile extensive range cetacean, the harbour porpoise in the eastern North Atlantic, with regards to oceanographic characteristics that could constrain its dispersal. Results Analyses of 10 microsatellite loci for 752 individuals revealed that most of the sampled range in the eastern North Atlantic behaves as a 'continuous' population that widely extends over thousands of kilometres with significant isolation by distance (IBD). However, strong barriers to gene flow were detected in the south-eastern part of the range. These barriers coincided with profound changes in environmental characteristics and isolated, on a relatively small scale, porpoises from Iberian waters and on a larger scale porpoises from the Black Sea. Conclusion The presence of these barriers to gene flow that coincide with profound changes in oceanographic features, together with the spatial variation in IBD strength, provide for the first time strong evidence that physical processes have a major impact on the demographic and genetic structure of a cetacean. This genetic pattern further suggests habitat-related fragmentation of the porpoise range that is likely to intensify with predicted surface ocean warming. PMID:17651495

  20. Historical habitat barriers prevent ring-like genetic continuity throughout the distribution of threatened Alameda Striped Racers (Coluber lateralis euryxanthus)

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Wood, Dustin A.; Swaim, Karen; Fisher, Robert N.; Vandergast, Amy

    2016-01-01

    We used microsatellites and mtDNA sequences to examine the mixed effects of geophysical, habitat, and contemporary urban barriers on the genetics of threatened Alameda Striped Racers (Coluber lateralis euryxanthus), a species with close ties to declining coastal scrub and chaparral habitat in the eastern San Francisco Bay area of California. We used cluster assignments to characterize population genetic structuring with respect to land management units and approximate Bayesian analysis to rank the ability of five alternative evolutionary hypotheses to explain the inferred structure. Then, we estimated rates of contemporary and historical migration among the major clusters and measured the fit of different historical migration models to better understand the formation of the current population structure. Our results reveal a ring-like pattern of historical connectivity around the Tri-Valley area of the East Bay (i.e., San Ramon, Amador, and Livermore valleys), with clusters largely corresponding to different management units. We found no evidence of continuous gene flow throughout the ring, however, and that the main gap in continuity is centered across the Livermore Valley. Historical migration models support higher rates of gene flow away from the terminal ends of the ring on the north and south sides of the Valley, compared with rates into those areas from western sites that border the interior San Francisco Bay. We attribute the break in ring-like connectivity to the presence of unsuitable habitat within the Livermore Valley that has been reinforced by 20th century urbanization, and the asymmetry in gene flow rates to spatial constraints on movement and east–west environmental gradients influenced by the proximity of the San Francisco Bay.

  1. Orbit design and estimation for surveillance missions using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Abdelkhalik, Osama Mohamed Omar

    2005-11-01

    The problem of observing a given set of Earth target sites within an assigned time frame is examined. Attention is given mainly to visiting these sites as sub-satellite nadir points. Solutions to this problem in the literature require thrusters to continuously maneuver the satellite from one site to another. A natural solution is proposed. A natural solution is a gravitational orbit that enables the spacecraft to satisfy the mission requirements without maneuvering. Optimization of a penalty function is performed to find natural solutions for satellite orbit configurations. This penalty function depends on the mission objectives. Two mission objectives are considered: maximum observation time and maximum resolution. The penalty function poses multi minima and a genetic algorithm technique is used to solve this problem. In the case that there is no one orbit satisfying the mission requirements, a multi-orbit solution is proposed. In a multi-orbit solution, the set of target sites is split into two groups. Then the developed algorithm is used to search for a natural solution for each group. The satellite has to be maneuvered between the two solution orbits. Genetic algorithms are used to find the optimal orbit transfer between the two orbits using impulsive thrusters. A new formulation for solving the orbit maneuver problem using genetic algorithms is developed. The developed formulation searches for a minimum fuel consumption maneuver and guarantees that the satellite will be transferred exactly to the final orbit even if the solution is non-optimal. The results obtained demonstrate the feasibility of finding natural solutions for many case studies. The problem of the design of suitable satellite constellation for Earth observing applications is addressed. Two cases are considered. The first is the remote sensing missions for a particular region with high frequency and small swath width. The second is the interferometry radar Earth observation missions. In satellite

  2. The Individualized Genetic Barrier Predicts Treatment Response in a Large Cohort of HIV-1 Infected Patients

    PubMed Central

    Beerenwinkel, Niko; Montazeri, Hesam; Schuhmacher, Heike; Knupfer, Patrick; von Wyl, Viktor; Furrer, Hansjakob; Battegay, Manuel; Hirschel, Bernard; Cavassini, Matthias; Vernazza, Pietro; Bernasconi, Enos; Yerly, Sabine; Böni, Jürg; Klimkait, Thomas; Cellerai, Cristina; Günthard, Huldrych F.

    2013-01-01

    The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests. PMID:24009493

  3. Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii

    USGS Publications Warehouse

    Guy, T.J.; Gresswell, R.E.; Banks, M.A.

    2008-01-01

    Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.

  4. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches

    PubMed Central

    Bérénos, Camillo; Ellis, Philip A; Pilkington, Jill G; Pemberton, Josephine M

    2014-01-01

    The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics

  5. Could refuge theory and rivers acting as barriers explain the genetic variability distribution in the Atlantic Forest?

    PubMed

    Cazé, Ana Luiza R; Mäder, Geraldo; Nunes, Teonildes S; Queiroz, Luciano P; de Oliveira, Guilherme; Diniz-Filho, José Alexandre F; Bonatto, Sandro L; Freitas, Loreta B

    2016-08-01

    The Atlantic Forest is one of the most species-rich ecoregions in the world. The historical origins of this richness and the evolutionary processes that produced diversification and promoted speciation in this ecosystem remain poorly understood. In this context, focusing on Passiflora contracta, an endemic species from the Atlantic Forest distributed exclusively at sea level along forest edges, this study aimed to characterize the patterns of genetic variability and explore two hypotheses that attempt to explain the possible causes of the genetic diversity in this region: the refuge and riverine barrier theories. We employed Bayesian methods combined with niche modeling to identify genetically homogeneous groups, to determine the diversification age, and identify long-term climate stability areas to species survival. The analyses were performed using molecular markers from nuclear and plastid genomes, with samples collected throughout the entire geographic distribution of the species, and comparisons with congeners species. The results indicated that populations were genetically structured and provided evidence of demographic stability. The molecular markers indicated the existence of a clear structure and the presence of five homogeneous groups. Interestingly, the separation of the groups coincides with the geographical locations of local rivers, corroborating the hypothesis of rivers acting as barriers to gene flow in this species. The highest levels of genetic diversity and the areas identified as having long-term climate stability were found in the same region reported for other species as a possible refuge area during the climatic changes of the Quaternary. PMID:27188539

  6. Knudsen Effect on the Estimation of the Effective Thermal Conductivity of Thermal Barrier Coatings

    NASA Astrophysics Data System (ADS)

    Qiao, J. H.; Bolot, R.; Liao, H. L.; Coddet, C.

    2013-03-01

    A numerical model based on the use of cross-sectional micrographies and a 3D image of thermal barrier coatings for the estimation of the material effective thermal conductivity is presented. The case of a YSZ thermal spray coating consisting of a 2 phase network, namely, the coating material and pores, is considered. The variation of the thermal conductivity of pores caused by their small size was considered by taking the Knudsen effect into account. The quantification of this effect on the effective thermal conductivity of the coating was achieved with the help of image analysis combined with an in-house program coded in C language. Finite-difference (FD) and finite-element (FE) models were applied using both 2D images and a 3D image. Despite the differences in the computed values obtained with these two numerical methods, the decrease of the computed thermal conductivity caused by the Knudsen effect was found to remain quite moderate for both methods (i.e., about 3-5% for the 3D results).

  7. A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model

    NASA Astrophysics Data System (ADS)

    Windarto, Indratno, S. W.; Nuraini, N.; Soewono, E.

    2014-02-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The algorithm begins by defining the optimization variables, defining the cost function (in a minimization problem) or the fitness function (in a maximization problem) and selecting genetic algorithm parameters. The main procedures in genetic algorithm are generating initial population, selecting some chromosomes (individual) as parent's individual, mating, and mutation. In this paper, binary and continuous genetic algorithms were implemented to estimate growth rate and carrying capacity parameter from poultry data cited from literature. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, both algorithms can estimate these parameters well. Suitable range for mutation rate in continuous genetic algorithm is wider than the binary one.

  8. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans.

    PubMed

    Rogers, Rebekah L

    2015-12-01

    Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5'-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution.

  9. The Influence of Natural Barriers in Shaping the Genetic Structure of Maharashtra Populations

    PubMed Central

    Crivellaro, Federica; Tamang, Rakesh; Upadhyay, Shashank; Sharma, Varun Kumar; Reddy, Alla G.; Walimbe, S. R.; Chaubey, Gyaneshwer; Kivisild, Toomas; Singh, Lalji

    2010-01-01

    Background The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level. Methodology/Principal Findings To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a. Conclusions/Significance Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations. PMID:21187967

  10. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans.

    PubMed

    Rogers, Rebekah L

    2015-12-01

    Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5'-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution. PMID:26399483

  11. An implementation of continuous genetic algorithm in parameter estimation of predator-prey model

    NASA Astrophysics Data System (ADS)

    Windarto

    2016-03-01

    Genetic algorithm is an optimization method based on the principles of genetics and natural selection in life organisms. The main components of this algorithm are chromosomes population (individuals population), parent selection, crossover to produce new offspring, and random mutation. In this paper, continuous genetic algorithm was implemented to estimate parameters in a predator-prey model of Lotka-Volterra type. For simplicity, all genetic algorithm parameters (selection rate and mutation rate) are set to be constant along implementation of the algorithm. It was found that by selecting suitable mutation rate, the algorithms can estimate these parameters well.

  12. Mechanisms and genetic control of interspecific crossing barriers in Lycopersicon. Second yearly progress report

    SciTech Connect

    Mutschler, M.A.; McCormick, S.

    1993-03-27

    This study employs Lycopersicon esculentum and L. pennellii as model systems to study the interspecific reproductive barriers unilateral incongruity (UI), hybrid breakdown and interspecific aberrant ratio syndrome (IARS).

  13. Role of recent and old riverine barriers in fine-scale population genetic structure of Geoffroy's tamarin (Saguinus geoffroyi) in the Panama Canal watershed.

    PubMed

    Díaz-Muñoz, Samuel L

    2012-02-01

    The role of physical barriers in promoting population divergence and genetic structuring is well known. While it is well established that animals can show genetic structuring at small spatial scales, less well-resolved is how the timing of the appearance of barriers affects population structure. This study uses the Panama Canal watershed as a test of the effects of old and recent riverine barriers in creating population structure in Saguinus geoffroyi, a small cooperatively breeding Neotropical primate. Mitochondrial sequences and microsatellite genotypes from three sampling localities revealed genetic structure across the Chagres River and the Panama Canal, suggesting that both waterways act as barriers to gene flow. F-statistics and exact tests of population differentiation suggest population structure on either side of both riverine barriers. Genetic differentiation across the Canal, however, was less than observed across the Chagres. Accordingly, Bayesian clustering algorithms detected between two and three populations, with localities across the older Chagres River always assigned as distinct populations. While conclusions represent a preliminary assessment of genetic structure of S. geoffroyi, this study adds to the evidence indicating that riverine barriers create genetic structure across a wide variety of taxa in the Panama Canal watershed and highlights the potential of this study area for discerning modern from historical influences on observed patterns of population genetic structure. PMID:22423325

  14. Role of recent and old riverine barriers in fine-scale population genetic structure of Geoffroy's tamarin (Saguinus geoffroyi) in the Panama Canal watershed

    PubMed Central

    Díaz-Muñoz, Samuel L

    2012-01-01

    The role of physical barriers in promoting population divergence and genetic structuring is well known. While it is well established that animals can show genetic structuring at small spatial scales, less well-resolved is how the timing of the appearance of barriers affects population structure. This study uses the Panama Canal watershed as a test of the effects of old and recent riverine barriers in creating population structure in Saguinus geoffroyi, a small cooperatively breeding Neotropical primate. Mitochondrial sequences and microsatellite genotypes from three sampling localities revealed genetic structure across the Chagres River and the Panama Canal, suggesting that both waterways act as barriers to gene flow. F-statistics and exact tests of population differentiation suggest population structure on either side of both riverine barriers. Genetic differentiation across the Canal, however, was less than observed across the Chagres. Accordingly, Bayesian clustering algorithms detected between two and three populations, with localities across the older Chagres River always assigned as distinct populations. While conclusions represent a preliminary assessment of genetic structure of S. geoffroyi, this study adds to the evidence indicating that riverine barriers create genetic structure across a wide variety of taxa in the Panama Canal watershed and highlights the potential of this study area for discerning modern from historical influences on observed patterns of population genetic structure. PMID:22423325

  15. A new genetic fuzzy system approach for parameter estimation of ARIMA model

    NASA Astrophysics Data System (ADS)

    Hassan, Saima; Jaafar, Jafreezal; Belhaouari, Brahim S.; Khosravi, Abbas

    2012-09-01

    The Autoregressive Integrated moving Average model is the most powerful and practical time series model for forecasting. Parameter estimation is the most crucial part in ARIMA modeling. Inaccurate and wrong estimated parameters lead to bias and unacceptable forecasting results. Parameter optimization can be adopted in order to increase the demand forecasting accuracy. A paradigm of the fuzzy system and a genetic algorithm is proposed in this paper as a parameter estimation approach for ARIMA. The new approach will optimize the parameters by tuning the fuzzy membership functions with a genetic algorithm. The proposed Hybrid model of ARIMA and the genetic fuzzy system will yield acceptable forecasting results.

  16. Genetic parameter estimation for pre- and post-weaning traits in Brahman cattle in Brazil.

    PubMed

    Vargas, Giovana; Buzanskas, Marcos Eli; Guidolin, Diego Gomes Freire; Grossi, Daniela do Amaral; Bonifácio, Alexandre da Silva; Lôbo, Raysildo Barbosa; da Fonseca, Ricardo; Oliveira, João Ademir de; Munari, Danísio Prado

    2014-10-01

    Beef cattle producers in Brazil use body weight traits as breeding program selection criteria due to their great economic importance. The objectives of this study were to evaluate different animal models, estimate genetic parameters, and define the most fitting model for Brahman cattle body weight standardized at 120 (BW120), 210 (BW210), 365 (BW365), 450 (BW450), and 550 (BW550) days of age. To estimate genetic parameters, single-, two-, and multi-trait analyses were performed using the animal model. The likelihood ratio test was verified between all models. For BW120 and BW210, additive direct genetic, maternal genetic, maternal permanent environment, and residual effects were considered, while for BW365 and BW450, additive direct genetic, maternal genetic, and residual effects were considered. Finally, for BW550, additive direct genetic and residual effects were considered. Estimates of direct heritability for BW120 were similar in all analyses; however, for the other traits, multi-trait analysis resulted in higher estimates. The maternal heritability and proportion of maternal permanent environmental variance to total variance were minimal in multi-trait analyses. Genetic, environmental, and phenotypic correlations were of high magnitude between all traits. Multi-trait analyses would aid in the parameter estimation for body weight at older ages because they are usually affected by a lower number of animals with phenotypic information due to culling and mortality. PMID:25037588

  17. Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal.

    PubMed

    Côté, Héloïse; Garant, Dany; Robert, Karine; Mainguy, Julien; Pelletier, Fanie

    2012-06-01

    Identifying natural barriers to movements of hosts associated with infectious diseases is essential for developing effective control strategies. Raccoon rabies variant (RRV) is a zoonosis of concern for humans because its main vector, the raccoon (Procyon lotor), is found near residential areas. In Québec, Canada, all cases of RRV found in raccoons since 2006 were detected on the eastern side of the Richelieu River, suggesting that this river acts as a barrier to gene flow and thus the potential for RRV to spread. The objectives of this study were to characterize the genetic structure of raccoon populations and assess the effect of the Richelieu River on the population structure in southern Québec, Canada. We also evaluated whether RRV spread potential differed between sex and at a larger spatial scale. Our analyses revealed a weak signal of genetic differentiation among individuals located on each side of the Richelieu River. At a larger spatial scale, genetic structuring was weak. Our results suggest that rivers might not always efficiently restrain raccoon movements and spread of RRV. We suggest that the difference in genetic structure found between sexes can be partly explained by male movements during the breeding season in winter, when ice bridges allow passage over most rivers in Québec.

  18. Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal.

    PubMed

    Côté, Héloïse; Garant, Dany; Robert, Karine; Mainguy, Julien; Pelletier, Fanie

    2012-06-01

    Identifying natural barriers to movements of hosts associated with infectious diseases is essential for developing effective control strategies. Raccoon rabies variant (RRV) is a zoonosis of concern for humans because its main vector, the raccoon (Procyon lotor), is found near residential areas. In Québec, Canada, all cases of RRV found in raccoons since 2006 were detected on the eastern side of the Richelieu River, suggesting that this river acts as a barrier to gene flow and thus the potential for RRV to spread. The objectives of this study were to characterize the genetic structure of raccoon populations and assess the effect of the Richelieu River on the population structure in southern Québec, Canada. We also evaluated whether RRV spread potential differed between sex and at a larger spatial scale. Our analyses revealed a weak signal of genetic differentiation among individuals located on each side of the Richelieu River. At a larger spatial scale, genetic structuring was weak. Our results suggest that rivers might not always efficiently restrain raccoon movements and spread of RRV. We suggest that the difference in genetic structure found between sexes can be partly explained by male movements during the breeding season in winter, when ice bridges allow passage over most rivers in Québec. PMID:25568059

  19. Genetic structure and rabies spread potential in raccoons: the role of landscape barriers and sex-biased dispersal

    PubMed Central

    Côté, Héloïse; Garant, Dany; Robert, Karine; Mainguy, Julien; Pelletier, Fanie

    2012-01-01

    Identifying natural barriers to movements of hosts associated with infectious diseases is essential for developing effective control strategies. Raccoon rabies variant (RRV) is a zoonosis of concern for humans because its main vector, the raccoon (Procyon lotor), is found near residential areas. In Québec, Canada, all cases of RRV found in raccoons since 2006 were detected on the eastern side of the Richelieu River, suggesting that this river acts as a barrier to gene flow and thus the potential for RRV to spread. The objectives of this study were to characterize the genetic structure of raccoon populations and assess the effect of the Richelieu River on the population structure in southern Québec, Canada. We also evaluated whether RRV spread potential differed between sex and at a larger spatial scale. Our analyses revealed a weak signal of genetic differentiation among individuals located on each side of the Richelieu River. At a larger spatial scale, genetic structuring was weak. Our results suggest that rivers might not always efficiently restrain raccoon movements and spread of RRV. We suggest that the difference in genetic structure found between sexes can be partly explained by male movements during the breeding season in winter, when ice bridges allow passage over most rivers in Québec. PMID:25568059

  20. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection.

    PubMed

    Turner, Elizabeth; Jacobson, David J; Taylor, John W

    2011-08-01

    A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa.

  1. Estimation of genetic diversity using SSR markers in sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflower is a major oilseed crop in central Asia, but little is known of the molecular diversity among collections of sunflower from Pakistan region. This paper described inherent genetic relationships among sunflower collections using Simple Sequence Repeat molecular markers. Results should help...

  2. Estimating the contribution of genetic variants to difference in incidence of disease between population groups.

    PubMed

    Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-08-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.

  3. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    SciTech Connect

    Duster, T.

    1998-11-01

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culture in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.

  4. Population-genetic influences on genomic estimates of the inbreeding coefficient: a global perspective

    PubMed Central

    Pemberton, Trevor J.; Rosenberg, Noah A.

    2014-01-01

    Background/Aims Culturally-driven marital practices provide a key instance of an interaction between social and genetic processes in shaping patterns of human genetic variation, producing, for example, increased identity by descent through consanguineous marriage. A commonly used measure to quantify identity by descent in an individual is the inbreeding coefficient, a quantity that reflects not only consanguinity, but also other aspects of kinship in the population to which the individual belongs. Here, in populations worldwide, we examine the relationship between genomic estimates of the inbreeding coefficient and population patterns in genetic variation. Methods Using genotypes at 645 microsatellites, we compare inbreeding coefficients from 5,043 individuals representing 237 worldwide populations to demographic consanguinity frequency estimates available for 26 populations, as well as to other quantities that can illuminate population-genetic influences on inbreeding coefficients. Results We observe higher inbreeding coefficient estimates in populations and geographic regions with known high levels of consanguinity or genetic isolation, and in populations with an increased effect of genetic drift and decreased genetic diversity with increasing distance from Africa. For the small number of populations with specific consanguinity estimates, we find a correlation between inbreeding coefficients and consanguinity frequency (r=0.349, P=0.040). Conclusions The results emphasize the importance of both consanguinity and population-genetic factors in influencing variation in inbreeding coefficients, and they provide insight into factors useful for assessing the effect of consanguinity on genomic patterns in different populations. PMID:25060268

  5. Method of estimating the leakage of multiple barriers in a radioactive materials shipping package

    SciTech Connect

    Towell, R.H.; Kapoor, A.; Moses, S.B.; Oras, J.J.

    1997-08-01

    This paper presents the results of a theoretical study of the performance of multiple leaky barriers in containing radioactive materials in a shipping package. The methods used are reasoned analysis and finite element modeling barriers. The finite element model is developed and evaluated with parameters set to bracket 6M configurations with three to six nested plastic jars, food-pack cans, and plastic bags inside Department of Transportation (DOT) Specification 2R inner containers with pipe thread closures. The results show that nested barriers reach the regulatory limit of 1x10{sup -6} A{sub 2}/hr in 11 to 52 days, even though individually the barriers would exceed the regulatory limit by a factor of as much as 370 instantaneously. These times are within normal shipping times. The finite element model is conservative because it does not consider the deposition and sticking of the leaking radioactive material on the surfaces inside each boundary.

  6. Genetic divergence among sweet corn lines estimated by microsatellite markers.

    PubMed

    Lopes, A D; Scapim, C A; Mangolin, C A; Machado, M F P S

    2014-01-01

    The purpose of this study was to analyze the genetic diversity of 15 sugary-1 sweet corn lines by microsatellite markers. One hundred pairs of simple sequence repeat primers that were mapped for field corn were tested. Of these primers, 15% were polymorphic, and all were selected for the evaluation. These primers identified a total of 39 alleles among the 15 loci that were evaluated. The number of alleles per locus in the genotypes ranged from 2 to 4, with an average of 2.60 alleles per locus; the highest number of alleles was observed at the loci Bnlg1083, Umc1241, and Umc1590. The occurrence of null alleles at locus Umc1363 was evident only in line DN44. The proportion of polymorphic loci was the highest in lines DN17.1 and DN6 (73.33%), whereas lines DN47, DN23, and DN28 were more monomorphic than other lines. The loci Bnlg1083 and Umc1506 were polymorphic in 8 and 7 lines, respectively, indicating that these loci might be effective and promising for the identification of polymorphism in other sweet corn lines. The genetic diversity calculated by Rogers' genetic distances indicated the lowest genetic similarity between lines DN9 and DN28 (0.7603) and the highest similarity between lines DN19 and DN6 (0.3724). The dendrogram obtained by the unweighted pair-group method based on arithmetic averages indicated the formation of 4 major groups, showing the crossing of the genotypes DN19 and DN6 with DN8 as a possible alternative for the expression of heterozygosis. PMID:25511025

  7. Genetic diversity and population differentiation in the cockle Cerastoderma edule estimated by microsatellite markers

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Méndez, J.; Insua, A.; Arias-Pérez, A.; Freire, R.

    2013-03-01

    The edible cockle Cerastoderma edule is a marine bivalve commercially fished in several European countries that have lately suffered a significant decrease in production. Despite its commercial importance, genetic studies in this species are scarce. In this work, genetic diversity and population differentiation of C. edule has been assessed using 11 microsatellite markers in eight locations from the European Atlantic coast. All localities showed similar observed and expected heterozygosity values, but displayed differences in allelic richness, with lowest values obtained for localities situated farther north. Global Fst value revealed the existence of significant genetic structure; all but one locality from the Iberian Peninsula were genetically homogeneous, while more remote localities from France, The Netherlands, and Scotland were significantly different from all other localities. A combined effect of isolation by distance and the existence of barriers that limit gene flow may explain the differentiation observed.

  8. Estimating black bear population density and genetic diversity at Tensas River, Louisiana using microsatellite DNA markers

    USGS Publications Warehouse

    Boersen, Mark R.; Clark, Joseph D.; King, Tim L.

    2003-01-01

    The Recovery Plan for the federally threatened Louisiana black bear (Ursus americanus luteolus) mandates that remnant populations be estimated and monitored. In 1999 we obtained genetic material with barbed-wire hair traps to estimate bear population size and genetic diversity at the 329-km2 Tensas River Tract, Louisiana. We constructed and monitored 122 hair traps, which produced 1,939 hair samples. Of those, we randomly selected 116 subsamples for genetic analysis and used up to 12 microsatellite DNA markers to obtain multilocus genotypes for 58 individuals. We used Program CAPTURE to compute estimates of population size using multiple mark-recapture models. The area of study was almost entirely circumscribed by agricultural land, thus the population was geographically closed. Also, study-area boundaries were biologically discreet, enabling us to accurately estimate population density. Using model Chao Mh to account for possible effects of individual heterogeneity in capture probabilities, we estimated the population size to be 119 (SE=29.4) bears, or 0.36 bears/km2. We were forced to examine a substantial number of loci to differentiate between some individuals because of low genetic variation. Despite the probable introduction of genes from Minnesota bears in the 1960s, the isolated population at Tensas exhibited characteristics consistent with inbreeding and genetic drift. Consequently, the effective population size at Tensas may be as few as 32, which warrants continued monitoring or possibly genetic augmentation.

  9. An alternative covariance estimator to investigate genetic heterogeneity in populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic predictions and GWAS have used mixed models for identification of associations and trait predictions. In both cases, the covariance between individuals for performance is estimated using molecular markers. Mixed model properties indicate that the use of the data for prediction is optimal if ...

  10. A Genetic Algorithm Approach to Nonlinear Least Squares Estimation

    ERIC Educational Resources Information Center

    Olinsky, Alan D.; Quinn, John T.; Mangiameli, Paul M.; Chen, Shaw K.

    2004-01-01

    A common type of problem encountered in mathematics is optimizing nonlinear functions. Many popular algorithms that are currently available for finding nonlinear least squares estimators, a special class of nonlinear problems, are sometimes inadequate. They might not converge to an optimal value, or if they do, it could be to a local rather than…

  11. Genetic relatedness of foraminiferan ( Marginopora vertebralis) populations from reefs in the Western Coral Sea and Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Benzie, John A. H.

    1991-07-01

    Allozyme variation at four loci and phenetic variation for esterase were examined in M. vertebralis populations from 10 reefs from the Western Coral Sea and two from the Great Barrier Reef (GBR). Genetic distances (Nei's D) among populations on different reefs ranged from 0 0.932 and was neither related to geographical separation of reefs nor to depth of water separating reefs. These findings suggest long-distance dispersal by some means is sufficient to prevent genetic differentiation of M. vertebralis populations, and that M. vertebralis populations need not be connected by habitats suitable for the continued existence of the foraminiferan for genetic differentiation to be prevented. The Western Coral Sea reef populations did not form a related group that were genetically distinct from those on the GBR but were differentiated latitudinally. Reefs to the extreme north and south formed outliers while those on the northern half of the Queensland Plateau showed some differentiation from those on the southern half of the Plateau. This pattern of genetic variation appeared to reflect the distribution of populations north and south of the southern limit of the Southern Equatorial Current. Further work will be required to establish the soundness of this relationship, and to exclude other possible explanations related to historical events or the effects of selection. Relatively high dispersal was inferred between the Southern Queensland Plateau reefs and those sampled on the GBR (average Neis D=0.011). Holmes and Marion reefs formed discrete genetic outliers (average Neis D=0.69 and 0.20 respectively). In the case of Holmes reef other factors (e.g. history of recruitment) will need to be investigated to account for its marked genetic differentiation from the other reefs in the Queensland Plateau.

  12. Robust Estimation for Secondary Trait Association in Case-Control Genetic Studies

    PubMed Central

    Tapsoba, Jean de Dieu; Kooperberg, Charles; Reiner, Alexander; Wang, Ching-Yun; Dai, James Y.

    2014-01-01

    Secondary trait genetic association provides insight into the genetic architecture of disease etiology but requires caution in estimation. Ignoring case-control sampling may introduce bias into secondary trait association. In this paper, we compare the efficiency and robustness of various inverse probability weighted (IPW) estimators and maximum likelihood (ML) estimators. ML methods have been proposed but require correct modeling of both the secondary and the primary trait associations for valid inference. We show that ML methods using a misspecified primary trait model can severely inflate the type I error. IPW estimators are typically less efficient than ML estimators but are robust against model misspecification. When the secondary trait is available for the entire cohort, the IPW estimator with selection probabilities estimated nonparametrically and the augmented IPW estimator improve efficiency over the simple IPW estimator. We conclude that in large genetic association studies with complex sampling schemes, IPW-based estimators offer flexibility and robustness, and therefore are a viable option for analysis. PMID:24723002

  13. 3D magnetic sources' framework estimation using Genetic Algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Ponte-Neto, C. F.; Barbosa, V. C.

    2008-05-01

    We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate

  14. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    PubMed

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.

  15. Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps.

    PubMed

    Trizio, I; Crestanello, B; Galbusera, P; Wauters, L A; Tosi, G; Matthysen, E; Hauffe, H C

    2005-02-01

    Red squirrels (Sciurus vulgaris) are widely distributed throughout Eurasia, occurring in many types of coniferous and mixed-deciduous forests. In fragmented landscapes, small and partly isolated populations with low immigration rates show reduced genetic diversity, but reforestation can increase gene flow and restore levels of genetic variation in a few decades. No studies have so far investigated the genetic structure of red squirrel in large, continuous forests. The Italian Alps are presently characterized by almost continuous, recently reconnected forest habitats, that were affected by deep landscape changes during last glaciations but remained mostly unchanged between 10 000 and 200 years bp, when forest cover was heavily reduced. In this study we analyse patterns of genetic variability of red squirrels in and between seven sites distributed over 250 km of Alpine habitat, using mitochondrial DNA (mtDNA) and microsatellites. We use isolation-by-distance (IBD) models to investigate the relative importance that past (Pleistocene glaciations) and recent (fragmentation, bottlenecks) events had on the present genetic situation. Both nuclear and mtDNA data indicate a significant differentiation among study sites and a significant correlation between genetic and geographical distance only over a large scale. No recent bottlenecks are recorded through microsatellites and demographic models strongly support equilibrium between gene flow and drift; however, mtDNA suggests that there may have been local demographic crashes, probably in correspondence with the 19th-century forest fragmentation. These findings indicate that local landscape factors other than geographical distance per se, such as barriers of unsuitable habitat, affect gene flow and determine differentiation.

  16. Blood-Brain Barrier Breakdown Determines Differential Therapeutic Outcome in Genetically Diverse Forms of Medulloblastoma.

    PubMed

    Guerit, Sylvaine; Liebner, Stefan

    2016-04-11

    Medulloblastoma driven by Wnt/β-catenin and Sonic hedgehog pathway mutations show favorable and poor patient survival upon treatment, respectively. In this Cancer Cell issue, Phoenix and colleagues (2016) report disruption of the blood-brain barrier by Wif1 specifically in Wnt-driven medulloblastoma, resulting in increased treatment response and survival in mouse models. PMID:27070693

  17. Barriers to genetic testing among persons at risk for alpha-1 antitrypsin deficiency.

    PubMed

    Dickson, Marguerite R; Carter, Cindy L; Carpenter, Matthew J; McClure, Rebecca L; McGee, Dawn A; Zapka, Jane G; Strange, Charlie

    2008-12-01

    The alpha coded testing (ACT) study offers free and confidential testing for alpha-1 antitrypsin deficiency (AATD) and includes surveys to provide data to study the psychosocial correlates of genetic testing. The purpose of the current study is to better understand reasons why some individuals complete genetic testing while others do not. Survey measures were compared between participants who requested and returned a genetic test for AATD (n = 703), and a random sample of individuals who requested a test kit, but did not return it within 3 months of their request (n = 83). Increasing decile of age (odds ratio [OR] = 0.74 [95% confidence interval = 0.60-0.82]) and fingerstick fear (OR = 0.74 [0.60-0.93]) were associated with a decreased likelihood of returning the test, while assurance of confidentiality was associated with an increased likelihood (OR = 1.26 [1.01-1.57]) of returning the genetic test. General anxiety as measured by the Beck Anxiety Inventory, family functioning as measured by the general functioning subscale of the Family Assessment Device, and stress induced by genetic testing as measured by the Impact of Events Scale did not significantly differ between responder groups (p = not significant). Results of this study help characterize factors driving genetic testing in AATD and may offer insight into population responses with other genetic tests.

  18. Heritability Estimates Identify a Substantial Genetic Contribution to Risk and Outcome of Intracerebral Hemorrhage

    PubMed Central

    Devan, William J.; Falcone, Guido J.; Anderson, Christopher D.; Jagiella, Jeremiasz M.; Schmidt, Helena; Hansen, Björn M.; Jimenez-Conde, Jordi; Giralt-Steinhauer, Eva; Cuadrado-Godia, Elisa; Soriano, Carolina; Ayres, Alison M.; Schwab, Kristin; Kassis, Sylvia Baedorf; Valant, Valerie; Pera, Joanna; Urbanik, Andrzej; Viswanathan, Anand; Rost, Natalia S.; Goldstein, Joshua N.; Freudenberger, Paul; Stögerer, Eva-Maria; Norrving, Bo; Tirschwell, David L.; Selim, Magdy; Brown, Devin L.; Silliman, Scott L.; Worrall, Bradford B.; Meschia, James F.; Kidwell, Chelsea S.; Montaner, Joan; Fernandez-Cadenas, Israel; Delgado, Pilar; Greenberg, Steven M.; Roquer, Jaume; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Woo, Daniel; Rosand, Jonathan; Biffi, Alessandro

    2013-01-01

    Background and Purpose Previous studies suggest that genetic variation plays a substantial role in occurrence and evolution of intracerebral hemorrhage (ICH). Genetic contribution to disease can be determined by calculating heritability using family-based data, but such an approach is impractical for ICH because of lack of large pedigree-based studies. However, a novel analytic tool based on genome-wide data allows heritability estimation from unrelated subjects. We sought to apply this method to provide heritability estimates for ICH risk, severity, and outcome. Methods We analyzed genome-wide genotype data for 791 ICH cases and 876 controls, and determined heritability as the proportion of variation in phenotype attributable to captured genetic variants. Contribution to heritability was separately estimated for the APOE (encoding apolipoprotein E) gene, an established genetic risk factor, and for the rest of the genome. Analyzed phenotypes included ICH risk, admission hematoma volume, and 90-day mortality. Results ICH risk heritability was estimated at 29% (SE, 11%) for non-APOE loci and at 15% (SE, 10%) for APOE. Heritability for 90-day ICH mortality was 41% for non-APOE loci and 10% (SE, 9%) for APOE. Genetic influence on hematoma volume was also substantial: admission volume heritability was estimated at 60% (SE, 70%) for non-APOE loci and at 12% (SE, 4%) for APOE. Conclusions Genetic variation plays a substantial role in ICH risk, outcome, and hematoma volume. Previously reported risk variants account for only a portion of inherited genetic influence on ICH pathophysiology, pointing to additional loci yet to be identified. PMID:23559261

  19. A Novel Statistical Model to Estimate Host Genetic Effects Affecting Disease Transmission

    PubMed Central

    Anacleto, Osvaldo; Garcia-Cortés, Luis Alberto; Lipschutz-Powell, Debby; Woolliams, John A.; Doeschl-Wilson, Andrea B.

    2015-01-01

    There is increasing recognition that genetic diversity can affect the spread of diseases, potentially affecting plant and livestock disease control as well as the emergence of human disease outbreaks. Nevertheless, even though computational tools can guide the control of infectious diseases, few epidemiological models can simultaneously accommodate the inherent individual heterogeneity in multiple infectious disease traits influencing disease transmission, such as the frequently modeled propensity to become infected and infectivity, which describes the host ability to transmit the infection to susceptible individuals. Furthermore, current quantitative genetic models fail to fully capture the heritable variation in host infectivity, mainly because they cannot accommodate the nonlinear infection dynamics underlying epidemiological data. We present in this article a novel statistical model and an inference method to estimate genetic parameters associated with both host susceptibility and infectivity. Our methodology combines quantitative genetic models of social interactions with stochastic processes to model the random, nonlinear, and dynamic nature of infections and uses adaptive Bayesian computational techniques to estimate the model parameters. Results using simulated epidemic data show that our model can accurately estimate heritabilities and genetic risks not only of susceptibility but also of infectivity, therefore exploring a trait whose heritable variation is currently ignored in disease genetics and can greatly influence the spread of infectious diseases. Our proposed methodology offers potential impacts in areas such as livestock disease control through selective breeding and also in predicting and controlling the emergence of disease outbreaks in human populations. PMID:26405030

  20. Estimation of genetic parameters and their sampling variances of quantitative traits in the type 2 modified augmented design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...

  1. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  2. Population Growth Rates of Reef Sharks with and without Fishing on the Great Barrier Reef: Robust Estimation with Multiple Models

    PubMed Central

    Hisano, Mizue; Connolly, Sean R.; Robbins, William D.

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  3. Population growth rates of reef sharks with and without fishing on the great barrier reef: robust estimation with multiple models.

    PubMed

    Hisano, Mizue; Connolly, Sean R; Robbins, William D

    2011-01-01

    Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple

  4. Genetic correlation estimates between ultrasound measurements on yearling bulls and carcass measurements on finished steers.

    PubMed

    Devitt, C J; Wilton, J W

    2001-11-01

    Carcass and growth measurements of finished crossbred steers (n = 843) and yearling ultrasound and growth measurements of purebred bulls (n = 5,654) of 11 breeds were analyzed to estimate genetic parameters. Multiple-trait restricted maximum likelihood (REML) was used to estimate heritabilities and genetic correlations between finished steer carcass measurements and yearling bull ultrasound measurements. Separate analyses were conducted to examine the effect of adjustment to three different end points: age, backfat thickness, and weight at measurement. Age-constant heritability estimates from finished steer measurements of hot carcass weight, carcass longissimus muscle area, carcass marbling score, carcass backfat, and average daily feedlot gain were 0.47, 0.45, 0.35, 0.41, and 0.30, respectively. Age-constant heritability estimates from yearling bull measurements of ultrasound longissimus muscle area, ultrasound percentage of intramuscular fat, ultrasound backfat, and average daily postweaning gain were 0.48, 0.23, 0.52, and 0.46, respectively. Similar estimates were found for backfat and weight-constant traits. Age-constant genetic correlation estimates between steer carcass longissimus muscle area and bull ultrasound longissimus muscle area, steer carcass backfat and bull ultrasound backfat, steer carcass marbling and bull ultrasound intramuscular fat, and steer average daily gain and bull average daily gain were 0.66, 0.88, 0.80, and 0.72, respectively. The strong, positive genetic correlation estimates between bull ultrasound measurements and corresponding steer carcass measurements suggest that genetic improvement for steer carcass traits can be achieved by using yearling bull ultrasound measurements as selection criteria.

  5. Genetic parameters for growth and carcass traits in Japanese brown cattle estimated from field records.

    PubMed

    Hirooka, H; Groen, A F; Matsumoto, M

    1996-09-01

    Field records from 14,380 Japanese Brown steers by 92 sires were used to estimate genetic parameters for growth and carcass traits. Multipletrait restricted maximum likelihood (REML) procedures accounting for relationships among sires were used in estimating (co)variance components among average daily gain during fattening periods (ADG), carcass weight (CWT), longissimus muscle area (LMA), rib thickness (RT), marbling score (MS), and subcutaneous fat thickness (SFT). Heritability estimates on an age-constant basis were .22, .37, .38, .26, .40, and .35 for ADG, CWT, LMA, RT, MS, and SFT, respectively. Estimated genetic correlations (rg) among ADG, CWT, and RT were positive and moderately high (.48 to .85). The rg between MS and SFT was -.12.

  6. Estimates of genetic parameters for growth traits in Brahman cattle using random regression and multitrait models.

    PubMed

    Bertipaglia, T S; Carreño, L O D; Aspilcueta-Borquis, R R; Boligon, A A; Farah, M M; Gomes, F J; Machado, C H C; Rey, F S B; da Fonseca, R

    2015-08-01

    Random regression models (RRM) and multitrait models (MTM) were used to estimate genetic parameters for growth traits in Brazilian Brahman cattle and to compare the estimated breeding values obtained by these 2 methodologies. For RRM, 78,641 weight records taken between 60 and 550 d of age from 16,204 cattle were analyzed, and for MTM, the analysis consisted of 17,385 weight records taken at the same ages from 12,925 cattle. All models included the fixed effects of contemporary group and the additive genetic, maternal genetic, and animal permanent environmental effects and the quadratic effect of age at calving (AAC) as covariate. For RRM, the AAC was nested in the animal's age class. The best RRM considered cubic polynomials and the residual variance heterogeneity (5 levels). For MTM, the weights were adjusted for standard ages. For RRM, additive heritability estimates ranged from 0.42 to 0.75, and for MTM, the estimates ranged from 0.44 to 0.72 for both models at 60, 120, 205, 365, and 550 d of age. The maximum maternal heritability estimate (0.08) was at 140 d for RRM, but for MTM, it was highest at weaning (0.09). The magnitude of the genetic correlations was generally from moderate to high. The RRM adequately modeled changes in variance or covariance with age, and provided there was sufficient number of samples, increased accuracy in the estimation of the genetic parameters can be expected. Correlation of bull classifications were different in both methods and at all the ages evaluated, especially at high selection intensities, which could affect the response to selection. PMID:26440161

  7. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data

    PubMed Central

    Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk

    2015-01-01

    Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289

  8. EDDY CURRENT INVERSION AND ESTIMATION METRICS FOR EVALUATING THERMAL BARRIER COATINGS

    SciTech Connect

    Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Knopp, Jeremy S.; Aldrin, John C.; Nyenhuis, John

    2010-02-22

    In this paper, sophisticated eddy-current techniques incorporating model-based inverse methods were successfully demonstrated to measure the thickness and remaining-life of high-temperature coatings. To further assure the performance of these inverse methods, several estimation metrics including Fisher Information, Cramer-Rao Lower Bound (CRLB), covariance, and singular value decomposition (SVD) are introduced. The connections and utility of these metrics are illustrated in the design of eddy current methods for estimating layer thickness, conductivity and probe liftoff.

  9. Short communication: Estimates of genetic parameters for dairy fertility in New Zealand.

    PubMed

    Amer, P R; Stachowicz, K; Jenkins, G M; Meier, S

    2016-10-01

    Reproductive performance of dairy cows in a seasonal calving system is especially important as cows are required to achieve a 365-d calving interval. Prior research with a small data set has identified that the genetic evaluation model for fertility could be enhanced by replacing the binary calving rate trait (CR42), which gives the probability of a cow calving within the first 42d since the planned start of calving at second, third, and fourth calving, with a continuous version, calving season day (CSD), including a heifer calving season day trait expressed at first calving, removing milk yield, retaining a probability of mating trait (PM21) which gives the probability of a cow being mated within the first 21d from the planned start of mating, and first lactation body condition score (BCS), and including gestation length (GL). The aim of this study was to estimate genetic parameters for the proposed new model using a larger data set and compare these with parameters used in the current system. Heritability estimates for CSD and PM21 ranged from 0.013 to 0.019 and from 0.031 to 0.058, respectively. For the 2 traits that correspond with the ones used in the current genetic evaluation system (mating trait, PM21 and BCS) genetic correlations were lower in this study compared with previous estimates. Genetic correlations between CSD and PM21 across different parities were also lower than the correlations between CR42 and PM21 reported previously. The genetic correlation between heifer CSD and CSD in first parity was 0.66. Estimates of genetic correlations of BCS with CSD were higher than those with PM21. For GL, direct heritability was estimated to be 0.67, maternal heritability was 0.11, and maternal repeatability was 0.22. Direct GL had moderate to high and favorable genetic correlations with evaluated fertility traits, whereas corresponding residual correlations remain low, which makes GL a useful candidate predictor trait for fertility in a multiple trait

  10. A Genetic Model for the Female Sterility Barrier Between Asian and African Cultivated Rice Species

    PubMed Central

    Garavito, Andrea; Guyot, Romain; Lozano, Jaime; Gavory, Frédérick; Samain, Sylvie; Panaud, Olivier; Tohme, Joe; Ghesquière, Alain; Lorieux, Mathias

    2010-01-01

    S1 is the most important locus acting as a reproductive barrier between Oryza sativa and O. glaberrima. It is a complex locus, with factors that may affect male and female fertility separately. Recently, the component causing the allelic elimination of pollen was fine mapped. However, the position and nature of the component causing female sterility remains unknown. To fine map the factor of the S1 locus affecting female fertility, we developed a mapping approach based on the evaluation of the degree of female transmission ratio distortion (fTRD) of markers. Through implementing this methodology in four O. sativa × O. glaberrima crosses, the female component of the S1 locus was mapped into a 27.8-kb (O. sativa) and 50.3-kb (O. glaberrima) region included within the interval bearing the male component of the locus. Moreover, evidence of additional factors interacting with S1 was also found. In light of the available data, a model where incompatibilities in epistatic interactions between S1 and the additional factors are the cause of the female sterility barrier between O. sativa and O. glaberrima was developed to explain the female sterility and the TRD mediated by S1. According to our model, the recombination ratio and allelic combinations between these factors would determine the final allelic frequencies observed for a given cross. PMID:20457876

  11. Estimation of radiative and conductive properties of a semitransparent medium using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Braiek, A.; Adili, A.; Albouchi, F.; Karkri, M.; Ben Nasrallah, S.

    2016-06-01

    The aim of this work is to simultaneously identify the conductive and radiative parameters of a semitransparent sample using a photothermal method associated with an inverse problem. The identification of the conductive and radiative proprieties is performed by the minimization of an objective function that represents the errors between calculated temperature and measured signal. The calculated temperature is obtained from a theoretical model built with the thermal quadrupole formalism. Measurement is obtained in the rear face of the sample whose front face is excited by a crenel of heat flux. For identification procedure, a genetic algorithm is developed and used. The genetic algorithm is a useful tool in the simultaneous estimation of correlated or nearly correlated parameters, which can be a limiting factor for the gradient-based methods. The results of the identification procedure show the efficiency and the stability of the genetic algorithm to simultaneously estimate the conductive and radiative properties of clear glass.

  12. Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increasingly relevant question in evaluating commercial DNA tests is "What proportion of the additive genetic variation in the target trait is accounted for by the test?" Therefore, several estimators of this quantity were evaluated by simulation of a population of 1000 animals with 100 sires, ea...

  13. Bayesian inference in genetic parameter estimation of visual scores in Nellore beef-cattle

    PubMed Central

    2009-01-01

    The aim of this study was to estimate the components of variance and genetic parameters for the visual scores which constitute the Morphological Evaluation System (MES), such as body structure (S), precocity (P) and musculature (M) in Nellore beef-cattle at the weaning and yearling stages, by using threshold Bayesian models. The information used for this was gleaned from visual scores of 5,407 animals evaluated at the weaning and 2,649 at the yearling stages. The genetic parameters for visual score traits were estimated through two-trait analysis, using the threshold animal model, with Bayesian statistics methodology and MTGSAM (Multiple Trait Gibbs Sampler for Animal Models) threshold software. Heritability estimates for S, P and M were 0.68, 0.65 and 0.62 (at weaning) and 0.44, 0.38 and 0.32 (at the yearling stage), respectively. Heritability estimates for S, P and M were found to be high, and so it is expected that these traits should respond favorably to direct selection. The visual scores evaluated at the weaning and yearling stages might be used in the composition of new selection indexes, as they presented sufficient genetic variability to promote genetic progress in such morphological traits. PMID:21637450

  14. The use and abuse of genetic marker-based estimates of relatedness and inbreeding

    PubMed Central

    Taylor, Helen R

    2015-01-01

    Genetic marker-based estimators remain a popular tool for measuring relatedness (rxy) and inbreeding (F) coefficients at both the population and individual level. The performance of these estimators fluctuates with the number and variability of markers available, and the relatedness composition and demographic history of a population. Several methods are available to evaluate the reliability of the estimates of rxy and F, some of which are implemented in the program COANCESTRY. I used the simulation module in COANCESTRY since assess the performance of marker-based estimators of rxy and F in a species with very low genetic diversity, New Zealand’s little spotted kiwi (Apteryx owenii). I also conducted a review of published papers that have used COANCESTRY as its release to assess whether and how the reliability of the estimates of rxy and F produced by genetic markers are being measured and reported in published studies. My simulation results show that even when the correlation between true (simulated) and estimated rxy or F is relatively high (Pearson’s r = 0.66–0.72 and 0.81–0.85, respectively) the imprecision of the estimates renders them highly unreliable on an individual basis. The literature review demonstrates that the majority of studies do not report the reliability of marker-based estimates of rxy and F. There is currently no standard practice for selecting the best estimator for a given data set or reporting an estimator’s performance. This could lead to experimental results being interpreted out of context and render the robustness of conclusions based on measures of rxy and F debatable. PMID:26357542

  15. Restriction-Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus.

    PubMed

    Sadykov, Marat R

    2016-01-01

    Genetic manipulation is a powerful approach to study fundamental aspects of bacterial physiology, metabolism, and pathogenesis. Most Staphylococcus aureus strains are remarkably difficult to genetically manipulate as they possess strong host defense mechanisms that protect bacteria from cellular invasion by foreign DNA. In S. aureus these bacterial "immunity" mechanisms against invading genomes are mainly associated with restriction-modification systems. To date, prokaryotic restriction-modification systems are classified into four different types (Type I-IV), all of which have been found in the sequenced S. aureus genomes. This chapter describes the roles, classification, mechanisms of action of different types of restriction-modification systems and the recent advances in the biology of restriction and modification in S. aureus.

  16. Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia.

    PubMed

    Hermann, Katrin; Klahre, Ulrich; Moser, Michel; Sheehan, Hester; Mandel, Therese; Kuhlemeier, Cris

    2013-05-20

    Most flowering plants depend on animal vectors for pollination and seed dispersal. Differential pollinator preferences lead to premating isolation and thus reduced gene flow between interbreeding plant populations. Sets of floral traits, adapted to attract specific pollinator guilds, are called pollination syndromes. Shifts in pollination syndromes have occurred surprisingly frequently, considering that they must involve coordinated changes in multiple genes affecting multiple floral traits. Although the identification of individual genes specifying single pollination syndrome traits is in progress in many species, little is known about the genetic architecture of coadapted pollination syndrome traits and how they are embedded within the genome. Here we describe the tight genetic linkage of loci specifying five major pollination syndrome traits in the genus Petunia: visible color, UV absorption, floral scent production, pistil length, and stamen length. Comparison with other Solanaceae indicates that, in P. exserta and P. axillaris, loci specifying these floral traits have specifically become clustered into a multifunctional "speciation island". Such an arrangement promotes linkage disequilibrium and avoids the dissolution of pollination syndromes by recombination. We suggest that tight genetic linkage provides a mechanism for rapid switches between distinct pollination syndromes in response to changes in pollinator availabilities.

  17. Six genetically distinct clades of Palola (Eunicidae, Annelida) from Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Schulze, Anja

    2015-01-01

    A total of 36 lots of Palola spp. (Eunicidae, Annelida) were collected during the Lizard Island Polychaete Workshop on Lizard Island, Great Barrier Reef, Queensland, Australia. Of these, 21 specimens were sequenced for a portion of the mitochondrial cytochrome c oxidase I gene. These sequences were analysed in conjunction with existing sequences of Palola spp. from other geographic regions. The samples from Lizard Island form six distinct clades, although none of them can clearly be assigned to any of the nominal species. Four of the six Lizard Island clades fall into species group A and the remaining two into species group B (which also includes the type species, Palola viridis). All sequenced specimens were characterized morphologically as far as possible and a dichotomous key was assembled. Based on this key, the remaining samples were identified as belonging to one of the clades. PMID:26624083

  18. Six genetically distinct clades of Palola (Eunicidae, Annelida) from Lizard Island, Great Barrier Reef, Australia.

    PubMed

    Schulze, Anja

    2015-09-18

    A total of 36 lots of Palola spp. (Eunicidae, Annelida) were collected during the Lizard Island Polychaete Workshop on Lizard Island, Great Barrier Reef, Queensland, Australia. Of these, 21 specimens were sequenced for a portion of the mitochondrial cytochrome c oxidase I gene. These sequences were analysed in conjunction with existing sequences of Palola spp. from other geographic regions. The samples from Lizard Island form six distinct clades, although none of them can clearly be assigned to any of the nominal species. Four of the six Lizard Island clades fall into species group A and the remaining two into species group B (which also includes the type species, Palola viridis). All sequenced specimens were characterized morphologically as far as possible and a dichotomous key was assembled. Based on this key, the remaining samples were identified as belonging to one of the clades.

  19. Problems and solutions in the estimation of genetic risks from radiation and chemicals

    SciTech Connect

    Russell, W. L.

    1980-01-01

    Extensive investigations with mice on the effects of various physical and biological factors, such as dose rate, sex and cell stage, on radiation-induced mutation have provided an evaluation of the genetics hazards of radiation in man. The mutational results obtained in both sexes with progressive lowering of the radiation dose rate have permitted estimation of the mutation frequency expected under the low-level radiation conditions of most human exposure. Supplementing the studies on mutation frequency are investigations on the phenotypic effects of mutations in mice, particularly anatomical disorders of the skeleton, which allow an estimation of the degree of human handicap associated with the occurrence of parallel defects in man. Estimation of the genetic risk from chemical mutagens is much more difficult, and the research is much less advanced. Results on transmitted mutations in mice indicate a poor correlation with mutation induction in non-mammalian organisms.

  20. Estimated genetic parameters for palatability traits of steaks from Brahman cattle.

    PubMed

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2003-01-01

    Heritabilities and genetic and phenotypic correlations were estimated from carcass and beef palatability data collected from Brahman calves (n = 504) born in central Florida from 1996 to 2000. Traits evaluated included Warner-Bratzler shear force (after 7, 14, and 21 d of aging), panel tenderness score, connective tissue amount, juiciness, flavor intensity, and off flavor (after 14 d of aging), percentages of raw and cooked lipids, and milligrams per gram of muscle calpastatin activity. Parameters were estimated using an animal model and derivative-free restricted maximum likelihood procedures. Estimated heritabilities for d 7, 14, and 21 shear force were 0.14,0.14, and 0.06, respectively, indicating that improvement in these traits by selection would be slow. Estimated heritabilities of sensory panel attributes were 0.11, 0.12, 0.05, 0.04, and 0.01 for tenderness, connective tissue amount, juiciness, flavor intensity, and off flavor, respectively. The estimated heritabilities for percentages of raw and cooked lipids, and calpastatin activity were 0.34, 0.17, and 0.07, respectively. Most of the estimated genetic correlations among palatability traits and for palatability traits with fat thickness, marbling score, and loin muscle area were consistent with other estimates from the literature. Results indicated that improvement in tenderness based on selection for favorable shear force, sensory panel tenderness, or calpastatin activity would be slow; therefore, postslaughter intervention programs should also be considered. PMID:12597372

  1. Estimated genetic parameters for palatability traits of steaks from Brahman cattle.

    PubMed

    Riley, D G; Chase, C C; Hammond, A C; West, R L; Johnson, D D; Olson, T A; Coleman, S W

    2003-01-01

    Heritabilities and genetic and phenotypic correlations were estimated from carcass and beef palatability data collected from Brahman calves (n = 504) born in central Florida from 1996 to 2000. Traits evaluated included Warner-Bratzler shear force (after 7, 14, and 21 d of aging), panel tenderness score, connective tissue amount, juiciness, flavor intensity, and off flavor (after 14 d of aging), percentages of raw and cooked lipids, and milligrams per gram of muscle calpastatin activity. Parameters were estimated using an animal model and derivative-free restricted maximum likelihood procedures. Estimated heritabilities for d 7, 14, and 21 shear force were 0.14,0.14, and 0.06, respectively, indicating that improvement in these traits by selection would be slow. Estimated heritabilities of sensory panel attributes were 0.11, 0.12, 0.05, 0.04, and 0.01 for tenderness, connective tissue amount, juiciness, flavor intensity, and off flavor, respectively. The estimated heritabilities for percentages of raw and cooked lipids, and calpastatin activity were 0.34, 0.17, and 0.07, respectively. Most of the estimated genetic correlations among palatability traits and for palatability traits with fat thickness, marbling score, and loin muscle area were consistent with other estimates from the literature. Results indicated that improvement in tenderness based on selection for favorable shear force, sensory panel tenderness, or calpastatin activity would be slow; therefore, postslaughter intervention programs should also be considered.

  2. A New Barrier to Dispersal Trapped Old Genetic Clines That Escaped the Easter Microplate Tension Zone of the Pacific Vent Mussels

    PubMed Central

    Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H.; Bierne, Nicolas; Jollivet, Didier

    2013-01-01

    Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S. PMID:24312557

  3. A new barrier to dispersal trapped old genetic clines that escaped the Easter Microplate tension zone of the Pacific vent mussels.

    PubMed

    Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H; Bierne, Nicolas; Jollivet, Didier

    2013-01-01

    Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33'S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25'S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25'S and 14°S.

  4. Barriers and Motivators for Referral of Patients with Suspected Lynch Syndrome to Cancer Genetic Services: A Qualitative Study

    PubMed Central

    Tan, Yen Y.; Fitzgerald, Lisa J.

    2014-01-01

    This article explores the views of general practitioners and specialists on their referral of patients with suspected Lynch syndrome to cancer genetic services. Using a purposive maximum variation sampling strategy, we conducted semi-structured interviews face-to-face with 28 general practitioners and specialists in public or private hospitals and specialist clinics between March and August 2011. General practitioners and specialists were recruited in a major metropolitan area in Australia. Interview transcripts were reviewed by two independent researchers, and thematic analysis was performed using NVivo10 software. The main barriers and motivators identified were: (1) clinician-related (e.g., familiarity with Lynch syndrome and family history knowledge); (2) patient-related (e.g., patients’ interests and personal experience with cancer); and (3) organizational-related (e.g., access to services, guidelines and referral pathway). Referral of patients with suspected Lynch syndrome to cancer genetic services is motivated and hindered by a range of individual, interpersonal and organizational factors. In order to improve the care and quality of life of patients and family with suspected Lynch syndrome, further research is needed to develop supportive tools for clinicians. PMID:25562140

  5. Population Genetic Analysis of Streptomyces albidoflavus Reveals Habitat Barriers to Homologous Recombination in the Diversification of Streptomycetes

    PubMed Central

    Cheng, Kun; Rong, Xiaoying; Pinto-Tomás, Adrián A.; Fernández-Villalobos, Marcela; Murillo-Cruz, Catalina

    2014-01-01

    Examining the population structure and the influence of recombination and ecology on microbial populations makes great sense for understanding microbial evolution and speciation. Streptomycetes are a diverse group of bacteria that are widely distributed in nature and a rich source of useful bioactive compounds; however, they are rarely subjected to population genetic investigations. In this study, we applied a five-gene-based multilocus sequence analysis (MLSA) scheme to 41 strains of Streptomyces albidoflavus derived from diverse sources, mainly insects, sea, and soil. Frequent recombination was detected in S. albidoflavus, supported by multiple lines of evidence from the pairwise homoplasy index (Φw) test, phylogenetic discordance, the Shimodaira-Hasegawa (SH) test, and network analysis, underpinning the predominance of homologous recombination within Streptomyces species. A strong habitat signal was also observed in both phylogenetic and Structure 2.3.3 analyses, indicating the importance of ecological difference in shaping the population structure. Moreover, all three habitat-associated groups, particularly the entomic group, demonstrated significantly reduced levels of gene flow with one another, generally revealing habitat barriers to recombination. Therefore, a combined effect of homologous recombination and ecology is inferred for S. albidoflavus, where dynamic evolution is at least partly balanced by the extent that differential distributions of strains among habitats limit genetic exchange. Our study stresses the significance of ecology in microbial speciation and reveals the coexistence of homologous recombination and ecological divergence in the evolution of streptomycetes. PMID:25416769

  6. Indirect genetic effects and kin recognition: estimating IGEs when interactions differ between kin and strangers.

    PubMed

    Alemu, S W; Berg, P; Janss, L; Bijma, P

    2014-02-01

    Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin. PMID:24169647

  7. Phenotypic and genetic parameter estimates for reproductive traits in Zandi sheep.

    PubMed

    Mohammadi, Kourosh; Beigi Nassiri, Mohammad Taghi; Rahmatnejad, Enayat; Sheikh, Masoud; Fayazi, Jamal; Karimi Manesh, Amin

    2013-02-01

    This study reports on the phenotypic and genetic (co)variance components for reproductive traits in Zandi sheep, using between 1,859 and 2,588 records obtained from 577 ewes. The data were collected from the Khojir Breeding Station of Zandi sheep in Tehran, Iran from 1994 to 2008. The basic traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), and litter mean weight per lamb weaned (LMWLW), and the composite traits were total litter weight at birth (TLWB) and total litter weight at weaning (TLWW). Genetic analyses were carried out using the restricted maximum likelihood method that was explored by fitting the additive direct genetic effects and permanent environmental effects of the ewes as random effects and the ewe age at lambing and lambing year as fixed effects for all of the investigated traits. Akaike's information criterion was used to choose the most appropriate model. LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW direct heritability estimates were 0.07, 0.05, 0.12, 0.10, 0.08, and 0.14, respectively. The estimated fractions of variance due to the permanent environmental effects of the ewe ranged from 0.03 for LMWLB to 0.08 for LMWLW and TLWW. Corresponding repeatability estimates ranged from 0.10 for LSW to 0.22 for TLWW. Direct genetic correlations varied from -0.61 for LSB-LMWLB to 0.88 for LSB-LSW and LSB-TLWB. Results indicate that genetic change depends not only on the heritability of traits, but also on the observed phenotypic variation; therefore, improvement of non-genetic factors should be included in the breeding programs.

  8. Phenotypic and genetic parameter estimates for reproductive traits in Zandi sheep.

    PubMed

    Mohammadi, Kourosh; Beigi Nassiri, Mohammad Taghi; Rahmatnejad, Enayat; Sheikh, Masoud; Fayazi, Jamal; Karimi Manesh, Amin

    2013-02-01

    This study reports on the phenotypic and genetic (co)variance components for reproductive traits in Zandi sheep, using between 1,859 and 2,588 records obtained from 577 ewes. The data were collected from the Khojir Breeding Station of Zandi sheep in Tehran, Iran from 1994 to 2008. The basic traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), and litter mean weight per lamb weaned (LMWLW), and the composite traits were total litter weight at birth (TLWB) and total litter weight at weaning (TLWW). Genetic analyses were carried out using the restricted maximum likelihood method that was explored by fitting the additive direct genetic effects and permanent environmental effects of the ewes as random effects and the ewe age at lambing and lambing year as fixed effects for all of the investigated traits. Akaike's information criterion was used to choose the most appropriate model. LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW direct heritability estimates were 0.07, 0.05, 0.12, 0.10, 0.08, and 0.14, respectively. The estimated fractions of variance due to the permanent environmental effects of the ewe ranged from 0.03 for LMWLB to 0.08 for LMWLW and TLWW. Corresponding repeatability estimates ranged from 0.10 for LSW to 0.22 for TLWW. Direct genetic correlations varied from -0.61 for LSB-LMWLB to 0.88 for LSB-LSW and LSB-TLWB. Results indicate that genetic change depends not only on the heritability of traits, but also on the observed phenotypic variation; therefore, improvement of non-genetic factors should be included in the breeding programs. PMID:23086601

  9. Overcoming the Barrier of Low Efficiency during Genetic Transformation of Streptococcus mitis

    PubMed Central

    Salvadori, Gabriela; Junges, Roger; Morrison, Donald A.; Petersen, Fernanda C.

    2016-01-01

    Objective: Streptococcus mitis is a predominant oral colonizer, but difficulties in genetic manipulation of this species have hampered our understanding of the mechanisms it uses for colonization of oral surfaces. The aim of this study was to reveal optimal conditions for natural genetic transformation in S. mitis and illustrate its application in direct genome editing. Methods: Luciferase reporter assays were used to assess gene expression of the alternative sigma factor (σX) in combination with natural transformation experiments to evaluate the efficiency by which S. mitis activates the competence system and incorporates exogenous DNA. Optimal amounts and sources of donor DNA (chromosomal, amplicon, or replicative plasmid), concentrations of synthetic competence-stimulating peptide, and transformation media were assessed. Results: A semi-defined medium showed much improved results for response to the competence stimulating peptide when compared to rich media. The use of a donor amplicon with large homology flanking regions also provided higher transformation rates. Overall, an increase of transformation efficiencies from 0.001% or less to over 30% was achieved with the developed protocol. We further describe the construction of a markerless mutant based on this high efficiency strategy. Conclusion: We optimized competence development in S. mitis, by use of semi-defined medium and appropriate concentrations of synthetic competence factor. Combined with the use of a large amplicon of donor DNA, this method allowed easy and direct editing of the S. mitis genome, broadening the spectrum of possible downstream applications of natural transformation in this species. PMID:27458432

  10. Genetic parameter estimation for major milk fatty acids in Alpine and Saanen primiparous goats.

    PubMed

    Maroteau, C; Palhière, I; Larroque, H; Clément, V; Ferrand, M; Tosser-Klopp, G; Rupp, R

    2014-05-01

    Genetic parameters for 18 fatty acids or groups of fatty acids (FA), milk production traits, and somatic cell score (SCS) were estimated by restricted maximum likelihood with a repeatability animal model, using 45,259 test-day records from the first lactations of 13,677 Alpine and Saanen goats. Fatty acid data were collected as part of an extensive recording scheme (PhénoFinLait), and sample testing was based on mid-infrared spectra estimates. The total predicted FA content in milk was approximately 3.5% in Alpine and Saanen goats. Goat milk fat showed similar saturated FA to cattle and sheep, but higher contents of capric (C10:0) FA (~ 9.7 g/100g of milk fat). Heritability estimates ranged from 0.18 to 0.49 for FA and estimates were generally higher when FA were expressed in g/100g of milk fat compared with g/100g of milk. In general, the 3 specific short- and medium-chain goat FA, caproic acid (C6:0), caprylic acid (C8:0), and especially capric (C10:0) acid, had among the highest heritability estimates (from 0.21 to 0.37; average of 0.30). Heritability estimates for milk yield, fat and protein contents, and SCS were 0.22, 0.23, 0.39, 0.09, and 0.24, 0.20, 0.40, and 0.15, in Alpine and Saanen goats, respectively. When FA were expressed in g/100g of milk, genetic correlations between fat content and all FA were high and positive. Genetic correlations between the fat content and FA groups expressed in g/100g of fat led to further investigation of the association between fat content and FA profile within milk fat. Accordingly, in both Saanen and Alpine breeds, no significant genetic correlations were found between fat content and C16:0, whereas the correlations between fat content and specific goat FA (C6:0 to C10:0) were positive (0.17 to 0.59). In addition, the genetic correlation between fat content and C14:0 was negative (-0.17 to -0.35). The values of the genetic correlations between protein content and individual FA were similar, although genetic correlations

  11. A genetic resampling particle filter for freeway traffic-state estimation

    NASA Astrophysics Data System (ADS)

    Bi, Jun; Guan, Wei; Qi, Long-Tao

    2012-06-01

    On-line estimation of the state of traffic based on data sampled by electronic detectors is important for intelligent traffic management and control. Because a nonlinear feature exists in the traffic state, and because particle filters have good characteristics when it comes to solving the nonlinear problem, a genetic resampling particle filter is proposed to estimate the state of freeway traffic. In this paper, a freeway section of the northern third ring road in the city of Beijing in China is considered as the experimental object. By analysing the traffic-state characteristics of the freeway, the traffic is modeled based on the second-order validated macroscopic traffic flow model. In order to solve the particle degeneration issue in the performance of the particle filter, a genetic mechanism is introduced into the resampling process. The realization of a genetic particle filter for freeway traffic-state estimation is discussed in detail, and the filter estimation performance is validated and evaluated by the achieved experimental data.

  12. Finite-size effects on liquid-solid phase coexistence and the estimation of crystal nucleation barriers.

    PubMed

    Statt, Antonia; Virnau, Peter; Binder, Kurt

    2015-01-16

    A fluid in equilibrium in a finite volume V with particle number N at a density ρ=N/V exceeding the onset density ρ_{f} of freezing may exhibit phase coexistence between a crystalline nucleus and surrounding fluid. Using a method suitable for the estimation of the chemical potential of dense fluids, we obtain the excess free energy due to the surface of the crystalline nucleus. There is neither a need to precisely locate the interface nor to compute the (anisotropic) interfacial tension. As a test case, a soft version of the Asakura-Oosawa model for colloid-polymer mixtures is treated. While our analysis is appropriate for crystal nuclei of arbitrary shape, we find the nucleation barrier to be compatible with a spherical shape and consistent with classical nucleation theory.

  13. Finite-Size Effects on Liquid-Solid Phase Coexistence and the Estimation of Crystal Nucleation Barriers

    NASA Astrophysics Data System (ADS)

    Statt, Antonia; Virnau, Peter; Binder, Kurt

    2015-01-01

    A fluid in equilibrium in a finite volume V with particle number N at a density ρ =N /V exceeding the onset density ρf of freezing may exhibit phase coexistence between a crystalline nucleus and surrounding fluid. Using a method suitable for the estimation of the chemical potential of dense fluids, we obtain the excess free energy due to the surface of the crystalline nucleus. There is neither a need to precisely locate the interface nor to compute the (anisotropic) interfacial tension. As a test case, a soft version of the Asakura-Oosawa model for colloid-polymer mixtures is treated. While our analysis is appropriate for crystal nuclei of arbitrary shape, we find the nucleation barrier to be compatible with a spherical shape and consistent with classical nucleation theory.

  14. Estimation of Odds Ratios of Genetic Variants for the Secondary Phenotypes Associated with Primary Diseases

    PubMed Central

    Wang, Jian; Shete, Sanjay

    2011-01-01

    Genetic association studies for binary diseases are designed as case-control studies: the cases are those affected with the primary disease and the controls are free of the disease. At the time of case-control collection, information about secondary phenotypes is also collected. Association studies of secondary phenotype and genetic variants have received a great deal of interest recently. To study the secondary phenotypes, investigators use standard regression approaches, where individuals with secondary phenotypes are coded as cases and those without secondary phenotypes are coded as controls. However, using the secondary phenotype as an outcome variable in a case-control study might lead to a biased estimate of odds ratios (ORs) for genetic variants. The secondary phenotype is associated with the primary disease; therefore, individuals with and without the secondary phenotype are not sampled following the principles of a case-control study. In this article, we demonstrate that such analyses will lead to a biased estimate of OR and propose new approaches to provide more accurate OR estimates of genetic variants associated with the secondary phenotype for both unmatched and frequency-matched (with respect to the secondary phenotype) case-control studies. We also propose a bootstrapping method to estimate the empirical confidence intervals for the corrected ORs. Using simulation studies and analysis of lung cancer data for single-nucleotide polymorphism associated with smoking quantity, we compared our new approaches to standard logistic regression and to an extended version of the inverse-probability-of-sampling-weighted regression. The proposed approaches provide more accurate estimation of the true OR. PMID:21308766

  15. Estimating sampling error of evolutionary statistics based on genetic covariance matrices using maximum likelihood.

    PubMed

    Houle, D; Meyer, K

    2015-08-01

    We explore the estimation of uncertainty in evolutionary parameters using a recently devised approach for resampling entire additive genetic variance-covariance matrices (G). Large-sample theory shows that maximum-likelihood estimates (including restricted maximum likelihood, REML) asymptotically have a multivariate normal distribution, with covariance matrix derived from the inverse of the information matrix, and mean equal to the estimated G. This suggests that sampling estimates of G from this distribution can be used to assess the variability of estimates of G, and of functions of G. We refer to this as the REML-MVN method. This has been implemented in the mixed-model program WOMBAT. Estimates of sampling variances from REML-MVN were compared to those from the parametric bootstrap and from a Bayesian Markov chain Monte Carlo (MCMC) approach (implemented in the R package MCMCglmm). We apply each approach to evolvability statistics previously estimated for a large, 20-dimensional data set for Drosophila wings. REML-MVN and MCMC sampling variances are close to those estimated with the parametric bootstrap. Both slightly underestimate the error in the best-estimated aspects of the G matrix. REML analysis supports the previous conclusion that the G matrix for this population is full rank. REML-MVN is computationally very efficient, making it an attractive alternative to both data resampling and MCMC approaches to assessing confidence in parameters of evolutionary interest. PMID:26079756

  16. Lack of Genetic Structure and Female-Specific Effect of Dispersal Barriers in a Rabies Vector, the Striped Skunk (Mephitis mephitis)

    PubMed Central

    Talbot, Benoit; Garant, Dany; Rioux Paquette, Sébastien; Mainguy, Julien; Pelletier, Fanie

    2012-01-01

    Evaluating the permeability of potential barriers to movement, dispersal and gene exchanges can help describe spreading patterns of wildlife diseases. Here, we used landscape genetics methods to assess the genetic structure of the striped skunk (Mephitis mephitis), which is a frequent vector of rabies, a lethal zoonosis of great concern for public health. Our main objective was to identify landscape elements shaping the genetic structure of this species in Southern Québec, Canada, in an area where the raccoon rabies variant has been detected. We hypothesised that geographic distance and landscape barriers, such as highways and major rivers, would modulate genetic structure. We genotyped a total of 289 individuals sampled across a large area (22,000 km2) at nice microsatellite loci. Genetic structure analyses identified a single genetic cluster in the study area. Major rivers and highways, however, influenced the genetic relatedness among sampled individuals. Sex-specific analyses revealed that rivers significantly limited dispersal only for females while highways only had marginal effects. Rivers and highways did not significantly affect male dispersal. These results support the contention that female skunks are more philopatric than males. Overall, our results suggest that the effects of major rivers and highways on dispersal are sex-specific and rather weak and are thus unlikely to prevent the spread of rabies within and among striped skunk populations. PMID:23166760

  17. Lack of genetic structure and female-specific effect of dispersal barriers in a rabies vector, the striped skunk (Mephitis mephitis).

    PubMed

    Talbot, Benoit; Garant, Dany; Rioux Paquette, Sébastien; Mainguy, Julien; Pelletier, Fanie

    2012-01-01

    Evaluating the permeability of potential barriers to movement, dispersal and gene exchanges can help describe spreading patterns of wildlife diseases. Here, we used landscape genetics methods to assess the genetic structure of the striped skunk (Mephitis mephitis), which is a frequent vector of rabies, a lethal zoonosis of great concern for public health. Our main objective was to identify landscape elements shaping the genetic structure of this species in Southern Québec, Canada, in an area where the raccoon rabies variant has been detected. We hypothesised that geographic distance and landscape barriers, such as highways and major rivers, would modulate genetic structure. We genotyped a total of 289 individuals sampled across a large area (22,000 km²) at nice microsatellite loci. Genetic structure analyses identified a single genetic cluster in the study area. Major rivers and highways, however, influenced the genetic relatedness among sampled individuals. Sex-specific analyses revealed that rivers significantly limited dispersal only for females while highways only had marginal effects. Rivers and highways did not significantly affect male dispersal. These results support the contention that female skunks are more philopatric than males. Overall, our results suggest that the effects of major rivers and highways on dispersal are sex-specific and rather weak and are thus unlikely to prevent the spread of rabies within and among striped skunk populations. PMID:23166760

  18. Lack of genetic structure and female-specific effect of dispersal barriers in a rabies vector, the striped skunk (Mephitis mephitis).

    PubMed

    Talbot, Benoit; Garant, Dany; Rioux Paquette, Sébastien; Mainguy, Julien; Pelletier, Fanie

    2012-01-01

    Evaluating the permeability of potential barriers to movement, dispersal and gene exchanges can help describe spreading patterns of wildlife diseases. Here, we used landscape genetics methods to assess the genetic structure of the striped skunk (Mephitis mephitis), which is a frequent vector of rabies, a lethal zoonosis of great concern for public health. Our main objective was to identify landscape elements shaping the genetic structure of this species in Southern Québec, Canada, in an area where the raccoon rabies variant has been detected. We hypothesised that geographic distance and landscape barriers, such as highways and major rivers, would modulate genetic structure. We genotyped a total of 289 individuals sampled across a large area (22,000 km²) at nice microsatellite loci. Genetic structure analyses identified a single genetic cluster in the study area. Major rivers and highways, however, influenced the genetic relatedness among sampled individuals. Sex-specific analyses revealed that rivers significantly limited dispersal only for females while highways only had marginal effects. Rivers and highways did not significantly affect male dispersal. These results support the contention that female skunks are more philopatric than males. Overall, our results suggest that the effects of major rivers and highways on dispersal are sex-specific and rather weak and are thus unlikely to prevent the spread of rabies within and among striped skunk populations.

  19. A comparison of single-sample estimators of effective population sizes from genetic marker data.

    PubMed

    Wang, Jinliang

    2016-10-01

    In molecular ecology and conservation genetics studies, the important parameter of effective population size (Ne ) is increasingly estimated from a single sample of individuals taken at random from a population and genotyped at a number of marker loci. Several estimators are developed, based on the information of linkage disequilibrium (LD), heterozygote excess (HE), molecular coancestry (MC) and sibship frequency (SF) in marker data. The most popular is the LD estimator, because it is more accurate than HE and MC estimators and is simpler to calculate than SF estimator. However, little is known about the accuracy of LD estimator relative to that of SF and about the robustness of all single-sample estimators when some simplifying assumptions (e.g. random mating, no linkage, no genotyping errors) are violated. This study fills the gaps and uses extensive simulations to compare the biases and accuracies of the four estimators for different population properties (e.g. bottlenecks, nonrandom mating, haplodiploid), marker properties (e.g. linkage, polymorphisms) and sample properties (e.g. numbers of individuals and markers) and to compare the robustness of the four estimators when marker data are imperfect (with allelic dropouts). Extensive simulations show that SF estimator is more accurate, has a much wider application scope (e.g. suitable to nonrandom mating such as selfing, haplodiploid species, dominant markers) and is more robust (e.g. to the presence of linkage and genotyping errors of markers) than the other estimators. An empirical data set from a Yellowstone grizzly bear population was analysed to demonstrate the use of the SF estimator in practice.

  20. A comparison of single-sample estimators of effective population sizes from genetic marker data.

    PubMed

    Wang, Jinliang

    2016-10-01

    In molecular ecology and conservation genetics studies, the important parameter of effective population size (Ne ) is increasingly estimated from a single sample of individuals taken at random from a population and genotyped at a number of marker loci. Several estimators are developed, based on the information of linkage disequilibrium (LD), heterozygote excess (HE), molecular coancestry (MC) and sibship frequency (SF) in marker data. The most popular is the LD estimator, because it is more accurate than HE and MC estimators and is simpler to calculate than SF estimator. However, little is known about the accuracy of LD estimator relative to that of SF and about the robustness of all single-sample estimators when some simplifying assumptions (e.g. random mating, no linkage, no genotyping errors) are violated. This study fills the gaps and uses extensive simulations to compare the biases and accuracies of the four estimators for different population properties (e.g. bottlenecks, nonrandom mating, haplodiploid), marker properties (e.g. linkage, polymorphisms) and sample properties (e.g. numbers of individuals and markers) and to compare the robustness of the four estimators when marker data are imperfect (with allelic dropouts). Extensive simulations show that SF estimator is more accurate, has a much wider application scope (e.g. suitable to nonrandom mating such as selfing, haplodiploid species, dominant markers) and is more robust (e.g. to the presence of linkage and genotyping errors of markers) than the other estimators. An empirical data set from a Yellowstone grizzly bear population was analysed to demonstrate the use of the SF estimator in practice. PMID:27288989

  1. On the transient and steady-state estimates of interval genetic regulatory networks.

    PubMed

    Li, Ping; Lam, James; Shu, Zhan

    2010-04-01

    This paper is concerned with the transient and steady-state estimates of a class of genetic regulatory networks (GRNs). Some sufficient conditions, which do not only present the transient estimate but also provide the estimates of decay rate and decay coefficient of the GRN with interval parameter uncertainties (interval GRN), are established by means of linear matrix inequality (LMI) and Lyapunov-Krasovskii functional. Moreover, the steady-state estimate of the proposed GRN model is also investigated. Furthermore, it is well known that gene regulation is an intrinsically noisy process due to intracellular and extracellular noise perturbations and environmental fluctuations. Then, by utilizing stochastic differential equation theory, the obtained results are extended to the case with noise perturbations due to natural random fluctuations. All the conditions are expressed within the framework of LMIs, which can easily be computed by using standard numerical software. A three-gene network is provided to illustrate the effectiveness of the theoretical results.

  2. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars.

    PubMed

    Shahin, Arwa; Smulders, Marinus J M; van Tuyl, Jaap M; Arens, Paul; Bakker, Freek T

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628

  3. Simple Penalties on Maximum-Likelihood Estimates of Genetic Parameters to Reduce Sampling Variation.

    PubMed

    Meyer, Karin

    2016-08-01

    Multivariate estimates of genetic parameters are subject to substantial sampling variation, especially for smaller data sets and more than a few traits. A simple modification of standard, maximum-likelihood procedures for multivariate analyses to estimate genetic covariances is described, which can improve estimates by substantially reducing their sampling variances. This is achieved by maximizing the likelihood subject to a penalty. Borrowing from Bayesian principles, we propose a mild, default penalty-derived assuming a Beta distribution of scale-free functions of the covariance components to be estimated-rather than laboriously attempting to determine the stringency of penalization from the data. An extensive simulation study is presented, demonstrating that such penalties can yield very worthwhile reductions in loss, i.e., the difference from population values, for a wide range of scenarios and without distorting estimates of phenotypic covariances. Moreover, mild default penalties tend not to increase loss in difficult cases and, on average, achieve reductions in loss of similar magnitude to computationally demanding schemes to optimize the degree of penalization. Pertinent details required for the adaptation of standard algorithms to locate the maximum of the likelihood function are outlined.

  4. Sub-sampling genetic data to estimate black bear population size: A case study

    USGS Publications Warehouse

    Tredick, C.A.; Vaughan, M.R.; Stauffer, D.F.; Simek, S.L.; Eason, T.

    2007-01-01

    Costs for genetic analysis of hair samples collected for individual identification of bears average approximately US$50 [2004] per sample. This can easily exceed budgetary allowances for large-scale studies or studies of high-density bear populations. We used 2 genetic datasets from 2 areas in the southeastern United States to explore how reducing costs of analysis by sub-sampling affected precision and accuracy of resulting population estimates. We used several sub-sampling scenarios to create subsets of the full datasets and compared summary statistics, population estimates, and precision of estimates generated from these subsets to estimates generated from the complete datasets. Our results suggested that bias and precision of estimates improved as the proportion of total samples used increased, and heterogeneity models (e.g., Mh[CHAO]) were more robust to reduced sample sizes than other models (e.g., behavior models). We recommend that only high-quality samples (>5 hair follicles) be used when budgets are constrained, and efforts should be made to maximize capture and recapture rates in the field.

  5. Applications in genetic risk estimation of data on the induction of dominant skeletal mutations in mice

    SciTech Connect

    Selby, P.B.

    1982-01-01

    Studies on the induction of dominant skeleton mutations and of dominant cataract mutations provide means of estimating genetic hazard to humans from radiation. The breeding-test method of studying the induction of dominant skeletal mutations is slow and cumbersome. In an attempt to devise a more rapid method, three non-breeding-test methods have been developed which are likely to have wider application in mutagenicity testing. (ACR)

  6. Estimation of the incidence of a rare genetic disease through a two-tier mutation survey

    SciTech Connect

    Chakraborty, R.; Srinivasan, M.R. ); Raskin, S. Universidade Federal do Parana, Curitiba )

    1993-06-01

    Recent attempts to detect mutations involving single base changes or small deletions that are specific to genetic diseases provide an opportunity to develop a two-tier mutation-screening program through which incidence of rare genetic disorders and gene carriers may be precisely estimated. A two-tier survey consists of mutation screening in a sample of patients with specific genetic disorders and in a second sample of newborns from the same population in which mutation frequency is evaluated. The authors provide the statistical basis for evaluating the incidence of affected and gene carriers in such two-tier mutation-screening surveys, from which the precision of the estimates is derived. Sample-size requirements of such two-tier mutation-screening surveys are evaluated. Considering examples of cystic fibrosis (CF) and medium-chain acyl-CoA dehydrogenase deficiency (MCAD), the two most frequent autosomal recessive diseases in Caucasian populations and the two most frequent mutations ([Delta]F508 and G985) that occur on these disease allele-bearing chromosomes, the authors show that, with 50--100 patients and a 20-fold larger sample of newborns screened for these mutations, the incidence of such diseases and their gene carriers in a population may be quite reliably estimated. The theory developed here is also applicable to rare autosomal dominant diseases for which disease-specific mutations are found. 21 refs., 1 fig., 3 tabs.

  7. Genetic parameter estimates of yearling live animal ultrasonic measurements in Brangus cattle.

    PubMed

    Stelzleni, A M; Perkins, T L; Brown, A H; Pohlman, F W; Johnson, Z B; Sandelin, B A

    2002-12-01

    The objective of this study was to estimate genetic parameters for real-time ultrasound measurements of longissimus muscle area (LMA), 12th rib backfat thickness (FT), percent intramuscular fat (IMF), and yearling weight (YW) for 1,299 yearling Brangus bulls and heifers. A single ultrasound technician performed all measurements. The number of observations was 1,298, 1,298, 1,215, and 1,170 for LMA, FT, IMF, and YW, respectively. Genetic parameters were estimated for each trait using single- and multiple-trait derivative-free restricted maximal likelihood. Fixed effects were contemporary group (defined as same sex, same age within six months, and same environment), and days of age as a covariate. Correlations were estimated from two-trait models. Heritabilities for LMA, FT, IMF, and YW were 0.31, 0.26, 0.16, and 0.53, respectively. Genetic correlations between LMA and FT, LMA and IMF, LMA and YW, FT and IMF, FT and YW, and IMF and YW were 0.09, 0.25, 0.44, 0.36, 0.42, and 0.31, respectively. Yearling live animal ultrasonic measurements can be used as a selection tool in breeding cattle for the improvement of carcass traits.

  8. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    PubMed Central

    Beerenwinkel, Niko; Günthard, Huldrych F.; Roth, Volker; Metzner, Karin J.

    2012-01-01

    Many viruses, including the clinically relevant RNA viruses HIV (human immunodeficiency virus) and HCV (hepatitis C virus), exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing (NGS) technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different NGS platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants (SNVs) to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of NGS to estimate viral diversity. PMID:22973268

  9. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data.

    PubMed

    Beerenwinkel, Niko; Günthard, Huldrych F; Roth, Volker; Metzner, Karin J

    2012-01-01

    Many viruses, including the clinically relevant RNA viruses HIV (human immunodeficiency virus) and HCV (hepatitis C virus), exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing (NGS) technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different NGS platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants (SNVs) to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of NGS to estimate viral diversity.

  10. Genetic parameter estimates of yearling live animal ultrasonic measurements in Brangus cattle.

    PubMed

    Stelzleni, A M; Perkins, T L; Brown, A H; Pohlman, F W; Johnson, Z B; Sandelin, B A

    2002-12-01

    The objective of this study was to estimate genetic parameters for real-time ultrasound measurements of longissimus muscle area (LMA), 12th rib backfat thickness (FT), percent intramuscular fat (IMF), and yearling weight (YW) for 1,299 yearling Brangus bulls and heifers. A single ultrasound technician performed all measurements. The number of observations was 1,298, 1,298, 1,215, and 1,170 for LMA, FT, IMF, and YW, respectively. Genetic parameters were estimated for each trait using single- and multiple-trait derivative-free restricted maximal likelihood. Fixed effects were contemporary group (defined as same sex, same age within six months, and same environment), and days of age as a covariate. Correlations were estimated from two-trait models. Heritabilities for LMA, FT, IMF, and YW were 0.31, 0.26, 0.16, and 0.53, respectively. Genetic correlations between LMA and FT, LMA and IMF, LMA and YW, FT and IMF, FT and YW, and IMF and YW were 0.09, 0.25, 0.44, 0.36, 0.42, and 0.31, respectively. Yearling live animal ultrasonic measurements can be used as a selection tool in breeding cattle for the improvement of carcass traits. PMID:12542155

  11. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    PubMed Central

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17–29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn’s disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders. PMID:23933821

  12. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    PubMed

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-01-01

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus. PMID:26214487

  13. Genetic parameter estimates for carcass and yearling ultrasound measurements in Brangus cattle.

    PubMed

    Moser, D W; Bertrand, J K; Misztal, I; Kriese, L A; Benyshek, L L

    1998-10-01

    Carcass measurements of 12th-rib fat thickness (CARCFAT), longissimus muscle area (CARCLMA), and weight (CARCWT) on 2,028 Brangus and Brangus-sired fed steers and heifers, as well as yearling weights (YWT) and ultrasound measures of 12th-rib fat thickness (USFAT) and longissimus muscle area (USLMA) on 3,583 Brangus bulls and heifers were analyzed to estimate genetic parameters. Data were analyzed using a six-trait animal model and an average information REML algorithm. The model included fixed effects for contemporary group and breed of dam, covariates for age at slaughter or measurement, and random animal and residual effects. Heritabilities for CARCFAT, CARCLMA, CARCWT, USFAT, USLMA, and YWT were .27+/-.05, .39+/-.05, .59+/-.06, .11+/-.03, .29+/-.04, and .40+/-.04, respectively. Genetic correlations between CARCFAT and USFAT, CARCLMA and USLMA, and CARCWT and YWT were .69+/-.18, .66+/-.14, and .61+/-.11, respectively. The favorable and moderately strong genetic correlations between carcass measurements and similar yearling breeding-animal ultrasound measurements indicate that such measurements of 12th-rib fat and longissimus muscle area are useful in predicting genetic values for carcass leanness and longissimus muscle area. Selection using yearling ultrasound measurements of breeding cattle should result in predictable genetic improvement for carcass characteristics. Inclusion of yearling ultrasound measurements for fat thickness and longissimus muscle area should enhance national cattle evaluation programs.

  14. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    PubMed

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-07-17

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus.

  15. Genetic parameter estimates for carcass and yearling ultrasound measurements in Brangus cattle.

    PubMed

    Moser, D W; Bertrand, J K; Misztal, I; Kriese, L A; Benyshek, L L

    1998-10-01

    Carcass measurements of 12th-rib fat thickness (CARCFAT), longissimus muscle area (CARCLMA), and weight (CARCWT) on 2,028 Brangus and Brangus-sired fed steers and heifers, as well as yearling weights (YWT) and ultrasound measures of 12th-rib fat thickness (USFAT) and longissimus muscle area (USLMA) on 3,583 Brangus bulls and heifers were analyzed to estimate genetic parameters. Data were analyzed using a six-trait animal model and an average information REML algorithm. The model included fixed effects for contemporary group and breed of dam, covariates for age at slaughter or measurement, and random animal and residual effects. Heritabilities for CARCFAT, CARCLMA, CARCWT, USFAT, USLMA, and YWT were .27+/-.05, .39+/-.05, .59+/-.06, .11+/-.03, .29+/-.04, and .40+/-.04, respectively. Genetic correlations between CARCFAT and USFAT, CARCLMA and USLMA, and CARCWT and YWT were .69+/-.18, .66+/-.14, and .61+/-.11, respectively. The favorable and moderately strong genetic correlations between carcass measurements and similar yearling breeding-animal ultrasound measurements indicate that such measurements of 12th-rib fat and longissimus muscle area are useful in predicting genetic values for carcass leanness and longissimus muscle area. Selection using yearling ultrasound measurements of breeding cattle should result in predictable genetic improvement for carcass characteristics. Inclusion of yearling ultrasound measurements for fat thickness and longissimus muscle area should enhance national cattle evaluation programs. PMID:9814892

  16. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.

    PubMed

    Lee, S Hong; Ripke, Stephan; Neale, Benjamin M; Faraone, Stephen V; Purcell, Shaun M; Perlis, Roy H; Mowry, Bryan J; Thapar, Anita; Goddard, Michael E; Witte, John S; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E; Asherson, Philip; Azevedo, Maria H; Backlund, Lena; Badner, Judith A; Bailey, Anthony J; Banaschewski, Tobias; Barchas, Jack D; Barnes, Michael R; Barrett, Thomas B; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B; Black, Donald W; Blackwood, Douglas H R; Bloss, Cinnamon S; Boehnke, Michael; Boomsma, Dorret I; Breen, Gerome; Breuer, René; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G; Buitelaar, Jan K; Bunney, William E; Buxbaum, Joseph D; Byerley, William F; Byrne, Enda M; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C Robert; Collier, David A; Cook, Edwin H; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H; Craig, David W; Craig, Ian W; Crosbie, Jennifer; Cuccaro, Michael L; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J; Doyle, Alysa E; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P; Edenberg, Howard J; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E; Ferrier, I Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B; Freitag, Christine M; Friedl, Marion; Frisén, Louise; Gallagher, Louise; Gejman, Pablo V; Georgieva, Lyudmila; Gershon, Elliot S; Geschwind, Daniel H; Giegling, Ina; Gill, Michael; Gordon, Scott D; Gordon-Smith, Katherine; Green, Elaine K; Greenwood, Tiffany A; Grice, Dorothy E; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P; Hamshere, Marian L; Hansen, Thomas F; Hartmann, Annette M; Hautzinger, Martin; Heath, Andrew C; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A; Holsboer, Florian; Hoogendijk, Witte J; Hottenga, Jouke-Jan; Hultman, Christina M; Hus, Vanessa; Ingason, Andrés; Ising, Marcus; Jamain, Stéphane; Jones, Edward G; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kähler, Anna K; Kahn, René S; Kandaswamy, Radhika; Keller, Matthew C; Kennedy, James L; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K; Klauck, Sabine M; Klei, Lambertus; Knowles, James A; Kohli, Martin A; Koller, Daniel L; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landén, Mikael; Långström, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B; Leboyer, Marion; Ledbetter, David H; Lee, Phil H; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F; Lewis, Cathryn M; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A; Lin, Dan-Yu; Linszen, Don H; Liu, Chunyu; Lohoff, Falk W; Loo, Sandra K; Lord, Catherine; Lowe, Jennifer K; Lucae, Susanne; MacIntyre, Donald J; Madden, Pamela A F; Maestrini, Elena; Magnusson, Patrik K E; Mahon, Pamela B; Maier, Wolfgang; Malhotra, Anil K; Mane, Shrikant M; Martin, Christa L; Martin, Nicholas G; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A; McGhee, Kevin A; McGough, James J; McGrath, Patrick J; McGuffin, Peter; McInnis, Melvin G; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W; McMahon, Francis J; McMahon, William M; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P; Montgomery, Grant W; Moran, Jennifer L; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W; Morrow, Eric M; Moskvina, Valentina; Muglia, Pierandrea; Mühleisen, Thomas W; Muir, Walter J; Müller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M; Myin-Germeys, Inez; Neale, Michael C; Nelson, Stan F; Nievergelt, Caroline M; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A; Nöthen, Markus M; Nurnberger, John I; Nwulia, Evaristus A; Nyholt, Dale R; O'Dushlaine, Colm; Oades, Robert D; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A; Osby, Urban; Owen, Michael J; Palotie, Aarno; Parr, Jeremy R; Paterson, Andrew D; Pato, Carlos N; Pato, Michele T; Penninx, Brenda W; Pergadia, Michele L; Pericak-Vance, Margaret A; Pickard, Benjamin S; Pimm, Jonathan; Piven, Joseph; Posthuma, Danielle; Potash, James B; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J; Quinn, Emma M; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B; Raychaudhuri, Soumya; Rehnström, Karola; Reif, Andreas; Ribasés, Marta; Rice, John P; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rossin, Lizzy; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R; Sanders, Stephan J; Santangelo, Susan L; Sergeant, Joseph A; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F; Scheftner, William A; Schellenberg, Gerard D; Scherer, Stephen W; Schork, Nicholas J; Schulze, Thomas G; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J; Shi, Jianxin; Shilling, Paul D; Shyn, Stanley I; Silverman, Jeremy M; Slager, Susan L; Smalley, Susan L; Smit, Johannes H; Smith, Erin N; Sonuga-Barke, Edmund J S; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S; Strohmaier, Jana; Stroup, T Scott; Sutcliffe, James S; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C; Todorov, Alexandre A; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M; Vieland, Veronica J; Vincent, John B; Visscher, Peter M; Walsh, Christopher A; Wassink, Thomas H; Watson, Stanley J; Weissman, Myrna M; Werge, Thomas; Wienker, Thomas F; Wijsman, Ellen M; Willemsen, Gonneke; Williams, Nigel; Willsey, A Jeremy; Witt, Stephanie H; Xu, Wei; Young, Allan H; Yu, Timothy W; Zammit, Stanley; Zandi, Peter P; Zhang, Peng; Zitman, Frans G; Zöllner, Sebastian; Devlin, Bernie; Kelsoe, John R; Sklar, Pamela; Daly, Mark J; O'Donovan, Michael C; Craddock, Nicholas; Sullivan, Patrick F; Smoller, Jordan W; Kendler, Kenneth S; Wray, Naomi R

    2013-09-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders. PMID:23933821

  17. Genetic assignment of recruits reveals short- and long-distance larval dispersal in Pocillopora damicornis on the Great Barrier Reef.

    PubMed

    Torda, G; Lundgren, P; Willis, B L; van Oppen, M J H

    2013-12-01

    Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence-based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual-based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self-recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self-recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.

  18. Genetic Parameter Estimates of Carcass Traits under National Scale Breeding Scheme for Beef Cattle.

    PubMed

    Do, ChangHee; Park, ByungHo; Kim, SiDong; Choi, TaeJung; Yang, BohSuk; Park, SuBong; Song, HyungJun

    2016-08-01

    Carcass and price traits of 72,969 Hanwoo cows, bulls and steers aged 16 to 80 months at slaughter collected from 2002 to 2013 at 75 beef packing plants in Korea were analyzed to determine heritability, correlation and breeding value using the Multi-Trait restricted maximum likelihood (REML) animal model procedure. The traits included carcass measurements, scores and grades at 24 h postmortem and bid prices at auction. Relatively high heritability was found for maturity (0.41±0.031), while moderate heritability estimates were obtained for backfat thickness (0.20±0.018), longissimus muscle (LM) area (0.23±0.020), carcass weight (0.28±0.019), yield index (0.20±0.018), yield grade (0.16±0.017), marbling (0.28±0.021), texture (0.14±0.016), quality grade (0.26±0.016) and price/kg (0.24±0.025). Relatively low heritability estimates were observed for meat color (0.06±0.013) and fat color (0.06±0.012). Heritability estimates for most traits were lower than those in the literature. Genetic correlations of carcass measurements with characteristic scores or quality grade of carcass ranged from -0.27 to +0.21. Genetic correlations of yield grade with backfat thickness, LM area and carcass weight were 0.91, -0.43, and -0.09, respectively. Genetic correlations of quality grade with scores of marbling, meat color, fat color and texture were -0.99, 0.48, 0.47, and 0.98, respectively. Genetic correlations of price/kg with LM area, carcass weight, marbling, meat color, texture and maturity were 0.57, 0.64, 0.76, -0.41, -0.79, and -0.42, respectively. Genetic correlations of carcass price with LM area, carcass weight, marbling and texture were 0.61, 0.57, 0.64, and -0.73, respectively, with standard errors ranging from ±0.047 to ±0.058. The mean carcass weight breeding values increased by more than 8 kg, whereas the mean marbling scores decreased by approximately 0.2 from 2000 through 2009. Overall, the results suggest that genetic improvement of productivity and

  19. Genetic Parameter Estimates of Carcass Traits under National Scale Breeding Scheme for Beef Cattle

    PubMed Central

    Do, ChangHee; Park, ByungHo; Kim, SiDong; Choi, TaeJung; Yang, BohSuk; Park, SuBong; Song, HyungJun

    2016-01-01

    Carcass and price traits of 72,969 Hanwoo cows, bulls and steers aged 16 to 80 months at slaughter collected from 2002 to 2013 at 75 beef packing plants in Korea were analyzed to determine heritability, correlation and breeding value using the Multi-Trait restricted maximum likelihood (REML) animal model procedure. The traits included carcass measurements, scores and grades at 24 h postmortem and bid prices at auction. Relatively high heritability was found for maturity (0.41±0.031), while moderate heritability estimates were obtained for backfat thickness (0.20±0.018), longissimus muscle (LM) area (0.23±0.020), carcass weight (0.28±0.019), yield index (0.20±0.018), yield grade (0.16±0.017), marbling (0.28±0.021), texture (0.14±0.016), quality grade (0.26±0.016) and price/kg (0.24±0.025). Relatively low heritability estimates were observed for meat color (0.06±0.013) and fat color (0.06±0.012). Heritability estimates for most traits were lower than those in the literature. Genetic correlations of carcass measurements with characteristic scores or quality grade of carcass ranged from −0.27 to +0.21. Genetic correlations of yield grade with backfat thickness, LM area and carcass weight were 0.91, −0.43, and −0.09, respectively. Genetic correlations of quality grade with scores of marbling, meat color, fat color and texture were −0.99, 0.48, 0.47, and 0.98, respectively. Genetic correlations of price/kg with LM area, carcass weight, marbling, meat color, texture and maturity were 0.57, 0.64, 0.76, −0.41, −0.79, and −0.42, respectively. Genetic correlations of carcass price with LM area, carcass weight, marbling and texture were 0.61, 0.57, 0.64, and −0.73, respectively, with standard errors ranging from ±0.047 to ±0.058. The mean carcass weight breeding values increased by more than 8 kg, whereas the mean marbling scores decreased by approximately 0.2 from 2000 through 2009. Overall, the results suggest that genetic improvement of

  20. Estimating genetic parameters for fertility in dairy cows from in-line milk progesterone profiles.

    PubMed

    Tenghe, A M M; Bouwman, A C; Berglund, B; Strandberg, E; Blom, J Y; Veerkamp, R F

    2015-08-01

    The aim of this study was to define endocrine fertility traits from in-line milk progesterone (P4) records and to estimate genetic parameters for these traits. Correlations of classical fertility (calving interval and calving to first service) and milk production traits with endocrine fertility traits were also estimated. In-line milk P4 records (n=160,952) collected from June 2009 through November 2013 for 2,273 lactations of 1,561 Holstein-Friesian cows in 12 commercial herds in the Netherlands were analyzed for (the log of) the number of days from calving till commencement of luteal activity (lnC-LA), proportion of samples between 25 and 60 d in milk with luteal activity (PLA), presence or absence of luteal activity for a cow between 25 and 60 d in milk, interval from commencement of luteal activity to first service (CLAFS), first luteal phase length, length of first interluteal interval, and length of first interovulatory interval. Milk P4 records were sampled, on average, every 2 d. Genetic parameters were estimated using a mixed linear animal model. Heritability estimates (±SE) of endocrine fertility traits were 0.12±0.05 for lnC-LA, 0.12±0.05 for PLA, and 0.11±0.06 for CLAFS, and their repeatability estimates were 0.29±0.04, 0.21±0.04, and 0.15±0.06, respectively. The genetic correlation of lnC-LA with PLA was -0.91±0.06 and with CLAFS was -0.56±0.25. The genetic correlations of lnC-LA were 0.26±0.33 with calving interval and 0.37±0.21 with calving to first service. Genetic correlations of the milk production traits with lnC-LA ranged from 0.04 to 0.18 and 0.07 to 0.65 with classical fertility traits. The phenotypic correlations of all endocrine fertility traits with milk production traits were close to zero (0.01 to 0.07). This study shows that in-line P4 records can be used to define and explore several heritable endocrine fertility traits in dairy cows and might help in selection for improved fertility.

  1. Estimating genetic parameters for fertility in dairy cows from in-line milk progesterone profiles.

    PubMed

    Tenghe, A M M; Bouwman, A C; Berglund, B; Strandberg, E; Blom, J Y; Veerkamp, R F

    2015-08-01

    The aim of this study was to define endocrine fertility traits from in-line milk progesterone (P4) records and to estimate genetic parameters for these traits. Correlations of classical fertility (calving interval and calving to first service) and milk production traits with endocrine fertility traits were also estimated. In-line milk P4 records (n=160,952) collected from June 2009 through November 2013 for 2,273 lactations of 1,561 Holstein-Friesian cows in 12 commercial herds in the Netherlands were analyzed for (the log of) the number of days from calving till commencement of luteal activity (lnC-LA), proportion of samples between 25 and 60 d in milk with luteal activity (PLA), presence or absence of luteal activity for a cow between 25 and 60 d in milk, interval from commencement of luteal activity to first service (CLAFS), first luteal phase length, length of first interluteal interval, and length of first interovulatory interval. Milk P4 records were sampled, on average, every 2 d. Genetic parameters were estimated using a mixed linear animal model. Heritability estimates (±SE) of endocrine fertility traits were 0.12±0.05 for lnC-LA, 0.12±0.05 for PLA, and 0.11±0.06 for CLAFS, and their repeatability estimates were 0.29±0.04, 0.21±0.04, and 0.15±0.06, respectively. The genetic correlation of lnC-LA with PLA was -0.91±0.06 and with CLAFS was -0.56±0.25. The genetic correlations of lnC-LA were 0.26±0.33 with calving interval and 0.37±0.21 with calving to first service. Genetic correlations of the milk production traits with lnC-LA ranged from 0.04 to 0.18 and 0.07 to 0.65 with classical fertility traits. The phenotypic correlations of all endocrine fertility traits with milk production traits were close to zero (0.01 to 0.07). This study shows that in-line P4 records can be used to define and explore several heritable endocrine fertility traits in dairy cows and might help in selection for improved fertility. PMID:26004838

  2. Ocean currents influence the genetic structure of an intertidal mollusc in southeastern Australia – implications for predicting the movement of passive dispersers across a marine biogeographic barrier

    PubMed Central

    Miller, Adam D; Versace, Vincent L; Matthews, Ty G; Montgomery, Steven; Bowie, Kate C

    2013-01-01

    Major disjunctions among marine communities in southeastern Australia have been well documented, although explanations for biogeographic structuring remain uncertain. Converging ocean currents, environmental gradients, and habitat discontinuities have been hypothesized as likely drivers of structuring in many species, although the extent to which species are affected appears largely dependent on specific life histories and ecologies. Understanding these relationships is critical to the management of native and invasive species, and the preservation of evolutionary processes that shape biodiversity in this region. In this study we test the direct influence of ocean currents on the genetic structure of a passive disperser across a major biogeographic barrier. Donax deltoides (Veneroida: Donacidae) is an intertidal, soft-sediment mollusc and an ideal surrogate for testing this relationship, given its lack of habitat constraints in this region, and its immense dispersal potential driven by year-long spawning and long-lived planktonic larvae. We assessed allele frequencies at 10 polymorphic microsatellite loci across 11 sample locations spanning the barrier region and identified genetic structure consistent with the major ocean currents of southeastern Australia. Analysis of mitochondrial DNA sequence data indicated no evidence of genetic structuring, but signatures of a species range expansion corresponding with historical inundations of the Bassian Isthmus. Our results indicate that ocean currents are likely to be the most influential factor affecting the genetic structure of D. deltoides and a likely physical barrier for passive dispersing marine fauna generally in southeastern Australia. PMID:23762511

  3. Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers

    PubMed Central

    Su, Guosheng; Christensen, Ole F.; Ostersen, Tage; Henryon, Mark; Lund, Mogens S.

    2012-01-01

    Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP) markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1) a simple additive genetic model (MA), 2) a model including both additive and additive by additive epistatic genetic effects (MAE), 3) a model including both additive and dominance genetic effects (MAD), and 4) a full model including all three genetic components (MAED). Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions. PMID:23028912

  4. Genetic versus census estimators of the opportunity for sexual selection in the wild.

    PubMed

    Dunn, Stacey J; Waits, Lisette P; Byers, John A

    2012-04-01

    Abstract The existence of a direct link between intensity of sexual selection and mating-system type is widely accepted. However, the quantification of sexual selection has proven problematic. Several measures of sexual selection have been proposed, including the operational sex ratio (OSR), the breeding sex ratio (BSR), and the opportunity for sexual selection (I(mates)). For a wild population of pronghorn (Antilocapra americana), we calculated OSR and BSR. We estimated I(mates) from census data on the spatial and temporal distribution of receptive females in rut and from a multigenerational genetic pedigree. OSR and BSR indicated weak sexual selection on males, but census and pedigree I(mates) suggested stronger sexual selection on males than on females. OSR and BSR correlated with census but not pedigree estimates of I(mates), and census I(mates) did not correlate with pedigree estimates. This suggests that the behavioral mating system, as deduced from the spatial and temporal distribution of females, does not predict the genetic mating system of pronghorn. The differences we observed between estimators were primarily due to female mate sampling and choice and to the sex ratio. For most species, behavioral data are not perfectly accurate and therefore will be an insufficient alternative to using multigenerational pedigrees to quantify sexual selection. PMID:22437175

  5. Estimating aquifer recharge in Mission River watershed, Texas: model development and calibration using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Uddameri, V.; Kuchanur, M.

    2007-01-01

    Soil moisture balance studies provide a convenient approach to estimate aquifer recharge when only limited site-specific data are available. A monthly mass-balance approach has been utilized in this study to estimate recharge in a small watershed in the coastal bend of South Texas. The developed lumped parameter model employs four adjustable parameters to calibrate model predicted stream runoff to observations at a gaging station. A new procedure was developed to correctly capture the intermittent nature of rainfall. The total monthly rainfall was assigned to a single-equivalent storm whose duration was obtained via calibration. A total of four calibrations were carried out using an evolutionary computing technique called genetic algorithms as well as the conventional gradient descent (GD) technique. Ordinary least squares and the heteroscedastic maximum likelihood error (HMLE) based objective functions were evaluated as part of this study as well. While the genetic algorithm based calibrations were relatively better in capturing the peak runoff events, the GD based calibration did slightly better in capturing the low flow events. Treating the Box-Cox exponent in the HMLE function as a calibration parameter did not yield better estimates and the study corroborates the suggestion made in the literature of fixing this exponent at 0.3. The model outputs were compared against available information and results indicate that the developed modeling approach provides a conservative estimate of recharge.

  6. Limitations to estimating bacterial cross-speciestransmission using genetic and genomic markers: inferencesfrom simulation modeling

    USGS Publications Warehouse

    Julio Andre, Benavides; Cross, Paul C.; Luikart, Gordon; Scott, Creel

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced.

  7. Estimation of the genetic parameters of semen quality in Beijing-You chickens.

    PubMed

    Hu, J; Chen, J L; Wen, J; Zhao, G P; Zheng, M Q; Liu, R R; Liu, W P; Zhao, L H; Liu, G F; Wang, Z W

    2013-10-01

    By estimating the genetic parameters of various semen quality traits in Beijing-You chickens, this study aims to elucidate the inheritance patterns of these traits and the correlations between them to facilitate setting up appropriate breeding strategies for enhanced semen quality. Semen samples were collected from 518 Beijing-You roosters at 43 wk of age from 3 selection lines related to meat flavor traits. Seven semen quality traits, consisting of semen volume, pH, and color, and sperm viability, motility, percent deformity, and concentration, were determined. Sizeable variations (18-24% CV) were observed for all traits, except for semen pH. The effects of semen collection time and origin of the chickens (line) were analyzed to optimize the proper models for estimating genetic parameters for each trait. The multiple-trait derivative-free restricted maximum likelihood method was used for estimating variance components. The results revealed that sperm viability, motility, and percent deformity exhibited high heritabilities (h(2) = 0.52, 0.85, and 0.60, respectively). Semen volume, semen color, and sperm concentration had moderate heritabilities (h(2) = 0.28, 0.19, and 0.12, respectively). Semen pH showed low heritability (h(2) = 0.03). Genetic and phenotypic correlations between sperm motility and viability were positive and high (rA = 0.88 and rP = 0.59). In addition, these 2 traits were genetically negatively correlated with percent deformity. This implied the possibility of reducing sperm deformity, which is difficult to measure, by indirect selection. It is concluded from this study that semen quality can be improved by selection. The traits with high variations and heritabilities such as semen volume are promising traits for selection to improve semen quality and likely reproductive performance of native chicken breeds.

  8. Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints.

    PubMed

    Dogrusoz, Yesim Serinagaoglu; Gavgani, Alireza Mazloumi

    2013-04-01

    In inverse electrocardiography, the goal is to estimate cardiac electrical sources from potential measurements on the body surface. It is by nature an ill-posed problem, and regularization must be employed to obtain reliable solutions. This paper employs the multiple constraint solution approach proposed in Brooks et al. (IEEE Trans Biomed Eng 46(1):3-18, 1999) and extends its practical applicability to include more than two constraints by finding appropriate values for the multiple regularization parameters. Here, we propose the use of real-valued genetic algorithms for the estimation of multiple regularization parameters. Theoretically, it is possible to include as many constraints as necessary and find the corresponding regularization parameters using this approach. We have shown the feasibility of our method using two and three constraints. The results indicate that GA could be a good approach for the estimation of multiple regularization parameters.

  9. State estimation for delayed genetic regulatory networks based on passivity theory.

    PubMed

    Vembarasan, V; Nagamani, G; Balasubramaniam, P; Park, Ju H

    2013-08-01

    This paper is concerned with the state estimation problem for delayed genetic regulatory networks (GRNs) based on passivity analysis approach. The main purpose of the problem is to design the estimator to approximate the true concentrations of the mRNA and protein through available measurement outputs. Time-varying delays are explicitly assumed to be non-differentiable and constraint on the derivative of the time-varying delay is less than one can be removed. Based on the Lyapunov-Krasovskii functionals involving triple integral terms, using some integral inequalities and convex combination technique, a delay-dependent passivity criterion is established for GRNs in terms of linear matrix inequalities (LMIs) that can efficiently be solved by any available LMI solvers. Finally, numerical examples and simulation are presented to demonstrate the efficiency of the proposed estimation schemes.

  10. Estimation of the Genetic Diversity in Tetraploid Alfalfa Populations Based on RAPD Markers for Breeding Purposes

    PubMed Central

    Nagl, Nevena; Taski-Ajdukovic, Ksenija; Barac, Goran; Baburski, Aleksandar; Seccareccia, Ivana; Milic, Dragan; Katic, Slobodan

    2011-01-01

    Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon’s information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA) showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm. PMID:21954370

  11. Genetic parameter estimates for carcass traits and visual scores including or not genomic information.

    PubMed

    Gordo, D G M; Espigolan, R; Tonussi, R L; Júnior, G A F; Bresolin, T; Magalhães, A F Braga; Feitosa, F L; Baldi, F; Carvalheiro, R; Tonhati, H; de Oliveira, H N; Chardulo, L A L; de Albuquerque, L G

    2016-05-01

    The objective of this study was to determine whether visual scores used as selection criteria in Nellore breeding programs are effective indicators of carcass traits measured after slaughter. Additionally, this study evaluated the effect of different structures of the relationship matrix ( and ) on the estimation of genetic parameters and on the prediction accuracy of breeding values. There were 13,524 animals for visual scores of conformation (CS), finishing precocity (FP), and muscling (MS) and 1,753, 1,747, and 1,564 for LM area (LMA), backfat thickness (BF), and HCW, respectively. Of these, 1,566 animals were genotyped using a high-density panel containing 777,962 SNP. Six analyses were performed using multitrait animal models, each including the 3 visual scores and 1 carcass trait. For the visual scores, the model included direct additive genetic and residual random effects and the fixed effects of contemporary group (defined by year of birth, management group at yearling, and farm) and the linear effect of age of animal at yearling. The same model was used for the carcass traits, replacing the effect of age of animal at yearling with the linear effect of age of animal at slaughter. The variance and covariance components were estimated by the REML method in analyses using the numerator relationship matrix () or combining the genomic and the numerator relationship matrices (). The heritability estimates for the visual scores obtained with the 2 methods were similar and of moderate magnitude (0.23-0.34), indicating that these traits should response to direct selection. The heritabilities for LMA, BF, and HCW were 0.13, 0.07, and 0.17, respectively, using matrix and 0.29, 0.16, and 0.23, respectively, using matrix . The genetic correlations between the visual scores and carcass traits were positive, and higher correlations were generally obtained when matrix was used. Considering the difficulties and cost of measuring carcass traits postmortem, visual scores of

  12. Heritability estimates of the Big Five personality traits based on common genetic variants.

    PubMed

    Power, R A; Pluess, M

    2015-07-14

    According to twin studies, the Big Five personality traits have substantial heritable components explaining 40-60% of the variance, but identification of associated genetic variants has remained elusive. Consequently, knowledge regarding the molecular genetic architecture of personality and to what extent it is shared across the different personality traits is limited. Using genomic-relatedness-matrix residual maximum likelihood analysis (GREML), we here estimated the heritability of the Big Five personality factors (extraversion, agreeableness, conscientiousness, neuroticism and openness for experience) in a sample of 5011 European adults from 527,469 single-nucleotide polymorphisms across the genome. We tested for the heritability of each personality trait, as well as for the genetic overlap between the personality factors. We found significant and substantial heritability estimates for neuroticism (15%, s.e. = 0.08, P = 0.04) and openness (21%, s.e. = 0.08, P < 0.01), but not for extraversion, agreeableness and conscientiousness. The bivariate analyses showed that the variance explained by common variants entirely overlapped between neuroticism and openness (rG = 1.00, P < 0.001), despite low phenotypic correlation (r = - 0.09, P < 0.001), suggesting that the remaining unique heritability may be determined by rare or structural variants. As far as we are aware of, this is the first study estimating the shared and unique heritability of all Big Five personality traits using the GREML approach. Findings should be considered exploratory and suggest that detectable heritability estimates based on common variants is shared between neuroticism and openness to experiences.

  13. Heritability estimates of the Big Five personality traits based on common genetic variants

    PubMed Central

    Power, R A; Pluess, M

    2015-01-01

    According to twin studies, the Big Five personality traits have substantial heritable components explaining 40–60% of the variance, but identification of associated genetic variants has remained elusive. Consequently, knowledge regarding the molecular genetic architecture of personality and to what extent it is shared across the different personality traits is limited. Using genomic-relatedness-matrix residual maximum likelihood analysis (GREML), we here estimated the heritability of the Big Five personality factors (extraversion, agreeableness, conscientiousness, neuroticism and openness for experience) in a sample of 5011 European adults from 527 469 single-nucleotide polymorphisms across the genome. We tested for the heritability of each personality trait, as well as for the genetic overlap between the personality factors. We found significant and substantial heritability estimates for neuroticism (15%, s.e.=0.08, P=0.04) and openness (21%, s.e.=0.08, P<0.01), but not for extraversion, agreeableness and conscientiousness. The bivariate analyses showed that the variance explained by common variants entirely overlapped between neuroticism and openness (rG=1.00, P <0.001), despite low phenotypic correlation (r=−0.09, P <0.001), suggesting that the remaining unique heritability may be determined by rare or structural variants. As far as we are aware of, this is the first study estimating the shared and unique heritability of all Big Five personality traits using the GREML approach. Findings should be considered exploratory and suggest that detectable heritability estimates based on common variants is shared between neuroticism and openness to experiences. PMID:26171985

  14. A method for estimating population sex ratio for sage-grouse using noninvasive genetic samples.

    PubMed

    Baumgardt, J A; Goldberg, C S; Reese, K P; Connelly, J W; Musil, D D; Garton, E O; Waits, L P

    2013-05-01

    Population sex ratio is an important metric for wildlife management and conservation, but estimates can be difficult to obtain, particularly for sexually monomorphic species or for species that differ in detection probability between the sexes. Noninvasive genetic sampling (NGS) using polymerase chain reaction (PCR) has become a common method for identifying sex from sources such as hair, feathers or faeces, and is a potential source for estimating sex ratio. If, however, PCR success is sex-biased, naively using NGS could lead to a biased sex ratio estimator. We measured PCR success rates and error rates for amplifying the W and Z chromosomes from greater sage-grouse (Centrocercus urophasianus) faecal samples, examined how success and error rates for sex identification changed in response to faecal sample exposure time, and used simulation models to evaluate precision and bias of three sex assignment criteria for estimating population sex ratio with variable sample sizes and levels of PCR replication. We found PCR success rates were higher for females than males and that choice of sex assignment criteria influenced the bias and precision of corresponding sex ratio estimates. Our simulations demonstrate the importance of considering the interplay between the sex bias of PCR success, number of genotyping replicates, sample size, true population sex ratio and accuracy of assignment rules for designing future studies. Our results suggest that using faecal DNA for estimating the sex ratio of sage-grouse populations has great potential and, with minor adaptations and similar marker evaluations, should be applicable to numerous species.

  15. Multilevel Selection 2: Estimating the Genetic Parameters Determining Inheritance and Response to Selection

    PubMed Central

    Bijma, Piter; Muir, William M.; Ellen, Esther D.; Wolf, Jason B.; Van Arendonk, Johan A. M.

    2007-01-01

    Interactions among individuals are universal, both in animals and in plants and in natural as well as domestic populations. Understanding the consequences of these interactions for the evolution of populations by either natural or artificial selection requires knowledge of the heritable components underlying them. Here we present statistical methodology to estimate the genetic parameters determining response to multilevel selection of traits affected by interactions among individuals in general populations. We apply these methods to obtain estimates of genetic parameters for survival days in a population of layer chickens with high mortality due to pecking behavior. We find that heritable variation is threefold greater than that obtained from classical analyses, meaning that two-thirds of the full heritable variation is hidden to classical analysis due to social interactions. As a consequence, predicted responses to multilevel selection applied to this population are threefold greater than classical predictions. This work, combined with the quantitative genetic theory for response to multilevel selection presented in an accompanying article in this issue, enables the design of selection programs to effectively reduce competitive interactions in livestock and plants and the prediction of the effects of social interactions on evolution in natural populations undergoing multilevel selection. PMID:17110493

  16. Genetic risk and longitudinal disease activity in systemic lupus erythematosus using targeted maximum likelihood estimation.

    PubMed

    Gianfrancesco, M A; Balzer, L; Taylor, K E; Trupin, L; Nititham, J; Seldin, M F; Singer, A W; Criswell, L A; Barcellos, L F

    2016-09-01

    Systemic lupus erythematous (SLE) is a chronic autoimmune disease associated with genetic and environmental risk factors. However, the extent to which genetic risk is causally associated with disease activity is unknown. We utilized longitudinal-targeted maximum likelihood estimation to estimate the causal association between a genetic risk score (GRS) comprising 41 established SLE variants and clinically important disease activity as measured by the validated Systemic Lupus Activity Questionnaire (SLAQ) in a multiethnic cohort of 942 individuals with SLE. We did not find evidence of a clinically important SLAQ score difference (>4.0) for individuals with a high GRS compared with those with a low GRS across nine time points after controlling for sex, ancestry, renal status, dialysis, disease duration, treatment, depression, smoking and education, as well as time-dependent confounding of missing visits. Individual single-nucleotide polymorphism (SNP) analyses revealed that 12 of the 41 variants were significantly associated with clinically relevant changes in SLAQ scores across time points eight and nine after controlling for multiple testing. Results based on sophisticated causal modeling of longitudinal data in a large patient cohort suggest that individual SLE risk variants may influence disease activity over time. Our findings also emphasize a role for other biological or environmental factors. PMID:27467283

  17. Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)

    PubMed Central

    Smith, Brad L.; Lu, Ching-Ping; García-Cortés, Blanca; Viñas, Jordi; Yeh, Shean-Ya; Alvarado Bremer, Jaime R.

    2015-01-01

    Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise FST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish. PMID:26057382

  18. Multilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.).

    PubMed

    Smith, Brad L; Lu, Ching-Ping; García-Cortés, Blanca; Viñas, Jordi; Yeh, Shean-Ya; Alvarado Bremer, Jaime R

    2015-01-01

    Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we present multilocus analyses of 26 single nucleotide polymorphisms (SNPs) within 10 nuclear genes to estimate population differentiation and admixture based on the characterization of 774 individuals representing North Atlantic, South Atlantic, and Mediterranean swordfish populations. Pairwise FST values, AMOVA, PCoA, and Bayesian individual assignments support the differentiation of swordfish inhabiting these three basins, but not the current placement of the boundaries that separate them. Specifically, the range of the South Atlantic population extends beyond 5°N management boundary to 20°N-25°N from 45°W. Likewise the Mediterranean population extends beyond the current management boundary at the Strait of Gibraltar to approximately 10°W. Further, admixture zones, characterized by asymmetric contributions of adjacent populations within samples, are confined to the Northeast Atlantic. While South Atlantic and Mediterranean migrants were identified within these Northeast Atlantic admixture zones no North Atlantic migrants were identified respectively in these two neighboring basins. Owing to both, the characterization of larger number of loci and a more ample spatial sampling coverage, it was possible to provide a finer resolution of the boundaries separating Atlantic swordfish populations than previous studies. Finally, the patterns of population structure and admixture are discussed in the light of the reproductive biology, the known patterns of dispersal, and oceanographic features that may act as barriers to gene flow to Atlantic swordfish.

  19. Estimation of genetic parameters for resistance to gastro-intestinal nematodes in pure blood Arabian horses.

    PubMed

    Kornaś, Sławomir; Sallé, Guillaume; Skalska, Marta; David, Ingrid; Ricard, Anne; Cabaret, Jacques

    2015-03-01

    Equine internal parasites, mostly cyathostomins, affect both horse welfare and performance. The appearance of anthelmintic-resistant parasites creates a pressing need for optimising drenching schemes. This optimization may be achieved by identifying genetic markers associated with host susceptibility to infection and then to drench carriers of these markers. The aim of our study was to characterise the genetics of horse resistance to strongyle infection by estimating heritability of this trait in an Arabian pure blood population. A population of 789 Arabian pure blood horses from the Michałów stud farm, Poland were measured for strongyle egg excretion twice a year, over 8 years. Low repeatability values were found for faecal egg counts. Our analyses showed that less than 10% of the observed variation for strongyle faecal egg counts in this population had a genetic origin. However, additional analyses highlighted an age-dependent increase in heritability which was 0.04 (±0.02) in young horses (up to 3 years of age) but 0.21 (±0.04) in older ones. These results suggest that a significant part of the inter-individual variation has a genetic origin. This paves the way to a genomic dissection of horse-nematode interactions which might provide predictive markers of susceptibility, allowing individualised drenching schemes.

  20. Genetic differentiation of Euterpe edulis Mart. populations estimated by AFLP analysis.

    PubMed

    Cardoso, S R; Eloy, N B; Provan, J; Cardoso, M A; Ferreira, P C

    2000-11-01

    Heart-of-palm (Euterpe edulis Mart.) is a wild palm with a wide distribution throughout the Atlantic Rainforest. Populations of E. edulis represent important renewable natural resources but are currently under threat from predatory exploitation. Furthermore, because the species is indigenous to the Atlantic Rainforest, which is located in the most economically developed and populated region of Brazil, social and economic pressures have devastated heart-of-palm forests. In order to estimate the partitioning of genetic variation of endangered E. edulis populations, 429 AFLP markers were used to analyse 150 plants representing 11 populations of the species distribution range. Analysis of the genetic structure of populations carried out using analysis of molecular variance (AMOVA) revealed moderate genetic variation within populations (57. 4%). Genetic differentiation between populations (FST = 0.426) was positively correlated with geographical distance. These results could be explained by the historical fragmentation of the Atlantic coastal region, together with the life cycle and mating system. The data obtained in this work should have important implications for conservation and future breeding programmes of E. edulis. PMID:11091311

  1. Estimation of genetic parameters for resistance to gastro-intestinal nematodes in pure blood Arabian horses.

    PubMed

    Kornaś, Sławomir; Sallé, Guillaume; Skalska, Marta; David, Ingrid; Ricard, Anne; Cabaret, Jacques

    2015-03-01

    Equine internal parasites, mostly cyathostomins, affect both horse welfare and performance. The appearance of anthelmintic-resistant parasites creates a pressing need for optimising drenching schemes. This optimization may be achieved by identifying genetic markers associated with host susceptibility to infection and then to drench carriers of these markers. The aim of our study was to characterise the genetics of horse resistance to strongyle infection by estimating heritability of this trait in an Arabian pure blood population. A population of 789 Arabian pure blood horses from the Michałów stud farm, Poland were measured for strongyle egg excretion twice a year, over 8 years. Low repeatability values were found for faecal egg counts. Our analyses showed that less than 10% of the observed variation for strongyle faecal egg counts in this population had a genetic origin. However, additional analyses highlighted an age-dependent increase in heritability which was 0.04 (±0.02) in young horses (up to 3 years of age) but 0.21 (±0.04) in older ones. These results suggest that a significant part of the inter-individual variation has a genetic origin. This paves the way to a genomic dissection of horse-nematode interactions which might provide predictive markers of susceptibility, allowing individualised drenching schemes. PMID:25592965

  2. Genetic and phenotypic parameter estimates for reproduction traits in indigenous Arsi-Bale goats.

    PubMed

    Kebede, Tesfaye; Haile, Aynalem; Dadi, Hailu; Alemu, Tesfaye

    2012-06-01

    The study was conducted to evaluate reproductive performances and estimate genetic parameters for reproduction traits in Arsi-Bale goats. A total of 792 kidding records collected from 2001 to 2007 were used. Parity of dam, year, season and type of kidding were investigated as fixed effects by PROC GLM of SAS. Derivative-Free Restricted Maximum Likelihood (DFREML) method was used to estimate genetic parameters by fitting four animal models. Parity of dam and year of kidding influenced (P < 0.05) all the traits. The overall means for age at first kidding (AFK), kidding interval (KI), litter size at birth (LSB), litter size at weaning (LSW), litter weight at birth (LWB), litter weight at weaning (LWW), abortion and dystocia were 574.9 ± 8.3 days, 280.0 ± 13.7 days, 1.6 ± 0.03, 1.37 ± 0.03, 3.7 ± 0.08 kg, 9.11 ± 0.38 kg, 3.8% and 0.13%, respectively. The estimates of direct additive heritability for the traits, except for abortion and dystocia, under the best model (direct animal for AFK and repeatability model for other traits) were 0.245 ± 0.19, 0.060 ± 0.08, 0.074 ± 0.05, 0.006 ± 0.05, 0.125 ± 0.05, 0.053 ± 0.07, respectively, while the corresponding permanent environmental effects were 0.00 ± 0.00, 0.07 ± 0.07, 0.08 ± 0.05, 0.172 ± 0.06, 0.03 ± 0.04 and 0.07 ± 0.05, respectively. Repeatability estimates for KI, LSB, LSW, LWB and LWW were 0.13, 0.15, 0.18, 0.16 and 0.12, respectively. Genetic correlations between reproductive traits vary from medium to high. Arsi-Bale goats have good reproductive performance with low incidence of reproductive disorder. Except for AFK, other traits have low estimates of heritabilities with high genetic correlation among the traits. Repeated measures of the traits are needed before deciding to keep or cull the animal.

  3. Probabilistic Model Building Genetic Programming based on Estimation of Bayesian Network

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko; Iba, Hitoshi

    Genetic Programming (GP) is a powerful optimization algorithm, which employs the crossover for genetic operation. Because the crossover operator in GP randomly selects sub-trees, the building blocks may be destroyed by the crossover. Recently, algorithms called PMBGPs (Probabilistic Model Building GP) based on probabilistic techniques have been proposed in order to improve the problem mentioned above. We propose a new PMBGP employing Bayesian network for generating new individuals with a special chromosome called expanded parse tree, which much reduces a number of possible symbols at each node. Although the large number of symbols gives rise to the large conditional probability table and requires a lot of samples to estimate the interactions among nodes, a use of the expanded parse tree overcomes these problems. Computational experiments on two subjects demonstrate that our new PMBGP is much superior to prior probabilistic models.

  4. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China.

    PubMed

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations.

  5. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China

    PubMed Central

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9–11 tigers during the winter of 2014–2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations. PMID:27100387

  6. Estimating the Population Size and Genetic Diversity of Amur Tigers in Northeast China.

    PubMed

    Dou, Hailong; Yang, Haitao; Feng, Limin; Mou, Pu; Wang, Tianming; Ge, Jianping

    2016-01-01

    Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations. PMID:27100387

  7. Estimation of genetic effects in the presence of multicollinearity in multibreed beef cattle evaluation.

    PubMed

    Roso, V M; Schenkel, F S; Miller, S P; Schaeffer, L R

    2005-08-01

    Breed additive, dominance, and epistatic loss effects are of concern in the genetic evaluation of a multibreed population. Multiple regression equations used for fitting these effects may show a high degree of multicollinearity among predictor variables. Typically, when strong linear relationships exist, the regression coefficients have large SE and are sensitive to changes in the data file and to the addition or deletion of variables in the model. Generalized ridge regression methods were applied to obtain stable estimates of direct and maternal breed additive, dominance, and epistatic loss effects in the presence of multicollinearity among predictor variables. Preweaning weight gains of beef calves in Ontario, Canada, from 1986 to 1999 were analyzed. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effect. The degree and the nature of the multicollinearity were identified and ridge regression methods were used as an alternative to ordinary least squares (LS). Ridge parameters were obtained using two different objective methods: 1) generalized ridge estimator of Hoerl and Kennard (R1); and 2) bootstrap in combination with cross-validation (R2). Both ridge regression methods outperformed the LS estimator with respect to mean squared error of predictions (MSEP) and variance inflation factors (VIF) computed over 100 bootstrap samples. The MSEP of R1 and R2 were similar, and they were 3% less than the MSEP of LS. The average VIF of LS, R1, and R2 were equal to 26.81, 6.10, and 4.18, respectively. Ridge regression methods were particularly effective in decreasing the multicollinearity involving predictor variables of breed additive effects. Because of a high degree of confounding between estimates of maternal

  8. Estimation of genetic parameters for perinatal sucking behavior of Italian Brown Swiss calves.

    PubMed

    Maltecca, C; Rossoni, A; Nicoletti, C; Santus, E; Weigel, K A; Bagnato, A

    2007-10-01

    Brown Swiss breeders sometimes experience difficulties in feeding calves because of the weak sucking ability of the calves in the early days of life. For the welfare of the calves, they should be suckled by their dams or should aggressively ingest colostrum immediately after birth. The composition of colostrum changes rapidly during the first few days of lactation, and the ability of calves to absorb the Ig decreases quickly as well. The aim of this study was to increase our knowledge of environmental and genetic components affecting the sucking response, to evaluate the possibility of selecting for this trait. Sucking ability was recorded in 3 categories (drank from the milk bucket nipple or bottle without help, drank with help, did not drink) at 5 post-natal meals (6, 12, 24, 48, and 72 h from birth). Records were analyzed with 2 different models: a single-trait threshold sire model, in which all observations were analyzed as a single trait with 5 levels, and a multiple-trait threshold liability sire model, in which meal-by-meal observations were analyzed as 5 different binary traits. Management procedures, the interval between birth and meals, parity, and season of birth were environmental factors affecting the variability in sucking ability. The heritability estimate for the single-trait analysis was 0.14, whereas heritabilities for the multiple-trait analysis were 0.26, 0.22, 0.21 0.12, and 0.13 for the first, second, third, fourth, and fifth meal, respectively. Estimated genetic correlations among traits were high (0.82 to 0.99). This study suggests the possibility of selection based on sucking ability. Future collection of larger data sets on the sucking response of calves in the first 2 meals after birth would increase the accuracy of genetic parameter estimates.

  9. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.

    PubMed

    Dandache, Serge; Coburn, Craig A; Oliveira, Maureen; Allison, Timothy J; Holloway, M Katharine; Wu, Jinzi J; Stranix, Brent R; Panchal, Chandra; Wainberg, Mark A; Vacca, Joseph P

    2008-12-01

    The development of new HIV inhibitors with distinct resistance profiles is essential in order to combat the development of multi-resistant viral strains. A drug discovery program based on the identification of compounds that are active against drug-resistant viruses has produced PL-100, a novel potent protease inhibitor (PI) that incorporates a lysine-based scaffold. A selection for resistance against PL-100 in cord blood mononuclear cells was performed, using the laboratory-adapted IIIb strain of HIV-1, and it was shown that resistance appears to develop slower against this compound than against amprenavir, which was studied as a control. Four mutations in protease (PR) were selected after 25 weeks: two flap mutations (K45R and M46I) and two novel active site mutations (T80I and P81S). Site-directed mutagenesis revealed that all four mutations were required to develop low-level resistance to PL-100, which is indicative of the high genetic barrier of the compound. Importantly, these mutations did not cause cross-resistance to currently marketed PIs. In contrast, the P81S mutation alone caused hypersensitivity to two other PIs, saquinavir (SQV) and nelfinavir (NFV). Analysis of p55Gag processing showed that a marked defect in protease activity caused by mutation P81S could only be compensated when K45R and M46I were present. These data correlated well with the replication capacity (RC) of the mutant viruses as measured by a standard viral growth assay, since only viruses containing all four mutations approached the RC of wild type virus. X-ray crystallography provided insight on the structural basis of the resistance conferred by the identified mutations. PMID:19040279

  10. Microsatellite analysis to estimate genetic relationships among five bulgarian sheep breeds

    PubMed Central

    2010-01-01

    Herein, genetic relationships among five breeds of Bulgarian sheep were estimated using microsatellite markers. The total number of alleles identified was 226 at the 16 loci examined. DA distance values were used for phylogenetic tree construction with the UPGMA algorithm. The two Tsigai and two Maritza populations were found to be geneticallvery closely related to each other y (0.198, and 0.258 respectively). The Pleven Black Head population was distinct from the other four. These results could be useful for preserving genes in these breeds, thereby ensuring their preservation in Bulgaria. PMID:21637604

  11. Estimation of genetic parameters and breeding values across challenged environments to select for robust pigs.

    PubMed

    Herrero-Medrano, J M; Mathur, P K; ten Napel, J; Rashidi, H; Alexandri, P; Knol, E F; Mulder, H A

    2015-04-01

    Robustness is an important issue in the pig production industry. Since pigs from international breeding organizations have to withstand a variety of environmental challenges, selection of pigs with the inherent ability to sustain their productivity in diverse environments may be an economically feasible approach in the livestock industry. The objective of this study was to estimate genetic parameters and breeding values across different levels of environmental challenge load. The challenge load (CL) was estimated as the reduction in reproductive performance during different weeks of a year using 925,711 farrowing records from farms distributed worldwide. A wide range of levels of challenge, from favorable to unfavorable environments, was observed among farms with high CL values being associated with confirmed situations of unfavorable environment. Genetic parameters and breeding values were estimated in high- and low-challenge environments using a bivariate analysis, as well as across increasing levels of challenge with a random regression model using Legendre polynomials. Although heritability estimates of number of pigs born alive were slightly higher in environments with extreme CL than in those with intermediate levels of CL, the heritabilities of number of piglet losses increased progressively as CL increased. Genetic correlations among environments with different levels of CL suggest that selection in environments with extremes of low or high CL would result in low response to selection. Therefore, selection programs of breeding organizations that are commonly conducted under favorable environments could have low response to selection in commercial farms that have unfavorable environmental conditions. Sows that had experienced high levels of challenge at least once during their productive life were ranked according to their EBV. The selection of pigs using EBV ignoring environmental challenges or on the basis of records from only favorable environments

  12. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    PubMed

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and

  13. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    PubMed

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and

  14. A self-adaptive genetic algorithm to estimate JA model parameters considering minor loops

    NASA Astrophysics Data System (ADS)

    Lu, Hai-liang; Wen, Xi-shan; Lan, Lei; An, Yun-zhu; Li, Xiao-ping

    2015-01-01

    A self-adaptive genetic algorithm for estimating Jiles-Atherton (JA) magnetic hysteresis model parameters is presented. The fitness function is established based on the distances between equidistant key points of normalized hysteresis loops. Linearity function and logarithm function are both adopted to code the five parameters of JA model. Roulette wheel selection is used and the selection pressure is adjusted adaptively by deducting a proportional which depends on current generation common value. The Crossover operator is established by combining arithmetic crossover and multipoint crossover. Nonuniform mutation is improved by adjusting the mutation ratio adaptively. The algorithm is used to estimate the parameters of one kind of silicon-steel sheet's hysteresis loops, and the results are in good agreement with published data.

  15. Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms.

    PubMed

    Lubke, Gitta H; Hottenga, Jouke Jan; Walters, Raymond; Laurin, Charles; de Geus, Eco J C; Willemsen, Gonneke; Smit, Jan H; Middeldorp, Christel M; Penninx, Brenda W J H; Vink, Jacqueline M; Boomsma, Dorret I

    2012-10-15

    Genome-wide association studies of psychiatric disorders have been criticized for their lack of explaining a considerable proportion of the heritability established in twin and family studies. Genome-wide association studies of major depressive disorder in particular have so far been unsuccessful in detecting genome-wide significant single nucleotide polymorphisms (SNPs). Using two recently proposed methods designed to estimate the heritability of a phenotype that is attributable to genome-wide SNPs, we show that SNPs on current platforms contain substantial information concerning the additive genetic variance of major depressive disorder. To assess the consistency of these two methods, we analyzed four other complex phenotypes from different domains. The pattern of results is consistent with estimates of heritability obtained in twin studies carried out in the same population.

  16. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods. PMID:10767617

  17. Model-based spectral estimation of Doppler signals using parallel genetic algorithms.

    PubMed

    Solano González, J; Rodríguez Vázquez, K; García Nocetti, D F

    2000-05-01

    Conventional spectral analysis methods use a fast Fourier transform (FFT) on consecutive or overlapping windowed data segments. For Doppler ultrasound signals, this approach suffers from an inadequate frequency resolution due to the time segment duration and the non-stationarity characteristics of the signals. Parametric or model-based estimators can give significant improvements in the time-frequency resolution at the expense of a higher computational complexity. This work describes an approach which implements in real-time a parametric spectral estimator method using genetic algorithms (GAs) in order to find the optimum set of parameters for the adaptive filter that minimises the error function. The aim is to reduce the computational complexity of the conventional algorithm by using the simplicity associated to GAs and exploiting its parallel characteristics. This will allow the implementation of higher order filters, increasing the spectrum resolution, and opening a greater scope for using more complex methods.

  18. The rapid estimate of adult literacy in genetics (REAL-G): a means to assess literacy deficits in the context of genetics.

    PubMed

    Erby, Lori H; Roter, Debra; Larson, Susan; Cho, Juhee

    2008-01-15

    Genetic information presents challenges to all patients, but particularly those with low and marginal literacy. The goal of the study was to create a rapid estimate of adult literacy in genetics (REAL-G) tool, with established validity, for use with patients receiving genetics services. Patterned after the widely used rapid estimate of adult literacy in medicine (REALM), a three-stage method was used in tool development. This included derivation of terms from transcripts of visits conducted by over 150 prenatal and cancer genetic counselors. Concurrent validity was estimated by administration of both the REAL-G and the REALM to 203 participants. Predictive validity was estimated by relating participants' REAL-G scores to scores on a learning task that involved viewing a videotaped genetic counseling session and answering related questions. The REAL-G measure was strongly correlated with the REALM (Pearson correlation = 0.83; P < 0.0001), indicating substantial concurrent validity in a population of potential genetic counseling patients. Using the REALM as the gold standard, REAL-G scores identified readers at the sixth grade level or below (95.4% sensitivity and 88.5% specificity). Further analysis identified an eight-item subset of words that has strong concurrent validity when compared to longer instruments and even greater predictive power in relation to information recall. Subjects scoring below the sixth grade level on the eight-item REAL-G scored significantly lower than others on knowledge tests after viewing genetic counseling visits. The REAL-G represents a screening tool that can be used to quickly identify low literate patients in the clinical genetics context or to quantify context-specific literacy within a research setting.

  19. [Genetic and demographic structure of the State of Aragua, Venezuela, estimated through the surnames].

    PubMed

    Rodríguez Larralde, A; Casique, J

    1993-01-01

    The genetic structure of the State of Aragua, Venezuela, has been studied through the analysis of surnames obtained from the register of electors. The analysis covered 23 counties and included a total of 99,593 individuals and 6,338 different surnames. Estimators of isolation, consanguinity, microdifferentiation and four measures of genetic distance, were studied. When our results were compared with those obtained in other States of Venezuela studied previously (Falcón, Lara, Mérida, Nueva Esparta and Yaracuy), Aragua appears as the State most open to new migrants, probably due to its nearness to Caracas, Venezuela's capital city. Within Aragua, the counties most isolated are Choronií, Ocumare de la Costa and Tovar, while those less isolated are El Limón, Turmero, La Victoria, San Mateo and Cagua. The correlations between the logarithmic transformations of genetic and geographic distances were all significant, revealing surname differentiation by distance. The dendrogram built with the Euclidean distance matrix shows a first group of counties formed by those localized towards the central portion of the State, to which southern counties are added. Choroní and Ocumare de la Costa form a group which enters the dendrogram just before Tovar, the last county to be included in the analysis. Seven surnames with a focal distribution within the State were identified: Ayala and Calanche in Choroní; Kanzler, Misle and Ruh in Tovar; Lira in San Mateo and Santaella in Barbacoas. PMID:7483965

  20. Estimating Modifying Effect of Age on Genetic and Environmental Variance Components in Twin Models.

    PubMed

    He, Liang; Sillanpää, Mikko J; Silventoinen, Karri; Kaprio, Jaakko; Pitkäniemi, Janne

    2016-04-01

    Twin studies have been adopted for decades to disentangle the relative genetic and environmental contributions for a wide range of traits. However, heritability estimation based on the classical twin models does not take into account dynamic behavior of the variance components over age. Varying variance of the genetic component over age can imply the existence of gene-environment (G×E) interactions that general genome-wide association studies (GWAS) fail to capture, which may lead to the inconsistency of heritability estimates between twin design and GWAS. Existing parametricG×Einteraction models for twin studies are limited by assuming a linear or quadratic form of the variance curves with respect to a moderator that can, however, be overly restricted in reality. Here we propose spline-based approaches to explore the variance curves of the genetic and environmental components. We choose the additive genetic, common, and unique environmental variance components (ACE) model as the starting point. We treat the component variances as variance functions with respect to age modeled by B-splines or P-splines. We develop an empirical Bayes method to estimate the variance curves together with their confidence bands and provide an R package for public use. Our simulations demonstrate that the proposed methods accurately capture dynamic behavior of the component variances in terms of mean square errors with a data set of >10,000 twin pairs. Using the proposed methods as an alternative and major extension to the classical twin models, our analyses with a large-scale Finnish twin data set (19,510 MZ twins and 27,312 DZ same-sex twins) discover that the variances of the A, C, and E components for body mass index (BMI) change substantially across life span in different patterns and the heritability of BMI drops to ∼50% after middle age. The results further indicate that the decline of heritability is due to increasing unique environmental variance, which provides more

  1. Using a genetic algorithm to estimate the details of earthquake slip distributions from point surface displacements

    NASA Astrophysics Data System (ADS)

    Lindsay, A.; McCloskey, J.; Nic Bhloscaidh, M.

    2016-03-01

    Examining fault activity over several earthquake cycles is necessary for long-term modeling of the fault strain budget and stress state. While this requires knowledge of coseismic slip distributions for successive earthquakes along the fault, these exist only for the most recent events. However, overlying the Sunda Trench, sparsely distributed coral microatolls are sensitive to tectonically induced changes in relative sea levels and provide a century-spanning paleogeodetic and paleoseismic record. Here we present a new technique called the Genetic Algorithm Slip Estimator to constrain slip distributions from observed surface deformations of corals. We identify a suite of models consistent with the observations, and from them we compute an ensemble estimate of the causative slip. We systematically test our technique using synthetic data. Applying the technique to observed coral displacements for the 2005 Nias-Simeulue earthquake and 2007 Mentawai sequence, we reproduce key features of slip present in previously published inversions such as the magnitude and location of slip asperities. From the displacement data available for the 1797 and 1833 Mentawai earthquakes, we present slip estimates reproducing observed displacements. The areas of highest modeled slip in the paleoearthquake are nonoverlapping, and our solutions appear to tile the plate interface, complementing one another. This observation is supported by the complex rupture pattern of the 2007 Mentawai sequence, underlining the need to examine earthquake occurrence through long-term strain budget and stress modeling. Although developed to estimate earthquake slip, the technique is readily adaptable for a wider range of applications.

  2. Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics

    PubMed Central

    Yildizoglu, Tugce; Weislogel, Jan-Marek; Mohammad, Farhan; Chan, Edwin S.-Y.; Assam, Pryseley N.; Claridge-Chang, Adam

    2015-01-01

    Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms. PMID:26647168

  3. Estimates of genetic parameters for reproductive traits in Brahman cattle breed.

    PubMed

    Cavani, L; Garcia, D A; Carreño, L O D; Ono, R K; Pires, M P; Farah, M M; Ventura, H T; Millen, D D; Fonseca, R

    2015-07-01

    This study was designed to estimate genetic parameters for the following traits of Brahman cattle in Brazil: age at first calving (AFC), calving interval (CI), rebreeding (REB), and stayability (STAY). For REB, the value 1 was assigned to heifers that rebred and calved after first calving and the value 0 was assigned to heifers that failed to rebreed after first calving. Likewise, for STAY, the value 1 was assigned to cows that calved at least 3 times by the time they reach 6 yr of age; otherwise, the value 0 was assigned. A bivariate analysis was used to estimate covariances components by using linear animal model for CI and AFC and threshold animal model for REB and STAY. The mean h(2) were 0.10, 0.02, 0.22, and 0.10 for AFC, CI, REB, and STAY, respectively. The genetic correlations were –0.13 between AFC and CI, –0.35 between AFC and REB, –0.57 between AFC and STAY, and 0.32 between REB and STAY, which reveal that cows that remain productive for longer periods in the herd also start breeding younger and present greater chances to REB. The selection of Brahman cattle for reproductive traits, such as AFC, CI, REB, and STAY, will render low magnitude and long-term responses. PMID:26439997

  4. A comparison of genetic risk score with family history for estimating prostate cancer risk

    PubMed Central

    Helfand, Brian T

    2016-01-01

    Prostate cancer (PCa) testing is recommended by most authoritative groups for high-risk men including those with a family history of the disease. However, family history information is often limited by patient knowledge and clinician intake, and thus, many men are incorrectly assigned to different risk groups. Alternate methods to assess PCa risk are required. In this review, we discuss how genetic variants, referred to as PCa-risk single-nucleotide polymorphisms, can be used to calculate a genetic risk score (GRS). GRS assigns a relatively unique value to all men based on the number of PCa-risk SNPs that an individual carries. This GRS value can provide a more precise estimate of a man's PCa risk. This is particularly relevant in situations when an individual is unaware of his family history. In addition, GRS has utility and can provide a more precise estimate of risk even among men with a positive family history. It can even distinguish risk among relatives with the same degree of family relationships. Taken together, this review serves to provide support for the clinical utility of GRS as an independent test to provide supplemental information to family history. As such, GRS can serve as a platform to help guide-shared decision-making processes regarding the timing and frequency of PCa testing and biopsies. PMID:27004541

  5. Estimating Information Processing in a Memory System: The Utility of Meta-analytic Methods for Genetics.

    PubMed

    Yildizoglu, Tugce; Weislogel, Jan-Marek; Mohammad, Farhan; Chan, Edwin S-Y; Assam, Pryseley N; Claridge-Chang, Adam

    2015-12-01

    Genetic studies in Drosophila reveal that olfactory memory relies on a brain structure called the mushroom body. The mainstream view is that each of the three lobes of the mushroom body play specialized roles in short-term aversive olfactory memory, but a number of studies have made divergent conclusions based on their varying experimental findings. Like many fields, neurogenetics uses null hypothesis significance testing for data analysis. Critics of significance testing claim that this method promotes discrepancies by using arbitrary thresholds (α) to apply reject/accept dichotomies to continuous data, which is not reflective of the biological reality of quantitative phenotypes. We explored using estimation statistics, an alternative data analysis framework, to examine published fly short-term memory data. Systematic review was used to identify behavioral experiments examining the physiological basis of olfactory memory and meta-analytic approaches were applied to assess the role of lobular specialization. Multivariate meta-regression models revealed that short-term memory lobular specialization is not supported by the data; it identified the cellular extent of a transgenic driver as the major predictor of its effect on short-term memory. These findings demonstrate that effect sizes, meta-analysis, meta-regression, hierarchical models and estimation methods in general can be successfully harnessed to identify knowledge gaps, synthesize divergent results, accommodate heterogeneous experimental design and quantify genetic mechanisms. PMID:26647168

  6. Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash.

    PubMed

    Heuertz, M; Vekemans, X; Hausman, J-F; Palada, M; Hardy, O J

    2003-09-01

    Spatial genetic structure was analysed with five highly polymorphic microsatellite loci in a Romanian population of common ash (Fraxinus excelsior L.), a wind-pollinated and wind-dispersed tree species occurring in mixed deciduous forests over almost all of Europe. Contributions of seed and pollen dispersal to total gene flow were investigated by analysing the pattern of decrease in kinship coefficients among pairs of individuals with geographical distance and comparing it with simulation results. Plots of kinship against the logarithm of distance were decomposed into a slope and a shape component. Simulations showed that the slope is informative about the global level of gene flow, in agreement with theoretical expectations, whereas the shape component was correlated with the relative importance of seed vs. pollen dispersal. Hence, our results indicate that insights into the relative contributions of seed and pollen dispersal to overall gene flow can be gained from details of the pattern of spatial genetic structure at biparentally inherited loci. In common ash, the slope provided an estimate of total gene dispersal in terms of Wright's neighbourhood size of Nb = 519 individuals. No precise estimate of seed vs. pollen flow could be obtained from the shape because of the stochasticity inherent to the data, but the parameter combinations that best fitted the data indicated restricted seed flow, sigmas pound 14 m, and moderate pollen flow, 70 m pound sigmap pound 140 m.

  7. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections

    PubMed Central

    Fisher, Jason T.; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears’ range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error–arising when a visiting bear fails to leave a hair sample–has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation–which form the crux of management plans–require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species

  8. Estimate of genetic gain in popcorn after cycles of phenotypic recurrent selection.

    PubMed

    Ematné, H J; Nunes, J A R; Dias, K O G; Prado, P E R; Souza, J C

    2016-01-01

    Popcorn is widely consumed in Brazil, yet there are few breeding programs for this crop. Recurrent selection (RS) is a viable breeding alternative for popcorn; however, the gains achieved must be frequently checked. The aim of this study was to assess the effect of selection for grain type (round and pointed) after four cycles of phenotypic RS on the main agronomic traits of popcorn, to estimate the genetic gain achieved for the trait of expansion volume (EV), and to obtain estimates of phenotypic correlations for the main traits of the crop in the UFLA E and UFLA R populations. The zero, one, two, and three cycles of the UFLA E and UFLA R populations, the fourth cycle, and the controls IAC-112 and IAC-125 were used. The experiments were conducted at the experimental farm of Universidade Federal de Lavras (UFLA; Environment 1) and at the experimental area of the Genetics and Plant Breeding Sector of the Department of Biology at UFLA (Environment 2) in the 2010/11 crop season. Nine agronomic traits were evaluated, including EV and grain yield (GY). The UFLA R and UFLA E populations showed similar behavior for all evaluated traits. The type of grain did not affect the genetic gain for EV, which was 5 and 3.7% in each cycle carried out in the UFLA E and UFLA R population, respectively. Phenotypic selection carried out during recombination for EV is an effective method for increasing expression of the trait. EV and GY did not show a linear association. PMID:27323058

  9. A weighted genetic risk score using all known susceptibility variants to estimate rheumatoid arthritis risk

    PubMed Central

    Yarwood, Annie; Han, Buhm; Raychaudhuri, Soumya; Bowes, John; Lunt, Mark; Pappas, Dimitrios A; Kremer, Joel; Greenberg, Jeffrey D; Plenge, Robert; Worthington, Jane; Barton, Anne; Eyre, Steve

    2015-01-01

    Background There is currently great interest in the incorporation of genetic susceptibility loci into screening models to identify individuals at high risk of disease. Here, we present the first risk prediction model including all 46 known genetic loci associated with rheumatoid arthritis (RA). Methods A weighted genetic risk score (wGRS) was created using 45 RA non-human leucocyte antigen (HLA) susceptibility loci, imputed amino acids at HLA-DRB1 (11, 71 and 74), HLA-DPB1 (position 9) HLA-B (position 9) and gender. The wGRS was tested in 11 366 RA cases and 15 489 healthy controls. The risk of developing RA was estimated using logistic regression by dividing the wGRS into quintiles. The ability of the wGRS to discriminate between cases and controls was assessed by receiver operator characteristic analysis and discrimination improvement tests. Results Individuals in the highest risk group showed significantly increased odds of developing anti-cyclic citrullinated peptide-positive RA compared to the lowest risk group (OR 27.13, 95% CI 23.70 to 31.05). The wGRS was validated in an independent cohort that showed similar results (area under the curve 0.78, OR 18.00, 95% CI 13.67 to 23.71). Comparison of the full wGRS with a wGRS in which HLA amino acids were replaced by a HLA tag single-nucleotide polymorphism showed a significant loss of sensitivity and specificity. Conclusions Our study suggests that in RA, even when using all known genetic susceptibility variants, prediction performance remains modest; while this is insufficiently accurate for general population screening, it may prove of more use in targeted studies. Our study has also highlighted the importance of including HLA variation in risk prediction models. PMID:24092415

  10. Genetic parameter estimates for growth traits and prolificacy in Raeini Cashmere goats.

    PubMed

    Mohammadi, Hossein; Moradi Shahrebabak, Mohammad; Moradi Shahrebabak, Hossein

    2012-08-01

    The main objectives of this study were to estimate genetic and phenotypic parameters for growth traits and prolificacy in the Raeini Cashmere goat. Traits included, birth weight (BWT), weaning weight (WWT), 6-month weight (6WT), 9-month weight (9WT), 12-month weight (12WT), average daily gain from birth to weaning (ADG1), average daily gain from weaning to 6WT (ADG2), average daily gain from 6WT to 12WT (ADG3), survival rate (SR), litter size at birth (LSB) and litter size at weaning (LSW) and total litter weight at birth (LWB). Data were collected over a period of 28 years (1982-2009) at the experimental breeding station of Raeini goat, southeast of Iran. Genetic parameters were estimated with univariate models using restricted maximum likelihood (REML) procedures. In addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of SR. Age of dam, birth of type, sex and of kidding had significant influence (p < 0.05 or 0.01) all the traits. Direct heritability estimates were low for prolificacy traits (0.04 ± 0.01 for LSB, 0.09 ± 0.02 for LSW, 0.16 ± 0.02 for LWB and 0.05 ± 0.02 for SR) and average daily gain (0.12 ± 0.03 for ADG1, 0.08 ± 0.02 for ADG2, and 0.07 ± 0.03 for ADG3) to moderate for production traits (0.22 ± 0.02 for BWT, 0.25 ± 0.02 for WWT, 0.29 ± 0.04 for 6WT, 0.30 ± 0.02 for 9WT, 0.32 ± 0.05 for 12WT). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BWT (0.17 ± 0.03) and WWT (0.07 ± 0.02).

  11. Elevation as a barrier: genetic structure for an Atlantic rain forest tree (Bathysa australis) in the Serra do Mar mountain range, SE Brazil

    PubMed Central

    Reis, Talita Soares; Ciampi-Guillardi, Maísa; Bajay, Miklos Maximiliano; de Souza, Anete Pereira; dos Santos, Flavio Antonio Maës

    2015-01-01

    Distance and discrete geographic barriers play a role in isolating populations, as seed and pollen dispersal become limited. Nearby populations without any geographic barrier between them may also suffer from ecological isolation driven by habitat heterogeneity, which may promote divergence by local adaptation and drift. Likewise, elevation gradients may influence the genetic structure and diversity of populations, particularly those marginally distributed. Bathysa australis (Rubiaceae) is a widespread tree along the elevation gradient of the Serra do Mar, SE Brazil. This self-compatible species is pollinated by bees and wasps and has autochoric seeds, suggesting restricted gene dispersal. We investigated the distribution of genetic diversity in six B. australis populations at two extreme sites along an elevation gradient: a lowland site (80–216 m) and an upland site (1010–1100 m.a.s.l.). Nine microsatellite loci were used to test for genetic structure and to verify differences in genetic diversity between sites. We found a marked genetic structure on a scale as small as 6 km (FST = 0.21), and two distinct clusters were identified, each corresponding to a site. Although B. australis is continuously distributed along the elevation gradient, we have not observed a gene flow between the extreme populations. This might be related to B. australis biological features and creates a potential scenario for adaptation to the different conditions imposed by the elevation gradient. We failed to find an isolation-by-distance pattern; although on the fine scale, all populations showed spatial autocorrelation until ∼10-20 m. Elevation difference was a relevant factor though, but we need further sampling effort to check its correlation with genetic distance. The lowland populations had a higher allelic richness and showed higher rare allele counts than the upland ones. The upland site may be more selective, eliminating rare alleles, as we did not find any evidence

  12. Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function.

    PubMed

    Park, Min Chul; Jeong, Hyobin; Son, Sung Hwa; Kim, YounHa; Han, Daeyoung; Goughnour, Peter C; Kang, Taehee; Kwon, Nam Hoon; Moon, Hyo Eun; Paek, Sun Ha; Hwang, Daehee; Seol, Ho Jun; Nam, Do-Hyun; Kim, Sunghoon

    2016-03-01

    Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance. PMID:26676754

  13. Novel Morphologic and Genetic Analysis of Cancer Cells in a 3D Microenvironment Identifies STAT3 as a Regulator of Tumor Permeability Barrier Function.

    PubMed

    Park, Min Chul; Jeong, Hyobin; Son, Sung Hwa; Kim, YounHa; Han, Daeyoung; Goughnour, Peter C; Kang, Taehee; Kwon, Nam Hoon; Moon, Hyo Eun; Paek, Sun Ha; Hwang, Daehee; Seol, Ho Jun; Nam, Do-Hyun; Kim, Sunghoon

    2016-03-01

    Tumor permeability is a critical determinant of drug delivery and sensitivity, but systematic methods to identify factors that perform permeability barrier functions in the tumor microenvironment are not yet available. Multicellular tumor spheroids have become tractable in vitro models to study the impact of a three-dimensional (3D) environment on cellular behavior. In this study, we characterized the spheroid-forming potential of cancer cells and correlated the resulting spheroid morphologies with genetic information to identify conserved cellular processes associated with spheroid structure. Spheroids generated from 100 different cancer cell lines were classified into four distinct groups based on morphology. In particular, round and compact spheroids exhibited highly hypoxic inner cores and permeability barriers against anticancer drugs. Through systematic and correlative analysis, we reveal JAK-STAT signaling as one of the signature pathways activated in round spheroids. Accordingly, STAT3 inhibition in spheroids generated from the established cancer cells and primary glioblastoma patient-derived cells altered the rounded morphology and increased drug sensitivity. Furthermore, combined administration of the STAT3 inhibitor and 5-fluorouracil to a mouse xenograft model markedly reduced tumor growth compared with monotherapy. Collectively, our findings demonstrate the ability to integrate 3D culture and genetic profiling to determine the factors underlying the integrity of the permeability barrier in the tumor microenvironment, and may help to identify and exploit novel mechanisms of drug resistance.

  14. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L.

    PubMed Central

    2012-01-01

    Background Factors promoting the emergence of sharp phylogeographic breaks include restricted dispersal, habitat discontinuity, physical barriers, disruptive selection, mating incompatibility, genetic surfing and secondary contact. Disentangling the role of each in any particular system can be difficult, especially when species are evenly distributed across transition zones and dispersal barriers are not evident. The estuarine seaweed Fucus ceranoides provides a good example of highly differentiated populations along its most persistent distributional range at the present rear edge of the species distribution, in NW Iberia. Intrinsic dispersal restrictions are obvious in this species, but have not prevented F. ceranoides from vastly expanding its range northwards following the last glaciation, implying that additional factors are responsible for the lack of connectivity between neighbouring southern populations. In this study we analyze 22 consecutive populations of F. ceranoides along NW Iberia to investigate the processes generating and maintaining the observed high levels of regional genetic divergence. Results Variation at seven microsatellite loci and at mtDNA spacer sequences was concordant in revealing that Iberian F. ceranoides is composed of three divergent genetic clusters displaying nearly disjunct geographical distributions. Structure and AFC analyses detected two populations with an admixed nuclear background. Haplotypic diversity was high in the W sector and very low in the N sector. Within each genetic cluster, population structure was also pervasive, although shallower. Conclusions The deep divergence between sectors coupled with the lack of support for a role of oceanographic barriers in defining the location of breaks suggested 1) that the parapatric genetic sectors result from the regional reassembly of formerly vicariant sub-populations, and 2) that the genetic discontinuities at secondary contact zones (and elsewhere) are maintained despite

  15. Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming

    NASA Astrophysics Data System (ADS)

    Yeh, K.; Wei, H.; Chen, L.; Liu, G.

    2010-12-01

    Estimating Typhoon Rainfall over Sea from SSM/I Satellite Data Using an Improved Genetic Programming Keh-Chia Yeha, Hsiao-Ping Weia,d, Li Chenb, and Gin-Rong Liuc a Department of Civil Engineering, National Chiao Tung University, Hsinchu, Taiwan, 300, R.O.C. b Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan, 300, R.O.C. c Center for Space and Remote Sensing Research, National Central University, Tao-Yuan, Taiwan, 320, R.O.C. d National Science and Technology Center for Disaster Reduction, Taipei County, Taiwan, 231, R.O.C. Abstract This paper proposes an improved multi-run genetic programming (GP) and applies it to predict the rainfall using meteorological satellite data. GP is a well-known evolutionary programming and data mining method, used to automatically discover the complex relationships among nonlinear systems. The main advantage of GP is to optimize appropriate types of function and their associated coefficients simultaneously. This study makes an improvement to enhance escape ability from local optimums during the optimization procedure. The GP continuously runs several times by replacing the terminal nodes at the next run with the best solution at the current run. The current novel model improves GP, obtaining a highly nonlinear mathematical equation to estimate the rainfall. In the case study, this improved GP described above combining with SSM/I satellite data is employed to establish a suitable method for estimating rainfall at sea surface during typhoon periods. These estimated rainfalls are then verified with the data from four rainfall stations located at Peng-Jia-Yu, Don-Gji-Dao, Lan-Yu, and Green Island, which are four small islands around Taiwan. From the results, the improved GP can generate sophisticated and accurate nonlinear mathematical equation through two-run learning procedures which outperforms the traditional multiple linear regression, empirical equations and back-propagated network

  16. Inrush Current Simulation of Power Transformer using Machine Parameters Estimated by Design Procedure of Winding Structure and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yoshitaka

    This paper presents estimation techniques of machine parameters for power transformer using design procedure of transformer and genetic algorithm with real coding. Especially, it is very difficult to obtain machine parameters for transformers in customers' facilities. Using estimation techniques, machine parameters could be calculated from the only nameplate data of these transformers. Subsequently, EMTP-ATP simulation of the inrush current was carried out using machine parameters estimated by techniques developed in this study and simulation results were reproduced measured waveforms.

  17. Range image segmentation into planar and quadric surfaces using an improved robust estimator and genetic algorithm.

    PubMed

    Gotardo, Paulo Fabiano Urnau; Bellon, Olga Regina Pereira; Boyer, Kim L; Silva, Luciano

    2004-12-01

    This paper presents a novel range image segmentation method employing an improved robust estimator to iteratively detect and extract distinct planar and quadric surfaces. Our robust estimator extends M-estimator Sample Consensus/Random Sample Consensus (MSAC/RANSAC) to use local surface orientation information, enhancing the accuracy of inlier/outlier classification when processing noisy range data describing multiple structures. An efficient approximation to the true geometric distance between a point and a quadric surface also contributes to effectively reject weak surface hypotheses and avoid the extraction of false surface components. Additionally, a genetic algorithm was specifically designed to accelerate the optimization process of surface extraction, while avoiding premature convergence. We present thorough experimental results with quantitative evaluation against ground truth. The segmentation algorithm was applied to three real range image databases and competes favorably against eleven other segmenters using the most popular evaluation framework in the literature. Our approach lends itself naturally to parallel implementation and application in real-time tasks. The method fits well, into several of today's applications in man-made environments, such as target detection and autonomous navigation, for which obstacle detection, but not description or reconstruction, is required. It can also be extended to process point clouds resulting from range image registration.

  18. Multi Population Genetic Algorithm to estimate snow properties from GPR data

    NASA Astrophysics Data System (ADS)

    Godio, A.

    2016-08-01

    Multi-population genetic algorithms (DGA or MGA) are based on the partition of the population into several semi-isolated subpopulations (demes). Each sub-population is associated to an independent GA and explores different promising regions of the search space. We evaluate the sensitivity of some parameters to solve a non-linear problem in georadar data analysis. Particularly, we adapt the DGAs to optimize the model parameters of a data set of variable-offset data, collected in variable offset modality with Ground Penetrating Radar, to estimate porosity, saturation and density of snowpack in a glacial environment. The data set comes from investigation on glaciers to estimate the thickness and density of the seasonal snow. The main strategies to select the best parameters of the optimization process are outlined. We analyze the sensitivity on the solution of the optimization problems of some parameters of DGA; we deal with the effects of population and sub-population, and mutation properties. We consider the reflection traveltimes in a layered medium including a relationship between the traveltimes, porosity and saturation of the snow. We solve the problem for the layer thickness and the porosity, saturation and structural exponent of the snow. Reliable results are obtained in the snow density estimating, while the evaluation of free water content into the snow still remains challenging.

  19. Use of RAPD analyses to estimate population genetic parameters in the alfalfa leaf-cutting bee, Megachile rotundata.

    PubMed

    Lu, R; Rank, G H

    1996-08-01

    RAPD analyses were performed on five geographically isolated populations of Megachile rotundata. We used haploid males of the alfalfa leaf-cutting bee, M. rotundata, to overcome the limitation of the dominance of RAPD markers in the determination of population genetic parameters. Sixteen primers gave rise to 130 polymorphic and 31 monomorphic bands. The unbiased estimators calculated in this study include within- and between-population heterozygosity, nucleotide divergence, and genetic distance. The genetic diversity (H = 0.32-0.35) was found to be about 10 times that of previous estimates (H = 0.033) based on allozyme data. Contrary to the data obtained at the protein level, our results suggest that Hymenoptera do not have a lower level of genetic variability at the DNA level compared with other insect species. Regardless of the different assumptions underlying the calculation of heterozygosity, divergence, and genetic distance, all five populations showed a parallel interrelationship for the three parameters. We conclude that RAPD markers are a convenient tool to estimate population genetic variation in haploid M. rotundata and that with an adequate sample size the technique is applicable to the evaluation of divergence in diploid populations. Key words : Megachile rotundata, RAPD, heterozygosity, genetic distance, nucleotide divergence. PMID:18469925

  20. Parameter estimates for direct and maternal genetic effects on yearling, eighteen-month, and slaughter weights of Korean native cattle.

    PubMed

    Lee, J W; Choi, S B; Jung, Y H; Keown, J F; Van Vleck, L D

    2000-06-01

    Data collected by the National Livestock Research Institute of the Rural Development Administration of Korea were used to estimate genetic parameters for yearling (YWT, n = 5,848), 18-mo (W18, n = 4,585), and slaughter (SWT, n = 2,279) weights for Korean Native cattle. Nine animal models were used to obtain REML estimates of genetic parameters: DP-2 included genetic, uncorrelated dam, and residual random effects; DQ-2 included genetic, sire x region x year-season interaction, and residual random effects; DPQ-2 was based on DQ-2 but included both interaction and dam effects; DMP-2 was based on DP-2 but with dam effect partitioned to include maternal genetic and permanent environmental effects; and DMPQ-2 was based on DMP-2 but also included sire interaction effects. Those five models included two fixed factors: region x year-season and age of dam x sex effects. Models DP-3, DQ-3, DPQ-3, and DMPQ-3 were based on DP-2, DQ-2, DPQ-2, and DMPQ-2 but included as a third fixed factor whether or not identification of the sire was known. Estimates of heritability with DMPQ-3 for YWT, with DPQ-3 for W18 and SWT when analyzed with single-trait analyses were .14, .11, and .17, respectively, and were nearly the same with bivariate analyses. Estimate of maternal heritability for YWT from single-trait analysis was .04, with estimates for other traits near zero. For bivariate analyses, the estimate for YWT was .01. With single trait analysis, estimate of the direct-maternal genetic correlation for YWT was negative (-.81). Estimates of direct genetic correlations between YWT and W18, YWT and SWT, and W18 and SWT were .99, 1.00, and .97, respectively. Estimates of environmental correlations varied from .60 to .81; the largest was between W18 and SWT. Including a fixed factor for whether sire identification was missing or not missing reduced the estimate of heritability for slaughter weight. The results suggest that the sire x region x year-season interaction is important for yearling

  1. Estimates of population genetic diversity in brown bullhead catfish by DNA fingerprinting

    SciTech Connect

    Roth, A.C.; Wessendarp, T.K.; Gordon, D.A.; Smith, M.K.; Lattier, D.L.; Hertzberg, V.; Leonard, A.

    1994-12-31

    Estimates of population genetic diversity may be a sensitive indicator of environmental impact, since limiting the effective breeding population by any means will result in loss of some variant genotypes, as has been demonstrated by allozyme analysis. DNA fingerprinting techniques are also coming into use for population analyses, and the authors chose to apply fingerprinting analysis three populations of brown bullhead catfish collected in Northern Ohio. DNA was isolated from the red blood cells of individual fish. Purified DNAs were digested with EcoR1 restriction enzyme; the digests were then sized on a 1% agarose gel, transferred to nylon membranes and probed with a radiolabeled M13 probe using the Westneat hybridization protocol (Southern blotting). This method effects fragments containing VNTR (variable number of tandem repeat) sequences complementary to the M13, which are highly variable among individual catfish. Hybridized bands were visualized by a Molecular Dynamics phosphorimager and recorded and analyzed with its proprietary Imagequant image analysis program, Excel and SAS. A total of 10 variable bands were identified and their presence or absence scored in each individual. These data were analyzed to determine between and within-population similarity indices as well as population heterozygosity and genetic diversity measures.

  2. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-05-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called "Coactive Neuro-Fuzzy Inference System" (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) - as a well-known technique to solve the complex optimization problems - is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS-GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS-GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems.

  3. A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation

    PubMed Central

    Tahmasebi, Pejman; Hezarkhani, Ardeshir

    2012-01-01

    The grade estimation is a quite important and money/time-consuming stage in a mine project, which is considered as a challenge for the geologists and mining engineers due to the structural complexities in mineral ore deposits. To overcome this problem, several artificial intelligence techniques such as Artificial Neural Networks (ANN) and Fuzzy Logic (FL) have recently been employed with various architectures and properties. However, due to the constraints of both methods, they yield the desired results only under the specific circumstances. As an example, one major problem in FL is the difficulty of constructing the membership functions (MFs).Other problems such as architecture and local minima could also be located in ANN designing. Therefore, a new methodology is presented in this paper for grade estimation. This method which is based on ANN and FL is called “Coactive Neuro-Fuzzy Inference System” (CANFIS) which combines two approaches, ANN and FL. The combination of these two artificial intelligence approaches is achieved via the verbal and numerical power of intelligent systems. To improve the performance of this system, a Genetic Algorithm (GA) – as a well-known technique to solve the complex optimization problems – is also employed to optimize the network parameters including learning rate, momentum of the network and the number of MFs for each input. A comparison of these techniques (ANN, Adaptive Neuro-Fuzzy Inference System or ANFIS) with this new method (CANFIS–GA) is also carried out through a case study in Sungun copper deposit, located in East-Azerbaijan, Iran. The results show that CANFIS–GA could be a faster and more accurate alternative to the existing time-consuming methodologies for ore grade estimation and that is, therefore, suggested to be applied for grade estimation in similar problems. PMID:25540468

  4. Stochastic dynamic simulation modeling including multitrait genetics to estimate genetic, technical, and financial consequences of dairy farm reproduction and selection strategies.

    PubMed

    Kaniyamattam, K; Elzo, M A; Cole, J B; De Vries, A

    2016-10-01

    The objective of this study was to develop a daily stochastic dynamic dairy simulation model that included multitrait genetics and to evaluate the effects of reduced genetic models and various reproduction and selection strategies on the genetic, technical, and financial performance of a dairy herd. The 12 correlated genetic traits included in the 2014 lifetime net merit (NM$) index were modeled for each animal. For each animal, a true breeding value (TBV) for each trait was calculated as the average of the sire's and dam's TBV, plus a fraction of the inbreeding and Mendelian sampling variability. Similarly, an environmental component for each trait was calculated and was partitioned into a permanent and a daily (temporary) effect. The combined TBV and environmental effects were converted into the phenotypic performance of each animal. Hence, genetics and phenotypic performances were associated. Estimated breeding values (EBV) were also simulated. Genetic trends for each trait for the service sire were based on expected trends in US Holsteins. Surplus heifers were culled based on various ranking criteria to maintain a herd size of 1,000 milking cows. In the first 8 scenarios, culling of surplus heifers was either random or based on the EBV of NM$. Four different genetic models, depending on the presence or absence of genetic trends or genetic and environmental correlations, or both, were evaluated to measure the effect of excluding multitrait genetics on animal performance. In the last 5 scenarios, the full genetic model was used and culling of surplus heifers was either random or based on the EBV of NM$ or the EBV of milk. Sexed semen use and reliability of the EBV were also varied. Each scenario was simulated for 15yr into the future. Results showed that genetic models without all 12 genetic trends and genetic and environmental correlations provided biased estimates of the genetic, technical, and financial performance of the dairy herd. Average TBV of NM$ of all

  5. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  6. Diversity and genetic parameter estimates for yield and its components in Jatropha curcas L.

    PubMed

    Freitas, R G; Dias, L A S; Cardoso, P M R; Evaristo, A B; Silva, M F; Araújo, N M

    2016-01-01

    Jatropha curcas L. is one of the most promising oilseeds for biodiesel and biokerosene production, but few basic studies or breeding programs have been conducted for the species. We estimated genetic parameters and diversity based on 10 yield traits in 77 half-sib progenies of J. curcas after 52 months in the field, and evaluated correlations between them and the oil content of the seeds. The mean grain yield per plant was 377.9 g (ranging from 169.8 to 772.1 g) and the mean oil content was 36.2% (ranging from 30 to 39.6%). Moderate estimates of heritability at the mean progeny level were obtained for the length of the fruit (84.7%), length (69.1%) and width (68.2%) of the seed, and grain yield per plant (62.2%). Oil content was only positively and significantly correlated with 100-seed weight. Our study revealed a range of possible crosses to be investigated in J. curcas. Progeny production should be evaluated over several crop seasons for the accurate selection of the best progenies. PMID:27050981

  7. Breed effects and genetic parameter estimates for calving difficulty and birth weight in a multibreed population.

    PubMed

    Ahlberg, C M; Kuehn, L A; Thallman, R M; Kachman, S D; Snelling, W M; Spangler, M L

    2016-05-01

    Birth weight (BWT) and calving difficulty (CD) were recorded on 4,579 first-parity females from the Germplasm Evaluation Program at the U.S. Meat Animal Research Center (USMARC). Both traits were analyzed using a bivariate animal model with direct and maternal effects. Calving difficulty was transformed from the USMARC scores to corresponding -scores from the standard normal distribution based on the incidence rate of the USMARC scores. Breed fraction covariates were included to estimate breed differences. Heritability estimates (SE) for BWT direct, CD direct, BWT maternal, and CD maternal were 0.34 (0.10), 0.29 (0.10), 0.15 (0.08), and 0.13 (0.08), respectively. Calving difficulty direct breed effects deviated from Angus ranged from -0.13 to 0.77 and maternal breed effects deviated from Angus ranged from -0.27 to 0.36. Hereford-, Angus-, Gelbvieh-, and Brangus-sired calves would be the least likely to require assistance at birth, whereas Chiangus-, Charolais-, and Limousin-sired calves would be the most likely to require assistance at birth. Maternal breed effects for CD were least for Simmental and Charolais and greatest for Red Angus and Chiangus. Results showed that the diverse biological types of cattle have different effects on both BWT and CD. Furthermore, results provide a mechanism whereby beef cattle producers can compare EBV for CD direct and maternal arising from disjoined and breed-specific genetic evaluations. PMID:27285683

  8. Comparison of Statistical Methods for Estimating Genetic Admixture in a Lung Cancer Study of African Americans and Latinos

    PubMed Central

    Selvin, Steve; Hansen, Helen M.; Barcellos, Lisa F.; Wrensch, Margaret R.; Sison, Jennette D.; Quesenberry, Charles P.; Kittles, Rick A.; Silva, Gabriel; Buffler, Patricia A.; Seldin, Michael F.; Wiencke, John K.

    2008-01-01

    A variety of methods are available for estimating genetic admixture proportions in populations; however, few investigators have conducted detailed comparisons using empirical data. The authors characterized admixture proportions among self-identified African Americans (n = 535) and Latinos (n = 412) living in the San Francisco Bay Area who participated in a lung cancer case-control study (1998–2003). Individual estimates of genetic ancestry based on 184 informative markers were obtained from a Bayesian approach and 2 maximum likelihood approaches and were compared using descriptive statistics, Pearson correlation coefficients, and Bland-Altman plots. Case-control differences in individual admixture proportions were assessed using 2-sample t tests and logistic regression analysis. Results indicated that Bayesian and frequentist approaches to estimating admixture provide similar estimates and inferences. No difference was observed in admixture proportions between African-American cases and controls, but Latino cases and controls significantly differed according to Amerindian and European genetic ancestry. Differences in admixture proportions between Latino cases and controls were not unexpected, since cases were more likely to have been born in the United States. Genetic admixture proportions provide a quantitative measure of ancestry differences among Latinos that can be used in analyses of genetic risk factors. PMID:18791191

  9. Estimates of genetic parameters for visual scores and daily weight gain in Brangus animals.

    PubMed

    Queiroz, S A; Oliveira, J A; Costa, G Z; Fries, L A

    2011-05-01

    (Co)variance components were estimated for visual scores of conformation (CY), early finishing (PY) and muscling (MY) at 550 days of age (yearling), average daily gain from weaning to yearling (GWY), conformation (CW), early finishing (PW) and muscling (MW) scores at weaning, and average daily gain from birth to weaning (GBW) in animals forming the Brazilian Brangus breed born between 1986 and 2002 from the livestock files of GenSys Consultants Associados S/C Ltda. The data set contained 53 683; 45 136; 52 937; 56 471; 24 531; 21 166; 24 006 and 25 419 records for CW, PW, MW, GBW, CY, PY, MY and GWY, respectively. Data were analyzed by the restricted maximum likelihood method using single- and two-trait animal models. Direct heritability estimates obtained by single-trait analysis were 0.12, 0.14, 0.13 and 0.14 for CY, PY and MY scores and GWY, respectively. A positive association was observed between the same visual scores at weaning and yearling, with correlations ranging from 0.64 to 0.94. Estimated correlations between GBW and weaning and yearling scores ranged from 0.60 to 0.77. The genetic correlation between GBW and GWY was low (0.10), whereas correlations of 0.55, 0.37 and 0.47 were observed between GWY and CY, PY and MY, respectively. Moreover, GWY showed a weak correlation with CW (0.10), PW (-0.08) and MW (-0.03) scores. These results indicate that selection of the traits that was studied would result in a small response. In addition, selection based on average daily gain may have an indirect effect on visual scores as the correlations between GWY and visual scores were generally strong. PMID:22440022

  10. Short-Term Genetic Changes: Evaluating Effective Population Size Estimates in a Comprehensively Described Brown Trout (Salmo trutta) Population

    PubMed Central

    Serbezov, Dimitar; Jorde, Per Erik; Bernatchez, Louis; Olsen, Esben Moland; Vøllestad, L. Asbjørn

    2012-01-01

    The effective population size (Ne) is notoriously difficult to accurately estimate in wild populations as it is influenced by a number of parameters that are difficult to delineate in natural systems. The different methods that are used to estimate Ne are affected variously by different processes at the population level, such as the life-history characteristics of the organism, gene flow, and population substructure, as well as by the frequency patterns of genetic markers used and the sampling design. Here, we compare Ne estimates obtained by different genetic methods and from demographic data and elucidate how the estimates are affected by various factors in an exhaustively sampled and comprehensively described natural brown trout (Salmo trutta) system. In general, the methods yielded rather congruent estimates, and we ascribe that to the adequate genotyping and exhaustive sampling. Effects of violating the assumptions of the different methods were nevertheless apparent. In accordance with theoretical studies, skewed allele frequencies would underestimate temporal allele frequency changes and thereby upwardly bias Ne if not accounted for. Overlapping generations and iteroparity would also upwardly bias Ne when applied to temporal samples taken over short time spans. Gene flow from a genetically not very dissimilar source population decreases temporal allele frequency changes and thereby acts to increase estimates of Ne. Our study reiterates the importance of adequate sampling, quantification of life-history parameters and gene flow, and incorporating these data into the Ne estimation. PMID:22466040

  11. 78 FR 50481 - Request for Public Comments Regarding the National Trade Estimate Report on Foreign Trade Barriers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... TRADE REPRESENTATIVE Request for Public Comments Regarding the National Trade Estimate Report on Foreign... States Trade Representative (USTR) is required to publish annually the National Trade Estimate Report on... discussions or negotiations with trading partners. Estimate of Increase in Exports: Each comment...

  12. 77 FR 49055 - Request for Public Comments To Compile the National Trade Estimate Report on Foreign Trade Barriers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... TRADE REPRESENTATIVE Request for Public Comments To Compile the National Trade Estimate Report on... States Trade Representative (USTR) is required to publish annually the National Trade Estimate Report on... information for potential use in future discussions or negotiations with trading partners. Estimate...

  13. Estimation of long-term genetic improvement for gerbera using the best linear unbiased prediction (BLUP) procedure.

    PubMed

    Huang, H; Harding, J; Byrne, T; Famula, T

    1995-10-01

    Long-term genetic improvement is measured by the selection response predicted from estimates of narrow-sense heritability. Accurate estimates of selection response require partitioning the change of population mean into genetic and environmental components. A selection experiment for cut-flower yield was conducted for 16 generations in the Davis population of gerbera (Gerbera hybrida, Compositae). Breeding values were estimated for individual plants in the population using the best linear unbiased prediction (BLUP) procedure. Genetic change in each generation was calculated from the breeding values of individual plants. The results of this study indicate that long-term selection was successful and necessary for the genetic improvement in cut-flower yield. Genetic improvement in mean breeding value over 16 generations was 33 flowers. Mean breeding values increased monotonically with an S-shape pattern while environmental effects fluctuated from generation to generation. Results predict that cut-flower yield in the Davis population of gerbera will continue to respond to selection.

  14. Evaluating alternate models to estimate genetic parameters of calving traits in United Kingdom Holstein-Friesian dairy cattle

    PubMed Central

    2012-01-01

    Background The focus in dairy cattle breeding is gradually shifting from production to functional traits and genetic parameters of calving traits are estimated more frequently. However, across countries, various statistical models are used to estimate these parameters. This study evaluates different models for calving ease and stillbirth in United Kingdom Holstein-Friesian cattle. Methods Data from first and later parity records were used. Genetic parameters for calving ease, stillbirth and gestation length were estimated using the restricted maximum likelihood method, considering different models i.e. sire (−maternal grandsire), animal, univariate and bivariate models. Gestation length was fitted as a correlated indicator trait and, for all three traits, genetic correlations between first and later parities were estimated. Potential bias in estimates was avoided by acknowledging a possible environmental direct-maternal covariance. The total heritable variance was estimated for each trait to discuss its theoretical importance and practical value. Prediction error variances and accuracies were calculated to compare the models. Results and discussion On average, direct and maternal heritabilities for calving traits were low, except for direct gestation length. Calving ease in first parity had a significant and negative direct-maternal genetic correlation. Gestation length was maternally correlated to stillbirth in first parity and directly correlated to calving ease in later parities. Multi-trait models had a slightly greater predictive ability than univariate models, especially for the lowly heritable traits. The computation time needed for sire (−maternal grandsire) models was much smaller than for animal models with only small differences in accuracy. The sire (−maternal grandsire) model was robust when additional genetic components were estimated, while the equivalent animal model had difficulties reaching convergence. Conclusions For the evaluation of

  15. Indirect estimates of natal dispersal distance from genetic data in a stream-dwelling fish (Mogurnda adspersa).

    PubMed

    Shipham, Ashlee; Schmidt, Daniel J; Hughes, Jane M

    2013-01-01

    Recent work has highlighted the need to account for hierarchical patterns of genetic structure when estimating evolutionary and ecological parameters of interest. This caution is particularly relevant to studies of riverine organisms, where hierarchical structure appears to be commonplace. Here, we indirectly estimate dispersal distance in a hierarchically structured freshwater fish, Mogurnda adspersa. Microsatellite and mitochondrial DNA (mtDNA) data were obtained for 443 individuals across 27 sites separated by an average of 1.3 km within creeks of southeastern Queensland, Australia. Significant genetic structure was found among sites (mtDNA Φ(ST) = 0.508; microsatellite F(ST) = 0.225, F'(ST) = 0.340). Various clustering methods produced congruent patterns of hierarchical structure reflecting stream architecture. Partial mantel tests identified contiguous sets of sample sites where isolation by distance (IBD) explained F(ST) variation without significant contribution of hierarchical structure. Analysis of mean natal dispersal distance (σ) within sets of IBD-linked sample sites suggested most dispersal occurs over less than 1 km, and the average effective density (D(e)) was estimated at 11.5 individuals km(-1); indicating sedentary behavior and small effective population size are responsible for the remarkable patterns of genetic structure observed. Our results demonstrate that Rousset's regression-based method is applicable to estimating the scale of dispersal in riverine organisms and that identifying contiguous populations that satisfy the assumptions of this model is achievable with genetic clustering methods and partial correlations.

  16. Mechanisms and genetic control of interspecific crossing barriers in lycopersicon. Progress report, First year, August 1, 1992

    SciTech Connect

    Mutschler, M.A.; McCormick, S.

    1992-12-31

    The goal of this program is to use Lycopersica esculentum and L. pennellii as a model system to study the interspecific reproductive barriers unilateral incongruity (UI), hybrid breakdown and interspecific aberrant ratio syndrome (IARS). Specifically we seek to determine the functional basis of UI including the timing of the failure of incongruous crosses, the developmental step(s) interrupted by UI, the tissue and genomes involved in UI.

  17. Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of Eurasian otter Lutra lutra.

    PubMed

    Dallas, John F; Coxon, Karen E; Sykes, Tim; Chanin, Paul R F; Marshall, Freda; Carss, David N; Bacon, Philip J; Piertney, Stuart B; Racey, Paul A

    2003-01-01

    Collecting faeces is viewed as a potentially efficient way to sample elusive animals. Nonetheless, any biases in estimates of population composition associated with such sampling remain uncharacterized. The goal of this study was to compare estimates of genetic composition and sex ratio derived from Eurasian otter Lutra lutra spraints (faeces) with estimates derived from carcasses. Twenty per cent of 426 wild-collected spraints from SW England yielded composite genotypes for 7-9 microsatellites and the SRY gene. The expected number of incorrect spraint genotypes was negligible, given the proportions of allele dropout and false allele detection estimated using paired blood and spraint samples of three captive otters. Fifty-two different spraint genotypes were detected and compared with genotypes of 70 otter carcasses from the same area. Carcass and spraint genotypes did not differ significantly in mean number of alleles, mean unbiased heterozygosity or sex ratio, although statistical power to detect all but large differences in sex ratio was low. The genetic compositions of carcass and spraint genotypes were very similar according to confidence intervals of theta and two methods for assigning composite genotypes to groups. A distinct group of approximately 11 carcass and spraint genotypes was detected using the latter methods. The results suggest that spraints can yield unbiased estimates of population genetic composition and sex ratio. PMID:12492895

  18. Short communication: Multi-trait estimation of genetic parameters for milk protein composition in the Danish Holstein.

    PubMed

    Gebreyesus, G; Lund, M S; Janss, L; Poulsen, N A; Larsen, L B; Bovenhuis, H; Buitenhuis, A J

    2016-04-01

    Genetic parameters were estimated for the major milk proteins using bivariate and multi-trait models based on genomic relationships between animals. The analyses included, apart from total protein percentage, αS1-casein (CN), αS2-CN, β-CN, κ-CN, α-lactalbumin, and β-lactoglobulin, as well as the posttranslational sub-forms of glycosylated κ-CN and αS1-CN-8P (phosphorylated). Standard errors of the estimates were used to compare the models. In total, 650 Danish Holstein cows across 4 parities and days in milk ranging from 9 to 481d were selected from 21 herds. The multi-trait model generally resulted in lower standard errors of heritability estimates, suggesting that genetic parameters can be estimated with high accuracy using multi-trait analyses with genomic relationships for scarcely recorded traits. The heritability estimates from the multi-trait model ranged from low (0.05 for β-CN) to high (0.78 for κ-CN). Genetic correlations between the milk proteins and the total milk protein percentage were generally low, suggesting the possibility to alter protein composition through selective breeding with little effect on total milk protein percentage.

  19. Estimating the risks of cancer mortality and genetic defects resulting from exposures to low levels of ionizing radiation

    SciTech Connect

    Buhl, T.E.; Hansen, W.R.

    1984-05-01

    Estimators for calculating the risk of cancer and genetic disorders induced by exposure to ionizing radiation have been recommended by the US National Academy of Sciences Committee on the Biological Effects of Ionizing Radiations, the UN Scientific Committee on the Effects of Atomic Radiation, and the International Committee on Radiological Protection. These groups have also considered the risks of somatic effects other than cancer. The US National Council on Radiation Protection and Measurements has discussed risk estimate procedures for radiation-induced health effects. The recommendations of these national and international advisory committees are summarized and compared in this report. Based on this review, two procedures for risk estimation are presented for use in radiological assessments performed by the US Department of Energy under the National Environmental Policy Act of 1969 (NEPA). In the first procedure, age- and sex-averaged risk estimators calculated with US average demographic statistics would be used with estimates of radiation dose to calculate the projected risk of cancer and genetic disorders that would result from the operation being reviewed under NEPA. If more site-specific risk estimators are needed, and the demographic information is available, a second procedure is described that would involve direct calculation of the risk estimators using recommended risk-rate factors. The computer program REPCAL has been written to perform this calculation and is described in this report. 25 references, 16 tables.

  20. Admixture mapping of end stage kidney disease genetic susceptibility using estimated mutual information ancestry informative markers

    PubMed Central

    2010-01-01

    Background The question of a genetic contribution to the higher prevalence and incidence of end stage kidney disease (ESKD) among African Americans (AA) remained unresolved, until recent findings using admixture mapping pointed to the association of a genomic locus on chromosome 22 with this disease phenotype. In the current study we utilize this example to demonstrate the utility of applying a multi-step admixture mapping approach. Methods A multi-step case only admixture mapping study, consisted of the following steps was designed: 1) Assembly of the sample dataset (ESKD AA); 2) Design of the estimated mutual information ancestry informative markers (n = 2016) screening panel 3); Genotyping the sample set whose size was determined by a power analysis (n = 576) appropriate for the initial screening panel; 4) Inference of local ancestry for each individual and identification of regions with increased AA ancestry using two different ancestry inference statistical approaches; 5) Enrichment of the initial screening panel; 6) Power analysis of the enriched panel 7) Genotyping of additional samples. 8) Re-analysis of the genotyping results to identify a genetic risk locus. Results The initial screening phase yielded a significant peak using the ADMIXMAP ancestry inference program applying case only statistics. Subgroup analysis of 299 ESKD patients with no history of diabetes yielded peaks using both the ANCESTRYMAP and ADMIXMAP ancestry inference programs. The significant peak was found on chromosome 22. Genotyping of additional ancestry informative markers on chromosome 22 that took into account linkage disequilibrium in the ancestral populations, and the addition of samples increased the statistical significance of the finding. Conclusions A multi-step admixture mapping analysis of AA ESKD patients replicated the finding of a candidate risk locus on chromosome 22, contributing to the heightened susceptibility of African Americans to develop non-diabetic ESKD, and

  1. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.

    PubMed

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-12-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families.

  2. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments

    PubMed Central

    Kumar, Satish; Molloy, Claire; Muñoz, Patricio; Daetwyler, Hans; Chagné, David; Volz, Richard

    2015-01-01

    The nonadditive genetic effects may have an important contribution to total genetic variation of phenotypes, so estimates of both the additive and nonadditive effects are desirable for breeding and selection purposes. Our main objectives were to: estimate additive, dominance and epistatic variances of apple (Malus × domestica Borkh.) phenotypes using relationship matrices constructed from genome-wide dense single nucleotide polymorphism (SNP) markers; and compare the accuracy of genomic predictions using genomic best linear unbiased prediction models with or without including nonadditive genetic effects. A set of 247 clonally replicated individuals was assessed for six fruit quality traits at two sites, and also genotyped using an Illumina 8K SNP array. Across several fruit quality traits, the additive, dominance, and epistatic effects contributed about 30%, 16%, and 19%, respectively, to the total phenotypic variance. Models ignoring nonadditive components yielded upwardly biased estimates of additive variance (heritability) for all traits in this study. The accuracy of genomic predicted genetic values (GEGV) varied from about 0.15 to 0.35 for various traits, and these were almost identical for models with or without including nonadditive effects. However, models including nonadditive genetic effects further reduced the bias of GEGV. Between-site genotypic correlations were high (>0.85) for all traits, and genotype-site interaction accounted for <10% of the phenotypic variability. The accuracy of prediction, when the validation set was present only at one site, was generally similar for both sites, and varied from about 0.50 to 0.85. The prediction accuracies were strongly influenced by trait heritability, and genetic relatedness between the training and validation families. PMID:26497141

  3. Integrating Genetic Studies of Nicotine Addiction into Public Health Practice: Stakeholder Views on Challenges, Barriers and Opportunities

    PubMed Central

    Dingel, M.J.; Hicks, A.D.; Robinson, M.E.; Koenig, B.A.

    2011-01-01

    Objective: Will emerging genetic research strengthen tobacco control programs? In this empirical study, we interview stakeholders in tobacco control to illuminate debates about the role of genomics in public health. Methods: The authors performed open-ended interviews with 86 stakeholders from 5 areas of tobacco control: basic scientists, clinicians, tobacco prevention specialists, health payers, and pharmaceutical industry employees. Interviews were qualitatively analyzed using standard techniques. Results: The central tension is between the hope that an expanding genomic knowledge base will improve prevention and smoking cessation therapies and the fear that genetic research might siphon resources away from traditional and proven public health programs. While showing strong support for traditional public health approaches to tobacco control, stakeholders recognize weaknesses, specifically the difficulty of countering the powerful voice of the tobacco industry when mounting public campaigns and the problem of individuals who are resistant to treatment and continue smoking. Conclusions: In order for genetic research to be effectively translated into efforts to minimize the harm of smoking-related disease, the views of key stakeholders must be voiced and disagreements reconciled. Effective translation requires honest evaluation of both the strengths and limitations of genetic approaches. PMID:21757875

  4. QTL mapping reveals the genetic architecture of loci affecting pre- and post-zygotic isolating barriers in Louisiana Iris

    PubMed Central

    2012-01-01

    Background Hybridization among Louisiana Irises has been well established and the genetic architecture of reproductive isolation is known to affect the potential for and the directionality of introgression between taxa. Here we use co-dominant markers to identify regions where QTL are located both within and between backcross maps to compare the genetic architecture of reproductive isolation and fitness traits across treatments and years. Results QTL mapping was used to elucidate the genetic architecture of reproductive isolation between Iris fulva and Iris brevicaulis. Homologous co-dominant EST-SSR markers scored in two backcross populations between I. fulva and I. brevicaulis were used to generate genetic linkage maps. These were used as the framework for mapping QTL associated with variation in 11 phenotypic traits likely responsible for reproductive isolation and fitness. QTL were dispersed throughout the genome, with the exception of one region of a single linkage group (LG) where QTL for flowering time, sterility, and fruit production clustered. In most cases, homologous QTL were not identified in both backcross populations, however, homologous QTL for flowering time, number of growth points per rhizome, number of nodes per inflorescence, and number of flowers per node were identified on several linkage groups. Conclusions Two different traits affecting reproductive isolation, flowering time and sterility, exhibit different genetic architectures, with numerous QTL across the Iris genome controlling flowering time and fewer, less distributed QTL affecting sterility. QTL for traits affecting fitness are largely distributed across the genome with occasional overlap, especially on LG 4, where several QTL increasing fitness and decreasing sterility cluster. Given the distribution and effect direction of QTL affecting reproductive isolation and fitness, we have predicted genomic regions where introgression may be more likely to occur (those regions associated with

  5. Estimate Landslide Volume with Genetic Algorithms and Image Similarity Method from Single Satellite Image

    NASA Astrophysics Data System (ADS)

    Yu, Ting-To

    2013-04-01

    It is important to acquire the volume of landslide in short period of time. For hazard mitigation and also emergency response purpose, the traditional method takes much longer time than expected. Due to the weather limit, traffic accessibility and many regulations of law, it take months to handle these process before the actual carry out of filed work. Remote sensing imagery can get the data as long as the visibility allowed, which happened only few day after the event. While traditional photometry requires a stereo pairs images to produce the post event DEM for calculating the change of volume. Usually have to wait weeks or even months for gathering such data, LiDAR or ground GPS measurement might take even longer period of time with much higher cost. In this study we use one post event satellite image and pre-event DTM to compare the similarity between these by alter the DTM with genetic algorithms. The outcome of smartest guess from GAs shall remove or add exact values of height at each location, which been converted into shadow relief viewgraph to compare with satellite image. Once the similarity threshold been make then the guessing work stop. It takes only few hours to finish the entire task, the computed accuracy is around 70% by comparing to the high resolution LiDAR survey at a landslide, southern Taiwan. With extra GCPs, the estimate accuracy can improve to 85% and also within few hours after the receiving of satellite image. Data of this demonstration case is a 5 m DTM at 2005, 2M resolution FormoSat optical image at 2009 and 5M LiDAR at 2010. The GAs and image similarity code is developed on Matlab at windows PC.

  6. Historical and contemporary factors shape the population genetic structure of the broadcast spawning coral, Acropora millepora, on the Great Barrier Reef.

    PubMed

    Van Oppen, Madeleine J H; Peplow, Lesa M; Kininmonth, Stuart; Berkelmans, Ray

    2011-12-01

    Effective management of reef corals requires knowledge of the extent to which populations are open or closed and the scales over which genetic exchange occurs, information which is commonly derived from population genetic data. Such data are sparse for Great Barrier Reef (GBR) corals and other organisms, with the studies that are available being mostly based on a small number of sampling locations spanning only part of the GBR. Using 11 microsatellite loci, we genotyped 947 colonies of the reef-building coral Acropora millepora from 20 sites spanning almost the full length of the GBR (∼12° of latitude and ∼1550 km). The results show a major divide between the southernmost central to southern offshore populations and all other sampled populations. We interpret this divide as a signature of allopatric divergence in northern and southern refugia during the Pleistocene glaciations, from which the GBR was subsequently recolonized. Superimposed on this pattern is a cross-shelf genetic division, as well as a separation of inshore populations south of the Cape Clifton Front at ∼21.5-22°S. Most inshore populations north of this, as well as mid-shelf populations in the northern and far northern GBR, are open, exchanging recruits frequently. In contrast, inshore populations south of the Cape Clifton Front and offshore populations in the central and southern GBR are largely self-seeding, at least within the spatial resolution that was achieved given our sampling intensity. Populations that have been impacted by recent disturbance events causing extensive coral mortality show no evidence of reduced genetic diversity.

  7. Discovery of cyclosporine A and its analogs as broad-spectrum anti-influenza drugs with a high in vitro genetic barrier of drug resistance.

    PubMed

    Ma, Chunlong; Li, Fang; Musharrafieh, Rami Ghassan; Wang, Jun

    2016-09-01

    As the number of drug-resistant influenza viruses continues to increase, antivirals with novel mechanisms of action are urgently needed. Among the two classes of FDA-approved antiviral drugs, neuraminidase (NA) inhibitors, oseltamivir, zanamivir, and peramivir, are currently the only choice for the prevention and treatment of influenza virus infection. Due to the antigenic drift and antigenic shift, it will only be a matter of time before influenza viruses become completely resistant to these NA inhibitors. In pursuing the next generation of antiviral drugs with complementary mechanisms of action to those of the NA inhibitors, we have identified a natural product, cyclosporine A (CsA) (1), as a desired drug candidate. In this study, we discovered that CsA (1) and its analogs have broad-spectrum antiviral activity against multiple influenza A and B strains, including strains that are resistant to either NA or M2 inhibitors or both. Moreover, CsA (1) displays a high in vitro genetic barrier of drug resistance than oseltamivir carboxylate Mechanistic studies revealed that CsA (1) acts at the intermediate step of viral replication post viral fusion. Its antiviral mechanism is independent of inhibiting the isomerase activity of cyclophilin A (CypA), and CsA (1) has no effect on the viral polymerase activity The potent antiviral efficacy of CsA (1), coupled with the high in vitro genetic barrier of drug resistance and novel mechanism of action, renders CsA (1) a promising anti-influenza drug candidate for further development. PMID:27478032

  8. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail.

    PubMed

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals' genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals' genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  9. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genome-wide molecular markers are readily being applied to evaluate genetic diversity in germplasm collections and for making genomic selections in breeding programs. To accurately predict phenotypes and assay genetic diversity, molecular markers should assay a representative sample of the polymorp...

  10. Genetic diversity in three natural populations of Pitcairnia flammea (l.) John (Bromeliaceae) estimated by ISSR markers.

    PubMed

    Souza-Sobreira, F B; Souza, G B; Rosado, C C G; Miranda, F D; Soares, T C B; Gontijo, A B P L

    2015-01-01

    Bromeliads are greatly represented in the Atlantic Forest, although many species are threatened with extinction owing to habitat fragmentation and intense extraction for ornamental purposes. Therefore, it is necessary to conduct studies generating knowledge about genetic diversity and the distribution of this diversity among and within natural populations to establish conservation strategies. These studies can be performed with the use of molecular markers. Molecular markers are advantageous for studies of natural populations, for conservation programs, and to aid in properly classifying plant species. This study aimed to evaluate the genetic diversity among and within natural populations of Pitcairnia flammea, occurring in three fragments of the Atlantic Forest in the southern State of Espírito Santo through the use of inter-simple sequence repeat (ISSR) markers. DNA samples from 55 individuals were amplified with 18 ISSR primers, generating 180 bands, 159 of which were polymorphic. The Shannon genetic diversity index ranged from 0.348 to 0.465, with an average of 0.412. The Bayesian approach for the molecular data indicated the existence of two genetic groups. Analysis of molecular variance indicated the existence of 90.3% diversity within the population and 9.74% among populations. The amount of genetic differentiation of populations was moderate (0.0974), indicating that gene flow rates may be enough to counteract the effects of genetic drift. Greater genetic variability found in population B indicates that this area is an important source of genetic variability. PMID:26634557

  11. Estimating Genetic and Maternal Effects Determining Variation in Immune Function of a Mixed-Mating Snail

    PubMed Central

    Seppälä, Otto; Langeloh, Laura

    2016-01-01

    Evolution of host defenses such as immune function requires heritable genetic variation in them. However, also non-genetic maternal effects can contribute to phenotypic variation, thus being an alternative target for natural selection. We investigated the role of individuals’ genetic background and maternal effects in determining immune defense traits (phenoloxidase and antibacterial activity of hemolymph), as well as in survival and growth, in the simultaneously hermaphroditic snail Lymnaea stagnalis. We utilized the mixed mating system of this species by producing full-sib families in which each parental snail had produced offspring as both a dam and as a sire, and tested whether genetic background (family) and non-genetic maternal effects (dam nested within family) explain trait variation. Immune defense traits and growth were affected solely by individuals’ genetic background. Survival of snails did not show family-level variation. Additionally, some snails were produced through self-fertilization. They showed reduced growth and survival suggesting recessive load or overdominance. Immune defense traits did not respond to inbreeding. Our results suggest that the variation in snail immune function and growth was due to genetic differences. Since immune traits did not respond to inbreeding, this variation is most likely due to additive or epistatic genetic variance. PMID:27551822

  12. Genetic diversity in three natural populations of Pitcairnia flammea (l.) John (Bromeliaceae) estimated by ISSR markers.

    PubMed

    Souza-Sobreira, F B; Souza, G B; Rosado, C C G; Miranda, F D; Soares, T C B; Gontijo, A B P L

    2015-12-03

    Bromeliads are greatly represented in the Atlantic Forest, although many species are threatened with extinction owing to habitat fragmentation and intense extraction for ornamental purposes. Therefore, it is necessary to conduct studies generating knowledge about genetic diversity and the distribution of this diversity among and within natural populations to establish conservation strategies. These studies can be performed with the use of molecular markers. Molecular markers are advantageous for studies of natural populations, for conservation programs, and to aid in properly classifying plant species. This study aimed to evaluate the genetic diversity among and within natural populations of Pitcairnia flammea, occurring in three fragments of the Atlantic Forest in the southern State of Espírito Santo through the use of inter-simple sequence repeat (ISSR) markers. DNA samples from 55 individuals were amplified with 18 ISSR primers, generating 180 bands, 159 of which were polymorphic. The Shannon genetic diversity index ranged from 0.348 to 0.465, with an average of 0.412. The Bayesian approach for the molecular data indicated the existence of two genetic groups. Analysis of molecular variance indicated the existence of 90.3% diversity within the population and 9.74% among populations. The amount of genetic differentiation of populations was moderate (0.0974), indicating that gene flow rates may be enough to counteract the effects of genetic drift. Greater genetic variability found in population B indicates that this area is an important source of genetic variability.

  13. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    PubMed

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  14. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    PubMed

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  15. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    PubMed Central

    Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M.; Jones, Alison M.

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  16. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-01-01

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources. PMID:26782500

  17. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers.

    PubMed

    Ghariani, S; Elazreg, H; Chtourou-Ghorbel, N; Chakroun, M; Trifi-Farah, N

    2015-12-28

    Tunisia is rich in diverse forage and pasture species including perennial ryegrass. In order to enhance forage production and improve agronomic performance of this local germplasm, a molecular analysis was undertaken. Random amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and morpho-agronomical traits markers were used for genetic diversity estimation of ryegrass germplasm after screening 20 spontaneous accessions, including a local and an introduced cultivars. Same mean polymorphism information content values were obtained (0.37) for RAPD and ISSR suggesting that both marker systems were equally effective in determining polymorphisms. The average pairwise genetic distance values were 0.57 (morpho-agronomical traits), 0.68 (RAPD), and 0.51 (ISSR) markers data sets. A higher Shannon diversity index was obtained with ISSR marker (0.57) than for RAPD (0.54) and morpho-agronomical traits (0.36). The Mantel test based on genetic distances of a combination of molecular markers and morpho-agronomical data exhibited a significant correlation between RAPD and ISSR data, suggesting that the use of a combination of molecular techniques was a highly efficient method of estimating genetic variability levels among Tunisian ryegrass germplasm. In summary, results showed that combining molecular and morpho-agronomical markers is an efficient way in assessing the genetic variability among Tunisian ryegrass genotypes. In addition, the combined analysis provided an exhaustive coverage for the analyzed diversity and helped us to identify suitable accessions showed by Beja and Jendouba localities, which present large similarities with cultivated forms and can be exploited for designing breeding programmes, conservation of germplasm and management of ryegrass genetic resources.

  18. Do island plant populations really have lower genetic variation than mainland populations? Effects of selection and distribution range on genetic diversity estimates.

    PubMed

    García-Verdugo, C; Sajeva, M; La Mantia, T; Harrouni, C; Msanda, F; Caujapé-Castells, J

    2015-02-01

    Ecological and evolutionary studies largely assume that island populations display low levels of neutral genetic variation. However, this notion has only been formally tested in a few cases involving plant taxa, and the confounding effect of selection on genetic diversity (GD) estimates based on putatively neutral markers has typically been overlooked. Here, we generated nuclear microsatellite and plastid DNA sequence data in Periploca laevigata, a plant taxon with an island-mainland distribution area, to (i) investigate whether selection affects GD estimates of populations across contrasting habitats; and (ii) test the long-standing idea that island populations have lower GD than their mainland counterparts. Plastid data showed that colonization of the Canary Islands promoted strong lineage divergence within P. laevigata, which was accompanied by selective sweeps at several nuclear microsatellite loci. Inclusion of loci affected by strong divergent selection produced a significant downward bias in the GD estimates of the mainland lineage, but such underestimates were substantial (>14%) only when more than one loci under selection were included in the computations. When loci affected by selection were removed, we did not find evidence that insular Periploca populations have less GD than their mainland counterparts. The analysis of data obtained from a comprehensive literature survey reinforced this result, as overall comparisons of GD estimates between island and mainland populations were not significant across plant taxa (N = 66), with the only exception of island endemics with narrow distributions. This study suggests that identification and removal of markers potentially affected by selection should be routinely implemented in estimates of GD, particularly if different lineages are compared. Furthermore, it provides compelling evidence that the expectation of low GD cannot be generalized to island plant populations.

  19. Effect of parentage misidentification on estimates of genetic parameters for milk yield in the Mediterranean Italian buffalo population.

    PubMed

    Parlato, E; Van Vleck, L D

    2012-07-01

    The objective of this study was to evaluate the effect of parentage misidentification on estimation of genetic parameters for the Italian buffalo population for milk yield from 45,194 lactation records of 23,104 Italian buffalo cows. Animals were grouped into 10 data sets in which sires and dams were DNA identified, or reported from the pedigree, or unknown. A derivative-free restricted maximum likelihood method was used to estimate components of variance with a repeatability model. The model contained age at calving nested within parity and days from calving to conception as linear covariates, herd-year-seasons as fixed effects, and additive genetic, permanent environmental, and temporary environmental effects as random effects. Estimates of heritability (±SE) ranged from 0.00 ± 0.099 (sires and dams as reported in the pedigree) to 0.39 ± 0.094 (sires DNA identified and dams as reported in the pedigree). When identification of sires was as reported in the pedigree, estimates of heritability were close to zero. These small estimates indicate that a large proportion of reported paternity is incorrect. When sires are unknown and dams are DNA identified, the proportion of variance due to sires seems to be captured in the estimate of permanent environmental variance as a fraction of phenotypic variance. Therefore, as heritability decreased, permanent environmental variance increased about the same amount. Data sets with dams identified from pedigree and sires DNA identified showed the largest estimate of heritability (0.39), which was essentially the same as when dams were DNA identified (0.38). This result supports that most dams are correctly reported from the pedigree. Genetic progress should be much greater with bulls DNA identified because of greater heritability, but without artificial insemination and progeny testing, progress would be slow and would depend mostly on selection of sires based on dam estimated breeding values. Implementation of artificial

  20. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne ) from genetic data.

    PubMed

    Do, C; Waples, R S; Peel, D; Macbeth, G M; Tillett, B J; Ovenden, J R

    2014-01-01

    NeEstimator v2 is a completely revised and updated implementation of software that produces estimates of contemporary effective population size, using several different methods and a single input file. NeEstimator v2 includes three single-sample estimators (updated versions of the linkage disequilibrium and heterozygote-excess methods, and a new method based on molecular coancestry), as well as the two-sample (moment-based temporal) method. New features include the following: (i) an improved method for accounting for missing data; (ii) options for screening out rare alleles; (iii) confidence intervals for all methods; (iv) the ability to analyse data sets with large numbers of genetic markers (10 000 or more); (v) options for batch processing large numbers of different data sets, which will facilitate cross-method comparisons using simulated data; and (vi) correction for temporal estimates when individuals sampled are not removed from the population (Plan I sampling). The user is given considerable control over input data and composition, and format of output files. The freely available software has a new JAVA interface and runs under MacOS, Linux and Windows. PMID:23992227

  1. Gene diversity and estimation of genetic admixture among Mexican-Americans of Starr County, Texas.

    PubMed

    Cerda-Flores, R M; Kshatriya, G K; Bertin, T K; Hewett-Emmett, D; Hanis, C L; Chakraborty, R

    1992-01-01

    The Mexican-Americans of Starr County, Texas, classified by sex and birthplace, were studied to determine the extent of genetic variation and contributions from ancestral populations such as Spanish, Amerindian and West African. Using 21 genetic marker systems, genetic distance and diversity analyses indicate that subpopulations of Mexican-Americans in Starr County are similar, and that more than 99% of the total gene diversity (HT) can be attributed to individual variation within the population. Genetic admixture analysis shows the predominant influence comes from the Spanish, a lesser contribution from Amerindians and a slight one from the West Africans. The contribution of the ancestral population to various subpopulations of the Mexican-Americans of Starr County is similar. The Mexican-Americans of Starr County are similar to the Mexican population from northeastern Mexico. The history of admixture is apparently old enough to have brought the entire Mexican-American gene pool to Hardy-Weinberg equilibrium. There is no non-random association of alleles among the genetic marker systems considered in the present study, in spite of the fact that this population is of admixed origin. These results, in aggregate, suggest genetic homogeneity of the Mexican-Americans of Starr County, Texas, and point towards the utility of this population for genetic and epidemiological studies. PMID:1616290

  2. Estimates for Genetic Variance Components in Reciprocal Recurrent Selection in Populations Derived from Maize Single-Cross Hybrids

    PubMed Central

    dos Reis, Matheus Costa; Pádua, José Maria Villela; Abreu, Guilherme Barbosa; Guedes, Fernando Lisboa; Balbi, Rodrigo Vieira; de Souza, João Cândido

    2014-01-01

    This study was carried out to obtain the estimates of genetic variance and covariance components related to intra- and interpopulation in the original populations (C0) and in the third cycle (C3) of reciprocal recurrent selection (RRS) which allows breeders to define the best breeding strategy. For that purpose, the half-sib progenies of intrapopulation (P11 and P22) and interpopulation (P12 and P21) from populations 1 and 2 derived from single-cross hybrids in the 0 and 3 cycles of the reciprocal recurrent selection program were used. The intra- and interpopulation progenies were evaluated in a 10 × 10 triple lattice design in two separate locations. The data for unhusked ear weight (ear weight without husk) and plant height were collected. All genetic variance and covariance components were estimated from the expected mean squares. The breakdown of additive variance into intrapopulation and interpopulation additive deviations (στ2) and the covariance between these and their intrapopulation additive effects (CovAτ) found predominance of the dominance effect for unhusked ear weight. Plant height for these components shows that the intrapopulation additive effect explains most of the variation. Estimates for intrapopulation and interpopulation additive genetic variances confirm that populations derived from single-cross hybrids have potential for recurrent selection programs. PMID:25009831

  3. Behavioural linear standardized scoring system of the Lidia cattle breed by testing in herd: estimation of genetic parameters.

    PubMed

    Pelayo, R; Solé, M; Sánchez, M J; Molina, A; Valera, M

    2016-10-01

    Docility is very important for cattle production, and many behavioural tests to measure this trait have been developed. However, very few objective behavioural tests to measure the opposite approach 'aggressive behaviour' have been described. Therefore, the aim of this work was to validate in the Lidia cattle breed a behavioural linear standardized scoring system that measure the aggressiveness and enable genetic analysis of behavioural traits expressing fearless and fighting ability. Reproducibility and repeatability measures were calculated for the 12 linear traits of this scoring system to assess its accuracy, and ranged from 85.3 and 94.2%, and from 66.7 to 97.9%, respectively. Genetic parameters were estimated using an animal model with a Bayesian approach. A total of 1202 behavioural records were used. The pedigree matrix contained 5001 individuals. Heritability values (with standard deviations) ranged between 0.13 (0.04) (Falls of the bull) and 0.41 (0.08) (Speed of approach to horse). Genetic correlations varied from 0.01 (0.07) to 0.90 (0.13). Finally, an exploratory factor analysis using the genetic correlation matrix was calculated. Three main factors were retained to describe the traditional genetic indexes aggressiveness, strength and mobility.

  4. Genetic distances between popcorn populations based on molecular markers and correlations with heterosis estimates made by diallel analysis of hybrids.

    PubMed

    Munhoz, R E F; Prioli, A J; Amaral, A T; Scapim, C A; Simon, G A

    2009-01-01

    Diallel analysis was used to obtain information on combining ability, heterosis, estimates of genetic distances by random amplified polymorphic DNA (RAPD) and on their correlations with heterosis, for the popcorn varieties RS 20, UNB2, CMS 43, CMS 42, Zélia, UEM J1, UEM M2, Beija-Flor, and Viçosa, which were crossed to obtain all possible combinations, without reciprocals. The genitors and the 36 F(1) hybrids were evaluated in field trials in Maringá during two growing seasons in a randomized complete block design with three replications. Based on the results, strategies for further studies were developed, including the construction of composites by joining varieties with high general combining ability for grain yield (UNB2 and CMS 42) with those with high general combining ability for popping expansion (Zélia, RS 20 and UEM M2). Based on the RAPD markers, UEM J1 and Zélia were the most genetically distant and RS 20 and UNB2 were the most similar. The low correlation between heterosis and genetic distances may be explained by the random dispersion of the RAPD markers, which were insufficient for the exploitation of the popcorn genome. We concluded that an association between genetic dissimilarity and heterosis based only on genetic distance is not expected without considering the effect of dominant loci. PMID:19731196

  5. Simulation analysis to test the influence of model adequacy and data structure on the estimation of genetic parameters for traits with direct and maternal effects

    PubMed Central

    Clément, Virginie; Bibé, Bernard; Verrier, Étienne; Elsen, Jean-Michel; Manfredi, Eduardo; Bouix, Jacques; Hanocq, Éric

    2001-01-01

    Simulations were used to study the influence of model adequacy and data structure on the estimation of genetic parameters for traits governed by direct and maternal effects. To test model adequacy, several data sets were simulated according to different underlying genetic assumptions and analysed by comparing the correct and incorrect models. Results showed that omission of one of the random effects leads to an incorrect decomposition of the other components. If maternal genetic effects exist but are neglected, direct heritability is overestimated, and sometimes more than double. The bias depends on the value of the genetic correlation between direct and maternal effects. To study the influence of data structure on the estimation of genetic parameters, several populations were simulated, with different degrees of known paternity and different levels of genetic connectedness between flocks. Results showed that the lack of connectedness affects estimates when flocks have different genetic means because no distinction can be made between genetic and environmental differences between flocks. In this case, direct and maternal heritabilities are under-estimated, whereas maternal environmental effects are overestimated. The insufficiency of pedigree leads to biased estimates of genetic parameters. PMID:11563370

  6. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India. PMID:26627691

  7. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.

  8. Estimating genetic effect sizes under joint disease-endophenotype models in presence of gene-environment interactions

    PubMed Central

    Bureau, Alexandre; Croteau, Jordie; Couture, Christian; Vohl, Marie-Claude; Bouchard, Claude; Pérusse, Louis

    2015-01-01

    Effects of genetic variants on the risk of complex diseases estimated from association studies are typically small. Nonetheless, variants may have important effects in presence of specific levels of environmental exposures, and when a trait related to the disease (endophenotype) is either normal or impaired. We propose polytomous and transition models to represent the relationship between disease, endophenotype, genotype and environmental exposure in family studies. Model coefficients were estimated using generalized estimating equations and were used to derive gene-environment interaction effects and genotype effects at specific levels of exposure. In a simulation study, estimates of the effect of a genetic variant were substantially higher when both an endophenotype and an environmental exposure modifying the variant effect were taken into account, particularly under transition models, compared to the alternative of ignoring the endophenotype. Illustration of the proposed modeling with the metabolic syndrome, abdominal obesity, physical activity and polymorphisms in the NOX3 gene in the Quebec Family Study revealed that the positive association of the A allele of rs1375713 with the metabolic syndrome at high levels of physical activity was only detectable in subjects without abdominal obesity, illustrating the importance of taking into account the abdominal obesity endophenotype in this analysis. PMID:26284107

  9. Limitations to estimating bacterial cross-species transmission using genetic and genomic markers: inferences from simulation modeling

    PubMed Central

    Benavides, Julio A; Cross, Paul C; Luikart, Gordon; Creel, Scott

    2014-01-01

    Cross-species transmission (CST) of bacterial pathogens has major implications for human health, livestock, and wildlife management because it determines whether control actions in one species may have subsequent effects on other potential host species. The study of bacterial transmission has benefitted from methods measuring two types of genetic variation: variable number of tandem repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is unclear whether these data can distinguish between different epidemiological scenarios. We used a simulation model with two host species and known transmission rates (within and between species) to evaluate the utility of these markers for inferring CST. We found that CST estimates are biased for a wide range of parameters when based on VNTRs and a most parsimonious reconstructed phylogeny. However, estimations of CST rates lower than 5% can be achieved with relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several parameters, including the number of mutations accumulated since introduction, stochasticity, the genetic difference of strains introduced, and the sampling effort. Our results suggest that, even with whole-genome sequences, unbiased estimates of CST will be difficult when sampling is limited, mutation rates are low, or for pathogens that were recently introduced. PMID:25469159

  10. Estimation of genetic parameters and effects of cytoplasmic line on scrotal circumference and semen quality traits in Angus bulls.

    PubMed

    Garmyn, A J; Moser, D W; Christmas, R A; Minick Bormann, J

    2011-03-01

    The purpose of this study was to estimate the heritability of scrotal circumference (SC) and semen traits, genetic correlations between SC and semen quality traits, and the effect of cytoplasmic line on SC and semen traits. Breeding soundness exam (BSE) data were collected on registered Angus bulls at 4 ranches over 7 yr. The American Angus Association provided historical pedigree information to estimate the effect of cytoplasmic line on SC and semen quality traits. After editing, the evaluated data set contained 1,281 bulls with breeding soundness exam data that traced back to 100 founder dams. Data were analyzed using a 2-trait animal model to obtain heritability, genetic correlation between SC and semen quality traits, as well as the effect of cytoplasmic line as a random effect for SC, percent motility (MOT), percent primary abnormalities (PRIM), percent secondary abnormalities (SEC), and percent total abnormalities (TOT) using multiple-trait derivative-free REML. Fixed effects included source ranch and collection year, and test age was used as a covariate. Estimates of heritability for SC, MOT, PRIM, SEC, and TOT were 0.46, 0.05, 0.27, 0.23, and 0.25, respectively. Genetic correlations between SC and MOT, PRIM, SEC, and TOT were 0.36, -0.19, -0.11, and -0.23, respectively. The proportions of phenotypic variance accounted for by cytoplasmic line for SC, MOT, PRIM, SEC, and TOT were <0.001, 0.013, 0.023, 0.002, and <0.001, respectively. Genetic correlations between SC and semen quality traits were low to moderate and favorable. Cytoplasmic line may have a marginal effect on MOT and PRIM, but is likely not a significant source of variation for SC, SEC, or TOT.

  11. Estimation of Genetic Parameters for Real-time Ultrasound Measurements for Hanwoo Cows at Different Ages and Pregnancy Status

    PubMed Central

    Lee, J. H.; Lee, Y. M.; Oh, S.-H.; Son, H. J.; Jeong, D. J.; Whitley, Niki; Kim, J. J.

    2014-01-01

    The purpose of this study was to estimate genetic parameters of ultrasound measurements for longissimus dorsi muscle area (LMA), backfat thickness (BFT), and marbling score (MS) in Hanwoo cows (N = 3,062) at the ages between 18 and 42 months. Data were collected from 100 Hanwoo breeding farms in Gyeongbuk province, Korea, in 2007 and 2008. The cows were classified into four different age groups, i.e. 18 to 22 months (the first pregnancy period), 23 to 27 (the first parturition), 28 to 32 (the second pregnancy), and 33 to 42 (the second parturition), respectively. For each age group, a multi-trait animal model was used to estimate variance components and heritabilities of the three traits. The averages of LMA, BFT, and MS measurements across the cows of all age groups were 50.1 cm2, 4.62 mm, and 3.04, respectively and heritability estimates were 0.09, 0.10, and 0.08 for the respective traits. However, when the data were analyzed in different age groups, heritability estimates of LMA and BFT were 0.24 and 0.47, respectively, for the cows of 18 to 22 months of age, and 0.21 for MS in the 28 to 32 months old cows. When the cows of all age groups were used, the estimates of genetic (phenotypic) correlations were 0.43 (0.35), −0.06 (0.34) and 0.21 (0.32) between LMA and BFT, LMA and MS, and BFT and MS, respectively. However, in the cow age group between 28 and 32 (18 and 22) months, the estimates of genetic (phenotypic) correlations were 0.05 (0.29), −0.15 (0.24) and 0.38 (0.24), for the respective pairs of traits. These results suggest that genetic, environmental, and phenotypic variations differ depending on cow age, such that care must be taken when ultrasound measurements are applied to selection of cows for meat quality. PMID:25049938

  12. Differing impact of a major biogeographic barrier on genetic structure in two large kangaroos from the monsoon tropics of Northern Australia

    PubMed Central

    Eldridge, Mark D B; Potter, Sally; Johnson, Christopher N; Ritchie, Euan G

    2014-01-01

    Tropical savannas cover 20–30% of the world's land surface and exhibit high levels of regional endemism, but the evolutionary histories of their biota remain poorly studied. The most extensive and unmodified tropical savannas occur in Northern Australia, and recent studies suggest this region supports high levels of previously undetected genetic diversity. To examine the importance of barriers to gene flow and the environmental history of Northern Australia in influencing patterns of diversity, we investigated the phylogeography of two closely related, large, vagile macropodid marsupials, the antilopine wallaroo (Macropus antilopinus; n = 78), and the common wallaroo (Macropus robustus; n = 21). Both species are widespread across the tropical savannas of Australia except across the Carpentarian Barrier (CB) where there is a break in the distribution of M. antilopinus. We determined sequence variation in the hypervariable Domain I of the mitochondrial DNA control region and genotyped individuals at 12 polymorphic microsatellite loci to assess the historical and contemporary influence of the CB on these species. Surprisingly, we detected only limited differentiation between the disjunct Northern Territory and QueenslandM. antilopinus populations. In contrast, the continuously distributedM. robustus was highly divergent across the CB. Although unexpected, these contrasting responses appear related to minor differences in species biology. Our results suggest that vicariance may not explain well the phylogeographic patterns in Australia's dynamic monsoonal environments. This is because Quaternary environmental changes in this region have been complex, and diverse individual species’ biologies have resulted in less predictable and idiosyncratic responses. PMID:25035797

  13. The Effects of Population Size Histories on Estimates of Selection Coefficients from Time-Series Genetic Data

    PubMed Central

    Jewett, Ethan M.; Steinrücken, Matthias; Song, Yun S.

    2016-01-01

    Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright–Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. PMID:27550904

  14. A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone

    PubMed Central

    Dediu, Dan

    2011-01-01

    Language is a hallmark of our species and understanding linguistic diversity is an area of major interest. Genetic factors influencing the cultural transmission of language provide a powerful and elegant explanation for aspects of the present day linguistic diversity and a window into the emergence and evolution of language. In particular, it has recently been proposed that linguistic tone—the usage of voice pitch to convey lexical and grammatical meaning—is biased by two genes involved in brain growth and development, ASPM and Microcephalin. This hypothesis predicts that tone is a stable characteristic of language because of its ‘genetic anchoring’. The present paper tests this prediction using a Bayesian phylogenetic framework applied to a large set of linguistic features and language families, using multiple software implementations, data codings, stability estimations, linguistic classifications and outgroup choices. The results of these different methods and datasets show a large agreement, suggesting that this approach produces reliable estimates of the stability of linguistic data. Moreover, linguistic tone is found to be stable across methods and datasets, providing suggestive support for the hypothesis of genetic influences on its distribution. PMID:20810441

  15. A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone.

    PubMed

    Dediu, Dan

    2011-02-01

    Language is a hallmark of our species and understanding linguistic diversity is an area of major interest. Genetic factors influencing the cultural transmission of language provide a powerful and elegant explanation for aspects of the present day linguistic diversity and a window into the emergence and evolution of language. In particular, it has recently been proposed that linguistic tone-the usage of voice pitch to convey lexical and grammatical meaning-is biased by two genes involved in brain growth and development, ASPM and Microcephalin. This hypothesis predicts that tone is a stable characteristic of language because of its 'genetic anchoring'. The present paper tests this prediction using a Bayesian phylogenetic framework applied to a large set of linguistic features and language families, using multiple software implementations, data codings, stability estimations, linguistic classifications and outgroup choices. The results of these different methods and datasets show a large agreement, suggesting that this approach produces reliable estimates of the stability of linguistic data. Moreover, linguistic tone is found to be stable across methods and datasets, providing suggestive support for the hypothesis of genetic influences on its distribution.

  16. [Estimating genetic distance and phylogenetic tree of HPA-1-3, 5, and 15 in different populations].

    PubMed

    Feng, Ming-Liang; Huang, Hui; Shen, Tong; Zhang, Xi; Yin, Biao; Yang, Jian-Hao; Liu, Da-Zhuang

    2008-07-01

    According to the human platelet alloantigens (HPA) polymorphisms in five systems, the distributions of HPA-1 -3, 5, and 15 systems in 1 000 Chinese donors were carried out by using a polymerase chain reaction with sequence-specific primers (PCR-SSP) method. The genetic distance and phylogenetic tree between Chinese Hans and other populations were estimated by using DISPAN and PHYLIP software. As presented by the phylogenetic tree, Asian had a convergence with European first, and grouped together with African. Beninese which came from Africa was on the top of dendrogram. Indian was located between Asian and European. Brazilian was converged with other Europe populations. Oceanian Polynexiya had been shown specifically to cluster with Asia populations. These results proved the "out of Africa theory" from one side, and it also confirmed that early migration of Asian is from south to southeast, and east Asia., thus it is probable that Europeans are migrated from south to north, and west Europe. As genetic distance was estimated effectively by HPA systems, HPA systems could serve as the genetic marker in human migration and evolution research. PMID:18779125

  17. Random regression models for the estimation of genetic and environmental covariance functions for growth traits in Santa Ines sheep.

    PubMed

    Sarmento, J L R; Torres, R A; Sousa, W H; Lôbo, R N B; Albuquerque, L G; Lopes, P S; Santos, N P S; Bignard, A B

    2016-01-01

    Polynomial functions of different orders were used to model random effects associated with weight of Santa Ines sheep from birth to 196 days. Fixed effects included in the models were contemporary groups, age of ewe at lambing, and fourth-order Legendre polynomials for age to represent the average growth curve. In the random part, functions of different orders were included to model variances associated with direct additive and maternal genetic effects and with permanent environmental effects of the animal and mother. Residual variance was fitted by a sixth-order ordinary polynomial for age. The higher the order of the functions, the better the model fit the data. According to the Akaike information criterion and likelihood ratio test, a continuous function of order, five, five, seven, and three for direct additive genetic, maternal genetic, animal permanent environmental, and maternal permanent environmental effects (k = 5573), respectively, was sufficient to model changes in (co)variances with age. However, a more parsimonious model of order three, three, five, and three (k = 3353) was suggested based on Schwarz's Bayesian information criterion for the same effects. Since it was a more flexible model, model k = 5573 provided inconsistent genetic parameter estimates when compared to the biologically expected result. Predicted breeding values obtained with models k = 3353 and k = 5573 differed, especially at young ages. Model k = 3353 adequately fit changes in variances and covariances with time, and may be used to describe changes in variances with age in the Santa Ines sheep studied.

  18. Estimation of genetic distance between 10 maize accessions with varying response to different levels of soil moisture.

    PubMed

    Aslam, M; Awan, F S; Khan, I A; Khan, A I

    2009-12-08

    Ten maize accessions (NC-9, A50-2, M-14, B-42, NC-3, T-7, N-48-1, B-34, USSR, and WFTMS) were studied to estimate the genetic distance on molecular level by random amplified polymorphic DNA. These accessions were selected on the basis of their variable responses against different levels of moisture. Twenty-five primers were used to test genetic diversity, of which 14 were observed to be polymorphic. Ninety-three loci were amplified; among these, 77 showed polymorphism and the other 16 were monomorphic. Primers A-13 and C-02 gave the most polymorphic bands, while primers A-01 and C-06 gave the fewest polymorphic bands. The genetic similarities of the 10 maize accessions ranged from 82.8 to 54.8%. Accessions USSR and WFTMS showed greatest similarity, and accessions M-14 and B-42 were found more dissimilar than the other accessions. On the basis of cluster analysis, these 10 accessions were classified in two major groups, A and B, and than further divided into sub-groups. The cluster analysis showed that accessions in the same group as well as in the sub-groups were similar in their physical and morphological characters, since the characters are controlled genetically.

  19. Random regression models for the estimation of genetic and environmental covariance functions for growth traits in Santa Ines sheep.

    PubMed

    Sarmento, J L R; Torres, R A; Sousa, W H; Lôbo, R N B; Albuquerque, L G; Lopes, P S; Santos, N P S; Bignard, A B

    2016-01-01

    Polynomial functions of different orders were used to model random effects associated with weight of Santa Ines sheep from birth to 196 days. Fixed effects included in the models were contemporary groups, age of ewe at lambing, and fourth-order Legendre polynomials for age to represent the average growth curve. In the random part, functions of different orders were included to model variances associated with direct additive and maternal genetic effects and with permanent environmental effects of the animal and mother. Residual variance was fitted by a sixth-order ordinary polynomial for age. The higher the order of the functions, the better the model fit the data. According to the Akaike information criterion and likelihood ratio test, a continuous function of order, five, five, seven, and three for direct additive genetic, maternal genetic, animal permanent environmental, and maternal permanent environmental effects (k = 5573), respectively, was sufficient to model changes in (co)variances with age. However, a more parsimonious model of order three, three, five, and three (k = 3353) was suggested based on Schwarz's Bayesian information criterion for the same effects. Since it was a more flexible model, model k = 5573 provided inconsistent genetic parameter estimates when compared to the biologically expected result. Predicted breeding values obtained with models k = 3353 and k = 5573 differed, especially at young ages. Model k = 3353 adequately fit changes in variances and covariances with time, and may be used to describe changes in variances with age in the Santa Ines sheep studied. PMID:27323203

  20. The K65R mutation in HIV-1 reverse transcriptase: genetic barriers, resistance profile and clinical implications.

    PubMed

    Brenner, Bluma G; Coutsinos, Dimitrios

    2009-11-01

    Resistance to antiviral therapy is the limiting factor in the successful management of HIV. In general, the K65R mutation is rarely selected (1.7-4%) with tenofovir disoproxil fumarate (TDF), abacavir (ABC), didanosine (ddI), and stavudine (d4T), as compared with the high incidence (>40%) of thymidine analog mutations associated with zidovudine and d4T. The high barrier to the development of K65R may reflect a combination of factors, including the high potency of K65R-selecting drugs, including recommended TDF/emtricitabine and ABC/lamivudine (ABC/3TC) combinations; the partial (low-intermediate level) profile of cross-resistance conferred by K65R to TDF, ABC and 3TC; the favorable viral fitness constraint imposed by K65R and the 3TC/emtricitabine-associated M184V mutations; the bidirectional antagonism between the K65R and thymidine analog mutation pathways; and unique RNA structural considerations in the region surrounding codon 65. Nevertheless, surprisingly high levels of treatment failures and K65R resistance may be associated with triple nucleoside analog regimens. The use of TDF + ABC, TDF + ddI and ABC + d4T in combination with 3TC or emtricitabine should be avoided. This selection of K65R may be reduced by the inclusion of zidovudine in two-four nucleoside reverse-transcriptase regimens. Clinical studies have demonstrated an increased frequency of K65R in association with suboptimal d4T and ddI regimens, as well as nevirapine and its resistance mutations Y181C and G190A. The potential for the development of the K65R mutation in subtype C is particularly problematic wherein a signature KKK nucleotide motif, at codons 64, 65 and 66 in reverse transcriptase, appear to lead to template pausing, facilitating the selection of K65R. Optimizing regimens may attenuate the emergence of K65R, leading to better long-term treatment management in different geographic settings. TDF-based regimens are the leading candidates for first- and second-line therapy, microbicides

  1. Estimation of the Proportion of Variation Accounted for by DNA Tests. I: Genetic Variance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proportion of genetic variation accounted for (Rg2) is an important characteristic of a DNA test. For each of 3 levels of narrow sense heritability of the observed trait (h2gy) and 4 levels of Rg2, 500 independent replicates of an observed trait and a molecular breeding value (MBV) for 1000 offs...

  2. Assessment of the value of a genetic risk score in improving the estimation of coronary risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Heart Association has established criteria for the evaluation of novel markers of cardiovascular risk. In accordance with these criteria, we assessed the association between a multi-locus genetic risk score (GRS) and incident coronary heart disease (CHD), and evaluated whether this GRS ...

  3. Colonization and persistence of urban ant populations as revealed by joint estimation of kinship and population genetic parameters.

    PubMed

    Yamamoto, Junpei; Uchida, Kei; Takami, Yasuoki

    2013-01-01

    The decrease in biodiversity due to increasing urbanization has been well documented, but the processes of colonization and maintenance of wildlife populations in urban areas remain poorly understood. We address this issue using 462 individuals from 10 urban populations of the ant Formica japonica in Kobe City, Japan. We sampled workers regardless of colony identity, genotyped them using 6 microsatellite loci, and estimated allele frequencies and genotypes of reproductive individuals, together with other population genetic parameters, by estimating kinship structure using a likelihood method. Estimated genetic diversity and effective size of populations were not associated with environmental parameters, suggesting that populations are unaffected by urbanization. However, effective population sizes were small, and frequent population bottlenecks were detected. These results suggest that urban F. japonica populations are unstable, and the possibility of frequent extinctions and recolonizations in urban habitats. Populations were moderately differentiated without isolation by distance, suggesting a strong dispersal ability that enables colonization of urban habitats. Dispersal was male biased. Collectively, F. japonica was regarded as an urban adapter, which can colonize urban habitats by virtue of its preference for open ground and high dispersal ability but can persist in urban populations for only a short time, showing a tendency as a temporary urban inhabitant.

  4. Temporal effective size estimates of a managed walleye Sander vitreus population and implications for genetic-based management.

    PubMed

    Franckowiak, R P; Sloss, B L; Bozek, M A; Newman, S P

    2009-04-01

    The goal of this research was to use the long-term fishery data set and DNA from archived scales of walleye Sander vitreus in Escanaba Lake, WI, U.S.A., to improve the understanding of the underlying mechanism(s) influencing genetic diversity in naturally recruiting populations. The introduced population of S. vitreus in Escanaba Lake has a low mean effective population size (N(E)) between 124.6 and 185.5 despite a mean census size (N(C)) of 4659 (N(E)/N(C)c. 0.04), suggesting an accelerated rate of genetic drift between 1952 and 2002. These values are smaller than the median N(E) range of several studies suggesting typical N(E)/N(C) ratios of 0.11-0.16 in a wide range of taxa. N(E) increased steadily during the past two sampled decades (1992 and 2002) and was consistent with a lowering of the variance in S. vitreus reproductive success, possibly linked to a large, sustained exploitation (mean 28%) rate. Variance in reproductive success is one of the most important factors influencing N(E) in species, like S. vitreus, which have a potential for large fecundities and large juvenile mortalities (type III survivorship). The N(B) estimates across six sequential cohorts (age classes of S. vitreus, assayed from 1994 to 1999) was consistent with estimates of N(E) reported for 1992-2002. These results, coupled with in-depth census and exploitation data, show that the genetic characteristics of Escanaba Lake S. vitreus have changed substantially and that management activities, such as supplemental stocking and harvest practices, have profoundly influenced the genetic dynamics of S. vitreus in this lake.

  5. Risk estimations, risk factors, and genetic variants associated with Alzheimer's disease in selected publications from the Framingham Heart Study.

    PubMed

    Weinstein, Galit; Wolf, Philip A; Beiser, Alexa S; Au, Rhoda; Seshadri, Sudha

    2013-01-01

    The study of Alzheimer's disease (AD) in the Framingham Heart Study (FHS), a multi-generational, community-based population study, began nearly four decades ago. In this overview, we highlight findings from seven prior publications that examined lifetime risk estimates for AD, environmental risk factors for AD, circulating and imaging markers of aging-related brain injury, and explorations on the genetics underlying AD. First, we describe estimations of the lifetime risk of AD. These estimates are distinguished from other measures of disease burden and have substantial public health implications. We then describe prospective studies of environmental AD risk factors: one examined the association between plasma levels of omega-3 fatty-acid and risk of incident AD, the other explored the association of diabetes to this risk in subsamples with specific characteristics. With evidence of inflammation as an underlying mechanism, we also describe findings from a study that compared the effects of serum cytokines and spontaneous production of peripheral blood mononuclear cell cytokines on AD risk. Investigating AD related endophenotypes increases sensitivity in identifying risk factors and can be used to explore pathophysiologic pathways between a risk factor and the disease. We describe findings of an association between large volume of white matter hyperintensities and a specific pattern of cognitive deficits in non-demented participants. Finally, we summarize our findings from two genetic studies: The first used genome-wide association (GWA) and family-based association methods to explore the genetic basis of cognitive and structural brain traits. The second is a large meta-analysis GWA study of AD, in which novel loci of AD susceptibility were found. Together, these findings demonstrate the FHS multi-directional efforts in investigating dementia and AD. PMID:22796871

  6. Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation

    PubMed Central

    Ryman, Nils; Allendorf, Fred W; Jorde, Per Erik; Laikre, Linda; Hössjer, Ola

    2014-01-01

    Many empirical studies estimating effective population size apply the temporal method that provides an estimate of the variance effective size through the amount of temporal allele frequency change under the assumption that the study population is completely isolated. This assumption is frequently violated, and the magnitude of the resulting bias is generally unknown. We studied how gene flow affects estimates of effective size obtained by the temporal method when sampling from a population system and provide analytical expressions for the expected estimate under an island model of migration. We show that the temporal method tends to systematically underestimate both local and global effective size when populations are connected by gene flow, and the bias is sometimes dramatic. The problem is particularly likely to occur when sampling from a subdivided population where high levels of gene flow obscure identification of subpopulation boundaries. In such situations, sampling in a manner that prevents biased estimates can be difficult. This phenomenon might partially explain the frequently reported unexpectedly low effective population sizes of marine populations that have raised concern regarding the genetic vulnerability of even exceptionally large populations. PMID:24034449

  7. Estimates of epistatic and pleiotropic effects of casein alpha s1 (CSN1S1) and thyroglobulin (TG) genetic markers on beef heifer performance traits enhanced by selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic marker effects and type of inheritance are estimated with poor precision when minor marker allele frequencies are low. A stable composite population (MARC II) was subjected to marker assisted selection for two years to equalize CSN1S1 and TG genetic marker frequencies to evaluate the epista...

  8. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  9. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  10. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data.

    PubMed

    Fontaine, Michaël C; Snirc, Alodie; Frantzis, Alexandros; Koutrakis, Emmanuil; Oztürk, Bayram; Oztürk, Ayaka A; Austerlitz, Fréderic

    2012-09-18

    Two major ecological transitions marked the history of the Black Sea after the last Ice Age. The first was the postglacial transition from a brackish-water to a marine ecosystem dominated by porpoises and dolphins once this basin was reconnected back to the Mediterranean Sea (ca. 8,000 y B.P.). The second occurred during the past decades, when overfishing and hunting activities brought these predators close to extinction, having a deep impact on the structure and dynamics of the ecosystem. Estimating the extent of this decimation is essential for characterizing this ecosystem's dynamics and for formulating restoration plans. However, this extent is poorly documented in historical records. We addressed this issue for one of the main Black Sea predators, the harbor porpoise, using a population genetics approach. Analyzing its genetic diversity using an approximate Bayesian computation approach, we show that only a demographic expansion (at most 5,000 y ago) followed by a contemporaneous population collapse can explain the observed genetic data. We demonstrate that both the postglacial settlement of harbor porpoises in the Black Sea and the recent anthropogenic activities have left a clear footprint on their genetic diversity. Specifically, we infer a strong population reduction (~90%) that occurred within the past 5 decades, which can therefore clearly be related to the recent massive killing of small cetaceans and to the continuing incidental catches in commercial fisheries. Our study thus provides a quantitative assessment of these demographically catastrophic events, also showing that two separate historical events can be inferred from contemporary genetic data. PMID:22949646

  11. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data.

    PubMed

    Fontaine, Michaël C; Snirc, Alodie; Frantzis, Alexandros; Koutrakis, Emmanuil; Oztürk, Bayram; Oztürk, Ayaka A; Austerlitz, Fréderic

    2012-09-18

    Two major ecological transitions marked the history of the Black Sea after the last Ice Age. The first was the postglacial transition from a brackish-water to a marine ecosystem dominated by porpoises and dolphins once this basin was reconnected back to the Mediterranean Sea (ca. 8,000 y B.P.). The second occurred during the past decades, when overfishing and hunting activities brought these predators close to extinction, having a deep impact on the structure and dynamics of the ecosystem. Estimating the extent of this decimation is essential for characterizing this ecosystem's dynamics and for formulating restoration plans. However, this extent is poorly documented in historical records. We addressed this issue for one of the main Black Sea predators, the harbor porpoise, using a population genetics approach. Analyzing its genetic diversity using an approximate Bayesian computation approach, we show that only a demographic expansion (at most 5,000 y ago) followed by a contemporaneous population collapse can explain the observed genetic data. We demonstrate that both the postglacial settlement of harbor porpoises in the Black Sea and the recent anthropogenic activities have left a clear footprint on their genetic diversity. Specifically, we infer a strong population reduction (~90%) that occurred within the past 5 decades, which can therefore clearly be related to the recent massive killing of small cetaceans and to the continuing incidental catches in commercial fisheries. Our study thus provides a quantitative assessment of these demographically catastrophic events, also showing that two separate historical events can be inferred from contemporary genetic data.

  12. Estimation of indirect genetic effects in group-housed mink (Neovison vison) should account for systematic interactions either due to kin or sex.

    PubMed

    Alemu, S W; Berg, P; Janss, L; Bijma, P

    2016-02-01

    Social interactions among individuals are abundant, both in wild and in domestic populations. With social interactions, the genes of an individual may affect the trait values of other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. Most IGE models assume that individuals interact equally to all group mates irrespective of relatedness. Kin selection theory, however, predicts that an individual will interact differently with family members versus non-family members. Here, we investigate kin- and sex-specific non-genetic social interactions in group-housed mink. Furthermore, we investigated whether systematic non-genetic interactions between kin or individuals of the same sex influence the estimates of genetic parameters. As a second objective, we clarify the relationship between estimates of the traditional IGE model and a family-based IGE model proposed in a previous study. Our results indicate that male siblings in mink show different non-genetic interactions than female siblings in mink and that this may impact the estimation of genetic parameters. Moreover, we have shown how estimates from a family-based IGE model can be translated to the ordinary direct-indirect model and vice versa. We find no evidence for genetic differences in interactions among related versus unrelated mink. PMID:25900536

  13. Genetic Differentiation and Estimation of Gene Flow from F-Statistics under Isolation by Distance

    PubMed Central

    Rousset, F.

    1997-01-01

    I reexamine the use of isolation by distance models as a basis for the estimation of demographic parameters from measures of population subdivision. To that aim, I first provide results for values of F-statistics in one-dimensional models and coalescence times in two-dimensional models, and make more precise earlier results for F-statistics in two-dimensional models and coalescence times in one-dimensional models. Based on these results, I propose a method of data analysis involving the regression of F(ST)/(1 - F(ST)) estimates for pairs of subpopulations on geographic distance for populations along linear habitats or logarithm of distance for populations in two-dimensional habitats. This regression provides in principle an estimate of the product of population density and second moment of parental axial distance. In two cases where comparison to direct estimates is possible, the method proposed here is more satisfactory than previous indirect methods. PMID:9093870

  14. Low genetic structuring among Pericharax heteroraphis (Porifera: Calcarea) populations from the Great Barrier Reef (Australia), revealed by analysis of nrDNA and nuclear intron sequences

    NASA Astrophysics Data System (ADS)

    Bentlage, B.; Wörheide, G.

    2007-12-01

    A new nuclear marker system for sponges, the second intron of the nuclear ATP synthetase beta subunit gene (ATPSbeta-iII), was analysed together with nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences aiming to uncover phylogeographic patterns of the coral reef sponge Pericharax heteroraphis in the south-west Pacific, focussing on the Great Barrier Reef (GBR). Variation among ITS sequences was low (<1.1% p-distance), in contrast to ATPSbeta-iII (<8.3% p-distance). Single-Stranded Conformation Polymorphism (SSCP) analysis proved to be an effective tool for phasing ATPSbeta-iII alleles of 292 bp length. Although sample sizes were limited for most populations and these results await corroboration by an extended sampling regime, a past population subdivision with subsequent range expansion was indicated by a ‘dumb-bell’ shaped statistical parsimony network of GBR ATPSbeta-iII alleles. Although no clear phylogeographic break was discovered on the GBR, the northern GBR was genetically differentiated from the central/southern GBR and Queensland Plateau, based on significant pairwise F st values (0.137-0.275 and p ≤ 0.05) of pooled regional populations. The ATPSbeta-iII used in this study outperformed the frequently employed nrDNA ITS and might also turn out to be useful for phylogeographic studies of other coral reef taxa.

  15. Acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw

    PubMed Central

    Dera, Paulina; Religioni, Urszula; Duda-Zalewska, Aneta; Deptała, Andrzej

    2016-01-01

    Aim of the study To check the degree of acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw Material and methods This study involved 562 women between 20 and 77 years of age, all of whom were patients visiting gynaecologists practising in clinics in the City of Warsaw. The studied population was divided into six age categories. The study method was a diagnostic poll conducted with the use of an original questionnaire containing 10 multiple-choice questions. Results Nearly 70% of the women showed an interest in taking a test to detect predispositions to develop breast and ovarian cancer. More than 10% did not want to take such a test, while every fifth women was undecided. No statistically significant differences between the respondents’ willingness to pay and education were found (p = 0.05). The most frequent answer given by women in all groups was that the amount to pay was too high. Such an answer was given by 52.17% of women with primary education, 65.22% of women with vocational education, 58.61% of women with secondary education, and 41.62% of women with higher education. Conclusions Women with a confirmed increased risk of developing breast and/or ovarian cancer due to inter alia the presence of BRCA1 and BRCA2 gene mutations should pay particular attention to 1st and 2nd level prophylaxis. PMID:27095945

  16. Estimation of a genetically viable population for multigenerational interstellar voyaging: Review and data for project Hyperion

    NASA Astrophysics Data System (ADS)

    Smith, Cameron M.

    2014-04-01

    Designing interstellar starships for human migration to exoplanets requires establishing the starship population, which factors into many variables including closed-ecosystem design, architecture, mass and propulsion. I review the central issues of population genetics (effects of mutation, migration, selection and drift) for human populations on such voyages, specifically referencing a roughly 5-generation (c. 150-year) voyage currently in the realm of thought among Icarus Interstellar's Project Hyperion research group. I present several formulae as well as concrete numbers that can be used to help determine populations that could survive such journeys in good health. I find that previously proposed such populations, on the order of a few hundred individuals, are significantly too low to consider based on current understanding of vertebrate (including human) genetics and population dynamics. Population genetics theory, calculations and computer modeling determine that a properly screened and age- and sex-structured total founding population (Nc) of anywhere from roughly 14,000 to 44,000 people would be sufficient to survive such journeys in good health. A safe and well-considered Nc figure is 40,000, an Interstellar Migrant Population (IMP) composed of an Effective Population [Ne] of 23,400 reproductive males and females, the rest being pre- or post-reproductive individuals. This number would maintain good health over five generations despite (a) increased inbreeding resulting from a relatively small human population, (b) depressed genetic diversity due to the founder effect, (c) demographic change through time and (d) expectation of at least one severe population catastrophe over the 5-generation voyage.

  17. Genetic diversity of Forest and Savannah chicken populations of Ghana as estimated by microsatellite markers.

    PubMed

    Osei-Amponsah, Richard; Kayang, Boniface B; Naazie, Augustine; Osei, Yaa D; Youssao, Issaka A K; Yapi-Gnaore, Valentine C; Tixier-Boichard, Michèle; Rognon, Xavier

    2010-06-01

    The characterization of indigenous animal genetic resources is a requisite step in providing needed information for the conservation of useful genotypes against future needs. Thus, in this study, 22 microsatellite markers were used to genotype 114 local chickens from the Forest (n = 59) and Savannah (n = 55) eco-zones of Ghana and the results compared to those of the ancestral red junglefowl (n = 15) and two European commercial chicken populations--a broiler (n = 25) and white leghorn (n = 25). A total of 171 alleles were observed, with an average of 7.8 alleles per locus. The local Ghanaian chickens showed higher diversity in terms of the observed number of alleles per locus (6.6) and observed heterozygosity (0.568) compared with the combined control populations (6.0 and 0.458, respectively). However, Wright's F-statistics revealed negligible genetic differentiation (F(ST)) in local Ghanaian chicken populations. In addition, 65% of the Savannah chickens were inferred to be more likely from the Forest, suggesting a south-north dispersal of chickens from their probable original location in the Forest zone to the Savannah areas. It is concluded that the Forest and Savannah chickens of Ghana are a single, randomly mating unselected population, characterized by high genetic diversity and constitute a valuable resource for conservation and improvement. PMID:20597885

  18. Automatic Sleep Spindle Detection and Genetic Influence Estimation Using Continuous Wavelet Transform

    PubMed Central

    Adamczyk, Marek; Genzel, Lisa; Dresler, Martin; Steiger, Axel; Friess, Elisabeth

    2015-01-01

    Mounting evidence for the role of sleep spindles in neuroplasticity has led to an increased interest in these non-rapid eye movement (NREM) sleep oscillations. It has been hypothesized that fast and slow spindles might play a different role in memory processing. Here, we present a new sleep spindle detection algorithm utilizing a continuous wavelet transform (CWT) and individual adjustment of slow and fast spindle frequency ranges. Eighteen nap recordings of ten subjects were used for algorithm validation. Our method was compared with both a human scorer and a commercially available SIESTA spindle detector. For the validation set, mean agreement between our detector and human scorer measured during sleep stage 2 using kappa coefficient was 0.45, whereas mean agreement between our detector and SIESTA algorithm was 0.62. Our algorithm was also applied to sleep-related memory consolidation data previously analyzed with a SIESTA detector and confirmed previous findings of significant correlation between spindle density and declarative memory consolidation. We then applied our method to a study in monozygotic (MZ) and dizygotic (DZ) twins, examining the genetic component of slow and fast sleep spindle parameters. Our analysis revealed strong genetic influence on variance of all slow spindle parameters, weaker genetic effect on fast spindles, and no effects on fast spindle density and number during stage 2 sleep. PMID:26635577

  19. Identical twins in forensic genetics - Epidemiology and risk based estimation of weight of evidence.

    PubMed

    Tvedebrink, Torben; Morling, Niels

    2015-12-01

    The increase in the number of forensic genetic loci used for identification purposes results in infinitesimal random match probabilities. These probabilities are computed under assumptions made for rather simple population genetic models. Often, the forensic expert reports likelihood ratios, where the alternative hypothesis is assumed not to encompass close relatives. However, this approach implies that important factors present in real human populations are discarded. This approach may be very unfavourable to the defendant. In this paper, we discuss some important aspects concerning the closest familial relationship, i.e., identical (monozygotic) twins, when reporting the weight of evidence. This can be done even when the suspect has no knowledge of an identical twin or when official records hold no twin information about the suspect. The derived expressions are not original as several authors previously have published results accounting for close familial relationships. However, we revisit the discussion to increase the awareness among forensic genetic practitioners and include new information on medical and societal factors to assess the risk of not considering a monozygotic twin as the true perpetrator. If accounting for a monozygotic twin in the weight of evidence, it implies that the likelihood ratio is truncated at a maximal value depending on the prevalence of monozygotic twins and the societal efficiency of recognising a monozygotic twin. If a monozygotic twin is considered as an alternative proposition, then data relevant for the Danish society suggests that the threshold of likelihood ratios should approximately be between 150,000 and 2,000,000 in order to take the risk of an unrecognised identical, monozygotic twin into consideration. In other societies, the threshold of the likelihood ratio in crime cases may reach other, often lower, values depending on the recognition of monozygotic twins and the age of the suspect. In general, more strictly kept

  20. Identical twins in forensic genetics - Epidemiology and risk based estimation of weight of evidence.

    PubMed

    Tvedebrink, Torben; Morling, Niels

    2015-12-01

    The increase in the number of forensic genetic loci used for identification purposes results in infinitesimal random match probabilities. These probabilities are computed under assumptions made for rather simple population genetic models. Often, the forensic expert reports likelihood ratios, where the alternative hypothesis is assumed not to encompass close relatives. However, this approach implies that important factors present in real human populations are discarded. This approach may be very unfavourable to the defendant. In this paper, we discuss some important aspects concerning the closest familial relationship, i.e., identical (monozygotic) twins, when reporting the weight of evidence. This can be done even when the suspect has no knowledge of an identical twin or when official records hold no twin information about the suspect. The derived expressions are not original as several authors previously have published results accounting for close familial relationships. However, we revisit the discussion to increase the awareness among forensic genetic practitioners and include new information on medical and societal factors to assess the risk of not considering a monozygotic twin as the true perpetrator. If accounting for a monozygotic twin in the weight of evidence, it implies that the likelihood ratio is truncated at a maximal value depending on the prevalence of monozygotic twins and the societal efficiency of recognising a monozygotic twin. If a monozygotic twin is considered as an alternative proposition, then data relevant for the Danish society suggests that the threshold of likelihood ratios should approximately be between 150,000 and 2,000,000 in order to take the risk of an unrecognised identical, monozygotic twin into consideration. In other societies, the threshold of the likelihood ratio in crime cases may reach other, often lower, values depending on the recognition of monozygotic twins and the age of the suspect. In general, more strictly kept

  1. Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation

    NASA Technical Reports Server (NTRS)

    Sen, S. K.; Shaykhian, Gholam Ali

    2006-01-01

    A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.

  2. Estimation of genetic variability in locally grown pulses (Cajans cajan (L.) Millsp and Vigna unguiculata (L.) Walp): a panacea for sourcing superior genotypes.

    PubMed

    Udensi, O; Edu, E A; Umana, E J; Ikpeme, E V

    2011-03-15

    The negligence of breeders and farmers to explore and exploit landraces of pulses is worrisome and urgent measures needed to be set in motion to forestall major future crisis, taking into cognizance the high adaptability and nutritive values accredited to them. This study focused on the estimation of genetic variability and heritability of desirable morphological characters in Fiofio (Cajans cajan) and Olaudi and Akidi (Vigna unguiculata) with the aim of conservation. Three landraces of pulses were sown using randomized complete block design. The field experiment was carried out at the University of Calabar Experimental Farm, University of Calabar, Calabar, during 2008-2010 growing season. Phenotypic and genotypic variances and coefficients of variation and genetic advance were estimated on yield and yield-related traits. The results showed that there were considerable variations among the pulses for the traits studied. The result revealed high genetic variability in the number of leaf per plant, leaf area, number of flowers per plant, number of pods per plant and number of seeds per plant. It also showed that genetic variability in pod length and 100-seed weight was low. Heritability estimates obtained in the result were very high though the magnitude of genetic variability in the yield and yield-related traits was not proportional to the heritability estimates. The traits studied also show high genetic advance. These explicitly showed that there are sufficient genetic variations to warrant conservation and improvement in these extinction-threatened pulses studied.

  3. Genetic and environmental contributions to population group differences on the Raven's Progressive Matrices estimated from twins reared together and apart.

    PubMed

    Rushton, J Philippe; Bons, Trudy Ann; Vernon, Philip A; Cvorović, Jelena

    2007-07-22

    We carried out two studies to test the hypothesis that genetic and environmental influences explain population group differences in general mental ability just as they do individual differences within a group. We estimated the heritability and environmentality of scores on the diagrammatic puzzles of the Raven's Coloured and/or Standard Progressive Matrices (CPM/SPM) from two independent twin samples and correlated these estimates with group differences on the same items. In Study 1, 199 pairs of 5- to 7-year-old monozygotic (MZ) and dizygotic (DZ) twins reared together provided estimates of heritability and environmentality for 36 puzzles from the CPM. These estimates correlated with the differences between the twins and 94 Serbian Roma (both rs=0.32; Ns=36; ps<0.05). In Study 2, 152 pairs of adult MZ and DZ twins reared apart provided estimates of heritability and environmentality for 58 puzzles from the SPM. These estimates correlated with the differences among 11 diverse samples including (i) the reared-apart twins, (ii) another sample of Serbian Roma, and (iii) East Asian, White, South Asian, Coloured and Black high school and university students in South Africa. In 55 comparisons, group differences were more pronounced on the more heritable and on the more environmental items (mean rs=0.40 and 0.47, respectively; Ns=58; ps<0.05). After controlling for measurement reliability and variance in item pass rates, the heritabilities still correlated with the group differences, although the environmentalities did not. Puzzles found relatively difficult (or easy) by the twins were those found relatively difficult (or easy) by the others (mean r=0.87). These results suggest that population group differences are part of the normal variation expected within a universal human cognition. PMID:17504738

  4. Estimates of epistatic and pleiotropic effects of () and () genetic markers on beef heifer performance traits enhanced by selection.

    PubMed

    Tait, R G; Cushman, R A; McNeel, A K; Casas, E; Smith, T P L; Freetly, H C; Bennett, G L

    2016-03-01

    Genetic marker effects and type of inheritance are estimated with poor precision when minor marker allele frequencies are low. A stable composite population (MARC II) was subjected to marker assisted selection for 2 yr to equalize and genetic marker frequencies to evaluate the epistatic and pleiotropic effects of these markers on BW, reproduction, and first calf performance traits in replacement beef females ( = 171) managed under 2 postweaning development protocols. Traits evaluated on the heifers were birth BW, weaning BW, 11-mo BW, 12-mo BW, 13-mo BW, first breeding season pregnancy evaluation BW, first calving season BW, 11-mo puberty, 12-mo puberty, 13-mo puberty, first breeding season pregnancy, and first calf weaning rate. Additionally, heifer's first calf performance traits of ordinal calving date, first calf birth BW, and first calf weaning BW (with and without age adjustment) were analyzed. Selection to increase minor allele frequencies and balanced sampling across genotype classes enhanced the ability to detect all genetic effects except dominance × dominance epistasis. The × genotype effect was significant ( < 0.05) for 11-mo BW and 12-mo BW and tended to be significant ( = 0.08) for 13-mo BW. Consistently, for all 3 traits, the most significant effect among epistatic × genotype effects was the additive effect, with the G allele decreasing BW. There were no associations between × genotype and fertility related traits ( ≥ 0.46) in this study. Additionally, there were no × genotype associations with first progeny performance traits ( ≥ 0.14). The large effect of the additive × additive interaction on first calf weaning BW was imprecisely estimated, which may warrant further investigation. PMID:27065254

  5. Using a hybrid Monte Carlo/ Slip Estimator-Genetic Algorithm (MCSE-GA) to produce high resolution estimates of paleoearthquakes from geodetic data

    NASA Astrophysics Data System (ADS)

    Lindsay, Anthony; McCloskey, John; Simão, Nuno; Murphy, Shane; Bhloscaidh, Mairead Nic

    2014-05-01

    Identifying fault sections where slip deficits have accumulated may provide a means for understanding sequences of large megathrust earthquakes. Stress accumulated during the interseismic period on an active megathrust is stored as potential slip, referred to as slip deficit, along locked sections of the fault. Analysis of the spatial distribution of slip during antecedent events along the fault will show where the locked plate has spent its stored slip. Areas of unreleased slip indicate where the potential for large events remain. The location of recent earthquakes and their distribution of slip can be estimated from instrumentally recorded seismic and geodetic data. However, long-term slip-deficit modelling requires detailed information on the size and distribution of slip for pre-instrumental events over hundreds of years covering more than one 'seismic cycle'. This requires the exploitation of proxy sources of data. Coral microatolls, growing in the intertidal zone of the outer island arc of the Sunda trench, present the possibility of reconstructing slip for a number of pre-instrumental earthquakes. Their growth is influenced by tectonic flexing of the continental plate beneath them; they act as long term recorders of the vertical component of deformation. However, the sparse distribution of data available using coral geodesy results in a under determined problem with non-unique solutions. Rather than accepting any one realisation as the definite model satisfying the coral displacement data, a Monte Carlo approach identifies a suite of models consistent with the observations. Using a Genetic Algorithm to accelerate the identification of desirable models, we have developed a Monte Carlo Slip Estimator- Genetic Algorithm (MCSE-GA) which exploits the full range of uncertainty associated with the displacements. Each iteration of the MCSE-GA samples different values from within the spread of uncertainties associated with each coral displacement. The Genetic

  6. Parametric estimation of the local false discovery rate for identifying genetic associations.

    PubMed

    Yang, Ye; Aghababazadeh, Farnoosh Abbas; Bickel, David R

    2013-01-01

    Abstract—Many genome-wide association studies have been conducted to identify single nucleotide polymorphisms (SNPs) that are associated with particular diseases or other traits. The local false discovery rate (LFDR) estimated using semiparametric models has enjoyed success in simultaneous inference. However, semiparametric LFDR estimators can be biased because they tend to overestimate the proportion of the nonassociated SNPs. We address the problem by adapting a simple parametric mixture model (PMM) and by comparing this model to the semiparametric mixture model (SMM) behind an LFDR estimator that is known to be conservatively biased. Then, we also compare the PMM with a parametric nonmixture model (PNM). In our simulation studies, we thoroughly analyze the performances of the three models under different values of p1, a prior probability that is approximately equal to the proportion of SNPs that are associated with the disease. When p₁ > 10%, the PMM generally performs better than the SMM. When p₁ < 0.1%, the SMM outperforms PMM. When p₁ lies between 0.1 and 10 percent, both methods have about the same performance. In that setting, the PMM may be preferred since it has the advantage of supplying an estimate of the detectability level of the nonassociated SNPs.

  7. Improving pollutant source characterization by better estimating wind direction with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Allen, Christopher T.; Young, George S.; Haupt, Sue Ellen

    In homeland security applications, it is often necessary to characterize the source location and strength of a potentially harmful contaminant. Correct source characterization requires accurate meteorological data such as wind direction. Unfortunately, available meteorological data is often inaccurate or unrepresentative, having insufficient spatial and temporal resolution for precise modeling of pollutant dispersion. To address this issue, a method is presented that simultaneously determines the surface wind direction and the pollutant source characteristics. This method compares monitored receptor data to pollutant dispersion model output and uses a genetic algorithm (GA) to find the combination of source location, source strength, and surface wind direction that best matches the dispersion model output to the receptor data. A GA optimizes variables using principles from genetics and evolution. The approach is validated with an identical twin experiment using synthetic receptor data and a Gaussian plume equation as the dispersion model. Given sufficient receptor data, the GA is able to reproduce the wind direction, source location, and source strength. Additional runs incorporating white noise into the receptor data to simulate real-world variability demonstrate that the GA is still capable of computing the correct solution, as long as the magnitude of the noise does not exceed that of the receptor data.

  8. Estimating genetic variation in sugar beets and wild beets using pools of individuals.

    PubMed

    Kraft, T; Säll, T; Fridlund, B; Hjerdin, A; Tuvesson, S; Halldén, C

    1997-08-01

    The study describes the genetic structure in sugar beets and in wild beets (Beta vulgaris) using 30 RFLP markers. Samples consisting of pooled plant material of 100 individuals from each line and population were used to analyse 120 sugar beet breeding lines and 91 wild beet populations. Greater variation was found among the wild populations than among the breeding lines. Although the two major groups of breeding lines, monogerm and multigerm, had approximately equal amounts of genetic variation, in the monogerm group more of this variation was partitioned among the lines than within the lines. Furthermore, despite most of the variation being shared by the two groups, the two groups were found to be separated along the first two components in a principal component analysis. Computer simulations were carried out to evaluate the usefulness of the pooled-sample strategy employed in the investigation. These simulations showed the use of pooled samples to be a better alternative than that of analysing a few plants individually.

  9. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  10. Estimating two-stage models for genetic influences on alcohol, tobacco or drug use initiation and dependence vulnerability in twin and family data.

    PubMed

    Heath, Andrew C; Martin, Nicholas G; Lynskey, Michael T; Todorov, Alexandre A; Madden, Pamela A F

    2002-04-01

    Genetic research on risk of alcohol, tobacco or drug dependence must make allowance for the partial overlap of risk-factors for initiation of use, and risk-factors for dependence or other outcomes in users. Except in the extreme cases where genetic and environmental risk-factors for initiation and dependence overlap completely or are uncorrelated, there is no consensus about how best to estimate the magnitude of genetic or environmental correlations between Initiation and Dependence in twin and family data. We explore by computer simulation the biases to estimates of genetic and environmental parameters caused by model misspecification when Initiation can only be defined as a binary variable. For plausible simulated parameter values, the two-stage genetic models that we consider yield estimates of genetic and environmental variances for Dependence that, although biased, are not very discrepant from the true values. However, estimates of genetic (or environmental) correlations between Initiation and Dependence may be seriously biased, and may differ markedly under different two-stage models. Such estimates may have little credibility unless external data favor selection of one particular model. These problems can be avoided if Initiation can be assessed as a multiple-category variable (e.g. never versus early-onset versus later onset user), with at least two categories measurable in users at risk for dependence. Under these conditions, under certain distributional assumptions, recovery of simulated genetic and environmental correlations becomes possible. Illustrative application of the model to Australian twin data on smoking confirmed substantial heritability of smoking persistence (42%) with minimal overlap with genetic influences on initiation. PMID:11931689

  11. Estimates of genetic diversity in the brown cattle population of Switzerland obtained from pedigree information.

    PubMed

    Hagger, C

    2005-12-01

    The study investigates the genetic diversity present as well as its development in the Brown Cattle population of Switzerland from pedigree information. The population consisted of three subpopulations, the Braunvieh (BV), the original Braunvieh (OB) and the US-Brown Swiss (BS). The BV is a cross of OB with BS where crossing still continues. The OB is without any genetic influence of BS. The diversity measures effective population size, effective number of ancestors (explaining 99% of reference genome) and founder genome equivalents were calculated for 11 reference populations of animals born in a single year from 1992 onwards. The BS-subpopulation consisted of animals and their known ancestors which were used in the crossing scheme and was, therefore, quite small. The youngest animals were born in 2002, the oldest ones in the 1920s. Average inbreeding was by far the highest in BS, in spite of the lowest quality of pedigrees, and lowest in OB. Effective population size obtained from the difference between average inbreeding of offspring and their parents was, mostly due to the heavy use of few highly inbred BS-sires, strongly overestimated in some BV-reference populations. If this parameter was calculated from the yearly rate of inbreeding and a generation interval of 5 years, no bias was observed and ranking of populations from high to low was OB-BV-BS, i.e. equal to the other diversity parameters. The high genetic diversity found in OB was a consequence of the use of many natural service sires. Rate of decrease of effective number of ancestors was steeper in BV than OB was, however, equal for founder genome equivalents. Founder genome equivalents were more stable than effective population sizes calculated from the difference between average inbreeding of offspring and parents. The five most important ancestors contributed one-third of the 2002-reference genomes of BV and OB, in BV all were BS-sires. The relative amount of BS-genes in the BV-genome increased from

  12. Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle.

    PubMed

    Cho, C I; Alam, M; Choi, T J; Choy, Y H; Choi, J G; Lee, S S; Cho, K H

    2016-05-01

    The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of polynomials×3 types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first

  13. Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle.

    PubMed

    Cho, C I; Alam, M; Choi, T J; Choy, Y H; Choi, J G; Lee, S S; Cho, K H

    2016-05-01

    The objectives of the study were to estimate genetic parameters for milk production traits of Holstein cattle using random regression models (RRMs), and to compare the goodness of fit of various RRMs with homogeneous and heterogeneous residual variances. A total of 126,980 test-day milk production records of the first parity Holstein cows between 2007 and 2014 from the Dairy Cattle Improvement Center of National Agricultural Cooperative Federation in South Korea were used. These records included milk yield (MILK), fat yield (FAT), protein yield (PROT), and solids-not-fat yield (SNF). The statistical models included random effects of genetic and permanent environments using Legendre polynomials (LP) of the third to fifth order (L3-L5), fixed effects of herd-test day, year-season at calving, and a fixed regression for the test-day record (third to fifth order). The residual variances in the models were either homogeneous (HOM) or heterogeneous (15 classes, HET15; 60 classes, HET60). A total of nine models (3 orders of polynomials×3 types of residual variance) including L3-HOM, L3-HET15, L3-HET60, L4-HOM, L4-HET15, L4-HET60, L5-HOM, L5-HET15, and L5-HET60 were compared using Akaike information criteria (AIC) and/or Schwarz Bayesian information criteria (BIC) statistics to identify the model(s) of best fit for their respective traits. The lowest BIC value was observed for the models L5-HET15 (MILK; PROT; SNF) and L4-HET15 (FAT), which fit the best. In general, the BIC values of HET15 models for a particular polynomial order was lower than that of the HET60 model in most cases. This implies that the orders of LP and types of residual variances affect the goodness of models. Also, the heterogeneity of residual variances should be considered for the test-day analysis. The heritability estimates of from the best fitted models ranged from 0.08 to 0.15 for MILK, 0.06 to 0.14 for FAT, 0.08 to 0.12 for PROT, and 0.07 to 0.13 for SNF according to days in milk of first

  14. Tumor location, but not H3.3K27M, significantly influences the blood-brain-barrier permeability in a genetic mouse model of pediatric high-grade glioma.

    PubMed

    Subashi, Ergys; Cordero, Francisco J; Halvorson, Kyle G; Qi, Yi; Nouls, John C; Becher, Oren J; Johnson, G Allan

    2016-01-01

    Pediatric high-grade gliomas (pHGGs) occur with strikingly different frequencies in infratentorial and supratentorial regions. Although histologically these malignancies appear similar, they represent distinct diseases. Recent genomic studies have identified histone K27M H3.3/H3.1 mutations in the majority of brainstem pHGGs; these mutations are rarely encountered in pHGGs that arise in the cerebral cortex. Previous research in brainstem pHGGs suggests a restricted permeability of the blood-brain-barrier (BBB). In this work, we use dynamic contrast-enhanced (DCE) MRI to evaluate BBB permeability in a genetic mouse model of pHGG as a function of location (cortex vs. brainstem, n = 8 mice/group) and histone mutation (mutant H3.3K27M vs. wild-type H3.3, n = 8 mice/group). The pHGG models are induced either in the brainstem or the cerebral cortex and are driven by PDGF signaling and p53 loss with either H3.3K27M or wild-type H3.3. T2-weighted MRI was used to determine tumor location/extent followed by 4D DCE-MRI for estimating the rate constant (K (trans) ) for tracer exchange across the barrier. BBB permeability was 67 % higher in cortical pHGGs relative to brainstem pHGGs (t test, p = 0.012) but was not significantly affected by the expression of mutant H3.3K27M versus wild-type H3.3 (t-test, p = 0.78). Although mice became symptomatic at approximately the same time, the mean volume of cortical tumors was 3.6 times higher than the mean volume of brainstem tumors. The difference between the mean volume of gliomas with wild-type and mutant H3.3 was insignificant. Mean K (trans) was significantly correlated to glioma volume. These results present a possible explanation for the poor response of brainstem pHGGs to systemic therapy. Our findings illustrate a potential role played by the microenvironment in shaping tumor growth and BBB permeability. PMID:26511492

  15. Estimation of genetic diversity Among Turkish kale populations (Brassica oleracea var. acephala L.) using RAPD markers.

    PubMed

    Okumus, A; Balkaya, A

    2007-04-01

    20 populations of kale (B. oleracea var. acephala L.) selected from 127 populations for fresh consumption terms of yield and leaf quality characteristics as superior types using weight-based ranking method from the Black Sea Region of Turkey were evaluated at the DNA level using randomly amplified polymorphic DNA (RAPD) markers compared to some morphological characters. The 7 primers selected from 100 decamers used generated 110 bands, of which 60 (54.5%) were polymorphic. Jaccard's genetic distances were calculated and dendogram was generated using the UPGMA algorithm. The dendogram obtained were classified into three main groups and four subgroups. The accessions showed a limited clustering in compare to morphological characters such as the number of leaf, leaf intentation of the margin, leaf and midrib color and thickness of midrib than geographical characteristics. Leaf color and midrib thickness characters clustered in the same group as OR49 and G18 accessions; S20, G6 and OR37 accessions, respectively.

  16. Nest-site fidelity and dispersal of Gyrfalcons estimated by noninvasive genetic sampling

    USGS Publications Warehouse

    Booms, T.L.; Talbot, S.L.; Sage, G.K.; McCaffery, B.J.; McCracken, K.G.; Schempf, P.F.

    2011-01-01

    We used feathers from adult Gyrfalcons (Falco rusticolus) molted in breeding territories and blood samples from nestlings to document nest-site fidelity and dispersal of breeding adults and juveniles at three areas 100- 350 km apart in Yukon Delta National Wildlife Refuge, Alaska, 2003-2007. We used genotypes from seven polymorphic microsatellite loci that provided a mean probability of identity of 0.91 ??10 -5. Breeding Gyrfalcons were highly faithful to study area and territory; we documented no dispersals of breeding birds among study areas and only one dispersal between territories. But their fidelity to nest sites was low; 22% of birds returned to the same nest site the following year. Distance among alternate nests within a territory averaged 750 m and was similar for both sexes. Mean tenure in a territory was 2.8 years, similar for both sexes, and distributed bimodally with peaks at 1 and 4 years. Mean annual turnover rate at the Ingakslugwat Hills (Volcanoes) study area was 20%. We detected three young that established breeding territories at distances ranging from 0 to 254 km from their natal territory, representing 2.5% apparent recruitment. Gyrfalcons in the Askinuk Mountains study area were slightly but statistically significantly differentiated genetically from those in the Volcanoes and Kilbuck Mountain study areas. These data are the first published on the nest-site fidelity, breeding dispersal, and natal dispersal of the Gyrfalcon in North America and demonstrate the utility of noninvasive genetic sampling to greatly improve our understanding of avian dispersal and its underlying mechanisms. ?? The Cooper Ornithological Society 2011.

  17. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    PubMed

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.

  18. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    PubMed

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains. PMID:22567089

  19. Genetic (co)variances and breeding value estimation of Gompertz growth curve parameters in Finnish Yorkshire boars, gilts and barrows.

    PubMed

    Koivula, M; Sevón-Aimonen, M-L; Strandén, I; Matilainen, K; Serenius, T; Stalder, K J; Mäntysaari, E A

    2008-06-01

    This paper's objectives were to estimate the genetic (co)variance components of the Gompertz growth curve parameters and to evaluate the relationship of estimated breeding values (EBV) based on average daily gain (ADG) and Gompertz growth curves. Finnish Yorkshire central test station performance data was obtained from the Faba Breeding (Vantaa, Finland). The final data set included 121,488 weight records from 10,111 pigs. Heritability estimates for the Gompertz growth parameters mature weight (alpha), logarithm of mature weight to birth weight ratio (beta) and maturation rate (kappa) were 0.44, 0.55 and 0.31, respectively. Genotypic and phenotypic correlations between the growth curve parameters were high and mainly negative. The only positive relationship was found between alpha and beta. Pearson and Spearman rank correlation coefficients between EBV for ADG and daily gain calculated from Gompertz growth curves were 0.79. The Spearman rank correlation between the sire EBV for ADG and Gompertz growth curve parameter-based ADG for all sires with at least 15 progeny was 0.86. Growth curves differ significantly between individuals and this information could be utilized for selection purposes when improving growth rate in pigs.

  20. Modelling and estimating pollen movement in oilseed rape (Brassica napus) at the landscape scale using genetic markers.

    PubMed

    Devaux, C; Lavigne, C; Austerlitz, F; Klein, E K

    2007-02-01

    Understanding patterns of pollen movement at the landscape scale is important for establishing management rules following the release of genetically modified (GM) crops. We use here a mating model adapted to cultivated species to estimate dispersal kernels from the genotypes of the progenies of male-sterile plants positioned at different sampling sites within a 10 x 10-km oilseed rape production area. Half of the pollen clouds sampled by the male-sterile plants originated from uncharacterized pollen sources that could consist of both large volunteer and feral populations, and fields within and outside the study area. The geometric dispersal kernel was the most appropriate to predict pollen movement in the study area. It predicted a much larger proportion of long-distance pollination than previously fitted dispersal kernels. This best-fitting mating model underestimated the level of differentiation among pollen clouds but could predict its spatial structure. The estimation method was validated on simulated genotypic data, and proved to provide good estimates of both the shape of the dispersal kernel and the rate and composition of pollen issued from uncharacterized pollen sources. The best dispersal kernel fitted here, the geometric kernel, should now be integrated into models that aim at predicting gene flow at the landscape level, in particular between GM and non-GM crops.

  1. Likelihood-based genetic mark-recapture estimates when genotype samples are incomplete and contain typing errors.

    PubMed

    Macbeth, Gilbert M; Broderick, Damien; Ovenden, Jennifer R; Buckworth, Rik C

    2011-11-01

    Genotypes produced from samples collected non-invasively in harsh field conditions often lack the full complement of data from the selected microsatellite loci. The application to genetic mark-recapture methodology in wildlife species can therefore be prone to misidentifications leading to both 'true non-recaptures' being falsely accepted as recaptures (Type I errors) and 'true recaptures' being undetected (Type II errors). Here we present a new likelihood method that allows every pairwise genotype comparison to be evaluated independently. We apply this method to determine the total number of recaptures by estimating and optimising the balance between Type I errors and Type II errors. We show through simulation that the standard error of recapture estimates can be minimised through our algorithms. Interestingly, the precision of our recapture estimates actually improved when we included individuals with missing genotypes, as this increased the number of pairwise comparisons potentially uncovering more recaptures. Simulations suggest that the method is tolerant to per locus error rates of up to 5% per locus and can theoretically work in datasets with as little as 60% of loci genotyped. Our methods can be implemented in datasets where standard mismatch analyses fail to distinguish recaptures. Finally, we show that by assigning a low Type I error rate to our matching algorithms we can generate a dataset of individuals of known capture histories that is suitable for the downstream analysis with traditional mark-recapture methods.

  2. Genetic barriers in transplantation medicine

    PubMed Central

    Edinur, Hisham A; Manaf, Siti M; Che Mat, Nor F

    2016-01-01

    The successful of transplantation is determined by the shared human leukocyte antigens (HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulin-like receptor (KIR)] and major histocompatibility complex (MHC) class I chain-related gene molecule (i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques (e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer (NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine. PMID:27683631

  3. Genetic barriers in transplantation medicine.

    PubMed

    Edinur, Hisham A; Manaf, Siti M; Che Mat, Nor F

    2016-09-24

    The successful of transplantation is determined by the shared human leukocyte antigens (HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulin-like receptor (KIR)] and major histocompatibility complex (MHC) class I chain-related gene molecule (i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques (e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer (NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine. PMID:27683631

  4. Genetic barriers in transplantation medicine

    PubMed Central

    Edinur, Hisham A; Manaf, Siti M; Che Mat, Nor F

    2016-01-01

    The successful of transplantation is determined by the shared human leukocyte antigens (HLAs) and ABO blood group antigens between donor and recipient. In recent years, killer cell receptor [i.e., killer cell immunoglobulin-like receptor (KIR)] and major histocompatibility complex (MHC) class I chain-related gene molecule (i.e., MICA) were also reported as important determinants of transplant compatibility. At present, several different genotyping techniques (e.g., sequence specific primer and sequence based typing) can be used to characterize blood group, HLA, MICA and KIR and loci. These molecular techniques have several advantages because they do not depend on the availability of anti-sera, cellular expression and have greater specificity and accuracy compared with the antibody-antigen based typing. Nonetheless, these molecular techniques have limited capability to capture increasing number of markers which have been demonstrated to determine donor and recipient compatibility. It is now possible to genotype multiple markers and to the extent of a complete sequencing of the human genome using next generation sequencer (NGS). This high throughput genotyping platform has been tested for HLA, and it is expected that NGS will be used to simultaneously genotype a large number of clinically relevant transplantation genes in near future. This is not far from reality due to the bioinformatics support given by the immunogenetics community and the rigorous improvement in NGS methodology. In addition, new developments in immune tolerance based therapy, donor recruitment strategies and bioengineering are expected to provide significant advances in the field of transplantation medicine.

  5. aCGH Analysis to Estimate Genetic Variations among Domesticated Chickens

    PubMed Central

    Lin, Mengjie

    2016-01-01

    Chickens have been familiar to humans since ancient times and have been used not only for culinary purposes but also for cultural purposes including ritual ceremonies and traditional entertainment. The various chicken breeds developed for these purposes often display distinct morphological and/or behavioural traits. For example, the Japanese Shamo is larger and more aggressive than other domesticated chickens, reflecting its role as a fighting cock breed, whereas Japanese Naganakidori breeds, which have long-crowing behaviour, were bred instead for their entertaining and aesthetic qualities. However, the genetic backgrounds of these distinct morphological and behavioural traits remain unclear. Therefore, the question arises as to which genomic regions in these chickens were acted upon by selective pressures through breeding. We compared the entire genomes of six chicken breeds domesticated for various cultural purposes by utilizing array comparative genomic hybridization. From these analyses, we identified 782 regions that underwent insertions, deletions, or mutations, representing man-made selection pressure in these chickens. Furthermore, we found that a number of genes diversified in domesticated chickens bred for cultural or entertainment purposes were different from those diversified in chickens bred for food, such as broilers and layers. PMID:27525263

  6. aCGH Analysis to Estimate Genetic Variations among Domesticated Chickens.

    PubMed

    Komiyama, Tomoyoshi; Lin, Mengjie; Ogura, Atsushi

    2016-01-01

    Chickens have been familiar to humans since ancient times and have been used not only for culinary purposes but also for cultural purposes including ritual ceremonies and traditional entertainment. The various chicken breeds developed for these purposes often display distinct morphological and/or behavioural traits. For example, the Japanese Shamo is larger and more aggressive than other domesticated chickens, reflecting its role as a fighting cock breed, whereas Japanese Naganakidori breeds, which have long-crowing behaviour, were bred instead for their entertaining and aesthetic qualities. However, the genetic backgrounds of these distinct morphological and behavioural traits remain unclear. Therefore, the question arises as to which genomic regions in these chickens were acted upon by selective pressures through breeding. We compared the entire genomes of six chicken breeds domesticated for various cultural purposes by utilizing array comparative genomic hybridization. From these analyses, we identified 782 regions that underwent insertions, deletions, or mutations, representing man-made selection pressure in these chickens. Furthermore, we found that a number of genes diversified in domesticated chickens bred for cultural or entertainment purposes were different from those diversified in chickens bred for food, such as broilers and layers.

  7. aCGH Analysis to Estimate Genetic Variations among Domesticated Chickens.

    PubMed

    Komiyama, Tomoyoshi; Lin, Mengjie; Ogura, Atsushi

    2016-01-01

    Chickens have been familiar to humans since ancient times and have been used not only for culinary purposes but also for cultural purposes including ritual ceremonies and traditional entertainment. The various chicken breeds developed for these purposes often display distinct morphological and/or behavioural traits. For example, the Japanese Shamo is larger and more aggressive than other domesticated chickens, reflecting its role as a fighting cock breed, whereas Japanese Naganakidori breeds, which have long-crowing behaviour, were bred instead for their entertaining and aesthetic qualities. However, the genetic backgrounds of these distinct morphological and behavioural traits remain unclear. Therefore, the question arises as to which genomic regions in these chickens were acted upon by selective pressures through breeding. We compared the entire genomes of six chicken breeds domesticated for various cultural purposes by utilizing array comparative genomic hybridization. From these analyses, we identified 782 regions that underwent insertions, deletions, or mutations, representing man-made selection pressure in these chickens. Furthermore, we found that a number of genes diversified in domesticated chickens bred for cultural or entertainment purposes were different from those diversified in chickens bred for food, such as broilers and layers. PMID:27525263

  8. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus

    PubMed Central

    2010-01-01

    Background Domestication and breeding involve the selection of particular phenotypes, limiting the genomic diversity of the population and creating a bottleneck. These effects can be precisely estimated when the location of domestication is established. Few analyses have focused on understanding the genetic consequences of domestication and breeding in fruit trees. In this study, we aimed to analyse genetic structure and changes in the diversity in sweet cherry Prunus avium L. Results Three subgroups were detected in sweet cherry, with one group of landraces genetically very close to the analysed wild cherry population. A limited number of SSR markers displayed deviations from the frequencies expected under neutrality. After the removal of these markers from the analysis, a very limited bottleneck was detected between wild cherries and sweet cherry landraces, with a much more pronounced bottleneck between sweet cherry landraces and modern sweet cherry varieties. The loss of diversity between wild cherries and sweet cherry landraces at the S-locus was more significant than that for microsatellites. Particularly high levels of differentiation were observed for some S-alleles. Conclusions Several domestication events may have happened in sweet cherry or/and intense gene flow from local wild cherry was probably maintained along the evolutionary history of the species. A marked bottleneck due to breeding was detected, with all markers, in the modern sweet cherry gene pool. The microsatellites did not detect the bottleneck due to domestication in the analysed sample. The vegetative propagation specific to some fruit trees may account for the differences in diversity observed at the S-locus. Our study provides insights into domestication events of cherry, however, requires confirmation on a larger sampling scheme for both sweet cherry landraces and wild cherry. PMID:20727153

  9. Estimates of L:M cone ratio from ERG flicker photometry and genetics.

    PubMed

    Carroll, Joseph; Neitz, Jay; Neitz, Maureen

    2002-01-01

    Estimates of L:M cone ratio for males with normal color vision were derived using the flicker-photometric electroretinogram (ERG). These were obtained by best fitting ERG spectral sensitivity functions to a weighted sum of long (L)- and middle (M)-wavelength-sensitive cone spectral absorption curves. Using the ERG, measurements can be made with extremely high precision, which leaves variation in the wavelength of maximal sensitivity (lambda(max)) of the cone photopigments as the major remaining source of inaccuracy in determining the ratio of cone contributions. Here that source of inaccuracy was largely eliminated through the use of individualized L-cone spectral absorption curves deduced from L-pigment gene sequences. The method was used on 62 normal males as part of an effort to obtain a true picture of how normal variations in L:M cone ratio are distributed. The percentage of L cones in the average eye was 65%L [where %L = 100 X L / (L+M)]. There were huge individual differences ranging from 28%-93%L, corresponding to more than a 30-fold range in L:M ratio (0.4-13). However, the most extreme values were relatively rare; 80% of the subjects fell within +/-15 %L of the mean, corresponding to a 4-fold range in L:M ratio (1-4). The method remedies major weaknesses inherent in earlier applications of flicker photometry to estimate cone ratio; however, it continues to depend on the assumption that the average L cone produces a response with an identical amplitude to that of the average M cone. A comparison of the ERG results with the distribution of cone ratios estimated from cone pigment messenger RNA in cadaver eyes indicates that the assumption generally holds true. However, there may be a small number of exceptions in which individuals have normally occurring (but relatively rare) amino acid substitutions in one of their pigments that significantly affect the physiology of the cone class containing that pigment, so as to reduce the amplitude of its contribution

  10. Divergence of East Asians and Europeans Estimated Using Male- and Female-Specific Genetic Markers

    PubMed Central

    Tateno, Yoshio; Komiyama, Tomoyoshi; Katoh, Toru; Munkhbat, Batmunkh; Oka, Akira; Haida, Yuko; Kobayashi, Hiroyuki; Tamiya, Gen; Inoko, Hidetoshi

    2014-01-01

    To study the male and female lineages of East Asian and European humans, we have sequenced 25 short tandem repeat markers on 453 Y-chromosomes and collected sequences of 72 complete mitochondrial genomes to construct independent phylogenetic trees for male and female lineages. The results indicate that East Asian individuals fall into two clades, one that includes East Asian individuals only and a second that contains East Asian and European individuals. Surprisingly, the European individuals did not form an independent clade, but branched within in the East Asians. We then estimated the divergence time of the root of the European clade as ∼41,000 years ago. These data indicate that, contrary to traditional views, Europeans diverged from East Asians around that time. We also address the origin of the Ainu lineage in northern Japan. PMID:24589501

  11. Associating optical measurements and estimating orbits of geocentric objects with a Genetic Algorithm: performance limitations.

    NASA Astrophysics Data System (ADS)

    Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent

    2016-07-01

    Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.

  12. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    NASA Astrophysics Data System (ADS)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  13. Estimating Uncertainty and Frequency of High-Velocity Paleotsunami Inundation From Geologic Records in Back Barrier Settings, Test Locality Cannon Beach, Oregon, Central Cascadia Margin, USA

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Jaffe, B.; Peters, R.

    2004-12-01

    Historic-tsunami sand deposits (1964 Alaskan far-field source) in Cascadia back barrier settings have been examined for distinctive criteria from Seaside, OR, Crescent City, CA, and Port Alberni, BC. These historic Pacific Northwest criteria have been combined with similar data from recent tsunami investigations in Papua New Guinea, Peru, and Japan to discriminate high-velocity paleotsunami inundation (at least 0.5 m/s) from non-tsunami deposition such as river flood, storm surge, extreme spring-tide, debris flow, coseismic-fluidization, and anthropogenic activities. The criteria are semi-quantitatively analyzed to evaluate the certainty of paleotsunami inundation records from geologic deposits. The criteria used for a representative test locality Cannon Beach, Oregon, include (1) event dating, (2) anomalous sand lithology, (3) debris cap, (4) distinct layer(s), (5), fining-upward grain-size, (6) laterally continuous deposition (10's of meters), (7) landward-thinning deposition (100's of meters), (8) landward-fining deposits (100's of meters), (9) beach sand mineralogy, and (10) marine diatoms. At least three nearest-neighbor' distal sites of target sand sheets were evaluated for the ten criteria, yielding a certainty index (CI). Four of the events (2-5) demonstrate high certainties (7-9) for tsunami origins. Event data as follows: Event (1/Far-field) Age (1964) CI (6) ID (50m) RI (260yr), Event (2/Cascadia) Age (1700AD) CI (8) ID (250m) RI (325yr), Event (3/Unknown) Age (0.8-0.9ka) CI (7) ID (400m) RI (434yr), Event (4/Cascadia) Age (1.1ka) CI (8) ID (500m) RI (651yr), Event (5/Cascadia) Age (1.3ka) CI (9) ID (900m) RI (1301yr). High-velocity inundation distances (ID) of 50-900m were measured by straight line from the crest of the beach barrier (6 m elevation contour). The tsunami recurrence interval (RI) where RI=(n+1)/m and n=record length (1300yr) is calculated for the 5 events. The event recurrence interval is then plotted against inundation distance (Y

  14. Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M; Dikeman, M E; Koohmaraie, M

    1994-05-01

    Retained heterosis for meat traits was estimated in F3 generation castrate males in three composite populations of beef cattle finished on two levels of dietary energy density (2.82 Mcal of ME and 3.07 Mcal of ME and 11.50% CP) and serially slaughtered at four end points at intervals of 20 to 22 d. Breed effects were evaluated in nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, and 1/4 A). Breed effects were important (P < .01) for all carcass and meat traits evaluated. Dietary energy density and slaughter group affected (P < .05) most traits evaluated. The effects of retained heterosis were not consistent among composites. For the mean of the three composites, retained heterosis was significant only for percentage of 9-10-11th rib fat and for percentage of retail product. Phenotypic correlations indicated that marbling score was a poor predictor of palatability attributes of individual carcasses. Estimates of heritability were intermediate to high for measures of fatness but were generally low for palatability attributes. The high negative genetic correlation (-.56) between percentage of retail product and marbling score and the relatively low genetic correlations between percentage of retail product and palatability attributes suggests the need for simultaneous attention to percentage of retail product and palatability attributes rather than to marbling score. Correlations among breed group means were generally high for measures of fatness with palatability attributes and were high and negative for percentage of retail product with marbling score and with other measures of fatness. Limited opportunity exists for selecting among breeds to achieve high levels of marbling in the longissimus

  15. Breed effects, retained heterosis, and estimates of genetic and phenotypic parameters for carcass and meat traits of beef cattle.

    PubMed

    Gregory, K E; Cundiff, L V; Koch, R M; Dikeman, M E; Koohmaraie, M

    1994-05-01

    Retained heterosis for meat traits was estimated in F3 generation castrate males in three composite populations of beef cattle finished on two levels of dietary energy density (2.82 Mcal of ME and 3.07 Mcal of ME and 11.50% CP) and serially slaughtered at four end points at intervals of 20 to 22 d. Breed effects were evaluated in nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, and 1/4 A). Breed effects were important (P < .01) for all carcass and meat traits evaluated. Dietary energy density and slaughter group affected (P < .05) most traits evaluated. The effects of retained heterosis were not consistent among composites. For the mean of the three composites, retained heterosis was significant only for percentage of 9-10-11th rib fat and for percentage of retail product. Phenotypic correlations indicated that marbling score was a poor predictor of palatability attributes of individual carcasses. Estimates of heritability were intermediate to high for measures of fatness but were generally low for palatability attributes. The high negative genetic correlation (-.56) between percentage of retail product and marbling score and the relatively low genetic correlations between percentage of retail product and palatability attributes suggests the need for simultaneous attention to percentage of retail product and palatability attributes rather than to marbling score. Correlations among breed group means were generally high for measures of fatness with palatability attributes and were high and negative for percentage of retail product with marbling score and with other measures of fatness. Limited opportunity exists for selecting among breeds to achieve high levels of marbling in the longissimus

  16. Estimation of accuracies and expected genetic change from selection for selection indexes that use multiple-trait predictions of breeding values.

    PubMed

    Barwick, S A; Tier, B; Swan, A A; Henzell, A L

    2013-10-01

    Procedures are described for estimating selection index accuracies for individual animals and expected genetic change from selection for the general case where indexes of EBVs predict an aggregate breeding objective of traits that may or may not have been measured. Index accuracies for the breeding objective are shown to take an important general form, being able to be expressed as the product of the accuracy of the index function of true breeding values and the accuracy with which that function predicts the breeding objective. When the accuracies of the individual EBVs of the index are known, prediction error variances (PEVs) and covariances (PECs) for the EBVs within animal are able to be well approximated, and index accuracies and expected genetic change from selection estimated with high accuracy. The procedures are suited to routine use in estimating index accuracies in genetic evaluation, and for providing important information, without additional modelling, on the directions in which a population will move under selection.

  17. Three-dimensional motion estimation using genetic algorithms from image sequence in an active stereo vision system

    NASA Astrophysics Data System (ADS)

    Dipanda, Albert; Ajot, Jerome; Woo, Sanghyuk

    2003-06-01

    This paper proposes a method for estimating 3D rigid motion parameters from an image sequence of a moving object. The 3D surface measurement is achieved using an active stereovision system composed of a camera and a light projector, which illuminates objects to be analyzed by a pyramid-shaped laser beam. By associating the laser rays and the spots in the 2D image, the 3D points corresponding to these spots are reconstructed. Each image of the sequence provides a set of 3D points, which is modeled by a B-spline surface. Therefore, estimating the motion between two images of the sequence boils down to matching two B-spline surfaces. We consider the matching environment as an optimization problem and find the optimal solution using Genetic Algorithms. A chromosome is encoded by concatenating six binary coded parameters, the three angles of rotation and the x-axis, y-axis and z-axis translations. We have defined an original fitness function to calculate the similarity measure between two surfaces. The matching process is performed iteratively: the number of points to be matched grows as the process advances and results are refined until convergence. Experimental results with a real image sequence are presented to show the effectiveness of the method.

  18. The children of parents exposed to atomic bombs: Estimates of the genetic doubling dose of radiation for humans

    SciTech Connect

    Neel, J.V.; Schull, W.J.; Awa, A.A.; Satoh, C.; Kato, H.; Otake, M.; Yoshimoto, Y. )

    1990-06-01

    The data collected in Hiroshima and Nagasaki during the past 40 years on the children of survivors of the atomic bombings and on the children of a suitable control population are analyzed on the basis of the newly revised estimates of radiation doses. No statistically significant effects emerge with respect to eight different indicators. Since, however, it may confidently be assumed some mutations were induced, we have taken the data at face value and calculated the minimal gametic doubling doses of acute radiation for the individual indicators at various probability levels. An effort has also been made to calculate the most probable doubling dose for the indicators combined. The latter value is between 1.7 and 2.2 Sv. It is suggested the appropriate figure for chronic radiation would be between 3.4 and 4.5 Sv. These estimates suggest humans are less sensitive to the genetic effects of radiation than has been assumed on the basis of past extrapolations from experiments with mice.

  19. The children of parents exposed to atomic bombs: estimates of the genetic doubling dose of radiation for humans.

    PubMed

    Neel, J V; Schull, W J; Awa, A A; Satoh, C; Kato, H; Otake, M; Yoshimoto, Y

    1990-06-01

    The data collected in Hiroshima and Nagasaki during the past 40 years on the children of survivors of the atomic bombings and on the children of a suitable control population are analyzed on the basis of the newly revised estimates of radiation doses. No statistically significant effects emerge with respect to eight different indicators. Since, however, it may confidently be assumed some mutations were induced, we have taken the data at face value and calculated the minimal gametic doubling doses of acute radiation for the individual indicators at various probability levels. An effort has also been made to calculate the most probable doubling dose for the indicators combined. The latter value is between 1.7 and 2.2 Sv. It is suggested the appropriate figure for chronic radiation would be between 3.4 and 4.5 Sv. These estimates suggest humans are less sensitive to the genetic effects of radiation than has been assumed on the basis of past extrapolations from experiments with mice.

  20. Estimated number of loci for autosomal recessive severe nerve deafness within the Israeli Jewish population, with implications for genetic counseling.

    PubMed

    Brownstein, Z; Friedlander, Y; Peritz, E; Cohen, T

    1991-12-01

    Deafness occurs in about 1 per thousand live births, and at least 50% of congenital deafness is hereditary. The aim of this study was to examine the number of loci for recessively inherited severe nerve deafness of early onset within the Israeli population and to compare the results to those obtained in other populations. The Jewish population in Israel originates from many countries and may be divided into Sephardi, Eastern and Ashkenazi Jews, and the matings will be intraethnic or interethnic. Data were obtained on 133 deaf couples who lived in the Tel Aviv area, through the files of the Helen Keller Center. Causes of deafness in the spouses were studied and data on their children were obtained. Among 111 couples who had recessive or possibly recessive deafness and had at least 1 child, there were 12 with only deaf children and 5 with both deaf and hearing children. The number of loci for recessive deafness in the whole group was estimated at 8-9. Intraethnic and interethnic matings gave an estimate of 6.7 and 22.0 loci, respectively, which indicates that within populations fewer loci exist with recessive mutations for deafness than between populations. It could be shown that the sharing of loci between spouses decreased with increasing geographical distance of their origin. The results provide data for genetic counseling in Israel for deaf couples who have no children or have one hearing or one deaf child.

  1. Anabolic implant effects on visceral organ mass, chemical body composition, and estimated energetic efficiency in cloned (genetically identical) beef steers.

    PubMed

    Hutcheson, J P; Johnson, D E; Gerken, C L; Morgan, J B; Tatum, J D

    1997-10-01

    Six sets of four genetically identical Brangus steers (n = 24; X BW 409 kg) were used to determine the effect of different anabolic implants on visceral organ mass, chemical body composition, estimated tissue deposition, and energetic efficiency. Steers within a clone set were randomly assigned to one of the following implant treatments: C, no implant; E, estrogenic; A, androgenic, or AE, androgenic + estrogenic. Steers were slaughtered 112 d after implanting; visceral organs were weighed and final body composition determined by mechanical grinding and chemical analysis of the empty body. Mass of the empty gastrointestinal tract (GIT) was reduced approximately 9% (P < .10) in steers implanted with estrogen alone or in combination with an androgen. Liver mass was increased (P < .10) from 6 to 14% by implants. Steers implanted with the AE combination had greater (P < .10) daily protein accretion (163.4 g/d) than either E (128.8 g/d) or A (137.1 g/d), and, because the combination improved gain above C (101.1 g/d), this demonstrates the additive effects of a combination implant on protein deposition. Anabolic implants did not alter (P > .10) the efficiency of ME utilization. In general, estrogenic implants decreased GIT, androgenic implants increased liver, and all implants increased hide mass. Steers implanted with an AE combination had additive effects on protein deposition compared with either implant alone. The NEg requirements for body gain are estimated to be reduced 19% by estrogenic or combination implants. PMID:9331863

  2. Cultural barriers associated with large gene frequency differences among Italian populations.

    PubMed

    Barbujani, G; Vian, P; Fabbris, L

    1992-08-01

    Analysis of geographic variation for eight red cell markers in Italy shows significant spatial structure for most alleles. Effective population sizes estimated from FST values at these loci are much smaller than those predicted from data on consanguineous marriage, suggesting the presence of factors (presumably barriers) that have reduced gene flow and enhanced the evolutionary weight of genetic drift. Most regions of sharp gene frequency change correspond to geographic and linguistic barriers. Two allele frequencies are significantly correlated with measures of linguistic differentiation but not with indexes describing broad religious and social attitudes. The similarity between patterns of genetic and linguistic variation in Italy, also observed in a previous study, suggests that in specific areas linguistic diversity has acted as a biological barrier constraining mating, dispersal, or both. There is no evidence for a similar role of other extent cultural barriers.

  3. Estimation of soil cation exchange capacity using Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS)

    NASA Astrophysics Data System (ADS)

    Emamgolizadeh, S.; Bateni, S. M.; Shahsavani, D.; Ashrafi, T.; Ghorbani, H.

    2015-10-01

    The soil cation exchange capacity (CEC) is one of the main soil chemical properties, which is required in various fields such as environmental and agricultural engineering as well as soil science. In situ measurement of CEC is time consuming and costly. Hence, numerous studies have used traditional regression-based techniques to estimate CEC from more easily measurable soil parameters (e.g., soil texture, organic matter (OM), and pH). However, these models may not be able to adequately capture the complex and highly nonlinear relationship between CEC and its influential soil variables. In this study, Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) were employed to estimate CEC from more readily measurable soil physical and chemical variables (e.g., OM, clay, and pH) by developing functional relations. The GEP- and MARS-based functional relations were tested at two field sites in Iran. Results showed that GEP and MARS can provide reliable estimates of CEC. Also, it was found that the MARS model (with root-mean-square-error (RMSE) of 0.318 Cmol+ kg-1 and correlation coefficient (R2) of 0.864) generated slightly better results than the GEP model (with RMSE of 0.270 Cmol+ kg-1 and R2 of 0.807). The performance of GEP and MARS models was compared with two existing approaches, namely artificial neural network (ANN) and multiple linear regression (MLR). The comparison indicated that MARS and GEP outperformed the MLP model, but they did not perform as good as ANN. Finally, a sensitivity analysis was conducted to determine the most and the least influential variables affecting CEC. It was found that OM and pH have the most and least significant effect on CEC, respectively.

  4. Snow Depth Estimation Using Time Series Passive Microwave Imagery via Genetically Support Vector Regression (case Study Urmia Lake Basin)

    NASA Astrophysics Data System (ADS)

    Zahir, N.; Mahdi, H.

    2015-12-01

    Lake Urmia is one of the most important ecosystems of the country which is on the verge of elimination. Many factors contribute to this crisis among them is the precipitation, paly important roll. Precipitation has many forms one of them is in the form of snow. The snow on Sahand Mountain is one of the main and important sources of the Lake Urmia's water. Snow Depth (SD) is vital parameters for estimating water balance for future year. In this regards, this study is focused on SD parameter using Special Sensor Microwave/Imager (SSM/I) instruments on board the Defence Meteorological Satellite Program (DMSP) F16. The usual statistical methods for retrieving SD include linear and non-linear ones. These methods used least square procedure to estimate SD model. Recently, kernel base methods widely used for modelling statistical problem. From these methods, the support vector regression (SVR) is achieved the high performance for modelling the statistical problem. Examination of the obtained data shows the existence of outlier in them. For omitting these outliers, wavelet denoising method is applied. After the omission of the outliers it is needed to select the optimum bands and parameters for SVR. To overcome these issues, feature selection methods have shown a direct effect on improving the regression performance. We used genetic algorithm (GA) for selecting suitable features of the SSMI bands in order to estimate SD model. The results for the training and testing data in Sahand mountain is [R²_TEST=0.9049 and RMSE= 6.9654] that show the high SVR performance.

  5. [Genetic parameter estimation for inosine-5-monophosphate and intramuscular fat contents and other meat quality traits in chicken muscle].

    PubMed

    Chen, Ji-Lan; Wen, Jie; Zhao, Gui-Ping; Zheng, Mai-Qing; Yang, Ning

    2005-11-01

    The genetic parameters for some important flavor traits like inosine-5'-monophosphate (IMP) and intramuscular fat (IMF) contents in breast meat were estimated using a MTDFREML procedure on 1063 male, 90-day-old, purebred Beijing-You meat-type chicks (BJY). The result showed that the heritability of IMP and IMF contents in BJY breast meat was moderate or low (h2=0.23, 0.10), whereas these parameters were higher for abdominal fat weight (AFW), breast meat yield (BMY), ratio of BMY to carcass weight (BMR), leg muscle yield (LMY), body weight (BW), comb weight(CW) and comb weight percentage (CWB) (h2=0.56-0.79). The heritability of abdominal fat percentage (AFP), leg meat yield (LMY), testicle weight (TW) and testicle weight percentage (TWP) were 0.24, 0.32, 0.39 and 0.35, respectively. IMP exhibited low phenotypic correlations with BMY, LMY and SFT and no significant phenotypic correlations with other traits. IMF, to some extent, exhibited positive phenotypic correlation with BW, AFP, SFT and FSW (rP=0.11-0.33). In terms of genetic correlation, IMP was moderately or significantly negatively correlated with BW and CWP (rA=-0.38,-0.62), and a high level of positive correlation was observed with BMY (rA=0.57). Moreover, IMF was highly correlated with BW and AFW (rA=0.75,0.66), and moderately correlated with AFP and CWP (rA=0.32, 0.40). A low level of positive correlation was observed between IMP and IMF (rA =0.27). We propose that IMP and IMF contents in chicken meat could be increased with selection through line-breeding.

  6. Vehicle barrier

    DOEpatents

    Hirsh, Robert A.

    1991-01-01

    A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

  7. Using a hybrid Monte Carlo/Genetic Algorithm Slip Estimator to produce high resolution models of paleoearthquakes from geodetic data

    NASA Astrophysics Data System (ADS)

    Lindsay, A.; McCloskey, J.; Nalbant, S. S.; Simao, N.; Murphy, S.; NicBhloscaidh, M.; Steacy, S.

    2013-12-01

    Identifying fault sections where slip deficits have accumulated may provide a means for understanding sequences of large megathrust earthquakes. Stress accumulated during the interseismic period on locked sections of an active fault is stored as potential slip. Where this potential slip remains unreleased during earthquakes, a slip deficit can be said to have accrued. Analysis of the spatial distribution of slip during antecedent events along the fault will show where the locked plate has spent its stored slip and indicate where the potential for large events remains. The location of recent earthquakes and their distribution of slip can be estimated instrumentally. To develop the idea of long-term slip-deficit modelling it is necessary to constrain the size and distribution of slip for pre-instrumental events dating back hundreds of years covering more than one ';seismic cycle'. This requires the exploitation of proxy sources of data. Coral microatolls, growing in the intertidal zone of the outer island arc of the Sunda trench, present the possibility of producing high resolution reconstructions of slip for a number of pre-instrumental earthquakes. Their growth is influenced by tectonic flexing of the continental plate beneath them allows them to act as long term geodetic recorders. However, the sparse distribution of data available using coral geodesy results in a under determined problem with non-unique solutions. Instead of producing one definite model satisfying the observed corals displacements, a Monte Carlo Slip Estimator based on a Genetic Algorithm (MCSE-GA) accelerating the rate of convergence is used to identify a suite of models consistent with the data. Successive iterations of the MCSE-GA sample different displacements at each coral location, from within the spread of associated uncertainties, producing a catalog of models from the full range of possibilities. The suite of best slip distributions are weighted according to their fitness and stacked to

  8. Stochastic dynamic simulation modeling including multitrait genetics to estimate genetic, technical, and financial consequences of dairy farm reproduction and selection strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop a daily stochastic dynamic dairy simulation model which included multi-trait genetics, and to evaluate the effects of various reproduction and selection strategies on the genetic, technical and financial performance of a dairy herd. The 12 correlated geneti...

  9. Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

    PubMed Central

    Singh, Ajay; Singh, Avtar; Singh, Manvendra; Prakash, Ved; Ambhore, G. S.; Sahoo, S. K.; Dash, Soumya

    2016-01-01

    A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM) considering different order of Legendre polynomial for the additive genetic effect (4th order) and the permanent environmental effect (5th order). Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11) to 0.99 (TD-4 and TD-5). The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields. PMID:26954137

  10. Shared spatial effects on quantitative genetic parameters: accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer.

    PubMed

    Stopher, Katie V; Walling, Craig A; Morris, Alison; Guinness, Fiona E; Clutton-Brock, Tim H; Pemberton, Josephine M; Nussey, Daniel H

    2012-08-01

    Social structure, limited dispersal, and spatial heterogeneity in resources are ubiquitous in wild vertebrate populations. As a result, relatives share environments as well as genes, and environmental and genetic sources of similarity between individuals are potentially confounded. Quantitative genetic studies in the wild therefore typically account for easily captured shared environmental effects (e.g., parent, nest, or region). Fine-scale spatial effects are likely to be just as important in wild vertebrates, but have been largely ignored. We used data from wild red deer to build "animal models" to estimate additive genetic variance and heritability in four female traits (spring and rut home range size, offspring birth weight, and lifetime breeding success). We then, separately, incorporated spatial autocorrelation and a matrix of home range overlap into these models to estimate the effect of location or shared habitat on phenotypic variation. These terms explained a substantial amount of variation in all traits and their inclusion resulted in reductions in heritability estimates, up to an order of magnitude up for home range size. Our results highlight the potential of multiple covariance matrices to dissect environmental, social, and genetic contributions to phenotypic variation, and the importance of considering fine-scale spatial processes in quantitative genetic studies.

  11. Estimation of the barrier to rotation of benzene in the (eta 6-C6H6)2Cr crystal via topological analysis of the electron density distribution function.

    PubMed

    Lyssenko, Konstantin A; Korlyukov, Alexander A; Golovanov, Denis G; Ketkov, Sergey Yu; Antipin, Mikhail Yu

    2006-05-25

    The high-resolution X-ray diffraction analysis of the electron density distribution and plane-wave density functional theory has been applied to estimate the lattice energy and barrier to rotation of a benzene ring in the crystal of (eta(6)-C(6)H(6))(2)Cr. Experimental data made it possible to perform analysis of the metal-(pi-ligand) bond and estimate the nature and energy of weak H...H and H...C intermolecular interactions in the crystal. Summation of the intermolecular H...H and H...C interaction energies makes it possible to reproduce the experimental sublimation enthalpy value with high accuracy.

  12. Range-Wide Genetic Analysis of Little Brown Bat (Myotis lucifugus) Populations: Estimating the Risk of Spread of White-Nose Syndrome.

    PubMed

    Vonhof, Maarten J; Russell, Amy L; Miller-Butterworth, Cassandra M

    2015-01-01

    The little brown bat (Myotis lucifugus) is one of the most widespread bat species in North America and is experiencing severe population declines because of an emerging fungal disease, white-nose syndrome (WNS). To manage and conserve this species effectively it is important to understand patterns of gene flow and population connectivity to identify possible barriers to disease transmission. However, little is known about the population genetic structure of little brown bats, and to date, no studies have investigated population structure across their entire range. We examined mitochondrial DNA and nuclear microsatellites in 637 little brown bats (including all currently recognized subspecific lineages) from 29 locations across North America, to assess levels of genetic variation and population differentiation across the range of the species, including areas affected by WNS and those currently unaffected. We identified considerable spatial variation in patterns of female dispersal and significant genetic variation between populations in eastern versus western portions of the range. Overall levels of nuclear genetic differentiation were low, and there is no evidence for any major barriers to gene flow across their range. However, patterns of mtDNA differentiation are highly variable, with high ΦST values between most sample pairs (including between all western samples, between western and eastern samples, and between some eastern samples), while low mitochondrial differentiation was observed within two groups of samples found in central and eastern regions of North America. Furthermore, the Alaskan population was highly differentiated from all others, and western populations were characterized by isolation by distance while eastern populations were not. These data raise the possibility that the current patterns of spread of WNS observed in eastern North America may not apply to the entire range and that there may be broad-scale spatial variation in the risk of WNS

  13. Range-Wide Genetic Analysis of Little Brown Bat (Myotis lucifugus) Populations: Estimating the Risk of Spread of White-Nose Syndrome

    PubMed Central

    Vonhof, Maarten J.; Russell, Amy L.; Miller-Butterworth, Cassandra M.

    2015-01-01

    The little brown bat (Myotis lucifugus) is one of the most widespread bat species in North America and is experiencing severe population declines because of an emerging fungal disease, white-nose syndrome (WNS). To manage and conserve this species effectively it is important to understand patterns of gene flow and population connectivity to identify possible barriers to disease transmission. However, little is known about the population genetic structure of little brown bats, and to date, no studies have investigated population structure across their entire range. We examined mitochondrial DNA and nuclear microsatellites in 637 little brown bats (including all currently recognized subspecific lineages) from 29 locations across North America, to assess levels of genetic variation and population differentiation across the range of the species, including areas affected by WNS and those currently unaffected. We identified considerable spatial variation in patterns of female dispersal and significant genetic variation between populations in eastern versus western portions of the range. Overall levels of nuclear genetic differentiation were low, and there is no evidence for any major barriers to gene flow across their range. However, patterns of mtDNA differentiation are highly variable, with high ΦST values between most sample pairs (including between all western samples, between western and eastern samples, and between some eastern samples), while low mitochondrial differentiation was observed within two groups of samples found in central and eastern regions of North America. Furthermore, the Alaskan population was highly differentiated from all others, and western populations were characterized by isolation by distance while eastern populations were not. These data raise the possibility that the current patterns of spread of WNS observed in eastern North America may not apply to the entire range and that there may be broad-scale spatial variation in the risk of WNS

  14. Microbial barriers.

    PubMed

    Gutwein, Luke G; Panigrahi, Mousumee; Schultz, Gregory S; Mast, Bruce A

    2012-07-01

    Barrier wound therapy is commonplace in the health care environment and functions to limit bacterial colonization and infection in both acute wounds and recalcitrant chronic wounds. This article reviews the nature of acute and chronic wounds and their available adjunctive barrier therapies.

  15. Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan

    PubMed Central

    Zhan, Yifan; Chow, Kevin V.; Soo, Priscilla; Xu, Zhen; Brady, Jamie L.; Lawlor, Kate E.; Masters, Seth L.; O’keeffe, Meredith; Shortman, Ken; Zhang, Jian-Guo; Lew, Andrew M.

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the “migration time” (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence. PMID:27112985

  16. Estimation of the minimum uncertainty of DNA concentration in a genetically modified maize sample candidate certified reference material.

    PubMed

    Prokisch, J; Zeleny, R; Trapmann, S; Le Guern, L; Schimmel, H; Kramer, G N; Pauwels, J

    2001-08-01

    Homogeneity testing and the determination of minimum sample mass are an important part of the certification of reference materials. The smallest theoretically achievable uncertainty of certified concentration values is limited by the concentration distribution of analyte in the different particle size fractions of powdered biological samples. This might be of special importance if the reference material is prepared by dry mixing, a dilution technique which is used for the production of the new and third generation of genetically modified (GMO) plant certified reference materials. For the production of dry mixed PMON 810 maize reference material a computer program was developed to calculate the theoretically smallest uncertainty for a selected sample intake. This model was used to compare three differently milled maize samples, and the effect of dilution on the uncertainty of the DNA content of GMO maize was estimated as well. In the case of a 50-mg sample mass the lowest achievable standard deviation was 2% for the sample containing 0.1% GMO and the minimum deviation was less than 0.5% for the sample containing 5% GMO. PMID:11569879

  17. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System

    PubMed Central

    Ting, T. O.; Lim, Eng Gee

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041

  18. Estimation of the minimum uncertainty of DNA concentration in a genetically modified maize sample candidate certified reference material.

    PubMed

    Prokisch, J; Zeleny, R; Trapmann, S; Le Guern, L; Schimmel, H; Kramer, G N; Pauwels, J

    2001-08-01

    Homogeneity testing and the determination of minimum sample mass are an important part of the certification of reference materials. The smallest theoretically achievable uncertainty of certified concentration values is limited by the concentration distribution of analyte in the different particle size fractions of powdered biological samples. This might be of special importance if the reference material is prepared by dry mixing, a dilution technique which is used for the production of the new and third generation of genetically modified (GMO) plant certified reference materials. For the production of dry mixed PMON 810 maize reference material a computer program was developed to calculate the theoretically smallest uncertainty for a selected sample intake. This model was used to compare three differently milled maize samples, and the effect of dilution on the uncertainty of the DNA content of GMO maize was estimated as well. In the case of a 50-mg sample mass the lowest achievable standard deviation was 2% for the sample containing 0.1% GMO and the minimum deviation was less than 0.5% for the sample containing 5% GMO.

  19. Maintenance of genetic variation in human personality: testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding.

    PubMed

    Verweij, Karin J H; Yang, Jian; Lahti, Jari; Veijola, Juha; Hintsanen, Mirka; Pulkki-Råback, Laura; Heinonen, Kati; Pouta, Anneli; Pesonen, Anu-Katriina; Widen, Elisabeth; Taanila, Anja; Isohanni, Matti; Miettunen, Jouko; Palotie, Aarno; Penke, Lars; Service, Susan K; Heath, Andrew C; Montgomery, Grant W; Raitakari, Olli; Kähönen, Mika; Viikari, Jorma; Räikkönen, Katri; Eriksson, Johan G; Keltikangas-Järvinen, Liisa; Lehtimäki, Terho; Martin, Nicholas G; Järvelin, Marjo-Riitta; Visscher, Peter M; Keller, Matthew C; Zietsch, Brendan P

    2012-10-01

    Personality traits are basic dimensions of behavioral variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome-wide single nucleotide polymorphism (SNP) data from > 8000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation-selection balance.

  20. Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers.

    PubMed

    Sambatti, Julianno B M; Strasburg, Jared L; Ortiz-Barrientos, Daniel; Baack, Eric J; Rieseberg, Loren H

    2012-05-01

    In several cases, estimates of gene flow between species appear to be higher than we might predict given the strength of interspecific barriers separating these species pairs. However, as far as we are aware, detailed measurements of reproductive isolation have not previously been compared with a coalescent-based assessment of gene flow. Here, we contrast these two measures in two species of sunflower, Helianthus annuus and H. petiolaris. We quantified the total reproductive barrier strength between these species by compounding the contributions of the following prezygotic and postzygotic barriers: ecogeographic isolation, reproductive asynchrony, niche differentiation, pollen competition, hybrid seed formation, hybrid seed germination, hybrid fertility, and extrinsic postzygotic isolation. From this estimate, we calculated the probability that a reproductively successful hybrid is produced: estimates of P(hyb) range from 10(-4) to 10(-6) depending on the direction of the cross and the degree of independence among reproductive barriers. We then compared this probability with population genetic estimates of the per generation migration rate (m). We showed that the relatively high levels of gene flow estimated between these sunflower species (N(e) m= 0.34-0.76) are mainly due to their large effective population sizes (N(e) > 10(6)). The interspecific migration rate (m) is very small (<10(-7)) and an order of magnitude lower than that expected based on our reproductive barrier strength estimates. Thus, even high levels of reproductive isolation (>0.999) may produce genomic mosaics.

  1. Estimates of effective population size and inbreeding in South African indigenous chicken populations: implications for the conservation of unique genetic resources.

    PubMed

    Mtileni, Bohani; Dzama, Kennedy; Nephawe, Khathutshelo; Rhode, Clint

    2016-06-01

    Conservation of locally adapted indigenous livestock breeds has become an important objective in sustainable animal breeding, as these breeds represent a unique genetic resource. Therefore, the Agricultural Research Council of South Africa initiated a conservation programme for four South African indigenous chicken breeds. The evaluation and monitoring of the genetic constitution of these conservation flocks is important for proper management of the conservation programme. Using molecular genetic analyses, the effective population sizes and relatedness of these conservation flocks were compared to village (field) chicken populations from which they were derived. Genetic diversity within and between these populations are further discussed within the context of population size. The conservation flocks for the respective breeds had relatively small effective population sizes (point estimate range 38.6-78.6) in comparison to the field populations (point estimate range 118.9-580.0). Furthermore, evidence supports a transient heterozygous excess, generally associated with the occurrence of a recent population bottleneck. Genetic diversity, as measured by the number of alleles, heterozygosity and information index, was also significantly reduced in the conservation flocks. The average relatedness amongst the conservation flocks was high, whilst it remained low for the field populations. There was also significant evidence for population differentiation between field and conservation populations. F st estimates for conservation flocks were moderate to high with a maximum reached between VD_C and VD_F (0.285). However, F st estimates for field population were excessively low between the NN_C and EC_F (0.007) and between EC_F and OV_F (0.009). The significant population differentiation of the conservation flocks from their geographically correlated field populations of origin is further supported by the analysis of molecular variance (AMOVA), with 10.51 % of genetic

  2. Estimates of genetic parameters for content of boar taint compounds in adipose tissue of intact males at 160 and 220 days of age.

    PubMed

    Rostellato, R; Bonfatti, V; Larzul, C; Bidanel, J P; Carnier, P

    2015-09-01

    The aims of this study were to investigate variation in content of androstenone (AND), skatole (SKA), and indole (IND), quantified in adipose tissue of intact male pigs at 160 d of age (105 kg BW) and 220 d of age (155 kg BW), to estimate genetic parameters and to investigate the genetic relationships for AND, SKA, IND, and growth traits. A sample of adipose tissue was collected in vivo, using a biopsy device, from the neck of 500 intact males at the 2 ages and at slaughter from the ham of 100 of the investigated animals. Backfat depth was measured at 220 d of age, whereas BW was recorded at each sampling. Quantification of AND, SKA, and IND was performed by HPLC with fluorescence detection. Estimates of genetic parameters were obtained through Bayesian analyses after logarithmic transformations of original measures. Contents of boar taint compounds (BTC) measured at 220 d were higher than those at 160 d of age. Correlations between contents of BTC in backfat and ham fat ranged from 0.7 (IND) to 0.88 (SKA). Medium-high h were estimated for BTC at both ages, but estimates at 220 d (0.58, 0.60, and 0.69 for AND, SKA, and IND, respectively) were greater than those at 160 d. The genetic correlation between contents at 160 and 220 d of each BTC was positive, but the probability that such estimates were greater than 0.8 was very low, indicating that contents at 160 and 220 d were traits controlled by different genetic backgrounds. Different rankings were observed when breeding values for the content at 160 and 220 d of age were used to rank animals. As a consequence, performance testing programs for BTC should be based preferably on phenotypes measured at 220 d of age. Weak genetic correlations were observed between content of BT compounds and growth traits (BW, backfat depth, and daily gain from 160 to 220 d of age), indicating that selective breeding to reduce the risk of tainted pork is expected to exert trivial effects on growth performance and fat deposition

  3. Ionizing radiation and genetic risks. VIII. The concept of mutation component and its use in risk estimation for multifactorial diseases.

    PubMed

    Denniston, C; Chakraborty, R; Sankaranarayanan, K

    1998-08-31

    Multifactorial diseases, which include the common congenital abnormalities (incidence: 6%) and chronic diseases with onset predominantly in adults (population prevalence: 65%), contribute substantially to human morbidity and mortality. Their transmission patterns do not conform to Mendelian expectations. The model most frequently used to explain their inheritance and to estimate risks to relatives is a Multifactorial Threshold Model (MTM) of disease liability. The MTM assumes that: (i) the disease is due to the joint action of a large number of genetic and environmental factors, each of which contributing a small amount of liability, (ii) the distribution of liability in the population is Gaussian and (iii) individuals whose liability exceeds a certain threshold value are affected by the disease. For most of these diseases, the number of genes involved or the environmental factors are not fully known. In the context of radiation exposures of the population, the question of the extent to which induced mutations will cause an increase in the frequencies of these diseases has remained unanswered. In this paper, we address this problem by using a modified version of MTM which incorporates mutation and selection as two additional parameters. The model assumes a finite number of gene loci and threshold of liability (hence, the designation, Finite-Locus Threshold Model or FLTM). The FLTM permits one to examine the relationship between broad-sense heritability of disease liability and mutation component (MC), the responsiveness of the disease to a change in mutation rate. Through the use of a computer program (in which mutation rate, selection, threshold, recombination rate and environmental variance are input parameters and MC and heritability of liability are output estimates), we studied the MC-heritability relationship for (i) a permanent increase in mutation rate (e.g., when the population sustains radiation exposure in every generation) and (ii) a one-time increase

  4. [Relationship between heterozygosity as estimated from genetic markers and fertility in cattle : I. Estimation and dimension of heterozygosity in german cattle breeds].

    PubMed

    Hierl, H F

    1976-03-01

    Blood groups and biochemical markers were used to estimate heterozygosity in cows of Bavarian Fleckvieh (spotted upland), Braunvieh (brown), Hinterwälder and a Holstein-Friesian herd. These groups showed little difference in the estimated degree of heterozygosity which averaged around 35-40%. Within groups considerable variability of the estimated percentage heterozygosity existed. The range of estimated values extended from less than 10% to more than 70%. The group average of heterozygosity as estimated from the individual bloodgroups and biochemical markers exceeded the value estimated from population gene frequencies of the various loci. It is concluded that adult animals are more heterozygous than the average of the original calf (or embryo) population.

  5. Geographic patterns in the reproductive ecology of Agave lechuguilla (Agavaceae) in the Chihuahuan desert. II. Genetic variation, differentiation, and inbreeding estimates.

    PubMed

    Silva-Montellano, Arturo; Eguiarte, Luis E

    2003-05-01

    Plants with natural variation in their floral traits and reproductive ecology are ideal subjects for analyzing the effects of natural selection and other evolutionary forces on genetic structure of natural populations. Agave lechuguilla shows latitudinal changes in floral morphology, color, and nectar production along its distribution through north-central Mexico. Both the type and abundance of its pollinators also change with latitude. Using starch electrophoresis, we examined the levels and patterns of variation of 13 polymorphic allozyme loci in 11 populations of A. lechuguilla. The overall level of genetic variability was high (H(e) = 0.394), but the levels of genetic variation had no geographic pattern. However, the southern populations exhibited an excess of heterozygotes in relation to expectations for Hardy-Weinberg equilibrium, whereas the northern populations had an excess of homozygotes. Total differentiation among populations was low (θ = 0.083), although gene flow estimates (Nm) varied among groups of populations: southern populations had the lowest levels of genetic differentiation, suggesting high levels of gene flow; northern populations had greater levels of genetic differentiation (θ = 0.115), suggesting low gene flow among them. The patterns and inferences of the genetic structure of the population at the molecular level is consistent with variation in floral traits and pollinator visitation rates across the range of the species. PMID:21659165

  6. Geographic patterns in the reproductive ecology of Agave lechuguilla (Agavaceae) in the Chihuahuan desert. II. Genetic variation, differentiation, and inbreeding estimates.

    PubMed

    Silva-Montellano, Arturo; Eguiarte, Luis E

    2003-05-01

    Plants with natural variation in their floral traits and reproductive ecology are ideal subjects for analyzing the effects of natural selection and other evolutionary forces on genetic structure of natural populations. Agave lechuguilla shows latitudinal changes in floral morphology, color, and nectar production along its distribution through north-central Mexico. Both the type and abundance of its pollinators also change with latitude. Using starch electrophoresis, we examined the levels and patterns of variation of 13 polymorphic allozyme loci in 11 populations of A. lechuguilla. The overall level of genetic variability was high (H(e) = 0.394), but the levels of genetic variation had no geographic pattern. However, the southern populations exhibited an excess of heterozygotes in relation to expectations for Hardy-Weinberg equilibrium, whereas the northern populations had an excess of homozygotes. Total differentiation among populations was low (θ = 0.083), although gene flow estimates (Nm) varied among groups of populations: southern populations had the lowest levels of genetic differentiation, suggesting high levels of gene flow; northern populations had greater levels of genetic differentiation (θ = 0.115), suggesting low gene flow among them. The patterns and inferences of the genetic structure of the population at the molecular level is consistent with variation in floral traits and pollinator visitation rates across the range of the species.

  7. Geographically weighted regression as a generalized Wombling to detect barriers to gene flow.

    PubMed

    Diniz-Filho, José Alexandre Felizola; Soares, Thannya Nascimento; de Campos Telles, Mariana Pires

    2016-08-01

    Barriers to gene flow play an important role in structuring populations, especially in human-modified landscapes, and several methods have been proposed to detect such barriers. However, most applications of these methods require a relative large number of individuals or populations distributed in space, connected by vertices from Delaunay or Gabriel networks. Here we show, using both simulated and empirical data, a new application of geographically weighted regression (GWR) to detect such barriers, modeling the genetic variation as a "local" linear function of geographic coordinates (latitude and longitude). In the GWR, standard regression statistics, such as R(2) and slopes, are estimated for each sampling unit and thus are mapped. Peaks in these local statistics are then expected close to the barriers if genetic discontinuities exist, capturing a higher rate of population differentiation among neighboring populations. Isolation-by-Distance simulations on a longitudinally warped lattice revealed that higher local slopes from GWR coincide with the barrier detected with Monmonier algorithm. Even with a relatively small effect of the barrier, the power of local GWR in detecting the east-west barriers was higher than 95 %. We also analyzed empirical data of genetic differentiation among tree populations of Dipteryx alata and Eugenia dysenterica Brazilian Cerrado. GWR was applied to the principal coordinate of the pairwise FST matrix based on microsatellite loci. In both simulated and empirical data, the GWR results were consistent with discontinuities detected by Monmonier algorithm, as well as with previous explanations for the spatial patterns of genetic differentiation for the two species. Our analyses reveal how this new application of GWR can viewed as a generalized Wombling in a continuous space and be a useful approach to detect barriers and discontinuities to gene flow. PMID:27353234

  8. Geographically weighted regression as a generalized Wombling to detect barriers to gene flow.

    PubMed

    Diniz-Filho, José Alexandre Felizola; Soares, Thannya Nascimento; de Campos Telles, Mariana Pires

    2016-08-01

    Barriers to gene flow play an important role in structuring populations, especially in human-modified landscapes, and several methods have been proposed to detect such barriers. However, most applications of these methods require a relative large number of individuals or populations distributed in space, connected by vertices from Delaunay or Gabriel networks. Here we show, using both simulated and empirical data, a new application of geographically weighted regression (GWR) to detect such barriers, modeling the genetic variation as a "local" linear function of geographic coordinates (latitude and longitude). In the GWR, standard regression statistics, such as R(2) and slopes, are estimated for each sampling unit and thus are mapped. Peaks in these local statistics are then expected close to the barriers if genetic discontinuities exist, capturing a higher rate of population differentiation among neighboring populations. Isolation-by-Distance simulations on a longitudinally warped lattice revealed that higher local slopes from GWR coincide with the barrier detected with Monmonier algorithm. Even with a relatively small effect of the barrier, the power of local GWR in detecting the east-west barriers was higher than 95 %. We also analyzed empirical data of genetic differentiation among tree populations of Dipteryx alata and Eugenia dysenterica Brazilian Cerrado. GWR was applied to the principal coordinate of the pairwise FST matrix based on microsatellite loci. In both simulated and empirical data, the GWR results were consistent with discontinuities detected by Monmonier algorithm, as well as with previous explanations for the spatial patterns of genetic differentiation for the two species. Our analyses reveal how this new application of GWR can viewed as a generalized Wombling in a continuous space and be a useful approach to detect barriers and discontinuities to gene flow.

  9. Estimation of genetic variability and selection response for clutch length in dwarf brown-egg layers carrying or not the naked neck gene.

    PubMed

    Chen, Chih-Feng; Tixier-Boichard, Michèle

    2003-01-01

    In order to investigate the possibility of using the dwarf gene for egg production, two dwarf brown-egg laying lines were selected for 16 generations on average clutch length; one line (L1) was normally feathered and the other (L2) was homozygous for the naked neck gene NA. A control line from the same base population, dwarf and segregating for the NA gene, was maintained during the selection experiment under random mating. The average clutch length was normalized using a Box-Cox transformation. Genetic variability and selection response were estimated either with the mixed model methodology, or with the classical methods for calculating genetic gain, as the deviation from the control line, and the realized heritability, as the ratio of the selection response on cumulative selection differentials. Heritability of average clutch length was estimated to be 0.42 +/- 0.02, with a multiple trait animal model, whereas the estimates of the realized heritability were lower, being 0.28 and 0.22 in lines L1 and L2, respectively. REML estimates of heritability were found to decline with generations of selection, suggesting a departure from the infinitesimal model, either because a limited number of genes was involved, or their frequencies were changed. The yearly genetic gains in average clutch length, after normalization, were estimated to be 0.37 +/- 0.02 and 0.33 +/- 0.04 with the classical methods, 0.46 +/- 0.02 and 0.43 +/- 0.01 with animal model methodology, for lines L1 and L2 respectively, which represented about 30% of the genetic standard deviation on the transformed scale. Selection response appeared to be faster in line L2, homozygous for the NA gene, but the final cumulated selection response for clutch length was not different between the L1 and L2 lines at generation 16. PMID:12633534

  10. Estimation of genetic variability and selection response for clutch length in dwarf brown-egg layers carrying or not the naked neck gene.

    PubMed

    Chen, Chih-Feng; Tixier-Boichard, Michèle

    2003-01-01

    In order to investigate the possibility of using the dwarf gene for egg production, two dwarf brown-egg laying lines were selected for 16 generations on average clutch length; one line (L1) was normally feathered and the other (L2) was homozygous for the naked neck gene NA. A control line from the same base population, dwarf and segregating for the NA gene, was maintained during the selection experiment under random mating. The average clutch length was normalized using a Box-Cox transformation. Genetic variability and selection response were estimated either with the mixed model methodology, or with the classical methods for calculating genetic gain, as the deviation from the control line, and the realized heritability, as the ratio of the selection response on cumulative selection differentials. Heritability of average clutch length was estimated to be 0.42 +/- 0.02, with a multiple trait animal model, whereas the estimates of the realized heritability were lower, being 0.28 and 0.22 in lines L1 and L2, respectively. REML estimates of heritability were found to decline with generations of selection, suggesting a departure from the infinitesimal model, either because a limited number of genes was involved, or their frequencies were changed. The yearly genetic gains in average clutch length, after normalization, were estimated to be 0.37 +/- 0.02 and 0.33 +/- 0.04 with the classical methods, 0.46 +/- 0.02 and 0.43 +/- 0.01 with animal model methodology, for lines L1 and L2 respectively, which represented about 30% of the genetic standard deviation on the transformed scale. Selection response appeared to be faster in line L2, homozygous for the NA gene, but the final cumulated selection response for clutch length was not different between the L1 and L2 lines at generation 16.

  11. Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality.

    PubMed

    Loyau, T; Zerjal, T; Rodenburg, T B; Fablet, J; Tixier-Boichard, M; Pinard-van der Laan, M H; Mignon-Grasteau, S

    2016-10-01

    Exposure of laying hens to chronic heat stress results in loss of egg production. It should be possible to improve hen resilience to chronic heat stress by genetic selection but measuring their sensitivity through internal temperature is time consuming and is not very precise. In this study we used infrared thermography to measure the hen's capacity to dissipate heat, in a commercial line of laying hens subjected to cycles of neutral (N, 19.6°C) or high (H, 28.4°C) ambient temperatures. Mean body temperatures (BT) were estimated from 9355 infrared images of wing, comb and shank taken from 1200 hens. Genetic parameters were estimated separately for N and H temperatures. Correlations between BT and plumage condition were also investigated. Wing temperature had low heritability (0.00 to 0.09), consistent with the fact that wing temperature mainly reflects the environmental temperature and is not a zone of heat dissipation. The heritability of comb temperature was higher, from 0.15 to 0.19 in N and H conditions, respectively. Finally, the shank temperature provided the highest heritability estimates, with values of 0.20 to 0.22 in H and N conditions, respectively. Taken together, these results show that heat dissipation is partly under genetic control. Interestingly, the genetic correlation between plumage condition and shank and comb temperatures indicated that birds with poor condition plumage also had the possibility to dissipate heat through featherless areas. Genetic correlations of temperature measurements with egg quality showed that temperatures were correlated with egg width and weight, yolk brightness and yellowness and Haugh units only under H conditions. In contrast, shell colour was correlated with leg temperature only at thermo-neutrality.

  12. Heritability of body surface temperature in hens estimated by infrared thermography at normal or hot temperatures and genetic correlations with egg and feather quality.

    PubMed

    Loyau, T; Zerjal, T; Rodenburg, T B; Fablet, J; Tixier-Boichard, M; Pinard-van der Laan, M H; Mignon-Grasteau, S

    2016-10-01

    Exposure of laying hens to chronic heat stress results in loss of egg production. It should be possible to improve hen resilience to chronic heat stress by genetic selection but measuring their sensitivity through internal temperature is time consuming and is not very precise. In this study we used infrared thermography to measure the hen's capacity to dissipate heat, in a commercial line of laying hens subjected to cycles of neutral (N, 19.6°C) or high (H, 28.4°C) ambient temperatures. Mean body temperatures (BT) were estimated from 9355 infrared images of wing, comb and shank taken from 1200 hens. Genetic parameters were estimated separately for N and H temperatures. Correlations between BT and plumage condition were also investigated. Wing temperature had low heritability (0.00 to 0.09), consistent with the fact that wing temperature mainly reflects the environmental temperature and is not a zone of heat dissipation. The heritability of comb temperature was higher, from 0.15 to 0.19 in N and H conditions, respectively. Finally, the shank temperature provided the highest heritability estimates, with values of 0.20 to 0.22 in H and N conditions, respectively. Taken together, these results show that heat dissipation is partly under genetic control. Interestingly, the genetic correlation between plumage condition and shank and comb temperatures indicated that birds with poor condition plumage also had the possibility to dissipate heat through featherless areas. Genetic correlations of temperature measurements with egg quality showed that temperatures were correlated with egg width and weight, yolk brightness and yellowness and Haugh units only under H conditions. In contrast, shell colour was correlated with leg temperature only at thermo-neutrality. PMID:27095244

  13. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years.

    PubMed

    Moorjani, Priya; Sankararaman, Sriram; Fu, Qiaomei; Przeworski, Molly; Patterson, Nick; Reich, David

    2016-05-17

    The study of human evolution has been revolutionized by inferences from ancient DNA analyses. Key to these studies is the reliable estimation of the age of ancient specimens. High-resolution age estimates can often be obtained using radiocarbon dating, and, while precise and powerful, this method has some biases, making it of interest to directly use genetic data to infer a date for samples that have been sequenced. Here, we report a genetic method that uses the recombination clock. The idea is that an ancient genome has evolved less than the genomes of present-day individuals and thus has experienced fewer recombination events since the common ancestor. To implement this idea, we take advantage of the insight that all non-Africans have a common heritage of Neanderthal gene flow into their ancestors. Thus, we can estimate the date since Neanderthal admixture for present-day and ancient samples simultaneously and use the difference as a direct estimate of the ancient specimen's age. We apply our method to date five Upper Paleolithic Eurasian genomes with radiocarbon dates between 12,000 and 45,000 y ago and show an excellent correlation of the genetic and (14)C dates. By considering the slope of the correlation between the genetic dates, which are in units of generations, and the (14)C dates, which are in units of years, we infer that the mean generation interval in humans over this period has been 26-30 y. Extensions of this methodology that use older shared events may be applicable for dating beyond the radiocarbon frontier.

  14. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years.

    PubMed

    Moorjani, Priya; Sankararaman, Sriram; Fu, Qiaomei; Przeworski, Molly; Patterson, Nick; Reich, David

    2016-05-17

    The study of human evolution has been revolutionized by inferences from ancient DNA analyses. Key to these studies is the reliable estimation of the age of ancient specimens. High-resolution age estimates can often be obtained using radiocarbon dating, and, while precise and powerful, this method has some biases, making it of interest to directly use genetic data to infer a date for samples that have been sequenced. Here, we report a genetic method that uses the recombination clock. The idea is that an ancient genome has evolved less than the genomes of present-day individuals and thus has experienced fewer recombination events since the common ancestor. To implement this idea, we take advantage of the insight that all non-Africans have a common heritage of Neanderthal gene flow into their ancestors. Thus, we can estimate the date since Neanderthal admixture for present-day and ancient samples simultaneously and use the difference as a direct estimate of the ancient specimen's age. We apply our method to date five Upper Paleolithic Eurasian genomes with radiocarbon dates between 12,000 and 45,000 y ago and show an excellent correlation of the genetic and (14)C dates. By considering the slope of the correlation between the genetic dates, which are in units of generations, and the (14)C dates, which are in units of years, we infer that the mean generation interval in humans over this period has been 26-30 y. Extensions of this methodology that use older shared events may be applicable for dating beyond the radiocarbon frontier. PMID:27140627

  15. Effects of geographic distance, sea barriers and habitat on the genetic structure and diversity of all-hybrid water frog populations

    PubMed Central

    Christiansen, D G; Reyer, H-U

    2011-01-01

    The history of population size and migration patterns leaves its mark in the genetics of populations. We investigate the genetic structure of the edible frog, Pelophylax esculentus in the Danish archipelago and adjacent countries. This frog is of particular interest because it is a hybrid that, in this area, forms all-hybrid populations of diploid (LR) and triploid (LLR and LRR) genomotypes with no (or very few) adults of the parental species (LL and RR). This study is the first to cover the entire geographic range of Danish, Swedish and German all-hybrid populations, documenting their extent and providing a broad picture of their diversity of neutral genetic markers and genomotype proportions. With 18 microsatellite markers, we found that genetic diversity declines northwards in agreement with the glacial refuge and central-marginal hypotheses; however, populations on small and medium-sized islands are no less diverse than those on large islands and continental peninsulas. Isolation by distance exists across the archipelago with limited influence of fragmentation by brackish seawater. The extremely low genetic diversity in all-hybrid populations, compared with adjacent populations, may be responsible for the maintenance of their special breeding system. We also show large variation among ponds in proportions of LLR, LR and LRR genomotypes, but little geographic pattern in their distribution. Instead, we found relationships between the genomotype proportions and some of 15 habitat parameters monitored. Body size differences among LLR, LR and LRR further suggest ecological differences. PMID:20372185

  16. Temporal estimates of genetic diversity in some Mytilus galloprovincialis populations impacted by the Prestige oil-spill

    NASA Astrophysics Data System (ADS)

    Lado-Insua, Tanya; Pérez, Montse; Diz, Angel P.; Presa, Pablo

    2011-04-01

    The sinking of the tanker Prestige in November 2002 off the coast of Galicia resulted in the release of about 60,000 tons of heavy oil. The oil-spill provoked a serious environmental impact in Spanish and French coasts, which biological consequences are still being assessed. In this study we address the temporal dynamics of genetic diversity in some mussel populations impacted by the oil-spill. Changes in genetic diversity can be measured in natural populations provided that serial samples are available from before (year 2000) and after (years 2003, 2005) the oil-spill. Analyses of seven microsatellites indicate a weak but significant increase of genetic variation after the spill. This phenomenon is interpreted herein in terms of a balance between a enhanced genome mutability on microsatellite variation and a low genetic drift due to toxicants and asphyxia although other stochastic phenomena cannot be ruled out. Per locus annotation showed that in spite of the allelic changes observed in the period 2000-2005, the final size of most allelic series remained quite alike to those of year 2000. Present genetic data suggest that the genotoxic impact of the Prestige spill did not compromise the genetic diversity of studied mussel populations, at least regarding the genetic markers analysed.

  17. Genetic parameter estimates for serum insulin-like growth factor-I concentration and carcass traits in Angus beef cattle.

    PubMed

    Davis, M E; Simmen, R C

    2000-09-01

    Divergent selection for serum insulin-like growth factor-I (IGF-I) concentration began at the Eastern Ohio Resource Development Center (EORDC) in 1989 using 100 spring-calving (50 high line and 50 low line) and 100 fall-calving (50 high line and 50 low line) purebred Angus cows. Following weaning, bull and heifer calves were fed in drylot for a 140-d postweaning period. At the conclusion of the postweaning test, bulls not selected for breeding were slaughtered and carcass data were collected at a commercial abbatoir. At the time of this analysis, IGF-I measurements were available for 1,283 bull and heifer calves, and carcass data were available for 452 bulls. A set of multiple-trait, derivative-free, restricted maximum likelihood (MTDFREML) computer programs were used for data analysis. Estimates of direct heritability for IGF-I concentration at d 28, 42, and 56 of the postweaning period, and for mean IGF-I concentration were .32, .59, .31, and .42, respectively. Direct heritabilities for carcass traits ranged from .27 to 1.0, .26 to 1.0, and .23 to 1.0 when the age-, fat-, and weight-constant end points, respectively, were used, with marbling score having the smallest heritability and longissimus muscle area having the highest heritability in each case. Maternal heritability and the proportion of phenotypic variance due to permanent environmental effect of dam generally were < or = .21 for IGF-I concentrations and for carcass traits other than longissimus muscle area. Additive genetic correlations of IGF-I concentrations with backfat thickness, longissimus muscle area, hot carcass weight, marbling score, quality grade, and yield grade averaged -.26, .19, -.04, -.53, -.45, and -.27, respectively, when carcass data were adjusted to an age-constant end point. Bulls with lower IGF-I concentrations had higher marbling scores and quality grades, but also had higher backfat thickness and yield grades regardless of the slaughter end point. Serum IGF-I concentration may be

  18. A Preliminary Study of Genetic Variation in Populations of Monstera adansonii var. klotzschiana (Araceae) from North-East Brazil, Estimated with AFLP Molecular Markers

    PubMed Central

    Andrade, I. M.; Mayo, S. J.; van den Berg, C.; Fay, M. F.; Chester, M.; Lexer, C.; Kirkup, D.

    2007-01-01

    Background and Aims This study sought genetic evidence of long-term isolation in populations of Monstera adansonii var. klotzschiana (Araceae), a herbaceous, probably outbreeding, humid forest hemi-epiphyte, in the brejo forests of Ceará (north-east Brazil), and clarification of their relationships with populations in Amazonia and the Atlantic forest of Brazil. Methods Within-population genetic diversity and between-population dissimilarity were estimated using AFLP molecular markers in 75 individuals from eight populations located in Ceará, the Brazilian Atlantic Forest and Amazonia. Key Results The populations showed a clinal pattern of weak genetic differentiation over a large geographical region (FST = 0·1896). A strong correlation between genetic and geographical distance (Mantel test: r = 0·6903, P = 0·002) suggests a historical pattern of isolation by distance. Genetic structure analysis revealed at least two distinct gene pools in the data. The two isolated Ceará populations are significantly different from each other (pairwise ΦPT = 0·137, P = 0·003) and as diverse (Nei's gene diversity, average He = 0·1832, 0·1706) as those in the Atlantic and Amazon forest regions. The population in southern Brazil is less diverse (Nei's gene diversity, average He = 0·127) than the rest. The Ceará populations are related to those of the Atlantic forest rather than those from Amazonia (AMOVA, among-groups variation = 11·95 %, P = 0·037). Conclusions The gene pools detected within an overall pattern of clinal variation suggest distinct episodes of gene flow, possibly correlated with past humid forest expansions. The Ceará populations show no evidence of erosion of genetic diversity, although this was expected because of their isolation. Their genetic differentiation and relatively high diversity reinforce the importance of conserving the endangered brejo forests. PMID:17823112

  19. [Individual identification of Amur leopards (Panthera pardus orientalis) using molecular-genetic methods and estimation of the population].

    PubMed

    Rozhnov, V V; Sorokin, P A; Lukarevskiĭ, V S; Naĭdenko, S V; Ernandes-Blanko, Kh A; Lukarevskiĭ, S V

    2013-01-01

    For the first time, the genetic structure of a population of Amur leopards (Panthera pardus orientalis) in southwest Primorie was analyzed in detail. In 2010-2012, 23 individuals were identified individually. It was shown that the studied microsatellite markers are suitable for individual identification of leopards, monitoring the population numbers, and creating a unified database of genetic profiles of this species to solve research and nature-preserving tasks.

  20. Indirect genetic effects influence antipredator behavior in guppies: estimates of the coefficient of interaction psi and the inheritance of reciprocity.

    PubMed

    Bleakley, Bronwyn H; Brodie, Edmund D

    2009-07-01

    How and why cooperation evolves, particularly among nonrelatives, remains a major paradox for evolutionary biologists and behavioral ecologists. Although much attention has focused on fitness consequences associated with cooperating, relatively little is known about the second component of evolutionary change, the inheritance of cooperation or reciprocity. The genetics of behaviors that can only be expressed in the context of interactions are particularly difficult to describe because the relevant genes reside in multiple social partners. Indirect genetic effects (IGEs) describe the influence of genes carried in social partners on the phenotype of a focal individual and thus provide a novel approach to quantifying the genetics underlying interactions such as reciprocal cooperation. We used inbred lines of guppies and a novel application of IGE theory to describe the dual genetic control of predator inspection and social behavior, both classic models of reciprocity. We identified effects of focal strain, social group strain, and interactions between focal and group strains on variation in focal behavior. We measured psi, the coefficient of the interaction, which describes the degree to which an individual's phenotype is influenced by the phenotype of its social partners. The genetic identity of social partners substantially influences inspection behavior, measures of threat assessment, and schooling and does so in positively reinforcing manner. We therefore demonstrate strong IGEs for antipredator behavior that represent the genetic variation necessary for the evolution of reciprocity.

  1. Genetic admixture, self-reported ethnicity, self-estimated admixture, and skin pigmentation among Hispanics and Native Americans.

    PubMed

    Klimentidis, Yann C; Miller, Geoffrey F; Shriver, Mark D

    2009-04-01

    The relationship between ethnicity and biology is of interest to anthropologists, biomedical scientists, and historians in understanding how human groups are constructed. Ethnic self-identification in recently admixed groups such as Hispanics, African Americans, and Native Americans (NA) is likely to be complex due to the heterogeneity in individual admixture proportions and social environments within these groups. This study examines the relationships between self-identified ethnicity, self-estimated admixture proportions, skin pigmentation, and genetic marker estimated admixture proportions. These measures were assessed using questionnaires, skin color measurements, and genotyping of a panel of 76 ancestry informative markers, among 170 Hispanics and NAs from New Mexico, a state known for its complex history of interactions between people of NA and European (EU) ancestry. Results reveal that NAs underestimate their degree of EU admixture, and that Hispanics underestimate their degree of NA admixture. Within Hispanics, genetic-marker estimated admixture is better predicted by forehead skin pigmentation than by self-estimated admixture. We also find that Hispanic individuals self-identified as "half-White, half Hispanic" and "Spanish" have lower levels of NA admixture than those self-identified as "Mexican" and "Mexican American." Such results highlight the interplay between culture and biology in how individuals identify and view themselves, and have implications for how ethnicity and disease risk are assessed in a medical setting. PMID:18951390

  2. [Hyper spectral estimation method for soil alkali hydrolysable nitrogen content based on discrete wavelet transform and genetic algorithm in combining with partial least squares DWT-GA-PLS)].

    PubMed

    Chen, Hong-Yan; Zhao, Geng-Xing; Li, Xi-Can; Wang, Xiang-Feng; Li, Yu-Ling

    2013-11-01

    Taking the Qihe County in Shandong Province of East China as the study area, soil samples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and compressed by discrete wavelet transform (DWT), the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation models for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model variables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen content. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrum variables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2 being 0.85, the RMSE being 8.11 mg x kg(-1), and RPD being 2.53, indicating the effectiveness of DWT-GA-PLS method in estimating soil alkali hydrolysable nitrogen content.

  3. Heritability estimate and genetic correlations of reproductive features in Nellore bulls, offspring of super precocious, precocious and normal cows under extensive farming conditions.

    PubMed

    Siqueira, J B; Oba, E; Pinho, R O; Quintino, H P; Eler, J P; Miranda Neto, T; Guimarães, S E F; Guimarães, J D

    2012-04-01

    The present work aimed to estimate heritability and genetic correlations of reproductive features of Nellore bulls, offspring of mothers classified as superprecocious (M1), precocious (M2) and normal (M3). Twenty one thousand hundred and eighty-six animals with average age of 21.29 months were used, evaluated through the breeding soundness evaluation from 1999 to 2008. The breeding soundness features included physical semen evaluation (progressive sperm motility and sperm vigour), semen morphology (major, minor and total sperm defects), scrotal circumference (SC), testicular volume (TV) and SC at 18 months of age (SC18). The components of variance, heritability and genetic correlations for and between the features were estimated simultaneously by restricted maximum likelihood, with the use of the vce software system vs 6. The heritability estimates were high for SC18, SC and TV (0.43, 0.63 and 0.54; 0.45, 0.45 and 0.44; 0.42, 0.45 and 0.41, respectively for the categories of mothers M1, M2 and M3) and low for physical and morphological semen aspects. The genetic correlations between SC18 and SC were high, as well as between these variables with TV. High and positive genetic correlations were recorded among SC18, SC and TV with the physical aspects of the semen, although no favourable association was verified with the morphological aspects, for the three categories of mothers. It can be concluded that the mother's sexual precocity did not affect the heritability of their offspring reproduction features.

  4. Variance Components and Genetic Parameters Estimated for Fat and Protein Content in Individual Months of Lactation: The Case of Tsigai Sheep.

    PubMed

    Oravcová, Marta

    2016-02-01

    The objective of this study was to assess variance components and genetic parameters for fat and protein content in Tsigai sheep using multivariate animal models in which fat and protein content in individual months of lactation were treated as different traits, and univariate models in which fat and protein content were treated as repeated measures of the same traits. Test day measurements were taken between the second and the seventh month of lactation. The fixed effects were lactation number, litter size and days in milk. The random effects were animal genetic effect and permanent environmental effect of ewe. The effect of flock-year-month of test day measurement was fitted either as a fixed (FYM) or random (fym) effect. Heritabilities for fat content were estimated between 0.06 and 0.17 (FYM fitted) and between 0.06 and 0.11 (fym fitted). Heritabilities for protein content were estimated between 0.15 and 0.23 (FYM fitted) and between 0.10 and 0.18 (fym fitted). For fat content, variance ratios of permanent environmental effect of ewe were estimated between 0.04 and 0.11 (FYM fitted) and between 0.02 and 0.06 (fym fitted). For protein content, variance ratios of permanent environmental effect of ewe were estimated between 0.13 and 0.20 (FYM fitted) and between 0.08 and 0.12 (fym fitted). The proportion of phenotypic variance explained by fym effect ranged from 0.39 to 0.43 for fat content and from 0.25 to 0.36 for protein content. Genetic correlations between individual months of lactation ranged from 0.74 to 0.99 (fat content) and from 0.64 to 0.99 (protein content). Fat content heritabilities estimated with univariate animal models roughly corresponded with heritability estimates from multivariate models: 0.13 (FYM fitted) and 0.07 (fym fitted). Protein content heritabilities estimated with univariate animal models also corresponded with heritability estimates from multivariate models: 0.18 (FYM fitted) and 0.13 (fym fitted).

  5. Sand and nest temperatures and an estimate of hatchling sex ratio from the Heron Island green turtle ( Chelonia mydas) rookery, Southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Booth, David T.; Freeman, Candida

    2006-11-01

    Sand and nest temperatures were monitored during the 2002-2003 nesting season of the green turtle, Chelonia mydas, at Heron Island, Great Barrier Reef, Australia. Sand temperatures increased from ˜ 24°C early in the season to 27-29°C in the middle, before decreasing again. Beach orientation affected sand temperature at nest depth throughout the season; the north facing beach remained 0.7°C warmer than the east, which was 0.9°C warmer than the south, but monitored nest temperatures were similar across all beaches. Sand temperature at 100 cm depth was cooler than at 40 cm early in the season, but this reversed at the end. Nest temperatures increased 2-4°C above sand temperatures during the later half of incubation due to metabolic heating. Hatchling sex ratio inferred from nest temperature profiles indicated a strong female bias.

  6. Estimate of the optimum weight ratio in zero-valent iron/pumice granular mixtures used in permeable reactive barriers for the remediation of nickel contaminated groundwater.

    PubMed

    Calabrò, P S; Moraci, N; Suraci, P

    2012-03-15

    This paper presents the results of laboratory column tests aimed at defining the optimum weight ratio of zero-valent iron (ZVI)/pumice granular mixtures to be used in permeable reactive barriers (PRBs) for the removal of nickel from contaminated groundwater. The tests were carried out feeding the columns with aqueous solutions of nickel nitrate at concentrations of 5 and 50 mg/l using three ZVI/pumice granular mixtures at various weight ratios (10/90, 30/70 and 50/50), for a total of six column tests; two additional tests were carried out using ZVI alone. The most successful compromise between reactivity (higher ZVI content) and long-term hydraulic performance (higher Pumice content) seems to be given by the ZVI/pumice granular mixture with a 30/70 weight ratio.

  7. Estimation of genetic parameters for measures of calf survival in a population of Holstein heifer calves from a heifer-raising facility in New York State.

    PubMed

    Henderson, L; Miglior, F; Sewalem, A; Kelton, D; Robinson, A; Leslie, K E

    2011-01-01

    The objectives of this study were to estimate the genetic parameters of survival to weaning and survival to exit for a population of Holstein calves from New York State, as well as to associate the estimated breeding values determined in the current study with traits from ongoing genetic evaluations used in Canada and the United States. Data were recorded for 7,372 heifer calves at a commercial rearing facility in New York State from arrival at 1 to 7 d of age for the duration of stay at the facility (on average, heifers departed the facility 1 mo before calving). Performance and disease up to weaning and mortality before and after weaning were recorded. Analyzed data were limited to daughters of sires with at least 10 calves originating from farms that had sent a minimum of 5 calves to be raised at the facility. As such, calves from 264 sires and 36 herds were studied using 2 statistical methods. The first method, calf survival, used a Weibull proportional hazards model, with survival defined as age at culling, death, or censoring. The second method, a 2-trait sire model, included survival from arrival to weaning (SUV1) and survival from weaning to exit (SUV2). Both models included fixed effects of arrival weight, serum total protein, weaning weight, season and year of birth, and calving ease score. Herd and sire were included as random effects. Significant associations among all fixed effects and calf survival were observed. In general, very light or heavy weight at arrival, low total protein, low weaning weight, and difficult birth increased risk of mortality for calves. The heritability of survival from the first method was 0.063. The heritabilities from the linear model were 0.001 for SUV1 and 0.036 for SUV2. The genetic correlation between SUV1 and SUV2 was 0.58. Genetic variance was close to zero for survival of calves to weaning, but was greater for survival after weaning through the growing period. Breeding values were estimated for SUV1 and SUV2 and

  8. Application of multivariate heavy-tailed distributions to residuals in the estimation of genetic parameters of growth traits in beef cattle.

    PubMed

    Peters, S O; Kizilkaya, K; Garrick, D J; Fernando, R L; Pollak, E J; De Donato, M; Hussain, T; Imumorin, I G

    2013-04-01

    Assumptions of normality in most animal breeding applications may make inferences vulnerable to the presence of outliers. Heavy-tail densities are viable alternatives to normal distributions and provide robustness against unusual or outlying observations when used to model the densities of residual effects. Our objective is to compare estimates of genetic parameters by fitting multivariate normal (MN) or heavy-tail distributions [multivariate Student's t (MSt) and multivariate slash (MS)] for residuals in data of body birth weight (BBW), weaning (WW), and yearling (YW) weight traits in beef cattle. A total of 17,019 weight records for BBW, WW, and YW from 1998 through 2010 from a large commercial cow/calf operation in the sand hills of Nebraska were analyzed. Models included fixed effects of contemporary group and sire breed whereas animal and maternal effects were random and the degrees of freedom (v) was treated as unknown for MSt and MS. Model comparisons using deviance information criteria (DIC) favored MSt over MS and MN models, respectively. The posterior means [and 95% posterior probability intervals (PPI)] of v for the MSt and MS models were 5.28 (4.80, 5.85) and 1.88 (1.76, 2.00), respectively. Smaller values of posterior densities of v for MSt and MS models confirm that the assumption of normally distributed residuals is not adequate for the analysis of BBW, WW, and YW datasets. Posterior mean (PM) and posterior median (PD) estimates of direct and maternal genetic variances were the same and posterior densities of these parameters were found to be symmetric. The 95% PPI estimates from MN and MSt models for BBW did not overlap, which indicates significant difference between PM estimates from MN or MSt models. The observed antagonistic relationship between additive direct and additive maternal effects indicated that genetic evaluation and selection strategies will be sensitive to the assumed model for residuals. PMID:23408820

  9. Application of multivariate heavy-tailed distributions to residuals in the estimation of genetic parameters of growth traits in beef cattle.

    PubMed

    Peters, S O; Kizilkaya, K; Garrick, D J; Fernando, R L; Pollak, E J; De Donato, M; Hussain, T; Imumorin, I G

    2013-04-01

    Assumptions of normality in most animal breeding applications may make inferences vulnerable to the presence of outliers. Heavy-tail densities are viable alternatives to normal distributions and provide robustness against unusual or outlying observations when used to model the densities of residual effects. Our objective is to compare estimates of genetic parameters by fitting multivariate normal (MN) or heavy-tail distributions [multivariate Student's t (MSt) and multivariate slash (MS)] for residuals in data of body birth weight (BBW), weaning (WW), and yearling (YW) weight traits in beef cattle. A total of 17,019 weight records for BBW, WW, and YW from 1998 through 2010 from a large commercial cow/calf operation in the sand hills of Nebraska were analyzed. Models included fixed effects of contemporary group and sire breed whereas animal and maternal effects were random and the degrees of freedom (v) was treated as unknown for MSt and MS. Model comparisons using deviance information criteria (DIC) favored MSt over MS and MN models, respectively. The posterior means [and 95% posterior probability intervals (PPI)] of v for the MSt and MS models were 5.28 (4.80, 5.85) and 1.88 (1.76, 2.00), respectively. Smaller values of posterior densities of v for MSt and MS models confirm that the assumption of normally distributed residuals is not adequate for the analysis of BBW, WW, and YW datasets. Posterior mean (PM) and posterior median (PD) estimates of direct and maternal genetic variances were the same and posterior densities of these parameters were found to be symmetric. The 95% PPI estimates from MN and MSt models for BBW did not overlap, which indicates significant difference between PM estimates from MN or MSt models. The observed antagonistic relationship between additive direct and additive maternal effects indicated that genetic evaluation and selection strategies will be sensitive to the assumed model for residuals.

  10. Implications of the Hiroshima-Nagasaki genetic studies for the estimation of the human "doubling dose" of radiation.

    PubMed

    Neel, J V; Schull, W J; Awa, A A; Satoh, C; Otake, M; Kato, H; Yoshimoto, Y

    1989-01-01

    Since 1946 a continuous effort to evaluate the potential genetic effects of the atomic bombs has been sustained. Observations on children born in Hiroshima and Nagasaki include sex ratio, congenital malformations, stillbirths, survival of liveborn infants, chromosomal abnormalities (sex chromosomal abnormalities and balanced chromosomal rearrangements), mutations altering protein structure or activity, and physical growth and development. There are no statistically significant differences between the children of parents who received increased amounts of radiation at the time of the bombings and those whose parents did not. However, the difference between the two sets of children is consistent with the hypothesis of a genetic effect of the exposure, but its magnitude suggests humans are not as sensitive to the genetic effects of radiation as projected from the mouse paradigm.

  11. Annual recapture and survival rates of two non-breeding adult populations of Roseate Terns Stema dougallii captured on the Great Barrier Reef, Australia, and estimates of their population sizes

    USGS Publications Warehouse

    O'Neill, P.; Minton, C.D.T.; Nisbet, I.C.T.; Hines, J.E.

    2008-01-01

    Capture-recapture data from two disparate breeding populations of Roseate Terns (Sterna dougallii) captured together as non-breeding individuals from 2002 to 2007 in the southern Great Barrier Reef. Australia were analyzed for both survival rate and recapture rate. The average annual survival rate for the birds from the Asian population (S. d. bangsi) (0.901) is higher than that of the other population of unknown breeding origin (0.819). There was large variability in survival in both populations among years, but the average survival rate of 0.85 is similar to estimates for the same species in North America. The Cormack-Jolly-Seber models used in program MARK to estimate survival rates also produced estimated of recapture probabilities and population sizes. These estimates of population size were 29,000 for S. D. bangsi and 8,300 for the study area and much larger than the documented numbers in the likely breeding areas, suggesting that many breeding sites are currently unknown.

  12. Development of single nucleotide polymorphism (SNP) markers from the mango (Mangiferaindica) transcriptome for mapping and estimation of genetic diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of resources for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here a first step in developing such resources, our identification of thousands una...

  13. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L.) Estimated by SSR, DArT and Pedigree Data

    PubMed Central

    Laidò, Giovanni; Mangini, Giacomo; Taranto, Francesca; Gadaleta, Agata; Blanco, Antonio; Cattivelli, Luigi; Marone, Daniela; Mastrangelo, Anna M.; Papa, Roberto; De Vita, Pasquale

    2013-01-01

    Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles. PMID:23826256

  14. Genetic variability among isolates of Listeria monocytogenes from food products, clinical samples and processing environments, estimated by RAPD typing.

    PubMed

    Martinez, Iciar; Rørvik, Liv Marit; Brox, Vigdis; Lassen, Jørgen; Seppola, Marit; Gram, Lone; Fonnesbech-Vogel, Birte

    2003-08-01

    RAPD analysis with four primers was used to examine the genetic relationship among 432 strains of Listeria monocytogenes isolated from clinical and veterinarian cases of listeriosis, dairy, vegetable, meat- and fish-based food items, environmental samples and samples collected from one transport terminal, one poultry-processing company and four Atlantic salmon-processing plants. The purpose of the study was to determine whether clinical isolates belonged to a specific genetic group, whether links could be made between food groups and clinical cases and whether specific genetic groups were associated with specific food products or processing units. There was great genetic variability among the isolates, which produced a total of 141 RAPD composites based on the RAPD analysis with four primers. The RAPD composites divided in two major clusters and clinical isolates were evenly distributed in both of them. None of the isolates from food products had the same RAPD composite as isolates from human patients, thus, no particular food commodity could be linked to clinical cases. Each food-processing environment was contaminated with more than one RAPD composite and the genetic variability found within each company was, in most cases, of approximately the same magnitude as the variability found when considering all the samples. In each plant, one or a few types persisted over time, indicating the presence of an established in-house flora. Our results indicate that most of the analysed cases of listeriosis were sporadic and, further, that these cases cannot be traced to a few specific food sources. We also found that no particular RAPD composite was better suited for survival in specific food types or food-processing environments, indicating that although differences may be found in virulence properties of individual strains, all L. monocytogenes must be treated as potentially harmful. PMID:12810292

  15. In silico exploration of the impact of pasture larvae contamination and anthelmintic treatment on genetic parameter estimates for parasite resistance in grazing sheep.

    PubMed

    Laurenson, Y C S M; Kyriazakis, I; Bishop, S C

    2012-07-01

    A mathematical model was developed to investigate the impact of level of Teladorsagia circumcincta larval pasture contamination and anthelmintic treatment on genetic parameter estimates for performance and resistance to parasites in sheep. Currently great variability is seen for published correlations between performance and resistance, with estimates appearing to vary with production environment. The model accounted for host genotype and parasitism in a population of lambs, incorporating heritable between-lamb variation in host-parasite interactions, with genetic independence of input growth and immunological variables. An epidemiological module was linked to the host-parasite interaction module via food intake (FI) to create a grazing scenario. The model was run for a population of lambs growing from 2 mo of age, grazing on pasture initially contaminated with 0, 1,000, 3,000, or 5,000 larvae/kg DM, and given either no anthelmintic treatment or drenched at 30-d intervals. The mean population values for FI and empty BW (EBW) decreased with increasing levels of initial larval contamination (IL(0)), with non-drenched lambs having a greater reduction than drenched ones. For non-drenched lambs the maximum mean population values for worm burden (WB) and fecal egg count (FEC) increased and occurred earlier for increasing IL(0), with values being similar for all IL(0) at the end of the simulation. Drenching was predicted to suppress WB and FEC, and cause reduced pasture contamination. The heritability of EBW for non-drenched lambs was predicted to be initially high (0.55) and decreased over time with increasing IL(0), whereas drenched lambs remained high throughout. The heritability of WB and FEC for all lambs was initially low (∼0.05) and increased with time to ∼0.25, with increasing IL(0) leading to this value being reached at faster rates. The genetic correlation between EBW and FEC was initially ∼-0.3. As time progressed the correlation tended towards 0, before

  16. Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers.

    PubMed

    Cockrum, R R; Speidel, S E; Salak-Johnson, J L; Chase, C C L; Peel, R K; Weaber, R L; Loneagan, G H; Wagner, J J; Boddhireddy, P; Thomas, M G; Prayaga, K; DeNise, S; Enns, R M

    2016-07-01

    Bovine respiratory disease complex (i.e., shipping fever and bacterial bronchopneumonia) is a multifaceted respiratory illness influenced by numerous environmental factors and microorganisms. Bovine respiratory disease (BRD) is just one component of BRD complex. Because BRD is moderately heritable, it may be possible to reduce the incidence of BRD through genetic selection. The objectives of this study were to determine the heritability and associative genetic relationships among immune system traits (i.e., cortisol, total IgG, IgG isotypes, and IL-8) in cattle monitored for BRD incidence. At an average of 83 d after weaning (219 d age and mean = 221.7 kg [SD 4.34]), crossbred steer calves ( = 2,869) were received at a commercial feedlot in southeastern Colorado over a 2-yr period. At receiving, jugular blood samples were collected at 212 (yr 1) and 226 d (yr 2) of age for immune trait analyses. The BRD phenotype was defined as a binomial variable (0 = no and 1 = yes) and compared with immune system traits measured at receiving (prior to illness onset). An animal identified as BRD positive exhibited ≥ 2 clinical signs (i.e., eye or nasal discharge, cough, lethargy, rapid breathing, acute interstitial pneumonia, or acute upper respiratory syndrome and/or a rectal temperature > 39.7°C). Heritability and genetic correlation estimates for categorical variable BRD, cortisol, IgG, IgG1, IgG2, and IL-8 were estimated from a sire model using ASREML. Heritability estimates were low to moderate for BRD (0.17 ± 0.08), cortisol (0.13 ± 0.05), IgG (0.15 ± 0.05), IgG1 (0.11 ± 0.05), IgG2 (0.24 ± 0.06), and IL-8 (0.30 ± 0.06). A moderate negative genetic correlation was determined between BRD and cortisol ( = -0.19 ± 0.32). Moderate positive correlations were found between BRD with IgG (0.42 ± 0.28), IgG1 (0.36 ± 0.32), and IL-8 ( = 0.26 ± 0.26). Variation in the BRD phenotype and immune system traits suggested herd health improvement may be achieved through genetic

  17. Estimation of Genetic Parameters and Trends for Length of Productive Life and Lifetime Production Traits in a Commercial Landrace and Yorkshire Swine Population in Northern Thailand

    PubMed Central

    Noppibool, Udomsak; Elzo, Mauricio A.; Koonawootrittriron, Skorn; Suwanasopee, Thanathip

    2016-01-01

    The objective of this research was to estimate genetic parameters and trends for length of productive life (LPL), lifetime number of piglets born alive (LBA), lifetime number of piglets weaned (LPW), lifetime litter birth weight (LBW), and lifetime litter weaning weight (LWW) in a commercial swine farm in Northern Thailand. Data were gathered during a 24-year period from July 1989 to August 2013. A total of 3,109 phenotypic records from 2,271 Landrace (L) and 838 Yorkshire sows (Y) were analyzed. Variance and covariance components, heritabilities and correlations were estimated using an Average Information Restricted Maximum Likelihood (AIREML) procedure. The 5-trait animal model contained the fixed effects of first farrowing year-season, breed group, and age at first farrowing. Random effects were sow and residual. Estimates of heritabilities were medium for all five traits (0.17±0.04 for LPL and LBA to 0.20±0.04 for LPW). Genetic correlations among these traits were high, positive, and favorable (p<0.05), ranging from 0.93±0.02 (LPL-LWW) to 0.99±0.02 (LPL-LPW). Sow genetic trends were non-significant for LPL and all lifetime production traits. Sire genetic trends were negative and significant for LPL (−2.54±0.65 d/yr; p = 0.0007), LBA (−0.12±0.04 piglets/yr; p = 0.0073), LPW (−0.14±0.04 piglets/yr; p = 0.0037), LBW (−0.13±0.06 kg/yr; p = 0.0487), and LWW (−0.69±0.31 kg/yr; p = 0.0365). Dam genetic trends were positive, small and significant for all traits (1.04±0.42 d/yr for LPL, p = 0.0217; 0.16±0.03 piglets/yr for LBA, p<0.0001; 0.12±0.03 piglets/yr for LPW, p = 0.0002; 0.29±0.04 kg/yr for LBW, p<0.0001 and 1.23±0.19 kg/yr for LWW, p<0.0001). Thus, the selection program in this commercial herd managed to improve both LPL and lifetime productive traits in sires and dams. It was ineffective to improve LPL and lifetime productive traits in sows. PMID:26954115

  18. Association mapping of complex diseases in linked regions: estimation of genetic effects and feasibility of testing rare variants.

    PubMed

    Wang, William Y S; Cordell, Heather J; Todd, John A

    2003-01-01

    Association mapping in linked regions is a current major approach for the identification of genes for complex diseases. Loci contributing to linkage, even with small values of sibling recurrence risk (lambda(s)), may be equivalent to substantial underlying genetic effects for association studies. For disease alleles with a frequency as low as 1%, highly reliable association studies (80% power for significance level alpha=10(-6)) require only 277, 781, and 1289 families or cases and controls for loci detected with lambda(s) of 1.5, 1.1, and 1.05, respectively, under a multiplicative genetic model. Under alternative models, provided epistatic effects are minor, larger achievable sample sizes will provide sufficient power to map almost any disease gene that may have initially contributed to linkage.

  19. ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data

    PubMed Central

    2011-01-01

    Background With next-generation sequencing technologies, experiments that were considered prohibitive only a few years ago are now possible. However, while these technologies have the ability to produce enormous volumes of data, the sequence reads are prone to error. This poses fundamental hurdles when genetic diversity is investigated. Results We developed ShoRAH, a computational method for quantifying genetic diversity in a mixed sample and for identifying the individual clones in the population, while accounting for sequencing errors. The software was run on simulated data and on real data obtained in wet lab experiments to assess its reliability. Conclusions ShoRAH is implemented in C++, Python, and Perl and has been tested under Linux and Mac OS X. Source code is available under the GNU General Public License at http://www.cbg.ethz.ch/software/shorah. PMID:21521499

  20. Genetics of host plant use and life history in the comma butterfly across Europe: varying modes of inheritance as a potential reproductive barrier.

    PubMed

    Nygren, G H; Nylin, S; Stefanescu, C

    2006-11-01

    Comma butterflies (Nymphalidae: Polygonia c-album L.) from one Belgian site and three Spanish sites were crossed with butterflies from a Swedish population in order to investigate inheritance of female host plant choice, egg mass and larval growth rate. We found three different modes of inheritance for the three investigated traits. In line with earlier results from crosses between Swedish and English populations, the results regarding female oviposition preference (choice between Urtica dioica and Salix caprea) showed X-linked inheritance to be of importance for the variation between Sweden and the other sites. Egg mass and growth rate did not show any sex-linked inheritance. Egg mass differences between populations seem to be controlled mainly by additive autosomal genes, as hybrids showed intermediate values. The growth rates of both hybrid types following reciprocal crossings were similar to each other but consistently higher than for the two source populations, suggesting a nonadditive mode of inheritance which is not sex-linked. The different modes of inheritance for host plant preference vs. important life history traits are likely to result in hybrids with unfit combinations of traits. This type of potential reproductive barrier based on multiple ecologically important traits deserves more attention, as it should be a common situation for instance in the early stages of population divergence in host plant usage, facilitating ecological speciation. PMID:17040385

  1. Genetic structure and indirect estimates of gene flow in three taxa of Cucurbita (Cucurbitaceae) in western Mexico.

    PubMed

    Montes-Hernandez, Salvador; Eguiarte, Luis E

    2002-07-01

    Cultivated squash (Cucurbita argyrosperma ssp. argyrosperma and C. moschata) are important in the Mexican traditional agroecosystem. They are typically cultivated within maize fields where adjacent populations of a wild, close relative, C. argyrosperma ssp. sororia, occur. Consequently, there are ample opportunities for gene flow between domesticated and free-living Cucurbita populations. We used allozymes to examine genetic variation and gene flow among these three Cucurbita taxa in the state of Jalisco in Western Mexico. Twelve polymorphic allozyme loci were used to calculate genetic diversity for 16 populations of Cucurbita. We found high levels of genetic variation: polymorphism of 0.96, mean allelic diversity of 2.08, average expected heterozygosity 0.407, and little differentiation among conspecific populations (D = 0.081; F(ST) = 0.087; N(e)m = 5.22). These findings indicate that Cucurbita possess a high pollen dispersal potential, a somewhat surprising result considering they have specialist pollinators. Unweighted pair group method with arithmetic means (UPGMA) analysis of allozymes suggests the existence of at least two distinct groups of populations, one consisting of both subspecies of C. argyrosperma and another consisting of C. moschata.

  2. Sea surface temperature as a tracer to estimate cross-shelf turbulent diffusivity and flushing time in the Great Barrier Reef lagoon

    NASA Astrophysics Data System (ADS)

    Mao, Yadan; Ridd, Peter V.

    2015-06-01

    Accurate parameterization of spatially variable diffusivity in complex shelf regions such as the Great Barrier Reef (GBR) lagoon is an unresolved issue for hydrodynamic models. This leads to large uncertainties to the flushing time derived from them and to the evaluation of ecosystem resilience to terrestrially derived pollution. In fact, numerical hydrodynamic models and analytical cross-shore diffusion models have predicted very different flushing times for the GBR lagoon. Nevertheless, scarcity of in situ measurements used previously in the latter method prevents derivation of detailed diffusivity profiles. Here detailed cross-shore profiles of diffusivity were calculated explicitly in a closed form for the first time from the steady state transects of sea surface temperature for different sections of the GBR lagoon. We find that diffusivity remains relatively constant within the inner lagoon (<˜20 km) where tidal current is weak, and increases linearly with sufficiently large tidal amplitude in reef-devoid regions, but increases dramatically where the reef matrixes start and fluctuates with reef size and density. The cross-shelf profile of steady state salinity calculated using the derived diffusivity values agrees well with field measurements. The calculated diffusivity values are also consistent with values derived from satellite-tracked drifters. Flushing time by offshore diffusion is of the order of 1 month, suggesting the important role of turbulent diffusion in flushing the lagoon, especially in reef-distributed regions. The results imply that previous very large residence times predicted by numerical hydrodynamic models may result from underestimation of diffusivity. Our findings can guide parameterization of diffusivity in hydrodynamic modeling.

  3. Estimation of free energy barriers in the cytoplasmic and mitochondrial aspartate aminotransferase reactions probed by hydrogen-exchange kinetics of C alpha-labeled amino acids with solvent

    SciTech Connect

    Julin, D.A.; Wiesinger, H.; Toney, M.D.; Kirsch, J.F. )

    1989-05-02

    The existence of the postulated quinonoid intermediate in the cytoplasmic aspartate amino-transferase catalyzed transamination of aspartate to oxaloacetate was probed by determining the extent of transfer of tritium from the C alpha position of tritiated L-aspartate to pyridoxamine 5'-phosphate in single turnover experiments in which washout from the back-reaction was obviated by product trapping. The maximum amount of transferred tritium observed was 0.7%, consistent either with a mechanism in which a fraction of the net transamination reaction proceeds through a quinonoid intermediate or with a mechanism in which this intermediate is formed off the main reaction pathway. It is shown that transfer of labeled hydrogen from the amino acid to cofactor cannot be used to differentiate a stepwise from a concerted transamination mechanism. The amount of tritium transferred is a function of the rate constant for torsional equilibration about the epsilon-amino group of Lys-258, the presumptive abstractor of the C alpha proton; the relative rate constants for hydrogen exchange with solvent versus cofactor protonation; and the tritium isotope effect on this ratio. The free energy barriers facing the covalent intermediate between aldimine and keto acid product (i.e., ketimine and possibly quinonoid) were evaluated relatively by comparing the rates of C alpha-hydrogen exchange in starting amino acid with the rates of keto acid formation. The value of theta (= kexge/kprod) was found to be 2.6 for the reaction of cytoplasmic isozyme with aspartate and ca. 0.5 for that of the mitochondrial form with glutamate.

  4. Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement

    PubMed Central

    Bracken, Fiona S A; Hoelzel, A Rus; Hume, John B; Lucas, Martyn C

    2015-01-01

    The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater-resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater-resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine-scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater-resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater-resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers. PMID:25689694

  5. Contrasting population genetic structure among freshwater-resident and anadromous lampreys: the role of demographic history, differential dispersal and anthropogenic barriers to movement.

    PubMed

    Bracken, Fiona S A; Hoelzel, A Rus; Hume, John B; Lucas, Martyn C

    2015-03-01

    The tendency of many species to abandon migration remains a poorly understood aspect of evolutionary biology that may play an important role in promoting species radiation by both allopatric and sympatric mechanisms. Anadromy inherently offers an opportunity for the colonization of freshwater environments, and the shift from an anadromous to a wholly freshwater life history has occurred in many families of fishes. Freshwater-resident forms have arisen repeatedly among lampreys (within the Petromyzontidae and Mordaciidae), and there has been much debate as to whether anadromous lampreys, and their derived freshwater-resident analogues, constitute distinct species or are divergent ecotypes of polymorphic species. Samples of 543 European river lamprey Lampetra fluviatilis (mostly from anadromous populations) and freshwater European brook lamprey Lampetra planeri from across 18 sites, primarily in the British Isles, were investigated for 13 polymorphic microsatellite DNA loci, and 108 samples from six of these sites were sequenced for 829 bp of mitochondrial DNA (mtDNA). We found contrasting patterns of population structure for mtDNA and microsatellite DNA markers, such that low diversity and little structure were seen for all populations for mtDNA (consistent with a recent founder expansion event), while fine-scale structuring was evident for nuclear markers. Strong differentiation for microsatellite DNA loci was seen among freshwater-resident L. planeri populations and between L. fluviatilis and L. planeri in most cases, but little structure was evident among anadromous L. fluviatilis populations. We conclude that postglacial colonization founded multiple freshwater-resident populations with strong habitat fidelity and limited dispersal tendencies that became highly differentiated, a pattern that was likely intensified by anthropogenic barriers.

  6. Barrier Formation

    PubMed Central

    Lyaruu, D.M.; Medina, J.F.; Sarvide, S.; Bervoets, T.J.M.; Everts, V.; DenBesten, P.; Smith, C.E.; Bronckers, A.L.J.J.

    2014-01-01

    Enamel fluorosis is an irreversible structural enamel defect following exposure to supraoptimal levels of fluoride during amelogenesis. We hypothesized that fluorosis is associated with excess release of protons during formation of hypermineralized lines in the mineralizing enamel matrix. We tested this concept by analyzing fluorotic enamel defects in wild-type mice and mice deficient in anion exchanger-2a,b (Ae2a,b), a transmembrane protein in maturation ameloblasts that exchanges extracellular Cl− for bicarbonate. Defects were more pronounced in fluorotic Ae2a,b−/− mice than in fluorotic heterozygous or wild-type mice. Phenotypes included a hypermineralized surface, extensive subsurface hypomineralization, and multiple hypermineralized lines in deeper enamel. Mineral content decreased in all fluoride-exposed and Ae2a,b−/− mice and was strongly correlated with Cl−. Exposure of enamel surfaces underlying maturation-stage ameloblasts to pH indicator dyes suggested the presence of diffusion barriers in fluorotic enamel. These results support the concept that fluoride stimulates hypermineralization at the mineralization front. This causes increased release of protons, which ameloblasts respond to by secreting more bicarbonates at the expense of Cl− levels in enamel. The fluoride-induced hypermineralized lines may form barriers that impede diffusion of proteins and mineral ions into the subsurface layers, thereby delaying biomineralization and causing retention of enamel matrix proteins. PMID:24170372

  7. Bayesian systems-based genetic association analysis with effect strength estimation and omic wide interpretation: a case study in rheumatoid arthritis.

    PubMed

    Hullám, Gábor; Gézsi, András; Millinghoffer, András; Sárközy, Péter; Bolgár, Bence; Srivastava, Sanjeev K; Pál, Zsuzsanna; Buzás, Edit I; Antal, Péter

    2014-01-01

    Rich dependency structures are often formed in genetic association studies between the phenotypic, clinical, and environmental descriptors. These descriptors may not be standardized, and may encompass various disease definitions and clinical endpoints which are only weakly influenced by various (e.g., genetic) factors. Such loosely defined complex intermediate clinical phenotypes are typically used in follow-up candidate gene association studies, e.g., after genome-wide analysis, to deepen the understanding of the associations and to estimate effect strength. This chapter discusses a solid methodology, which is useful in such a scenario, by using probabilistic graphical models, namely, Bayesian networks in the Bayesian statistical framework. This method offers systematically scalable, comprehensive hierarchical hypotheses about multivariate relevance. We discuss its workflow: from data engineering to semantic publication of the results. We overview the construction, visualization, and interpretation of complex hypotheses related to the structural analysis of relevance. Furthermore, we illustrate the use of a dependency model-based relevance measure, which takes into account the structural properties of the model, for quantifying the effect strength. Finally, we discuss the "interpretational" or translational challenge of a genetic association study, with a focus on the fusion of heterogeneous omic knowledge to reintegrate the results into a genome-wide context. PMID:24706282

  8. Comparison of SSR and SNP Markers in Estimation of Genetic Diversity and Population Structure of Indian Rice Varieties

    PubMed Central

    Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R. K.; Singh, N. K.; Singh, Rakesh

    2013-01-01

    Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis. PMID:24367635

  9. Unraveling the Limits of Mitochondrial Control Region to Estimate the Fine Scale Population Genetic Differentiation in Anadromous Fish Tenualosa ilisha.

    PubMed

    Verma, Rashmi; Singh, Mahender; Kumar, Sudhir

    2016-01-01

    The mitochondrial control region has been the first choice for examining the population structure but hypervariability and homoplasy have reduced its suitability. We analysed eight populations using control region for examining the population structure of Hilsa. Although the control region analysis revealed broad structuring between the Arabian Sea and Bay of Bengal (F ST  0.0441, p < 0.001) it was unable to detect structure among riverine populations. These results suggest that the markers used must be able to distinguish populations and control region has led to an underestimation of genetic differentiation among populations of Hilsa. PMID:27313951

  10. Unraveling the Limits of Mitochondrial Control Region to Estimate the Fine Scale Population Genetic Differentiation in Anadromous Fish Tenualosa ilisha

    PubMed Central

    Verma, Rashmi; Singh, Mahender; Kumar, Sudhir

    2016-01-01

    The mitochondrial control region has been the first choice for examining the population structure but hypervariability and homoplasy have reduced its suitability. We analysed eight populations using control region for examining the population structure of Hilsa. Although the control region analysis revealed broad structuring between the Arabian Sea and Bay of Bengal (FST  0.0441, p < 0.001) it was unable to detect structure among riverine populations. These results suggest that the markers used must be able to distinguish populations and control region has led to an underestimation of genetic differentiation among populations of Hilsa. PMID:27313951

  11. Genetic Structuring across Marine Biogeographic Boundaries in Rocky Shore Invertebrates

    PubMed Central

    Villamor, Adriana; Costantini, Federica; Abbiati, Marco

    2014-01-01

    Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic) was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology. PMID:24983738

  12. Genetic structuring across marine biogeographic boundaries in rocky shore invertebrates.

    PubMed

    Villamor, Adriana; Costantini, Federica; Abbiati, Marco

    2014-01-01

    Biogeography investigates spatial patterns of species distribution. Discontinuities in species distribution are identified as boundaries between biogeographic areas. Do these boundaries affect genetic connectivity? To address this question, a multifactorial hierarchical sampling design, across three of the major marine biogeographic boundaries in the central Mediterranean Sea (Ligurian-Tyrrhenian, Tyrrhenian-Ionian and Ionian-Adriatic) was carried out. Mitochondrial COI sequence polymorphism of seven species of Mediterranean benthic invertebrates was analysed. Two species showed significant genetic structure across the Tyrrhenian-Ionian boundary, as well as two other species across the Ionian Sea, a previously unknown phylogeographic barrier. The hypothesized barrier in the Ligurian-Tyrrhenian cannot be detected in the genetic structure of the investigated species. Connectivity patterns across species at distances up to 800 km apart confirmed that estimates of pelagic larval dispersal were poor predictors of the genetic structure. The detected genetic discontinuities seem more related to the effect of past historical events, though maintained by present day oceanographic processes. Multivariate statistical tools were used to test the consistency of the patterns across species, providing a conceptual framework for across-species barrier locations and strengths. Additional sequences retrieved from public databases supported our findings. Heterogeneity of phylogeographic patterns shown by the 7 investigated species is relevant to the understanding of the genetic diversity, and carry implications for conservation biology. PMID:24983738

  13. Comparison of methods for estimates of molecular genetic diversity in genus Croton: influence of coefficients, clustering strategies and data projection.

    PubMed

    Scaldaferri, M M; Freitas, J S; Vieira, J G P; Gonçalves, Z S; Souza, A M; Cerqueira-Silva, C B M

    2014-01-01

    We investigated 10 similarity (and disimilarity) coefficients in a set of 40 wild genotypes of Croton linearifolius subjected to analyses using hierarchical grouping methods, grouping methods by optimization and data projection in two-dimensional space. Genotypes were characterized by analyzing DNA polymorphism with the use of 15 ISSR and 12 RAPD markers. The distance measurements were compared by the Spearman correlation test, projection in two-dimensional space and grouping efficiency evaluation. The Spearman correlation coefficients between the 10 coefficients evaluated were significant (P < 0.001) and indicated significant changes in genotype ranking due to type of coefficient used (0.76 ≤ rs ≤ 1). Wide variation was also observed in the efficiency of clustering methods, where the unweighted pair group method with arithmetic mean was the most suitable (0.3 ≤ D ≤ 1.5 ; 0.41 ≤ rc ≤ 0.77; 5.99 ≤ S ≤ 12.61). Projection efficiencies in two-dimensional space showed high-stress values (65 < S < 89%). Similar to the results observed for hierarchical clustering methods and for projection in two-dimensional space, the formation of groups with grouping methods by optimization showed variations when using different coefficients. We believe that the results confirm the influence of coefficients in studies of genetic diversity, showing the need to use criteria and standards for selecting appropriate methods for genetic studies of the genus Croton.

  14. A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors.

    PubMed

    Wilkinson, M J; Davenport, I J; Charters, Y M; Jones, A E; Allainguillaume, J; Butler, H T; Mason, D C; Raybould, A F

    2000-07-01

    One of the major environmental concerns over genetically modified (GM) crops relates to transgene movement into wild relatives. The pattern of hybridization ultimately affects the scale and rapidity of ecological change and the feasibility of containment. A new procedure for quantifying hybrid formation over large areas is described. Remote sensing was used to identify possible sites of sympatry between Brassica napus and its progenitor species across 15 000 km2 of south-east England in 1998. Two sympatric populations with B. rapa and one with B. oleracea were found over the entire survey area. Every newly recruited plant in these populations in 1999 was screened for hybrid status using flow cytometry and molecular analyses. One hybrid was observed from the 505 plants screened in the B. rapa populations but none of the nine B. oleracea recruits were hybrids. Measures to minimize gene flow are suggested, and a procedure for the post-release evaluation and containment of GM cultivars is proposed.

  15. Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum likelihood estimation of genetic parameters.

    PubMed

    Matilainen, Kaarina; Mäntysaari, Esa A; Lidauer, Martin H; Strandén, Ismo; Thompson, Robin

    2013-01-01

    Estimation of variance components by Monte Carlo (MC) expectation maximization (EM) restricted maximum likelihood (REML) is computationally efficient for large data sets and complex linear mixed effects models. However, efficiency may be lost due to the need for a large number of iterations of the EM algorithm. To decrease the computing time we explored the use of faster converging Newton-type algorithms within MC REML implementations. The implemented algorithms were: MC Newton-Raphson (NR), where the information matrix was generated via sampling; MC average information(AI), where the information was computed as an average of observed and expected information; and MC Broyden's method, where the zero of the gradient was searched using a quasi-Newton-type algorithm. Performance of these algorithms was evaluated using simulated data. The final estimates were in good agreement with corresponding analytical ones. MC NR REML and MC AI REML enhanced convergence compared to MC EM REML and gave standard errors for the estimates as a by-product. MC NR REML required a larger number of MC samples, while each MC AI REML iteration demanded extra solving of mixed model equations by the number of parameters to be estimated. MC Broyden's method required the largest number of MC samples with our small data and did not give standard errors for the parameters directly. We studied the performance of three different convergence criteria for the MC AI REML algorithm. Our results indicate the importance of defining a suitable convergence criterion and critical value in order to obtain an efficient Newton-type method utilizing a MC algorithm. Overall, use of a MC algorithm with Newton-type methods proved feasible and the results encourage testing of these methods with different kinds of large-scale problem settings.

  16. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier

    PubMed Central

    2010-01-01

    Kamchatka. Conclusions Unglaciated parts of the Eastern Austrian Alps and arctic Eurasia, including Beringia, served as major glacial refugia of the Eurasian A. lyrata lineage, whereas A. halleri and its various subspecies probably survived in refuges in Central Europe and Eastern Asia with a large distribution gap in between. The North American A. lyrata lineage probably survived the glaciation in the southeast of North America. The dramatic climatic changes during glaciation and deglaciation cycles promoted not only secondary contact and formation of the allopolyploid hybrid A. kamchatica, but also provided the environment that allowed this species to fill a large geographic gap separating the two genetically different A. lyrata lineages from Eurasia and North America. With our example focusing on the evolutionary history of the A. lyrata species complex, we add substantial information to a broad evolutionary framework for future investigations within this emerging model system in molecular and evolutionary biology. PMID:20377907

  17. Clavulanic acid production estimation based on color and structural features of Streptomyces clavuligerus bacteria using self-organizing map and genetic algorithm.

    PubMed

    Nurmohamadi, Maryam; Pourghassem, Hossein

    2014-05-01

    The utilization of antibiotics produced by Clavulanic acid (CA) is an increasing need in medicine and industry. Usually, the CA is created from the fermentation of Streptomycen Clavuligerus (SC) bacteria. Analysis of visual and morphological features of SC bacteria is an appropriate measure to estimate the growth of CA. In this paper, an automatic and fast CA production level estimation algorithm based on visual and structural features of SC bacteria instead of statistical methods and experimental evaluation by microbiologist is proposed. In this algorithm, structural features such as the number of newborn branches, thickness of hyphal and bacterial density and also color features such as acceptance color levels are extracted from the SC bacteria. Moreover, PH and biomass of the medium provided by microbiologists are considered as specified features. The level of CA production is estimated by using a new application of Self-Organizing Map (SOM), and a hybrid model of genetic algorithm with back propagation network (GA-BPN). The proposed algorithm is evaluated on four carbonic resources including malt, starch, wheat flour and glycerol that had used as different mediums of bacterial growth. Then, the obtained results are compared and evaluated with observation of specialist. Finally, the Relative Error (RE) for the SOM and GA-BPN are achieved 14.97% and 16.63%, respectively.

  18. Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of caucasians with insulin-dependent diabetes mellitus

    PubMed Central

    Thomson, Glenys; Robinson, Wendy P.; Kuhner, Mary K.; Joe, Sharon; MacDonald, Michael J.; Gottschall, Jerome L.; Barbosa, Jose; Rich, Stephen S.; Bertrams, Jörg; Baur, Max P.; Partanen, Jukka; Tait, Brian D.; Schober, Edith; Mayr, Wolfgang R.; Ludvigsson, Johnny; Lindblom, Bertil; Farid, Nadir R.; Thompson, Christine; Deschamps, Ingeborg

    1988-01-01

    From 11 studies, a total of 1,792 Caucasian probands with insulin-dependent diabetes mellitus (IDDM) are analyzed. Antigen genotype frequencies in patients, transmission from affected parents to affected children, and the relative frequencies of HLA-DR3 and -DR4 homozygous patients all indicate that DR3 predisposes in a “recessive”-like and DR4 in a “dominant”-like or “intermediate” fashion, after allowing for the DR3/DR4 synergistic effect. Removal of DR3 and DR4 reveals an overall protective effect of DR2, predisposing effects of DR1 and DRw8, and a slight protective effect of DR5 and a predisposing effect of DRw6. Analysis of affected-parent-to-affected-child data indicates that a subset of DR2 may predispose. The non-DR3, non-DR4 antigens are not independently associated with DR3 and DR4; the largest effect is a deficiency of DR2, followed by excesses of DR1, DRw8, and DRw6, in DR4 individuals, as compared with DR3 individuals. HLA-B locus distributions on patient haplotypes indicate that only subsets of both DR3 and DR4 are predisposing. The presence or absence of Asp at position 57 of the DQβ gene, recently implicated in IDDM predisposition, is not by itself sufficient to explain the inheritance of IDDM. At a minimum, the distinguishing features of the DR3-associated and DR4-associated predisposition remain to be identified at the molecular level. Risk estimates for sibs of probands are calculated based on an overall sibling risk of 6%; estimates for those sharing two, one, or zero haplotypes are 12.9%, 4.5%, and 1.8%, respectively. Risk estimates subdivided by the DR type of the proband are also calculated, the highest being 19.2% for sibs sharing two haplotypes with a DR3/DR4 proband. PMID:3057885

  19. Estimating genetic potential of biofuel forest hardwoods to withstand metal toxicity in industrial effluent under dry tropical conditions.

    PubMed

    Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R

    2015-08-14

    Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial