Sample records for estimated systematic errors

  1. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less

  2. Causal Inference for fMRI Time Series Data with Systematic Errors of Measurement in a Balanced On/Off Study of Social Evaluative Threat.

    PubMed

    Sobel, Michael E; Lindquist, Martin A

    2014-07-01

    Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.

  3. Systematic Error Modeling and Bias Estimation

    PubMed Central

    Zhang, Feihu; Knoll, Alois

    2016-01-01

    This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386

  4. Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN

    NASA Astrophysics Data System (ADS)

    Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.

    2016-12-01

    In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.

  5. Propagation of stage measurement uncertainties to streamflow time series

    NASA Astrophysics Data System (ADS)

    Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary

    2016-04-01

    Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.

  6. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks

    PubMed Central

    Besada, Juan A.

    2017-01-01

    In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation. PMID:28934157

  8. High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method

    PubMed Central

    Jiang, Jie; Yu, Wenbo; Zhang, Guangjun

    2017-01-01

    Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179

  9. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  10. Directional variance adjustment: bias reduction in covariance matrices based on factor analysis with an application to portfolio optimization.

    PubMed

    Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven

    2013-01-01

    Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.

  11. Directional Variance Adjustment: Bias Reduction in Covariance Matrices Based on Factor Analysis with an Application to Portfolio Optimization

    PubMed Central

    Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven

    2013-01-01

    Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016

  12. Estimation of geopotential differences over intercontinental locations using satellite and terrestrial measurements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pavlis, Nikolaos K.

    1991-01-01

    An error analysis study was conducted in order to assess the current accuracies and the future anticipated improvements in the estimation of geopotential differences over intercontinental locations. An observation/estimation scheme was proposed and studied, whereby gravity disturbance measurements on the Earth's surface, in caps surrounding the estimation points, are combined with corresponding data in caps directly over these points at the altitude of a low orbiting satellite, for the estimation of the geopotential difference between the terrestrial stations. The mathematical modeling required to relate the primary observables to the parameters to be estimated, was studied for the terrestrial data and the data at altitude. Emphasis was placed on the examination of systematic effects and on the corresponding reductions that need to be applied to the measurements to avoid systematic errors. The error estimation for the geopotential differences was performed using both truncation theory and least squares collocation with ring averages, in case observations on the Earth's surface only are used. The error analysis indicated that with the currently available global geopotential model OSU89B and with gravity disturbance data in 2 deg caps surrounding the estimation points, the error of the geopotential difference arising from errors in the reference model and the cap data is about 23 kgal cm, for 30 deg station separation.

  13. Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian, Yudong

    2011-01-01

    Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.

  14. Identification and correction of systematic error in high-throughput sequence data

    PubMed Central

    2011-01-01

    Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972

  15. Errors in radial velocity variance from Doppler wind lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  16. Errors in radial velocity variance from Doppler wind lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...

    2016-08-29

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  17. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: Quality-assurance implications for target volume and organ-at-risk margination using daily CT-on-rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S. R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R; Kocak-Uzel, Esengul; Fuller, Clifton D.

    2016-01-01

    Larynx may alternatively serve as a target or organ-at-risk (OAR) in head and neck cancer (HNC) image-guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population–based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT-on-rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other 6 points were calculated post-isocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all 6 points for all scans over the course of treatment were calculated. Residual systematic and random error, and the necessary compensatory CTV-to-PTV and OAR-to-PRV margins were calculated, using both observational cohort data and a bootstrap-resampled population estimator. The grand mean displacements for all anatomical points was 5.07mm, with mean systematic error of 1.1mm and mean random setup error of 2.63mm, while bootstrapped POIs grand mean displacement was 5.09mm, with mean systematic error of 1.23mm and mean random setup error of 2.61mm. Required margin for CTV-PTV expansion was 4.6mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9mm. The calculated OAR-to-PRV expansion for the observed residual set-up error was 2.7mm, and bootstrap estimated expansion of 2.9mm. We conclude that the interfractional larynx setup error is a significant source of RT set-up/delivery error in HNC both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5mm to compensate for set up error if the larynx is a target or 3mm if the larynx is an OAR when using a non-laryngeal bony isocenter. PMID:25679151

  18. Estimation of daily interfractional larynx residual setup error after isocentric alignment for head and neck radiotherapy: quality assurance implications for target volume and organs‐at‐risk margination using daily CT on‐rails imaging

    PubMed Central

    Baron, Charles A.; Awan, Musaddiq J.; Mohamed, Abdallah S.R.; Akel, Imad; Rosenthal, David I.; Gunn, G. Brandon; Garden, Adam S.; Dyer, Brandon A.; Court, Laurence; Sevak, Parag R.; Kocak‐Uzel, Esengul

    2014-01-01

    Larynx may alternatively serve as a target or organs at risk (OAR) in head and neck cancer (HNC) image‐guided radiotherapy (IGRT). The objective of this study was to estimate IGRT parameters required for larynx positional error independent of isocentric alignment and suggest population‐based compensatory margins. Ten HNC patients receiving radiotherapy (RT) with daily CT on‐rails imaging were assessed. Seven landmark points were placed on each daily scan. Taking the most superior‐anterior point of the C5 vertebra as a reference isocenter for each scan, residual displacement vectors to the other six points were calculated postisocentric alignment. Subsequently, using the first scan as a reference, the magnitude of vector differences for all six points for all scans over the course of treatment was calculated. Residual systematic and random error and the necessary compensatory CTV‐to‐PTV and OAR‐to‐PRV margins were calculated, using both observational cohort data and a bootstrap‐resampled population estimator. The grand mean displacements for all anatomical points was 5.07 mm, with mean systematic error of 1.1 mm and mean random setup error of 2.63 mm, while bootstrapped POIs grand mean displacement was 5.09 mm, with mean systematic error of 1.23 mm and mean random setup error of 2.61 mm. Required margin for CTV‐PTV expansion was 4.6 mm for all cohort points, while the bootstrap estimator of the equivalent margin was 4.9 mm. The calculated OAR‐to‐PRV expansion for the observed residual setup error was 2.7 mm and bootstrap estimated expansion of 2.9 mm. We conclude that the interfractional larynx setup error is a significant source of RT setup/delivery error in HNC, both when the larynx is considered as a CTV or OAR. We estimate the need for a uniform expansion of 5 mm to compensate for setup error if the larynx is a target, or 3 mm if the larynx is an OAR, when using a nonlaryngeal bony isocenter. PACS numbers: 87.55.D‐, 87.55.Qr

  19. Estimation of population mean under systematic sampling

    NASA Astrophysics Data System (ADS)

    Noor-ul-amin, Muhammad; Javaid, Amjad

    2017-11-01

    In this study we propose a generalized ratio estimator under non-response for systematic random sampling. We also generate a class of estimators through special cases of generalized estimator using different combinations of coefficients of correlation, kurtosis and variation. The mean square errors and mathematical conditions are also derived to prove the efficiency of proposed estimators. Numerical illustration is included using three populations to support the results.

  20. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    PubMed

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  1. Errors in the estimation method for the rejection of vibrations in adaptive optics systems

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2017-06-01

    In recent years the problem of the mechanical vibrations impact in adaptive optics (AO) systems has been renewed. These signals are damped sinusoidal signals and have deleterious effect on the system. One of software solutions to reject the vibrations is an adaptive method called AVC (Adaptive Vibration Cancellation) where the procedure has three steps: estimation of perturbation parameters, estimation of the frequency response of the plant, update the reference signal to reject/minimalize the vibration. In the first step a very important problem is the estimation method. A very accurate and fast (below 10 ms) estimation method of these three parameters has been presented in several publications in recent years. The method is based on using the spectrum interpolation and MSD time windows and it can be used to estimate multifrequency signals. In this paper the estimation method is used in the AVC method to increase the system performance. There are several parameters that affect the accuracy of obtained results, e.g. CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, b - number of ADC bits, γ - damping ratio of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value for systematic error is approximately 10^-10 Hz/Hz for N = 2048 and CiR = 0.1. This paper presents equations that can used to estimate maximum systematic errors for given values of H, CiR and N before the start of the estimation process.

  2. Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.

    2012-01-01

    Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.

  3. Systematic error of the Gaia DR1 TGAS parallaxes from data for the red giant clump

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2017-08-01

    Based on the Gaia DR1 TGAS parallaxes and photometry from the Tycho-2, Gaia, 2MASS, andWISE catalogues, we have produced a sample of 100 000 clump red giants within 800 pc of the Sun. The systematic variations of the mode of their absolute magnitude as a function of the distance, magnitude, and other parameters have been analyzed. We show that these variations reach 0.7 mag and cannot be explained by variations in the interstellar extinction or intrinsic properties of stars and by selection. The only explanation seems to be a systematic error of the Gaia DR1 TGAS parallax dependent on the square of the observed distance in kpc: 0.18 R 2 mas. Allowance for this error reduces significantly the systematic dependences of the absolute magnitude mode on all parameters. This error reaches 0.1 mas within 800 pc of the Sun and allows an upper limit for the accuracy of the TGAS parallaxes to be estimated as 0.2 mas. A careful allowance for such errors is needed to use clump red giants as "standard candles." This eliminates all discrepancies between the theoretical and empirical estimates of the characteristics of these stars and allows us to obtain the first estimates of the modes of their absolute magnitudes from the Gaia parallaxes: mode( M H ) = -1.49 m ± 0.04 m , mode( M Ks ) = -1.63 m ± 0.03 m , mode( M W1) = -1.67 m ± 0.05 m mode( M W2) = -1.67 m ± 0.05 m , mode( M W3) = -1.66 m ± 0.02 m , mode( M W4) = -1.73 m ± 0.03 m , as well as the corresponding estimates of their de-reddened colors.

  4. Modeling longitudinal data, I: principles of multivariate analysis.

    PubMed

    Ravani, Pietro; Barrett, Brendan; Parfrey, Patrick

    2009-01-01

    Statistical models are used to study the relationship between exposure and disease while accounting for the potential role of other factors' impact on outcomes. This adjustment is useful to obtain unbiased estimates of true effects or to predict future outcomes. Statistical models include a systematic component and an error component. The systematic component explains the variability of the response variable as a function of the predictors and is summarized in the effect estimates (model coefficients). The error element of the model represents the variability in the data unexplained by the model and is used to build measures of precision around the point estimates (confidence intervals).

  5. Optimized tuner selection for engine performance estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)

    2013-01-01

    A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.

  6. A water-vapor radiometer error model. [for ionosphere in geodetic microwave techniques

    NASA Technical Reports Server (NTRS)

    Beckman, B.

    1985-01-01

    The water-vapor radiometer (WVR) is used to calibrate unpredictable delays in the wet component of the troposphere in geodetic microwave techniques such as very-long-baseline interferometry (VLBI) and Global Positioning System (GPS) tracking. Based on experience with Jet Propulsion Laboratory (JPL) instruments, the current level of accuracy in wet-troposphere calibration limits the accuracy of local vertical measurements to 5-10 cm. The goal for the near future is 1-3 cm. Although the WVR is currently the best calibration method, many instruments are prone to systematic error. In this paper, a treatment of WVR data is proposed and evaluated. This treatment reduces the effect of WVR systematic errors by estimating parameters that specify an assumed functional form for the error. The assumed form of the treatment is evaluated by comparing the results of two similar WVR's operating near each other. Finally, the observability of the error parameters is estimated by covariance analysis.

  7. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  8. Using Analysis Increments (AI) to Estimate and Correct Systematic Errors in the Global Forecast System (GFS) Online

    NASA Astrophysics Data System (ADS)

    Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.

    2017-12-01

    Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.

  9. Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise

    NASA Technical Reports Server (NTRS)

    Sedlak, J.; Hashmall, J.

    1997-01-01

    Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.

  10. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: estimation of systematic errors in LAGEOS observations 1993-2014

    NASA Astrophysics Data System (ADS)

    Appleby, Graham; Rodríguez, José; Altamimi, Zuheir

    2016-12-01

    Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.

  11. Frequency of data extraction errors and methods to increase data extraction quality: a methodological review.

    PubMed

    Mathes, Tim; Klaßen, Pauline; Pieper, Dawid

    2017-11-28

    Our objective was to assess the frequency of data extraction errors and its potential impact on results in systematic reviews. Furthermore, we evaluated the effect of different extraction methods, reviewer characteristics and reviewer training on error rates and results. We performed a systematic review of methodological literature in PubMed, Cochrane methodological registry, and by manual searches (12/2016). Studies were selected by two reviewers independently. Data were extracted in standardized tables by one reviewer and verified by a second. The analysis included six studies; four studies on extraction error frequency, one study comparing different reviewer extraction methods and two studies comparing different reviewer characteristics. We did not find a study on reviewer training. There was a high rate of extraction errors (up to 50%). Errors often had an influence on effect estimates. Different data extraction methods and reviewer characteristics had moderate effect on extraction error rates and effect estimates. The evidence base for established standards of data extraction seems weak despite the high prevalence of extraction errors. More comparative studies are needed to get deeper insights into the influence of different extraction methods.

  12. The propagation of wind errors through ocean wave hindcasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holthuijsen, L.H.; Booij, N.; Bertotti, L.

    1996-08-01

    To estimate uncertainties in wave forecast and hindcasts, computations have been carried out for a location in the Mediterranean Sea using three different analyses of one historic wind field. These computations involve a systematic sensitivity analysis and estimated wind field errors. This technique enables a wave modeler to estimate such uncertainties in other forecasts and hindcasts if only one wind analysis is available.

  13. Systematic evaluation of NASA precipitation radar estimates using NOAA/NSSL National Mosaic QPE products

    NASA Astrophysics Data System (ADS)

    Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.

    2011-12-01

    Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.

  14. Effects of vertical distribution of water vapor and temperature on total column water vapor retrieval error

    NASA Technical Reports Server (NTRS)

    Sun, Jielun

    1993-01-01

    Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.

  15. Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2014-01-01

    This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.

  16. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    PubMed

    White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K

    2016-12-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  17. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  18. DtaRefinery: a software tool for elimination of systematic errors from parent ion mass measurements in tandem mass spectra datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petyuk, Vladislav A.; Mayampurath, Anoop M.; Monroe, Matthew E.

    2009-12-16

    Hybrid two-stage mass spectrometers capable of both highly accurate mass measurement and MS/MS fragmentation have become widely available in recent years and have allowed for sig-nificantly better discrimination between true and false MS/MS pep-tide identifications by applying relatively narrow windows for maxi-mum allowable deviations for parent ion mass measurements. To fully gain the advantage of highly accurate parent ion mass meas-urements, it is important to limit systematic mass measurement errors. The DtaRefinery software tool can correct systematic errors in parent ion masses by reading a set of fragmentation spectra, searching for MS/MS peptide identifications, then fitting a model that canmore » estimate systematic errors, and removing them. This results in a new fragmentation spectrum file with updated parent ion masses.« less

  19. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert, Jr.

    1999-01-01

    In this study, we have developed time series of global temperature from 1980-97 based on the Microwave Sounding Unit (MSU) Ch 2 (53.74 GHz) observations taken from polar-orbiting NOAA operational satellites. In order to create these time series, systematic errors (approx. 0.1 K) in the Ch 2 data arising from inter-satellite differences are removed objectively. On the other hand, smaller systematic errors (approx. 0.03 K) in the data due to orbital drift of each satellite cannot be removed objectively. Such errors are expected to remain in the time series and leave an uncertainty in the inferred global temperature trend. With the help of a statistical method, the error in the MSU inferred global temperature trend resulting from orbital drifts and residual inter-satellite differences of all satellites is estimated to be 0.06 K decade. Incorporating this error, our analysis shows that the global temperature increased at a rate of 0.13 +/- 0.06 K decade during 1980-97.

  20. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Modeling systematic errors: polychromatic sources of Beer-Lambert deviations in HPLC/UV and nonchromatographic spectrophotometric assays.

    PubMed

    Galli, C

    2001-07-01

    It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods.

  2. An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids

    Treesearch

    James T. Peterson; Russell F. Thurow; John W. Guzevich

    2004-01-01

    Failure to estimate capture efficiency, defined as the probability of capturing individual fish, can introduce a systematic error or bias into estimates of fish abundance. We evaluated the efficacy of multipass electrofishing removal methods for estimating fish abundance by comparing estimates of capture efficiency from multipass removal estimates to capture...

  3. The Observational Determination of the Primordial Helium Abundance: a Y2K Status Report

    NASA Astrophysics Data System (ADS)

    Skillman, Evan D.

    I review observational progress and assess the current state of the determination of the primordial helium abundance, Yp. At present there are two determinations with non-overlapping errors. My impression is that the errors have been under-estimated in both studies. I review recent work on errors assessment and give suggestions for decreasing systematic errors in future studies.

  4. Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Makita, Shuichi; Yamanari, Masahiro; Lim, Yiheng; Yasuno, Yoshiaki

    2011-08-01

    A Monte-Carlo-based phase retardation estimator is developed to correct the systematic error in phase retardation measurement by polarization sensitive optical coherence tomography (PS-OCT). Recent research has revealed that the phase retardation measured by PS-OCT has a distribution that is neither symmetric nor centered at the true value. Hence, a standard mean estimator gives us erroneous estimations of phase retardation, and it degrades the performance of PS-OCT for quantitative assessment. In this paper, the noise property in phase retardation is investigated in detail by Monte-Carlo simulation and experiments. A distribution transform function is designed to eliminate the systematic error by using the result of the Monte-Carlo simulation. This distribution transformation is followed by a mean estimator. This process provides a significantly better estimation of phase retardation than a standard mean estimator. This method is validated both by numerical simulations and experiments. The application of this method to in vitro and in vivo biological samples is also demonstrated.

  5. New dimension analyses with error analysis for quaking aspen and black spruce

    NASA Technical Reports Server (NTRS)

    Woods, K. D.; Botkin, D. B.; Feiveson, A. H.

    1987-01-01

    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions.

  6. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig.

    PubMed

    Yang, Xiao-Xing; Critchley, Lester A; Joynt, Gavin M

    2011-01-01

    Thermodilution cardiac output using a pulmonary artery catheter is the reference method against which all new methods of cardiac output measurement are judged. However, thermodilution lacks precision and has a quoted precision error of ± 20%. There is uncertainty about its true precision and this causes difficulty when validating new cardiac output technology. Our aim in this investigation was to determine the current precision error of thermodilution measurements. A test rig through which water circulated at different constant rates with ports to insert catheters into a flow chamber was assembled. Flow rate was measured by an externally placed transonic flowprobe and meter. The meter was calibrated by timed filling of a cylinder. Arrow and Edwards 7Fr thermodilution catheters, connected to a Siemens SC9000 cardiac output monitor, were tested. Thermodilution readings were made by injecting 5 mL of ice-cold water. Precision error was divided into random and systematic components, which were determined separately. Between-readings (random) variability was determined for each catheter by taking sets of 10 readings at different flow rates. Coefficient of variation (CV) was calculated for each set and averaged. Between-catheter systems (systematic) variability was derived by plotting calibration lines for sets of catheters. Slopes were used to estimate the systematic component. Performances of 3 cardiac output monitors were compared: Siemens SC9000, Siemens Sirecust 1261, and Philips MP50. Five Arrow and 5 Edwards catheters were tested using the Siemens SC9000 monitor. Flow rates between 0.7 and 7.0 L/min were studied. The CV (random error) for Arrow was 5.4% and for Edwards was 4.8%. The random precision error was ± 10.0% (95% confidence limits). CV (systematic error) was 5.8% and 6.0%, respectively. The systematic precision error was ± 11.6%. The total precision error of a single thermodilution reading was ± 15.3% and ± 13.0% for triplicate readings. Precision error increased by 45% when using the Sirecust monitor and 100% when using the Philips monitor. In vitro testing of pulmonary artery catheters enabled us to measure both the random and systematic error components of thermodilution cardiac output measurement, and thus calculate the precision error. Using the Siemens monitor, we established a precision error of ± 15.3% for single and ± 13.0% for triplicate reading, which was similar to the previous estimate of ± 20%. However, this precision error was significantly worsened by using the Sirecust and Philips monitors. Clinicians should recognize that the precision error of thermodilution cardiac output is dependent on the selection of catheter and monitor model.

  7. Internal robustness: systematic search for systematic bias in SN Ia data

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Marra, Valerio; Quartin, Miguel

    2013-04-01

    A great deal of effort is currently being devoted to understanding, estimating and removing systematic errors in cosmological data. In the particular case of Type Ia supernovae, systematics are starting to dominate the error budget. Here we propose a Bayesian tool for carrying out a systematic search for systematic contamination. This serves as an extension to the standard goodness-of-fit tests and allows not only to cross-check raw or processed data for the presence of systematics but also to pin-point the data that are most likely contaminated. We successfully test our tool with mock catalogues and conclude that the Union2.1 data do not possess a significant amount of systematics. Finally, we show that if one includes in Union2.1 the supernovae that originally failed the quality cuts, our tool signals the presence of systematics at over 3.8σ confidence level.

  8. Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach

    NASA Astrophysics Data System (ADS)

    Bähr, Hermann; Hanssen, Ramon F.

    2012-12-01

    An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.

  9. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the entire error is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by about 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+-) 0.04 K/decade during 1980 to 1998.

  10. Bias estimation for the Landsat 8 operational land imager

    USGS Publications Warehouse

    Morfitt, Ron; Vanderwerff, Kelly

    2011-01-01

    The Operational Land Imager (OLI) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM). This instrument is the latest in the line of Landsat imagers, and will continue to expand the archive of calibrated earth imagery. An important step in producing a calibrated image from instrument data is accurately accounting for the bias of the imaging detectors. Bias variability is one factor that contributes to error in bias estimation for OLI. Typically, the bias is simply estimated by averaging dark data on a per-detector basis. However, data acquired during OLI pre-launch testing exhibited bias variation that correlated well with the variation in concurrently collected data from a special set of detectors on the focal plane. These detectors are sensitive to certain electronic effects but not directly to incoming electromagnetic radiation. A method of using data from these special detectors to estimate the bias of the imaging detectors was developed, but found not to be beneficial at typical radiance levels as the detectors respond slightly when the focal plane is illuminated. In addition to bias variability, a systematic bias error is introduced by the truncation performed by the spacecraft of the 14-bit instrument data to 12-bit integers. This systematic error can be estimated and removed on average, but the per pixel quantization error remains. This paper describes the variability of the bias, the effectiveness of a new approach to estimate and compensate for it, as well as the errors due to truncation and how they are reduced.

  11. On the Calculation of Uncertainty Statistics with Error Bounds for CFD Calculations Containing Random Parameters and Fields

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2016-01-01

    This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.

  12. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors.

    PubMed Central

    Small, J R

    1993-01-01

    This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434

  13. Afocal optical flow sensor for reducing vertical height sensitivity in indoor robot localization and navigation.

    PubMed

    Yi, Dong-Hoon; Lee, Tae-Jae; Cho, Dong-Il Dan

    2015-05-13

    This paper introduces a novel afocal optical flow sensor (OFS) system for odometry estimation in indoor robotic navigation. The OFS used in computer optical mouse has been adopted for mobile robots because it is not affected by wheel slippage. Vertical height variance is thought to be a dominant factor in systematic error when estimating moving distances in mobile robots driving on uneven surfaces. We propose an approach to mitigate this error by using an afocal (infinite effective focal length) system. We conducted experiments in a linear guide on carpet and three other materials with varying sensor heights from 30 to 50 mm and a moving distance of 80 cm. The same experiments were repeated 10 times. For the proposed afocal OFS module, a 1 mm change in sensor height induces a 0.1% systematic error; for comparison, the error for a conventional fixed-focal-length OFS module is 14.7%. Finally, the proposed afocal OFS module was installed on a mobile robot and tested 10 times on a carpet for distances of 1 m. The average distance estimation error and standard deviation are 0.02% and 17.6%, respectively, whereas those for a conventional OFS module are 4.09% and 25.7%, respectively.

  14. CORRELATED AND ZONAL ERRORS OF GLOBAL ASTROMETRIC MISSIONS: A SPHERICAL HARMONIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  15. Correlated and Zonal Errors of Global Astrometric Missions: A Spherical Harmonic Solution

    NASA Astrophysics Data System (ADS)

    Makarov, V. V.; Dorland, B. N.; Gaume, R. A.; Hennessy, G. S.; Berghea, C. T.; Dudik, R. P.; Schmitt, H. R.

    2012-07-01

    We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method, the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.

  16. An empirical examination of WISE/NEOWISE asteroid analysis and results

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2017-10-01

    Observations made by the WISE space telescope and subsequent analysis by the NEOWISE project represent the largest corpus of asteroid data to date, describing the diameter, albedo, and other properties of the ~164,000 asteroids in the collection. I present a critical reanalysis of the WISE observational data, and NEOWISE results published in numerous papers and in the JPL Planetary Data System (PDS). This analysis reveals shortcomings and a lack of clarity, both in the original analysis and in the presentation of results. The procedures used to generate NEOWISE results fall short of established thermal modelling standards. Rather than using a uniform protocol, 10 modelling methods were applied to 12 combinations of WISE band data. Over half the NEOWISE results are based on a single band of data. Most NEOWISE curve fits are poor quality, frequently missing many or all the data points. About 30% of the single-band results miss all the data; 43% of the results derived from the most common multiple-band combinations miss all the data in at least one band. The NEOWISE data processing procedures rely on inconsistent assumptions, and introduce bias by systematically discarding much of the original data. I show that error estimates for the WISE observational data have a true uncertainty factor of ~1.2 to 1.9 times larger than previously described, and that the error estimates do not fit a normal distribution. These issues call into question the validity of the NEOWISE Monte-Carlo error analysis. Comparing published NEOWISE diameters to published estimates using radar, occultation, or spacecraft measurements (ROS) reveals 150 for which the NEOWISE diameters were copied exactly from the ROS source. My findings show that the accuracy of diameter estimates for NEOWISE results depend heavily on the choice of data bands and model. Systematic errors in the diameter estimates are much larger than previously described. Systematic errors for diameters in the PDS range from -3% to +27%. Random errors range from -14% to +19% when using all four WISE bands, and from -45% to +74% in cases using only the W2 band. The results presented here show that much work remains to be done towards understanding asteroid data from WISE/NEOWISE.

  17. Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes

    NASA Astrophysics Data System (ADS)

    Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.

    2017-11-01

    Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.

  18. Accuracy and Landmark Error Calculation Using Cone-Beam Computed Tomography–Generated Cephalograms

    PubMed Central

    Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Heulfe, Inam; Harmon, Eric T.; Zhu, Hongtu; Proffit, William R.

    2010-01-01

    Objective To evaluate systematic differences in landmark position between cone-beam computed tomography (CBCT)–generated cephalograms and conventional digital cephalograms and to estimate how much variability should be taken into account when both modalities are used within the same longitudinal study. Materials and Methods Landmarks on homologous cone-beam computed tomographic–generated cephalograms and conventional digital cephalograms of 46 patients were digitized, registered, and compared via the Hotelling T2 test. Results There were no systematic differences between modalities in the position of most landmarks. Three landmarks showed statistically significant differences but did not reach clinical significance. A method for error calculation while combining both modalities in the same individual is presented. Conclusion In a longitudinal follow-up for assessment of treatment outcomes and growth of one individual, the error due to the combination of the two modalities might be larger than previously estimated. PMID:19905853

  19. Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients.

    PubMed

    Kilpatrick, J M; MacPherson, W N; Barton, J S; Jones, J D

    2000-03-20

    The influence of reflector losses attracts little discussion in standard treatments of the Fabry-Perot interferometer yet may be an important factor contributing to errors in phase-stepped demodulation of fiber optic Fabry-Perot (FFP) sensors. We describe a general transfer function for FFP sensors with complex reflection coefficients and estimate systematic phase errors that arise when the asymmetry of the reflected fringe system is neglected, as is common in the literature. The measured asymmetric response of higher-finesse metal-dielectric FFP constructions corroborates a model that predicts systematic phase errors of 0.06 rad in three-step demodulation of a low-finesse FFP sensor (R = 0.05) with internal reflector losses of 25%.

  20. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less

  1. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    DOE PAGES

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-06-13

    An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less

  2. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    NASA Technical Reports Server (NTRS)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  3. Why GPS makes distances bigger than they are

    PubMed Central

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-01-01

    ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610

  4. An Alternate Method for Estimating Dynamic Height from XBT Profiles Using Empirical Vertical Modes

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary S. E.

    1994-01-01

    A technique is presented that applies modal decomposition to estimate dynamic height (0-450 db) from Expendable BathyThermograph (XBT) temperature profiles. Salinity-Temperature-Depth (STD) data are used to establish empirical relationships between vertically integrated temperature profiles and empirical dynamic height modes. These are then applied to XBT data to estimate dynamic height. A standard error of 0.028 dynamic meters is obtained for the waters of the Gulf of Alaska- an ocean region subject to substantial freshwater buoyancy forcing and with a T-S relationship that has considerable scatter. The residual error is a substantial improvement relative to the conventional T-S correlation technique when applied to this region. Systematic errors between estimated and true dynamic height were evaluated. The 20-year-long time series at Ocean Station P (50 deg N, 145 deg W) indicated weak variations in the error interannually, but not seasonally. There were no evident systematic alongshore variations in the error in the ocean boundary current regime near the perimeter of the Alaska gyre. The results prove satisfactory for the purpose of this work, which is to generate dynamic height from XBT data for coanalysis with satellite altimeter data, given that the altimeter height precision is likewise on the order of 2-3 cm. While the technique has not been applied to other ocean regions where the T-S relation has less scatter, it is suggested that it could provide some improvement over previously applied methods, as well.

  5. Phobos laser ranging: Numerical Geodesy experiments for Martian system science

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Vermeersen, L. L. A.; Noomen, R.; Visser, P. N. A. M.

    2014-09-01

    Laser ranging is emerging as a technology for use over (inter)planetary distances, having the advantage of high (mm-cm) precision and accuracy and low mass and power consumption. We have performed numerical simulations to assess the science return in terms of geodetic observables of a hypothetical Phobos lander performing active two-way laser ranging with Earth-based stations. We focus our analysis on the estimation of Phobos and Mars gravitational, tidal and rotational parameters. We explicitly include systematic error sources in addition to uncorrelated random observation errors. This is achieved through the use of consider covariance parameters, specifically the ground station position and observation biases. Uncertainties for the consider parameters are set at 5 mm and at 1 mm for the Gaussian uncorrelated observation noise (for an observation integration time of 60 s). We perform the analysis for a mission duration up to 5 years. It is shown that a Phobos Laser Ranging (PLR) can contribute to a better understanding of the Martian system, opening the possibility for improved determination of a variety of physical parameters of Mars and Phobos. The simulations show that the mission concept is especially suited for estimating Mars tidal deformation parameters, estimating degree 2 Love numbers with absolute uncertainties at the 10-2 to 10-4 level after 1 and 4 years, respectively and providing separate estimates for the Martian quality factors at Sun and Phobos-forced frequencies. The estimation of Phobos libration amplitudes and gravity field coefficients provides an estimate of Phobos' relative equatorial and polar moments of inertia with an absolute uncertainty of 10-4 and 10-7, respectively, after 1 year. The observation of Phobos tidal deformation will be able to differentiate between a rubble pile and monolithic interior within 2 years. For all parameters, systematic errors have a much stronger influence (per unit uncertainty) than the uncorrelated Gaussian observation noise. This indicates the need for the inclusion of systematic errors in simulation studies and special attention to the mitigation of these errors in mission and system design.

  6. Variation across mitochondrial gene trees provides evidence for systematic error: How much gene tree variation is biological?

    PubMed

    Richards, Emilie J; Brown, Jeremy M; Barley, Anthony J; Chong, Rebecca A; Thomson, Robert C

    2018-02-19

    The use of large genomic datasets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological versus methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.

  7. Geodesy by radio interferometry - Effects of atmospheric modeling errors on estimates of baseline length

    NASA Technical Reports Server (NTRS)

    Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.

    1985-01-01

    Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.

  8. A proposed method to investigate reliability throughout a questionnaire.

    PubMed

    Wentzel-Larsen, Tore; Norekvål, Tone M; Ulvik, Bjørg; Nygård, Ottar; Pripp, Are H

    2011-10-05

    Questionnaires are used extensively in medical and health care research and depend on validity and reliability. However, participants may differ in interest and awareness throughout long questionnaires, which can affect reliability of their answers. A method is proposed for "screening" of systematic change in random error, which could assess changed reliability of answers. A simulation study was conducted to explore whether systematic change in reliability, expressed as changed random error, could be assessed using unsupervised classification of subjects by cluster analysis (CA) and estimation of intraclass correlation coefficient (ICC). The method was also applied on a clinical dataset from 753 cardiac patients using the Jalowiec Coping Scale. The simulation study showed a relationship between the systematic change in random error throughout a questionnaire and the slope between the estimated ICC for subjects classified by CA and successive items in a questionnaire. This slope was proposed as an awareness measure--to assessing if respondents provide only a random answer or one based on a substantial cognitive effort. Scales from different factor structures of Jalowiec Coping Scale had different effect on this awareness measure. Even though assumptions in the simulation study might be limited compared to real datasets, the approach is promising for assessing systematic change in reliability throughout long questionnaires. Results from a clinical dataset indicated that the awareness measure differed between scales.

  9. Drought Persistence in Models and Observations

    NASA Astrophysics Data System (ADS)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2017-04-01

    Many regions of the world have experienced drought events that persisted several years and caused substantial economic and ecological impacts in the 20th century. However, it remains unclear whether there are significant trends in the frequency or severity of these prolonged drought events. In particular, an important issue is linked to systematic biases in the representation of persistent drought events in climate models, which impedes analysis related to the detection and attribution of drought trends. This study assesses drought persistence errors in global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5), in the period of 1901-2010. The model simulations are compared with five gridded observational data products. The analysis focuses on two aspects: the identification of systematic biases in the models and the partitioning of the spread of drought-persistence-error into four possible sources of uncertainty: model uncertainty, observation uncertainty, internal climate variability and the estimation error of drought persistence. We use monthly and yearly dry-to-dry transition probabilities as estimates for drought persistence with drought conditions defined as negative precipitation anomalies. For both time scales we find that most model simulations consistently underestimated drought persistence except in a few regions such as India and Eastern South America. Partitioning the spread of the drought-persistence-error shows that at the monthly time scale model uncertainty and observation uncertainty are dominant, while the contribution from internal variability does play a minor role in most cases. At the yearly scale, the spread of the drought-persistence-error is dominated by the estimation error, indicating that the partitioning is not statistically significant, due to a limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current climate models and highlight the main contributors of uncertainty of drought-persistence-error. Future analyses will focus on investigating the temporal propagation of drought persistence to better understand the causes for the identified errors in the representation of drought persistence in state-of-the-art climate models.

  10. Insights on the impact of systematic model errors on data assimilation performance in changing catchments

    NASA Astrophysics Data System (ADS)

    Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.

    2018-03-01

    The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.

  11. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.

  12. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE PAGES

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  13. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  14. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the error ec on the global temperature trend. In one path the entire error ec is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by approximately 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+/-) 0.04 K/decade during 1980 to 1998.

  15. Quotation accuracy in medical journal articles-a systematic review and meta-analysis.

    PubMed

    Jergas, Hannah; Baethge, Christopher

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.

  16. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  17. Evaluation of monthly rainfall estimates derived from the special sensor microwave/imager (SSM/I) over the tropical Pacific

    NASA Technical Reports Server (NTRS)

    Berg, Wesley; Avery, Susan K.

    1995-01-01

    Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.

  18. Sampling Errors in Monthly Rainfall Totals for TRMM and SSM/I, Based on Statistics of Retrieved Rain Rates and Simple Models

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Kundu, Prasun K.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Estimates from TRMM satellite data of monthly total rainfall over an area are subject to substantial sampling errors due to the limited number of visits to the area by the satellite during the month. Quantitative comparisons of TRMM averages with data collected by other satellites and by ground-based systems require some estimate of the size of this sampling error. A method of estimating this sampling error based on the actual statistics of the TRMM observations and on some modeling work has been developed. "Sampling error" in TRMM monthly averages is defined here relative to the monthly total a hypothetical satellite permanently stationed above the area would have reported. "Sampling error" therefore includes contributions from the random and systematic errors introduced by the satellite remote sensing system. As part of our long-term goal of providing error estimates for each grid point accessible to the TRMM instruments, sampling error estimates for TRMM based on rain retrievals from TRMM microwave (TMI) data are compared for different times of the year and different oceanic areas (to minimize changes in the statistics due to algorithmic differences over land and ocean). Changes in sampling error estimates due to changes in rain statistics due 1) to evolution of the official algorithms used to process the data, and 2) differences from other remote sensing systems such as the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I), are analyzed.

  19. An investigation of condition mapping and plot proportion calculation issues

    Treesearch

    Demetrios Gatziolis

    2007-01-01

    A systematic examination of Forest Inventory and Analysis condition data collected under the annual inventory protocol in the Pacific Northwest region between 2000 and 2004 revealed the presence of errors both in condition topology and plot proportion computations. When plots were compiled to generate population estimates, proportion errors were found to cause...

  20. Effects of waveform model systematics on the interpretation of GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.

    2017-05-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

  1. Hyper-X Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.

    2004-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.

  2. A Systematic Approach for Model-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A requirement for effective aircraft engine performance estimation is the ability to account for engine degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. This paper presents a linear point design methodology for minimizing the degradation-induced error in model-based aircraft engine performance estimation applications. The technique specifically focuses on the underdetermined estimation problem, where there are more unknown health parameters than available sensor measurements. A condition for Kalman filter-based estimation is that the number of health parameters estimated cannot exceed the number of sensed measurements. In this paper, the estimated health parameter vector will be replaced by a reduced order tuner vector whose dimension is equivalent to the sensed measurement vector. The reduced order tuner vector is systematically selected to minimize the theoretical mean squared estimation error of a maximum a posteriori estimator formulation. This paper derives theoretical estimation errors at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the estimation accuracy achieved through conventional maximum a posteriori and Kalman filter estimation approaches. Maximum a posteriori estimation results demonstrate that reduced order tuning parameter vectors can be found that approximate the accuracy of estimating all health parameters directly. Kalman filter estimation results based on the same reduced order tuning parameter vectors demonstrate that significantly improved estimation accuracy can be achieved over the conventional approach of selecting a subset of health parameters to serve as the tuner vector. However, additional development is necessary to fully extend the methodology to Kalman filter-based estimation applications.

  3. Error Analysis of Indirect Broadband Monitoring of Multilayer Optical Coatings using Computer Simulations

    NASA Astrophysics Data System (ADS)

    Semenov, Z. V.; Labusov, V. A.

    2017-11-01

    Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.

  4. System calibration method for Fourier ptychographic microscopy

    NASA Astrophysics Data System (ADS)

    Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli

    2017-09-01

    Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic.

  5. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-10-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  6. Quantitative assessment of hit detection and confirmation in single and duplicate high-throughput screenings.

    PubMed

    Wu, Zhijin; Liu, Dongmei; Sui, Yunxia

    2008-02-01

    The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.

  7. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data

    NASA Technical Reports Server (NTRS)

    Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.

    1991-01-01

    An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.

  8. Seeing Your Error Alters My Pointing: Observing Systematic Pointing Errors Induces Sensori-Motor After-Effects

    PubMed Central

    Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro

    2011-01-01

    During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649

  9. Quotation accuracy in medical journal articles—a systematic review and meta-analysis

    PubMed Central

    Jergas, Hannah

    2015-01-01

    Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose—quotation errors—may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress. PMID:26528420

  10. Impact of Exposure Uncertainty on the Association between Perfluorooctanoate and Preeclampsia in the C8 Health Project Population.

    PubMed

    Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Verónica M; Savitz, David A; Bartell, Scott M

    2016-01-01

    Uncertainty in exposure estimates from models can result in exposure measurement error and can potentially affect the validity of epidemiological studies. We recently used a suite of environmental models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations and assess the association with preeclampsia from 1990 through 2006 for the C8 Health Project participants. The aims of the current study are to evaluate impact of uncertainty in estimated PFOA drinking-water concentrations on estimated serum concentrations and their reported epidemiological association with preeclampsia. For each individual public water district, we used Monte Carlo simulations to vary the year-by-year PFOA drinking-water concentration by randomly sampling from lognormal distributions for random error in the yearly public water district PFOA concentrations, systematic error specific to each water district, and global systematic error in the release assessment (using the estimated concentrations from the original fate and transport model as medians and a range of 2-, 5-, and 10-fold uncertainty). Uncertainty in PFOA water concentrations could cause major changes in estimated serum PFOA concentrations among participants. However, there is relatively little impact on the resulting epidemiological association in our simulations. The contribution of exposure uncertainty to the total uncertainty (including regression parameter variance) ranged from 5% to 31%, and bias was negligible. We found that correlated exposure uncertainty can substantially change estimated PFOA serum concentrations, but results in only minor impacts on the epidemiological association between PFOA and preeclampsia. Avanasi R, Shin HM, Vieira VM, Savitz DA, Bartell SM. 2016. Impact of exposure uncertainty on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population. Environ Health Perspect 124:126-132; http://dx.doi.org/10.1289/ehp.1409044.

  11. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  12. Validation of Nimbus-7 temperature-humidity infrared radiometer estimates of cloud type and amount

    NASA Technical Reports Server (NTRS)

    Stowe, L. L.

    1982-01-01

    Estimates of clear and low, middle and high cloud amount in fixed geographical regions approximately (160 km) squared are being made routinely from 11.5 micron radiance measurements of the Nimbus-7 Temperature-Humidity Infrared Radiometer (THIR). The purpose of validation is to determine the accuracy of the THIR cloud estimates. Validation requires that a comparison be made between the THIR estimates of cloudiness and the 'true' cloudiness. The validation results reported in this paper use human analysis of concurrent but independent satellite images with surface meteorological and radiosonde observations to approximate the 'true' cloudiness. Regression and error analyses are used to estimate the systematic and random errors of THIR derived clear amount.

  13. A proposed method to investigate reliability throughout a questionnaire

    PubMed Central

    2011-01-01

    Background Questionnaires are used extensively in medical and health care research and depend on validity and reliability. However, participants may differ in interest and awareness throughout long questionnaires, which can affect reliability of their answers. A method is proposed for "screening" of systematic change in random error, which could assess changed reliability of answers. Methods A simulation study was conducted to explore whether systematic change in reliability, expressed as changed random error, could be assessed using unsupervised classification of subjects by cluster analysis (CA) and estimation of intraclass correlation coefficient (ICC). The method was also applied on a clinical dataset from 753 cardiac patients using the Jalowiec Coping Scale. Results The simulation study showed a relationship between the systematic change in random error throughout a questionnaire and the slope between the estimated ICC for subjects classified by CA and successive items in a questionnaire. This slope was proposed as an awareness measure - to assessing if respondents provide only a random answer or one based on a substantial cognitive effort. Scales from different factor structures of Jalowiec Coping Scale had different effect on this awareness measure. Conclusions Even though assumptions in the simulation study might be limited compared to real datasets, the approach is promising for assessing systematic change in reliability throughout long questionnaires. Results from a clinical dataset indicated that the awareness measure differed between scales. PMID:21974842

  14. Using MERRA Gridded Innovations for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Redder, Christopher

    2010-01-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.

  15. Using MERRA Gridded Innovation for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Astrophysics Data System (ADS)

    da Silva, A.; Redder, C. R.

    2010-12-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.

  16. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  17. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis

    PubMed Central

    Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.

    2017-01-01

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494

  18. Comparing interval estimates for small sample ordinal CFA models

    PubMed Central

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002

  19. Comparing interval estimates for small sample ordinal CFA models.

    PubMed

    Natesan, Prathiba

    2015-01-01

    Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.

  20. An analysis of errors in special sensor microwave imager evaporation estimates over the global oceans

    NASA Technical Reports Server (NTRS)

    Esbensen, S. K.; Chelton, D. B.; Vickers, D.; Sun, J.

    1993-01-01

    The method proposed by Liu (1984) is used to estimate monthly averaged evaporation over the global oceans from 1 yr of special sensor microwave imager (SDSM/I) data. Intercomparisons involving SSM/I and in situ data are made over a wide range of oceanic conditions during August 1987 and February 1988 to determine the source of errors in the evaporation estimates. The most significant spatially coherent evaporation errors are found to come from estimates of near-surface specific humidity, q. Systematic discrepancies of over 2 g/kg are found in the tropics, as well as in the middle and high latitudes. The q errors are partitioned into contributions from the parameterization of q in terms of the columnar water vapor, i.e., the Liu q/W relationship, and from the retrieval algorithm for W. The effects of W retrieval errors are found to be smaller over most of the global oceans and due primarily to the implicitly assumed vertical structures of temperature and specific humidity on which the physically based SSM/I retrievals of W are based.

  1. Investigation of error sources in regional inverse estimates of greenhouse gas emissions in Canada

    NASA Astrophysics Data System (ADS)

    Chan, E.; Chan, D.; Ishizawa, M.; Vogel, F.; Brioude, J.; Delcloo, A.; Wu, Y.; Jin, B.

    2015-08-01

    Inversion models can use atmospheric concentration measurements to estimate surface fluxes. This study is an evaluation of the errors in a regional flux inversion model for different provinces of Canada, Alberta (AB), Saskatchewan (SK) and Ontario (ON). Using CarbonTracker model results as the target, the synthetic data experiment analyses examined the impacts of the errors from the Bayesian optimisation method, prior flux distribution and the atmospheric transport model, as well as their interactions. The scaling factors for different sub-regions were estimated by the Markov chain Monte Carlo (MCMC) simulation and cost function minimization (CFM) methods. The CFM method results are sensitive to the relative size of the assumed model-observation mismatch and prior flux error variances. Experiment results show that the estimation error increases with the number of sub-regions using the CFM method. For the region definitions that lead to realistic flux estimates, the numbers of sub-regions for the western region of AB/SK combined and the eastern region of ON are 11 and 4 respectively. The corresponding annual flux estimation errors for the western and eastern regions using the MCMC (CFM) method are -7 and -3 % (0 and 8 %) respectively, when there is only prior flux error. The estimation errors increase to 36 and 94 % (40 and 232 %) resulting from transport model error alone. When prior and transport model errors co-exist in the inversions, the estimation errors become 5 and 85 % (29 and 201 %). This result indicates that estimation errors are dominated by the transport model error and can in fact cancel each other and propagate to the flux estimates non-linearly. In addition, it is possible for the posterior flux estimates having larger differences than the prior compared to the target fluxes, and the posterior uncertainty estimates could be unrealistically small that do not cover the target. The systematic evaluation of the different components of the inversion model can help in the understanding of the posterior estimates and percentage errors. Stable and realistic sub-regional and monthly flux estimates for western region of AB/SK can be obtained, but not for the eastern region of ON. This indicates that it is likely a real observation-based inversion for the annual provincial emissions will work for the western region whereas; improvements are needed with the current inversion setup before real inversion is performed for the eastern region.

  2. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    PubMed

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  3. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    NASA Astrophysics Data System (ADS)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare the flux estimates given by assimilating the ACOS GOSAT retrievals to similar ones given by NIES GOSAT column retrievals, bias-corrected in a similar manner. Finally, we have found systematic differences on the order of a half ppm between column CO2 integrals from 18 TCCON sites and those given by assimilating NOAA in situ data (both surface and aircraft profile) in this approach. We assess how these differences change in switching to a newer version of the TCCON retrieval software.

  4. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  5. The influence of different error estimates in the detection of postoperative cognitive dysfunction using reliable change indices with correction for practice effects.

    PubMed

    Lewis, Matthew S; Maruff, Paul; Silbert, Brendan S; Evered, Lis A; Scott, David A

    2007-02-01

    The reliable change index (RCI) expresses change relative to its associated error, and is useful in the identification of postoperative cognitive dysfunction (POCD). This paper examines four common RCIs that each account for error in different ways. Three rules incorporate a constant correction for practice effects and are contrasted with the standard RCI that had no correction for practice. These rules are applied to 160 patients undergoing coronary artery bypass graft (CABG) surgery who completed neuropsychological assessments preoperatively and 1 week postoperatively using error and reliability data from a comparable healthy nonsurgical control group. The rules all identify POCD in a similar proportion of patients, but the use of the within-subject standard deviation (WSD), expressing the effects of random error, as an error estimate is a theoretically appropriate denominator when a constant error correction, removing the effects of systematic error, is deducted from the numerator in a RCI.

  6. Deep-space navigation with differenced data types. Part 3: An expanded information content and sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Thurman, S. W.

    1992-01-01

    An approximate six-parameter analytic model for Earth-based differential range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 micro-rad, and angular rate precision on the order of 10 to 25 x 10(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wideband and narrowband (delta) VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 micro-rad, and angular rate precisions of 0.5 to 1.0 x 10(exp -12) rad/sec.

  7. Deep-space navigation with differenced data types. Part 3: An expanded information content and sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Thurman, S. W.

    1992-01-01

    An approximate six-parameter analytic model for Earth-based differenced range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 microrad, and angular rate precision on the order of 10 to 25(10)(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wide band and narrow band (delta)VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 /microrad, and angular rate precisions of 0.5 to 1.0(10)(exp -12) rad/sec.

  8. A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire.

    PubMed

    Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S

    2013-06-01

    Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.

  9. Drought Persistence Errors in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  10. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.

  11. Galaxy–galaxy lensing estimators and their covariance properties

    DOE PAGES

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros; ...

    2017-07-21

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less

  12. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.; hide

    2016-01-01

    This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35(+5)(-3) solar M; and 30(+3)(-4) solar M; (where errors correspond to 90 symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate is less than 0.65 and a secondary spin estimate is less than 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.

  13. Galaxy–galaxy lensing estimators and their covariance properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uros

    Here, we study the covariance properties of real space correlation function estimators – primarily galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens densitymore » field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.« less

  14. Galaxy-galaxy lensing estimators and their covariance properties

    NASA Astrophysics Data System (ADS)

    Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš; Slosar, Anže; Vazquez Gonzalez, Jose

    2017-11-01

    We study the covariance properties of real space correlation function estimators - primarily galaxy-shear correlations, or galaxy-galaxy lensing - using SDSS data for both shear catalogues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses and sources, we disentangle the various contributions to the covariance matrix and compare them with a simple analytical model. We show that not subtracting the lensing measurement around random points from the measurement around the lens sample is equivalent to performing the measurement using the lens density field instead of the lens overdensity field. While the measurement using the lens density field is unbiased (in the absence of systematics), its error is significantly larger due to an additional term in the covariance. Therefore, this subtraction should be performed regardless of its beneficial effects on systematics. Comparing the error estimates from data and mocks for estimators that involve the overdensity, we find that the errors are dominated by the shape noise and lens clustering, which empirically estimated covariances (jackknife and standard deviation across mocks) that are consistent with theoretical estimates, and that both the connected parts of the four-point function and the supersample covariance can be neglected for the current levels of noise. While the trade-off between different terms in the covariance depends on the survey configuration (area, source number density), the diagnostics that we use in this work should be useful for future works to test their empirically determined covariances.

  15. System calibration method for Fourier ptychographic microscopy.

    PubMed

    Pan, An; Zhang, Yan; Zhao, Tianyu; Wang, Zhaojun; Dan, Dan; Lei, Ming; Yao, Baoli

    2017-09-01

    Fourier ptychographic microscopy (FPM) is a recently proposed computational imaging technique with both high-resolution and wide field of view. In current FPM imaging platforms, systematic error sources come from aberrations, light-emitting diode (LED) intensity fluctuation, parameter imperfections, and noise, all of which may severely corrupt the reconstruction results with similar artifacts. Therefore, it would be unlikely to distinguish the dominating error from these degraded reconstructions without any preknowledge. In addition, systematic error is generally a mixture of various error sources in the real situation, and it cannot be separated due to their mutual restriction and conversion. To this end, we report a system calibration procedure, termed SC-FPM, to calibrate the mixed systematic errors simultaneously from an overall perspective, based on the simulated annealing algorithm, the LED intensity correction method, the nonlinear regression process, and the adaptive step-size strategy, which involves the evaluation of an error metric at each iteration step, followed by the re-estimation of accurate parameters. The performance achieved both in simulations and experiments demonstrates that the proposed method outperforms other state-of-the-art algorithms. The reported system calibration scheme improves the robustness of FPM, relaxes the experiment conditions, and does not require any preknowledge, which makes the FPM more pragmatic. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Heritability analyses of IQ scores: science or numerology?

    PubMed

    Layzer, D

    1974-03-29

    Estimates of IQ heritability are subject to a variety of systematic errors. The IQ scores themselves contain uncontrollable, systematic errors of unknown magnitude. These arise because IQ scores, unlike conventional physical and biological measurements, have a purely instrumental definition. The effects of these errors are apparent in the very large discrepancies among IQ correlations measured by different investigators. Genotype-environment correlations, whose effects can sometimes be minimized, if not wholly eliminated, in experiments with plants and animals, are nearly always important in human populations. The absence of significant effects arising from genotype-environment correlations is a necessary condition for the applicability of conventional heritability analysis to phenotypically plastic traits. When this condition fails, no quantitative inferences about heritability can be drawn from measured phenotypic variances and covariances, except under special conditions that are unlikely to be satisfied by phenotypically plastic traits in human populations. Inadequate understanding of the precise environmental factors relevant to the development of specific behavioral traits is an important source of systematic errors, as is the inability to allow adequately for the effects of assortative mating and gene-gene interaction. Systematic cultural differences and differences in psychological environment among races and among sociocco-nomic groups vitiate any attempt to draw from IQ data meaningful inferences about genetic differences. Estimates based on phenotypic correlations between separated monozygotic twins-usually considered to be the most reliable kind of estimates-are vitiated by systematic errors inherent in IQ tests, by the presence of genotype-environment correlation, and by the lack of detailed understanding of environmental factors relevant to the development of behavioral traits. Other kinds of estimates are beset, in addition, by systematic errors arising from incomplete allowance for the effects of assortative mating and from gene-gene interactions. The only potentially useful data are phenotypic correlations between unrelated foster children reared together, which could, in principle, yield lower limits for e(2). Available data indicate that, for unrelated foster children reared together, the broad heritability (h(2)) may lie between 0.0 and 0.5. This estimate does not apply to populations composed of children reared by their biological parents or by near relatives. For such populations the heritability of IQ remains undefined. The only data that might yield meaningful estimates ot narrow heritability are phenotypic correlations between half-sibs reared in statistically independent environments. No useful data of this kind are available. Intervention studies like Heber's Milwaukee Project afford an alternative and comparatively direct way of studying the plasticity of cognitive and other behavioral traits in human populations. Results obtained so far strongly suggest that the development of cognitive skills is highly sensitive to variations in environmental factors. These conclusions have three obvious implications for the broader issues mentioned at the beginning of this article. 1) Published analyses of IQ data provide no support whatever for Jensen's thesis that inequalities in cognitive performance are due largely to genetic differences. As Lewontin (8) has clearly shown, the value of the broad heritability of IQ is in any case only marginally relevant to this question. I have argued that conventional estimates of the broad heritability of IQ are invalid and that the only data on which potentially valid estimates might be based are consistent with a broad heritability of less than 0.5. On the other hand, intervention studies, if their findings prove to be replicable, would directly establish that, under suitable conditions, the offspring of parents whose cognitive skills are so poorly developed as to exclude them from all but the most menial occupations can achieve what are regarded as distinctly high levels of cognitive performance. Thus, despite the fact that children differ suibstantially in cognitive aptitudes and appetites, and despite the very high probability that these differences have a substantial genetic component, available scientific evidence strongly suggests that environmental factors are responsible for the failure of children not suffering from specific neurological disorders to achieve adequate levels of cognitive performance. 2) Under prevailing social conditions, no valid inferences can be drawn from IQ data concerning systematic genetic differences among races or socioeconomic groups. Research along present lines directed toward this end-whatever its ethical status-is scientifically worthless. 3) Since there are no suitable data for estimating the narrow heritability of IQ, it seems pointless to speculate about the prospects for a hereditary meritocracy based on IQ.

  17. 10 CFR 75.23 - Operating records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Accounting and Control for Facilities § 75.23 Operating records. The operating records required by § 75.21... to control the quality of measurements, and the derived estimates of random and systematic error; (c...

  18. A technique for evaluating the influence of spatial sampling on the determination of global mean total columnar ozone

    NASA Technical Reports Server (NTRS)

    Tolson, R. H.

    1981-01-01

    A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.

  19. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  20. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  1. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy simulations using a dataset of a direct numerical simulation of a non-premixed sooting turbulent flame.

  2. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    NASA Astrophysics Data System (ADS)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  3. Angular sensitivities of scintillator slab configurations for location of gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1976-01-01

    Thin flat scintillator slabs are a useful means of measuring the angular location of gamma ray fluxes of astronomical interest. A statistical estimate of position error was made of two scintillator systems suitable for gamma ray burst location from a balloon or satellite platform. A single rotating scintillator with associated flux monitor is compared with a pair of stationary orthogonal scintillators. Position error for a strong burst is of the order of a few arcmin if systematic errors are ignored.

  4. SSC Geopositional Assessment of the Advanced Wide Field Sensor

    NASA Technical Reports Server (NTRS)

    Ross, Kenton

    2006-01-01

    The geopositional accuracy of the standard geocorrected product from the Advanced Wide Field Sensor (AWiFS) was evaluated using digital orthophoto quarter quadrangles and other reference sources of similar accuracy. Images were analyzed from summer 2004 through spring 2005. Forty to fifty check points were collected manually per scene and analyzed to determine overall circular error, estimates of horizontal bias, and other systematic errors. Measured errors were somewhat higher than the specifications for the data, but they were consistent with the analysis of the distributing vendor.

  5. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindle, R.; Gal, R. R.; La Barbera, F.

    2011-10-15

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less

  6. Moisture Forecast Bias Correction in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.

  7. A correction method for systematic error in (1)H-NMR time-course data validated through stochastic cell culture simulation.

    PubMed

    Sokolenko, Stanislav; Aucoin, Marc G

    2015-09-04

    The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small as 2.5 % under a wide range of conditions. Both the simulation framework and error correction method represent examples of time-course analysis that can be applied to further developments in (1)H-NMR methodology and the more general application of quantitative metabolomics.

  8. Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Garcia, P.

    2016-04-01

    Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.

  9. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: a systematic review.

    PubMed

    Frankenfield, David; Roth-Yousey, Lori; Compher, Charlene

    2005-05-01

    An assessment of energy needs is a necessary component in the development and evaluation of a nutrition care plan. The metabolic rate can be measured or estimated by equations, but estimation is by far the more common method. However, predictive equations might generate errors large enough to impact outcome. Therefore, a systematic review of the literature was undertaken to document the accuracy of predictive equations preliminary to deciding on the imperative to measure metabolic rate. As part of a larger project to determine the role of indirect calorimetry in clinical practice, an evidence team identified published articles that examined the validity of various predictive equations for resting metabolic rate (RMR) in nonobese and obese people and also in individuals of various ethnic and age groups. Articles were accepted based on defined criteria and abstracted using evidence analysis tools developed by the American Dietetic Association. Because these equations are applied by dietetics practitioners to individuals, a key inclusion criterion was research reports of individual data. The evidence was systematically evaluated, and a conclusion statement and grade were developed. Four prediction equations were identified as the most commonly used in clinical practice (Harris-Benedict, Mifflin-St Jeor, Owen, and World Health Organization/Food and Agriculture Organization/United Nations University [WHO/FAO/UNU]). Of these equations, the Mifflin-St Jeor equation was the most reliable, predicting RMR within 10% of measured in more nonobese and obese individuals than any other equation, and it also had the narrowest error range. No validation work concentrating on individual errors was found for the WHO/FAO/UNU equation. Older adults and US-residing ethnic minorities were underrepresented both in the development of predictive equations and in validation studies. The Mifflin-St Jeor equation is more likely than the other equations tested to estimate RMR to within 10% of that measured, but noteworthy errors and limitations exist when it is applied to individuals and possibly when it is generalized to certain age and ethnic groups. RMR estimation errors would be eliminated by valid measurement of RMR with indirect calorimetry, using an evidence-based protocol to minimize measurement error. The Expert Panel advises clinical judgment regarding when to accept estimated RMR using predictive equations in any given individual. Indirect calorimetry may be an important tool when, in the judgment of the clinician, the predictive methods fail an individual in a clinically relevant way. For members of groups that are greatly underrepresented by existing validation studies of predictive equations, a high level of suspicion regarding the accuracy of the equations is warranted.

  10. Temperature dependence of Henry's law constants and KOA for simple and heteroatom-substituted PAHs by COSMO-RS

    NASA Astrophysics Data System (ADS)

    Parnis, J. Mark; Mackay, Donald; Harner, Tom

    2015-06-01

    Henry's Law constants (H) and octanol-air partition coefficients (KOA) for polycyclic aromatic hydrocarbons (PAHs) and selected nitrogen-, oxygen- and sulfur-containing derivatives have been computed using the COSMO-RS method between -5 and 40 °C in 5 °C intervals. The accuracy of the estimation was assessed by comparison of COSMOtherm values with published experimental temperature-dependence data for these and similar PAHs. COSMOtherm log H estimates with temperature-variation for parent PAHs are shown to have a root-mean-square (RMS) error of 0.38 (PAH), based on available validation data. Estimates of O-, N- and S-substituted derivative log H values are found to have RMS errors of 0.30 at 25 °C. Log KOA estimates with temperature variation from COSMOtherm are shown to be strongly correlated with experimental values for a small set of unsubstituted PAHs, but with a systematic underestimation and associated RMS error of 1.11. Similar RMS error of 1.64 was found for COSMO-RS estimates of a group of critically-evaluated log KOA values at room temperature. Validation demonstrates that COSMOtherm estimates of H and KOA are of sufficient accuracy to be used for property screening and preliminary environmental risk assessment, and perform very well for modeling the influence of temperature on partitioning behavior in the temperature range -5 to 40 °C. Temperature-dependent shifts of up to 2 log units in log H and one log unit for log KOA are predicted for PAH species over the range -5 and 40 °C. Within the family of PAH molecules, COSMO-RS is sufficiently accurate to make it useful as a source of estimates for modeling purposes, following corrections for systematic underestimation of KOA. Average changes in the values for log H and log KOA upon substitution are given for various PAH substituent categories, with the most significant shifts being associated with the ionizing nitro functionality and keto groups.

  11. Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation

    2018-01-01

    We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.

  12. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  13. Multiple Flux Footprints, Flux Divergences and Boundary Layer Mixing Ratios: Studies of Ecosystem-Atmosphere CO2 Exchange Using the WLEF Tall Tower.

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.

    2001-05-01

    Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby Willow Creek site. The WLEF tower also allows us to study the potential for monitoring continental CO2 mixing ratios from tower sites. Despite concerns about the proximity to ecosystem sources and sinks, it is clear that boundary layer CO2 mixing ratios can be monitored using typical surface layer towers. Seasonal and annual land-ocean mixing ratio gradients are readily detectable, providing the motivation for a flux-tower based mixing ratio observation network that could greatly improve the accuracy of inversion-based estimates of NEE of CO2, and enable inversions to be applied on smaller temporal and spatial scales. Results from the WLEF tower illustrate the degree to which local flux measurements represent interannual, seasonal and synoptic CO2 mixing ratio trends. This coherence between fluxes and mixing ratios serves to "regionalize" the eddy-covariance based local NEE observations.

  14. Random measurement error: Why worry? An example of cardiovascular risk factors.

    PubMed

    Brakenhoff, Timo B; van Smeden, Maarten; Visseren, Frank L J; Groenwold, Rolf H H

    2018-01-01

    With the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error) is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate). For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.

  15. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.

    PubMed

    Blake, James R; Easson, William J; Hoskins, Peter R

    2009-09-01

    A dual-phantom system is developed for validation of velocity measurements in stenosis models. Pairs of phantoms with identical geometry and flow conditions are manufactured, one for ultrasound and one for particle image velocimetry (PIV). The PIV model is made from silicone rubber, and a new PIV fluid is made that matches the refractive index of 1.41 of silicone. Dynamic scaling was performed to correct for the increased viscosity of the PIV fluid compared with that of the ultrasound blood mimic. The degree of stenosis in the models pairs agreed to less than 1%. The velocities in the laminar flow region up to the peak velocity location agreed to within 15%, and the difference could be explained by errors in ultrasound velocity estimation. At low flow rates and in mild stenoses, good agreement was observed in the distal flow fields, excepting the maximum velocities. At high flow rates, there was considerable difference in velocities in the poststenosis flow field (maximum centreline differences of 30%), which would seem to represent real differences in hydrodynamic behavior between the two models. Sources of error included: variation of viscosity because of temperature (random error, which could account for differences of up to 7%); ultrasound velocity estimation errors (systematic errors); and geometry effects in each model, particularly because of imperfect connectors and corners (systematic errors, potentially affecting the inlet length and flow stability). The current system is best placed to investigate measurement errors in the laminar flow region rather than the poststenosis turbulent flow region.

  16. Technical Note: Millimeter precision in ultrasound based patient positioning: Experimental quantification of inherent technical limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballhausen, Hendrik, E-mail: hendrik.ballhausen@med.uni-muenchen.de; Hieber, Sheila; Li, Minglun

    2014-08-15

    Purpose: To identify the relevant technical sources of error of a system based on three-dimensional ultrasound (3D US) for patient positioning in external beam radiotherapy. To quantify these sources of error in a controlled laboratory setting. To estimate the resulting end-to-end geometric precision of the intramodality protocol. Methods: Two identical free-hand 3D US systems at both the planning-CT and the treatment room were calibrated to the laboratory frame of reference. Every step of the calibration chain was repeated multiple times to estimate its contribution to overall systematic and random error. Optimal margins were computed given the identified and quantified systematicmore » and random errors. Results: In descending order of magnitude, the identified and quantified sources of error were: alignment of calibration phantom to laser marks 0.78 mm, alignment of lasers in treatment vs planning room 0.51 mm, calibration and tracking of 3D US probe 0.49 mm, alignment of stereoscopic infrared camera to calibration phantom 0.03 mm. Under ideal laboratory conditions, these errors are expected to limit ultrasound-based positioning to an accuracy of 1.05 mm radially. Conclusions: The investigated 3D ultrasound system achieves an intramodal accuracy of about 1 mm radially in a controlled laboratory setting. The identified systematic and random errors require an optimal clinical tumor volume to planning target volume margin of about 3 mm. These inherent technical limitations do not prevent clinical use, including hypofractionation or stereotactic body radiation therapy.« less

  17. Parameter estimation method that directly compares gravitational wave observations to numerical relativity

    NASA Astrophysics Data System (ADS)

    Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.

    2017-11-01

    We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.

  18. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  19. Evidence for B+-->omegal+nu.

    PubMed

    Schwanda, C; Abe, K; Abe, K; Abe, T; Adachi, I; Aihara, H; Akatsu, M; Asano, Y; Aushev, T; Bahinipati, S; Bakich, A M; Ban, Y; Banas, E; Bay, A; Bizjak, I; Bondar, A; Bozek, A; Bracko, M; Browder, T E; Chang, M-C; Chao, Y; Cheon, B G; Choi, Y; Choi, Y K; Chuvikov, A; Cole, S; Danilov, M; Dash, M; Dong, L Y; Drutskoy, A; Eidelman, S; Eiges, V; Gabyshev, N; Gershon, T; Gokhroo, G; Golob, B; Hazumi, M; Higuchi, I; Hinz, L; Hokuue, T; Hoshi, Y; Hou, W-S; Huang, H-C; Iijima, T; Inami, K; Ishikawa, A; Itoh, R; Iwasaki, H; Iwasaki, M; Kang, J H; Kang, J S; Kapusta, P; Katayama, N; Kawai, H; Kichimi, H; Kim, H J; Kinoshita, K; Koppenburg, P; Korpar, S; Krizan, P; Krokovny, P; Kumar, S; Kwon, Y-J; Lange, J S; Leder, G; Lee, S H; Lesiak, T; Li, J; Limosani, A; Lin, S-W; MacNaughton, J; Mandl, F; Matsumoto, T; Matyja, A; Mikami, Y; Mitaroff, W; Miyake, H; Miyata, H; Mori, T; Nagamine, T; Nagasaka, Y; Nakano, E; Nakao, M; Natkaniec, Z; Nishida, S; Nitoh, O; Nozaki, T; Ogawa, S; Ohshima, T; Okabe, T; Okuno, S; Olsen, S L; Onuki, Y; Ostrowicz, W; Ozaki, H; Pakhlov, P; Palka, H; Park, C W; Park, H; Parslow, N; Peak, L S; Piilonen, L E; Sagawa, H; Saitoh, S; Sakai, Y; Sarangi, T R; Schneider, O; Schümann, J; Schwartz, A J; Semenov, S; Senyo, K; Sevior, M E; Shibuya, H; Singh, J B; Soni, N; Stamen, R; Stanic, S; Staric, M; Sumisawa, K; Sumiyoshi, T; Suzuki, S; Tajima, O; Takasaki, F; Tamai, K; Tanaka, M; Teramoto, Y; Tomura, T; Tsukamoto, T; Uehara, S; Uglov, T; Ueno, K; Uno, S; Varner, G; Varvell, K E; Wang, C C; Wang, C H; Yabsley, B D; Yamada, Y; Yamaguchi, A; Yamashita, Y; Yanai, H; Ying, J; Zhang, Z P; Zontar, D; Zürcher, D

    2004-09-24

    We have searched for the decay B+-->omegal(+)nu (l=e or mu) in 78 fb(-1) of Upsilon(4S) data (85x10(6)BB events) accumulated with the Belle detector. The final state is fully reconstructed using the omega decay into pi(+)pi(-)pi(0), combined with detector hermeticity to estimate the neutrino momentum. A signal of 414+/-125 events is found in the data, corresponding to a branching fraction of (1.3+/-0.4+/-0.2+/-0.3)x10(-4), where the first two errors are statistical and systematic, respectively. The third error reflects the estimated form-factor uncertainty.

  20. High-accuracy self-calibration method for dual-axis rotation-modulating RLG-INS

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Long, Xingwu

    2017-05-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Dual-axis rotation modulation can completely eliminate the inertial elements constant errors of the three axes to improve the system accuracy. But the error caused by the misalignment angles and the scale factor error cannot be eliminated through dual-axis rotation modulation. And discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed the effect of calibration error during one modulated period and presented a new systematic self-calibration method for dual-axis rotation-modulating RLG-INS. Procedure for self-calibration of dual-axis rotation-modulating RLG-INS has been designed. The results of self-calibration simulation experiment proved that: this scheme can estimate all the errors in the calibration error model, the calibration precision of the inertial sensors scale factor error is less than 1ppm and the misalignment is less than 5″. These results have validated the systematic self-calibration method and proved its importance for accuracy improvement of dual -axis rotation inertial navigation system with mechanically dithered ring laser gyroscope.

  1. The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís; Crivellaro, Bianca Luhm; Chamecki, Marcelo

    2018-05-01

    The Hurst phenomenon is a well-known feature of long-range persistence first observed in hydrological and geophysical time series by E. Hurst in the 1950s. It has also been found in several cases in turbulence time series measured in the wind tunnel, the atmosphere, and in rivers. Here, we conduct a systematic investigation of the value of the Hurst coefficient H in atmospheric surface-layer data, and its impact on the estimation of random errors. We show that usually H > 0.5 , which implies the non-existence (in the statistical sense) of the integral time scale. Since the integral time scale is present in the Lumley-Panofsky equation for the estimation of random errors, this has important practical consequences. We estimated H in two principal ways: (1) with an extension of the recently proposed filtering method to estimate the random error (H_p ), and (2) with the classical rescaled range introduced by Hurst (H_R ). Other estimators were tried but were found less able to capture the statistical behaviour of the large scales of turbulence. Using data from three micrometeorological campaigns we found that both first- and second-order turbulence statistics display the Hurst phenomenon. Usually, H_R is larger than H_p for the same dataset, raising the question that one, or even both, of these estimators, may be biased. For the relative error, we found that the errors estimated with the approach adopted by us, that we call the relaxed filtering method, and that takes into account the occurrence of the Hurst phenomenon, are larger than both the filtering method and the classical Lumley-Panofsky estimates. Finally, we found that there is no apparent relationship between H and the Obukhov stability parameter. The relative errors, however, do show stability dependence, particularly in the case of the error of the kinematic momentum flux in unstable conditions, and that of the kinematic sensible heat flux in stable conditions.

  2. Multiconfiguration calculations of electronic isotope shift factors in Al i

    NASA Astrophysics Data System (ADS)

    Filippin, Livio; Beerwerth, Randolf; Ekman, Jörgen; Fritzsche, Stephan; Godefroid, Michel; Jönsson, Per

    2016-12-01

    The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope shift factors for a set of transitions between low-lying levels of neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field-shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the isotope shift factors.

  3. Validation of TRMM precipitation radar monthly rainfall estimates over Brazil

    NASA Astrophysics Data System (ADS)

    Franchito, Sergio H.; Rao, V. Brahmananda; Vasques, Ana C.; Santo, Clovis M. E.; Conforte, Jorge C.

    2009-01-01

    In an attempt to validate the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) over Brazil, TRMM PR estimates are compared with rain gauge station data from Agência Nacional de Energia Elétrica (ANEEL). The analysis is conducted on a seasonal basis and considers five geographic regions with different precipitation regimes. The results showed that TRMM PR seasonal rainfall is well correlated with ANEEL rainfall (correlation coefficients are significant at the 99% confidence level) over most of Brazil. The random and systematic errors of TRMM PR are sensitive to seasonal and regional differences. During December to February and March to May, TRMM PR rainfall is reliable over Brazil. In June to August (September to November) TRMM PR estimates are only reliable in the Amazonian and southern (Amazonian and southeastern) regions. In the other regions the relative RMS errors are larger than 50%, indicating that the random errors are high.

  4. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  5. Derivation and Application of a Global Albedo yielding an Optical Brightness To Physical Size Transformation Free of Systematic Errors

    NASA Technical Reports Server (NTRS)

    Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.

    2007-01-01

    Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.

  6. Sampling error in timber surveys

    Treesearch

    Austin Hasel

    1938-01-01

    Various sampling strategies are evaluated for efficiency in an interior ponderosa pine forest. In a 5760 acre tract, efficiency was gained by stratifying into quarter acre blocks and sampling randomly from within. A systematic cruise was found to be superior for volume estimation.

  7. Verification of Satellite Rainfall Estimates from the Tropical Rainfall Measuring Mission over Ground Validation Sites

    NASA Astrophysics Data System (ADS)

    Fisher, B. L.; Wolff, D. B.; Silberstein, D. S.; Marks, D. M.; Pippitt, J. L.

    2007-12-01

    The Tropical Rainfall Measuring Mission's (TRMM) Ground Validation (GV) Program was originally established with the principal long-term goal of determining the random errors and systematic biases stemming from the application of the TRMM rainfall algorithms. The GV Program has been structured around two validation strategies: 1) determining the quantitative accuracy of the integrated monthly rainfall products at GV regional sites over large areas of about 500 km2 using integrated ground measurements and 2) evaluating the instantaneous satellite and GV rain rate statistics at spatio-temporal scales compatible with the satellite sensor resolution (Simpson et al. 1988, Thiele 1988). The GV Program has continued to evolve since the launch of the TRMM satellite on November 27, 1997. This presentation will discuss current GV methods of validating TRMM operational rain products in conjunction with ongoing research. The challenge facing TRMM GV has been how to best utilize rain information from the GV system to infer the random and systematic error characteristics of the satellite rain estimates. A fundamental problem of validating space-borne rain estimates is that the true mean areal rainfall is an ideal, scale-dependent parameter that cannot be directly measured. Empirical validation uses ground-based rain estimates to determine the error characteristics of the satellite-inferred rain estimates, but ground estimates also incur measurement errors and contribute to the error covariance. Furthermore, sampling errors, associated with the discrete, discontinuous temporal sampling by the rain sensors aboard the TRMM satellite, become statistically entangled in the monthly estimates. Sampling errors complicate the task of linking biases in the rain retrievals to the physics of the satellite algorithms. The TRMM Satellite Validation Office (TSVO) has made key progress towards effective satellite validation. For disentangling the sampling and retrieval errors, TSVO has developed and applied a methodology that statistically separates the two error sources. Using TRMM monthly estimates and high-resolution radar and gauge data, this method has been used to estimate sampling and retrieval error budgets over GV sites. More recently, a multi- year data set of instantaneous rain rates from the TRMM microwave imager (TMI), the precipitation radar (PR), and the combined algorithm was spatio-temporally matched and inter-compared to GV radar rain rates collected during satellite overpasses of select GV sites at the scale of the TMI footprint. The analysis provided a more direct probe of the satellite rain algorithms using ground data as an empirical reference. TSVO has also made significant advances in radar quality control through the development of the Relative Calibration Adjustment (RCA) technique. The RCA is currently being used to provide a long-term record of radar calibration for the radar at Kwajalein, a strategically important GV site in the tropical Pacific. The RCA technique has revealed previously undetected alterations in the radar sensitivity due to engineering changes (e.g., system modifications, antenna offsets, alterations of the receiver, or the data processor), making possible the correction of the radar rainfall measurements and ensuring the integrity of nearly a decade of TRMM GV observations and resources.

  8. Data Envelopment Analysis in the Presence of Measurement Error: Case Study from the National Database of Nursing Quality Indicators® (NDNQI®)

    PubMed Central

    Gajewski, Byron J.; Lee, Robert; Dunton, Nancy

    2012-01-01

    Data Envelopment Analysis (DEA) is the most commonly used approach for evaluating healthcare efficiency (Hollingsworth, 2008), but a long-standing concern is that DEA assumes that data are measured without error. This is quite unlikely, and DEA and other efficiency analysis techniques may yield biased efficiency estimates if it is not realized (Gajewski, Lee, Bott, Piamjariyakul and Taunton, 2009; Ruggiero, 2004). We propose to address measurement error systematically using a Bayesian method (Bayesian DEA). We will apply Bayesian DEA to data from the National Database of Nursing Quality Indicators® (NDNQI®) to estimate nursing units’ efficiency. Several external reliability studies inform the posterior distribution of the measurement error on the DEA variables. We will discuss the case of generalizing the approach to situations where an external reliability study is not feasible. PMID:23328796

  9. An improved procedure for the validation of satellite-based precipitation estimates

    NASA Astrophysics Data System (ADS)

    Tang, Ling; Tian, Yudong; Yan, Fang; Habib, Emad

    2015-09-01

    The objective of this study is to propose and test a new procedure to improve the validation of remote-sensing, high-resolution precipitation estimates. Our recent studies show that many conventional validation measures do not accurately capture the unique error characteristics in precipitation estimates to better inform both data producers and users. The proposed new validation procedure has two steps: 1) an error decomposition approach to separate the total retrieval error into three independent components: hit error, false precipitation and missed precipitation; and 2) the hit error is further analyzed based on a multiplicative error model. In the multiplicative error model, the error features are captured by three model parameters. In this way, the multiplicative error model separates systematic and random errors, leading to more accurate quantification of the uncertainties. The proposed procedure is used to quantitatively evaluate the recent two versions (Version 6 and 7) of TRMM's Multi-sensor Precipitation Analysis (TMPA) real-time and research product suite (3B42 and 3B42RT) for seven years (2005-2011) over the continental United States (CONUS). The gauge-based National Centers for Environmental Prediction (NCEP) Climate Prediction Center (CPC) near-real-time daily precipitation analysis is used as the reference. In addition, the radar-based NCEP Stage IV precipitation data are also model-fitted to verify the effectiveness of the multiplicative error model. The results show that winter total bias is dominated by the missed precipitation over the west coastal areas and the Rocky Mountains, and the false precipitation over large areas in Midwest. The summer total bias is largely coming from the hit bias in Central US. Meanwhile, the new version (V7) tends to produce more rainfall in the higher rain rates, which moderates the significant underestimation exhibited in the previous V6 products. Moreover, the error analysis from the multiplicative error model provides a clear and concise picture of the systematic and random errors, with both versions of 3B42RT have higher errors in varying degrees than their research (post-real-time) counterparts. The new V7 algorithm shows obvious improvements in reducing random errors in both winter and summer seasons, compared to its predecessors V6. Stage IV, as expected, surpasses the satellite-based datasets in all the metrics over CONUS. Based on the results, we recommend the new procedure be adopted for routine validation of satellite-based precipitation datasets, and we expect the procedure will work effectively for higher resolution data to be produced in the Global Precipitation Measurement (GPM) era.

  10. Accelerating Convergence in Molecular Dynamics Simulations of Solutes in Lipid Membranes by Conducting a Random Walk along the Bilayer Normal.

    PubMed

    Neale, Chris; Madill, Chris; Rauscher, Sarah; Pomès, Régis

    2013-08-13

    All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the amount of sampling that is required to resolve these sampling errors. Finally, we extend our simulations and verify that the conformational autocorrelation times estimated by the transmission factor accurately predict correlation times that exceed the simulation time scale-something that, to our knowledge, has never before been achieved.

  11. Nonspinning numerical relativity waveform surrogates: assessing the model

    NASA Astrophysics Data System (ADS)

    Field, Scott; Blackman, Jonathan; Galley, Chad; Scheel, Mark; Szilagyi, Bela; Tiglio, Manuel

    2015-04-01

    Recently, multi-modal gravitational waveform surrogate models have been built directly from data numerically generated by the Spectral Einstein Code (SpEC). I will describe ways in which the surrogate model error can be quantified. This task, in turn, requires (i) characterizing differences between waveforms computed by SpEC with those predicted by the surrogate model and (ii) estimating errors associated with the SpEC waveforms from which the surrogate is built. Both pieces can have numerous sources of numerical and systematic errors. We make an attempt to study the most dominant error sources and, ultimately, the surrogate model's fidelity. These investigations yield information about the surrogate model's uncertainty as a function of time (or frequency) and parameter, and could be useful in parameter estimation studies which seek to incorporate model error. Finally, I will conclude by comparing the numerical relativity surrogate model to other inspiral-merger-ringdown models. A companion talk will cover the building of multi-modal surrogate models.

  12. Uncertainties in the cluster-cluster correlation function

    NASA Astrophysics Data System (ADS)

    Ling, E. N.; Frenk, C. S.; Barrow, J. D.

    1986-12-01

    The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation function for a sample of 1664 Abell clusters is also calculated. The standard errors in xi(r) for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The best estimate for the ratio of the correlation length of Abell clusters (richness class R greater than or equal to 1, distance class D less than or equal to 4) to that of CfA galaxies is 4.2 + 1.4 or - 1.0 (68 percentile error). The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors. The uncertainties found do not include the effects of possible systematic biases in the galaxy and cluster catalogs and could be regarded as lower bounds on the true uncertainty range.

  13. Assessment of Satellite Surface Radiation Products in Highland Regions with Tibet Instrumental Data

    NASA Technical Reports Server (NTRS)

    Yang, Kun; Koike, Toshio; Stackhouse, Paul; Mikovitz, Colleen

    2006-01-01

    This study presents results of comparisons between instrumental radiation data in the elevated Tibetan Plateau and two global satellite products: the Global Energy and Water Cycle Experiment - Surface Radiation Budget (GEWEX-SRB) and International Satellite Cloud Climatology Project - Flux Data (ISCCP-FD). In general, shortwave radiation (SW) is estimated better by ISCCP-FD while longwave radiation (LW) is estimated better by GEWEX-SRB, but all the radiation components in both products are under-estimated. Severe and systematic errors were found in monthly-mean SRB SW (on plateau-average, -48 W/sq m for downward SW and -18 W/sq m for upward SW) and FD LW (on plateau-average, -37 W/sq m for downward LW and -62 W/sq m for upward LW) for radiation. Errors in monthly-mean diurnal variations are even larger than the monthly mean errors. Though the LW errors can be reduced about 10 W/sq m after a correction for altitude difference between the site and SRB and FD grids, these errors are still higher than that for other regions. The large errors in SRB SW was mainly due to a processing mistake for elevation effect, but the errors in SRB LW was mainly due to significant errors in input data. We suggest reprocessing satellite surface radiation budget data, at least for highland areas like Tibet.

  14. Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump.

    PubMed

    Attia, A; Dhahbi, W; Chaouachi, A; Padulo, J; Wong, D P; Chamari, K

    2017-03-01

    Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen's d >1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height.

  15. Measurement errors when estimating the vertical jump height with flight time using photocell devices: the example of Optojump

    PubMed Central

    Attia, A; Chaouachi, A; Padulo, J; Wong, DP; Chamari, K

    2016-01-01

    Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen’s d>1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height. PMID:28416900

  16. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  17. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2006-01-01

    Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.

  18. Qualitative fusion technique based on information poor system and its application to factor analysis for vibration of rolling bearings

    NASA Astrophysics Data System (ADS)

    Xia, Xintao; Wang, Zhongyu

    2008-10-01

    For some methods of stability analysis of a system using statistics, it is difficult to resolve the problems of unknown probability distribution and small sample. Therefore, a novel method is proposed in this paper to resolve these problems. This method is independent of probability distribution, and is useful for small sample systems. After rearrangement of the original data series, the order difference and two polynomial membership functions are introduced to estimate the true value, the lower bound and the supper bound of the system using fuzzy-set theory. Then empirical distribution function is investigated to ensure confidence level above 95%, and the degree of similarity is presented to evaluate stability of the system. Cases of computer simulation investigate stable systems with various probability distribution, unstable systems with linear systematic errors and periodic systematic errors and some mixed systems. The method of analysis for systematic stability is approved.

  19. Estimating terrestrial aboveground biomass estimation using lidar remote sensing: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zolkos, S. G.; Goetz, S. J.; Dubayah, R.

    2012-12-01

    Estimating biomass of terrestrial vegetation is a rapidly expanding research area, but also a subject of tremendous interest for reducing carbon emissions associated with deforestation and forest degradation (REDD). The accuracy of biomass estimates is important in the context carbon markets emerging under REDD, since areas with more accurate estimates command higher prices, but also for characterizing uncertainty in estimates of carbon cycling and the global carbon budget. There is particular interest in mapping biomass so that carbon stocks and stock changes can be monitored consistently across a range of scales - from relatively small projects (tens of hectares) to national or continental scales - but also so that other benefits of forest conservation can be factored into decision making (e.g. biodiversity and habitat corridors). We conducted an analysis of reported biomass accuracy estimates from more than 60 refereed articles using different remote sensing platforms (aircraft and satellite) and sensor types (optical, radar, lidar), with a particular focus on lidar since those papers reported the greatest efficacy (lowest errors) when used in the a synergistic manner with other coincident multi-sensor measurements. We show systematic differences in accuracy between different types of lidar systems flown on different platforms but, perhaps more importantly, differences between forest types (biomes) and plot sizes used for field calibration and assessment. We discuss these findings in relation to monitoring, reporting and verification under REDD, and also in the context of more systematic assessment of factors that influence accuracy and error estimation.

  20. Bias analysis applied to Agricultural Health Study publications to estimate non-random sources of uncertainty.

    PubMed

    Lash, Timothy L

    2007-11-26

    The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is likely to lead to overconfidence regarding the potential for causal associations, whereas the former safeguards against such overinterpretations. Furthermore, such analyses, once programmed, allow rapid implementation of alternative assignments of probability distributions to the bias parameters, so elevate the plane of discussion regarding study bias from characterizing studies as "valid" or "invalid" to a critical and quantitative discussion of sources of uncertainty.

  1. Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models

    NASA Astrophysics Data System (ADS)

    Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel

    2017-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical approaches through an Observing System Simulation Experiment (OSSE) on a global scale. By changing the size of the random and systematic errors in the OSSE, we can determine the corresponding spatial and temporal resolutions at which useful flux signals could be detected from the OCO-2 data.

  2. A polar-region-adaptable systematic bias collaborative measurement method for shipboard redundant rotational inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang

    2018-05-01

    The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.

  3. What is the epidemiology of medication errors, error-related adverse events and risk factors for errors in adults managed in community care contexts? A systematic review of the international literature.

    PubMed

    Assiri, Ghadah Asaad; Shebl, Nada Atef; Mahmoud, Mansour Adam; Aloudah, Nouf; Grant, Elizabeth; Aljadhey, Hisham; Sheikh, Aziz

    2018-05-05

    To investigate the epidemiology of medication errors and error-related adverse events in adults in primary care, ambulatory care and patients' homes. Systematic review. Six international databases were searched for publications between 1 January 2006 and 31 December 2015. Two researchers independently extracted data from eligible studies and assessed the quality of these using established instruments. Synthesis of data was informed by an appreciation of the medicines' management process and the conceptual framework from the International Classification for Patient Safety. 60 studies met the inclusion criteria, of which 53 studies focused on medication errors, 3 on error-related adverse events and 4 on risk factors only. The prevalence of prescribing errors was reported in 46 studies: prevalence estimates ranged widely from 2% to 94%. Inappropriate prescribing was the most common type of error reported. Only one study reported the prevalence of monitoring errors, finding that incomplete therapeutic/safety laboratory-test monitoring occurred in 73% of patients. The incidence of preventable adverse drug events (ADEs) was estimated as 15/1000 person-years, the prevalence of drug-drug interaction-related adverse drug reactions as 7% and the prevalence of preventable ADE as 0.4%. A number of patient, healthcare professional and medication-related risk factors were identified, including the number of medications used by the patient, increased patient age, the number of comorbidities, use of anticoagulants, cases where more than one physician was involved in patients' care and care being provided by family physicians/general practitioners. A very wide variation in the medication error and error-related adverse events rates is reported in the studies, this reflecting heterogeneity in the populations studied, study designs employed and outcomes evaluated. This review has identified important limitations and discrepancies in the methodologies used and gaps in the literature on the epidemiology and outcomes of medication errors in community settings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Preparatory studies for the WFIRST supernova cosmology measurements

    NASA Astrophysics Data System (ADS)

    Perlmutter, Saul

    In the context of the WFIRST-AFTA Science Definition Team we developed a first version of a supernova program, described in the WFIRST-AFTA SDT report. This program uses the imager to discover supernova candidates and an Integral Field Spectrograph (IFS) to obtain spectrophotometric light curves and higher signal to noise spectra of the supernovae near peak to better characterize the supernovae and thus minimize systematic errors. While this program was judged a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitation of time the analysis was clearly limited in depth on a number of issues. The goal of this proposal is to further develop this program and refine the estimates of the sensitivities to the cosmological parameters using more sophisticated systematic uncertainty models and covariance error matrices that fold in more realistic data concerning observed populations of SNe Ia as well as more realistic instrument models. We propose to develop analysis algorithms and approaches that are needed to build, optimize, and refine the WFIRST instrument and program requirements to accomplish the best supernova cosmology measurements possible. We plan to address the following: a) Use realistic Supernova populations, subclasses and population drift. One bothersome uncertainty with the supernova technique is the possibility of population drift with redshift. We are in a unique position to characterize and mitigate such effects using the spectrophotometric time series of real Type Ia supernovae from the Nearby Supernova Factory (SNfactory). Each supernova in this sample has global galaxy measurements as well as additional local environment information derived from the IFS spectroscopy. We plan to develop methods of coping with this issue, e.g., by selecting similar subsamples of supernovae and allowing additional model flexibility, in order to reduce systematic uncertainties. These studies will allow us to tune details, like the wavelength coverage and S/N requirements, of the WFIRST IFS to capitalize on these systematic error reduction methods. b) Supernova extraction and host galaxy subtractions. The underlying light of the host galaxy must be subtracted from the supernova images making up the lightcurves. Using the IFS to provide the lightcurve points via spectrophotometry requires the subtraction of a reference spectrum of the galaxy taken after the supernova light has faded to a negligible level. We plan to apply the expertise obtained from the SNfactory to develop galaxy background procedures that minimize the systematic errors introduced by this step in the analysis. c) Instrument calibration and ground to space cross calibration. Calibrating the entire supernova sample will be a challenge as no standard stars exist that span the range of magnitudes and wavelengths relevant to the WFIRST survey. Linking the supernova measurements to the relatively brighter standards will require several links. WFIRST will produce the high redshift sample, but the nearby supernova to anchor the Hubble diagram will have to come from ground based observations. Developing algorithms to carry out the cross calibration of these two samples to the required one percent level will be an important goal of our proposal. An integral part of this calibration will be to remove all instrumental signatures and to develop unbiased measurement techniques starting at the pixel level. We then plan to pull the above studies together in a synthesis to produce a correlated error matrix. We plan to develop a Fisher Matrix based model to evaluate the correlated error matrix due to the various systematic errors discussed above. A realistic error model will allow us to carry out a more reliable estimates of the eventual errors on the measurement of the cosmological parameters, as well as serve as a means of optimizing and fine tuning the requirements for the instruments and survey strategies.

  5. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    NASA Technical Reports Server (NTRS)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  6. Mathematical foundations of hybrid data assimilation from a synchronization perspective

    NASA Astrophysics Data System (ADS)

    Penny, Stephen G.

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  7. Mathematical foundations of hybrid data assimilation from a synchronization perspective.

    PubMed

    Penny, Stephen G

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  8. Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model

    NASA Astrophysics Data System (ADS)

    Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.

    2017-09-01

    The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.

  9. Alternative Regression Equations for Estimation of Annual Peak-Streamflow Frequency for Undeveloped Watersheds in Texas using PRESS Minimization

    USGS Publications Warehouse

    Asquith, William H.; Thompson, David B.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.

  10. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    NASA Astrophysics Data System (ADS)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; Bianchini, Federico; Bleem, Lindsey E.; Crawford, Thomas M.; Holder, Gilbert P.; Manzotti, Alessandro; Reichardt, Christian L.

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  11. Challenges in the determination of the interstellar flow longitude from the pickup ion cutoff

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Möbius, E.; Drews, C.; Heidrich-Meisner, V.; Keilbach, D.; Lee, M. A.; Wimmer-Schweingruber, R. F.

    2018-03-01

    Context. The interstellar flow longitude corresponds to the Sun's direction of movement relative to the local interstellar medium. Thus, it constitutes a fundamental parameter for our understanding of the heliosphere and, in particular, its interaction with its surroundings, which is currently investigated by the Interstellar Boundary EXplorer (IBEX). One possibility to derive this parameter is based on pickup ions (PUIs) that are former neutral ions that have been ionized in the inner heliosphere. The neutrals enter the heliosphere as an interstellar wind from the direction of the Sun's movement against the partially ionized interstellar medium. PUIs carry information about the spatial variation of their neutral parent population (density and flow vector field) in their velocity distribution function. From the symmetry of the longitudinal flow velocity distribution, the interstellar flow longitude can be derived. Aim. The aim of this paper is to identify and eliminate systematic errors that are connected to this approach of measuring the interstellar flow longitude; we want to minimize any systematic influences on the result of this analysis and give a reasonable estimate for the uncertainty. Methods: We use He+ data measured by the PLAsma and SupraThermal Ion Composition (PLASTIC) sensor on the Solar TErrestrial RElations Observatory Ahead (STEREO A) spacecraft. We analyze a recent approach, identify sources of systematic errors, and propose solutions to eliminate them. Furthermore, a method is introduced to estimate the error associated with this approach. Additionally, we investigate how the selection of interplanetary magnetic field angles, which is closely connected to the pickup ion velocity distribution function, affects the result for the interstellar flow longitude. Results: We find that the revised analysis used to address part of the expected systematic effects obtains significantly different results than presented in the previous study. In particular, the derived uncertainties are considerably larger. Furthermore, an unexpected systematic trend of the resulting interstellar flow longitude with the selection of interplanetary magnetic field orientation is uncovered.

  12. Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions

    DOE PAGES

    Carlsson, Boris; Forssen, Christian; Fahlin Strömberg, D.; ...

    2016-02-24

    Chiral effective field theory ( ΧEFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, EFT is able to provide well-founded estimates of statistical and systematic uncertainties | although this unique advantage has not yet been fully exploited. We ll this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous t to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of EFT. Finally, we study the effect on other observables by demonstrating forward-error-propagation methodsmore » that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain e cient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to EFT and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling showing that statistical errors are in general small compared to systematic ones. In conclusion, we find that a simultaneous t to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in EFT. Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector; in particlar when varying the cutoff in the chiral potentials. The methodology and results presented in this Paper open a new frontier for uncertainty quantification in ab initio nuclear theory.« less

  13. Assimilating satellite-based canopy height within an ecosystem model to estimate aboveground forest biomass

    NASA Astrophysics Data System (ADS)

    Joetzjer, E.; Pillet, M.; Ciais, P.; Barbier, N.; Chave, J.; Schlund, M.; Maignan, F.; Barichivich, J.; Luyssaert, S.; Hérault, B.; von Poncet, F.; Poulter, B.

    2017-07-01

    Despite advances in Earth observation and modeling, estimating tropical biomass remains a challenge. Recent work suggests that integrating satellite measurements of canopy height within ecosystem models is a promising approach to infer biomass. We tested the feasibility of this approach to retrieve aboveground biomass (AGB) at three tropical forest sites by assimilating remotely sensed canopy height derived from a texture analysis algorithm applied to the high-resolution Pleiades imager in the Organizing Carbon and Hydrology in Dynamic Ecosystems Canopy (ORCHIDEE-CAN) ecosystem model. While mean AGB could be estimated within 10% of AGB derived from census data in average across sites, canopy height derived from Pleiades product was spatially too smooth, thus unable to accurately resolve large height (and biomass) variations within the site considered. The error budget was evaluated in details, and systematic errors related to the ORCHIDEE-CAN structure contribute as a secondary source of error and could be overcome by using improved allometric equations.

  14. Meta-analysis in evidence-based healthcare: a paradigm shift away from random effects is overdue.

    PubMed

    Doi, Suhail A R; Furuya-Kanamori, Luis; Thalib, Lukman; Barendregt, Jan J

    2017-12-01

    Each year up to 20 000 systematic reviews and meta-analyses are published whose results influence healthcare decisions, thus making the robustness and reliability of meta-analytic methods one of the world's top clinical and public health priorities. The evidence synthesis makes use of either fixed-effect or random-effects statistical methods. The fixed-effect method has largely been replaced by the random-effects method as heterogeneity of study effects led to poor error estimation. However, despite the widespread use and acceptance of the random-effects method to correct this, it too remains unsatisfactory and continues to suffer from defective error estimation, posing a serious threat to decision-making in evidence-based clinical and public health practice. We discuss here the problem with the random-effects approach and demonstrate that there exist better estimators under the fixed-effect model framework that can achieve optimal error estimation. We argue for an urgent return to the earlier framework with updates that address these problems and conclude that doing so can markedly improve the reliability of meta-analytical findings and thus decision-making in healthcare.

  15. Tactical Defenses Against Systematic Variation in Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    DeLoach, Richard

    2002-01-01

    This paper examines the role of unexplained systematic variation on the reproducibility of wind tunnel test results. Sample means and variances estimated in the presence of systematic variations are shown to be susceptible to bias errors that are generally non-reproducible functions of those variations. Unless certain precautions are taken to defend against the effects of systematic variation, it is shown that experimental results can be difficult to duplicate and of dubious value for predicting system response with the highest precision or accuracy that could otherwise be achieved. Results are reported from an experiment designed to estimate how frequently systematic variations are in play in a representative wind tunnel experiment. These results suggest that significant systematic variation occurs frequently enough to cast doubts on the common assumption that sample observations can be reliably assumed to be independent. The consequences of ignoring correlation among observations induced by systematic variation are considered in some detail. Experimental tactics are described that defend against systematic variation. The effectiveness of these tactics is illustrated through computational experiments and real wind tunnel experimental results. Some tutorial information describes how to analyze experimental results that have been obtained using such quality assurance tactics.

  16. Asteroid thermal modeling in the presence of reflected sunlight

    NASA Astrophysics Data System (ADS)

    Myhrvold, Nathan

    2018-03-01

    A new derivation of simple asteroid thermal models is presented, investigating the need to account correctly for Kirchhoff's law of thermal radiation when IR observations contain substantial reflected sunlight. The framework applies to both the NEATM and related thermal models. A new parameterization of these models eliminates the dependence of thermal modeling on visible absolute magnitude H, which is not always available. Monte Carlo simulations are used to assess the potential impact of violating Kirchhoff's law on estimates of physical parameters such as diameter and IR albedo, with an emphasis on NEOWISE results. The NEOWISE papers use ten different models, applied to 12 different combinations of WISE data bands, in 47 different combinations. The most prevalent combinations are simulated and the accuracy of diameter estimates is found to be depend critically on the model and data band combination. In the best case of full thermal modeling of all four band the errors in an idealized model the 1σ (68.27%) confidence interval is -5% to +6%, but this combination is just 1.9% of NEOWISE results. Other combinations representing 42% of the NEOWISE results have about twice the CI at -10% to +12%, before accounting for errors due to irregular shape or other real world effects that are not simulated. The model and data band combinations found for the majority of NEOWISE results have much larger systematic and random errors. Kirchhoff's law violation by NEOWISE models leads to errors in estimation accuracy that are strongest for asteroids with W1, W2 band emissivity ɛ12 in both the lowest (0.605 ≤ɛ12 ≤ 0 . 780), and highest decile (0.969 ≤ɛ12 ≤ 0 . 988), corresponding to the highest and lowest deciles of near-IR albedo pIR. Systematic accuracy error between deciles ranges from a low of 5% to as much as 45%, and there are also differences in the random errors. Kirchhoff's law effects also produce large errors in NEOWISE estimates of pIR, particularly for high values. IR observations of asteroids in bands that have substantial reflected sunlight can largely avoid these problems by adopting the Kirchhoff law compliant modeling framework presented here, which is conceptually straightforward and comes without computational cost.

  17. Investigation of empirical damping laws for the space shuttle

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.

    1973-01-01

    An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.

  18. Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  19. Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures

    DOE PAGES

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.; ...

    2017-06-26

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  20. Prevalence of refractive errors in children in India: a systematic review.

    PubMed

    Sheeladevi, Sethu; Seelam, Bharani; Nukella, Phanindra B; Modi, Aditi; Ali, Rahul; Keay, Lisa

    2018-04-22

    Uncorrected refractive error is an avoidable cause of visual impairment which affects children in India. The objective of this review is to estimate the prevalence of refractive errors in children ≤ 15 years of age. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed in this review. A detailed literature search was performed to include all population and school-based studies published from India between January 1990 and January 2017, using the Cochrane Library, Medline and Embase. The quality of the included studies was assessed based on a critical appraisal tool developed for systematic reviews of prevalence studies. Four population-based studies and eight school-based studies were included. The overall prevalence of refractive error per 100 children was 8.0 (CI: 7.4-8.1) and in schools it was 10.8 (CI: 10.5-11.2). The population-based prevalence of myopia, hyperopia (≥ +2.00 D) and astigmatism was 5.3 per cent, 4.0 per cent and 5.4 per cent, respectively. Combined refractive error and myopia alone were higher in urban areas compared to rural areas (odds ratio [OR]: 2.27 [CI: 2.09-2.45]) and (OR: 2.12 [CI: 1.79-2.50]), respectively. The prevalence of combined refractive errors and myopia alone in schools was higher among girls than boys (OR: 1.2 [CI: 1.1-1.3] and OR: 1.1 [CI: 1.1-1.2]), respectively. However, hyperopia was more prevalent among boys than girls in schools (OR: 2.1 [CI: 1.8-2.4]). Refractive error in children in India is a major public health problem and requires concerted efforts from various stakeholders including the health care workforce, education professionals and parents, to manage this issue. © 2018 Optometry Australia.

  1. A comparison of advanced overlay technologies

    NASA Astrophysics Data System (ADS)

    Dasari, Prasad; Smith, Nigel; Goelzer, Gary; Liu, Zhuan; Li, Jie; Tan, Asher; Koh, Chin Hwee

    2010-03-01

    The extension of optical lithography to 22nm and beyond by Double Patterning Technology is often challenged by CDU and overlay control. With reduced overlay measurement error budgets in the sub-nm range, relying on traditional Total Measurement Uncertainty (TMU) estimates alone is no longer sufficient. In this paper we will report scatterometry overlay measurements data from a set of twelve test wafers, using four different target designs. The TMU of these measurements is under 0.4nm, within the process control requirements for the 22nm node. Comparing the measurement differences between DBO targets (using empirical and model based analysis) and with image-based overlay data indicates the presence of systematic and random measurement errors that exceeds the TMU estimate.

  2. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  3. Influence of ECG measurement accuracy on ECG diagnostic statements.

    PubMed

    Zywietz, C; Celikag, D; Joseph, G

    1996-01-01

    Computer analysis of electrocardiograms (ECGs) provides a large amount of ECG measurement data, which may be used for diagnostic classification and storage in ECG databases. Until now, neither error limits for ECG measurements have been specified nor has their influence on diagnostic statements been systematically investigated. An analytical method is presented to estimate the influence of measurement errors on the accuracy of diagnostic ECG statements. Systematic (offset) errors will usually result in an increase of false positive or false negative statements since they cause a shift of the working point on the receiver operating characteristics curve. Measurement error dispersion broadens the distribution function of discriminative measurement parameters and, therefore, usually increases the overlap between discriminative parameters. This results in a flattening of the receiver operating characteristics curve and an increase of false positive and false negative classifications. The method developed has been applied to ECG conduction defect diagnoses by using the proposed International Electrotechnical Commission's interval measurement tolerance limits. These limits appear too large because more than 30% of false positive atrial conduction defect statements and 10-18% of false intraventricular conduction defect statements could be expected due to tolerated measurement errors. To assure long-term usability of ECG measurement databases, it is recommended that systems provide its error tolerance limits obtained on a defined test set.

  4. Trajectory prediction for ballistic missiles based on boost-phase LOS measurements

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov

    1997-10-01

    This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.

  5. Image guidance during head-and-neck cancer radiation therapy: analysis of alignment trends with in-room cone-beam computed tomography scans.

    PubMed

    Zumsteg, Zachary; DeMarco, John; Lee, Steve P; Steinberg, Michael L; Lin, Chun Shu; McBride, William; Lin, Kevin; Wang, Pin-Chieh; Kupelian, Patrick; Lee, Percy

    2012-06-01

    On-board cone-beam computed tomography (CBCT) is currently available for alignment of patients with head-and-neck cancer before radiotherapy. However, daily CBCT is time intensive and increases the overall radiation dose. We assessed the feasibility of using the average couch shifts from the first several CBCTs to estimate and correct for the presumed systematic setup error. 56 patients with head-and-neck cancer who received daily CBCT before intensity-modulated radiation therapy had recorded shift values in the medial-lateral, superior-inferior, and anterior-posterior dimensions. The average displacements in each direction were calculated for each patient based on the first five or 10 CBCT shifts and were presumed to represent the systematic setup error. The residual error after this correction was determined by subtracting the calculated shifts from the shifts obtained using daily CBCT. The magnitude of the average daily residual three-dimensional (3D) error was 4.8 ± 1.4 mm, 3.9 ± 1.3 mm, and 3.7 ± 1.1 mm for uncorrected, five CBCT corrected, and 10 CBCT corrected protocols, respectively. With no image guidance, 40.8% of fractions would have been >5 mm off target. Using the first five CBCT shifts to correct subsequent fractions, this percentage decreased to 19.0% of all fractions delivered and decreased the percentage of patients with average daily 3D errors >5 mm from 35.7% to 14.3% vs. no image guidance. Using an average of the first 10 CBCT shifts did not significantly improve this outcome. Using the first five CBCT shift measurements as an estimation of the systematic setup error improves daily setup accuracy for a subset of patients with head-and-neck cancer receiving intensity-modulated radiation therapy and primarily benefited those with large 3D correction vectors (>5 mm). Daily CBCT is still necessary until methods are developed that more accurately determine which patients may benefit from alternative imaging strategies. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Probability shapes perceptual precision: A study in orientation estimation.

    PubMed

    Jabar, Syaheed B; Anderson, Britt

    2015-12-01

    Probability is known to affect perceptual estimations, but an understanding of mechanisms is lacking. Moving beyond binary classification tasks, we had naive participants report the orientation of briefly viewed gratings where we systematically manipulated contingent probability. Participants rapidly developed faster and more precise estimations for high-probability tilts. The shapes of their error distributions, as indexed by a kurtosis measure, also showed a distortion from Gaussian. This kurtosis metric was robust, capturing probability effects that were graded, contextual, and varying as a function of stimulus orientation. Our data can be understood as a probability-induced reduction in the variability or "shape" of estimation errors, as would be expected if probability affects the perceptual representations. As probability manipulations are an implicit component of many endogenous cuing paradigms, changes at the perceptual level could account for changes in performance that might have traditionally been ascribed to "attention." (c) 2015 APA, all rights reserved).

  7. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  8. USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality

    USGS Publications Warehouse

    Ludtke, Amy S.; Woodworth, Mark T.

    1997-01-01

    The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.

  9. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  10. VizieR Online Data Catalog: 5 Galactic GC proper motions from Gaia DR1 (Watkins+, 2017)

    NASA Astrophysics Data System (ADS)

    Watkins, L. L.; van der Marel, R. P.

    2017-11-01

    We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho-Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope (HST) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST. By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories. (4 data files).

  11. Tycho- Gaia Astrometric Solution Parallaxes and Proper Motions for Five Galactic Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, Laura L.; Van der Marel, Roeland P., E-mail: lwatkins@stsci.edu

    2017-04-20

    We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho- Gaia Astrometric Solution (TGAS) catalog from Gaia Data Release 1 (DR1), and identify five members of NGC 104 (47 Tucanae), one member of NGC 5272 (M3), five members of NGC 6121 (M4), seven members of NGC 6397, and two members of NGC 6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneousmore » PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope ( HST ) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST . By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.« less

  12. Directly comparing gravitational wave data to numerical relativity simulations: systematics

    NASA Astrophysics Data System (ADS)

    Lange, Jacob; O'Shaughnessy, Richard; Healy, James; Lousto, Carlos; Zlochower, Yosef; Shoemaker, Deirdre; Lovelace, Geoffrey; Pankow, Christopher; Brady, Patrick; Scheel, Mark; Pfeiffer, Harald; Ossokine, Serguei

    2017-01-01

    We compare synthetic data directly to complete numerical relativity simulations of binary black holes. In doing so, we circumvent ad-hoc approximations introduced in semi-analytical models previously used in gravitational wave parameter estimation and compare the data against the most accurate waveforms including higher modes. In this talk, we focus on the synthetic studies that test potential sources of systematic errors. We also run ``end-to-end'' studies of intrinsically different synthetic sources to show we can recover parameters for different systems.

  13. Medication errors in paediatric care: a systematic review of epidemiology and an evaluation of evidence supporting reduction strategy recommendations

    PubMed Central

    Miller, Marlene R; Robinson, Karen A; Lubomski, Lisa H; Rinke, Michael L; Pronovost, Peter J

    2007-01-01

    Background Although children are at the greatest risk for medication errors, little is known about the overall epidemiology of these errors, where the gaps are in our knowledge, and to what extent national medication error reduction strategies focus on children. Objective To synthesise peer reviewed knowledge on children's medication errors and on recommendations to improve paediatric medication safety by a systematic literature review. Data sources PubMed, Embase and Cinahl from 1 January 2000 to 30 April 2005, and 11 national entities that have disseminated recommendations to improve medication safety. Study selection Inclusion criteria were peer reviewed original data in English language. Studies that did not separately report paediatric data were excluded. Data extraction Two reviewers screened articles for eligibility and for data extraction, and screened all national medication error reduction strategies for relevance to children. Data synthesis From 358 articles identified, 31 were included for data extraction. The definition of medication error was non‐uniform across the studies. Dispensing and administering errors were the most poorly and non‐uniformly evaluated. Overall, the distributional epidemiological estimates of the relative percentages of paediatric error types were: prescribing 3–37%, dispensing 5–58%, administering 72–75%, and documentation 17–21%. 26 unique recommendations for strategies to reduce medication errors were identified; none were based on paediatric evidence. Conclusions Medication errors occur across the entire spectrum of prescribing, dispensing, and administering, are common, and have a myriad of non‐evidence based potential reduction strategies. Further research in this area needs a firmer standardisation for items such as dose ranges and definitions of medication errors, broader scope beyond inpatient prescribing errors, and prioritisation of implementation of medication error reduction strategies. PMID:17403758

  14. A Systematic Approach to Error Free Telemetry

    DTIC Science & Technology

    2017-06-28

    A SYSTEMATIC APPROACH TO ERROR FREE TELEMETRY 412TW-TIM-17-03 DISTRIBUTION A: Approved for public release. Distribution is...Systematic Approach to Error-Free Telemetry) was submitted by the Commander, 412th Test Wing, Edwards AFB, California 93524. Prepared by...Technical Information Memorandum 3. DATES COVERED (From - Through) February 2016 4. TITLE AND SUBTITLE A Systematic Approach to Error-Free

  15. ICP-Forests (International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests): Quality Assurance procedure in plant diversity monitoring.

    PubMed

    Allegrini, Maria-Cristina; Canullo, Roberto; Campetella, Giandiego

    2009-04-01

    Knowledge of accuracy and precision rates is particularly important for long-term studies. Vegetation assessments include many sources of error related to overlooking and misidentification, that are usually influenced by some factors, such as cover estimate subjectivity, observer biased species lists and experience of the botanist. The vegetation assessment protocol adopted in the Italian forest monitoring programme (CONECOFOR) contains a Quality Assurance programme. The paper presents the different phases of QA, separates the 5 main critical points of the whole protocol as sources of random or systematic errors. Examples of Measurement Quality Objectives (MQOs) expressed as Data Quality Limits (DQLs) are given for vascular plant cover estimates, in order to establish the reproducibility of the data. Quality control activities were used to determine the "distance" between the surveyor teams and the control team. Selected data were acquired during the training and inter-calibration courses. In particular, an index of average cover by species groups was used to evaluate the random error (CV 4%) as the dispersion around the "true values" of the control team. The systematic error in the evaluation of species composition, caused by overlooking or misidentification of species, was calculated following the pseudo-turnover rate; detailed species censuses on smaller sampling units were accepted as the pseudo-turnover which always fell below the 25% established threshold; species density scores recorded at community level (100 m(2) surface) rarely exceeded that limit.

  16. VLBI-derived troposphere parameters during CONT08

    NASA Astrophysics Data System (ADS)

    Heinkelmann, R.; Böhm, J.; Bolotin, S.; Engelhardt, G.; Haas, R.; Lanotte, R.; MacMillan, D. S.; Negusini, M.; Skurikhina, E.; Titov, O.; Schuh, H.

    2011-07-01

    Time-series of zenith wet and total troposphere delays as well as north and east gradients are compared, and zenith total delays ( ZTD) are combined on the level of parameter estimates. Input data sets are provided by ten Analysis Centers (ACs) of the International VLBI Service for Geodesy and Astrometry (IVS) for the CONT08 campaign (12-26 August 2008). The inconsistent usage of meteorological data and models, such as mapping functions, causes systematics among the ACs, and differing parameterizations and constraints add noise to the troposphere parameter estimates. The empirical standard deviation of ZTD among the ACs with regard to an unweighted mean is 4.6 mm. The ratio of the analysis noise to the observation noise assessed by the operator/software impact (OSI) model is about 2.5. These and other effects have to be accounted for to improve the intra-technique combination of VLBI-derived troposphere parameters. While the largest systematics caused by inconsistent usage of meteorological data can be avoided and the application of different mapping functions can be considered by applying empirical corrections, the noise has to be modeled in the stochastic model of intra-technique combination. The application of different stochastic models shows no significant effects on the combined parameters but results in different mean formal errors: the mean formal errors of the combined ZTD are 2.3 mm (unweighted), 4.4 mm (diagonal), 8.6 mm [variance component (VC) estimation], and 8.6 mm (operator/software impact, OSI). On the one hand, the OSI model, i.e. the inclusion of off-diagonal elements in the cofactor-matrix, considers the reapplication of observations yielding a factor of about two for mean formal errors as compared to the diagonal approach. On the other hand, the combination based on VC estimation shows large differences among the VCs and exhibits a comparable scaling of formal errors. Thus, for the combination of troposphere parameters a combination of the two extensions of the stochastic model is recommended.

  17. Parametric decadal climate forecast recalibration (DeFoReSt 1.0)

    NASA Astrophysics Data System (ADS)

    Pasternack, Alexander; Bhend, Jonas; Liniger, Mark A.; Rust, Henning W.; Müller, Wolfgang A.; Ulbrich, Uwe

    2018-01-01

    Near-term climate predictions such as decadal climate forecasts are increasingly being used to guide adaptation measures. For near-term probabilistic predictions to be useful, systematic errors of the forecasting systems have to be corrected. While methods for the calibration of probabilistic forecasts are readily available, these have to be adapted to the specifics of decadal climate forecasts including the long time horizon of decadal climate forecasts, lead-time-dependent systematic errors (drift) and the errors in the representation of long-term changes and variability. These features are compounded by small ensemble sizes to describe forecast uncertainty and a relatively short period for which typically pairs of reforecasts and observations are available to estimate calibration parameters. We introduce the Decadal Climate Forecast Recalibration Strategy (DeFoReSt), a parametric approach to recalibrate decadal ensemble forecasts that takes the above specifics into account. DeFoReSt optimizes forecast quality as measured by the continuous ranked probability score (CRPS). Using a toy model to generate synthetic forecast observation pairs, we demonstrate the positive effect on forecast quality in situations with pronounced and limited predictability. Finally, we apply DeFoReSt to decadal surface temperature forecasts from the MiKlip prototype system and find consistent, and sometimes considerable, improvements in forecast quality compared with a simple calibration of the lead-time-dependent systematic errors.

  18. Galactoseismology and the local density of dark matter

    DOE PAGES

    Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott

    2016-10-08

    Here, we model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors ofmore » $$10\\%$$ or greater in the vertical force $$K_z(z)$$ at $$|z|=1.1\\,{\\rm kpc}$$. These errors translate to $$\\gtrsim 25\\%$$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.« less

  19. Calibration system for radon EEC measurements.

    PubMed

    Mostafa, Y A M; Vasyanovich, M; Zhukovsky, M; Zaitceva, N

    2015-06-01

    The measurement of radon equivalent equilibrium concentration (EECRn) is very simple and quick technique for the estimation of radon progeny level in dwellings or working places. The most typical methods of EECRn measurements are alpha radiometry or alpha spectrometry. In such technique, the influence of alpha particle absorption in filters and filter effectiveness should be taken into account. In the authors' work, it is demonstrated that more precise and less complicated calibration of EECRn-measuring equipment can be conducted by the use of the gamma spectrometer as a reference measuring device. It was demonstrated that for this calibration technique systematic error does not exceed 3 %. The random error of (214)Bi activity measurements is in the range 3-6 %. In general, both these errors can be decreased. The measurements of EECRn by gamma spectrometry and improved alpha radiometry are in good agreement, but the systematic shift between average values can be observed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China).

    PubMed

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-05-25

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  1. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    PubMed Central

    Zhao, Qilong; Strykowski, Gabriel; Li, Jiancheng; Pan, Xiong; Xu, Xinyu

    2017-01-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3–5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems. PMID:28587086

  2. Evaluation and Comparison of the Processing Methods of Airborne Gravimetry Concerning the Errors Effects on Downward Continuation Results: Case Studies in Louisiana (USA) and the Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Zhao, Q.

    2017-12-01

    Gravity data gaps in mountainous areas are nowadays often filled in with the data from airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and because of rough flight conditions, such errors cannot be completely eliminated. The precision of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order to improve the results the external high-accuracy gravity information e.g., from the surface data can be used for high frequency correction, while satellite information can be applying for low frequency correction. Surface data may be used to reduce the systematic errors, while regularization methods can reduce the random errors in downward continuation. Airborne gravity surveys are sometimes conducted in mountainous areas and the most extreme area of the world for this type of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available for this area, the above error minimization method involving the external gravity data cannot be used. We propose a semi-parametric downward continuation method in combination with regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau; i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that the numerical experiment is also successfully conducted using the synthetic Earth Gravitational Model 2008 (EGM08)-derived gravity data contaminated with the synthetic errors. The estimated systematic errors generated by the method are close to the simulated values. In addition, we study the relationship between the downward continuation altitudes and the error effect. The analysis results show that the proposed semi-parametric method combined with regularization is efficient to address such modelling problems.

  3. Probabilistic performance estimators for computational chemistry methods: The empirical cumulative distribution function of absolute errors

    NASA Astrophysics Data System (ADS)

    Pernot, Pascal; Savin, Andreas

    2018-06-01

    Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.

  4. Systematic feasibility analysis of a quantitative elasticity estimation for breast anatomy using supine/prone patient postures.

    PubMed

    Hasse, Katelyn; Neylon, John; Sheng, Ke; Santhanam, Anand P

    2016-03-01

    Breast elastography is a critical tool for improving the targeted radiotherapy treatment of breast tumors. Current breast radiotherapy imaging protocols only involve prone and supine CT scans. There is a lack of knowledge on the quantitative accuracy with which breast elasticity can be systematically measured using only prone and supine CT datasets. The purpose of this paper is to describe a quantitative elasticity estimation technique for breast anatomy using only these supine/prone patient postures. Using biomechanical, high-resolution breast geometry obtained from CT scans, a systematic assessment was performed in order to determine the feasibility of this methodology for clinically relevant elasticity distributions. A model-guided inverse analysis approach is presented in this paper. A graphics processing unit (GPU)-based linear elastic biomechanical model was employed as a forward model for the inverse analysis with the breast geometry in a prone position. The elasticity estimation was performed using a gradient-based iterative optimization scheme and a fast-simulated annealing (FSA) algorithm. Numerical studies were conducted to systematically analyze the feasibility of elasticity estimation. For simulating gravity-induced breast deformation, the breast geometry was anchored at its base, resembling the chest-wall/breast tissue interface. Ground-truth elasticity distributions were assigned to the model, representing tumor presence within breast tissue. Model geometry resolution was varied to estimate its influence on convergence of the system. A priori information was approximated and utilized to record the effect on time and accuracy of convergence. The role of the FSA process was also recorded. A novel error metric that combined elasticity and displacement error was used to quantify the systematic feasibility study. For the authors' purposes, convergence was set to be obtained when each voxel of tissue was within 1 mm of ground-truth deformation. The authors' analyses showed that a ∼97% model convergence was systematically observed with no-a priori information. Varying the model geometry resolution showed no significant accuracy improvements. The GPU-based forward model enabled the inverse analysis to be completed within 10-70 min. Using a priori information about the underlying anatomy, the computation time decreased by as much as 50%, while accuracy improved from 96.81% to 98.26%. The use of FSA was observed to allow the iterative estimation methodology to converge more precisely. By utilizing a forward iterative approach to solve the inverse elasticity problem, this work indicates the feasibility and potential of the fast reconstruction of breast tissue elasticity using supine/prone patient postures.

  5. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    NASA Technical Reports Server (NTRS)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  6. Comparison of known food weights with image-based portion-size automated estimation and adolescents' self-reported portion size.

    PubMed

    Lee, Christina D; Chae, Junghoon; Schap, TusaRebecca E; Kerr, Deborah A; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2012-03-01

    Diet is a critical element of diabetes self-management. An emerging area of research is the use of images for dietary records using mobile telephones with embedded cameras. These tools are being designed to reduce user burden and to improve accuracy of portion-size estimation through automation. The objectives of this study were to (1) assess the error of automatically determined portion weights compared to known portion weights of foods and (2) to compare the error between automation and human. Adolescents (n = 15) captured images of their eating occasions over a 24 h period. All foods and beverages served were weighed. Adolescents self-reported portion sizes for one meal. Image analysis was used to estimate portion weights. Data analysis compared known weights, automated weights, and self-reported portions. For the 19 foods, the mean ratio of automated weight estimate to known weight ranged from 0.89 to 4.61, and 9 foods were within 0.80 to 1.20. The largest error was for lettuce and the most accurate was strawberry jam. The children were fairly accurate with portion estimates for two foods (sausage links, toast) using one type of estimation aid and two foods (sausage links, scrambled eggs) using another aid. The automated method was fairly accurate for two foods (sausage links, jam); however, the 95% confidence intervals for the automated estimates were consistently narrower than human estimates. The ability of humans to estimate portion sizes of foods remains a problem and a perceived burden. Errors in automated portion-size estimation can be systematically addressed while minimizing the burden on people. Future applications that take over the burden of these processes may translate to better diabetes self-management. © 2012 Diabetes Technology Society.

  7. The impact of 3D volume of interest definition on accuracy and precision of activity estimation in quantitative SPECT and planar processing methods

    NASA Astrophysics Data System (ADS)

    He, Bin; Frey, Eric C.

    2010-06-01

    Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were linear in the shift for both the QSPECT and QPlanar methods. QPlanar was less sensitive to object definition perturbations than QSPECT, especially for dilation and erosion cases. Up to 1 voxel misregistration or misdefinition resulted in up to 8% error in organ activity estimates, with the largest errors for small or low uptake organs. Both types of VOI definition errors produced larger errors in activity estimates for a small and low uptake organs (i.e. -7.5% to 5.3% for the left kidney) than for a large and high uptake organ (i.e. -2.9% to 2.1% for the liver). We observed that misregistration generally had larger effects than misdefinition, with errors ranging from -7.2% to 8.4%. The different imaging methods evaluated responded differently to the errors from misregistration and misdefinition. We found that QSPECT was more sensitive to misdefinition errors, but less sensitive to misregistration errors, as compared to the QPlanar method. Thus, sensitivity to VOI definition errors should be an important criterion in evaluating quantitative imaging methods.

  8. Five-equation and robust three-equation methods for solution verification of large eddy simulation

    NASA Astrophysics Data System (ADS)

    Dutta, Rabijit; Xing, Tao

    2018-02-01

    This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.

  9. A Systematic Error Correction Method for TOVS Radiances

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.

  10. Analysis of Measurement Error and Estimator Shape in Three-Point Hydraulic Gradient Estimators

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Wahi, A. K.

    2003-12-01

    Three spatially separated measurements of head provide a means of estimating the magnitude and orientation of the hydraulic gradient. Previous work with three-point estimators has focused on the effect of the size (area) of the three-point estimator and measurement error on the final estimates of the gradient magnitude and orientation in laboratory and field studies (Mizell, 1980; Silliman and Frost, 1995; Silliman and Mantz, 2000; Ruskauff and Rumbaugh, 1996). However, a systematic analysis of the combined effects of measurement error, estimator shape and estimator orientation relative to the gradient orientation has not previously been conducted. Monte Carlo simulation with an underlying assumption of a homogeneous transmissivity field is used to examine the effects of uncorrelated measurement error on a series of eleven different three-point estimators having the same size but different shapes as a function of the orientation of the true gradient. Results show that the variance in the estimate of both the magnitude and the orientation increase linearly with the increase in measurement error in agreement with the results of stochastic theory for estimators that are small relative to the correlation length of transmissivity (Mizell, 1980). Three-point estimator shapes with base to height ratios between 0.5 and 5.0 provide accurate estimates of magnitude and orientation across all orientations of the true gradient. As an example, these results are applied to data collected from a monitoring network of 25 wells at the WIPP site during two different time periods. The simulation results are used to reduce the set of all possible combinations of three wells to those combinations with acceptable measurement errors relative to the amount of head drop across the estimator and base to height ratios between 0.5 and 5.0. These limitations reduce the set of all possible well combinations by 98 percent and show that size alone as defined by triangle area is not a valid discriminator of whether or not the estimator provides accurate estimates of the gradient magnitude and orientation. This research was funded by WIPP programs administered by the U.S Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    DOE PAGES

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; ...

    2017-08-25

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less

  12. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment’s beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less

  13. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, wemore » examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.« less

  14. Suspected time errors along the satellite laser ranging network and impact on the reference frame

    NASA Astrophysics Data System (ADS)

    Belli, Alexandre; Exertier, Pierre; Lemoine, Frank; Zelensky, Nikita

    2017-04-01

    Systematic errors in the laser ranging technologies must be considered when considering the GGOS objective to maintain a network with an accuracy of 1 mm and a stability of 0.1 mm per year for the station ground coordinates in the ITRF. Range and Time biases are identified to be part of these systematic errors, for a major part, and are difficult to detect. Concerning the range bias, analysts and working groups estimate their values from LAGEOS-1 & 2 observations (c.f. Appleby et al. 2016). On the other hand, time errors are often neglected (they are presumed to be < 100 ns) and remain difficult to estimate (at this level), from using the observations of geodetic satellites passes and precise orbit determination (i.e. LAGEOS). The Time Transfer by Laser Link (T2L2) experiment on-board Jason-2 is a unique opportunity to determine, globally and independently, the synchronization of all laser stations. Because of the low altitude of Jason-2, we computed the time transfer in non-common view from the Grasse primary station to all other SLR stations. We used a method to synchronize the whole network which consists of the integration of an Ultra Stable Oscillator (USO) frequency model, in order to take care of the frequency instabilities caused by the space environment. The integration provides a model which becomes an "on-orbit" time realization which can be connected to each of the SLR stations by the ground to space laser link. We estimated time biases per station, with a repeatability of 3 - 4 ns, for 25 stations which observe T2L2 regularly. We investigated the effect on LAGEOS and Starlette orbits and we discuss the impact of time errors on the station coordinates. We show that the effects on the global POD are negligible (< 1 mm) but are at the level of 4 - 6 mm for the coordinates. We conclude and propose to introduce time errors in the future analyses (IDS and ILRS) that would lead to the computation of improved reference frame solutions.

  15. Errors in retarding potential analyzers caused by nonuniformity of the grid-plane potential.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Frame, D. R.; Midgley, J. E.

    1972-01-01

    One aspect of the degradation in performance of retarding potential analyzers caused by potential depressions in the retarding grid is quantitatively estimated from laboratory measurements and theoretical calculations. A simple expression is obtained that permits the use of laboratory measurements of grid properties to make first-order corrections to flight data. Systematic positive errors in ion temperature of approximately 16% for the Ogo 4 instrument and 3% for the Ogo 6 instrument are deduced. The effects of the transverse electric fields arising from the grid potential depressions are not treated.

  16. On the use of the covariance matrix to fit correlated data

    NASA Astrophysics Data System (ADS)

    D'Agostini, G.

    1994-07-01

    Best fits to data which are affected by systematic uncertainties on the normalization factor have the tendency to produce curves lower than expected if the covariance matrix of the data points is used in the definition of the χ2. This paper shows that the effect is a direct consequence of the hypothesis used to estimate the empirical covariance matrix, namely the linearization on which the usual error propagation relies. The bias can become unacceptable if the normalization error is large, or a large number of data points are fitted.

  17. More on Systematic Error in a Boyle's Law Experiment

    ERIC Educational Resources Information Center

    McCall, Richard P.

    2012-01-01

    A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.

  18. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  19. Two-photon decay of the neutral pion in lattice QCD.

    PubMed

    Feng, Xu; Aoki, Sinya; Fukaya, Hidenori; Hashimoto, Shoji; Kaneko, Takashi; Noaki, Jun-Ichi; Shintani, Eigo

    2012-11-02

    We perform a nonperturbative calculation of the π(0) → γγ transition form factor and the associated decay width using lattice QCD. The amplitude for a two-photon final state, which is not an eigenstate of QCD, is extracted through a Euclidean time integral of the relevant three-point function. We utilize the all-to-all quark propagator technique to carry out this integration as well as to include the disconnected quark diagram contributions. The overlap fermion formulation is employed on the lattice to ensure exact chiral symmetry on the lattice. After examining various sources of systematic effects, except for a possible discretization effect, we obtain Γπ(0) → γγ = 7.83(31)(49) eV for the pion decay width, where the first error is statistical and the second is our estimate of the systematic error.

  20. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    PubMed

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  1. First Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Data Processing Methods and Systematic Errors Limits

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Barnes, C.; Bennett, C. L.; Greason, M. R.; Halpern, M.; Hill, R. S.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.

    2003-01-01

    We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.

  2. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington

    USGS Publications Warehouse

    Krimmel, R.M.

    1999-01-01

    Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979-80, and 1985-97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970-97, the direct method shows a cumulative balance of about -15 m, and the geodetic method shows a cumulative balance of about -22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.

  3. GEOS-2 refraction program summary document. [ionospheric and tropospheric propagation errors in satellite tracking instruments

    NASA Technical Reports Server (NTRS)

    Mallinckrodt, A. J.

    1977-01-01

    Data from an extensive array of collocated instrumentation at the Wallops Island test facility were intercompared in order to (1) determine the practical achievable accuracy limitations of various tropospheric and ionospheric correction techniques; (2) examine the theoretical bases and derivation of improved refraction correction techniques; and (3) estimate internal systematic and random error levels of the various tracking stations. The GEOS 2 satellite was used as the target vehicle. Data were obtained regarding the ionospheric and tropospheric propagation errors, the theoretical and data analysis of which was documented in some 30 separate reports over the last 6 years. An overview of project results is presented.

  4. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  5. Validity of segmental bioelectrical impedance analysis for estimating fat-free mass in children including overweight individuals.

    PubMed

    Ohta, Megumi; Midorikawa, Taishi; Hikihara, Yuki; Masuo, Yoshihisa; Sakamoto, Shizuo; Torii, Suguru; Kawakami, Yasuo; Fukunaga, Tetsuo; Kanehisa, Hiroaki

    2017-02-01

    This study examined the validity of segmental bioelectrical impedance (BI) analysis for predicting the fat-free masses (FFMs) of whole-body and body segments in children including overweight individuals. The FFM and impedance (Z) values of arms, trunk, legs, and whole body were determined using a dual-energy X-ray absorptiometry and segmental BI analyses, respectively, in 149 boys and girls aged 6 to 12 years, who were divided into model-development (n = 74), cross-validation (n = 35), and overweight (n = 40) groups. Simple regression analysis was applied to (length) 2 /Z (BI index) for each of the whole-body and 3 segments to develop the prediction equations of the measured FFM of the related body part. In the model-development group, the BI index of each of the 3 segments and whole body was significantly correlated to the measured FFM (R 2 = 0.867-0.932, standard error of estimation = 0.18-1.44 kg (5.9%-8.7%)). There was no significant difference between the measured and predicted FFM values without systematic error. The application of each equation derived in the model-development group to the cross-validation and overweight groups did not produce significant differences between the measured and predicted FFM values and systematic errors, with an exception that the arm FFM in the overweight group was overestimated. Segmental bioelectrical impedance analysis is useful for predicting the FFM of each of whole-body and body segments in children including overweight individuals, although the application for estimating arm FFM in overweight individuals requires a certain modification.

  6. A test of Gaia Data Release 1 parallaxes: implications for the local distance scale

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Riess, Adam G.; Bucciarelli, Beatrice; Lattanzi, Mario G.

    2017-03-01

    Aims: We present a comparison of Gaia Data Release 1 (DR1) parallaxes with photometric parallaxes for a sample of 212 Galactic Cepheids at a median distance of 2 kpc, and explore their implications on the distance scale and the local value of the Hubble constant H0. Methods: The Cepheid distances are estimated from a recent calibration of the near-infrared period-luminosity (P-L) relation. The comparison is carried out in parallax space, where the DR1 parallax errors, with a median value of half the median parallax, are expected to be well-behaved. Results: With the exception of one outlier, the DR1 parallaxes are in very good global agreement with the predictions from a well-established P-L relation, with a possible indication that the published errors may be conservatively overestimated by about 20%. This confirms that the quality of DR1 parallaxes for the Cepheids in our sample is well within their stated errors. We find that the parallaxes of 9 Cepheids brighter than G = 6 may be systematically underestimated. If interpreted as an independent calibration of the Cepheid luminosities and assumed to be otherwise free of systematic uncertainties, DR1 parallaxes are in very good agreement (within 0.3%) with the current estimate of the local Hubble constant, and in conflict at the level of 2.5σ (3.5σ if the errors are scaled) with the value inferred from Planck cosmic microwave background data used in conjunction with ΛCDM. We also test for a zeropoint error in Gaia parallaxes and find none to a precision of 20 μas. We caution however that with this early release, the complete systematic properties of the measurements may not be fully understood at the statistical level of the Cepheid sample mean, a level an order of magnitude below the individual uncertainties. The early results from DR1 demonstrate again the enormous impact that the full mission will likely have on fundamental questions in astrophysics and cosmology.

  7. The accuracy of self-reported pregnancy-related weight: a systematic review.

    PubMed

    Headen, I; Cohen, A K; Mujahid, M; Abrams, B

    2017-03-01

    Self-reported maternal weight is error-prone, and the context of pregnancy may impact error distributions. This systematic review summarizes error in self-reported weight across pregnancy and assesses implications for bias in associations between pregnancy-related weight and birth outcomes. We searched PubMed and Google Scholar through November 2015 for peer-reviewed articles reporting accuracy of self-reported, pregnancy-related weight at four time points: prepregnancy, delivery, over gestation and postpartum. Included studies compared maternal self-report to anthropometric measurement or medical report of weights. Sixty-two studies met inclusion criteria. We extracted data on magnitude of error and misclassification. We assessed impact of reporting error on bias in associations between pregnancy-related weight and birth outcomes. Women underreported prepregnancy (PPW: -2.94 to -0.29 kg) and delivery weight (DW: -1.28 to 0.07 kg), and over-reported gestational weight gain (GWG: 0.33 to 3 kg). Magnitude of error was small, ranged widely, and varied by prepregnancy weight class and race/ethnicity. Misclassification was moderate (PPW: 0-48.3%; DW: 39.0-49.0%; GWG: 16.7-59.1%), and overestimated some estimates of population prevalence. However, reporting error did not largely bias associations between pregnancy-related weight and birth outcomes. Although measured weight is preferable, self-report is a cost-effective and practical measurement approach. Future researchers should develop bias correction techniques for self-reported pregnancy-related weight. © 2017 World Obesity Federation.

  8. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    NASA Astrophysics Data System (ADS)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  9. Calibrating photometric redshifts of luminous red galaxies

    DOE PAGES

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; ...

    2005-05-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06more » for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.« less

  10. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  11. Certainty Equivalence M-MRAC for Systems with Unmatched Uncertainties

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    The paper presents a certainty equivalence state feedback indirect adaptive control design method for the systems of any relative degree with unmatched uncertainties. The approach is based on the parameter identification (estimation) model, which is completely separated from the control design and is capable of producing parameter estimates as fast as the computing power allows without generating high frequency oscillations. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters.

  12. Systematic errors in temperature estimates from MODIS data covering the western Palearctic and their impact on a parasite development model.

    PubMed

    Alonso-Carné, Jorge; García-Martín, Alberto; Estrada-Peña, Agustin

    2013-11-01

    The modelling of habitat suitability for parasites is a growing area of research due to its association with climate change and ensuing shifts in the distribution of infectious diseases. Such models depend on remote sensing data and require accurate, high-resolution temperature measurements. The temperature is critical for accurate estimation of development rates and potential habitat ranges for a given parasite. The MODIS sensors aboard the Aqua and Terra satellites provide high-resolution temperature data for remote sensing applications. This paper describes comparative analysis of MODIS-derived temperatures relative to ground records of surface temperature in the western Palaearctic. The results show that MODIS overestimated maximum temperature values and underestimated minimum temperatures by up to 5-6 °C. The combined use of both Aqua and Terra datasets provided the most accurate temperature estimates around latitude 35-44° N, with an overestimation during spring-summer months and an underestimation in autumn-winter. Errors in temperature estimation were associated with specific ecological regions within the target area as well as technical limitations in the temporal and orbital coverage of the satellites (e.g. sensor limitations and satellite transit times). We estimated error propagation of temperature uncertainties in parasite habitat suitability models by comparing outcomes of published models. Error estimates reached 36% of annual respective measurements depending on the model used. Our analysis demonstrates the importance of adequate image processing and points out the limitations of MODIS temperature data as inputs into predictive models concerning parasite lifecycles.

  13. Correcting for deformation in skin-based marker systems.

    PubMed

    Alexander, E J; Andriacchi, T P

    2001-03-01

    A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.

  14. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  15. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  16. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen

    2005-10-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less

  17. Comparison of the Lund and Browder table to computed tomography scan three-dimensional surface area measurement for a pediatric cohort.

    PubMed

    Rumpf, R Wolfgang; Stewart, William C L; Martinez, Stephen K; Gerrard, Chandra Y; Adolphi, Natalie L; Thakkar, Rajan; Coleman, Alan; Rajab, Adrian; Ray, William C; Fabia, Renata

    2018-01-01

    Treating burns effectively requires accurately assessing the percentage of the total body surface area (%TBSA) affected by burns. Current methods for estimating %TBSA, such as Lund and Browder (L&B) tables, rely on historic body statistics. An increasingly obese population has been blamed for increasing errors in %TBSA estimates. However, this assumption has not been experimentally validated. We hypothesized that errors in %TBSA estimates using L&B were due to differences in the physical proportions of today's children compared with children in the early 1940s when the chart was developed and that these differences would appear as body mass index (BMI)-associated systematic errors in the L&B values versus actual body surface areas. We measured the TBSA of human pediatric cadavers using computed tomography scans. Subjects ranged from 9 mo to 15 y in age. We chose outliers of the BMI distribution (from the 31st percentile at the low through the 99th percentile at the high). We examined surface area proportions corresponding to L&B regions. Measured regional proportions based on computed tomography scans were in reasonable agreement with L&B, even with subjects in the tails of the BMI range. The largest deviation was 3.4%, significantly less than the error seen in real-world %TBSA estimates. While today's population is more obese than those studied by L&B, their body region proportions scale surprisingly well. The primary error in %TBSA estimation is not due to changing physical proportions of today's children and may instead lie in the application of the L&B table. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Estimation of diagnostic test accuracy without full verification: a review of latent class methods

    PubMed Central

    Collins, John; Huynh, Minh

    2014-01-01

    The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172

  19. What do the experts know? Calibration, precision, and the wisdom of crowds among forensic handwriting experts.

    PubMed

    Martire, Kristy A; Growns, Bethany; Navarro, Danielle J

    2018-04-17

    Forensic handwriting examiners currently testify to the origin of questioned handwriting for legal purposes. However, forensic scientists are increasingly being encouraged to assign probabilities to their observations in the form of a likelihood ratio. This study is the first to examine whether handwriting experts are able to estimate the frequency of US handwriting features more accurately than novices. The results indicate that the absolute error for experts was lower than novices, but the size of the effect is modest, and the overall error rate even for experts is large enough as to raise questions about whether their estimates can be sufficiently trustworthy for presentation in courts. When errors are separated into effects caused by miscalibration and those caused by imprecision, we find systematic differences between individuals. Finally, we consider several ways of aggregating predictions from multiple experts, suggesting that quite substantial improvements in expert predictions are possible when a suitable aggregation method is used.

  20. Parity Nonconservation in Proton-Proton and Proton-Water Scattering at 1.5 GeV/c

    DOE R&D Accomplishments Database

    Mischke, R. E.; Bowman, J. D.; Carlini, R.; MacArthur, D.; Nagle, D. E.; Frauenfelder, H.; Harper, R. W.; Yuan, V.; McDonald, A. B.; Talaga, R. L.

    1984-07-01

    Experiments searching for parity nonconservation in the scattering of 1.5 GeV/c (800 MeV) polarized protons from an unpolarized water target and a liquid hydrogen target are described. The intensity of the incident proton beam was measured upstream and downstream of the target by a pair of ionization detectors. The beam helicity was reversed at a 30-Hz rate. Auxiliary detectors monitored beam properties that could give rise to false effects. The result for the longitudinal asymmetry from the water is A{sub L} = (1.7 +- 3.3 +- 1.4) x 10{sup -7}, where the first error is statistical and the second is an estimate of systematic effects. The hydrogen data yield a preliminary result of A{sub L} = (1.0 +- 1.6) x 10{sup -7}. The systematic errors for p-p are expected to be < 1 x 10{sup -7}.

  1. Medication errors in chemotherapy preparation and administration: a survey conducted among oncology nurses in Turkey.

    PubMed

    Ulas, Arife; Silay, Kamile; Akinci, Sema; Dede, Didem Sener; Akinci, Muhammed Bulent; Sendur, Mehmet Ali Nahit; Cubukcu, Erdem; Coskun, Hasan Senol; Degirmenci, Mustafa; Utkan, Gungor; Ozdemir, Nuriye; Isikdogan, Abdurrahman; Buyukcelik, Abdullah; Inanc, Mevlude; Bilici, Ahmet; Odabasi, Hatice; Cihan, Sener; Avci, Nilufer; Yalcin, Bulent

    2015-01-01

    Medication errors in oncology may cause severe clinical problems due to low therapeutic indices and high toxicity of chemotherapeutic agents. We aimed to investigate unintentional medication errors and underlying factors during chemotherapy preparation and administration based on a systematic survey conducted to reflect oncology nurses experience. This study was conducted in 18 adult chemotherapy units with volunteer participation of 206 nurses. A survey developed by primary investigators and medication errors (MAEs) defined preventable errors during prescription of medication, ordering, preparation or administration. The survey consisted of 4 parts: demographic features of nurses; workload of chemotherapy units; errors and their estimated monthly number during chemotherapy preparation and administration; and evaluation of the possible factors responsible from ME. The survey was conducted by face to face interview and data analyses were performed with descriptive statistics. Chi-square or Fisher exact tests were used for a comparative analysis of categorical data. Some 83.4% of the 210 nurses reported one or more than one error during chemotherapy preparation and administration. Prescribing or ordering wrong doses by physicians (65.7%) and noncompliance with administration sequences during chemotherapy administration (50.5%) were the most common errors. The most common estimated average monthly error was not following the administration sequence of the chemotherapeutic agents (4.1 times/month, range 1-20). The most important underlying reasons for medication errors were heavy workload (49.7%) and insufficient number of staff (36.5%). Our findings suggest that the probability of medication error is very high during chemotherapy preparation and administration, the most common involving prescribing and ordering errors. Further studies must address the strategies to minimize medication error in chemotherapy receiving patients, determine sufficient protective measures and establishing multistep control mechanisms.

  2. Using ridge regression in systematic pointing error corrections

    NASA Technical Reports Server (NTRS)

    Guiar, C. N.

    1988-01-01

    A pointing error model is used in the antenna calibration process. Data from spacecraft or radio star observations are used to determine the parameters in the model. However, the regression variables are not truly independent, displaying a condition known as multicollinearity. Ridge regression, a biased estimation technique, is used to combat the multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking (days 105 and 106 of 1987) were analyzed using both linear least squares and ridge regression methods. The advantages and limitations of employing the technique are presented. The problem is not yet fully resolved.

  3. Results and Error Estimates from GRACE Forward Modeling over Greenland, Canada, and Alaska

    NASA Astrophysics Data System (ADS)

    Bonin, J. A.; Chambers, D. P.

    2012-12-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Greenland and Antarctica. However, the accuracy of the forward model technique has not been determined, nor is it known how the distribution of the local basins affects the results. We use a "truth" model composed of hydrology and ice-melt slopes as an example case, to estimate the uncertainties of this forward modeling method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We then apply these optimal parameters in a forward model estimate created from RL05 GRACE data. We compare the resulting mass slopes with the expected systematic errors from the simulation, as well as GIA and basic trend-fitting uncertainties. We also consider whether specific regions (such as Ellesmere Island and Baffin Island) can be estimated reliably using our optimal basin layout.

  4. Methodological factors affecting joint moments estimation in clinical gait analysis: a systematic review.

    PubMed

    Camomilla, Valentina; Cereatti, Andrea; Cutti, Andrea Giovanni; Fantozzi, Silvia; Stagni, Rita; Vannozzi, Giuseppe

    2017-08-18

    Quantitative gait analysis can provide a description of joint kinematics and dynamics, and it is recognized as a clinically useful tool for functional assessment, diagnosis and intervention planning. Clinically interpretable parameters are estimated from quantitative measures (i.e. ground reaction forces, skin marker trajectories, etc.) through biomechanical modelling. In particular, the estimation of joint moments during motion is grounded on several modelling assumptions: (1) body segmental and joint kinematics is derived from the trajectories of markers and by modelling the human body as a kinematic chain; (2) joint resultant (net) loads are, usually, derived from force plate measurements through a model of segmental dynamics. Therefore, both measurement errors and modelling assumptions can affect the results, to an extent that also depends on the characteristics of the motor task analysed (i.e. gait speed). Errors affecting the trajectories of joint centres, the orientation of joint functional axes, the joint angular velocities, the accuracy of inertial parameters and force measurements (concurring to the definition of the dynamic model), can weigh differently in the estimation of clinically interpretable joint moments. Numerous studies addressed all these methodological aspects separately, but a critical analysis of how these aspects may affect the clinical interpretation of joint dynamics is still missing. This article aims at filling this gap through a systematic review of the literature, conducted on Web of Science, Scopus and PubMed. The final objective is hence to provide clear take-home messages to guide laboratories in the estimation of joint moments for the clinical practice.

  5. Optimized tomography of continuous variable systems using excitation counting

    NASA Astrophysics Data System (ADS)

    Shen, Chao; Heeres, Reinier W.; Reinhold, Philip; Jiang, Luyao; Liu, Yi-Kai; Schoelkopf, Robert J.; Jiang, Liang

    2016-11-01

    We propose a systematic procedure to optimize quantum state tomography protocols for continuous variable systems based on excitation counting preceded by a displacement operation. Compared with conventional tomography based on Husimi or Wigner function measurement, the excitation counting approach can significantly reduce the number of measurement settings. We investigate both informational completeness and robustness, and provide a bound of reconstruction error involving the condition number of the sensing map. We also identify the measurement settings that optimize this error bound, and demonstrate that the improved reconstruction robustness can lead to an order-of-magnitude reduction of estimation error with given resources. This optimization procedure is general and can incorporate prior information of the unknown state to further simplify the protocol.

  6. Japan - USSR joint emulsion chamber experiment at Pamir

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The results are presented for the systematic measurement of cosmic ray showers in the first carbon chamber of Japan-USSR joint experiment at Pamir Plateau. The intensity and the energy distribution of electromagnetic particles, of hadrons and of families are in good agreement with the results of other mountain experiment if the relative error in energy estimation is taken into consideration.

  7. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  8. Parameter de-correlation and model-identification in hybrid-style terrestrial laser scanner self-calibration

    NASA Astrophysics Data System (ADS)

    Lichti, Derek D.; Chow, Jacky; Lahamy, Hervé

    One of the important systematic error parameters identified in terrestrial laser scanners is the collimation axis error, which models the non-orthogonality between two instrumental axes. The quality of this parameter determined by self-calibration, as measured by its estimated precision and its correlation with the tertiary rotation angle κ of the scanner exterior orientation, is strongly dependent on instrument architecture. While the quality is generally very high for panoramic-type scanners, it is comparably poor for hybrid-style instruments. Two methods for improving the quality of the collimation axis error in hybrid instrument self-calibration are proposed herein: (1) the inclusion of independent observations of the tertiary rotation angle κ; and (2) the use of a new collimation axis error model. Five real datasets were captured with two different hybrid-style scanners to test each method's efficacy. While the first method achieves the desired outcome of complete decoupling of the collimation axis error from κ, it is shown that the high correlation is simply transferred to other model variables. The second method achieves partial parameter de-correlation to acceptable levels. Importantly, it does so without any adverse, secondary correlations and is therefore the method recommended for future use. Finally, systematic error model identification has been greatly aided in previous studies by graphical analyses of self-calibration residuals. This paper presents results showing the architecture dependence of this technique, revealing its limitations for hybrid scanners.

  9. Global Precipitation Measurement (GPM) Ground Validation: Plans and Preparations

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Bidwell, S.; Durning, F. J.; Smith, E.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meteorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept, the planning, and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays an important role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper outlines GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial p d temporal structure of the error and plans for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. This paper discusses NASA locations for GV measurements as well as anticipated locations from international GPM partners. NASA's primary locations for validation measurements are an oceanic site at Kwajalein Atoll in the Republic of the Marshall Islands and a continental site in north-central Oklahoma at the U.S. Department of Energy's Atmospheric Radiation Measurement Program site.

  10. Preparations for Global Precipitation Measurement(GPM)Ground Validation

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.

  11. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed Central

    Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  12. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardis, F. De; Aiola, S.; Vavagiakis, E. M.

    Here, we present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariancemore » matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less

  13. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardis, F. De; Vavagiakis, E.M.; Niemack, M.D.

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrixmore » of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less

  14. Detection of the Pairwise Kinematic Sunyaev-Zel'dovich Effect with BOSS DR11 and the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    De Bernardis, F.; Aiola, S.; Vavagiakis, E. M.; Battaglia, N.; Niemack, M. D.; Beall, J.; Becker, D. T.; Bond, J. R.; Calabrese, E.; Cho, H.; hide

    2017-01-01

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.

  15. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    NASA Astrophysics Data System (ADS)

    De Bernardis, F.; Aiola, S.; Vavagiakis, E. M.; Battaglia, N.; Niemack, M. D.; Beall, J.; Becker, D. T.; Bond, J. R.; Calabrese, E.; Cho, H.; Coughlin, K.; Datta, R.; Devlin, M.; Dunkley, J.; Dunner, R.; Ferraro, S.; Fox, A.; Gallardo, P. A.; Halpern, M.; Hand, N.; Hasselfield, M.; Henderson, S. W.; Hill, J. C.; Hilton, G. C.; Hilton, M.; Hincks, A. D.; Hlozek, R.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A.; Li, D.; Louis, T.; Lungu, M.; Madhavacheril, M. S.; Maurin, L.; McMahon, J.; Moodley, K.; Naess, S.; Nati, F.; Newburgh, L.; Nibarger, J. P.; Page, L. A.; Partridge, B.; Schaan, E.; Schmitt, B. L.; Sehgal, N.; Sievers, J.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R. J.; van Engelen, A.; Van Lanen, J.; Wollack, E. J.

    2017-03-01

    We present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariance matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.

  16. Network reconstruction via graph blending

    NASA Astrophysics Data System (ADS)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  17. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope

    DOE PAGES

    Bernardis, F. De; Aiola, S.; Vavagiakis, E. M.; ...

    2017-03-07

    Here, we present a new measurement of the kinematic Sunyaev-Zel'dovich effect using data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area, we evaluate the mean pairwise baryon momentum associated with the positions of 50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A non-zero signal arises from the large-scale motions of halos containing the sample galaxies. The data fits an analytical signal model well, with the optical depth to microwave photon scattering as a free parameter determining the overall signal amplitude. We estimate the covariancemore » matrix of the mean pairwise momentum as a function of galaxy separation, using microwave sky simulations, jackknife evaluation, and bootstrap estimates. The most conservative simulation-based errors give signal-to-noise estimates between 3.6 and 4.1 for varying galaxy luminosity cuts. We discuss how the other error determinations can lead to higher signal-to-noise values, and consider the impact of several possible systematic errors. Estimates of the optical depth from the average thermal Sunyaev-Zel'dovich signal at the sample galaxy positions are broadly consistent with those obtained from the mean pairwise momentum signal.« less

  18. Systematic Error Study for ALICE charged-jet v2 Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinz, M.; Soltz, R.

    We study the treatment of systematic errors in the determination of v 2 for charged jets in √ sNN = 2:76 TeV Pb-Pb collisions by the ALICE Collaboration. Working with the reported values and errors for the 0-5% centrality data we evaluate the Χ 2 according to the formulas given for the statistical and systematic errors, where the latter are separated into correlated and shape contributions. We reproduce both the Χ 2 and p-values relative to a null (zero) result. We then re-cast the systematic errors into an equivalent co-variance matrix and obtain identical results, demonstrating that the two methodsmore » are equivalent.« less

  19. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Sen; Li, Guangjun; Wang, Maojie

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less

  20. Local error estimates for adaptive simulation of the Reaction–Diffusion Master Equation via operator splitting

    PubMed Central

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2015-01-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity. PMID:26865735

  1. Local error estimates for adaptive simulation of the Reaction-Diffusion Master Equation via operator splitting.

    PubMed

    Hellander, Andreas; Lawson, Michael J; Drawert, Brian; Petzold, Linda

    2014-06-01

    The efficiency of exact simulation methods for the reaction-diffusion master equation (RDME) is severely limited by the large number of diffusion events if the mesh is fine or if diffusion constants are large. Furthermore, inherent properties of exact kinetic-Monte Carlo simulation methods limit the efficiency of parallel implementations. Several approximate and hybrid methods have appeared that enable more efficient simulation of the RDME. A common feature to most of them is that they rely on splitting the system into its reaction and diffusion parts and updating them sequentially over a discrete timestep. This use of operator splitting enables more efficient simulation but it comes at the price of a temporal discretization error that depends on the size of the timestep. So far, existing methods have not attempted to estimate or control this error in a systematic manner. This makes the solvers hard to use for practitioners since they must guess an appropriate timestep. It also makes the solvers potentially less efficient than if the timesteps are adapted to control the error. Here, we derive estimates of the local error and propose a strategy to adaptively select the timestep when the RDME is simulated via a first order operator splitting. While the strategy is general and applicable to a wide range of approximate and hybrid methods, we exemplify it here by extending a previously published approximate method, the Diffusive Finite-State Projection (DFSP) method, to incorporate temporal adaptivity.

  2. Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Jaehyung; Wagner, Lucas K.; Ertekin, Elif, E-mail: ertekin@illinois.edu

    2015-12-14

    The fixed node diffusion Monte Carlo (DMC) method has attracted interest in recent years as a way to calculate properties of solid materials with high accuracy. However, the framework for the calculation of properties such as total energies, atomization energies, and excited state energies is not yet fully established. Several outstanding questions remain as to the effect of pseudopotentials, the magnitude of the fixed node error, and the size of supercell finite size effects. Here, we consider in detail the semiconductors ZnSe and ZnO and carry out systematic studies to assess the magnitude of the energy differences arising from controlledmore » and uncontrolled approximations in DMC. The former include time step errors and supercell finite size effects for ground and optically excited states, and the latter include pseudopotentials, the pseudopotential localization approximation, and the fixed node approximation. We find that for these compounds, the errors can be controlled to good precision using modern computational resources and that quantum Monte Carlo calculations using Dirac-Fock pseudopotentials can offer good estimates of both cohesive energy and the gap of these systems. We do however observe differences in calculated optical gaps that arise when different pseudopotentials are used.« less

  3. Demonstration of Nonlinearity Bias in the Measurement of the Apparent Diffusion Coefficient in Multicenter Trials

    PubMed Central

    Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.

    2015-01-01

    Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607

  4. Demonstration of nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter trials.

    PubMed

    Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L

    2016-03-01

    Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.

  5. Sampling for mercury at subnanogram per litre concentrations for load estimation in rivers

    USGS Publications Warehouse

    Colman, J.A.; Breault, R.F.

    2000-01-01

    Estimation of constituent loads in streams requires collection of stream samples that are representative of constituent concentrations, that is, composites of isokinetic multiple verticals collected along a stream transect. An all-Teflon isokinetic sampler (DH-81) cleaned in 75??C, 4 N HCl was tested using blank, split, and replicate samples to assess systematic and random sample contamination by mercury species. Mean mercury concentrations in field-equipment blanks were low: 0.135 ng??L-1 for total mercury (??Hg) and 0.0086 ng??L-1 for monomethyl mercury (MeHg). Mean square errors (MSE) for ??Hg and MeHg duplicate samples collected at eight sampling stations were not statistically different from MSE of samples split in the laboratory, which represent the analytical and splitting error. Low fieldblank concentrations and statistically equal duplicate- and split-sample MSE values indicate that no measurable contamination was occurring during sampling. Standard deviations associated with example mercury load estimations were four to five times larger, on a relative basis, than standard deviations calculated from duplicate samples, indicating that error of the load determination was primarily a function of the loading model used, not of sampling or analytical methods.

  6. Improved estimation of anomalous diffusion exponents in single-particle tracking experiments

    NASA Astrophysics Data System (ADS)

    Kepten, Eldad; Bronshtein, Irena; Garini, Yuval

    2013-05-01

    The mean square displacement is a central tool in the analysis of single-particle tracking experiments, shedding light on various biophysical phenomena. Frequently, parameters are extracted by performing time averages on single-particle trajectories followed by ensemble averaging. This procedure, however, suffers from two systematic errors when applied to particles that perform anomalous diffusion. The first is significant at short-time lags and is induced by measurement errors. The second arises from the natural heterogeneity in biophysical systems. We show how to estimate and correct these two errors and improve the estimation of the anomalous parameters for the whole particle distribution. As a consequence, we manage to characterize ensembles of heterogeneous particles even for rather short and noisy measurements where regular time-averaged mean square displacement analysis fails. We apply this method to both simulations and in vivo measurements of telomere diffusion in 3T3 mouse embryonic fibroblast cells. The motion of telomeres is found to be subdiffusive with an average exponent constant in time. Individual telomere exponents are normally distributed around the average exponent. The proposed methodology has the potential to improve experimental accuracy while maintaining lower experimental costs and complexity.

  7. Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis

    PubMed Central

    Tabelow, Karsten; König, Reinhard; Polzehl, Jörg

    2016-01-01

    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning. PMID:27303809

  8. MERLIN: a Franco-German LIDAR space mission for atmospheric methane

    NASA Astrophysics Data System (ADS)

    Bousquet, P.; Ehret, G.; Pierangelo, C.; Marshall, J.; Bacour, C.; Chevallier, F.; Gibert, F.; Armante, R.; Crevoisier, C. D.; Edouart, D.; Esteve, F.; Julien, E.; Kiemle, C.; Alpers, M.; Millet, B.

    2017-12-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development, launch and operation of a space LIDAR dedicated to the retrieval of total weighted methane (CH4) atmospheric columns. Atmospheric methane is the second most potent anthropogenic greenhouse gas, contributing 20% to climate radiative forcing but also plying an important role in atmospheric chemistry as a precursor of tropospheric ozone and low-stratosphere water vapour. Its short lifetime ( 9 years) and the nature and variety of its anthropogenic sources also offer interesting mitigation options in regards to the 2° objective of the Paris agreement. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging), with a precision (target ±27 ppb for a 50km aggregation along the trace) and accuracy (target <3.7 ppb at 68%) sufficient to significantly reduce the uncertainties on methane emissions. The very low targeted systematic error target is particularly ambitious compared to current passive methane space mission. It is achievable because of the differential active measurements of MERLIN, which guarantees almost no contamination by aerosols or water vapour cross-sensitivity. As an active mission, MERLIN will deliver global methane weighted columns (XCH4) for all seasons and all latitudes, day and night Here, we recall the MERLIN objectives and mission characteristics. We also propose an end-to-end error analysis, from the causes of random and systematic errors of the instrument, of the platform and of the data treatment, to the error on methane emissions. To do so, we propose an OSSE analysis (observing system simulation experiment) to estimate the uncertainty reduction on methane emissions brought by MERLIN XCH4. The originality of our inversion system is to transfer both random and systematic errors from the observation space to the flux space, thus providing more realistic error reductions than usually provided in OSSE only using the random part of errors. Uncertainty reductions are presented using two different atmospheric transport models, TM3 and LMDZ, and compared with error reduction achieved with the GOSAT passive mission.

  9. Multibody Kinematics Optimization for the Estimation of Upper and Lower Limb Human Joint Kinematics: A Systematized Methodological Review.

    PubMed

    Begon, Mickaël; Andersen, Michael Skipper; Dumas, Raphaël

    2018-03-01

    Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).

  10. The DiskMass Survey. II. Error Budget

    NASA Astrophysics Data System (ADS)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  11. Systematic Evaluation of Wajima Superposition (Steady-State Concentration to Mean Residence Time) in the Estimation of Human Intravenous Pharmacokinetic Profile.

    PubMed

    Lombardo, Franco; Berellini, Giuliano; Labonte, Laura R; Liang, Guiqing; Kim, Sean

    2016-03-01

    We present a systematic evaluation of the Wajima superpositioning method to estimate the human intravenous (i.v.) pharmacokinetic (PK) profile based on a set of 54 marketed drugs with diverse structure and range of physicochemical properties. We illustrate the use of average of "best methods" for the prediction of clearance (CL) and volume of distribution at steady state (VDss) as described in our earlier work (Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):178-191; Lombardo F, Waters NJ, Argikar UA, et al. J Clin Pharmacol. 2013;53(2):167-177). These methods provided much more accurate prediction of human PK parameters, yielding 88% and 70% of the prediction within 2-fold error for VDss and CL, respectively. The prediction of human i.v. profile using Wajima superpositioning of rat, dog, and monkey time-concentration profiles was tested against the observed human i.v. PK using fold error statistics. The results showed that 63% of the compounds yielded a geometric mean of fold error below 2-fold, and an additional 19% yielded a geometric mean of fold error between 2- and 3-fold, leaving only 18% of the compounds with a relatively poor prediction. Our results showed that good superposition was observed in any case, demonstrating the predictive value of the Wajima approach, and that the cause of poor prediction of human i.v. profile was mainly due to the poorly predicted CL value, while VDss prediction had a minor impact on the accuracy of human i.v. profile prediction. Copyright © 2016. Published by Elsevier Inc.

  12. A theoretical perspective on the accuracy of rotational resonance (R 2)-based distance measurements in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Ramachandran, Ramesh

    2010-03-01

    The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.

  13. Improvements in GRACE Gravity Fields Using Regularization

    NASA Astrophysics Data System (ADS)

    Save, H.; Bettadpur, S.; Tapley, B. D.

    2008-12-01

    The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.

  14. Treatment of systematic errors in land data assimilation systems

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Yilmaz, M.

    2012-12-01

    Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.

  15. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  16. Chamber measurement of surface-atmosphere trace gas exchange: Numerical evaluation of dependence on soil, interfacial layer, and source/sink properties

    NASA Astrophysics Data System (ADS)

    Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.

    2000-04-01

    We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.

  17. Chamber measurement of surface-atmosphere trace gas exchange--Numerical evaluation of dependence on soil interfacial layer, and source/sink products

    USGS Publications Warehouse

    Hutchinson, G.L.; Livingston, G.P.; Healy, R.W.; Striegl, Robert G.

    2000-01-01

    We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere tace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulationshowed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steadystate chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.

  18. Subaperture test of wavefront error of large telescopes: error sources and stitching performance simulations

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Li, Shengyi; Wang, Guilin

    2014-11-01

    The wavefront error of large telescopes requires to be measured to check the system quality and also estimate the misalignment of the telescope optics including the primary, the secondary and so on. It is usually realized by a focal plane interferometer and an autocollimator flat (ACF) of the same aperture with the telescope. However, it is challenging for meter class telescopes due to high cost and technological challenges in producing the large ACF. Subaperture test with a smaller ACF is hence proposed in combination with advanced stitching algorithms. Major error sources include the surface error of the ACF, misalignment of the ACF and measurement noises. Different error sources have different impacts on the wavefront error. Basically the surface error of the ACF behaves like systematic error and the astigmatism will be cumulated and enlarged if the azimuth of subapertures remains fixed. It is difficult to accurately calibrate the ACF because it suffers considerable deformation induced by gravity or mechanical clamping force. Therefore a selfcalibrated stitching algorithm is employed to separate the ACF surface error from the subaperture wavefront error. We suggest the ACF be rotated around the optical axis of the telescope for subaperture test. The algorithm is also able to correct the subaperture tip-tilt based on the overlapping consistency. Since all subaperture measurements are obtained in the same imaging plane, lateral shift of the subapertures is always known and the real overlapping points can be recognized in this plane. Therefore lateral positioning error of subapertures has no impact on the stitched wavefront. In contrast, the angular positioning error changes the azimuth of the ACF and finally changes the systematic error. We propose an angularly uneven layout of subapertures to minimize the stitching error, which is very different from our knowledge. At last, measurement noises could never be corrected but be suppressed by means of averaging and environmental control. We simulate the performance of the stitching algorithm dealing with surface error and misalignment of the ACF, and noise suppression, which provides guidelines to optomechanical design of the stitching test system.

  19. A comparative study of clock rate and drift estimation

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1994-01-01

    Five different methods of drift determination and four different methods of rate determination were compared using months of hourly phase and frequency data from a sample of cesium clocks and active hydrogen masers. Linear least squares on frequency is selected as the optimal method of determining both drift and rate, more on the basis of parameter parsimony and confidence measures than on random and systematic errors.

  20. Systematic Errors in an Air Track Experiment.

    ERIC Educational Resources Information Center

    Ramirez, Santos A.; Ham, Joe S.

    1990-01-01

    Errors found in a common physics experiment to measure acceleration resulting from gravity using a linear air track are investigated. Glider position at release and initial velocity are shown to be sources of systematic error. (CW)

  1. The quality of systematic reviews about interventions for refractive error can be improved: a review of systematic reviews.

    PubMed

    Mayo-Wilson, Evan; Ng, Sueko Matsumura; Chuck, Roy S; Li, Tianjing

    2017-09-05

    Systematic reviews should inform American Academy of Ophthalmology (AAO) Preferred Practice Pattern® (PPP) guidelines. The quality of systematic reviews related to the forthcoming Preferred Practice Pattern® guideline (PPP) Refractive Errors & Refractive Surgery is unknown. We sought to identify reliable systematic reviews to assist the AAO Refractive Errors & Refractive Surgery PPP. Systematic reviews were eligible if they evaluated the effectiveness or safety of interventions included in the 2012 PPP Refractive Errors & Refractive Surgery. To identify potentially eligible systematic reviews, we searched the Cochrane Eyes and Vision United States Satellite database of systematic reviews. Two authors identified eligible reviews and abstracted information about the characteristics and quality of the reviews independently using the Systematic Review Data Repository. We classified systematic reviews as "reliable" when they (1) defined criteria for the selection of studies, (2) conducted comprehensive literature searches for eligible studies, (3) assessed the methodological quality (risk of bias) of the included studies, (4) used appropriate methods for meta-analyses (which we assessed only when meta-analyses were reported), (5) presented conclusions that were supported by the evidence provided in the review. We identified 124 systematic reviews related to refractive error; 39 met our eligibility criteria, of which we classified 11 to be reliable. Systematic reviews classified as unreliable did not define the criteria for selecting studies (5; 13%), did not assess methodological rigor (10; 26%), did not conduct comprehensive searches (17; 44%), or used inappropriate quantitative methods (3; 8%). The 11 reliable reviews were published between 2002 and 2016. They included 0 to 23 studies (median = 9) and analyzed 0 to 4696 participants (median = 666). Seven reliable reviews (64%) assessed surgical interventions. Most systematic reviews of interventions for refractive error are low methodological quality. Following widely accepted guidance, such as Cochrane or Institute of Medicine standards for conducting systematic reviews, would contribute to improved patient care and inform future research.

  2. An analysis of the least-squares problem for the DSN systematic pointing error model

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1991-01-01

    A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.

  3. Calibration and Validation of Landsat Tree Cover in the Taiga-Tundra Ecotone

    NASA Technical Reports Server (NTRS)

    Montesano, Paul Mannix; Neigh, Christopher S. R.; Sexton, Joseph; Feng, Min; Channan, Saurabh; Ranson, Kenneth J.; Townshend, John R.

    2016-01-01

    Monitoring current forest characteristics in the taiga-tundra ecotone (TTE) at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover greater than 80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010) by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  4. Model uncertainty of various settlement estimation methods in shallow tunnels excavation; case study: Qom subway tunnel

    NASA Astrophysics Data System (ADS)

    Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb

    2017-10-01

    In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.

  5. Evaluation of centroiding algorithm error for Nano-JASMINE

    NASA Astrophysics Data System (ADS)

    Hara, Takuji; Gouda, Naoteru; Yano, Taihei; Yamada, Yoshiyuki

    2014-08-01

    The Nano-JASMINE mission has been designed to perform absolute astrometric measurements with unprecedented accuracy; the end-of-mission parallax standard error is required to be of the order of 3 milli arc seconds for stars brighter than 7.5 mag in the zw-band(0.6μm-1.0μm) .These requirements set a stringent constraint on the accuracy of the estimation of the location of the stellar image on the CCD for each observation. However each stellar images have individual shape depend on the spectral energy distribution of the star, the CCD properties, and the optics and its associated wave front errors. So it is necessity that the centroiding algorithm performs a high accuracy in any observables. Referring to the study of Gaia, we use LSF fitting method for centroiding algorithm, and investigate systematic error of the algorithm for Nano-JASMINE. Furthermore, we found to improve the algorithm by restricting sample LSF when we use a Principle Component Analysis. We show that centroiding algorithm error decrease after adapted the method.

  6. Extension of sonic anemometry to high subsonic Mach number flows

    NASA Astrophysics Data System (ADS)

    Otero, R.; Lowe, K. T.; Ng, W. F.

    2017-03-01

    In the literature, the application of sonic anemometry has been limited to low subsonic Mach number, near-incompressible flow conditions. To the best of the authors’ knowledge, this paper represents the first time a sonic anemometry approach has been used to characterize flow velocity beyond Mach 0.3. Using a high speed jet, flow velocity was measured using a modified sonic anemometry technique in flow conditions up to Mach 0.83. A numerical study was conducted to identify the effects of microphone placement on the accuracy of the measured velocity. Based on estimated error strictly due to uncertainty in time-of-acoustic flight, a random error of +/- 4 m s-1 was identified for the configuration used in this experiment. Comparison with measurements from a Pitot probe indicated a velocity RMS error of +/- 9 m s-1. The discrepancy in error is attributed to a systematic error which may be calibrated out in future work. Overall, the experimental results from this preliminary study support the use of acoustics for high subsonic flow characterization.

  7. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  8. Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer; Chambers, Don

    2013-07-01

    The low spatial resolution of GRACE causes leakage, where signals in one location spread out into nearby regions. Because of this leakage, using simple techniques such as basin averages may result in an incorrect estimate of the true mass change in a region. A fairly simple least squares inversion technique can be used to more specifically localize mass changes into a pre-determined set of basins of uniform internal mass distribution. However, the accuracy of these higher resolution basin mass amplitudes has not been determined, nor is it known how the distribution of the chosen basins affects the results. We use a simple `truth' model over Greenland as an example case, to estimate the uncertainties of this inversion method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We determine that an appropriate level of smoothing (300-400 km) and process noise (0.30 cm2 of water) gets the best results. The trends of the Greenland internal basins and Iceland can be reasonably estimated with this method, with average systematic errors of 3.5 cm yr-1 per basin. The largest mass losses found from GRACE RL04 occur in the coastal northwest (-19.9 and -33.0 cm yr-1) and southeast (-24.2 and -27.9 cm yr-1), with small mass gains (+1.4 to +7.7 cm yr-1) found across the northern interior. Acceleration of mass change is measurable at the 95 per cent confidence level in four northwestern basins, but not elsewhere in Greenland. Due to an insufficiently detailed distribution of basins across internal Canada, the trend estimates of Baffin and Ellesmere Islands are expected to be incorrect due to systematic errors caused by the inversion technique.

  9. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.

  10. SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathuria, K; Siebers, J

    2014-06-01

    Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less

  11. A Practical Methodology for Quantifying Random and Systematic Components of Unexplained Variance in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Obara, Clifford J.; Goodman, Wesley L.

    2012-01-01

    This paper documents a check standard wind tunnel test conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3M TCT) that was designed and analyzed using the Modern Design of Experiments (MDOE). The test designed to partition the unexplained variance of typical wind tunnel data samples into two constituent components, one attributable to ordinary random error, and one attributable to systematic error induced by covariate effects. Covariate effects in wind tunnel testing are discussed, with examples. The impact of systematic (non-random) unexplained variance on the statistical independence of sequential measurements is reviewed. The corresponding correlation among experimental errors is discussed, as is the impact of such correlation on experimental results generally. The specific experiment documented herein was organized as a formal test for the presence of unexplained variance in representative samples of wind tunnel data, in order to quantify the frequency with which such systematic error was detected, and its magnitude relative to ordinary random error. Levels of systematic and random error reported here are representative of those quantified in other facilities, as cited in the references.

  12. Ultrasonographic Fetal Weight Estimation: Should Macrosomia-Specific Formulas Be Utilized?

    PubMed

    Porter, Blake; Neely, Cherry; Szychowski, Jeff; Owen, John

    2015-08-01

    This study aims to derive an estimated fetal weight (EFW) formula in macrosomic fetuses, compare its accuracy to the 1986 Hadlock IV formula, and assess whether including maternal diabetes (MDM) improves estimation. Retrospective review of nonanomalous live-born singletons with birth weight (BWT) ≥ 4 kg and biometry within 14 days of birth. Formula accuracy included: (1) mean error (ME = EFW - BWT), (2) absolute mean error (AME = absolute value of [1]), and (3) mean percent error (MPE, [1]/BWT × 100%). Using loge BWT as the dependent variable, multivariable linear regression produced a macrosomic-specific formula in a "training" dataset which was verified by "validation" data. Formulas specific for MDM were also developed. Out of the 403 pregnancies, birth gestational age was 39.5 ± 1.4 weeks, and median BWT was 4,240 g. The macrosomic formula from the training data (n = 201) had associated ME = 54 ± 284 g, AME = 234 ± 167 g, and MPE = 1.6 ± 6.2%; evaluation in the validation dataset (n = 202) showed similar errors. The Hadlock formula had associated ME = -369 ± 422 g, AME = 451 ± 332 g, MPE = -8.3 ± 9.3% (all p < 0.0001). Diabetes-specific formula errors were similar to the macrosomic formula errors (all p = NS). With BWT ≥ 4 kg, the macrosomic formula was significantly more accurate than Hadlock IV, which systematically underestimates fetal/BWT. Diabetes-specific formulas did not improve accuracy. A specific formula should be considered when macrosomia is suspected. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    DOE PAGES

    Aylor, K.; Hou, Z.; Knox, L.; ...

    2017-11-20

    The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylor, K.; Hou, Z.; Knox, L.

    The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540more » $${\\deg }^{2}$$ SPT-SZ survey offers measurements on sub-degree angular scales (multipoles $$650\\leqslant {\\ell }\\leqslant 2500$$) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and $${A}_{s}{e}^{-2\\tau }$$. We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at $${\\ell }\\gt 2000$$.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aylor, K.; Hou, Z.; Knox, L.

    The Planck cosmic microwave background temperature data are best fit with a Lambda CDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 deg(2) SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650 <= l <= 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing Lambda CDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipolemore » range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n(s) and A(s)e(-2 tau). We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of Lambda CDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at l > 2000.« less

  16. A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite

    NASA Astrophysics Data System (ADS)

    Aylor, K.; Hou, Z.; Knox, L.; Story, K. T.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H.-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2017-11-01

    The Planck cosmic microwave background temperature data are best fit with a ΛCDM model that mildly contradicts constraints from other cosmological probes. The South Pole Telescope (SPT) 2540 {\\deg }2 SPT-SZ survey offers measurements on sub-degree angular scales (multipoles 650≤slant {\\ell }≤slant 2500) with sufficient precision to use as an independent check of the Planck data. Here we build on the recent joint analysis of the SPT-SZ and Planck data in Hou et al. by comparing ΛCDM parameter estimates using the temperature power spectrum from both data sets in the SPT-SZ survey region. We also restrict the multipole range used in parameter fitting to focus on modes measured well by both SPT and Planck, thereby greatly reducing sample variance as a driver of parameter differences and creating a stringent test for systematic errors. We find no evidence of systematic errors from these tests. When we expand the maximum multipole of SPT data used, we see low-significance shifts in the angular scale of the sound horizon and the physical baryon and cold dark matter densities, with a resulting trend to higher Hubble constant. When we compare SPT and Planck data on the SPT-SZ sky patch to Planck full-sky data but keep the multipole range restricted, we find differences in the parameters n s and {A}s{e}-2τ . We perform further checks, investigating instrumental effects and modeling assumptions, and we find no evidence that the effects investigated are responsible for any of the parameter shifts. Taken together, these tests reveal no evidence for systematic errors in SPT or Planck data in the overlapping sky coverage and multipole range and at most weak evidence for a breakdown of ΛCDM or systematic errors influencing either the Planck data outside the SPT-SZ survey area or the SPT data at {\\ell }> 2000.

  17. Impact of random and systematic recall errors and selection bias in case--control studies on mobile phone use and brain tumors in adolescents (CEFALO study).

    PubMed

    Aydin, Denis; Feychting, Maria; Schüz, Joachim; Andersen, Tina Veje; Poulsen, Aslak Harbo; Prochazka, Michaela; Klaeboe, Lars; Kuehni, Claudia E; Tynes, Tore; Röösli, Martin

    2011-07-01

    Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents. Copyright © 2011 Wiley-Liss, Inc.

  18. Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Liu, Shoudong

    2013-09-01

    Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.

  19. Possible systematics in the VLBI catalogs as seen from Gaia

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.

    2018-01-01

    Aims: In order to investigate the systematic errors in the very long baseline interferometry (VLBI) positions of extragalactic sources (quasars) and the global differences between Gaia and VLBI catalogs, we use the first data release of Gaia (Gaia DR1) quasar positions as the reference and study the positional offsets of the second realization of the International Celestial Reference Frame (ICRF2) and the Goddard VLBI solution 2016a (gsf2016a) catalogs. Methods: We select a sample of 1032 common sources among three catalogs and adopt two methods to represent the systematics: considering the differential orientation (offset) and declination bias; analyzing with the vector spherical harmonics (VSH) functions. Results: Between two VLBI catalogs and Gaia DR1, we find that: i) the estimated orientation is consistent with the alignment accuracy of Gaia DR1 to ICRF, of 0.1 mas, but the southern and northern hemispheres show opposite orientations; ii) the declination bias in the southern hemisphere between Gaia DR1 and ICRF2 is estimated to be +152 μas, much larger than that between Gaia DR1 and gsf2016a which is +34 μas. Between two VLBI catalogs, we find that: i) the rotation component shows that ICRF2 and gsf2016a are generally consistent within 30 μas; ii) the glide component and quadrupole component report two declination-dependent offsets: dipolar deformation of +50 μas along the Z-axis, and quadrupolar deformation of -50 μas that would induce a pattern of sin2δ. Conclusions: The significant declination bias between Gaia DR1 and ICRF2 catalogs reported in previous studies is possibly attributed to the systematic errors of ICRF2 in the southern hemisphere. The global differences between ICRF2 and gsf2016a catalogs imply that possible, mainly declination-dependent systematics exit in the VLBI positions and need further investigations in the future Gaia data release and the next generation of ICRF.

  20. Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater

    NASA Astrophysics Data System (ADS)

    Swenson, S. C.; Lawrence, D. M.

    2014-12-01

    Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater is a challenging task at present. One method that has been used recently is a model-data synthesis combining GRACE total water storage estimates with simulated water storage estimates from land surface models. In this method, water storage changes due to natural climate variations simulated by a model are removed from total water storage changes observed by GRACE; the residual is then interpreted as anthropogenic groundwater change. If the modeled water storage estimate contains systematic errors, these errors will also be present in the residual groundwater estimate. For example, simulations performed with the Community Land Model (CLM; the land component of the Community Earth System Model) generally show a weak (as much as 50% smaller) seasonal cycle of water storage in semi-arid regions when compared to GRACE satellite water storage estimates. This bias propagates into GRACE-CLM anthropogenic groundwater change estimates, which then exhibit unphysical seasonal variability. The CLM bias can be traced to the parameterization of soil evaporative resistance. Incorporating a new soil resistance parameterization in CLM greatly reduces the seasonal bias with respect to GRACE. In this study, we compare the improved CLM water storage estimates to GRACE and discuss the implications for estimates of anthropogenic groundwater withdrawal, showing examples for the Middle East and Southwestern United States.

  1. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  2. A machine learning approach for gait speed estimation using skin-mounted wearable sensors: From healthy controls to individuals with multiple sclerosis.

    PubMed

    McGinnis, Ryan S; Mahadevan, Nikhil; Moon, Yaejin; Seagers, Kirsten; Sheth, Nirav; Wright, John A; DiCristofaro, Steven; Silva, Ikaro; Jortberg, Elise; Ceruolo, Melissa; Pindado, Jesus A; Sosnoff, Jacob; Ghaffari, Roozbeh; Patel, Shyamal

    2017-01-01

    Gait speed is a powerful clinical marker for mobility impairment in patients suffering from neurological disorders. However, assessment of gait speed in coordination with delivery of comprehensive care is usually constrained to clinical environments and is often limited due to mounting demands on the availability of trained clinical staff. These limitations in assessment design could give rise to poor ecological validity and limited ability to tailor interventions to individual patients. Recent advances in wearable sensor technologies have fostered the development of new methods for monitoring parameters that characterize mobility impairment, such as gait speed, outside the clinic, and therefore address many of the limitations associated with clinical assessments. However, these methods are often validated using normal gait patterns; and extending their utility to subjects with gait impairments continues to be a challenge. In this paper, we present a machine learning method for estimating gait speed using a configurable array of skin-mounted, conformal accelerometers. We establish the accuracy of this technique on treadmill walking data from subjects with normal gait patterns and subjects with multiple sclerosis-induced gait impairments. For subjects with normal gait, the best performing model systematically overestimates speed by only 0.01 m/s, detects changes in speed to within less than 1%, and achieves a root-mean-square-error of 0.12 m/s. Extending these models trained on normal gait to subjects with gait impairments yields only minor changes in model performance. For example, for subjects with gait impairments, the best performing model systematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%, and achieves a root-mean-square-error of 0.14 m/s. Additional analyses demonstrate that there is no correlation between gait speed estimation error and impairment severity, and that the estimated speeds maintain the clinical significance of ground truth speed in this population. These results support the use of wearable accelerometer arrays for estimating walking speed in normal subjects and their extension to MS patient cohorts with gait impairment.

  3. Analytic Perturbation Method for Estimating Ground Flash Fraction from Satellite Lightning Observations

    NASA Technical Reports Server (NTRS)

    Koshak, William; Solakiewicz, Richard

    2013-01-01

    An analytic perturbation method is introduced for estimating the lightning ground flash fraction in a set of N lightning flashes observed by a satellite lightning mapper. The value of N is large, typically in the thousands, and the observations consist of the maximum optical group area produced by each flash. The method is tested using simulated observations that are based on Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) data. National Lightning Detection NetworkTM (NLDN) data is used to determine the flash-type (ground or cloud) of the satellite-observed flashes, and provides the ground flash fraction truth for the simulation runs. It is found that the mean ground flash fraction retrieval errors are below 0.04 across the full range 0-1 under certain simulation conditions. In general, it is demonstrated that the retrieval errors depend on many factors (i.e., the number, N, of satellite observations, the magnitude of random and systematic measurement errors, and the number of samples used to form certain climate distributions employed in the model).

  4. Comparison of TRMM 2A25 Products Version 6 and Version 7 with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    NASA Technical Reports Server (NTRS)

    Kirstetter, Pierre-Emmanuel; Hong, Y.; Gourley, J. J.; Schwaller, M.; Petersen, W; Zhang, J.

    2012-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem was addressed in a previous paper by comparison of 2A25 version 6 (V6) product with reference values derived from NOAA/NSSL's ground radar-based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25 version 7 (V7) products that were recently released as a replacement of V6. This new version is considered superior over land areas. Several aspects of the two versions are compared and quantified including rainfall rate distributions, systematic biases, and random errors. All analyses indicate V7 is an improvement over V6.

  5. Modeling Errors in Daily Precipitation Measurements: Additive or Multiplicative?

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Huffman, George J.; Adler, Robert F.; Tang, Ling; Sapiano, Matthew; Maggioni, Viviana; Wu, Huan

    2013-01-01

    The definition and quantification of uncertainty depend on the error model used. For uncertainties in precipitation measurements, two types of error models have been widely adopted: the additive error model and the multiplicative error model. This leads to incompatible specifications of uncertainties and impedes intercomparison and application.In this letter, we assess the suitability of both models for satellite-based daily precipitation measurements in an effort to clarify the uncertainty representation. Three criteria were employed to evaluate the applicability of either model: (1) better separation of the systematic and random errors; (2) applicability to the large range of variability in daily precipitation; and (3) better predictive skills. It is found that the multiplicative error model is a much better choice under all three criteria. It extracted the systematic errors more cleanly, was more consistent with the large variability of precipitation measurements, and produced superior predictions of the error characteristics. The additive error model had several weaknesses, such as non constant variance resulting from systematic errors leaking into random errors, and the lack of prediction capability. Therefore, the multiplicative error model is a better choice.

  6. On land-use modeling: A treatise of satellite imagery data and misclassification error

    NASA Astrophysics Data System (ADS)

    Sandler, Austin M.

    Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.

  7. Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model

    NASA Astrophysics Data System (ADS)

    Ahlgren, K.; Li, X.

    2017-12-01

    Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model provides an additional metric to assess the performance of each bias estimation method. The geoid model accuracies are assessed using the two GSVS lines and GPS-leveling data across the United States.

  8. Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression.

    PubMed

    Henn, Mark-Alexander; Silver, Richard M; Villarrubia, John S; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M; Ming, Bin; Vladár, András E

    2015-01-01

    Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ 2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges.

  9. Kinematic GPS solutions for aircraft trajectories: Identifying and minimizing systematic height errors associated with atmospheric propagation delays

    USGS Publications Warehouse

    Shan, S.; Bevis, M.; Kendrick, E.; Mader, G.L.; Raleigh, D.; Hudnut, K.; Sartori, M.; Phillips, D.

    2007-01-01

    When kinematic GPS processing software is used to estimate the trajectory of an aircraft, unless the delays imposed on the GPS signals by the atmosphere are either estimated or calibrated via external observations, then vertical height errors of decimeters can occur. This problem is clearly manifested when the aircraft is positioned against multiple base stations in areas of pronounced topography because the aircraft height solutions obtained using different base stations will tend to be mutually offset, or biased, in proportion to the elevation differences between the base stations. When performing kinematic surveys in areas with significant topography it should be standard procedure to use multiple base stations, and to separate them vertically to the maximum extent possible, since it will then be much easier to detect mis-modeling of the atmosphere. Copyright 2007 by the American Geophysical Union.

  10. MAX-DOAS measurements of HONO slant column densities during the MAD-CAT campaign: inter-comparison, sensitivity studies on spectral analysis settings, and error budget

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Beirle, Steffen; Hendrick, Francois; Hilboll, Andreas; Jin, Junli; Kyuberis, Aleksandra A.; Lampel, Johannes; Li, Ang; Luo, Yuhan; Lodi, Lorenzo; Ma, Jianzhong; Navarro, Monica; Ortega, Ivan; Peters, Enno; Polyansky, Oleg L.; Remmers, Julia; Richter, Andreas; Puentedura, Olga; Van Roozendael, Michel; Seyler, André; Tennyson, Jonathan; Volkamer, Rainer; Xie, Pinhua; Zobov, Nikolai F.; Wagner, Thomas

    2017-10-01

    In order to promote the development of the passive DOAS technique the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3 × 1015 molecules cm-2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7 × 1015 molecules cm-2. Although the HONO delta SCDs are normally smaller than 6 × 1015 molecules cm-2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63 × 1015 molecules cm-2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3 × 1015 molecules cm-2, which is about half of the systematic difference between the real measurements.The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335-361, 335-373 and 335-390 nm are considerable (up to 0.57 × 1015 molecules cm-2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335-373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87 × 1015 molecules cm-2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16 × 1015 molecules cm-2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2 × 1015 molecules cm-2 with an uncertainty of ˜ 0.9 × 1015 molecules cm-2.

  11. Estimate of the critical exponents from the field-theoretical renormalization group: mathematical meaning of the 'Standard Values'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelov, A. A.; Suslov, I. M.

    2008-06-15

    New estimates of the critical exponents have been obtained from the field-theoretical renormalization group using a new method for summing divergent series. The results almost coincide with the central values obtained by Le Guillou and Zinn-Justin (the so-called standard values), but have lower uncertainty. It has been shown that usual field-theoretical estimates implicitly imply the smoothness of the coefficient functions. The last assumption is open for discussion in view of the existence of the oscillating contribution to the coefficient functions. The appropriate interpretation of the last contribution is necessary both for the estimation of the systematic errors of the standardmore » values and for a further increase in accuracy.« less

  12. Crab Pulsar Astrometry and Spin-Velocity Alignment

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.; Ng, C.-Y.

    2009-01-01

    The proper motion of the Crab pulsar and its orientation with respect to the PWN symmetry axis is interesting for testing models of neutron star birth kicks. A number of authors have measured the Crab's motion using archival HST images. The most detailed study by Kaplan et al. (2008) compares a wide range of WFPC and ACS images to obtain an accurate proper motion measurement. However, they concluded that a kick comparison is fundamentally limited by the uncertainty in the progenitor's motion. Here we report on new HST images matched to 1994 and 1995 data frames, providing independent proper motion measurement with over 13 year time base and minimal systematic errors. The new observations also allow us to estimate the systematic errors due to CCD saturation. Our preliminary result indicates a proper motion consistent with Kaplan et al.'s finding. We discuss a model for the progenitor's motion, suggesting that the pulsar spin is much closer to alignment than previously suspected.

  13. A review of uncertainty in in situ measurements and data sets of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Kennedy, John J.

    2014-03-01

    Archives of in situ sea surface temperature (SST) measurements extend back more than 160 years. Quality of the measurements is variable, and the area of the oceans they sample is limited, especially early in the record and during the two world wars. Measurements of SST and the gridded data sets that are based on them are used in many applications so understanding and estimating the uncertainties are vital. The aim of this review is to give an overview of the various components that contribute to the overall uncertainty of SST measurements made in situ and of the data sets that are derived from them. In doing so, it also aims to identify current gaps in understanding. Uncertainties arise at the level of individual measurements with both systematic and random effects and, although these have been extensively studied, refinement of the error models continues. Recent improvements have been made in the understanding of the pervasive systematic errors that affect the assessment of long-term trends and variability. However, the adjustments applied to minimize these systematic errors are uncertain and these uncertainties are higher before the 1970s and particularly large in the period surrounding the Second World War owing to a lack of reliable metadata. The uncertainties associated with the choice of statistical methods used to create globally complete SST data sets have been explored using different analysis techniques, but they do not incorporate the latest understanding of measurement errors, and they want for a fair benchmark against which their skill can be objectively assessed. These problems can be addressed by the creation of new end-to-end SST analyses and by the recovery and digitization of data and metadata from ship log books and other contemporary literature.

  14. The Decay of Motor Memories Is Independent of Context Change Detection

    PubMed Central

    Brennan, Andrew E.; Smith, Maurice A.

    2015-01-01

    When the error signals that guide human motor learning are withheld following training, recently-learned motor memories systematically regress toward untrained performance. It has previously been hypothesized that this regression results from an intrinsic volatility in these memories, resulting in an inevitable decay in the absence of ongoing error signals. However, a recently-proposed alternative posits that even recently-acquired motor memories are intrinsically stable, decaying only if a change in context is detected. This new theory, the context-dependent decay hypothesis, makes two key predictions: (1) after error signals are withheld, decay onset should be systematically delayed until the context change is detected; and (2) manipulations that impair detection by masking context changes should result in prolonged delays in decay onset and reduced decay amplitude at any given time. Here we examine the decay of motor adaptation following the learning of novel environmental dynamics in order to carefully evaluate this hypothesis. To account for potential issues in previous work that supported the context-dependent decay hypothesis, we measured decay using a balanced and baseline-referenced experimental design that allowed for direct comparisons between analogous masked and unmasked context changes. Using both an unbiased variant of the previous decay onset analysis and a novel highly-powered group-level version of this analysis, we found no evidence for systematically delayed decay onset nor for the masked context change affecting decay amplitude or its onset time. We further show how previous estimates of decay onset latency can be substantially biased in the presence of noise, and even more so with correlated noise, explaining the discrepancy between the previous results and our findings. Our results suggest that the decay of motor memories is an intrinsic feature of error-based learning that does not depend on context change detection. PMID:26111244

  15. Portal imaging based definition of the planning target volume during pelvic irradiation for gynecological malignancies.

    PubMed

    Mock, U; Dieckmann, K; Wolff, U; Knocke, T H; Pötter, R

    1999-08-01

    Geometrical accuracy in patient positioning can vary substantially during external radiotherapy. This study estimated the set-up accuracy during pelvic irradiation for gynecological malignancies for determination of safety margins (planning target volume, PTV). Based on electronic portal imaging devices (EPID), 25 patients undergoing 4-field pelvic irradiation for gynecological malignancies were analyzed with regard to set-up accuracy during the treatment course. Regularly performed EPID images were used in order to systematically assess the systematic and random component of set-up displacements. Anatomical matching of verification and simulation images was followed by measuring corresponding distances between the central axis and anatomical features. Data analysis of set-up errors referred to the x-, y-,and z-axes. Additionally, cumulative frequencies were evaluated. A total of 50 simulation films and 313 verification images were analyzed. For the anterior-posterior (AP) beam direction mean deviations along the x- and z-axes were 1.5 mm and -1.9 mm, respectively. Moreover, random errors of 4.8 mm (x-axis) and 3.0 mm (z-axis) were determined. Concerning the latero-lateral treatment fields, the systematic errors along the two axes were calculated to 2.9 mm (y-axis) and -2.0 mm (z-axis) and random errors of 3.8 mm and 3.5 mm were found, respectively. The cumulative frequency of misalignments < or =5 mm showed values of 75% (AP fields) and 72% (latero-lateral fields). With regard to cumulative frequencies < or =10 mm quantification revealed values of 97% for both beam directions. During external pelvic irradiation therapy for gynecological malignancies, EPID images on a regular basis revealed acceptable set-up inaccuracies. Safety margins (PTV) of 1 cm appear to be sufficient, accounting for more than 95% of all deviations.

  16. Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario.

    PubMed

    Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao

    2016-11-22

    Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals' average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day's WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas.

  17. Queuing Time Prediction Using WiFi Positioning Data in an Indoor Scenario

    PubMed Central

    Shu, Hua; Song, Ci; Pei, Tao; Xu, Lianming; Ou, Yang; Zhang, Libin; Li, Tao

    2016-01-01

    Queuing is common in urban public places. Automatically monitoring and predicting queuing time can not only help individuals to reduce their wait time and alleviate anxiety but also help managers to allocate resources more efficiently and enhance their ability to address emergencies. This paper proposes a novel method to estimate and predict queuing time in indoor environments based on WiFi positioning data. First, we use a series of parameters to identify the trajectories that can be used as representatives of queuing time. Next, we divide the day into equal time slices and estimate individuals’ average queuing time during specific time slices. Finally, we build a nonstandard autoregressive (NAR) model trained using the previous day’s WiFi estimation results and actual queuing time to predict the queuing time in the upcoming time slice. A case study comparing two other time series analysis models shows that the NAR model has better precision. Random topological errors caused by the drift phenomenon of WiFi positioning technology (locations determined by a WiFi positioning system may drift accidently) and systematic topological errors caused by the positioning system are the main factors that affect the estimation precision. Therefore, we optimize the deployment strategy during the positioning system deployment phase and propose a drift ratio parameter pertaining to the trajectory screening phase to alleviate the impact of topological errors and improve estimates. The WiFi positioning data from an eight-day case study conducted at the T3-C entrance of Beijing Capital International Airport show that the mean absolute estimation error is 147 s, which is approximately 26.92% of the actual queuing time. For predictions using the NAR model, the proportion is approximately 27.49%. The theoretical predictions and the empirical case study indicate that the NAR model is an effective method to estimate and predict queuing time in indoor public areas. PMID:27879663

  18. Towards national-scale greenhouse gas emissions evaluation with robust uncertainty estimates

    NASA Astrophysics Data System (ADS)

    Rigby, Matthew; Swallow, Ben; Lunt, Mark; Manning, Alistair; Ganesan, Anita; Stavert, Ann; Stanley, Kieran; O'Doherty, Simon

    2016-04-01

    Through the Deriving Emissions related to Climate Change (DECC) network and the Greenhouse gAs Uk and Global Emissions (GAUGE) programme, the UK's greenhouse gases are now monitored by instruments mounted on telecommunications towers and churches, on a ferry that performs regular transects of the North Sea, on-board a research aircraft and from space. When combined with information from high-resolution chemical transport models such as the Met Office Numerical Atmospheric dispersion Modelling Environment (NAME), these measurements are allowing us to evaluate emissions more accurately than has previously been possible. However, it has long been appreciated that current methods for quantifying fluxes using atmospheric data suffer from uncertainties, primarily relating to the chemical transport model, that have been largely ignored to date. Here, we use novel model reduction techniques for quantifying the influence of a set of potential systematic model errors on the outcome of a national-scale inversion. This new technique has been incorporated into a hierarchical Bayesian framework, which can be shown to reduce the influence of subjective choices on the outcome of inverse modelling studies. Using estimates of the UK's methane emissions derived from DECC and GAUGE tall-tower measurements as a case study, we will show that such model systematic errors have the potential to significantly increase the uncertainty on national-scale emissions estimates. Therefore, we conclude that these factors must be incorporated in national emissions evaluation efforts, if they are to be credible.

  19. Black hole spectroscopy: Systematic errors and ringdown energy estimates

    NASA Astrophysics Data System (ADS)

    Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav

    2018-02-01

    The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.

  20. Earth before life.

    PubMed

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  1. Impact of TRMM and SSM/I-derived Precipitation and Moisture Data on the GEOS Global Analysis

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. The Data Assimilation Office at NASA's Goddard Space Flight Center has been exploring the use of space-based rainfall and total precipitable water (TPW) estimates to constrain these hydrological parameters in the Goddard Earth Observing System (GEOS) global data assimilation system. We present results showing that assimilating the 6-hour averaged rain rates and TPW estimates from the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/Imager (SSM/I) instruments improves not only the precipitation and moisture estimates but also reduce state-dependent systematic errors in key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation. The improved analysis also improves short-range forecasts beyond 1 day, but the impact is relatively modest compared with improvements in the time-averaged analysis. The study shows that, in the presence of biases and other errors of the forecast model, improving the short-range forecast is not necessarily prerequisite for improving the assimilation as a climate data set. The full impact of a given type of observation on the assimilated data set should not be measured solely in terms of forecast skills.

  2. Errors in weight estimation in the emergency department: comparing performance by providers and patients.

    PubMed

    Hall, William L; Larkin, Gregory L; Trujillo, Mauricio J; Hinds, Jackie L; Delaney, Kathleen A

    2004-10-01

    To examine biases in weight estimation by Emergency Department (ED) providers and patients, a convenience sample of ED providers (faculty, residents, interns, nurses, medical students, paramedics) and patients was studied. Providers (n = 33), blinded to study hypothesis and patient data, estimated their own weight as well as the weight of 11-20 patients each. An independent sample of patients (n = 95) was used to assess biases in patients' estimation of their own weight. Data are represented as over, under, or within +/- 5 kg, the dose tolerance standard for thrombolytics. Logistic regression analysis revealed that patients are almost nine times more likely to accurately estimate their own weight than providers; yet 22% of patients were unable to estimate their own weight within 5 kg. Of all providers, paramedics were significantly worse estimators of patient weight than other providers. Providers were no better at guessing their own weight than were patients. Though there was no systematic estimate bias by weight, experience level (except paramedic), or gender for providers, those providers under 30 years of age were significantly better estimators of patient weight than older providers. Although patient gender did not create a bias in provider estimation accuracy, providers were more likely to underestimate women's weights than men's. In conclusion, patient self-estimates of weight are significantly better than estimates by providers. Inaccurate estimates by both groups could potentially contribute to medication dosing errors in the ED.

  3. Regionalized PM2.5 Community Multiscale Air Quality model performance evaluation across a continuous spatiotemporal domain.

    PubMed

    Reyes, Jeanette M; Xu, Yadong; Vizuete, William; Serre, Marc L

    2017-01-01

    The regulatory Community Multiscale Air Quality (CMAQ) model is a means to understanding the sources, concentrations and regulatory attainment of air pollutants within a model's domain. Substantial resources are allocated to the evaluation of model performance. The Regionalized Air quality Model Performance (RAMP) method introduced here explores novel ways of visualizing and evaluating CMAQ model performance and errors for daily Particulate Matter ≤ 2.5 micrometers (PM2.5) concentrations across the continental United States. The RAMP method performs a non-homogenous, non-linear, non-homoscedastic model performance evaluation at each CMAQ grid. This work demonstrates that CMAQ model performance, for a well-documented 2001 regulatory episode, is non-homogeneous across space/time. The RAMP correction of systematic errors outperforms other model evaluation methods as demonstrated by a 22.1% reduction in Mean Square Error compared to a constant domain wide correction. The RAMP method is able to accurately reproduce simulated performance with a correlation of r = 76.1%. Most of the error coming from CMAQ is random error with only a minority of error being systematic. Areas of high systematic error are collocated with areas of high random error, implying both error types originate from similar sources. Therefore, addressing underlying causes of systematic error will have the added benefit of also addressing underlying causes of random error.

  4. Quantum chemical approach to estimating the thermodynamics of metabolic reactions.

    PubMed

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-11-12

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.

  5. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias parameters. In this paper, if the bias and shot noise parameters are fixed to their known values (which we model by fixing them to their best-fit Gaussian values), we find that the error bar reduces to 1σ simeq 65. We expect this error bar to reduce further by at least another factor of five if the data is free of any observational systematics. We therefore emphasize that in order to make best use of large scale structure data we need an accurate modeling of known systematics, a method to mitigate unknown systematics, and additionally independent theoretical models or observations to probe the bias of dark matter halos.

  6. Random and systematic sampling error when hooking fish to monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden in Australian farmed yellowtail kingfish (Seriola lalandi).

    PubMed

    Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B

    2018-05-01

    The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace

    NASA Astrophysics Data System (ADS)

    Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.

    2018-04-01

    We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.

  8. Using total quality management approach to improve patient safety by preventing medication error incidences*.

    PubMed

    Yousef, Nadin; Yousef, Farah

    2017-09-04

    Whereas one of the predominant causes of medication errors is a drug administration error, a previous study related to our investigations and reviews estimated that the incidences of medication errors constituted 6.7 out of 100 administrated medication doses. Therefore, we aimed by using six sigma approach to propose a way that reduces these errors to become less than 1 out of 100 administrated medication doses by improving healthcare professional education and clearer handwritten prescriptions. The study was held in a General Government Hospital. First, we systematically studied the current medication use process. Second, we used six sigma approach by utilizing the five-step DMAIC process (Define, Measure, Analyze, Implement, Control) to find out the real reasons behind such errors. This was to figure out a useful solution to avoid medication error incidences in daily healthcare professional practice. Data sheet was used in Data tool and Pareto diagrams were used in Analyzing tool. In our investigation, we reached out the real cause behind administrated medication errors. As Pareto diagrams used in our study showed that the fault percentage in administrated phase was 24.8%, while the percentage of errors related to prescribing phase was 42.8%, 1.7 folds. This means that the mistakes in prescribing phase, especially because of the poor handwritten prescriptions whose percentage in this phase was 17.6%, are responsible for the consequent) mistakes in this treatment process later on. Therefore, we proposed in this study an effective low cost strategy based on the behavior of healthcare workers as Guideline Recommendations to be followed by the physicians. This method can be a prior caution to decrease errors in prescribing phase which may lead to decrease the administrated medication error incidences to less than 1%. This improvement way of behavior can be efficient to improve hand written prescriptions and decrease the consequent errors related to administrated medication doses to less than the global standard; as a result, it enhances patient safety. However, we hope other studies will be made later in hospitals to practically evaluate how much effective our proposed systematic strategy really is in comparison with other suggested remedies in this field.

  9. A comparative analysis of errors in long-term econometric forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepel, R.

    1986-04-01

    The growing body of literature that documents forecast accuracy falls generally into two parts. The first is prescriptive and is carried out by modelers who use simulation analysis as a tool for model improvement. These studies are ex post, that is, they make use of known values for exogenous variables and generate an error measure wholly attributable to the model. The second type of analysis is descriptive and seeks to measure errors, identify patterns among errors and variables and compare forecasts from different sources. Most descriptive studies use an ex ante approach, that is, they evaluate model outputs based onmore » estimated (or forecasted) exogenous variables. In this case, it is the forecasting process, rather than the model, that is under scrutiny. This paper uses an ex ante approach to measure errors in forecast series prepared by Data Resources Incorporated (DRI), Wharton Econometric Forecasting Associates (Wharton), and Chase Econometrics (Chase) and to determine if systematic patterns of errors can be discerned between services, types of variables (by degree of aggregation), length of forecast and time at which the forecast is made. Errors are measured as the percent difference between actual and forecasted values for the historical period of 1971 to 1983.« less

  10. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  11. An improved error assessment for the GEM-T1 gravitational model

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Marsh, J. G.; Klosko, S. M.; Pavlis, E. C.; Patel, G. B.; Chinn, D. S.; Wagner, C. A.

    1988-01-01

    Several tests were designed to determine the correct error variances for the Goddard Earth Model (GEM)-T1 gravitational solution which was derived exclusively from satellite tracking data. The basic method employs both wholly independent and dependent subset data solutions and produces a full field coefficient estimate of the model uncertainties. The GEM-T1 errors were further analyzed using a method based upon eigenvalue-eigenvector analysis which calibrates the entire covariance matrix. Dependent satellite and independent altimetric and surface gravity data sets, as well as independent satellite deep resonance information, confirm essentially the same error assessment. These calibrations (utilizing each of the major data subsets within the solution) yield very stable calibration factors which vary by approximately 10 percent over the range of tests employed. Measurements of gravity anomalies obtained from altimetry were also used directly as observations to show that GEM-T1 is calibrated. The mathematical representation of the covariance error in the presence of unmodeled systematic error effects in the data is analyzed and an optimum weighting technique is developed for these conditions. This technique yields an internal self-calibration of the error model, a process which GEM-T1 is shown to approximate.

  12. A procedure for the significance testing of unmodeled errors in GNSS observations

    NASA Astrophysics Data System (ADS)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  13. Reconciling geodetic and geological estimates of recent plate motion across the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    DeMets, C.; Calais, E.; Merkouriev, S.

    2017-01-01

    We use recently published, high-resolution reconstructions of the Southwest Indian Ridge to test whether a previously described systematic difference between Global Positioning System (GPS) and 3.16-Myr-average estimates of seafloor spreading rates between Antarctica and Africa is evidence for a recent slowdown in Southwest Indian Ridge seafloor spreading rates. Along the Nubia-Antarctic segment of the ridge, seafloor opening rates that are estimated with the new, high-resolution reconstructions and corrected for outward displacement agree well with geodetic rate estimates and reduce previously reported, highly significant non-closure of the Nubia-Antarctic-Sur plate circuit. The observations are inconsistent with a slowdown in spreading rates and instead indicate that Nubia-Antarctic plate motion has been steady since at least 5.2 Ma. Lwandle-Antarctic seafloor spreading rates that are estimated from the new high-resolution reconstructions differ insignificantly from a GPS estimate, thereby implying steady Lwandle-Antarctic plate motion since 5.2 Ma. Between the Somalia and Antarctic plates, the new Southwest Indian Ridge reconstructions eliminate roughly half of the systematic difference between the GPS and MORVEL spreading rate estimates.We interpret the available observations as evidence that Somalia-Antarctic spreading rates have been steady since at least 5.2 Ma and postulate that the remaining difference is attributable to random and/or systematic errors in the plate kinematic estimates and the combined effects of insufficient geodetic sampling of undeforming areas of the Somalia plate, glacial isostatic adjustment in Antarctica and transient deformation triggered by the 1998 Mw = 8.2 Antarctic earthquake, the 2004 Mw = 9.3 Sumatra earthquake, or possibly other large historic earthquakes.

  14. Design and analysis of a sub-aperture scanning machine for the transmittance measurements of large-aperture optical system

    NASA Astrophysics Data System (ADS)

    He, Yingwei; Li, Ping; Feng, Guojin; Cheng, Li; Wang, Yu; Wu, Houping; Liu, Zilong; Zheng, Chundi; Sha, Dingguo

    2010-11-01

    For measuring large-aperture optical system transmittance, a novel sub-aperture scanning machine with double-rotating arms (SSMDA) was designed to obtain sub-aperture beam spot. Optical system full-aperture transmittance measurements can be achieved by applying sub-aperture beam spot scanning technology. The mathematical model of the SSMDA based on a homogeneous coordinate transformation matrix is established to develop a detailed methodology for analyzing the beam spot scanning errors. The error analysis methodology considers two fundamental sources of scanning errors, namely (1) the length systematic errors and (2) the rotational systematic errors. As the systematic errors of the parameters are given beforehand, computational results of scanning errors are between -0.007~0.028mm while scanning radius is not lager than 400.000mm. The results offer theoretical and data basis to the research on transmission characteristics of large optical system.

  15. Scattering from binary optics

    NASA Technical Reports Server (NTRS)

    Ricks, Douglas W.

    1993-01-01

    There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.

  16. Geometric Accuracy Analysis of Worlddem in Relation to AW3D30, Srtm and Aster GDEM2

    NASA Astrophysics Data System (ADS)

    Bayburt, S.; Kurtak, A. B.; Büyüksalih, G.; Jacobsen, K.

    2017-05-01

    In a project area close to Istanbul the quality of WorldDEM, AW3D30, SRTM DSM and ASTER GDEM2 have been analyzed in relation to a reference aerial LiDAR DEM and to each other. The random and the systematic height errors have been separated. The absolute offset for all height models in X, Y and Z is within the expectation. The shifts have been respected in advance for a satisfying estimation of the random error component. All height models are influenced by some tilts, different in size. In addition systematic deformations can be seen not influencing the standard deviation too much. The delivery of WorldDEM includes information about the height error map which is based on the interferometric phase errors, and the number and location of coverage's from different orbits. A dependency of the height accuracy from the height error map information and the number of coverage's can be seen, but it is smaller as expected. WorldDEM is more accurate as the other investigated height models and with 10 m point spacing it includes more morphologic details, visible at contour lines. The morphologic details are close to the details based on the LiDAR digital surface model (DSM). As usual a dependency of the accuracy from the terrain slope can be seen. In forest areas the canopy definition of InSAR X- and C-band height models as well as for the height models based on optical satellite images is not the same as the height definition by LiDAR. In addition the interferometric phase uncertainty over forest areas is larger. Both effects lead to lower height accuracy in forest areas, also visible in the height error map.

  17. Systematic errors of EIT systems determined by easily-scalable resistive phantoms.

    PubMed

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-06-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.

  18. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com; Johnson, Randall; Larson, Gary

    Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authorsmore » estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.« less

  19. Minimizing treatment planning errors in proton therapy using failure mode and effects analysis.

    PubMed

    Zheng, Yuanshui; Johnson, Randall; Larson, Gary

    2016-06-01

    Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.

  20. Sources of variability and systematic error in mouse timing behavior.

    PubMed

    Gallistel, C R; King, Adam; McDonald, Robert

    2004-01-01

    In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.

  1. Improved uncertainty quantification in nondestructive assay for nonproliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burr, Tom; Croft, Stephen; Jarman, Ken

    2016-12-01

    This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less

  2. On the sea-state bias of the Geosat altimeter

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Koblinsky, Chester J.

    1991-01-01

    The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.

  3. On the sea-state bias of the Geosat altimeter

    NASA Astrophysics Data System (ADS)

    Ray, Richard D.; Koblinsky, Chester J.

    1991-06-01

    The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.

  4. Error analysis and system optimization of non-null aspheric testing system

    NASA Astrophysics Data System (ADS)

    Luo, Yongjie; Yang, Yongying; Liu, Dong; Tian, Chao; Zhuo, Yongmo

    2010-10-01

    A non-null aspheric testing system, which employs partial null lens (PNL for short) and reverse iterative optimization reconstruction (ROR for short) technique, is proposed in this paper. Based on system modeling in ray tracing software, the parameter of each optical element is optimized and this makes system modeling more precise. Systematic error of non-null aspheric testing system is analyzed and can be categorized into two types, the error due to surface parameters of PNL in the system modeling and the rest from non-null interferometer by the approach of error storage subtraction. Experimental results show that, after systematic error is removed from testing result of non-null aspheric testing system, the aspheric surface is precisely reconstructed by ROR technique and the consideration of systematic error greatly increase the test accuracy of non-null aspheric testing system.

  5. Pulse-echo sound speed estimation using second order speckle statistics

    NASA Astrophysics Data System (ADS)

    Rosado-Mendez, Ivan M.; Nam, Kibo; Madsen, Ernest L.; Hall, Timothy J.; Zagzebski, James A.

    2012-10-01

    This work presents a phantom-based evaluation of a method for estimating soft-tissue speeds of sound using pulse-echo data. The method is based on the improvement of image sharpness as the sound speed value assumed during beamforming is systematically matched to the tissue sound speed. The novelty of this work is the quantitative assessment of image sharpness by measuring the resolution cell size from the autocovariance matrix for echo signals from a random distribution of scatterers thus eliminating the need of strong reflectors. Envelope data were obtained from a fatty-tissue mimicking (FTM) phantom (sound speed = 1452 m/s) and a nonfatty-tissue mimicking (NFTM) phantom (1544 m/s) scanned with a linear array transducer on a clinical ultrasound system. Dependence on pulse characteristics was tested by varying the pulse frequency and amplitude. On average, sound speed estimation errors were -0.7% for the FTM phantom and -1.1% for the NFTM phantom. In general, no significant difference was found among errors from different pulse frequencies and amplitudes. The method is currently being optimized for the differentiation of diffuse liver diseases.

  6. Empirical evidence for resource-rational anchoring and adjustment.

    PubMed

    Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D

    2018-04-01

    People's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people's knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.

  7. Meta-regression approximations to reduce publication selection bias.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2014-03-01

    Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  9. Error model of geomagnetic-field measurement and extended Kalman-filter based compensation method

    PubMed Central

    Ge, Zhilei; Liu, Suyun; Li, Guopeng; Huang, Yan; Wang, Yanni

    2017-01-01

    The real-time accurate measurement of the geomagnetic-field is the foundation to achieving high-precision geomagnetic navigation. The existing geomagnetic-field measurement models are essentially simplified models that cannot accurately describe the sources of measurement error. This paper, on the basis of systematically analyzing the source of geomagnetic-field measurement error, built a complete measurement model, into which the previously unconsidered geomagnetic daily variation field was introduced. This paper proposed an extended Kalman-filter based compensation method, which allows a large amount of measurement data to be used in estimating parameters to obtain the optimal solution in the sense of statistics. The experiment results showed that the compensated strength of the geomagnetic field remained close to the real value and the measurement error was basically controlled within 5nT. In addition, this compensation method has strong applicability due to its easy data collection and ability to remove the dependence on a high-precision measurement instrument. PMID:28445508

  10. Synoptic scale forecast skill and systematic errors in the MASS 2.0 model. [Mesoscale Atmospheric Simulation System

    NASA Technical Reports Server (NTRS)

    Koch, S. E.; Skillman, W. C.; Kocin, P. J.; Wetzel, P. J.; Brill, K. F.

    1985-01-01

    The synoptic scale performance characteristics of MASS 2.0 are determined by comparing filtered 12-24 hr model forecasts to same-case forecasts made by the National Meteorological Center's synoptic-scale Limited-area Fine Mesh model. Characteristics of the two systems are contrasted, and the analysis methodology used to determine statistical skill scores and systematic errors is described. The overall relative performance of the two models in the sample is documented, and important systematic errors uncovered are presented.

  11. DS02R1: Improvements to Atomic Bomb Survivors' Input Data and Implementation of Dosimetry System 2002 (DS02) and Resulting Changes in Estimated Doses.

    PubMed

    Cullings, H M; Grant, E J; Egbert, S D; Watanabe, T; Oda, T; Nakamura, F; Yamashita, T; Fuchi, H; Funamoto, S; Marumo, K; Sakata, R; Kodama, Y; Ozasa, K; Kodama, K

    2017-01-01

    Individual dose estimates calculated by Dosimetry System 2002 (DS02) for the Life Span Study (LSS) of atomic bomb survivors are based on input data that specify location and shielding at the time of the bombing (ATB). A multi-year effort to improve information on survivors' locations ATB has recently been completed, along with comprehensive improvements in their terrain shielding input data and several improvements to computational algorithms used in combination with DS02 at RERF. Improvements began with a thorough review and prioritization of original questionnaire data on location and shielding that were taken from survivors or their proxies in the period 1949-1963. Related source documents varied in level of detail, from relatively simple lists to carefully-constructed technical drawings of structural and other shielding and surrounding neighborhoods. Systematic errors were reduced in this work by restoring the original precision of map coordinates that had been truncated due to limitations in early data processing equipment and by correcting distortions in the old (WWII-era) maps originally used to specify survivors' positions, among other improvements. Distortion errors were corrected by aligning the old maps and neighborhood drawings to orthophotographic mosaics of the cities that were newly constructed from pre-bombing aerial photographs. Random errors that were reduced included simple transcription errors and mistakes in identifying survivors' locations on the old maps. Terrain shielding input data that had been originally estimated for limited groups of survivors using older methods and data sources were completely re-estimated for all survivors using new digital terrain elevation data. Improvements to algorithms included a fix to an error in the DS02 code for coupling house and terrain shielding, a correction for elevation at the survivor's location in calculating angles to the horizon used for terrain shielding input, an improved method for truncating high dose estimates to 4 Gy to reduce the effect of dose error, and improved methods for calculating averaged shielding transmission factors that are used to calculate doses for survivors without detailed shielding input data. Input data changes are summarized and described here in some detail, along with the resulting changes in dose estimates and a simple description of changes in risk estimates for solid cancer mortality. This and future RERF publications will refer to the new dose estimates described herein as "DS02R1 doses."

  12. Understanding the dynamics of correct and error responses in free recall: evidence from externalized free recall.

    PubMed

    Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J

    2010-06-01

    The dynamics of correct and error responses in a variant of delayed free recall were examined in the present study. In the externalized free recall paradigm, participants were presented with lists of words and were instructed to subsequently recall not only the words that they could remember from the most recently presented list, but also any other words that came to mind during the recall period. Externalized free recall is useful for elucidating both sampling and postretrieval editing processes, thereby yielding more accurate estimates of the total number of error responses, which are typically sampled and subsequently edited during free recall. The results indicated that the participants generally sampled correct items early in the recall period and then transitioned to sampling more erroneous responses. Furthermore, the participants generally terminated their search after sampling too many errors. An examination of editing processes suggested that the participants were quite good at identifying errors, but this varied systematically on the basis of a number of factors. The results from the present study are framed in terms of generate-edit models of free recall.

  13. Stochastic characterization of phase detection algorithms in phase-shifting interferometry

    DOE PAGES

    Munteanu, Florin

    2016-11-01

    Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less

  14. A new systematic calibration method of ring laser gyroscope inertial navigation system

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  15. Measuring Systematic Error with Curve Fits

    ERIC Educational Resources Information Center

    Rupright, Mark E.

    2011-01-01

    Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…

  16. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G.

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 tomore » 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot spots along the field edges, which may be near critical structures. However, random PE showed minimal dose error. Conclusions: Dose error dependence for PE was quantitatively and systematically characterized and an analytic tool was built to simulate systematic and random errors for patient-specific IMPT. This information facilitates the determination of facility specific spot position error thresholds.« less

  18. Living systematic reviews: 3. Statistical methods for updating meta-analyses.

    PubMed

    Simmonds, Mark; Salanti, Georgia; McKenzie, Joanne; Elliott, Julian

    2017-11-01

    A living systematic review (LSR) should keep the review current as new research evidence emerges. Any meta-analyses included in the review will also need updating as new material is identified. If the aim of the review is solely to present the best current evidence standard meta-analysis may be sufficient, provided reviewers are aware that results may change at later updates. If the review is used in a decision-making context, more caution may be needed. When using standard meta-analysis methods, the chance of incorrectly concluding that any updated meta-analysis is statistically significant when there is no effect (the type I error) increases rapidly as more updates are performed. Inaccurate estimation of any heterogeneity across studies may also lead to inappropriate conclusions. This paper considers four methods to avoid some of these statistical problems when updating meta-analyses: two methods, that is, law of the iterated logarithm and the Shuster method control primarily for inflation of type I error and two other methods, that is, trial sequential analysis and sequential meta-analysis control for type I and II errors (failing to detect a genuine effect) and take account of heterogeneity. This paper compares the methods and considers how they could be applied to LSRs. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.

    PubMed

    Itoh, Yuta; Klinker, Gudrun

    2015-04-01

    A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.

  20. Global Vision Impairment and Blindness Due to Uncorrected Refractive Error, 1990-2010.

    PubMed

    Naidoo, Kovin S; Leasher, Janet; Bourne, Rupert R; Flaxman, Seth R; Jonas, Jost B; Keeffe, Jill; Limburg, Hans; Pesudovs, Konrad; Price, Holly; White, Richard A; Wong, Tien Y; Taylor, Hugh R; Resnikoff, Serge

    2016-03-01

    The purpose of this systematic review was to estimate worldwide the number of people with moderate and severe visual impairment (MSVI; presenting visual acuity <6/18, ≥3/60) or blindness (presenting visual acuity <3/60) due to uncorrected refractive error (URE), to estimate trends in prevalence from 1990 to 2010, and to analyze regional differences. The review focuses on uncorrected refractive error which is now the most common cause of avoidable visual impairment globally. : The systematic review of 14,908 relevant manuscripts from 1990 to 2010 using Medline, Embase, and WHOLIS yielded 243 high-quality, population-based cross-sectional studies which informed a meta-analysis of trends by region. The results showed that in 2010, 6.8 million (95% confidence interval [CI]: 4.7-8.8 million) people were blind (7.9% increase from 1990) and 101.2 million (95% CI: 87.88-125.5 million) vision impaired due to URE (15% increase since 1990), while the global population increased by 30% (1990-2010). The all-age age-standardized prevalence of URE blindness decreased 33% from 0.2% (95% CI: 0.1-0.2%) in 1990 to 0.1% (95% CI: 0.1-0.1%) in 2010, whereas the prevalence of URE MSVI decreased 25% from 2.1% (95% CI: 1.6-2.4%) in 1990 to 1.5% (95% CI: 1.3-1.9%) in 2010. In 2010, URE contributed 20.9% (95% CI: 15.2-25.9%) of all blindness and 52.9% (95% CI: 47.2-57.3%) of all MSVI worldwide. The contribution of URE to all MSVI ranged from 44.2 to 48.1% in all regions except in South Asia which was at 65.4% (95% CI: 62-72%). : We conclude that in 2010, uncorrected refractive error continues as the leading cause of vision impairment and the second leading cause of blindness worldwide, affecting a total of 108 million people or 1 in 90 persons.

  1. A Method for Calculating the Mean Orbits of Meteor Streams

    NASA Astrophysics Data System (ADS)

    Voloshchuk, Yu. I.; Kashcheev, B. L.

    An examination of the published catalogs of orbits of meteor streams and of a large number of works devoted to the selection of streams, their analysis and interpretation, showed that elements of stream orbits are calculated, as a rule, as arithmetical (sometimes, weighed) sample means. On the basis of these means, a search for parent bodies, a study of the evolution of swarms generating these streams, an analysis of one-dimensional and multidimensional distributions of these elements, etc., are performed. We show that systematic errors in the estimates of elements of the mean orbits are present in each of the catalogs. These errors are caused by the formal averaging of orbital elements over the sample, while ignoring the fact that they represent not only correlated, but dependent quantities, with nonlinear, in most cases, interrelations between them. Numerous examples are given of such inaccuracies, in particular, the cases where the "mean orbit of the stream" recorded by ground-based techniques does not cross the Earth's orbit. We suggest the computation algorithm, in which the averaging over the sample is carried out at the initial stage of the calculation of the mean orbit, and only for the variables required for subsequent calculations. After this, the known astrometric formulas are used to sequentially calculate all other parameters of the stream, considered now as a standard orbit. Variance analysis is used to estimate the errors in orbital elements of the streams, in the case that their orbits are obtained by averaging the orbital elements of meteoroids forming the stream, without taking into account their interdependence. The results obtained in this analysis indicate the behavior of systematic errors in the elements of orbits of meteor streams. As an example, the effect of the incorrect computation method on the distribution of elements of the stream orbits close to the orbits of asteroids of the Apollo, Aten, and Amor groups (AAA asteroids) is examined.

  2. Estimated radiation exposure of German commercial airline cabin crew in the years 1960-2003 modeled using dose registry data for 2004-2015.

    PubMed

    Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo

    2018-05-01

    Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.

  3. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    USGS Publications Warehouse

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the normal range. This finding implies that the simplified parameterization of the SSEBop model did not significantly affect the accuracy of the ET estimate while increasing the ease of model setup for operational applications. The sensitivity analysis indicated that the SSEBop model is most sensitive to input variables, land surface temperature (LST) and reference ET (ETo); and parameters, differential temperature (dT), and maximum ET scalar (Kmax), particularly during the non-growing season and in dry areas. In summary, the uncertainty assessment verifies that the SSEBop model is a reliable and robust method for large-area ET estimation. The SSEBop model estimates can be further improved by reducing errors in two input variables (ETo and LST) and two key parameters (Kmax and dT).

  4. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  5. Simulating and assessing boson sampling experiments with phase-space representations

    NASA Astrophysics Data System (ADS)

    Opanchuk, Bogdan; Rosales-Zárate, Laura; Reid, Margaret D.; Drummond, Peter D.

    2018-04-01

    The search for new, application-specific quantum computers designed to outperform any classical computer is driven by the ending of Moore's law and the quantum advantages potentially obtainable. Photonic networks are promising examples, with experimental demonstrations and potential for obtaining a quantum computer to solve problems believed classically impossible. This introduces a challenge: how does one design or understand such photonic networks? One must be able to calculate observables using general methods capable of treating arbitrary inputs, dissipation, and noise. We develop complex phase-space software for simulating these photonic networks, and apply this to boson sampling experiments. Our techniques give sampling errors orders of magnitude lower than experimental correlation measurements for the same number of samples. We show that these techniques remove systematic errors in previous algorithms for estimating correlations, with large improvements in errors in some cases. In addition, we obtain a scalable channel-combination strategy for assessment of boson sampling devices.

  6. Potential Refinement of the ICRF

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2003-01-01

    The analysis and data used for the ICRF represented the state of the art in global, extragalactic, X/S band microwave astrometry in 1995. The same general analysis method was used to extend the ICRF with subsequent VLBI data in a manner consistent with the original catalog. Since 1995 there have been considerable advances in the geodetic/astrometric VLBI data set and in the analysis that would significantly improve the systematic errors, stability, and density of the next realization of the ICRS when the decision is made to take this step. In particular, data acquired since 1990, including extensive use of the VLBA, are of higher quality and astrometric utility because of changes in instrumentation, schedule design, and networks as well as specifically astrometric intent. The IVS (International VLBI Service for Geodesy and Astrometry) continues to devote a portion of its observing capability to systematic extension of the astrometric data set. Sufficient data distribution exists to select a better set of defining sources. Improvements in troposphere modeling will minimize known systematic astrometric errors while accurate modeling and estimation of station effects from loading and nonlinear motions will permit the reintegration of the celestial reference frame, terrestrial reference frame and Earth orientation parameters though a single VLBI solution. The differences between the current ICRF and the potential next realization will be described.

  7. Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!

    PubMed

    Vetter, Thomas R; Mascha, Edward J

    2017-09-01

    Epidemiologists seek to make a valid inference about the causal effect between an exposure and a disease in a specific population, using representative sample data from a specific population. Clinical researchers likewise seek to make a valid inference about the association between an intervention and outcome(s) in a specific population, based upon their randomly collected, representative sample data. Both do so by using the available data about the sample variable to make a valid estimate about its corresponding or underlying, but unknown population parameter. Random error in an experiment can be due to the natural, periodic fluctuation or variation in the accuracy or precision of virtually any data sampling technique or health measurement tool or scale. In a clinical research study, random error can be due to not only innate human variability but also purely chance. Systematic error in an experiment arises from an innate flaw in the data sampling technique or measurement instrument. In the clinical research setting, systematic error is more commonly referred to as systematic bias. The most commonly encountered types of bias in anesthesia, perioperative, critical care, and pain medicine research include recall bias, observational bias (Hawthorne effect), attrition bias, misclassification or informational bias, and selection bias. A confounding variable is a factor associated with both the exposure of interest and the outcome of interest. A confounding variable (confounding factor or confounder) is a variable that correlates (positively or negatively) with both the exposure and outcome. Confounding is typically not an issue in a randomized trial because the randomized groups are sufficiently balanced on all potential confounding variables, both observed and nonobserved. However, confounding can be a major problem with any observational (nonrandomized) study. Ignoring confounding in an observational study will often result in a "distorted" or incorrect estimate of the association or treatment effect. Interaction among variables, also known as effect modification, exists when the effect of 1 explanatory variable on the outcome depends on the particular level or value of another explanatory variable. Bias and confounding are common potential explanations for statistically significant associations between exposure and outcome when the true relationship is noncausal. Understanding interactions is vital to proper interpretation of treatment effects. These complex concepts should be consistently and appropriately considered whenever one is not only designing but also analyzing and interpreting data from a randomized trial or observational study.

  8. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  9. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  10. A Novel Approach of Understanding and Incorporating Error of Chemical Transport Models into a Geostatistical Framework

    NASA Astrophysics Data System (ADS)

    Reyes, J.; Vizuete, W.; Serre, M. L.; Xu, Y.

    2015-12-01

    The EPA employs a vast monitoring network to measure ambient PM2.5 concentrations across the United States with one of its goals being to quantify exposure within the population. However, there are several areas of the country with sparse monitoring spatially and temporally. One means to fill in these monitoring gaps is to use PM2.5 modeled estimates from Chemical Transport Models (CTMs) specifically the Community Multi-scale Air Quality (CMAQ) model. CMAQ is able to provide complete spatial coverage but is subject to systematic and random error due to model uncertainty. Due to the deterministic nature of CMAQ, often these uncertainties are not quantified. Much effort is employed to quantify the efficacy of these models through different metrics of model performance. Currently evaluation is specific to only locations with observed data. Multiyear studies across the United States are challenging because the error and model performance of CMAQ are not uniform over such large space/time domains. Error changes regionally and temporally. Because of the complex mix of species that constitute PM2.5, CMAQ error is also a function of increasing PM2.5 concentration. To address this issue we introduce a model performance evaluation for PM2.5 CMAQ that is regionalized and non-linear. This model performance evaluation leads to error quantification for each CMAQ grid. Areas and time periods of error being better qualified. The regionalized error correction approach is non-linear and is therefore more flexible at characterizing model performance than approaches that rely on linearity assumptions and assume homoscedasticity of CMAQ predictions errors. Corrected CMAQ data are then incorporated into the modern geostatistical framework of Bayesian Maximum Entropy (BME). Through cross validation it is shown that incorporating error-corrected CMAQ data leads to more accurate estimates than just using observed data by themselves.

  11. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.

    PubMed

    Bennett, Derrick A; Landry, Denise; Little, Julian; Minelli, Cosetta

    2017-09-19

    Several statistical approaches have been proposed to assess and correct for exposure measurement error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology. MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a continuous exposure in nutritional epidemiology using a calibration study. We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify the relationship between different dietary assessment instruments and "true intake", which were mostly based on correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches (multiple imputation and moment reconstruction) were identified that can deal with differential measurement error. For regression calibration, the most common approach to correct for measurement error used in nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that investigate the impact of departures from the classical measurement error model on regression calibration estimates can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when regression calibration is not appropriate, the choice of method should depend on the measurement error model assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of methods to assess and adjust for measurement error in nutritional epidemiology.

  12. Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.

    2017-08-01

    Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.

  13. BAO from Angular Clustering: Optimization and Mitigation of Theoretical Systematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, M.; et al.

    We study the theoretical systematics and optimize the methodology in Baryon Acoustic Oscillations (BAO) detections using the angular correlation function with tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The MLE method yields the least bias in the fit results (bias/spreadmore » $$\\sim 0.02$$) and the error bar derived is the closest to the Gaussian results (1% from 68% Gaussian expectation). When there is mismatch between the template and the data either due to incorrect fiducial cosmology or photo-$z$ error, the MLE again gives the least-biased results. The BAO angular shift that is estimated based on the sound horizon and the angular diameter distance agree with the numerical fit. Various analysis choices are further tested: the number of redshift bins, cross-correlations, and angular binning. We propose two methods to correct the mock covariance when the final sample properties are slightly different from those used to create the mock. We show that the sample changes can be accommodated with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because the number of free parameters is substantially reduced [$p$ parameters versus $p(p+1)/2$ from direct measurement].« less

  14. Quantum Chemical Approach to Estimating the Thermodynamics of Metabolic Reactions

    PubMed Central

    Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán

    2014-01-01

    Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism. PMID:25387603

  15. Design and performance evaluation of a distributed OFDMA-based MAC protocol for MANETs.

    PubMed

    Park, Jaesung; Chung, Jiyoung; Lee, Hyungyu; Lee, Jung-Ryun

    2014-01-01

    In this paper, we propose a distributed MAC protocol for OFDMA-based wireless mobile ad hoc multihop networks, in which the resource reservation and data transmission procedures are operated in a distributed manner. A frame format is designed considering the characteristics of OFDMA that each node can transmit or receive data to or from multiple nodes simultaneously. Under this frame structure, we propose a distributed resource management method including network state estimation and resource reservation processes. We categorize five types of logical errors according to their root causes and show that two of the logical errors are inevitable while three of them are avoided under the proposed distributed MAC protocol. In addition, we provide a systematic method to determine the advertisement period of each node by presenting a clear relation between the accuracy of estimated network states and the signaling overhead. We evaluate the performance of the proposed protocol in respect of the reservation success rate and the success rate of data transmission. Since our method focuses on avoiding logical errors, it could be easily placed on top of the other resource allocation methods focusing on the physical layer issues of the resource management problem and interworked with them.

  16. Evaluating the utility of dynamical downscaling in agricultural impacts projections

    PubMed Central

    Glotter, Michael; Elliott, Joshua; McInerney, David; Best, Neil; Foster, Ian; Moyer, Elisabeth J.

    2014-01-01

    Interest in estimating the potential socioeconomic costs of climate change has led to the increasing use of dynamical downscaling—nested modeling in which regional climate models (RCMs) are driven with general circulation model (GCM) output—to produce fine-spatial-scale climate projections for impacts assessments. We evaluate here whether this computationally intensive approach significantly alters projections of agricultural yield, one of the greatest concerns under climate change. Our results suggest that it does not. We simulate US maize yields under current and future CO2 concentrations with the widely used Decision Support System for Agrotechnology Transfer crop model, driven by a variety of climate inputs including two GCMs, each in turn downscaled by two RCMs. We find that no climate model output can reproduce yields driven by observed climate unless a bias correction is first applied. Once a bias correction is applied, GCM- and RCM-driven US maize yields are essentially indistinguishable in all scenarios (<10% discrepancy, equivalent to error from observations). Although RCMs correct some GCM biases related to fine-scale geographic features, errors in yield are dominated by broad-scale (100s of kilometers) GCM systematic errors that RCMs cannot compensate for. These results support previous suggestions that the benefits for impacts assessments of dynamically downscaling raw GCM output may not be sufficient to justify its computational demands. Progress on fidelity of yield projections may benefit more from continuing efforts to understand and minimize systematic error in underlying climate projections. PMID:24872455

  17. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  18. Consequences of incomplete surface energy balance closure for CO2 fluxes from open-path CO2/H2O infrared gas analyzers

    Treesearch

    Heping Liu; James T. Randerson; Jamie Lindfors; William J. Massman; Thomas Foken

    2006-01-01

    We present an approach for assessing the impact of systematic biases in measured energy fluxes on CO2 flux estimates obtained from open-path eddy-covariance systems. In our analysis, we present equations to analyse the propagation of errors through the Webb, Pearman, and Leuning (WPL) algorithm [Quart. J. Roy. Meteorol. Soc. 106, 85­100, 1980] that is widely used to...

  19. Hubble Frontier Fields: systematic errors in strong lensing models of galaxy clusters - implications for cosmography

    NASA Astrophysics Data System (ADS)

    Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan

    2017-09-01

    Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.

  20. [Study of spatial stratified sampling strategy of Oncomelania hupensis snail survey based on plant abundance].

    PubMed

    Xun-Ping, W; An, Z

    2017-07-27

    Objective To optimize and simplify the survey method of Oncomelania hupensis snails in marshland endemic regions of schistosomiasis, so as to improve the precision, efficiency and economy of the snail survey. Methods A snail sampling strategy (Spatial Sampling Scenario of Oncomelania based on Plant Abundance, SOPA) which took the plant abundance as auxiliary variable was explored and an experimental study in a 50 m×50 m plot in a marshland in the Poyang Lake region was performed. Firstly, the push broom surveyed data was stratified into 5 layers by the plant abundance data; then, the required numbers of optimal sampling points of each layer through Hammond McCullagh equation were calculated; thirdly, every sample point in the line with the Multiple Directional Interpolation (MDI) placement scheme was pinpointed; and finally, the comparison study among the outcomes of the spatial random sampling strategy, the traditional systematic sampling method, the spatial stratified sampling method, Sandwich spatial sampling and inference and SOPA was performed. Results The method (SOPA) proposed in this study had the minimal absolute error of 0.213 8; and the traditional systematic sampling method had the largest estimate, and the absolute error was 0.924 4. Conclusion The snail sampling strategy (SOPA) proposed in this study obtains the higher estimation accuracy than the other four methods.

  1. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  2. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelbaum, R.; Rowe, B.; Armstrong, R.

    2015-05-01

    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about amore » spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less

  3. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    DOE PAGES

    Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; ...

    2015-05-11

    The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty aboutmore » a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less

  4. Integrated Sachs-Wolfe map reconstruction in the presence of systematic errors

    NASA Astrophysics Data System (ADS)

    Weaverdyck, Noah; Muir, Jessica; Huterer, Dragan

    2018-02-01

    The decay of gravitational potentials in the presence of dark energy leads to an additional, late-time contribution to anisotropies in the cosmic microwave background (CMB) at large angular scales. The imprint of this so-called integrated Sachs-Wolfe (ISW) effect to the CMB angular power spectrum has been detected and studied in detail, but reconstructing its spatial contributions to the CMB map, which would offer the tantalizing possibility of separating the early- from the late-time contributions to CMB temperature fluctuations, is more challenging. Here, we study the technique for reconstructing the ISW map based on information from galaxy surveys and focus in particular on how its accuracy is impacted by the presence of photometric calibration errors in input galaxy maps, which were previously found to be a dominant contaminant for ISW signal estimation. We find that both including tomographic information from a single survey and using data from multiple, complementary galaxy surveys improve the reconstruction by mitigating the impact of spurious power contributions from calibration errors. A high-fidelity reconstruction further requires one to account for the contribution of calibration errors to the observed galaxy power spectrum in the model used to construct the ISW estimator. We find that if the photometric calibration errors in galaxy surveys can be independently controlled at the level required to obtain unbiased dark energy constraints, then it is possible to reconstruct ISW maps with excellent accuracy using a combination of maps from two galaxy surveys with properties similar to Euclid and SPHEREx.

  5. A Measurement of Gravitational Lensing of the Cosmic Microwave Background by Galaxy Clusters Using Data from the South Pole Telescope

    DOE PAGES

    Baxter, E. J.; Keisler, R.; Dodelson, S.; ...

    2015-06-22

    Clusters of galaxies are expected to gravitationally lens the cosmic microwave background (CMB) and thereby generate a distinct signal in the CMB on arcminute scales. Measurements of this effect can be used to constrain the masses of galaxy clusters with CMB data alone. Here we present a measurement of lensing of the CMB by galaxy clusters using data from the South Pole Telescope (SPT). We also develop a maximum likelihood approach to extract the CMB cluster lensing signal and validate the method on mock data. We quantify the effects on our analysis of several potential sources of systematic error andmore » find that they generally act to reduce the best-fit cluster mass. It is estimated that this bias to lower cluster mass is roughly 0.85σ in units of the statistical error bar, although this estimate should be viewed as an upper limit. Furthermore, we apply our maximum likelihood technique to 513 clusters selected via their Sunyaev–Zeldovich (SZ) signatures in SPT data, and rule out the null hypothesis of no lensing at 3.1σ. The lensing-derived mass estimate for the full cluster sample is consistent with that inferred from the SZ flux: M 200,lens = 0.83 +0.38 -0.37 M 200,SZ (68% C.L., statistical error only).« less

  6. The Thirty Gigahertz Instrument Receiver for the QUIJOTE Experiment: Preliminary Polarization Measurements and Systematic-Error Analysis.

    PubMed

    Casas, Francisco J; Ortiz, David; Villa, Enrique; Cano, Juan L; Cagigas, Jaime; Pérez, Ana R; Aja, Beatriz; Terán, J Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Génova-Santos, Ricardo

    2015-08-05

    This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.

  7. Alternate methods for FAAT S-curve generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, A.M.

    The FAAT (Foreign Asset Assessment Team) assessment methodology attempts to derive a probability of effect as a function of incident field strength. The probability of effect is the likelihood that the stress put on a system exceeds its strength. In the FAAT methodology, both the stress and strength are random variables whose statistical properties are estimated by experts. Each random variable has two components of uncertainty: systematic and random. The systematic uncertainty drives the confidence bounds in the FAAT assessment. Its variance can be reduced by improved information. The variance of the random uncertainty is not reducible. The FAAT methodologymore » uses an assessment code called ARES to generate probability of effect curves (S-curves) at various confidence levels. ARES assumes log normal distributions for all random variables. The S-curves themselves are log normal cumulants associated with the random portion of the uncertainty. The placement of the S-curves depends on confidence bounds. The systematic uncertainty in both stress and strength is usually described by a mode and an upper and lower variance. Such a description is not consistent with the log normal assumption of ARES and an unsatisfactory work around solution is used to obtain the required placement of the S-curves at each confidence level. We have looked into this situation and have found that significant errors are introduced by this work around. These errors are at least several dB-W/cm{sup 2} at all confidence levels, but they are especially bad in the estimate of the median. In this paper, we suggest two alternate solutions for the placement of S-curves. To compare these calculational methods, we have tabulated the common combinations of upper and lower variances and generated the relevant S-curves offsets from the mode difference of stress and strength.« less

  8. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unbiased estimate of the growth rate of structure at ⟨z⟩ = 0.85 using the clustering of luminous blue galaxies

    NASA Astrophysics Data System (ADS)

    Mohammad, F. G.; Granett, B. R.; Guzzo, L.; Bel, J.; Branchini, E.; de la Torre, S.; Moscardini, L.; Peacock, J. A.; Bolzonella, M.; Garilli, B.; Scodeggio, M.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.

    2018-02-01

    We used the VIMOS Public Extragalactic Redshift Survey (VIPERS) final data release (PDR-2) to investigate the performance of colour-selected populations of galaxies as tracers of linear large-scale motions. We empirically selected volume-limited samples of blue and red galaxies as to minimise the systematic error on the estimate of the growth rate of structure fσ8 from the anisotropy of the two-point correlation function. To this end, rather than rigidly splitting the sample into two colour classes we defined the red or blue fractional contribution of each object through a weight based on the (U - V ) colour distribution. Using mock surveys that are designed to reproduce the observed properties of VIPERS galaxies, we find the systematic error in recovering the fiducial value of fσ8 to be minimised when using a volume-limited sample of luminous blue galaxies. We modelled non-linear corrections via the Scoccimarro extension of the Kaiser model (with updated fitting formulae for the velocity power spectra), finding systematic errors on fσ8 of below 1-2%, using scales as small as 5 h-1 Mpc. We interpret this result as indicating that selection of luminous blue galaxies maximises the fraction that are central objects in their dark matter haloes; this in turn minimises the contribution to the measured ξ(rp,π) from the 1-halo term, which is dominated by non-linear motions. The gain is inferior if one uses the full magnitude-limited sample of blue objects, consistent with the presence of a significant fraction of blue, fainter satellites dominated by non-streaming, orbital velocities. We measured a value of fσ8 = 0.45 ± 0.11 over the single redshift range 0.6 ≤ z ≤ 1.0, corresponding to an effective redshift for the blue galaxies ⟨z⟩=0.85. Including in the likelihood the potential extra information contained in the blue-red galaxy cross-correlation function does not lead to an appreciable improvement in the error bars, while it increases the systematic error. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  9. Assessment of Systematic Measurement Errors for Acoustic Travel-Time Tomography of the Atmosphere

    DTIC Science & Technology

    2013-01-01

    measurements include assess- ment of the time delays in electronic circuits and mechanical hardware (e.g., drivers and microphones) of a tomography array ...hardware and electronic circuits of the tomography array and errors in synchronization of the transmitted and recorded signals. For example, if...coordinates can be as large as 30 cm. These errors are equivalent to the systematic errors in the travel times of 0.9 ms. Third, loudspeakers which are used

  10. Planck intermediate results: XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth

    DOE PAGES

    Aghanim, N.; Ashdown, M.; Aumont, J.; ...

    2016-12-12

    This study describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducingmore » significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. Finally, in a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.« less

  11. Planck intermediate results: XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Ashdown, M.; Aumont, J.

    This study describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducingmore » significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. Finally, in a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.« less

  12. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carron, J.; Challinor, A.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Forastieri, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Ilić, S.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Meinhold, P. R.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Mottet, S.; Naselsky, P.; Natoli, P.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patanchon, G.; Patrizii, L.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polastri, L.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirri, G.; Sunyaev, R.; Suur-Uski, A.-S.; Tauber, J. A.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Van Tent, F.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; Zacchei, A.; Zonca, A.

    2016-12-01

    This paper describes the identification, modelling, and removal of previously unexplained systematic effects in the polarization data of the Planck High Frequency Instrument (HFI) on large angular scales, including new mapmaking and calibration procedures, new and more complete end-to-end simulations, and a set of robust internal consistency checks on the resulting maps. These maps, at 100, 143, 217, and 353 GHz, are early versions of those that will be released in final form later in 2016. The improvements allow us to determine the cosmic reionization optical depth τ using, for the first time, the low-multipole EE data from HFI, reducing significantly the central value and uncertainty, and hence the upper limit. Two different likelihood procedures are used to constrain τ from two estimators of the CMB E- and B-mode angular power spectra at 100 and 143 GHz, after debiasing the spectra from a small remaining systematic contamination. These all give fully consistent results. A further consistency test is performed using cross-correlations derived from the Low Frequency Instrument maps of the Planck 2015 data release and the new HFI data. For this purpose, end-to-end analyses of systematic effects from the two instruments are used to demonstrate the near independence of their dominant systematic error residuals. The tightest result comes from the HFI-based τ posterior distribution using the maximum likelihood power spectrum estimator from EE data only, giving a value 0.055 ± 0.009. In a companion paper these results are discussed in the context of the best-fit PlanckΛCDM cosmological model and recent models of reionization.

  13. The Crucial Role of Error Correlation for Uncertainty Modeling of CFD-Based Aerodynamics Increments

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.; Walker, Eric L.

    2011-01-01

    The Ares I ascent aerodynamics database for Design Cycle 3 (DAC-3) was built from wind-tunnel test results and CFD solutions. The wind tunnel results were used to build the baseline response surfaces for wind-tunnel Reynolds numbers at power-off conditions. The CFD solutions were used to build increments to account for Reynolds number effects. We calculate the validation errors for the primary CFD code results at wind tunnel Reynolds number power-off conditions and would like to be able to use those errors to predict the validation errors for the CFD increments. However, the validation errors are large compared to the increments. We suggest a way forward that is consistent with common practice in wind tunnel testing which is to assume that systematic errors in the measurement process and/or the environment will subtract out when increments are calculated, thus making increments more reliable with smaller uncertainty than absolute values of the aerodynamic coefficients. A similar practice has arisen for the use of CFD to generate aerodynamic database increments. The basis of this practice is the assumption of strong correlation of the systematic errors inherent in each of the results used to generate an increment. The assumption of strong correlation is the inferential link between the observed validation uncertainties at wind-tunnel Reynolds numbers and the uncertainties to be predicted for flight. In this paper, we suggest a way to estimate the correlation coefficient and demonstrate the approach using code-to-code differences that were obtained for quality control purposes during the Ares I CFD campaign. Finally, since we can expect the increments to be relatively small compared to the baseline response surface and to be typically of the order of the baseline uncertainty, we find that it is necessary to be able to show that the correlation coefficients are close to unity to avoid overinflating the overall database uncertainty with the addition of the increments.

  14. Clinical epidemiology in the era of big data: new opportunities, familiar challenges.

    PubMed

    Ehrenstein, Vera; Nielsen, Henrik; Pedersen, Alma B; Johnsen, Søren P; Pedersen, Lars

    2017-01-01

    Routinely recorded health data have evolved from mere by-products of health care delivery or billing into a powerful research tool for studying and improving patient care through clinical epidemiologic research. Big data in the context of epidemiologic research means large interlinkable data sets within a single country or networks of multinational databases. Several Nordic, European, and other multinational collaborations are now well established. Advantages of big data for clinical epidemiology include improved precision of estimates, which is especially important for reassuring ("null") findings; ability to conduct meaningful analyses in subgroup of patients; and rapid detection of safety signals. Big data will also provide new possibilities for research by enabling access to linked information from biobanks, electronic medical records, patient-reported outcome measures, automatic and semiautomatic electronic monitoring devices, and social media. The sheer amount of data, however, does not eliminate and may even amplify systematic error. Therefore, methodologies addressing systematic error, clinical knowledge, and underlying hypotheses are more important than ever to ensure that the signal is discernable behind the noise.

  15. Clinical epidemiology in the era of big data: new opportunities, familiar challenges

    PubMed Central

    Ehrenstein, Vera; Nielsen, Henrik; Pedersen, Alma B; Johnsen, Søren P; Pedersen, Lars

    2017-01-01

    Routinely recorded health data have evolved from mere by-products of health care delivery or billing into a powerful research tool for studying and improving patient care through clinical epidemiologic research. Big data in the context of epidemiologic research means large interlinkable data sets within a single country or networks of multinational databases. Several Nordic, European, and other multinational collaborations are now well established. Advantages of big data for clinical epidemiology include improved precision of estimates, which is especially important for reassuring (“null”) findings; ability to conduct meaningful analyses in subgroup of patients; and rapid detection of safety signals. Big data will also provide new possibilities for research by enabling access to linked information from biobanks, electronic medical records, patient-reported outcome measures, automatic and semiautomatic electronic monitoring devices, and social media. The sheer amount of data, however, does not eliminate and may even amplify systematic error. Therefore, methodologies addressing systematic error, clinical knowledge, and underlying hypotheses are more important than ever to ensure that the signal is discernable behind the noise. PMID:28490904

  16. Range camera on conveyor belts: estimating size distribution and systematic errors due to occlusion

    NASA Astrophysics Data System (ADS)

    Blomquist, Mats; Wernersson, Ake V.

    1999-11-01

    When range cameras are used for analyzing irregular material on a conveyor belt there will be complications like missing segments caused by occlusion. Also, a number of range discontinuities will be present. In a frame work towards stochastic geometry, conditions are found for the cases when range discontinuities take place. The test objects in this paper are pellets for the steel industry. An illuminating laser plane will give range discontinuities at the edges of each individual object. These discontinuities are used to detect and measure the chord created by the intersection of the laser plane and the object. From the measured chords we derive the average diameter and its variance. An improved method is to use a pair of parallel illuminating light planes to extract two chords. The estimation error for this method is not larger than the natural shape fluctuations (the difference in diameter) for the pellets. The laser- camera optronics is sensitive enough both for material on a conveyor belt and free falling material leaving the conveyor.

  17. Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression

    PubMed Central

    Henn, Mark-Alexander; Silver, Richard M.; Villarrubia, John S.; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M.; Ming, Bin; Vladár, András E.

    2015-01-01

    Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges. PMID:26681991

  18. The accuracy of estimates of the overturning circulation from basin-wide mooring arrays

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Smeed, D. A.; McCarthy, G.; Moat, B. I.; Josey, S. A.; Hirschi, J. J.-M.; Frajka-Williams, E.; Blaker, A. T.; Rayner, D.; Madec, G.

    2018-01-01

    Previous modeling and observational studies have established that it is possible to accurately monitor the Atlantic Meridional Overturning Circulation (AMOC) at 26.5°N using a coast-to-coast array of instrumented moorings supplemented by direct transport measurements in key boundary regions (the RAPID/MOCHA/WBTS Array). The main sources of observational and structural errors have been identified in a variety of individual studies. Here a unified framework for identifying and quantifying structural errors associated with the RAPID array-based AMOC estimates is established using a high-resolution (eddy resolving at low-mid latitudes, eddy permitting elsewhere) ocean general circulation model, which simulates the ocean state between 1978 and 2010. We define a virtual RAPID array in the model in close analogy to the real RAPID array and compare the AMOC estimate from the virtual array with the true model AMOC. The model analysis suggests that the RAPID method underestimates the mean AMOC by ∼1.5 Sv (1 Sv = 106 m3 s-1) at ∼900 m depth, however it captures the variability to high accuracy. We examine three major contributions to the streamfunction bias: (i) due to the assumption of a single fixed reference level for calculation of geostrophic transports, (ii) due to regions not sampled by the array and (iii) due to ageostrophic transport. A key element in (i) and (iii) is use of the model sea surface height to establish the true (or absolute) geostrophic transport. In the upper 2000 m, we find that the reference level bias is strongest and most variable in time, whereas the bias due to unsampled regions is largest below 3000 m. The ageostrophic transport is significant in the upper 1000 m but shows very little variability. The results establish, for the first time, the uncertainty of the AMOC estimate due to the combined structural errors in the measurement design and suggest ways in which the error could be reduced. Our work has applications to basin-wide circulation measurement arrays at other latitudes and in other basins as well as quantifying systematic errors in ocean model estimates of the AMOC at 26.5°N.

  19. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.

  20. Evaluation of beam divergence of a negative hydrogen ion beam using Doppler shift spectroscopy diagnostics

    NASA Astrophysics Data System (ADS)

    Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.

    2018-01-01

    The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.

  1. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both heteroscedastic and homoscedastic data. Conversely, samples related to different methods produce discrepant results, due to the presence of (still undetected) systematic errors, which implies no definitive statement can be made at present. A comparison is also made between different expressions of regression line slope and intercept variance estimators, where fractional discrepancies are found to be not exceeding a few percent, which grows up to about 20% in the presence of large dispersion data. An extension of the formalism to structural models is left to a forthcoming paper.

  2. Multielevation calibration of frequency-domain electromagnetic data

    USGS Publications Warehouse

    Minsley, Burke J.; Kass, M. Andy; Hodges, Greg; Smith, Bruce D.

    2014-01-01

    Systematic calibration errors must be taken into account because they can substantially impact the accuracy of inverted subsurface resistivity models derived from frequency-domain electromagnetic data, resulting in potentially misleading interpretations. We have developed an approach that uses data acquired at multiple elevations over the same location to assess calibration errors. A significant advantage is that this method does not require prior knowledge of subsurface properties from borehole or ground geophysical data (though these can be readily incorporated if available), and is, therefore, well suited to remote areas. The multielevation data were used to solve for calibration parameters and a single subsurface resistivity model that are self consistent over all elevations. The deterministic and Bayesian formulations of the multielevation approach illustrate parameter sensitivity and uncertainty using synthetic- and field-data examples. Multiplicative calibration errors (gain and phase) were found to be better resolved at high frequencies and when data were acquired over a relatively conductive area, whereas additive errors (bias) were reasonably resolved over conductive and resistive areas at all frequencies. The Bayesian approach outperformed the deterministic approach when estimating calibration parameters using multielevation data at a single location; however, joint analysis of multielevation data at multiple locations using the deterministic algorithm yielded the most accurate estimates of calibration parameters. Inversion results using calibration-corrected data revealed marked improvement in misfit, lending added confidence to the interpretation of these models.

  3. Between-day reliability of the trapezius muscle H-reflex and M-wave.

    PubMed

    Vangsgaard, Steffen; Hansen, Ernst A; Madeleine, Pascal

    2015-12-01

    The aim of this study was to investigate the between-day reliability of the trapezius muscle H-reflex and M-wave. Sixteen healthy subjects were studied on 2 consecutive days. Trapezius muscle H-reflexes were evoked by electrical stimulation of the C3/4 cervical nerves; M-waves were evoked by electrical stimulation of the accessory nerve. Relative reliability was estimated by intraclass correlation coefficients (ICC2,1 ). Absolute reliability was estimated by computing the standard error of measurement (SEM) and the smallest real difference (SRD). Bland-Altman plots were constructed to detect any systematic bias. Variables showed substantial to excellent relative reliability (ICC = 0.70-0.99). The relative SEM ranged from 1.4% to 34.8%; relative SRD ranged from 3.8% to 96.5%. No systematic bias was present in the data. The amplitude and latency of the trapezius muscle H-reflex and M-wave in healthy young subjects can be measured reliably across days. © 2015 Wiley Periodicals, Inc.

  4. Crack Growth Properties of Sealing Glasses

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  5. Common Proper Motion Companions to Nearby Stars: Ages and Evolution

    DTIC Science & Technology

    2008-11-01

    supplying the stars with NIR magnitudes from 2MASS . This allowed Gould & Chaname (2004) to estimate, for the first time, trigonometric parallaxes of...sup- plemented by BVR optical photometry, mainly from USNO-B, and JHK near-IR photometry from 2MASS . This catalog covers the entire magnitude range...for the Schmidt plate data used in the USNO-B catalog, with possible local offsets up to about 300 mas. Systematic errors in UCAC2 and 2MASS are much

  6. Survey Costs and Errors: User’s Manual for the Lotus 1-2-3 Spreadsheet

    DTIC Science & Technology

    1991-04-01

    select appropriate options such as the use of a business reply envelope or a self -addressed, stamped envelope for returning mailed surveys. Recruit. T... self -explanatory and need not be discussed here. Mode/Systematic Automatically enter ALL time and cost estimates for a survey project. "Time and cost...user can choose between a business reply envelope (BRE) or a self -addressed, stamped envelope (SASE) for returning the surveys. For mail surveys, the

  7. M-MRAC Backstepping for Systems with Unknown Virtual Control Coefficients

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2015-01-01

    The paper presents an over-parametrization free certainty equivalence state feedback backstepping adaptive control design method for systems of any relative degree with unmatched uncertainties and unknown virtual control coefficients. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The benefits of the approach are demonstrated in numerical simulations.

  8. Estimation of trends

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The application of statistical methods to recorded ozone measurements. The effects of a long term depletion of ozone at magnitudes predicted by the NAS is harmful to most forms of life. Empirical prewhitening filters the derivation of which is independent of the underlying physical mechanisms were analyzed. Statistical analysis performs a checks and balances effort. Time series filters variations into systematic and random parts, errors are uncorrelated, and significant phase lag dependencies are identified. The use of time series modeling to enhance the capability of detecting trends is discussed.

  9. Viking relativity experiment - Verification of signal retardation by solar gravity

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Shapiro, I. I.; Macneil, P. E.; Goldstein, R. B.; Breidenthal, J. C.; Brenkle, J. P.; Cain, D. L.; Kaufman, T. M.; Komarek, T. A.; Zygielbaum, A. I.

    1979-01-01

    Analysis of 14 months of data obtained from radio ranging to the Viking spacecraft verified, to an estimated accuracy of 0.1%, the prediction of the general theory of relativity that the round-trip times of light signals traveling between the earth and Mars are increased by the direct effect of solar gravity. The corresponding value for the metric parameter gamma is 1.000 plus or minus 0.002, where the quoted uncertainty, twice the formal standard deviation, allows for possible systematic errors.

  10. Daylight time-resolved photographs of lightning.

    PubMed

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  11. Dark Energy Survey Year 1 results: cross-correlation redshifts - methods and systematics characterization

    NASA Astrophysics Data System (ADS)

    Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.

    2018-06-01

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.

  12. Comparison of estimation accuracy of body density between different hydrostatics weighing methods without head submersion.

    PubMed

    Demura, Shinichi; Sato, Susumu; Nakada, Masakatsu; Minami, Masaki; Kitabayashi, Tamotsu

    2003-07-01

    This study compared the accuracy of body density (Db) estimation methods using hydrostatic weighing without complete head submersion (HW(withoutHS)) of Donnelly et al. (1988) and Donnelly and Sintek (1984) as referenced to Goldman and Buskirk's approach (1961). Donnelly et al.'s method estimates Db from a regression equation using HW(withoutHS), moreover, Donnelly and Sintek's method estimates it from HW(withoutHS) and head anthropometric variables. Fifteen Japanese males (173.8+/-4.5 cm, 63.6+/-5.4 kg, 21.2+/-2.8 years) and fifteen females (161.4+/-5.4 cm, 53.8+/-4.8 kg, 21.0+/-1.4 years) participated in this study. All the subjects were measured for head length, width and HWs under the two conditions of with and without head submersion. In order to examine the consistency of estimation values of Db, the correlation coefficients between the estimation values and the reference (Goldman and Buskirk, 1961) were calculated. The standard errors of estimation (SEE) were calculated by regression analysis using a reference value as a dependent variable and estimation values as independent variables. In addition, the systematic errors of two estimation methods were investigated by the Bland-Altman technique (Bland and Altman, 1986). In the estimation, Donnelly and Sintek's equation showed a high relationship with the reference (r=0.960, p<0.01), but had more differences from the reference compared with Donnelly et al.'s equation. Further studies are needed to develop new prediction equations for Japanese considering sex and individual differences in head anthropometry.

  13. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2017-12-01

    Accurate characterization of uncertainties in space-borne precipitation estimates is critical for many applications including water budget studies or prediction of natural hazards at the global scale. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the high quality and high resolution NEXRAD-based precipitation estimates derived from the NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. A surface reference is derived from the MRMS suite of products to be accurate with known uncertainty bounds and measured at a resolution below the pixel sizes of any GPM estimate, providing great flexibility in matching to grid scales or footprints. It provides an independent and consistent reference research framework for directly evaluating GPM precipitation products across a large number of meteorological regimes as a function of resolution, accuracy and sample size. The consistency of the ground and space-based sensors in term of precipitation detection, typology and quantification are systematically evaluated. Satellite precipitation retrievals are further investigated in terms of precipitation distributions, systematic biases and random errors, influence of precipitation sub-pixel variability and comparison between satellite products. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. non uniform beam filling for DPR) sensors are investigated. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates. Precipitation features previously used to analyze Level II satellite estimates under various precipitation processes are now intoduced for Level III to test several assumptions in the IMERG algorithm. Specifically, the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors from Level II to Level III. Perpectives are presented to advance the use of uncertainty as an integral part of QPE for ground-based and space-borne sensors

  14. Quantifying confidence in density functional theory predictions of magnetic ground states

    NASA Astrophysics Data System (ADS)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.

  15. Prevalence and reporting of recruitment, randomisation and treatment errors in clinical trials: A systematic review.

    PubMed

    Yelland, Lisa N; Kahan, Brennan C; Dent, Elsa; Lee, Katherine J; Voysey, Merryn; Forbes, Andrew B; Cook, Jonathan A

    2018-06-01

    Background/aims In clinical trials, it is not unusual for errors to occur during the process of recruiting, randomising and providing treatment to participants. For example, an ineligible participant may inadvertently be randomised, a participant may be randomised in the incorrect stratum, a participant may be randomised multiple times when only a single randomisation is permitted or the incorrect treatment may inadvertently be issued to a participant at randomisation. Such errors have the potential to introduce bias into treatment effect estimates and affect the validity of the trial, yet there is little motivation for researchers to report these errors and it is unclear how often they occur. The aim of this study is to assess the prevalence of recruitment, randomisation and treatment errors and review current approaches for reporting these errors in trials published in leading medical journals. Methods We conducted a systematic review of individually randomised, phase III, randomised controlled trials published in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Annals of Internal Medicine and British Medical Journal from January to March 2015. The number and type of recruitment, randomisation and treatment errors that were reported and how they were handled were recorded. The corresponding authors were contacted for a random sample of trials included in the review and asked to provide details on unreported errors that occurred during their trial. Results We identified 241 potentially eligible articles, of which 82 met the inclusion criteria and were included in the review. These trials involved a median of 24 centres and 650 participants, and 87% involved two treatment arms. Recruitment, randomisation or treatment errors were reported in 32 in 82 trials (39%) that had a median of eight errors. The most commonly reported error was ineligible participants inadvertently being randomised. No mention of recruitment, randomisation or treatment errors was found in the remaining 50 of 82 trials (61%). Based on responses from 9 of the 15 corresponding authors who were contacted regarding recruitment, randomisation and treatment errors, between 1% and 100% of the errors that occurred in their trials were reported in the trial publications. Conclusion Recruitment, randomisation and treatment errors are common in individually randomised, phase III trials published in leading medical journals, but reporting practices are inadequate and reporting standards are needed. We recommend researchers report all such errors that occurred during the trial and describe how they were handled in trial publications to improve transparency in reporting of clinical trials.

  16. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    NASA Astrophysics Data System (ADS)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  17. The Thirty Gigahertz Instrument Receiver for the QUIJOTE Experiment: Preliminary Polarization Measurements and Systematic-Error Analysis

    PubMed Central

    Casas, Francisco J.; Ortiz, David; Villa, Enrique; Cano, Juan L.; Cagigas, Jaime; Pérez, Ana R.; Aja, Beatriz; Terán, J. Vicente; de la Fuente, Luisa; Artal, Eduardo; Hoyland, Roger; Génova-Santos, Ricardo

    2015-01-01

    This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process. PMID:26251906

  18. Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly

    PubMed Central

    Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman

    2016-01-01

    Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694

  19. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  20. Measurement error is often neglected in medical literature: a systematic review.

    PubMed

    Brakenhoff, Timo B; Mitroiu, Marian; Keogh, Ruth H; Moons, Karel G M; Groenwold, Rolf H H; van Smeden, Maarten

    2018-06-01

    In medical research, covariates (e.g., exposure and confounder variables) are often measured with error. While it is well accepted that this introduces bias and imprecision in exposure-outcome relations, it is unclear to what extent such issues are currently considered in research practice. The objective was to study common practices regarding covariate measurement error via a systematic review of general medicine and epidemiology literature. Original research published in 2016 in 12 high impact journals was full-text searched for phrases relating to measurement error. Reporting of measurement error and methods to investigate or correct for it were quantified and characterized. Two hundred and forty-seven (44%) of the 565 original research publications reported on the presence of measurement error. 83% of these 247 did so with respect to the exposure and/or confounder variables. Only 18 publications (7% of 247) used methods to investigate or correct for measurement error. Consequently, it is difficult for readers to judge the robustness of presented results to the existence of measurement error in the majority of publications in high impact journals. Our systematic review highlights the need for increased awareness about the possible impact of covariate measurement error. Additionally, guidance on the use of measurement error correction methods is necessary. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm

    USGS Publications Warehouse

    Masterlark, Timothy; Lu, Zhong; Rykhus, Russell P.

    2006-01-01

    Interferometric synthetic aperture radar (InSAR) imagery documents the consistent subsidence, during the interval 1992–1999, of a pyroclastic flow deposit (PFD) emplaced during the 1986 eruption of Augustine Volcano, Alaska. We construct finite element models (FEMs) that simulate thermoelastic contraction of the PFD to account for the observed subsidence. Three-dimensional problem domains of the FEMs include a thermoelastic PFD embedded in an elastic substrate. The thickness of the PFD is initially determined from the difference between post- and pre-eruption digital elevation models (DEMs). The initial excess temperature of the PFD at the time of deposition, 640 °C, is estimated from FEM predictions and an InSAR image via standard least-squares inverse methods. Although the FEM predicts the major features of the observed transient deformation, systematic prediction errors (RMSE = 2.2 cm) are most likely associated with errors in the a priori PFD thickness distribution estimated from the DEM differences. We combine an InSAR image, FEMs, and an adaptive mesh algorithm to iteratively optimize the geometry of the PFD with respect to a minimized misfit between the predicted thermoelastic deformation and observed deformation. Prediction errors from an FEM, which includes an optimized PFD geometry and the initial excess PFD temperature estimated from the least-squares analysis, are sub-millimeter (RMSE = 0.3 mm). The average thickness (9.3 m), maximum thickness (126 m), and volume (2.1 × 107m3) of the PFD, estimated using the adaptive mesh algorithm, are about twice as large as the respective estimations for the a priori PFD geometry. Sensitivity analyses suggest unrealistic PFD thickness distributions are required for initial excess PFD temperatures outside of the range 500–800 °C.

  2. Wavefront-aberration measurement and systematic-error analysis of a high numerical-aperture objective

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Xing, Tingwen; Jiang, Yadong; Lv, Baobin

    2018-02-01

    A two-dimensional (2-D) shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high numerical-aperture (NA) objective. Chessboard gratings offer better diffraction efficiencies and fewer disturbing diffraction orders than traditional cross gratings. The wavefront aberration of the tested objective was retrieved from the shearing interferogram using the Fourier transform and differential Zernike polynomial-fitting methods. Grating manufacturing errors, including the duty-cycle and pattern-deviation errors, were analyzed with the Fourier transform method. Then, according to the relation between the spherical pupil and planar detector coordinates, the influence of the distortion of the pupil coordinates was simulated. Finally, the systematic error attributable to grating alignment errors was deduced through the geometrical ray-tracing method. Experimental results indicate that the measuring repeatability (3σ) of the wavefront aberration of an objective with NA 0.4 was 3.4 mλ. The systematic-error results were consistent with previous analyses. Thus, the correct wavefront aberration can be obtained after calibration.

  3. The Systematics of Strong Lens Modeling Quantified: The Effects of Constraint Selection and Redshift Information on Magnification, Mass, and Multiple Image Predictability

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren

    2016-11-01

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Ke; Li Yanqiu; Wang Hai

    Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less

  5. Self-calibration method without joint iteration for distributed small satellite SAR systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan

    2013-12-01

    The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.

  6. Inference With Difference-in-Differences With a Small Number of Groups: A Review, Simulation Study, and Empirical Application Using SHARE Data.

    PubMed

    Rokicki, Slawa; Cohen, Jessica; Fink, Günther; Salomon, Joshua A; Landrum, Mary Beth

    2018-01-01

    Difference-in-differences (DID) estimation has become increasingly popular as an approach to evaluate the effect of a group-level policy on individual-level outcomes. Several statistical methodologies have been proposed to correct for the within-group correlation of model errors resulting from the clustering of data. Little is known about how well these corrections perform with the often small number of groups observed in health research using longitudinal data. First, we review the most commonly used modeling solutions in DID estimation for panel data, including generalized estimating equations (GEE), permutation tests, clustered standard errors (CSE), wild cluster bootstrapping, and aggregation. Second, we compare the empirical coverage rates and power of these methods using a Monte Carlo simulation study in scenarios in which we vary the degree of error correlation, the group size balance, and the proportion of treated groups. Third, we provide an empirical example using the Survey of Health, Ageing, and Retirement in Europe. When the number of groups is small, CSE are systematically biased downwards in scenarios when data are unbalanced or when there is a low proportion of treated groups. This can result in over-rejection of the null even when data are composed of up to 50 groups. Aggregation, permutation tests, bias-adjusted GEE, and wild cluster bootstrap produce coverage rates close to the nominal rate for almost all scenarios, though GEE may suffer from low power. In DID estimation with a small number of groups, analysis using aggregation, permutation tests, wild cluster bootstrap, or bias-adjusted GEE is recommended.

  7. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NASA Astrophysics Data System (ADS)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  8. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  9. Characterizing the physical-basis of orographic rainfall retrieval errors due to terrain artifacts on GPM-DPR reflectivity profiles

    NASA Astrophysics Data System (ADS)

    Arulraj, M.; Barros, A. P.

    2017-12-01

    GPM-DPR reflectivity profiles in mountainous regions are severely handicapped by low level ground-clutter artifacts which have different error characteristics depending on landform (upwind slopes of high mountains versus complex topography in middle-mountains) and precipitation regime. These artifacts result in high detection and estimation errors especially in mid-latitude and tropical mountain regions where low-level light precipitation and complex multi-layer clouds interact with incoming storms. Here, we present results assessment studies in the Southern Appalachian Mountains (SAM) and preliminary results over the eastern slopes of the Andes using ground-based observations from the long-term hydrometeorological networks and model studies toward developing a physically-based framework to systematically identify and attribute measurement errors. Specifically, the focus is on events when GPM-DPR Ka- and Ku- Band precipitation radar misses low-level precipitation with vertical altitude less than 2 km AGL (above ground level). For this purpose, ground-based MRR and Parsivel disdrometer observations near the surface are compared with the reflectivity profiles observed by the GPM-DPR overpasses, the raindrop-size spectra are used to classify the precipitation regime associated with different classes of detection and estimation errors. This information will be used along with a coupled rainfall dynamics and radar simulator model to 1) merge the low-level GPM-DPR measured reflectivity with the MRR reflectivities optimally under strict physically-based constraints and 2) build a library of reflectivity profile corrections. Finally, preliminary 4D analysis of the organization of reflectivity correction modes, microphysical regimes, topography and storm environment will be presented toward developing a general physically-based error model.

  10. Swath-altimetry measurements of the main stem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2015-04-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface-water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water-surface elevations. In this paper, we aimed to (i) characterise and illustrate in two dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water-surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a virtual mission for a ~260 km reach of the central Amazon (Solimões) River, using a hydraulic model to provide water-surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimensional height error spectrum derived from the SWOT design requirements. We thereby obtained water-surface elevation measurements for the Amazon main stem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-sectional averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1 % average overall error in discharge, respectively. We extend the results to other rivers worldwide and infer that SWOT-derived discharge estimates may be more accurate for rivers with larger channel widths (permitting a greater level of cross-sectional averaging and the use of shorter reach lengths) and higher water-surface slopes (reducing the proportional impact of slope errors on discharge calculation).

  11. Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition

    NASA Astrophysics Data System (ADS)

    Hakim, Layal; Lacaze, Guilhem; Khalil, Mohammad; Sargsyan, Khachik; Najm, Habib; Oefelein, Joseph

    2018-05-01

    This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.

  12. Results and Error Estimates from GRACE Forward Modeling over Antarctica

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer; Chambers, Don

    2013-04-01

    Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.

  13. Seismic gradiometry using ambient seismic noise in an anisotropic Earth

    NASA Astrophysics Data System (ADS)

    de Ridder, S. A. L.; Curtis, A.

    2017-05-01

    We introduce a wavefield gradiometry technique to estimate both isotropic and anisotropic local medium characteristics from short recordings of seismic signals by inverting a wave equation. The method exploits the information in the spatial gradients of a seismic wavefield that are calculated using dense deployments of seismic arrays. The application of the method uses the surface wave energy in the ambient seismic field. To estimate isotropic and anisotropic medium properties we invert an elliptically anisotropic wave equation. The spatial derivatives of the recorded wavefield are evaluated by calculating finite differences over nearby recordings, which introduces a systematic anisotropic error. A two-step approach corrects this error: finite difference stencils are first calibrated, then the output of the wave-equation inversion is corrected using the linearized impulse response to the inverted velocity anomaly. We test the procedure on ambient seismic noise recorded in a large and dense ocean bottom cable array installed over Ekofisk field. The estimated azimuthal anisotropy forms a circular geometry around the production-induced subsidence bowl. This conforms with results from studies employing controlled sources, and with interferometry correlating long records of seismic noise. Yet in this example, the results were obtained using only a few minutes of ambient seismic noise.

  14. Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.

  15. Point of optimal kinematic error: improvement of the instantaneous helical pivot method for locating centers of rotation.

    PubMed

    De Rosario, Helios; Page, Alvaro; Mata, Vicente

    2014-05-07

    This paper proposes a variation of the instantaneous helical pivot technique for locating centers of rotation. The point of optimal kinematic error (POKE), which minimizes the velocity at the center of rotation, may be obtained by just adding a weighting factor equal to the square of angular velocity in Woltring׳s equation of the pivot of instantaneous helical axes (PIHA). Calculations are simplified with respect to the original method, since it is not necessary to make explicit calculations of the helical axis, and the effect of accidental errors is reduced. The improved performance of this method was validated by simulations based on a functional calibration task for the gleno-humeral joint center. Noisy data caused a systematic dislocation of the calculated center of rotation towards the center of the arm marker cluster. This error in PIHA could even exceed the effect of soft tissue artifacts associated to small and medium deformations, but it was successfully reduced by the POKE estimation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Reducing random measurement error in assessing postural load on the back in epidemiologic surveys.

    PubMed

    Burdorf, A

    1995-02-01

    The goal of this study was to design strategies to assess postural load on the back in occupational epidemiology by taking into account the reliability of measurement methods and the variability of exposure among the workers under study. Intermethod reliability studies were evaluated to estimate the systematic bias (accuracy) and random measurement error (precision) of various methods to assess postural load on the back. Intramethod reliability studies were reviewed to estimate random variability of back load over time. Intermethod surveys have shown that questionnaires have a moderate reliability for gross activities such as sitting, whereas duration of trunk flexion and rotation should be assessed by observation methods or inclinometers. Intramethod surveys indicate that exposure variability can markedly affect the reliability of estimates of back load if the estimates are based upon a single measurement over a certain time period. Equations have been presented to evaluate various study designs according to the reliability of the measurement method, the optimum allocation of the number of repeated measurements per subject, and the number of subjects in the study. Prior to a large epidemiologic study, an exposure-oriented survey should be conducted to evaluate the performance of measurement instruments and to estimate sources of variability for back load. The strategy for assessing back load can be optimized by balancing the number of workers under study and the number of repeated measurements per worker.

  17. MP estimation applied to platykurtic sets of geodetic observations

    NASA Astrophysics Data System (ADS)

    Wiśniewski, Zbigniew

    2017-06-01

    MP estimation is a method which concerns estimating of the location parameters when the probabilistic models of observations differ from the normal distributions in the kurtosis or asymmetry. The system of Pearson's distributions is the probabilistic basis for the method. So far, such a method was applied and analyzed mostly for leptokurtic or mesokurtic distributions (Pearson's distributions of types IV or VII), which predominate practical cases. The analyses of geodetic or astronomical observations show that we may also deal with sets which have moderate asymmetry or small negative excess kurtosis. Asymmetry might result from the influence of many small systematic errors, which were not eliminated during preprocessing of data. The excess kurtosis can be related with bigger or smaller (in relations to the Hagen hypothesis) frequency of occurrence of the elementary errors which are close to zero. Considering that fact, this paper focuses on the estimation with application of the Pearson platykurtic distributions of types I or II. The paper presents the solution of the corresponding optimization problem and its basic properties. Although platykurtic distributions are rare in practice, it was an interesting issue to find out what results can be provided by MP estimation in the case of such observation distributions. The numerical tests which are presented in the paper are rather limited; however, they allow us to draw some general conclusions.

  18. The effect of surface anisotropy and viewing geometry on the estimation of NDVI from AVHRR

    USGS Publications Warehouse

    Meyer, David; Verstraete, M.; Pinty, B.

    1995-01-01

    Since terrestrial surfaces are anisotropic, all spectral reflectance measurements obtained with a small instantaneous field of view instrument are specific to these angular conditions, and the value of the corresponding NDVI, computed from these bidirectional reflectances, is relative to the particular geometry of illumination and viewing at the time of the measurement. This paper documents the importance of these geometric effects through simulations of the AVHRR data acquisition process, and investigates the systematic biases that result from the combination of ecosystem-specific anisotropies with instrument-specific sampling capabilities. Typical errors in the value of NDVI are estimated, and strategies to reduce these effects are explored. -from Authors

  19. Stitching interferometry for ellipsoidal x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

    2016-05-15

    Ellipsoidal mirrors, which can efficiently produce a two-dimensional focusing beam with a single mirror, are superior x-ray focusing optics, especially when compared to elliptical-cylinder mirrors in the Kirkpatrick–Baez geometry. However, nano-focusing ellipsoidal mirrors are not commonly used for x-ray optics because achieving the accuracy required for the surface metrology of nano-focusing ellipsoidal mirrors is difficult due to their small radius of curvature along the short ellipsoidal axis. Here, we developed a surface metrology system for nano-focusing ellipsoidal mirrors using stitching interferometric techniques. The developed system simultaneously measures sub-aperture shapes with a microscopic interferometer and the tilt angles of the sub-aperturemore » shapes with a large Fizeau interferometer. After correcting the systematic errors included in the sub-aperture shapes, the entire mirror shape is calculated by stitching the sub-aperture shapes based on the obtained relative angles between partially overlapped sub-apertures. In this study, we developed correction methods for systematic errors in sub-aperture shapes that originated from off-axis aberrations produced in the optics of the microscopic interferometer. The systematic errors on an ellipsoidal mirror were estimated by measuring a series of tilted plane substrates and the ellipsoidal substrate. From measurements of an ellipsoidal mirror with a 3.6-mm radius of curvature at the mirror center, we obtained a measurement repeatability of 0.51 nm (root-mean-square) in an assessment area of 0.5 mm × 99.18 mm. This value satisfies the requirements for surface metrology of nano-focusing x-ray mirrors. Thus, the developed metrology system should be applicable for fabricating nano-focusing ellipsoidal mirrors.« less

  20. Simulations using patient data to evaluate systematic errors that may occur in 4D treatment planning: a proof of concept study.

    PubMed

    St James, Sara; Seco, Joao; Mishra, Pankaj; Lewis, John H

    2013-09-01

    The purpose of this work is to present a framework to evaluate the accuracy of four-dimensional treatment planning in external beam radiation therapy using measured patient data and digital phantoms. To accomplish this, 4D digital phantoms of two model patients were created using measured patient lung tumor positions. These phantoms were used to simulate a four-dimensional computed tomography image set, which in turn was used to create a 4D Monte Carlo (4DMC) treatment plan. The 4DMC plan was evaluated by simulating the delivery of the treatment plan over approximately 5 min of tumor motion measured from the same patient on a different day. Unique phantoms accounting for the patient position (tumor position and thorax position) at 2 s intervals were used to represent the model patients on the day of treatment delivery and the delivered dose to the tumor was determined using Monte Carlo simulations. For Patient 1, the tumor was adequately covered with 95.2% of the tumor receiving the prescribed dose. For Patient 2, the tumor was not adequately covered and only 74.3% of the tumor received the prescribed dose. This study presents a framework to evaluate 4D treatment planning methods and demonstrates a potential limitation of 4D treatment planning methods. When systematic errors are present, including when the imaging study used for treatment planning does not represent all potential tumor locations during therapy, the treatment planning methods may not adequately predict the dose to the tumor. This is the first example of a simulation study based on patient tumor trajectories where systematic errors that occur due to an inaccurate estimate of tumor motion are evaluated.

  1. Analyse des erreurs et grammaire generative: La syntaxe de l'interrogation en francais (Error Analysis and Generative Grammar: The Syntax of Interrogation in French).

    ERIC Educational Resources Information Center

    Py, Bernard

    A progress report is presented of a study which applies a system of generative grammar to error analysis. The objective of the study was to reconstruct the grammar of students' interlanguage, using a systematic analysis of errors. (Interlanguage refers to the linguistic competence of a student who possesses a relatively systematic body of rules,…

  2. Trial Sequential Analysis in systematic reviews with meta-analysis.

    PubMed

    Wetterslev, Jørn; Jakobsen, Janus Christian; Gluud, Christian

    2017-03-06

    Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an interim analysis on its way towards a required information size. The results of the meta-analyses should relate the total number of randomised participants to the estimated required meta-analytic information size accounting for statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors). We developed a methodology for interpreting meta-analysis results, using generally accepted, valid evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size has not been reached. The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required information size and the corresponding number of required trials for the meta-analysis have not been reached. Trial Sequential Analysis provides a frequentistic approach to control both type I and type II errors. We define the required information size and the corresponding number of required trials in a meta-analysis and the diversity (D 2 ) measure of heterogeneity. We explain the reasons for using Trial Sequential Analysis of meta-analysis when the actual information size fails to reach the required information size. We present examples drawn from traditional meta-analyses using unadjusted naïve 95% confidence intervals and 5% thresholds for statistical significance. Spurious conclusions in systematic reviews with traditional meta-analyses can be reduced using Trial Sequential Analysis. Several empirical studies have demonstrated that the Trial Sequential Analysis provides better control of type I errors and of type II errors than the traditional naïve meta-analysis. Trial Sequential Analysis represents analysis of meta-analytic data, with transparent assumptions, and better control of type I and type II errors than the traditional meta-analysis using naïve unadjusted confidence intervals.

  3. Bayesian Modeling of Perceived Surface Slant from Actively-Generated and Passively-Observed Optic Flow

    PubMed Central

    Caudek, Corrado; Fantoni, Carlo; Domini, Fulvio

    2011-01-01

    We measured perceived depth from the optic flow (a) when showing a stationary physical or virtual object to observers who moved their head at a normal or slower speed, and (b) when simulating the same optic flow on a computer and presenting it to stationary observers. Our results show that perceived surface slant is systematically distorted, for both the active and the passive viewing of physical or virtual surfaces. These distortions are modulated by head translation speed, with perceived slant increasing directly with the local velocity gradient of the optic flow. This empirical result allows us to determine the relative merits of two alternative approaches aimed at explaining perceived surface slant in active vision: an “inverse optics” model that takes head motion information into account, and a probabilistic model that ignores extra-retinal signals. We compare these two approaches within the framework of the Bayesian theory. The “inverse optics” Bayesian model produces veridical slant estimates if the optic flow and the head translation velocity are measured with no error; because of the influence of a “prior” for flatness, the slant estimates become systematically biased as the measurement errors increase. The Bayesian model, which ignores the observer's motion, always produces distorted estimates of surface slant. Interestingly, the predictions of this second model, not those of the first one, are consistent with our empirical findings. The present results suggest that (a) in active vision perceived surface slant may be the product of probabilistic processes which do not guarantee the correct solution, and (b) extra-retinal signals may be mainly used for a better measurement of retinal information. PMID:21533197

  4. Accounting for Parameter Uncertainty in Complex Atmospheric Models, With an Application to Greenhouse Gas Emissions Evaluation

    NASA Astrophysics Data System (ADS)

    Swallow, B.; Rigby, M. L.; Rougier, J.; Manning, A.; Thomson, D.; Webster, H. N.; Lunt, M. F.; O'Doherty, S.

    2016-12-01

    In order to understand underlying processes governing environmental and physical phenomena, a complex mathematical model is usually required. However, there is an inherent uncertainty related to the parameterisation of unresolved processes in these simulators. Here, we focus on the specific problem of accounting for uncertainty in parameter values in an atmospheric chemical transport model. Systematic errors introduced by failing to account for these uncertainties have the potential to have a large effect on resulting estimates in unknown quantities of interest. One approach that is being increasingly used to address this issue is known as emulation, in which a large number of forward runs of the simulator are carried out, in order to approximate the response of the output to changes in parameters. However, due to the complexity of some models, it is often unfeasible to run large numbers of training runs that is usually required for full statistical emulators of the environmental processes. We therefore present a simplified model reduction method for approximating uncertainties in complex environmental simulators without the need for very large numbers of training runs. We illustrate the method through an application to the Met Office's atmospheric transport model NAME. We show how our parameter estimation framework can be incorporated into a hierarchical Bayesian inversion, and demonstrate the impact on estimates of UK methane emissions, using atmospheric mole fraction data. We conclude that accounting for uncertainties in the parameterisation of complex atmospheric models is vital if systematic errors are to be minimized and all relevant uncertainties accounted for. We also note that investigations of this nature can prove extremely useful in highlighting deficiencies in the simulator that might otherwise be missed.

  5. A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy.

    PubMed

    McNair, Helen A; Hansen, Vibeke N; Parker, Christopher C; Evans, Phil M; Norman, Andrew; Miles, Elizabeth; Harris, Emma J; Del-Acroix, Louise; Smith, Elizabeth; Keane, Richard; Khoo, Vincent S; Thompson, Alan C; Dearnaley, David P

    2008-05-01

    To evaluate the utility of intraprostatic markers in the treatment verification of prostate cancer radiotherapy. Specific aims were: to compare the effectiveness of offline correction protocols, either using gold markers or bony anatomy; to estimate the potential benefit of online correction protocol's using gold markers; to determine the presence and effect of intrafraction motion. Thirty patients with three gold markers inserted had pretreatment and posttreatment images acquired and were treated using an offline correction protocol and gold markers. Retrospectively, an offline protocol was applied using bony anatomy and an online protocol using gold markers. The systematic errors were reduced from 1.3, 1.9, and 2.5 mm to 1.1, 1.1, and 1.5 mm in the right-left (RL), superoinferior (SI), and anteroposterior (AP) directions, respectively, using the offline correction protocol and gold markers instead of bony anatomy. The subsequent decrease in margins was 1.7, 3.3, and 4 mm in the RL, SI, and AP directions, respectively. An offline correction protocol combined with an online correction protocol in the first four fractions reduced random errors further to 0.9, 1.1, and 1.0 mm in the RL, SI, and AP directions, respectively. A daily online protocol reduced all errors to <1 mm. Intrafraction motion had greater impact on the effectiveness of the online protocol than the offline protocols. An offline protocol using gold markers is effective in reducing the systematic error. The value of online protocols is reduced by intrafraction motion.

  6. Deriving concentrations of oxygen and carbon in human tissues using single- and dual-energy CT for ion therapy applications

    NASA Astrophysics Data System (ADS)

    Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank

    2013-08-01

    Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of 2%) than the Zeff versus %wC,O and HU versus %wC,O approaches (largest errors of 15% and 30%, respectively). When noise was present, the accuracy of the (Zeff, ρe) space (DECT approach) was decreased but the RMS error over all tissues was lower than the HU versus %wC,O (SECT approach) (5.8%wC versus 7.5%wC at CTDIvol = 20 mGy). The DECT approach showed decreasing RMS error with decreasing image noise (or increasing CTDIvol). At CTDIvol = 80 mGy the RMS error over all tissues was 3.7% for DECT and 6.2% for SECT approaches. However, systematic shifts greater than ±5HU undermined the accuracy gains afforded by DECT at any dose level. DECT provides more accurate %wC,O assignment than SECT when imaging noise and systematic uncertainties in HU values are not considered. The presence of imaging noise degrades the DECT accuracy on %wC,O assignment but it remains superior to SECT. However, DECT was found to be sensitive to systematic shifts of human tissue HU.

  7. Utility of Equations to Estimate Peak Oxygen Uptake and Work Rate From a 6-Minute Walk Test in Patients With COPD in a Clinical Setting.

    PubMed

    Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G

    2015-01-01

    To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.

  8. Height and Biomass of Mangroves in Africa from ICEsat/GLAS and SRTM

    NASA Technical Reports Server (NTRS)

    Fatoyinbo, Temilola E.; Simard, Marc

    2012-01-01

    The accurate quantification of forest 3-D structure is of great importance for studies of the global carbon cycle and biodiversity. These studies are especially relevant in Africa, where deforestation rates are high and the lack of background data is great. Mangrove forests are ecologically significant and it is important to measure mangrove canopy heights and biomass. The objectives of this study are to estimate: 1. The total area, 2. Canopy height distributions and 3. Aboveground biomass of mangrove forests in Africa. To derive mangrove 3-D structure and biomass maps, we used a combination of mangrove maps derived from Landsat ETM+, LiDAR canopy height estimates from ICEsat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System) and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. More specifically, we extracted mangrove forest areas on the SRTM DEM using Landsat based landcover maps. The LiDAR (Light Detection and Ranging) measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the Interferometric Synthetic Aperture Radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate above ground biomass (AGB) from the canopy height product. The total mangrove area of Africa was estimated to be 25 960 square kilometers with 83% accuracy. The largest mangrove areas and greatest total biomass was 29 found in Nigeria covering 8 573 km2 with 132 x10(exp 6) Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error also includes the impact of using sensors with different resolutions and geolocation error which make comparison between measurements sensitive to canopy heterogeneities. This study provides the first systematic estimates of mangrove area, height and biomass in Africa. Our results showed that the combination of ICEsat/GLAS and SRTM data is well suited for vegetation 3-D mapping on a continental scale.

  9. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, Dylan; Seth, Anil C.; Williams, Benjamin F.

    We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and ismore » quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.« less

  10. Systematic methods for knowledge acquisition and expert system development

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.

  11. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less

  12. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.

  13. Thirty Years of Improving the NCEP Global Forecast System

    NASA Astrophysics Data System (ADS)

    White, G. H.; Manikin, G.; Yang, F.

    2014-12-01

    Current eight day forecasts by the NCEP Global Forecast System are as accurate as five day forecasts 30 years ago. This revolution in weather forecasting reflects increases in computer power, improvements in the assimilation of observations, especially satellite data, improvements in model physics, improvements in observations and international cooperation and competition. One important component has been and is the diagnosis, evaluation and reduction of systematic errors. The effect of proposed improvements in the GFS on systematic errors is one component of the thorough testing of such improvements by the Global Climate and Weather Modeling Branch. Examples of reductions in systematic errors in zonal mean temperatures and winds and other fields will be presented. One challenge in evaluating systematic errors is uncertainty in what reality is. Model initial states can be regarded as the best overall depiction of the atmosphere, but can be misleading in areas of few observations or for fields not well observed such as humidity or precipitation over the oceans. Verification of model physics is particularly difficult. The Environmental Modeling Center emphasizes the evaluation of systematic biases against observations. Recently EMC has placed greater emphasis on synoptic evaluation and on precipitation, 2-meter temperatures and dew points and 10 meter winds. A weekly EMC map discussion reviews the performance of many models over the United States and has helped diagnose and alleviate significant systematic errors in the GFS, including a near surface summertime evening cold wet bias over the eastern US and a multi-week period when the GFS persistently developed bogus tropical storms off Central America. The GFS exhibits a wet bias for light rain and a dry bias for moderate to heavy rain over the continental United States. Significant changes to the GFS are scheduled to be implemented in the fall of 2014. These include higher resolution, improved physics and improvements to the assimilation. These changes significantly improve the tropospheric flow and reduce a tropical upper tropospheric warm bias. One important error remaining is the failure of the GFS to maintain deep convection over Indonesia and in the tropical west Pacific. This and other current systematic errors will be presented.

  14. A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: the example of the precipitation series for Bern, Switzerland (1760-2003)

    NASA Astrophysics Data System (ADS)

    Gimmi, U.; Luterbacher, J.; Pfister, C.; Wanner, H.

    2007-01-01

    In contrast to barometric and thermometric records, early instrumental precipitation series are quite rare. Based on systematic descriptive daily records, a quantitative monthly precipitation series for Bern (Switzerland) was reconstructed back to the year 1760 (reconstruction based on documentary evidence). Since every observer had his own personal style to fill out his diary, the main focus was to avoid observer-specific bias in the reconstruction. An independent statistical monthly precipitation reconstruction was performed using instrumental data from European sites. Over most periods the reconstruction based on documentary evidence lies inside the 2 standard errors of the statistical estimates. The comparison between these two approaches enables an independent verification and a reliable error estimate. The analysis points to below normal rainfall totals in all seasons during the late 18th century and in the 1820s and 1830s. Increased precipitation occurred in the early 1850s and the late 1870s, particularly from spring to autumn. The annual precipitation totals generally tend to be higher in the 20th century than in the late 18th and 19th century. Precipitation changes are discussed in the context of socioeconomic impacts and Alpine glacier dynamics. The conceptual design of the reconstruction procedure is aimed at application for similar descriptive precipitation series, which are known to be abundant from the mid-18th century in Europe and the U.S.

  15. Standardisation of crown-rump length measurement.

    PubMed

    Ioannou, C; Sarris, I; Hoch, L; Salomon, L J; Papageorghiou, A T

    2013-09-01

    Correct estimation of gestational age is essential for any study of ultrasound biometry and for everyday clinical practice. However, inconsistency in pregnancy dating may occur through differences in measurement methods or errors during measurement. In the INTERGROWTH-21(st) Project, pregnancies are dated by the last menstrual period, provided that it is certain and associated with a regular menstrual cycle, and the gestational age by dates concurs with a first-trimester ultrasound crown-rump length (CRL) estimation. Hence, there was a need to standardise CRL measurement methodology across the study sites in this international, multicentre project to avoid systematic differences in dating. To achieve uniformity we undertook the following steps: the ultrasound technique was standardised by disseminating an illustrated, operating manual describing CRL plane landmarks and calliper application, and posters describing the correct acquisition technique were disseminated for quick reference. To ensure that all ultrasonographers understood the methodology, they forwarded a log-book to the INTERGROWTH-21(st) Ultrasound Coordinating Unit, containing the answers to a written test on the manual material and five images of a correctly acquired CRL. Interpretation of CRL was also standardised by ensuring that the same CRL regression formula was used across all study sites. These methods should minimise potential systematic errors in dating associated with pooling data from different health institutions, and represent a model for standardising CRL measurement in future studies. © 2013 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2013 RCOG.

  16. Optimal Multi-Type Sensor Placement for Structural Identification by Static-Load Testing

    PubMed Central

    Papadopoulou, Maria; Vernay, Didier; Smith, Ian F. C.

    2017-01-01

    Assessing ageing infrastructure is a critical challenge for civil engineers due to the difficulty in the estimation and integration of uncertainties in structural models. Field measurements are increasingly used to improve knowledge of the real behavior of a structure; this activity is called structural identification. Error-domain model falsification (EDMF) is an easy-to-use model-based structural-identification methodology which robustly accommodates systematic uncertainties originating from sources such as boundary conditions, numerical modelling and model fidelity, as well as aleatory uncertainties from sources such as measurement error and material parameter-value estimations. In most practical applications of structural identification, sensors are placed using engineering judgment and experience. However, since sensor placement is fundamental to the success of structural identification, a more rational and systematic method is justified. This study presents a measurement system design methodology to identify the best sensor locations and sensor types using information from static-load tests. More specifically, three static-load tests were studied for the sensor system design using three types of sensors for a performance evaluation of a full-scale bridge in Singapore. Several sensor placement strategies are compared using joint entropy as an information-gain metric. A modified version of the hierarchical algorithm for sensor placement is proposed to take into account mutual information between load tests. It is shown that a carefully-configured measurement strategy that includes multiple sensor types and several load tests maximizes information gain. PMID:29240684

  17. Multisampling suprathreshold perimetry: a comparison with conventional suprathreshold and full-threshold strategies by computer simulation.

    PubMed

    Artes, Paul H; Henson, David B; Harper, Robert; McLeod, David

    2003-06-01

    To compare a multisampling suprathreshold strategy with conventional suprathreshold and full-threshold strategies in detecting localized visual field defects and in quantifying the area of loss. Probability theory was applied to examine various suprathreshold pass criteria (i.e., the number of stimuli that have to be seen for a test location to be classified as normal). A suprathreshold strategy that requires three seen or three missed stimuli per test location (multisampling suprathreshold) was selected for further investigation. Simulation was used to determine how the multisampling suprathreshold, conventional suprathreshold, and full-threshold strategies detect localized field loss. To determine the systematic error and variability in estimates of loss area, artificial fields were generated with clustered defects (0-25 field locations with 8- and 16-dB loss) and, for each condition, the number of test locations classified as defective (suprathreshold strategies) and with pattern deviation probability less than 5% (full-threshold strategy), was derived from 1000 simulated test results. The full-threshold and multisampling suprathreshold strategies had similar sensitivity to field loss. Both detected defects earlier than the conventional suprathreshold strategy. The pattern deviation probability analyses of full-threshold results underestimated the area of field loss. The conventional suprathreshold perimetry also underestimated the defect area. With multisampling suprathreshold perimetry, the estimates of defect area were less variable and exhibited lower systematic error. Multisampling suprathreshold paradigms may be a powerful alternative to other strategies of visual field testing. Clinical trials are needed to verify these findings.

  18. Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO

    NASA Astrophysics Data System (ADS)

    Marks, K. M.; Smith, W. H. F.; Sandwell, D. T.

    2010-09-01

    We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as "ground truth" to compare against model versions 7.2 through 12.1, defining vertical differences as "errors." Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15-160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.

  19. Uncertainty Analysis in Large Area Aboveground Biomass Mapping

    NASA Astrophysics Data System (ADS)

    Baccini, A.; Carvalho, L.; Dubayah, R.; Goetz, S. J.; Friedl, M. A.

    2011-12-01

    Satellite and aircraft-based remote sensing observations are being more frequently used to generate spatially explicit estimates of aboveground carbon stock of forest ecosystems. Because deforestation and forest degradation account for circa 10% of anthropogenic carbon emissions to the atmosphere, policy mechanisms are increasingly recognized as a low-cost mitigation option to reduce carbon emission. They are, however, contingent upon the capacity to accurately measures carbon stored in the forests. Here we examine the sources of uncertainty and error propagation in generating maps of aboveground biomass. We focus on characterizing uncertainties associated with maps at the pixel and spatially aggregated national scales. We pursue three strategies to describe the error and uncertainty properties of aboveground biomass maps, including: (1) model-based assessment using confidence intervals derived from linear regression methods; (2) data-mining algorithms such as regression trees and ensembles of these; (3) empirical assessments using independently collected data sets.. The latter effort explores error propagation using field data acquired within satellite-based lidar (GLAS) acquisitions versus alternative in situ methods that rely upon field measurements that have not been systematically collected for this purpose (e.g. from forest inventory data sets). A key goal of our effort is to provide multi-level characterizations that provide both pixel and biome-level estimates of uncertainties at different scales.

  20. Development of a Nonlinear Soft-Sensor Using a GMDH Network for a Refinery Crude Distillation Tower

    NASA Astrophysics Data System (ADS)

    Fujii, Kenzo; Yamamoto, Toru

    In atmospheric distillation processes, the stabilization of processes is required in order to optimize the crude-oil composition that corresponds to product market conditions. However, the process control systems sometimes fall into unstable states in the case where unexpected disturbances are introduced, and these unusual phenomena have had an undesirable affect on certain products. Furthermore, a useful chemical engineering model has not yet been established for these phenomena. This remains a serious problem in the atmospheric distillation process. This paper describes a new modeling scheme to predict unusual phenomena in the atmospheric distillation process using the GMDH (Group Method of Data Handling) network which is one type of network model. According to the GMDH network, the model structure can be determined systematically. However, the least squares method has been commonly utilized in determining weight coefficients (model parameters). Estimation accuracy is not entirely expected, because the sum of squared errors between the measured values and estimates is evaluated. Therefore, instead of evaluating the sum of squared errors, the sum of absolute value of errors is introduced and the Levenberg-Marquardt method is employed in order to determine model parameters. The effectiveness of the proposed method is evaluated by the foaming prediction in the crude oil switching operation in the atmospheric distillation process.

  1. The Origin of Systematic Errors in the GCM Simulation of ITCZ Precipitation

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Suarez, M. J.; Bacmeister, J. T.; Chen, B.; Takacs, L. L.

    2006-01-01

    Previous GCM studies have found that the systematic errors in the GCM simulation of the seasonal mean ITCZ intensity and location could be substantially corrected by adding suitable amount of rain re-evaporation or cumulus momentum transport. However, the reason(s) for these systematic errors and solutions has remained a puzzle. In this work the knowledge gained from previous studies of the ITCZ in an aqua-planet model with zonally uniform SST is applied to solve this puzzle. The solution is supported by further aqua-planet and full model experiments using the latest version of the Goddard Earth Observing System GCM.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Cohen, Saul D.

    Here, we present results for the isovector axial, scalar, and tensor charges g u–d A, g u–d S, and g u–d T of the nucleon needed to probe the Standard Model and novel physics. The axial charge is a fundamental parameter describing the weak interactions of nucleons. The scalar and tensor charges probe novel interactions at the TeV scale in neutron and nuclear β-decays, and the flavor-diagonal tensor charges g u T, g d T, and g s T are needed to quantify the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice-QCD calculations weremore » done using nine ensembles of gauge configurations generated by the MILC Collaboration using the highly improved staggered quarks action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a ≈ 0.06,0.09, and 0.12 fm and light-quark masses corresponding to the pion masses M π ≈ 135, 225, and 315 MeV. High-statistics estimates on five ensembles using the all-mode-averaging method allow us to quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, lattice volume, and light-quark masses for the connected contributions. Our final estimates, in the ¯MS scheme at 2 GeV, of the isovector charges are g u–d A = 1.195(33)(20), g u–d S = 0.97(12)(6), and g u–d T = 0.987(51)(20). The first error includes statistical and all systematic uncertainties except that due to the extrapolation Ansatz, which is given by the second error estimate. Combining our estimate for gu–dS with the difference of light quarks masses (m d–m u) QCD = 2.67(35) MeV given by the Flavor Lattice Average Group, we obtain (M N – M P) QCD = 2.59(49) MeV. Estimates of the connected part of the flavor-diagonal tensor charges of the proton are g u T = 0.792(42) and g d T = –0.194(14). Combining our new estimates with precision low-energy experiments, we present updated constraints on novel scalar and tensor interactions, ε S,T, at the TeV scale.« less

  3. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading asmore » to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.« less

  4. Information fusion methods based on physical laws.

    PubMed

    Rao, Nageswara S V; Reister, David B; Barhen, Jacob

    2005-01-01

    We consider systems whose parameters satisfy certain easily computable physical laws. Each parameter is directly measured by a number of sensors, or estimated using measurements, or both. The measurement process may introduce both systematic and random errors which may then propagate into the estimates. Furthermore, the actual parameter values are not known since every parameter is measured or estimated, which makes the existing sample-based fusion methods inapplicable. We propose a fusion method for combining the measurements and estimators based on the least violation of physical laws that relate the parameters. Under fairly general smoothness and nonsmoothness conditions on the physical laws, we show the asymptotic convergence of our method and also derive distribution-free performance bounds based on finite samples. For suitable choices of the fuser classes, we show that for each parameter the fused estimate is probabilistically at least as good as its best measurement as well as best estimate. We illustrate the effectiveness of this method for a practical problem of fusing well-log data in methane hydrate exploration.

  5. Body composition in elderly people: effect of criterion estimates on predictive equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.

    1991-06-01

    The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less

  6. Using Fault Trees to Advance Understanding of Diagnostic Errors.

    PubMed

    Rogith, Deevakar; Iyengar, M Sriram; Singh, Hardeep

    2017-11-01

    Diagnostic errors annually affect at least 5% of adults in the outpatient setting in the United States. Formal analytic techniques are only infrequently used to understand them, in part because of the complexity of diagnostic processes and clinical work flows involved. In this article, diagnostic errors were modeled using fault tree analysis (FTA), a form of root cause analysis that has been successfully used in other high-complexity, high-risk contexts. How factors contributing to diagnostic errors can be systematically modeled by FTA to inform error understanding and error prevention is demonstrated. A team of three experts reviewed 10 published cases of diagnostic error and constructed fault trees. The fault trees were modeled according to currently available conceptual frameworks characterizing diagnostic error. The 10 trees were then synthesized into a single fault tree to identify common contributing factors and pathways leading to diagnostic error. FTA is a visual, structured, deductive approach that depicts the temporal sequence of events and their interactions in a formal logical hierarchy. The visual FTA enables easier understanding of causative processes and cognitive and system factors, as well as rapid identification of common pathways and interactions in a unified fashion. In addition, it enables calculation of empirical estimates for causative pathways. Thus, fault trees might provide a useful framework for both quantitative and qualitative analysis of diagnostic errors. Future directions include establishing validity and reliability by modeling a wider range of error cases, conducting quantitative evaluations, and undertaking deeper exploration of other FTA capabilities. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  7. A toolkit for measurement error correction, with a focus on nutritional epidemiology

    PubMed Central

    Keogh, Ruth H; White, Ian R

    2014-01-01

    Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. PMID:24497385

  8. Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.

    PubMed

    Wang, Yibin; Nedelman, Jerry

    2002-04-01

    To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.

  9. A Nonlinear Least Squares Approach to Time of Death Estimation Via Body Cooling.

    PubMed

    Rodrigo, Marianito R

    2016-01-01

    The problem of time of death (TOD) estimation by body cooling is revisited by proposing a nonlinear least squares approach that takes as input a series of temperature readings only. Using a reformulation of the Marshall-Hoare double exponential formula and a technique for reducing the dimension of the state space, an error function that depends on the two cooling rates is constructed, with the aim of minimizing this function. Standard nonlinear optimization methods that are used to minimize the bivariate error function require an initial guess for these unknown rates. Hence, a systematic procedure based on the given temperature data is also proposed to determine an initial estimate for the rates. Then, an explicit formula for the TOD is given. Results of numerical simulations using both theoretical and experimental data are presented, both yielding reasonable estimates. The proposed procedure does not require knowledge of the temperature at death nor the body mass. In fact, the method allows the estimation of the temperature at death once the cooling rates and the TOD have been calculated. The procedure requires at least three temperature readings, although more measured readings could improve the estimates. With the aid of computerized recording and thermocouple detectors, temperature readings spaced 10-15 min apart, for example, can be taken. The formulas can be straightforwardly programmed and installed on a hand-held device for field use. © 2015 American Academy of Forensic Sciences.

  10. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoro, J. P.; McNamara, J.; Yorke, E.

    2012-10-15

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged imagesmore » for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction, seven required a single correction, one required two corrections, and one required three corrections. Mean residual GTV deviation (3D distance) following GTV-based systematic correction (mean {+-} 1 standard deviation 4.8 {+-} 1.5 mm) is significantly lower than for systematic skeletal-based (6.5 {+-} 2.9 mm, p= 0.015), and weekly skeletal-based correction (7.2 {+-} 3.0 mm, p= 0.001), but is not significantly lower than daily skeletal-based correction (5.4 {+-} 2.6 mm, p= 0.34). In two cases, first-day CBCT images reveal tumor changes-one showing tumor growth, the other showing large tumor displacement-that are not readily observed in radiographs. Differences in computed GTV deviations between respiration-correlated and respiration-averaged images are 0.2 {+-} 1.8 mm in the superior-inferior direction and are of similar magnitude in the other directions. Conclusions: An off-line protocol to correct GTV-based systematic error in locally advanced lung tumor cases can be effective at reducing tumor deviations, although the findings need confirmation with larger patient statistics. In some cases, a single cone-beam CT can be useful for assessing tumor changes early in treatment, if more than a few days elapse between simulation and the start of treatment. Tumor deviations measured with respiration-averaged CT and CBCT images are consistent with those measured with respiration-correlated images; the respiration-averaged method is more easily implemented in the clinic.« less

  11. SU-E-J-87: Building Deformation Error Histogram and Quality Assurance of Deformable Image Registration.

    PubMed

    Park, S B; Kim, H; Yao, M; Ellis, R; Machtay, M; Sohn, J W

    2012-06-01

    To quantify the systematic error of a Deformable Image Registration (DIR) system and establish Quality Assurance (QA) procedure. To address the shortfall of landmark approach which it is only available at the significant visible feature points, we adapted a Deformation Vector Map (DVM) comparison approach. We used two CT image sets (R and T image sets) taken for the same patient at different time and generated a DVM, which includes the DIR systematic error. The DVM was calculated using fine-tuned B-Spline DIR and L-BFGS optimizer. By utilizing this DVM we generated R' image set to eliminate the systematic error in DVM,. Thus, we have truth data set, R' and T image sets, and the truth DVM. To test a DIR system, we use R' and T image sets to a DIR system. We compare the test DVM to the truth DVM. If there is no systematic error, they should be identical. We built Deformation Error Histogram (DEH) for quantitative analysis. The test registration was performed with an in-house B-Spline DIR system using a stochastic gradient descent optimizer. Our example data set was generated with a head and neck patient case. We also tested CT to CBCT deformable registration. We found skin regions which interface with the air has relatively larger errors. Also mobile joints such as shoulders had larger errors. Average error for ROIs were as follows; CTV: 0.4mm, Brain stem: 1.4mm, Shoulders: 1.6mm, and Normal tissues: 0.7mm. We succeeded to build DEH approach to quantify the DVM uncertainty. Our data sets are available for testing other systems in our web page. Utilizing DEH, users can decide how much systematic error they would accept. DEH and our data can be a tool for an AAPM task group to compose a DIR system QA guideline. This project is partially supported by the Agency for Healthcare Research and Quality (AHRQ) grant 1R18HS017424-01A2. © 2012 American Association of Physicists in Medicine.

  12. The Effect of Systematic Error in Forced Oscillation Testing

    NASA Technical Reports Server (NTRS)

    Williams, Brianne Y.; Landman, Drew; Flory, Isaac L., IV; Murphy, Patrick C.

    2012-01-01

    One of the fundamental problems in flight dynamics is the formulation of aerodynamic forces and moments acting on an aircraft in arbitrary motion. Classically, conventional stability derivatives are used for the representation of aerodynamic loads in the aircraft equations of motion. However, for modern aircraft with highly nonlinear and unsteady aerodynamic characteristics undergoing maneuvers at high angle of attack and/or angular rates the conventional stability derivative model is no longer valid. Attempts to formulate aerodynamic model equations with unsteady terms are based on several different wind tunnel techniques: for example, captive, wind tunnel single degree-of-freedom, and wind tunnel free-flying techniques. One of the most common techniques is forced oscillation testing. However, the forced oscillation testing method does not address the systematic and systematic correlation errors from the test apparatus that cause inconsistencies in the measured oscillatory stability derivatives. The primary objective of this study is to identify the possible sources and magnitude of systematic error in representative dynamic test apparatuses. Sensitivities of the longitudinal stability derivatives to systematic errors are computed, using a high fidelity simulation of a forced oscillation test rig, and assessed using both Design of Experiments and Monte Carlo methods.

  13. Sampling problems: The small scale structure of precipitation

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1981-01-01

    The quantitative measurement of precipitation characteristics for any area on the surface of the Earth is not an easy task. Precipitation is rather variable in both space and time, and the distribution of surface rainfall data given location typically is substantially skewed. There are a number of precipitation process at work in the atmosphere, and few of them are well understood. The formal theory on sampling and estimating precipitation appears considerably deficient. Little systematic attention is given to nonsampling errors that always arise in utilizing any measurement system. Although the precipitation measurement problem is an old one, it continues to be one that is in need of systematic and careful attention. A brief history of the presently competing measurement technologies should aid us in understanding the problem inherent in this measurement task.

  14. Archie's law - a reappraisal

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.

    2016-07-01

    When scientists apply Archie's first law they often include an extra parameter a, which was introduced about 10 years after the equation's first publication by Winsauer et al. (1952), and which is sometimes called the "tortuosity" or "lithology" parameter. This parameter is not, however, theoretically justified. Paradoxically, the Winsauer et al. (1952) form of Archie's law often performs better than the original, more theoretically correct version. The difference in the cementation exponent calculated from these two forms of Archie's law is important, and can lead to a misestimation of reserves by at least 20 % for typical reservoir parameter values. We have examined the apparent paradox, and conclude that while the theoretical form of the law is correct, the data that we have been analysing with Archie's law have been in error. There are at least three types of systematic error that are present in most measurements: (i) a porosity error, (ii) a pore fluid salinity error, and (iii) a temperature error. Each of these systematic errors is sufficient to ensure that a non-unity value of the parameter a is required in order to fit the electrical data well. Fortunately, the inclusion of this parameter in the fit has compensated for the presence of the systematic errors in the electrical and porosity data, leading to a value of cementation exponent that is correct. The exceptions are those cementation exponents that have been calculated for individual core plugs. We make a number of recommendations for reducing the systematic errors that contribute to the problem and suggest that the value of the parameter a may now be used as an indication of data quality.

  15. Quantification of airport community noise impact in terms of noise levels, population density, and human subjective response

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The Fraction Impact Method (FIM), developed by the National Research Council (NRC) for assessing the amount and physiological effect of noise, is described. Here, the number of people exposed to a given level of noise is multiplied by a weighting factor that depends on noise level. It is pointed out that the Aircraft-noise Levels and Annoyance MOdel (ALAMO), recently developed at NASA Langley Research Center, can perform the NRC fractional impact calculations for given modes of operation at any U.S. airport. The sensitivity of these calculations to errors in estimates of population, noise level, and human subjective response is discussed. It is found that a change in source noise causes a substantially smaller change in contour area than would be predicted simply on the basis of inverse square law considerations. Another finding is that the impact calculations are generally less sensitive to source noise errors than to systematic errors in population or subjective response.

  16. [Errors in Peruvian medical journals references].

    PubMed

    Huamaní, Charles; Pacheco-Romero, José

    2009-01-01

    References are fundamental in our studies; an adequate selection is asimportant as an adequate description. To determine the number of errors in a sample of references found in Peruvian medical journals. We reviewed 515 scientific papers references selected by systematic randomized sampling and corroborated reference information with the original document or its citation in Pubmed, LILACS or SciELO-Peru. We found errors in 47,6% (245) of the references, identifying 372 types of errors; the most frequent were errors in presentation style (120), authorship (100) and title (100), mainly due to spelling mistakes (91). References error percentage was high, varied and multiple. We suggest systematic revision of references in the editorial process as well as to extend the discussion on this theme. references, periodicals, research, bibliometrics.

  17. Two-dimensional simulation of eccentric photorefraction images for ametropes: factors influencing the measurement.

    PubMed

    Wu, Yifei; Thibos, Larry N; Candy, T Rowan

    2018-05-07

    Eccentric photorefraction and Purkinje image tracking are used to estimate refractive state and eye position simultaneously. Beyond vision screening, they provide insight into typical and atypical visual development. Systematic analysis of the effect of refractive error and spectacles on photorefraction data is needed to gauge the accuracy and precision of the technique. Simulation of two-dimensional, double-pass eccentric photorefraction was performed (Zemax). The inward pass included appropriate light sources, lenses and a single surface pupil plane eye model to create an extended retinal image that served as the source for the outward pass. Refractive state, as computed from the luminance gradient in the image of the pupil captured by the model's camera, was evaluated for a range of refractive errors (-15D to +15D), pupil sizes (3 mm to 7 mm) and two sets of higher-order monochromatic aberrations. Instrument calibration was simulated using -8D to +8D trial lenses at the spectacle plane for: (1) vertex distances from 3 mm to 23 mm, (2) uncorrected and corrected hyperopic refractive errors of +4D and +7D, and (3) uncorrected and corrected astigmatism of 4D at four different axes. Empirical calibration of a commercial photorefractor was also compared with a wavefront aberrometer for human eyes. The pupil luminance gradient varied linearly with refractive state for defocus less than approximately 4D (5 mm pupil). For larger errors, the gradient magnitude saturated and then reduced, leading to under-estimation of refractive state. Additional inaccuracy (up to 1D for 8D of defocus) resulted from spectacle magnification in the pupil image, which would reduce precision in situations where vertex distance is variable. The empirical calibration revealed a constant offset between the two clinical instruments. Computational modelling demonstrates the principles and limitations of photorefraction to help users avoid potential measurement errors. Factors that could cause clinically significant errors in photorefraction estimates include high refractive error, vertex distance and magnification effects of a spectacle lens, increased higher-order monochromatic aberrations, and changes in primary spherical aberration with accommodation. The impact of these errors increases with increasing defocus. © 2018 The Authors Ophthalmic & Physiological Optics © 2018 The College of Optometrists.

  18. A service evaluation of on-line image-guided radiotherapy to lower extremity sarcoma: Investigating the workload implications of a 3 mm action level for image assessment and correction prior to delivery.

    PubMed

    Taylor, C; Parker, J; Stratford, J; Warren, M

    2018-05-01

    Although all systematic and random positional setup errors can be corrected for in entirety during on-line image-guided radiotherapy, the use of a specified action level, below which no correction occurs, is also an option. The following service evaluation aimed to investigate the use of this 3 mm action level for on-line image assessment and correction (online, systematic set-up error and weekly evaluation) for lower extremity sarcoma, and understand the impact on imaging frequency and patient positioning error within one cancer centre. All patients were immobilised using a thermoplastic shell attached to a plastic base and an individual moulded footrest. A retrospective analysis of 30 patients was performed. Patient setup and correctional data derived from cone beam CT analysis was retrieved. The timing, frequency and magnitude of corrections were evaluated. The population systematic and random error was derived. 20% of patients had no systematic corrections over the duration of treatment, and 47% had one. The maximum number of systematic corrections per course of radiotherapy was 4, which occurred for 2 patients. 34% of episodes occurred within the first 5 fractions. All patients had at least one observed translational error during their treatment greater than 0.3 cm, and 80% of patients had at least one observed translational error during their treatment greater than 0.5 cm. The population systematic error was 0.14 cm, 0.10 cm, 0.14 cm and random error was 0.27 cm, 0.22 cm, 0.23 cm in the lateral, caudocranial and anteroposterial directions. The required Planning Target Volume margin for the study population was 0.55 cm, 0.41 cm and 0.50 cm in the lateral, caudocranial and anteroposterial directions. The 3 mm action level for image assessment and correction prior to delivery reduced the imaging burden and focussed intervention on patients that exhibited greater positional variability. This strategy could be an efficient deployment of departmental resources if full daily correction of positional setup error is not possible. Copyright © 2017. Published by Elsevier Ltd.

  19. Helical tomotherapy setup variations in canine nasal tumor patients immobilized with a bite block.

    PubMed

    Kubicek, Lyndsay N; Seo, Songwon; Chappell, Richard J; Jeraj, Robert; Forrest, Lisa J

    2012-01-01

    The purpose of our study was to compare setup variation in four degrees of freedom (vertical, longitudinal, lateral, and roll) between canine nasal tumor patients immobilized with a mattress and bite block, versus a mattress alone. Our secondary aim was to define a clinical target volume (CTV) to planning target volume (PTV) expansion margin based on our mean systematic error values associated with nasal tumor patients immobilized by a mattress and bite block. We evaluated six parameters for setup corrections: systematic error, random error, patient-patient variation in systematic errors, the magnitude of patient-specific random errors (root mean square [RMS]), distance error, and the variation of setup corrections from zero shift. The variations in all parameters were statistically smaller in the group immobilized by a mattress and bite block. The mean setup corrections in the mattress and bite block group ranged from 0.91 mm to 1.59 mm for the translational errors and 0.5°. Although most veterinary radiation facilities do not have access to Image-guided radiotherapy (IGRT), we identified a need for more rigid fixation, established the value of adding IGRT to veterinary radiation therapy, and define the CTV-PTV setup error margin for canine nasal tumor patients immobilized in a mattress and bite block. © 2012 Veterinary Radiology & Ultrasound.

  20. CDO budgeting

    NASA Astrophysics Data System (ADS)

    Nesladek, Pavel; Wiswesser, Andreas; Sass, Björn; Mauermann, Sebastian

    2008-04-01

    The Critical dimension off-target (CDO) is a key parameter for mask house customer, affecting directly the performance of the mask. The CDO is the difference between the feature size target and the measured feature size. The change of CD during the process is either compensated within the process or by data correction. These compensation methods are commonly called process bias and data bias, respectively. The difference between data bias and process bias in manufacturing results in systematic CDO error, however, this systematic error does not take into account the instability of the process bias. This instability is a result of minor variations - instabilities of manufacturing processes and changes in materials and/or logistics. Using several masks the CDO of the manufacturing line can be estimated. For systematic investigation of the unit process contribution to CDO and analysis of the factors influencing the CDO contributors, a solid understanding of each unit process and huge number of masks is necessary. Rough identification of contributing processes and splitting of the final CDO variation between processes can be done with approx. 50 masks with identical design, material and process. Such amount of data allows us to identify the main contributors and estimate the effect of them by means of Analysis of variance (ANOVA) combined with multivariate analysis. The analysis does not provide information about the root cause of the variation within the particular unit process, however, it provides a good estimate of the impact of the process on the stability of the manufacturing line. Additionally this analysis can be used to identify possible interaction between processes, which cannot be investigated if only single processes are considered. Goal of this work is to evaluate limits for CDO budgeting models given by the precision and the number of measurements as well as partitioning the variation within the manufacturing process. The CDO variation splits according to the suggested model into contributions from particular processes or process groups. Last but not least the power of this method to determine the absolute strength of each parameter will be demonstrated. Identification of the root cause of this variation within the unit process itself is not scope of this work.

  1. Dynamically correcting two-qubit gates against any systematic logical error

    NASA Astrophysics Data System (ADS)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  2. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    PubMed

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  3. Quantification of model uncertainty in aerosol optical thickness retrieval from Ozone Monitoring Instrument (OMI) measurements

    NASA Astrophysics Data System (ADS)

    Määttä, A.; Laine, M.; Tamminen, J.; Veefkind, J. P.

    2013-09-01

    We study uncertainty quantification in remote sensing of aerosols in the atmosphere with top of the atmosphere reflectance measurements from the nadir-viewing Ozone Monitoring Instrument (OMI). Focus is on the uncertainty in aerosol model selection of pre-calculated aerosol models and on the statistical modelling of the model inadequacies. The aim is to apply statistical methodologies that improve the uncertainty estimates of the aerosol optical thickness (AOT) retrieval by propagating model selection and model error related uncertainties more realistically. We utilise Bayesian model selection and model averaging methods for the model selection problem and use Gaussian processes to model the smooth systematic discrepancies from the modelled to observed reflectance. The systematic model error is learned from an ensemble of operational retrievals. The operational OMI multi-wavelength aerosol retrieval algorithm OMAERO is used for cloud free, over land pixels of the OMI instrument with the additional Bayesian model selection and model discrepancy techniques. The method is demonstrated with four examples with different aerosol properties: weakly absorbing aerosols, forest fires over Greece and Russia, and Sahara dessert dust. The presented statistical methodology is general; it is not restricted to this particular satellite retrieval application.

  4. Accuracy of Satellite Optical Observations and Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Shakun, L.; Koshkin, N.; Korobeynikova, E.; Strakhova, S.; Dragomiretsky, V.; Ryabov, A.; Melikyants, S.; Golubovskaya, T.; Terpan, S.

    The monitoring of low-orbit space objects (LEO-objects) is performed in the Astronomical Observatory of Odessa I.I. Mechnikov National University (Ukraine) for many years. Decades-long archives of these observations are accessible within Ukrainian network of optical observers (UMOS). In this work, we give an example of orbit determination for the satellite with the 1500-km height of orbit based on angular observations in our observatory (Int. No. 086). For estimation of the measurement accuracy and accuracy of determination and propagation of satellite position, we analyze the observations of Ajisai satellite with the well-determined orbit. This allows making justified conclusions not only about random errors of separate measurements, but also to analyze the presence of systematic errors, including external ones to the measurement process. We have shown that the accuracy of one measurement has the standard deviation about 1 arcsec across the track and 1.4 arcsec along the track and systematical shifts in measurements of one track do not exceed 0.45 arcsec. Ajisai position in the interval of the orbit fitting is predicted with accuracy better than 30 m along the orbit and better than 10 m across the orbit for any its point.

  5. THE IDENTIFICATION OF THE X-RAY COUNTERPART TO PSR J2021+4026

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisskopf, Martin C.; Elsner, Ronald F.; O'Dell, Stephen L.

    2011-12-10

    We report the probable identification of the X-ray counterpart to the {gamma}-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory Advanced CCD Imaging Spectrometer and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20{sup h}21{sup m}30.{sup s}733, decl. +40 Degree-Sign 26'46.''04 (J2000) with an estimated uncertainty of 1.''3 combined statistical and systematic error. Moreover, both the X-ray to {gamma}-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray sourcemore » has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a power law and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less

  6. The Identification Of The X-Ray Counterpart To PSR J2021+4026

    DOE PAGES

    Weisskopf, Martin C.; Romani, Roger W.; Razzano, Massimiliano; ...

    2011-11-23

    We report the probable identification of the X-ray counterpart to the γ-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30s.733, Decl. +40°26'46.04" (J2000) with an estimated uncertainty of 1."3 combined statistical and systematic error. Moreover, both the X-ray to γ-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through newmore » observations, we set upper limits to its optical emission of i' > 23.0 mag and r' > 25.2 mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.« less

  7. Corrigendum to "Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit".

    PubMed

    El-Jaby, Samy

    2016-06-01

    A recent paper published in Life Sciences in Space Research (El-Jaby and Richardson, 2015) presented estimates of the secondary neutron ambient and effective dose equivalent rates, in air, from surface altitudes up to suborbital altitudes and low Earth orbit. These estimates were based on MCNPX (LANL, 2011) (Monte Carlo N-Particle eXtended) radiation transport simulations of galactic cosmic radiation passing through Earth's atmosphere. During a recent review of the input decks used for these simulations, a systematic error was discovered that is addressed here. After reassessment, the neutron ambient and effective dose equivalent rates estimated are found to be 10 to 15% different, though, the essence of the conclusions drawn remains unchanged. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. Intercalibration of research survey vessels on Lake Erie

    USGS Publications Warehouse

    Tyson, J.T.; Johnson, T.B.; Knight, C.T.; Bur, M.T.

    2006-01-01

    Fish abundance indices obtained from annual research trawl surveys are an integral part of fisheries stock assessment and management in the Great Lakes. It is difficult, however, to administer trawl surveys using a single vessel-gear combination owing to the large size of these systems, the jurisdictional boundaries that bisect the Great Lakes, and changes in vessels as a result of fleet replacement. When trawl surveys are administered by multiple vessel-gear combinations, systematic error may be introduced in combining catch-per-unit-effort (CPUE) data across vessels. This bias is associated with relative differences in catchability among vessel-gear combinations. In Lake Erie, five different research vessels conduct seasonal trawl surveys in the western half of the lake. To eliminate this systematic bias, the Lake Erie agencies conducted a side-by-side trawling experiment in 2003 to develop correction factors for CPUE data associated with different vessel-gear combinations. Correcting for systematic bias in CPUE data should lead to more accurate and comparable estimates of species density and biomass. We estimated correction factors for the 10 most commonly collected species age-groups for each vessel during the experiment. Most of the correction factors (70%) ranged from 0.5 to 2.0, indicating that the systematic bias associated with different vessel-gear combinations was not large. Differences in CPUE were most evident for vessels using different sampling gears, although significant differences also existed for vessels using the same gears. These results suggest that standardizing gear is important for multiple-vessel surveys, but there will still be significant differences in catchability stemming from the vessel effects and agencies must correct for this. With standardized estimates of CPUE, the Lake Erie agencies will have the ability to directly compare and combine time series for species abundance. ?? Copyright by the American Fisheries Society 2006.

  9. The effects of non-stationary noise on electromagnetic response estimates

    NASA Astrophysics Data System (ADS)

    Banks, R. J.

    1998-11-01

    The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.

  10. Estimation of sensible and latent heat flux from natural sparse vegetation surfaces using surface renewal

    NASA Astrophysics Data System (ADS)

    Zapata, N.; Martínez-Cob, A.

    2001-12-01

    This paper reports a study undertaken to evaluate the feasibility of the surface renewal method to accurately estimate long-term evaporation from the playa and margins of an endorreic salty lagoon (Gallocanta lagoon, Spain) under semiarid conditions. High-frequency temperature readings were taken for two time lags ( r) and three measurement heights ( z) in order to get surface renewal sensible heat flux ( HSR) values. These values were compared against eddy covariance sensible heat flux ( HEC) values for a calibration period (25-30 July 2000). Error analysis statistics (index of agreement, IA; root mean square error, RMSE; and systematic mean square error, MSEs) showed that the agreement between HSR and HEC improved as measurement height decreased and time lag increased. Calibration factors α were obtained for all analyzed cases. The best results were obtained for the z=0.9 m ( r=0.75 s) case for which α=1.0 was observed. In this case, uncertainty was about 10% in terms of relative error ( RE). Latent heat flux values were obtained by solving the energy balance equation for both the surface renewal ( LESR) and the eddy covariance ( LEEC) methods, using HSR and HEC, respectively, and measurements of net radiation and soil heat flux. For the calibration period, error analysis statistics for LESR were quite similar to those for HSR, although errors were mostly at random. LESR uncertainty was less than 9%. Calibration factors were applied for a validation data subset (30 July-4 August 2000) for which meteorological conditions were somewhat different (higher temperatures and wind speed and lower solar and net radiation). Error analysis statistics for both HSR and LESR were quite good for all cases showing the goodness of the calibration factors. Nevertheless, the results obtained for the z=0.9 m ( r=0.75 s) case were still the best ones.

  11. Estimations of natural variability between satellite measurements of trace species concentrations

    NASA Astrophysics Data System (ADS)

    Sheese, P.; Walker, K. A.; Boone, C. D.; Degenstein, D. A.; Kolonjari, F.; Plummer, D. A.; von Clarmann, T.

    2017-12-01

    In order to validate satellite measurements of atmospheric states, it is necessary to understand the range of random and systematic errors inherent in the measurements. On occasions where the measurements do not agree within those errors, a common "go-to" explanation is that the unexplained difference can be chalked up to "natural variability". However, the expected natural variability is often left ambiguous and rarely quantified. This study will look to quantify the expected natural variability of both O3 and NO2 between two satellite instruments: ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) and OSIRIS (Optical Spectrograph and Infrared Imaging System). By sampling the CMAM30 (30-year specified dynamics simulation of the Canadian Middle Atmosphere Model) climate chemistry model throughout the upper troposphere and stratosphere at times and geolocations of coincident ACE-FTS and OSIRIS measurements at varying coincidence criteria, height-dependent expected values of O3 and NO2 variability will be estimated and reported on. The results could also be used to better optimize the coincidence criteria used in satellite measurement validation studies.

  12. Metadynamics convergence law in a multidimensional system

    NASA Astrophysics Data System (ADS)

    Crespo, Yanier; Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro

    2010-05-01

    Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.

  13. Metadynamics convergence law in a multidimensional system.

    PubMed

    Crespo, Yanier; Marinelli, Fabrizio; Pietrucci, Fabio; Laio, Alessandro

    2010-05-01

    Metadynamics is a powerful sampling technique that uses a nonequilibrium history-dependent process to reconstruct the free-energy surface as a function of the relevant collective variables s . In Bussi [Phys. Rev. Lett. 96, 090601 (2006)] it is proved that, in a Langevin process, metadynamics provides an unbiased estimate of the free energy F(s) . We here study the convergence properties of this approach in a multidimensional system, with a Hamiltonian depending on several variables. Specifically, we show that in a Monte Carlo metadynamics simulation of an Ising model the time average of the history-dependent potential converge to F(s) with the same law of an umbrella sampling performed in optimal conditions (i.e., with a bias exactly equal to the negative of the free energy). Remarkably, after a short transient, the error becomes approximately independent on the filling speed, showing that even in out-of-equilibrium conditions metadynamics allows recovering an accurate estimate of F(s) . These results have been obtained introducing a functional form of the history-dependent potential that avoids the onset of systematic errors near the boundaries of the free-energy landscape.

  14. Improving Assimilated Global Climate Data Using TRMM and SSM/I Rainfall and Moisture Data

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.

    1999-01-01

    Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.

  15. A Psychological Model for Aggregating Judgments of Magnitude

    NASA Astrophysics Data System (ADS)

    Merkle, Edgar C.; Steyvers, Mark

    In this paper, we develop and illustrate a psychologically-motivated model for aggregating judgments of magnitude across experts. The model assumes that experts' judgments are perturbed from the truth by both systematic biases and random error, and it provides aggregated estimates that are implicitly based on the application of nonlinear weights to individual judgments. The model is also easily extended to situations where experts report multiple quantile judgments. We apply the model to expert judgments concerning flange leaks in a chemical plant, illustrating its use and comparing it to baseline measures.

  16. The horizontal and vertical semi-diameters of the Sun observed at the Cape of Good Hope (1834 - 1887) and Paris (1837 - 1906): A report on work in progress

    NASA Technical Reports Server (NTRS)

    Smith, C.; Messina, D.

    1981-01-01

    Cape and Paris meridian observations of the solar limbs which permit an estimate to be made of the solar semi-diameter were surveyed, sampled, and compared with Greenwich and U.S. Naval Observatory observations. Significant systematic errors were found in the Paris work and have been correlated with changes of instruments and observers. Results from the Cape series indicate that work should continue on the compilation of data from Cape observations of the Sun.

  17. Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

    PubMed Central

    Palmer, Tom M; Holmes, Michael V; Keating, Brendan J; Sheehan, Nuala A

    2017-01-01

    Abstract Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors. PMID:29106476

  18. Only marginal alignment of disc galaxies

    NASA Astrophysics Data System (ADS)

    Andrae, René; Jahnke, Knud

    2011-12-01

    Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understanding the formation of this type of galaxies. The tidal-torque theory aims to explain this acquisition process in a cosmological framework and predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness, i.e. alignment of disc galaxies, on short distance scales of 1 Mpc h-1. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering these correlations but are overly optimistic in the reported level of statistical significance of the detections. Errors in redshift, ellipticity and morphological classifications were not taken into account, although they have a significant impact. We explain how to rigorously propagate all the important errors through the estimation process. Analysing disc galaxies in the Sloan Digital Sky Survey (SDSS) data base, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distance scales of 1 Mpc h-1 are plausible but not statistically significant. Current data appear not good enough to constrain parameters of theory. This result agrees with a simple hypothesis test in the Local Group, where we also find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges even for Scd galaxies, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e. PanSTARRS and LSST cannot be used. Conversely, the EUCLID project will not cover the relevant redshift regime. We also discuss the potentials and problems of front-edge classifications of galaxy discs in order to improve the autocorrelation estimates of angular-momentum orientation.

  19. Attributes from NMIS Time Coincidence, Fast-Neutron Imaging, Fission Mapping, And Gamma-Ray Spectrometry Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, Alicia L; Grogan, Brandon R; Mullens, James Allen

    This work tests a systematic procedure for analyzing data acquired by the Nuclear Materials Identification System (NMIS) at Oak Ridge National Laboratory with fast-neutron imaging and high-purity germanium (HPGe) gamma spectrometry capabilities. NMIS has been under development by the US Department of Energy Office of Nuclear Verification since the mid-1990s, and prior to that by the National Nuclear Security Administration Y-12 National Security Complex, with NMIS having been used at Y-12 for template matching to confirm inventory and receipts. In this present work, a complete set of NMIS time coincidence, fast-neutron imaging, fission mapping, and HPGe gamma-ray spectrometry data wasmore » obtained from Monte Carlo simulations for a configuration of fissile and nonfissile materials. The data were then presented for analysis to someone who had no prior knowledge of the unknown object to accurately determine the description of the object by applying the previously-mentioned procedure to the simulated data. The best approximation indicated that the unknown object was composed of concentric cylinders: a void inside highly enriched uranium (HEU) (84.7 {+-} 1.9 wt % {sup 235}U), surrounded by depleted uranium, surrounded by polyethylene. The final estimation of the unknown object had the correct materials and geometry, with error in the radius estimates of material regions varying from 1.58% at best and 4.25% at worst; error in the height estimates varied from 2% to 12%. The error in the HEU enrichment estimate was 5.9 wt % (within 2.5{sigma} of the true value). The accuracies of the determinations could be adequate for arms control applications. Future work will apply this iterative reconstructive procedure to other unknown objects to further test and refine it.« less

  20. Toward unbiased determination of the redshift evolution of Lyman-alpha forest clouds

    NASA Technical Reports Server (NTRS)

    Lu, Limin; Zuo, Lin

    1994-01-01

    The possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.

Top