Shabbir, Javid
2018-01-01
In the present paper we propose an improved class of estimators in the presence of measurement error and non-response under stratified random sampling for estimating the finite population mean. The theoretical and numerical studies reveal that the proposed class of estimators performs better than other existing estimators. PMID:29401519
Estimating disease prevalence from two-phase surveys with non-response at the second phase
Gao, Sujuan; Hui, Siu L.; Hall, Kathleen S.; Hendrie, Hugh C.
2010-01-01
SUMMARY In this paper we compare several methods for estimating population disease prevalence from data collected by two-phase sampling when there is non-response at the second phase. The traditional weighting type estimator requires the missing completely at random assumption and may yield biased estimates if the assumption does not hold. We review two approaches and propose one new approach to adjust for non-response assuming that the non-response depends on a set of covariates collected at the first phase: an adjusted weighting type estimator using estimated response probability from a response model; a modelling type estimator using predicted disease probability from a disease model; and a regression type estimator combining the adjusted weighting type estimator and the modelling type estimator. These estimators are illustrated using data from an Alzheimer’s disease study in two populations. Simulation results are presented to investigate the performances of the proposed estimators under various situations. PMID:10931514
ERIC Educational Resources Information Center
Woods, Carol M.; Thissen, David
2006-01-01
The purpose of this paper is to introduce a new method for fitting item response theory models with the latent population distribution estimated from the data using splines. A spline-based density estimation system provides a flexible alternative to existing procedures that use a normal distribution, or a different functional form, for the…
Kirtadze, Irma; Otiashvili, David; Tabatadze, Mzia; Vardanashvili, Irina; Sturua, Lela; Zabransky, Tomas; Anthony, James C
2018-06-01
Validity of responses in surveys is an important research concern, especially in emerging market economies where surveys in the general population are a novelty, and the level of social control is traditionally higher. The Randomized Response Technique (RRT) can be used as a check on response validity when the study aim is to estimate population prevalence of drug experiences and other socially sensitive and/or illegal behaviors. To apply RRT and to study potential under-reporting of drug use in a nation-scale, population-based general population survey of alcohol and other drug use. For this first-ever household survey on addictive substances for the Country of Georgia, we used the multi-stage probability sampling of 18-to-64-year-old household residents of 111 urban and 49 rural areas. During the interviewer-administered assessments, RRT involved pairing of sensitive and non-sensitive questions about drug experiences. Based upon the standard household self-report survey estimate, an estimated 17.3% [95% confidence interval, CI: 15.5%, 19.1%] of Georgian household residents have tried cannabis. The corresponding RRT estimate was 29.9% [95% CI: 24.9%, 34.9%]. The RRT estimates for other drugs such as heroin also were larger than the standard self-report estimates. We remain unsure about what is the "true" value for prevalence of using illegal psychotropic drugs in the Republic of Georgia study population. Our RRT results suggest that standard non-RRT approaches might produce 'under-estimates' or at best, highly conservative, lower-end estimates. Copyright © 2018 Elsevier B.V. All rights reserved.
Redmond, Shelagh M.; Alexander-Kisslig, Karin; Woodhall, Sarah C.; van den Broek, Ingrid V. F.; van Bergen, Jan; Ward, Helen; Uusküla, Anneli; Herrmann, Björn; Andersen, Berit; Götz, Hannelore M.; Sfetcu, Otilia; Low, Nicola
2015-01-01
Background Accurate information about the prevalence of Chlamydia trachomatis is needed to assess national prevention and control measures. Methods We systematically reviewed population-based cross-sectional studies that estimated chlamydia prevalence in European Union/European Economic Area (EU/EEA) Member States and non-European high income countries from January 1990 to August 2012. We examined results in forest plots, explored heterogeneity using the I2 statistic, and conducted random effects meta-analysis if appropriate. Meta-regression was used to examine the relationship between study characteristics and chlamydia prevalence estimates. Results We included 25 population-based studies from 11 EU/EEA countries and 14 studies from five other high income countries. Four EU/EEA Member States reported on nationally representative surveys of sexually experienced adults aged 18–26 years (response rates 52–71%). In women, chlamydia point prevalence estimates ranged from 3.0–5.3%; the pooled average of these estimates was 3.6% (95% CI 2.4, 4.8, I2 0%). In men, estimates ranged from 2.4–7.3% (pooled average 3.5%; 95% CI 1.9, 5.2, I2 27%). Estimates in EU/EEA Member States were statistically consistent with those in other high income countries (I2 0% for women, 6% for men). There was statistical evidence of an association between survey response rate and estimated chlamydia prevalence; estimates were higher in surveys with lower response rates, (p = 0.003 in women, 0.018 in men). Conclusions Population-based surveys that estimate chlamydia prevalence are at risk of participation bias owing to low response rates. Estimates obtained in nationally representative samples of the general population of EU/EEA Member States are similar to estimates from other high income countries. PMID:25615574
Mealing, Nicole M; Banks, Emily; Jorm, Louisa R; Steel, David G; Clements, Mark S; Rogers, Kris D
2010-04-01
There is little empirical evidence regarding the generalisability of relative risk estimates from studies which have relatively low response rates or are of limited representativeness. The aim of this study was to investigate variation in exposure-outcome relationships in studies of the same population with different response rates and designs by comparing estimates from the 45 and Up Study, a population-based cohort study (self-administered postal questionnaire, response rate 18%), and the New South Wales Population Health Survey (PHS) (computer-assisted telephone interview, response rate ~60%). Logistic regression analysis of questionnaire data from 45 and Up Study participants (n = 101,812) and 2006/2007 PHS participants (n = 14,796) was used to calculate prevalence estimates and odds ratios (ORs) for comparable variables, adjusting for age, sex and remoteness. ORs were compared using Wald tests modelling each study separately, with and without sampling weights. Prevalence of some outcomes (smoking, private health insurance, diabetes, hypertension, asthma) varied between the two studies. For highly comparable questionnaire items, exposure-outcome relationship patterns were almost identical between the studies and ORs for eight of the ten relationships examined did not differ significantly. For questionnaire items that were only moderately comparable, the nature of the observed relationships did not differ materially between the two studies, although many ORs differed significantly. These findings show that for a broad range of risk factors, two studies of the same population with varying response rate, sampling frame and mode of questionnaire administration yielded consistent estimates of exposure-outcome relationships. However, ORs varied between the studies where they did not use identical questionnaire items.
Coding “What” and “When” in the Archer Fish Retina
Vasserman, Genadiy; Shamir, Maoz; Ben Simon, Avi; Segev, Ronen
2010-01-01
Traditionally, the information content of the neural response is quantified using statistics of the responses relative to stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity, “what”, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal's psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We show that stimulus onset time, “when”, can be estimated using a linear-nonlinear readout mechanism that requires the response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout. However, large nerve cell populations are required to achieve sufficient accuracy. PMID:21079682
Estimation of population mean under systematic sampling
NASA Astrophysics Data System (ADS)
Noor-ul-amin, Muhammad; Javaid, Amjad
2017-11-01
In this study we propose a generalized ratio estimator under non-response for systematic random sampling. We also generate a class of estimators through special cases of generalized estimator using different combinations of coefficients of correlation, kurtosis and variation. The mean square errors and mathematical conditions are also derived to prove the efficiency of proposed estimators. Numerical illustration is included using three populations to support the results.
Estimating neural response functions from fMRI
Kumar, Sukhbinder; Penny, William
2014-01-01
This paper proposes a methodology for estimating Neural Response Functions (NRFs) from fMRI data. These NRFs describe non-linear relationships between experimental stimuli and neuronal population responses. The method is based on a two-stage model comprising an NRF and a Hemodynamic Response Function (HRF) that are simultaneously fitted to fMRI data using a Bayesian optimization algorithm. This algorithm also produces a model evidence score, providing a formal model comparison method for evaluating alternative NRFs. The HRF is characterized using previously established “Balloon” and BOLD signal models. We illustrate the method with two example applications based on fMRI studies of the auditory system. In the first, we estimate the time constants of repetition suppression and facilitation, and in the second we estimate the parameters of population receptive fields in a tonotopic mapping study. PMID:24847246
2013-01-01
Background The validity of survey-based health care utilization estimates in the older population has been poorly researched. Owing to data protection legislation and a great number of different health care insurance providers, the assessment of recall and non-response bias is challenging to impossible in many countries. The objective of our study was to compare estimates from a population-based study in older German adults with external secondary data. Methods We used data from the German KORA-Age study, which included 4,127 people aged 65–94 years. Self-report questions covered the utilization of long-term care services, inpatient services, outpatient services, and pharmaceuticals. We calculated age- and sex-standardized mean utilization rates in each domain and compared them with the corresponding estimates derived from official statistics and independent statutory health insurance data. Results The KORA-Age study underestimated the use of long-term care services (−52%), in-hospital days (−21%) and physician visits (−70%). In contrast, the assessment of drug consumption by postal self-report questionnaires yielded similar estimates to the analysis of insurance claims data (−9%). Conclusion Survey estimates based on self-report tend to underestimate true health care utilization in the older population. Direct validation studies are needed to disentangle the impact of recall and non-response bias. PMID:23286781
Garner, Alan A; van den Berg, Pieter L
2017-10-16
New South Wales (NSW), Australia has a network of multirole retrieval physician staffed helicopter emergency medical services (HEMS) with seven bases servicing a jurisdiction with population concentrated along the eastern seaboard. The aim of this study was to estimate optimal HEMS base locations within NSW using advanced mathematical modelling techniques. We used high resolution census population data for NSW from 2011 which divides the state into areas containing 200-800 people. Optimal HEMS base locations were estimated using the maximal covering location problem facility location optimization model and the average response time model, exploring the number of bases needed to cover various fractions of the population for a 45 min response time threshold or minimizing the overall average response time to all persons, both in green field scenarios and conditioning on the current base structure. We also developed a hybrid mathematical model where average response time was optimised based on minimum population coverage thresholds. Seven bases could cover 98% of the population within 45mins when optimised for coverage or reach the entire population of the state within an average of 21mins if optimised for response time. Given the existing bases, adding two bases could either increase the 45 min coverage from 91% to 97% or decrease the average response time from 21mins to 19mins. Adding a single specialist prehospital rapid response HEMS to the area of greatest population concentration decreased the average state wide response time by 4mins. The optimum seven base hybrid model that was able to cover 97.75% of the population within 45mins, and all of the population in an average response time of 18 mins included the rapid response HEMS model. HEMS base locations can be optimised based on either percentage of the population covered, or average response time to the entire population. We have also demonstrated a hybrid technique that optimizes response time for a given number of bases and minimum defined threshold of population coverage. Addition of specialized rapid response HEMS services to a system of multirole retrieval HEMS may reduce overall average response times by improving access in large urban areas.
ESTIMATION OF AQUATIC SPECIES SENSITIVITY AND POPULATION-LEVEL RESPONSES
Determining species sensitivity and population-level responses of aquatic organisms to contaminants are critical components of criteria development and ecological risk assessment. To address data gaps in species sensitivity, the U.S. EPA developed the Interspecies Correlation Est...
Land, Charles E; Kwon, Deukwoo; Hoffman, F Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M; Simon, Steven L
2015-02-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semipalatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point "best estimates". In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response.
A Note on the Reliability Coefficients for Item Response Model-Based Ability Estimates
ERIC Educational Resources Information Center
Kim, Seonghoon
2012-01-01
Assuming item parameters on a test are known constants, the reliability coefficient for item response theory (IRT) ability estimates is defined for a population of examinees in two different ways: as (a) the product-moment correlation between ability estimates on two parallel forms of a test and (b) the squared correlation between the true…
ERIC Educational Resources Information Center
Wang, Wen-Chung
2004-01-01
The Pearson correlation is used to depict effect sizes in the context of item response theory. Amultidimensional Rasch model is used to directly estimate the correlation between latent traits. Monte Carlo simulations were conducted to investigate whether the population correlation could be accurately estimated and whether the bootstrap method…
Analysis and Management of Animal Populations: Modeling, Estimation and Decision Making
Williams, B.K.; Nichols, J.D.; Conroy, M.J.
2002-01-01
This book deals with the processes involved in making informed decisions about the management of animal populations. It covers the modeling of population responses to management actions, the estimation of quantities needed in the modeling effort, and the application of these estimates and models to the development of sound management decisions. The book synthesizes and integrates in a single volume the methods associated with these themes, as they apply to ecological assessment and conservation of animal populations. KEY FEATURES * Integrates population modeling, parameter estimation and * decision-theoretic approaches to management in a single, cohesive framework * Provides authoritative, state-of-the-art descriptions of quantitative * approaches to modeling, estimation and decision-making * Emphasizes the role of mathematical modeling in the conduct of science * and management * Utilizes a unifying biological context, consistent mathematical notation, * and numerous biological examples
Estimation of Potential Population Level Effects of Contaminants on Wildlife
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loar, J.M.
2001-06-11
The objective of this project is to provide DOE with improved methods to assess risks from contaminants to wildlife populations. The current approach for wildlife risk assessment consists of comparison of contaminant exposure estimates for individual animals to literature-derived toxicity test endpoints. These test endpoints are assumed to estimate thresholds for population-level effects. Moreover, species sensitivities to contaminants is one of several criteria to be considered when selecting assessment endpoints (EPA 1997 and 1998), yet data on the sensitivities of many birds and mammals are lacking. The uncertainties associated with this approach are considerable. First, because toxicity data are notmore » available for most potential wildlife endpoint species, extrapolation of toxicity data from test species to the species of interest is required. There is no consensus on the most appropriate extrapolation method. Second, toxicity data are represented as statistical measures (e.g., NOAEL s or LOAELs) that provide no information on the nature or magnitude of effects. The level of effect is an artifact of the replication and dosing regime employed, and does not indicate how effects might increase with increasing exposure. Consequently, slight exceedance of a LOAEL is not distinguished from greatly exceeding it. Third, the relationship of toxic effects on individuals to effects on populations is poorly estimated by existing methods. It is assumed that if the exposure of individuals exceeds levels associated with impaired reproduction, then population level effects are likely. Uncertainty associated with this assumption is large because depending on the reproductive strategy of a given species, comparable levels of reproductive impairment may result in dramatically different population-level responses. This project included several tasks to address these problems: (1) investigation of the validity of the current allometric scaling approach for interspecies extrapolation an d development of new scaling models; (2) development of dose-response models for toxicity data presented in the literature; and (3) development of matrix-based population models that were coupled with dose-response models to provide realistic estimation of population-level effects for individual responses.« less
ERIC Educational Resources Information Center
DeMars, Christine E.
2012-01-01
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…
Estimating economic losses from earthquakes using an empirical approach
Jaiswal, Kishor; Wald, David J.
2013-01-01
We extended the U.S. Geological Survey's Prompt Assessment of Global Earthquakes for Response (PAGER) empirical fatality estimation methodology proposed by Jaiswal et al. (2009) to rapidly estimate economic losses after significant earthquakes worldwide. The requisite model inputs are shaking intensity estimates made by the ShakeMap system, the spatial distribution of population available from the LandScan database, modern and historic country or sub-country population and Gross Domestic Product (GDP) data, and economic loss data from Munich Re's historical earthquakes catalog. We developed a strategy to approximately scale GDP-based economic exposure for historical and recent earthquakes in order to estimate economic losses. The process consists of using a country-specific multiplicative factor to accommodate the disparity between economic exposure and the annual per capita GDP, and it has proven successful in hindcast-ing past losses. Although loss, population, shaking estimates, and economic data used in the calibration process are uncertain, approximate ranges of losses can be estimated for the primary purpose of gauging the overall scope of the disaster and coordinating response. The proposed methodology is both indirect and approximate and is thus best suited as a rapid loss estimation model for applications like the PAGER system.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Program Evaluation and Methodology Div.
In response to a request by the United States Senate Committee on Labor and Human Resources, the General Accounting Office (GAO) examined the methodological soundness of current population estimates of the number of homeless chronically mentally ill persons, and proposed several options for estimating the size of this population. The GAO reviewed…
Bret C. Harvey; Steven F. Railsback
2007-01-01
While the concept of cumulative effects is prominent in legislation governing environmental management, the ability to estimate cumulative effects remains limited. One reason for this limitation is that important natural resources such as fish populations may exhibit complex responses to changes in environmental conditions, particularly to alteration of multiple...
Schäffer, Beat; Pieren, Reto; Mendolia, Franco; Basner, Mathias; Brink, Mark
2017-05-01
Noise exposure-response relationships are used to estimate the effects of noise on individuals or a population. Such relationships may be derived from independent or repeated binary observations, and modeled by different statistical methods. Depending on the method by which they were established, their application in population risk assessment or estimation of individual responses may yield different results, i.e., predict "weaker" or "stronger" effects. As far as the present body of literature on noise effect studies is concerned, however, the underlying statistical methodology to establish exposure-response relationships has not always been paid sufficient attention. This paper gives an overview on two statistical approaches (subject-specific and population-averaged logistic regression analysis) to establish noise exposure-response relationships from repeated binary observations, and their appropriate applications. The considerations are illustrated with data from three noise effect studies, estimating also the magnitude of differences in results when applying exposure-response relationships derived from the two statistical approaches. Depending on the underlying data set and the probability range of the binary variable it covers, the two approaches yield similar to very different results. The adequate choice of a specific statistical approach and its application in subsequent studies, both depending on the research question, are therefore crucial.
Density estimation in a wolverine population using spatial capture-recapture models
Royle, J. Andrew; Magoun, Audrey J.; Gardner, Beth; Valkenbury, Patrick; Lowell, Richard E.; McKelvey, Kevin
2011-01-01
Classical closed-population capture-recapture models do not accommodate the spatial information inherent in encounter history data obtained from camera-trapping studies. As a result, individual heterogeneity in encounter probability is induced, and it is not possible to estimate density objectively because trap arrays do not have a well-defined sample area. We applied newly-developed, capture-recapture models that accommodate the spatial attribute inherent in capture-recapture data to a population of wolverines (Gulo gulo) in Southeast Alaska in 2008. We used camera-trapping data collected from 37 cameras in a 2,140-km2 area of forested and open habitats largely enclosed by ocean and glacial icefields. We detected 21 unique individuals 115 times. Wolverines exhibited a strong positive trap response, with an increased tendency to revisit previously visited traps. Under the trap-response model, we estimated wolverine density at 9.7 individuals/1,000-km2(95% Bayesian CI: 5.9-15.0). Our model provides a formal statistical framework for estimating density from wolverine camera-trapping studies that accounts for a behavioral response due to baited traps. Further, our model-based estimator does not have strict requirements about the spatial configuration of traps or length of trapping sessions, providing considerable operational flexibility in the development of field studies.
Global mortality consequences of climate change accounting for adaptation costs and benefits
NASA Astrophysics Data System (ADS)
Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.
2017-12-01
Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.
Measuring populations to improve vaccination coverage
NASA Astrophysics Data System (ADS)
Bharti, Nita; Djibo, Ali; Tatem, Andrew J.; Grenfell, Bryan T.; Ferrari, Matthew J.
2016-10-01
In low-income settings, vaccination campaigns supplement routine immunization but often fail to achieve coverage goals due to uncertainty about target population size and distribution. Accurate, updated estimates of target populations are rare but critical; short-term fluctuations can greatly impact population size and susceptibility. We use satellite imagery to quantify population fluctuations and the coverage achieved by a measles outbreak response vaccination campaign in urban Niger and compare campaign estimates to measurements from a post-campaign survey. Vaccine coverage was overestimated because the campaign underestimated resident numbers and seasonal migration further increased the target population. We combine satellite-derived measurements of fluctuations in population distribution with high-resolution measles case reports to develop a dynamic model that illustrates the potential improvement in vaccination campaign coverage if planners account for predictable population fluctuations. Satellite imagery can improve retrospective estimates of vaccination campaign impact and future campaign planning by synchronizing interventions with predictable population fluxes.
Measuring populations to improve vaccination coverage
Bharti, Nita; Djibo, Ali; Tatem, Andrew J.; Grenfell, Bryan T.; Ferrari, Matthew J.
2016-01-01
In low-income settings, vaccination campaigns supplement routine immunization but often fail to achieve coverage goals due to uncertainty about target population size and distribution. Accurate, updated estimates of target populations are rare but critical; short-term fluctuations can greatly impact population size and susceptibility. We use satellite imagery to quantify population fluctuations and the coverage achieved by a measles outbreak response vaccination campaign in urban Niger and compare campaign estimates to measurements from a post-campaign survey. Vaccine coverage was overestimated because the campaign underestimated resident numbers and seasonal migration further increased the target population. We combine satellite-derived measurements of fluctuations in population distribution with high-resolution measles case reports to develop a dynamic model that illustrates the potential improvement in vaccination campaign coverage if planners account for predictable population fluctuations. Satellite imagery can improve retrospective estimates of vaccination campaign impact and future campaign planning by synchronizing interventions with predictable population fluxes. PMID:27703191
The response of salmon populations to geomorphic measurements at three scales
M.D. Bryant; R.D. Woodsmith
2009-01-01
Protocols to assess stream channel response to disturbances often focus on physical aspects ofthe stream at the reach scale without measurements of fish populations. In this study, estimates of juvenile salmon abundance in 511 habitat units within 25 reaches of 12 streams were made over 4 years and juxtaposed with...
Hoffman, F. Owen; Moroz, Brian; Drozdovitch, Vladimir; Bouville, André; Beck, Harold; Luckyanov, Nicholas; Weinstock, Robert M.; Simon, Steven L.
2015-01-01
Dosimetic uncertainties, particularly those that are shared among subgroups of a study population, can bias, distort or reduce the slope or significance of a dose response. Exposure estimates in studies of health risks from environmental radiation exposures are generally highly uncertain and thus, susceptible to these methodological limitations. An analysis was published in 2008 concerning radiation-related thyroid nodule prevalence in a study population of 2,994 villagers under the age of 21 years old between August 1949 and September 1962 and who lived downwind from the Semi-palatinsk Nuclear Test Site in Kazakhstan. This dose-response analysis identified a statistically significant association between thyroid nodule prevalence and reconstructed doses of fallout-related internal and external radiation to the thyroid gland; however, the effects of dosimetric uncertainty were not evaluated since the doses were simple point “best estimates”. In this work, we revised the 2008 study by a comprehensive treatment of dosimetric uncertainties. Our present analysis improves upon the previous study, specifically by accounting for shared and unshared uncertainties in dose estimation and risk analysis, and differs from the 2008 analysis in the following ways: 1. The study population size was reduced from 2,994 to 2,376 subjects, removing 618 persons with uncertain residence histories; 2. Simulation of multiple population dose sets (vectors) was performed using a two-dimensional Monte Carlo dose estimation method; and 3. A Bayesian model averaging approach was employed for evaluating the dose response, explicitly accounting for large and complex uncertainty in dose estimation. The results were compared against conventional regression techniques. The Bayesian approach utilizes 5,000 independent realizations of population dose vectors, each of which corresponds to a set of conditional individual median internal and external doses for the 2,376 subjects. These 5,000 population dose vectors reflect uncertainties in dosimetric parameters, partly shared and partly independent, among individual members of the study population. Risk estimates for thyroid nodules from internal irradiation were higher than those published in 2008, which results, to the best of our knowledge, from explicitly accounting for dose uncertainty. In contrast to earlier findings, the use of Bayesian methods led to the conclusion that the biological effectiveness for internal and external dose was similar. Estimates of excess relative risk per unit dose (ERR/Gy) for males (177 thyroid nodule cases) were almost 30 times those for females (571 cases) and were similar to those reported for thyroid cancers related to childhood exposures to external and internal sources in other studies. For confirmed cases of papillary thyroid cancers (3 in males, 18 in females), the ERR/Gy was also comparable to risk estimates from other studies, but not significantly different from zero. These findings represent the first reported dose response for a radiation epidemiologic study considering all known sources of shared and unshared errors in dose estimation and using a Bayesian model averaging (BMA) method for analysis of the dose response. PMID:25574587
DEVELOPMENT OF A DNA ARCHIVE FOR GENETIC MONITORING OF FISH POPULATIONS
Analysis of intraspecific genetic diversity provides a potentially powerful tool to estimate the impacts of environmental stressors on populations. Genetic responses of populations to novel stressors include dramatic shifts in genotype frequencies at loci under selection (i.e. ad...
Baffour, Bernard; Haynes, Michele; Dinsdale, Shane; Western, Mark; Pennay, Darren
2016-10-01
The Australian population that relies on mobile phones exclusively has increased from 5% in 2005 to 29% in 2014. Failing to include this mobile-only population leads to a potential bias in estimates from landline-based telephone surveys. This paper considers the impacts on selected health prevalence estimates with and without the mobile-only population. Using data from the Australian Health Survey - which, for the first time, included a question on telephone status - we examined demographic, geographic and health differences between the landline-accessible and mobile-only population. These groups were also compared to the full population, controlling for the sampling design and differential non-response patterns in the observed sample through weighting and benchmarking. The landline-accessible population differs from the mobile-only population for selected health measures resulting in biased prevalence estimates for smoking, alcohol risk and private health insurance coverage in the full population. The differences remain even after adjusting for age and gender. Using landline telephones only for conducting population health surveys will have an impact on prevalence rate estimates of health risk factors due to the differing profiles of the mobile-only population from the landline-accessible population. © 2016 Public Health Association of Australia.
Sulaberidze, Lela; Mirzazadeh, Ali; Chikovani, Ivdity; Shengelia, Natia; Tsereteli, Nino; Gotsadze, George
2016-01-01
An accurate estimation of the population size of men who have sex with men (MSM) is critical to the success of HIV program planning and to monitoring of the response to epidemic as a whole, but is quite often missing. In this study, our aim was to estimate the population size of MSM in Tbilisi, Georgia and compare it with other estimates in the region. In the absence of a gold standard for estimating the population size of MSM, this study reports a range of methods, including network scale-up, mobile/web apps multiplier, service and unique object multiplier, network-based capture-recapture, Handcock RDS-based and Wisdom of Crowds methods. To apply all these methods, two surveys were conducted: first, a household survey among 1,015 adults from the general population, and second, a respondent driven sample of 210 MSM. We also conducted a literature review of MSM size estimation in Eastern European and Central Asian countries. The median population size of MSM generated from all previously mentioned methods was estimated to be 5,100 (95% Confidence Interval (CI): 3,243~9,088). This corresponds to 1.42% (95%CI: 0.9%~2.53%) of the adult male population in Tbilisi. Our size estimates of the MSM population (1.42% (95%CI: 0.9%~2.53%) of the adult male population in Tbilisi) fall within ranges reported in other Eastern European and Central Asian countries. These estimates can provide valuable information for country level HIV prevention program planning and evaluation. Furthermore, we believe, that our results will narrow the gap in data availability on the estimates of the population size of MSM in the region.
Knoll, Megan; Soller, Lianne; Ben-Shoshan, Moshe; Harrington, Daniel; Fragapane, Joey; Joseph, Lawrence; La Vieille, Sebastien; St-Pierre, Yvan; Wilson, Kathi; Elliott, Susan; Clarke, Ann
2012-10-19
Poor response rates in prevalence surveys can lead to nonresponse bias thereby compromising the validity of prevalence estimates. We conducted a telephone survey of randomly selected households to estimate the prevalence of food allergy in the 10 Canadian provinces between May 2008 and March 2009 (the SCAAALAR study: Surveying Canadians to Assess the Prevalence of Common Food Allergies and Attitudes towards Food LAbeling and Risk). A household response rate of only 34.6% was attained, and those of lower socioeconomic status, lower education and new Canadians were underrepresented. We are now attempting to target these vulnerable populations in the SPAACE study (Surveying the Prevalence of Food Allergy in All Canadian Environments) and are evaluating strategies to increase the response rate. Although the success of incentives to increase response rates has been demonstrated previously, no studies have specifically examined the use of unconditional incentives in these vulnerable populations in a telephone survey. The pilot study will compare response rates between vulnerable Canadian populations receiving and not receiving an incentive. Randomly selected households were randomly assigned to receive either a $5 incentive or no incentive. The between group differences in response rates and 95% confidence intervals (CIs) were calculated. The response rates for the incentive and non-incentive groups were 36.1% and 28.7% respectively, yielding a between group difference of 7.4% (-0.7%, 15.6%). Although the wide CI precludes definitive conclusions, our results suggest that unconditional incentives are effective in vulnerable populations for telephone surveys.
Greenbaum, Gili; Renan, Sharon; Templeton, Alan R; Bouskila, Amos; Saltz, David; Rubenstein, Daniel I; Bar-David, Shirli
2017-12-22
Effective population size, a central concept in conservation biology, is now routinely estimated from genetic surveys and can also be theoretically predicted from demographic, life-history, and mating-system data. By evaluating the consistency of theoretical predictions with empirically estimated effective size, insights can be gained regarding life-history characteristics and the relative impact of different life-history traits on genetic drift. These insights can be used to design and inform management strategies aimed at increasing effective population size. We demonstrated this approach by addressing the conservation of a reintroduced population of Asiatic wild ass (Equus hemionus). We estimated the variance effective size (N ev ) from genetic data (N ev =24.3) and formulated predictions for the impacts on N ev of demography, polygyny, female variance in lifetime reproductive success (RS), and heritability of female RS. By contrasting the genetic estimation with theoretical predictions, we found that polygyny was the strongest factor affecting genetic drift because only when accounting for polygyny were predictions consistent with the genetically measured N ev . The comparison of effective-size estimation and predictions indicated that 10.6% of the males mated per generation when heritability of female RS was unaccounted for (polygyny responsible for 81% decrease in N ev ) and 19.5% mated when female RS was accounted for (polygyny responsible for 67% decrease in N ev ). Heritability of female RS also affected N ev ; hf2=0.91 (heritability responsible for 41% decrease in N ev ). The low effective size is of concern, and we suggest that management actions focus on factors identified as strongly affecting Nev, namely, increasing the availability of artificial water sources to increase number of dominant males contributing to the gene pool. This approach, evaluating life-history hypotheses in light of their impact on effective population size, and contrasting predictions with genetic measurements, is a general, applicable strategy that can be used to inform conservation practice. © 2017 Society for Conservation Biology.
Predicting Effects of Coastal Acidification on Marine Bivalve ...
The partial pressure of carbon dioxide (pCO2) is increasing in the oceans and causing changes in seawater pH commonly described as ocean or coastal acidification. It is now well-established that, when reproduced in laboratory experiments, these increases in pCO2 can reduce survival and growth of early life stage bivalves. However, the effects that these impairments would have on whole populations of bivalves are unknown. In this study, these laboratory responses were incorporated into field-parameterized population models to assess population-level sensitivities to acidification for two northeast bivalve species with different life histories: Mercenaria mercenaria (hard clam) and Argopecten irradians (bay scallop). The resulting models permitted translation of laboratory pCO2 response functions into population-level responses to examine population sensitivity to future pCO2 changes. Preliminary results from our models indicate that if the current M. mercenaria negative population growth rate was attributed to the effects of pCO2 on early life stages, the population would decline at a rate of 50% per ten years at 420 microatmospheres (µatm) pCO2. If the current population growth rate was attributed to other additive factors (e.g., harvest, harmful algal blooms), M. mercenaria populations were predicted to decline at a rate of 50% per ten years at the preliminary estimate of 1010 µatm pCO2. The estimated population growth rate was positive for A. irradians,
Xu, Mengting; Richardson, Lesley; Campbell, Sally; Pintos, Javier; Siemiatycki, Jack
2018-04-09
The purpose of this study was to describe time trends in response rates in case-control studies of cancer and identify study design factors that influence response rate. We reviewed 370 case-control studies of cancer published in 12 journals during indicator years in each of the last four decades. We estimated time trends of response rates and reasons for nonresponse in each of the following types of study subjects: cases, medical source controls, and population controls. We also estimated response rates according to characteristics of study context. Median response rates among cases and population controls were between 75% and 80% in the 1970s. Between 1971 and 2010, study response rates declined by 0.31% per year for cases and 0.78% for population controls. Only a minority of studies reported reasons for nonparticipation; subject refusal was the most common reported reason. Studies conducted in North America had lower median response rates than studies conducted in Europe. In-person and telephone interviews elicited higher response rates than mail questionnaires. Response rates from case-control studies of cancer have declined, and this could threaten the validity of results derived from these studies. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochem, Warren C; Sims, Kelly M; Bright, Eddie A
In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographicallymore » scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.« less
Fidelity of the ensemble code for visual motion in primate retina.
Frechette, E S; Sher, A; Grivich, M I; Petrusca, D; Litke, A M; Chichilnisky, E J
2005-07-01
Sensory experience typically depends on the ensemble activity of hundreds or thousands of neurons, but little is known about how populations of neurons faithfully encode behaviorally important sensory information. We examined how precisely speed of movement is encoded in the population activity of magnocellular-projecting parasol retinal ganglion cells (RGCs) in macaque monkey retina. Multi-electrode recordings were used to measure the activity of approximately 100 parasol RGCs simultaneously in isolated retinas stimulated with moving bars. To examine how faithfully the retina signals motion, stimulus speed was estimated directly from recorded RGC responses using an optimized algorithm that resembles models of motion sensing in the brain. RGC population activity encoded speed with a precision of approximately 1%. The elementary motion signal was conveyed in approximately 10 ms, comparable to the interspike interval. Temporal structure in spike trains provided more precise speed estimates than time-varying firing rates. Correlated activity between RGCs had little effect on speed estimates. The spatial dispersion of RGC receptive fields along the axis of motion influenced speed estimates more strongly than along the orthogonal direction, as predicted by a simple model based on RGC response time variability and optimal pooling. on and off cells encoded speed with similar and statistically independent variability. Simulation of downstream speed estimation using populations of speed-tuned units showed that peak (winner take all) readout provided more precise speed estimates than centroid (vector average) readout. These findings reveal how faithfully the retinal population code conveys information about stimulus speed and the consequences for motion sensing in the brain.
Ishizuka, W; Ono, K; Hara, T; Goto, S
2015-01-01
To avoid winter frost damage, evergreen coniferous species develop cold hardiness with suitable phenology for the local climate regime. Along the elevational gradient, a genetic cline in autumn phenology is often recognised among coniferous populations, but further quantification of evolutionary adaptation related to the local environment and its responsible signals generating the phenological variation are poorly understood. We evaluated the timing of cold hardening among populations of Abies sachalinensis, based on time series freezing tests using trees derived from four seed source populations × three planting sites. Furthermore, we constructed a model to estimate the development of hardening from field temperatures and the intraspecific variations occurring during this process. An elevational cline was detected such that high-elevation populations developed cold hardiness earlier than low-elevation populations, representing significant genetic control. Because development occurred earlier at high-elevation planting sites, the genetic trend across elevation overlapped with the environmental trend. Based on the trade-off between later hardening to lengthen the active growth period and earlier hardening to avoid frost damage, this genetic cline would be adaptive to the local climate. Our modelling approach estimated intraspecific variation in two model components: the threshold temperature, which was the criterion for determining whether the trees accumulated the thermal value, and the chilling requirement for trees to achieve adequate cold hardiness. A higher threshold temperature and a lower chilling requirement could be responsible for the earlier phenology of the high-elevation population. These thermal responses may be one of the important factors driving the elevation-dependent adaptation of A. sachalinensis. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Haber, Noah; Tanser, Frank; Bor, Jacob; Naidu, Kevindra; Mutevedzi, Tinofa; Herbst, Kobus; Porter, Kholoud; Pillay, Deenan; Bärnighausen, Till
2017-05-01
Standard approaches to estimation of losses in the HIV cascade of care are typically cross-sectional and do not include the population stages before linkage to clinical care. We used indiviual-level longitudinal cascade data, transition by transition, including population stages, both to identify the health-system losses in the cascade and to show the differences in inference between standard methods and the longitudinal approach. We used non-parametric survival analysis to estimate a longitudinal HIV care cascade for a large population of people with HIV residing in rural KwaZulu-Natal, South Africa. We linked data from a longitudinal population health surveillance (which is maintained by the Africa Health Research Institute) with patient records from the local public-sector HIV treatment programme (contained in an electronic clinical HIV treatment and care database, ARTemis). We followed up all people who had been newly detected as having HIV between Jan 1, 2006, and Dec 31, 2011, across six cascade stages: three population stages (first positive HIV test, HIV status knowledge, and linkage to care) and three clinical stages (eligibility for antiretroviral therapy [ART], initiation of ART, and therapeutic response). We compared our estimates to cross-sectional cascades in the same population. We estimated the cumulative incidence of reaching a particular cascade stage at a specific time with Kaplan-Meier survival analysis. Our population consisted of 5205 individuals with HIV who were followed up for 24 031 person-years. We recorded 598 deaths. 4539 individuals gained knowledge of their positive HIV status, 2818 were linked to care, 2151 became eligible for ART, 1839 began ART, and 1456 had successful responses to therapy. We used Kaplan-Meier survival analysis to adjust for censorship due to the end of data collection, and found that 8 years after testing positive in the population health surveillance, 16% had died. Among living patients, 82% knew their HIV status, 45% were linked to care, 39% were eligible for ART, 35% initiated ART, and 33% had reached therapeutic response. Median times to transition for these cascade stages were 52 months, 52 months, 20 months, 3 months, and 9 months, respectively. Compared with the population stages in the cascade, the transitions across the clinical stages were fast. Over calendar time, rates of linkage to care have decreased and patients presenting for the first time for care were, on average, healthier. HIV programmes should focus on linkage to care as the most important bottleneck in the cascade. Cascade estimation should be longitudinal rather than cross-sectional and start with the population stages preceding clinical care. Wellcome Trust, PEPFAR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evaluation of trap capture in a geographically closed population of brown treesnakes on Guam
Tyrrell, C.L.; Christy, M.T.; Rodda, G.H.; Yackel Adams, A.A.; Ellingson, A.R.; Savidge, J.A.; Dean-Bradley, K.; Bischof, R.
2009-01-01
1. Open population mark-recapture analysis of unbounded populations accommodates some types of closure violations (e.g. emigration, immigration). In contrast, closed population analysis of such populations readily allows estimation of capture heterogeneity and behavioural response, but requires crucial assumptions about closure (e.g. no permanent emigration) that are suspect and rarely tested empirically. 2. In 2003, we erected a double-sided barrier to prevent movement of snakes in or out of a 5-ha semi-forested study site in northern Guam. This geographically closed population of >100 snakes was monitored using a series of transects for visual searches and a 13 ?? 13 trapping array, with the aim of marking all snakes within the site. Forty-five marked snakes were also supplemented into the resident population to quantify the efficacy of our sampling methods. We used the program mark to analyse trap captures (101 occasions), referenced to census data from visual surveys, and quantified heterogeneity, behavioural response, and size bias in trappability. Analytical inclusion of untrapped individuals greatly improved precision in the estimation of some covariate effects. 3. A novel discovery was that trap captures for individual snakes consisted of asynchronous bouts of high capture probability lasting about 7 days (ephemeral behavioural effect). There was modest behavioural response (trap happiness) and significant latent (unexplained) heterogeneity, with small influences on capture success of date, gender, residency status (translocated or not), and body condition. 4. Trapping was shown to be an effective tool for eradicating large brown treesnakes Boiga irregularis (>900 mm snout-vent length, SVL). 5. Synthesis and applications. Mark-recapture modelling is commonly used by ecological managers to estimate populations. However, existing models involve making assumptions about either closure violations or response to capture. Physical closure of our population on a landscape scale allowed us to determine the relative importance of covariates influencing capture probability (body size, trappability periods, and latent heterogeneity). This information was used to develop models in which different segments of the population could be assigned different probabilities of capture, and suggests that modelling of open populations should incorporate easily measured, but potentially overlooked, parameters such as body size or condition. ?? 2008 The Authors.
Sightability adjustment methods for aerial surveys of wildlife populations
Steinhorst, R.K.; Samuel, M.D.
1989-01-01
Aerial surveys are routinely conducted to estimate the abundance of wildlife species and the rate of population change. However, sightability of animal groups is acknowledged as a significant source of bias in these estimates. Recent research has focused on the development of sightability models to predict the probability of sighting groups under various conditions. Given such models, we show how sightability can be incorporated into the estimator of population size as a probability of response using standard results from sample surveys. We develop formulas for the cases where the sighting probability must be estimated. An example, using data from a helicopter survey of moose in Alberta (Jacobson, Alberta Oil Sands Research Project Report, 1976), is given to illustrate the technique.
Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings
Wang, Shixin; Tian, Ye; Zhou, Yi; Liu, Wenliang; Lin, Chenxi
2016-01-01
Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite (ZY-3). Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable. PMID:27775670
Quantification of HTLV-1 Clonality and TCR Diversity
Laydon, Daniel J.; Melamed, Anat; Sim, Aaron; Gillet, Nicolas A.; Sim, Kathleen; Darko, Sam; Kroll, J. Simon; Douek, Daniel C.; Price, David A.; Bangham, Charles R. M.; Asquith, Becca
2014-01-01
Estimation of immunological and microbiological diversity is vital to our understanding of infection and the immune response. For instance, what is the diversity of the T cell repertoire? These questions are partially addressed by high-throughput sequencing techniques that enable identification of immunological and microbiological “species” in a sample. Estimators of the number of unseen species are needed to estimate population diversity from sample diversity. Here we test five widely used non-parametric estimators, and develop and validate a novel method, DivE, to estimate species richness and distribution. We used three independent datasets: (i) viral populations from subjects infected with human T-lymphotropic virus type 1; (ii) T cell antigen receptor clonotype repertoires; and (iii) microbial data from infant faecal samples. When applied to datasets with rarefaction curves that did not plateau, existing estimators systematically increased with sample size. In contrast, DivE consistently and accurately estimated diversity for all datasets. We identify conditions that limit the application of DivE. We also show that DivE can be used to accurately estimate the underlying population frequency distribution. We have developed a novel method that is significantly more accurate than commonly used biodiversity estimators in microbiological and immunological populations. PMID:24945836
Calleja, Jesus Maria Garcia; Zhao, Jinkou; Reddy, Amala; Seguy, Nicole
2014-01-01
Problem Size estimates of key populations at higher risk of HIV exposure are recognized as critical for understanding the trajectory of the HIV epidemic and planning and monitoring an effective response, especially for countries with concentrated and low epidemics such as those in Asia. Context To help countries estimate population sizes of key populations, global guidelines were updated in 2011 to reflect new technical developments and recent field experiences in applying these methods. Action In September 2013, a meeting of programme managers and experts experienced with population size estimates (PSE) for key populations was held for 13 Asian countries. This article summarizes the key results presented, shares practical lessons learnt and reviews the methodological approaches from implementing PSE in 13 countries. Lessons learnt It is important to build capacity to collect, analyse and use PSE data; establish a technical review group; and implement a transparent, well documented process. Countries should adapt global PSE guidelines and maintain operational definitions that are more relevant and useable for country programmes. Development of methods for non-venue-based key populations requires more investment and collaborative efforts between countries and among partners. PMID:25320676
Incorporating detection probability into northern Great Plains pronghorn population estimates
Jacques, Christopher N.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.; DePerno, Christopher S.
2014-01-01
Pronghorn (Antilocapra americana) abundances commonly are estimated using fixed-wing surveys, but these estimates are likely to be negatively biased because of violations of key assumptions underpinning line-transect methodology. Reducing bias and improving precision of abundance estimates through use of detection probability and mark-resight models may allow for more responsive pronghorn management actions. Given their potential application in population estimation, we evaluated detection probability and mark-resight models for use in estimating pronghorn population abundance. We used logistic regression to quantify probabilities that detecting pronghorn might be influenced by group size, animal activity, percent vegetation, cover type, and topography. We estimated pronghorn population size by study area and year using mixed logit-normal mark-resight (MLNM) models. Pronghorn detection probability increased with group size, animal activity, and percent vegetation; overall detection probability was 0.639 (95% CI = 0.612–0.667) with 396 of 620 pronghorn groups detected. Despite model selection uncertainty, the best detection probability models were 44% (range = 8–79%) and 180% (range = 139–217%) greater than traditional pronghorn population estimates. Similarly, the best MLNM models were 28% (range = 3–58%) and 147% (range = 124–180%) greater than traditional population estimates. Detection probability of pronghorn was not constant but depended on both intrinsic and extrinsic factors. When pronghorn detection probability is a function of animal group size, animal activity, landscape complexity, and percent vegetation, traditional aerial survey techniques will result in biased pronghorn abundance estimates. Standardizing survey conditions, increasing resighting occasions, or accounting for variation in individual heterogeneity in mark-resight models will increase the accuracy and precision of pronghorn population estimates.
Hines, James E.; Nichols, James D.
2002-01-01
Pradel's (1996) temporal symmetry model permitting direct estimation and modelling of population growth rate, u i , provides a potentially useful tool for the study of population dynamics using marked animals. Because of its recent publication date, the approach has not seen much use, and there have been virtually no investigations directed at robustness of the resulting estimators. Here we consider several potential sources of bias, all motivated by specific uses of this estimation approach. We consider sampling situations in which the study area expands with time and present an analytic expression for the bias in u i We next consider trap response in capture probabilities and heterogeneous capture probabilities and compute large-sample and simulation-based approximations of resulting bias in u i . These approximations indicate that trap response is an especially important assumption violation that can produce substantial bias. Finally, we consider losses on capture and emphasize the importance of selecting the estimator for u i that is appropriate to the question being addressed. For studies based on only sighting and resighting data, Pradel's (1996) u i ' is the appropriate estimator.
A Bayesian model for estimating population means using a link-tracing sampling design.
St Clair, Katherine; O'Connell, Daniel
2012-03-01
Link-tracing sampling designs can be used to study human populations that contain "hidden" groups who tend to be linked together by a common social trait. These links can be used to increase the sampling intensity of a hidden domain by tracing links from individuals selected in an initial wave of sampling to additional domain members. Chow and Thompson (2003, Survey Methodology 29, 197-205) derived a Bayesian model to estimate the size or proportion of individuals in the hidden population for certain link-tracing designs. We propose an addition to their model that will allow for the modeling of a quantitative response. We assess properties of our model using a constructed population and a real population of at-risk individuals, both of which contain two domains of hidden and nonhidden individuals. Our results show that our model can produce good point and interval estimates of the population mean and domain means when our population assumptions are satisfied. © 2011, The International Biometric Society.
To fully understand the potential long-term ecological impacts a pollutant has on a species, population-level effects must be estimated. Since long-term field experiments are typically not feasible, vital rates such as survival, growth, and reproduction of individual organisms ar...
Wu, Liviawati; Mould, Diane R; Perez Ruixo, Juan Jose; Doshi, Sameer
2015-10-01
A population pharmacokinetic pharmacodynamic (PK/PD) model describing the effect of epoetin alfa on hemoglobin (Hb) response in hemodialysis patients was developed. Epoetin alfa pharmacokinetics was described using a linear 2-compartment model. PK parameter estimates were similar to previously reported values. A maturation-structured cytokinetic model consisting of 5 compartments linked in a catenary fashion by first-order cell transfer rates following a zero-order input process described the Hb time course. The PD model described 2 subpopulations, one whose Hb response reflected epoetin alfa dosing and a second whose response was unrelated to epoetin alfa dosing. Parameter estimates from the PK/PD model were physiologically reasonable and consistent with published reports. Numerical and visual predictive checks using data from 2 studies were performed. The PK and PD of epoetin alfa were well described by the model. © 2015, The American College of Clinical Pharmacology.
Barr, Margo; Ferguson, Raymond; van Ritten, Jason; Hughes, Phil; Steel, David
2015-01-01
Although it was estimated that 20% of the population in Australia were mobile-only phone users in 2010, the inclusion of mobile numbers into computer-assisted telephone interviews (CATI) behavioural risk factor surveys did not occur until 2012. Three papers have been published describing the methods, weighting strategy and the impact in detail of including mobile numbers into the NSW Population Health Survey (NSWPHS). This paper identifies the important components of those papers and summarises them for a broader audience. In the 2012 NSWPHS, 15,214 (15,149 with weights) interviews were completed (64% landline frame; 36% mobile frame). Response, cooperation and contact rates were 37%, 65% and 69% respectively. The inclusion of mobile phone numbers resulted in a sample that was closer to the NSW population profile and impacted on the time series of estimates for alcohol drinking, recommended fruit consumption, current smoking, and overweight or obesity. The papers found that including mobile phone numbers into NSWPHS did not impact negatively on response rates or data collection, but it did cost more and affect the time series for some behavioural risk factors, in that it corrected the estimates that had been produced from a sample frame that was progressively getting less representative of the population.
Salganik, Matthew J; Fazito, Dimitri; Bertoni, Neilane; Abdo, Alexandre H; Mello, Maeve B; Bastos, Francisco I
2011-11-15
One of the many challenges hindering the global response to the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) epidemic is the difficulty of collecting reliable information about the populations most at risk for the disease. Thus, the authors empirically assessed a promising new method for estimating the sizes of most at-risk populations: the network scale-up method. Using 4 different data sources, 2 of which were from other researchers, the authors produced 5 estimates of the number of heavy drug users in Curitiba, Brazil. The authors found that the network scale-up and generalized network scale-up estimators produced estimates 5-10 times higher than estimates made using standard methods (the multiplier method and the direct estimation method using data from 2004 and 2010). Given that equally plausible methods produced such a wide range of results, the authors recommend that additional studies be undertaken to compare estimates based on the scale-up method with those made using other methods. If scale-up-based methods routinely produce higher estimates, this would suggest that scale-up-based methods are inappropriate for populations most at risk of HIV/AIDS or that standard methods may tend to underestimate the sizes of these populations.
Long-term population dynamics of a managed burrowing owl colony
Barclay, John H.; Korfanta, Nicole M.; Kauffman, Matthew J.
2011-01-01
We analyzed the population dynamics of a burrowing owl (Athene cunicularia) colony at Mineta San Jose International Airport in San Jose, California, USA from 1990-2007. This colony was managed by using artificial burrows to reduce the occurrence of nesting owls along runways and within major airport improvement projects during the study period. We estimated annual reproduction in natural and artificial burrows and age-specific survival rates with mark-recapture techniques, and we estimated the relative contribution of these vital rates to population dynamics using a life table response experiment. The breeding colony showed 2 distinct periods of change: high population growth from 7 nesting pairs in 1991 to 40 pairs in 2002 and population decline to 17 pairs in 2007. Reproduction was highly variable: annual nesting success (pairs that raised =1 young) averaged 79% and ranged from 36% to 100%, whereas fecundity averaged 3.36 juveniles/pair and ranged from 1.43 juveniles/pair to 4.54 juveniles/pair. We estimated annual adult survival at 0.710 during the period of colony increase from 1996 to 2001 and 0.465 during decline from 2002 to 2007, but there was no change in annual survival of juveniles between the 2 time periods. Long-term population growth rate (lambda) estimated from average vital rates was lambdaa=1.072 with lambdai=1.288 during colony increase and lambdad=0.921 (DELTA lambda=0.368) during decline. A life table response experiment showed that change in adult survival rate during increasing and declining phases explained more than twice the variation in growth rate than other vital rates. Our findings suggest that management and conservation of declining burrowing owl populations should address factors that influence adult survival.
NASA Astrophysics Data System (ADS)
Sanchez, E. Y.; Colman Lerner, J. E.; Porta, A.; Jacovkis, P. M.
2013-11-01
Information on spatial and time dependent concentration patterns of hazardous substances, as well as on the potential effects on population, is necessary to assist in chemical emergency planning and response. To that end, some models predict transport and dispersion of hazardous substances, and others estimate potential effects upon exposed population. Taken together, both groups constitute a powerful tool to estimate vulnerable regions and to evaluate environmental impact upon affected populations. The development of methodologies and models with direct application to the context in which we live allows us to draft a more clear representation of the risk scenario and, hence, to obtain the adequate tools for an optimal response. By means of the recently developed DDC (Damage Differential Coupling) exposure model, it was possible to optimize, from both the qualitative and the quantitative points of view, the estimation of the population affected by a toxic cloud, because the DDC model has a very good capacity to couple with different atmospheric dispersion models able to provide data over time. In this way, DDC analyzes the different concentration profiles (output from the transport model) associating them with some reference concentration to identify risk zones. In this work we present a disaster scenario in Chicago (USA), by coupling DDC with two transport models of different complexity, showing the close relationship between a representative result and the run time of the models. In the same way, it becomes evident that knowing the time evolution of the toxic cloud and of the affected regions significantly improves the probability of taking the correct decisions on planning and response facing the emergency.
Estimation of the bottleneck size in Florida panthers
Culver, M.; Hedrick, P.W.; Murphy, K.; O'Brien, S.; Hornocker, M.G.
2008-01-01
We have estimated the extent of genetic variation in museum (1890s) and contemporary (1980s) samples of Florida panthers Puma concolor coryi for both nuclear loci and mtDNA. The microsatellite heterozygosity in the contemporary sample was only 0.325 that in the museum samples although our sample size and number of loci are limited. Support for this estimate is provided by a sample of 84 microsatellite loci in contemporary Florida panthers and Idaho pumas Puma concolor hippolestes in which the contemporary Florida panther sample had only 0.442 the heterozygosity of Idaho pumas. The estimated diversities in mtDNA in the museum and contemporary samples were 0.600 and 0.000, respectively. Using a population genetics approach, we have estimated that to reduce either the microsatellite heterozygosity or the mtDNA diversity this much (in a period of c. 80years during the 20th century when the numbers were thought to be low) that a very small bottleneck size of c. 2 for several generations and a small effective population size in other generations is necessary. Using demographic data from Yellowstone pumas, we estimated the ratio of effective to census population size to be 0.315. Using this ratio, the census population size in the Florida panthers necessary to explain the loss of microsatellite variation was c .41 for the non-bottleneck generations and 6.2 for the two bottleneck generations. These low bottleneck population sizes and the concomitant reduced effectiveness of selection are probably responsible for the high frequency of several detrimental traits in Florida panthers, namely undescended testicles and poor sperm quality. The recent intensive monitoring both before and after the introduction of Texas pumas in 1995 will make the recovery and genetic restoration of Florida panthers a classic study of an endangered species. Our estimates of the bottleneck size responsible for the loss of genetic variation in the Florida panther completes an unknown aspect of this account. ?? 2008 The Authors. Journal compilation ?? 2008 The Zoological Society of London.
James F. Fowler; Carolyn Hull Sieg; Shaula Hedwall
2015-01-01
Population size and density estimates have traditionally been acceptable ways to track speciesâ response to changing environments; however, species' population centroid elevation has recently been an equally important metric. Packera franciscana (Greene) W.A. Weber and A. Love (Asteraceae; San Francisco Peaks ragwort) is a single mountain endemic plant found only...
Estimating the number of male sex workers with the capture-recapture technique in Nigeria.
Adebajo, Sylvia B; Eluwa, George I; Tocco, Jack U; Ahonsi, Babatunde A; Abiodun, Lolade Y; Anene, Oliver A; Akpona, Dennis O; Karlyn, Andrew S; Kellerman, Scott
2013-12-01
Estimating the size of populations most affected by HIV such as men who have sex with men (MSM) though crucial for structuring responses to the epidemic presents significant challenges, especially in a developing society. Using capture-recapture methodology, the size of MSM-SW in Nigeria was estimated in three major cities (Lagos, Kano and Port Harcourt) between July and December 2009. Following interviews with key informants, locations and times when MSM-SW were available to male clients were mapped and designated as "hotspots". Counts were conducted on two consecutive weekends. Population estimates were computed using a standardized Lincoln formula. Fifty-six hotspots were identified in Kano, 38 in Lagos and 42 in Port Harcourt. On a given weekend night, Port Harcourt had the largest estimated population of MSM sex workers, 723 (95% CI: 594-892) followed by Lagos state with 620 (95%CI: 517-724) and Kano state with 353 (95%CI: 332-373). This study documents a large population of MSM-SW in 3 Nigerian cities where higher HIV prevalence among MSM compared to the general population has been documented. Research and programming are needed to better understand and address the health vulnerabilities that MSM-SW and their clients face.
NASA Astrophysics Data System (ADS)
Sanchez, E. Y.; Colman Lerner, J. E.; Porta, A.; Jacovkis, P. M.
2013-01-01
The adverse health effects of the release of hazardous substances into the atmosphere continue being a matter of concern, especially in densely populated urban regions. Emergency responders need to have estimates of these adverse health effects in the local population to aid planning, emergency response, and recovery efforts. For this purpose, models that predict the transport and dispersion of hazardous materials are as necessary as those that estimate the adverse health effects in the population. In this paper, we present the results obtained by coupling a Computational Fluid Dynamics model, FLACS (FLame ACceleration Simulator), with an exposure model, DDC (Damage Differential Coupling). This coupled model system is applied to a scenario of hypothetical release of chlorine with obstacles, such as buildings, and the results show how it is capable of predicting the atmospheric dispersion of hazardous chemicals, and the adverse health effects in the exposed population, to support decision makers both in charge of emergency planning and in charge of real-time response. The results obtained show how knowing the influence of obstacles in the trajectory of the toxic cloud and in the diffusion of the pollutants transported, and obtaining dynamic information of the potentially affected population and of associated symptoms, contribute to improve the planning of the protection and response measures.
Accounting for rate variation among lineages in comparative demographic analyses
Hope, Andrew G.; Ho, Simon Y. W.; Malaney, Jason L.; Cook, Joseph A.; Talbot, Sandra L.
2014-01-01
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed-clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline-plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies.
Mountain plover population responses to black-tailed prairie dogs in Montana
Dinsmore, S.J.; White, Gary C.; Knopf, F.L.
2005-01-01
We studied a local population of mountain plovers (Charadrius montanus) in southern Phillips County, Montana, USA, from 1995 to 2000 to estimate annual rates of recruitment rate (f) and population change (??). We used Pradel models, and we modeled ?? as a constant across years, as a linear time trend, as year-specific, and with an additive effect of area occupied by prairie dogs (Cynomys ludovicianus). We modeled recruitment rate (f) as a function of area occupied by prairie dogs with the remaining model structure identical to the best model used to estimate ??. Our results indicated a strong negative effect of area occupied by prairie dogs on both ?? (slope coefficient on a log scale was -0.11; 95% CI was -0.17, -0.05) and f (slope coefficient on a logit scale was -0.23; 95% CI was -0.36, -0.10). We also found good evidence for a negative time trend on ??; this model had substantial weight (wi = 0.31), and the slope coefficient on the linear trend on a log scale was -0.10 (95% CI was -0.15, -0.05). Yearly estimates of ?? were >1 in all years except 1999, indicating that the population initially increased and then stabilized in the last year of the study. We found weak evidence for year-specific estimates of ??; the best model with year-specific estimates had a low weight (wi = 0.02), although the pattern of yearly estimates of ?? closely matched those estimated with a linear time trend. In southern Phillips County, the population trend of mountain plovers closely matched the trend in the area occupied by black-tailed prairie dogs. Black-tailed prairie dogs declined sharply in the mid-1990s in response to an outbreak of sylvatic plague, but their numbers have steadily increased since 1996 in concert with increases in plovers. The results of this study (1) increase our understanding of the dynamics of this population and how they relate to the area occupied by prairie dogs, and (2) will be useful for planning plover conservation in a prairie dog ecosystem.
2013-10-01
collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources...gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate...variants which explain much more than a small amount of risk for prostate cancer among a small population of men. Even less progress has been made
Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease
Muths, E.; Scherer, R. D.; Pilliod, D.S.
2011-01-01
The need to increase our understanding of factors that regulate animal population dynamics has been catalysed by recent, observed declines in wildlife populations worldwide. Reliable estimates of demographic parameters are critical for addressing basic and applied ecological questions and understanding the response of parameters to perturbations (e.g. disease, habitat loss, climate change). However, to fully assess the impact of perturbation on population dynamics, all parameters contributing to the response of the target population must be estimated. We applied the reverse-time model of Pradel in Program mark to 6years of capture-recapture data from two populations of Anaxyrus boreas (boreal toad) populations, one with disease and one without. We then assessed a priori hypotheses about differences in survival and recruitment relative to local environmental conditions and the presence of disease. We further explored the relative contribution of survival probability and recruitment rate to population growth and investigated how shifts in these parameters can alter population dynamics when a population is perturbed. High recruitment rates (0??41) are probably compensating for low survival probability (range 0??51-0??54) in the population challenged by an emerging pathogen, resulting in a relatively slow rate of decline. In contrast, the population with no evidence of disease had high survival probability (range 0??75-0??78) but lower recruitment rates (0??25). Synthesis and applications.We suggest that the relationship between survival and recruitment may be compensatory, providing evidence that populations challenged with disease are not necessarily doomed to extinction. A better understanding of these interactions may help to explain, and be used to predict, population regulation and persistence for wildlife threatened with disease. Further, reliable estimates of population parameters such as recruitment and survival can guide the formulation and implementation of conservation actions such as repatriations or habitat management aimed to improve recruitment. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.
Esfandyari, Hadi; Sørensen, Anders Christian; Bijma, Piter
2015-09-29
Breeding goals in a crossbreeding system should be defined at the commercial crossbred level. However, selection is often performed to improve purebred performance. A genomic selection (GS) model that includes dominance effects can be used to select purebreds for crossbred performance. Optimization of the GS model raises the question of whether marker effects should be estimated from data on the pure lines or crossbreds. Therefore, the first objective of this study was to compare response to selection of crossbreds by simulating a two-way crossbreeding program with either a purebred or a crossbred training population. We assumed a trait of interest that was controlled by loci with additive and dominance effects. Animals were selected on estimated breeding values for crossbred performance. There was no genotype by environment interaction. Linkage phase and strength of linkage disequilibrium between quantitative trait loci (QTL) and single nucleotide polymorphisms (SNPs) can differ between breeds, which causes apparent effects of SNPs to be line-dependent. Thus, our second objective was to compare response to GS based on crossbred phenotypes when the line origin of alleles was taken into account or not in the estimation of breeding values. Training on crossbred animals yielded a larger response to selection in crossbred offspring compared to training on both pure lines separately or on both pure lines combined into a single reference population. Response to selection in crossbreds was larger if both phenotypes and genotypes were collected on crossbreds than if phenotypes were only recorded on crossbreds and genotypes on their parents. If both parental lines were distantly related, tracing the line origin of alleles improved genomic prediction, whereas if both parental lines were closely related and the reference population was small, it was better to ignore the line origin of alleles. Response to selection in crossbreeding programs can be increased by training on crossbred genotypes and phenotypes. Moreover, if the reference population is sufficiently large and both pure lines are not very closely related, tracing the line origin of alleles in crossbreds improves genomic prediction.
1989-09-30
AD-A237 531 1989 SURVEY OF UNITED STATES ARMY RESERVE (USAR) TROOP PROGRAM UNIT (TPU) SOLDIERS Tabulation of Questionnaire Responses: Longitudinal...Program Unit (TPU) Soldiers . The Tabulation Volumes list questionnaire items and the percent of respondents (weighted to population estimates) who have...Reserve population eligible for selection was defined by the number of personnel rec,,rds on a Dpeber 1988 SIDPERS data base; this totalled 280,265
Hines, J.E.; Nichols, J.D.
2002-01-01
Pradel's (1996) temporal symmetry model permitting direct estimation and modelling of population growth rate, lambda sub i provides a potentially useful tool for the study of population dynamics using marked animals. Because of its recent publication date, the approach has not seen much use, and there have been virtually no investigations directed at robustness of the resulting estimators. Here we consider several potential sources of bias, all motivated by specific uses of this estimation approach. We consider sampling situations in which the study area expands with time and present an analytic expression for the bias in lambda hat sub i. We next consider trap response in capture probabilities and heterogeneous capture probabilities and compute large-sample and simulation-based approximations of resulting bias in lambda hat sub i. These approximations indicate that trap response is an especially important assumption violation that can produce substantial bias. Finally, we consider losses on capture and emphasize the importance of selecting the estimator for lambda sub i that is appropriate to the question being addressed. For studies based on only sighting and resighting data, Pradel's (1996) lambda hat prime sub i is the appropriate estimator.
Gianinazzi, Micòl E.; Michel, Gisela; Zwahlen, Marcel; von der Weid, Nicolas X.; Kuehni, Claudia E.
2017-01-01
Purpose This is the first study to quantify potential nonresponse bias in a childhood cancer survivor questionnaire survey. We describe early and late responders and nonresponders, and estimate nonresponse bias in a nationwide questionnaire survey of survivors. Methods In the Swiss Childhood Cancer Survivor Study, we compared characteristics of early responders (who answered an initial questionnaire), late responders (who answered after ≥1 reminder) and nonresponders. Sociodemographic and cancer-related information was available for the whole population from the Swiss Childhood Cancer Registry. We compared observed prevalence of typical outcomes in responders to the expected prevalence in a complete (100% response) representative population we constructed in order to estimate the effect of nonresponse bias. We constructed the complete population using inverse probability of participation weights. Results Of 2328 survivors, 930 returned the initial questionnaire (40%); 671 returned the questionnaire after ≥1reminder (29%). Compared to early and late responders, we found that the 727 nonresponders (31%) were more likely male, aged <20 years, French or Italian speaking, of foreign nationality, diagnosed with lymphoma or a CNS or germ cell tumor, and treated only with surgery. But observed prevalence of typical estimates (somatic health, medical care, mental health, health behaviors) was similar among the sample of early responders (40%), all responders (69%), and the complete representative population (100%). In this survey, nonresponse bias did not seem to influence observed prevalence estimates. Conclusion Nonresponse bias may play only a minor role in childhood cancer survivor studies, suggesting that results can be generalized to the whole population of such cancer survivors and applied in clinical practice. PMID:28463966
Hargrove, John W; van Schalkwyk, Cari; Humphrey, Jean H; Mutasa, Kuda; Ntozini, Robert; Owen, Sherry Michele; Masciotra, Silvina; Parekh, Bharat S; Duong, Yen T; Dobbs, Trudy; Kilmarx, Peter H; Gonese, Elizabeth
2017-09-01
Laboratory assays that identify recent HIV infections are important for assessing impacts of interventions aimed at reducing HIV incidence. Kinetics of HIV humoral responses can vary with inherent assay properties, and between HIV subtypes, populations, and physiological states. They are important in determining mean duration of recent infection (MDRI) for antibody-based assays for detecting recent HIV infections. We determined MDRIs for multi-subtype peptide representing subtypes B, E and D (BED)-capture enzyme immunoassay, limiting antigen (LAg), and Bio-Rad Avidity Incidence (BRAI) assays for 101 seroconverting postpartum women, recruited in Harare from 1997 to 2000 during the Zimbabwe Vitamin A for Mothers and Babies trial, comparing them against published MDRIs estimated from seroconverting cases in the general population. We also compared MDRIs for women who seroconverted either during the first 9 months, or at later stages, postpartum. At cutoffs (C) of 0.8 for BED, 1.5 for LAg, and 40% for BRAI, estimated MDRIs for postpartum mothers were 192, 104, and 144 days, 33%, 32%, and 52% lower than published estimates of 287, 152 and 298 days, respectively, for clade C samples from general populations. Point estimates of MDRI values were 7%-19% shorter for women who seroconverted in the first 9 months postpartum than for those seroconverting later. MDRI values for three HIV incidence biomarkers are longer in the general population than among postpartum women, particularly those who recently gave birth, consistent with heightened immunological activation soon after birth. Our results provide a caution that MDRI may vary significantly between subjects in different physiological states.
Monitoring the shorebirds of North America: Towards a unified approach
Skagen, S.K.; Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.L.; Morrison, R.I.G.
2003-01-01
The Program for Regional and International Shorebird Monitoring (PRISM) has recently developed a single blueprint for monitoring shorebirds in Canada and the United States in response to needs identified by recent shorebird conservation plans. The goals of PRISM are to: (1) estimate the size of breeding populations of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. The initial focus has been on developing methods to estimate trends in population size. A three-part approach for estimating trends includes: (1) breeding surveys in arctic, boreal, and temperate regions, (2) migration surveys, and (3) wintering surveys.
A critical step in estimating the ecological effects of a toxicant is extrapolating organism-level response data across higher levels of biological organization. In the present study, the organism-to-population link is made for the mysid, Americamysis bahia, exposed to a range of...
Earle, Paul S.; Wald, David J.; Jaiswal, Kishor S.; Allen, Trevor I.; Hearne, Michael G.; Marano, Kristin D.; Hotovec, Alicia J.; Fee, Jeremy
2009-01-01
Within minutes of a significant earthquake anywhere on the globe, the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system assesses its potential societal impact. PAGER automatically estimates the number of people exposed to severe ground shaking and the shaking intensity at affected cities. Accompanying maps of the epicentral region show the population distribution and estimated ground-shaking intensity. A regionally specific comment describes the inferred vulnerability of the regional building inventory and, when available, lists recent nearby earthquakes and their effects. PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/), consolidated in a concise one-page report, and sent in near real-time to emergency responders, government agencies, and the media. Both rapid and accurate results are obtained through manual and automatic updates of PAGER's content in the hours following significant earthquakes. These updates incorporate the most recent estimates of earthquake location, magnitude, faulting geometry, and first-hand accounts of shaking. PAGER relies on a rich set of earthquake analysis and assessment tools operated by the USGS and contributing Advanced National Seismic System (ANSS) regional networks. A focused research effort is underway to extend PAGER's near real-time capabilities beyond population exposure to quantitative estimates of fatalities, injuries, and displaced population.
Understanding the demographic drivers of realized population growth rates.
Koons, David N; Arnold, Todd W; Schaub, Michael
2017-10-01
Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will strengthen our understanding of demography for many species as we aim to conserve biodiversity during an era of non-stationary global change. © 2017 by the Ecological Society of America.
Yackel Adams, A.A.; Skagen, S.K.; Savidge, J.A.
2007-01-01
Many North American prairie bird populations have recently declined, and the causes of these declines remain largely unknown. To determine whether population limitation occurs during breeding, we evaluated the stability of a population of prairie birds using population-specific values for fecundity and postfledging survival. During 2001-2003, we radiomarked 67 female Lark Buntings (Calamospiza melanocorys) to determine annual fecundity and evaluate contributing factors such as nest survival and breeding response (number of breeding attempts and dispersal). Collectively, 67 females built 112 nests (1.67 ± 0.07 nests female−1 season−1; range: 1–3); 34 were second nests and 11 were third nests. Daily nest survival estimates were similar for initial and later nests with overall nest survival (DSR19) of 30.7% and 31.7%, respectively. Nest predation was the most common cause of failure (92%). Capture and radiomarking of females did not affect nest survival. Lark Bunting dispersal probabilities increased among females that fledged young from initial nests and females that lost their original nests late in the season. Conservative and liberal estimates of mean annual fecundity were 0.96 ±0.11 and 1.24 ± 0.09 female offspring per female, respectively. Given the fecundity and juvenile-survival estimates for this population, annual adult survival values of 71–77% are necessary to achieve a stable population. Because adult survival of prairie passerines ranges between 55% and 65%, this study area may not be capable of sustaining a stable population in the absence of immigration. We contrast our population assessment with one that assumes indirect values of fecundity and juvenile survival. To elucidate limiting factors, estimation of population-specific demographic parameters is desirable. We present an approach for selecting species and areas for evaluation of population stability.
Pronk, Anjoeka; Stewart, Patricia A; Coble, Joseph B; Katki, Hormuzd A; Wheeler, David C; Colt, Joanne S; Baris, Dalsu; Schwenn, Molly; Karagas, Margaret R; Johnson, Alison; Waddell, Richard; Verrill, Castine; Cherala, Sai; Silverman, Debra T; Friesen, Melissa C
2012-10-01
Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to questionnaire responses to assess diesel exhaust exposure in the population-based case-control New England Bladder Cancer Study. 2631 participants reported 14 983 jobs; 2749 jobs were administered questionnaires ('modules') with diesel-relevant questions. We applied decision rules to assign exposure metrics based either on the occupational history (OH) responses (OH estimates) or on the module responses (module estimates); we then combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed individually to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module and one-by-one review estimates. The proportion of exposed jobs was 20-25% for all jobs, depending on approach, and 54-60% for jobs with diesel-relevant modules. The OH/module and one-by-one review estimates had moderately high agreement for all jobs (κ(w)=0.68-0.81) and for jobs with diesel-relevant modules (κ(w)=0.62-0.78) for the probability, intensity and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates. The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies.
Spatio-temporal population estimates for risk management
NASA Astrophysics Data System (ADS)
Cockings, Samantha; Martin, David; Smith, Alan; Martin, Rebecca
2013-04-01
Accurate estimation of population at risk from hazards and effective emergency management of events require not just appropriate spatio-temporal modelling of hazards but also of population. While much recent effort has been focused on improving the modelling and predictions of hazards (both natural and anthropogenic), there has been little parallel advance in the measurement or modelling of population statistics. Different hazard types occur over diverse temporal cycles, are of varying duration and differ significantly in their spatial extent. Even events of the same hazard type, such as flood events, vary markedly in their spatial and temporal characteristics. Conceptually and pragmatically then, population estimates should also be available for similarly varying spatio-temporal scales. Routine population statistics derived from traditional censuses or surveys are usually static representations in both space and time, recording people at their place of usual residence on census/survey night and presenting data for administratively defined areas. Such representations effectively fix the scale of population estimates in both space and time, which is unhelpful for meaningful risk management. Over recent years, the Pop24/7 programme of research, based at the University of Southampton (UK), has developed a framework for spatio-temporal modelling of population, based on gridded population surfaces. Based on a data model which is fully flexible in terms of space and time, the framework allows population estimates to be produced for any time slice relevant to the data contained in the model. It is based around a set of origin and destination centroids, which have capacities, spatial extents and catchment areas, all of which can vary temporally, such as by time of day, day of week, season. A background layer, containing information on features such as transport networks and landuse, provides information on the likelihood of people being in certain places at specific times. Unusual patterns associated with special events can also be modelled and the framework is fully volume preserving. Outputs from the model are gridded population surfaces for the specified time slice, either for total population or by sub-groups (e.g. age). Software to implement the models (SurfaceBuilder247) has been developed and pre-processed layers for typical time slices for England and Wales in 2001 and 2006 are available for UK academic purposes. The outputs and modelling framework from the Pop24/7 programme provide significant opportunities for risk management applications. For estimates of mid- to long-term cumulative population exposure to hazards, such as in flood risk mapping, populations can be produced for numerous time slices and integrated with flood models. For applications in emergency response/ management, time-specific population models can be used as seeds for agent-based models or other response/behaviour models. Estimates for sub-groups of the population also permit exploration of vulnerability through space and time. This paper outlines the requirements for effective spatio-temporal population models for risk management. It then describes the Pop24/7 framework and illustrates its potential for risk management through presentation of examples from natural and anthropogenic hazard applications. The paper concludes by highlighting key challenges for future research in this area.
Assessing tiger population dynamics using photographic capture-recapture sampling
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.
2006-01-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Assessing tiger population dynamics using photographic capture-recapture sampling.
Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E
2006-11-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Spatial Estimation of Populations at Risk from Radiological Dispersion Device Terrorism Incidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regens, J.L.; Gunter, J.T.
2008-07-01
Delineation of the location and size of the population potentially at risk of exposure to ionizing radiation is one of the key analytical challenges in estimating accurately the severity of the potential health effects associated with a radiological terrorism incident. Regardless of spatial scale, the geographical units for which population data commonly are collected rarely coincide with the geographical scale necessary for effective incident management and medical response. This paper identifies major government and commercial open sources of U.S. population data and presents a GIS-based approach for allocating publicly available population data, including age distributions, to geographical units appropriate formore » planning and implementing incident management and medical response strategies. In summary: The gravity model offers a straight-forward, empirical tool for estimating population flows, especially when geographical areas are relatively well-defined in terms of accessibility and spatial separation. This is particularly important for several reasons. First, the spatial scale for the area impacted by a RDD terrorism event is unlikely to match fully the spatial scale of available population data. That is, the plume spread typically will not uniformly overlay the impacted area. Second, the number of people within the impacted area varies as a function whether an attack occurs during the day or night. For example, the population of a central business district or industrial area typically is larger during the day while predominately residential areas have larger night time populations. As a result, interpolation techniques that link population data to geographical units and allocate those data based on time-frame at a spatial scale that is relevant to enhancing preparedness and response. The gravity model's main advantage is that it efficiently allocates readily available, open source population data to geographical units appropriate for planning and implementing incident management and medical monitoring strategies. The importance of being able to link population estimates to geographic areas during the course of an RDD incident can be understood intuitively: - The spatial distribution of actual total dose equivalents of ionizing radiation is likely to vary due to changes in meteorological parameters as an event evolves over time; - The size of the geographical area affected also is likely to vary as a function of the actual release scenario; - The ability to identify the location and size of the populations that may be exposed to doses of ionizing radiation is critical to carrying out appropriate treatment and post-event medical monitoring; - Once a spatial interaction model has been validated for a city or a region, it can then be used for simulation and prediction purposes to assess the possible human health consequences of different release scenarios. (authors)« less
NASA Astrophysics Data System (ADS)
Wald, D. J.; Jaiswal, K. S.; Marano, K.; Hearne, M.; Earle, P. S.; So, E.; Garcia, D.; Hayes, G. P.; Mathias, S.; Applegate, D.; Bausch, D.
2010-12-01
The U.S. Geological Survey (USGS) has begun publicly releasing earthquake alerts for significant earthquakes around the globe based on estimates of potential casualties and economic losses. These estimates should significantly enhance the utility of the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system that has been providing estimated ShakeMaps and computing population exposures to specific shaking intensities since 2007. Quantifying earthquake impacts and communicating loss estimates (and their uncertainties) to the public has been the culmination of several important new and evolving components of the system. First, the operational PAGER system now relies on empirically-based loss models that account for estimated shaking hazard, population exposure, and employ country-specific fatality and economic loss functions derived using analyses of losses due to recent and past earthquakes. In some countries, our empirical loss models are informed in part by PAGER’s semi-empirical and analytical loss models, and building exposure and vulnerability data sets, all of which are being developed in parallel to the empirical approach. Second, human and economic loss information is now portrayed as a supplement to existing intensity/exposure content on both PAGER summary alert (available via cell phone/email) messages and web pages. Loss calculations also include estimates of the economic impact with respect to the country’s gross domestic product. Third, in order to facilitate rapid and appropriate earthquake responses based on our probable loss estimates, in early 2010 we proposed a four-level Earthquake Impact Scale (EIS). Instead of simply issuing median estimates for losses—which can be easily misunderstood and misused—this scale provides ranges of losses from which potential responders can gauge expected overall impact from strong shaking. EIS is based on two complementary criteria: the estimated cost of damage, which is most suitable for U.S. domestic events; and estimated ranges of fatalities, which are generally more appropriate for global events, particularly in earthquake-vulnerable countries. Alert levels are characterized by alerts of green (little or no impact), yellow (regional impact and response), orange (national-scale impact and response), and red (international response). Corresponding fatality thresholds for yellow, orange, and red alert levels are 1, 100, and 1000, respectively. For damage impact, yellow, orange, and red thresholds are triggered when estimated US dollar losses reach 1 million, 100 million, and 1 billion+ levels, respectively. Finally, alerting protocols now explicitly support EIS-based alerts. Critical users can receive PAGER alerts i) based on the EIS-based alert level, in addition to or as an alternative to magnitude and population/intensity exposure-based alerts, and ii) optionally, based on user-selected regions of the world. The essence of PAGER’s impact-based alerting is that actionable loss information is now available in the immediate aftermath of significant earthquakes worldwide based on quantifiable, albeit uncertain, loss estimates provided by the USGS.
Reynolds, Michelle H.; Courtot, Karen; Hatfield, Jeffrey
2017-01-01
Wildlife managers often request a simple approach to monitor the status of species of concern. In response to that need, we used eight years of monitoring data to estimate population size and test the validity of an index for monitoring accurately the abundance of reintroduced, endangered Laysan Teal Anas laysanensis. The population was established at Midway Atoll in the Hawaiian archipelago after 42 wild birds were translocated from Laysan Island during 2004–2005. We fitted 587 birds with unique markers during 2004–2015, recorded 21,309 sightings until March 2016, and conducted standardised survey counts during 2007–2015. A modified Lincoln-Petersen mark-resight estimator and ANCOVA models were used to test the relationship between survey counts, seasonal detectability, and population abundance. Differences were found between the breeding and non-breeding seasons in detection and how maximum counts recorded related to population estimates. The results showed strong, positive correlations between the seasonal maximum counts and population estimates. The ANCOVA models supported the use of standardised bi-monthly counts of unmarked birds as a valid index to monitor trends among years within a season at Midway Atoll. The translocated population increased to 661 adult and juvenile birds (95% CI = 608–714) by 2010, then declined by 38% between 2010 and 2012 after the Toˉhoku Japan earthquake-generated tsunami inundated 41% of the atoll and triggered an Avian Botulism type C Clostridium botulinum outbreak. Following another severe botulism outbreak during 2015, the population experienced a 37% decline. Data indicated that the Midway Atoll population, like the founding Laysan Island population, is susceptible to catastrophic population declines. Consistent standardised monitoring using simple counts, in place of mark-recapture and resightings surveys, can be used to evaluate population status over the long-term. We estimate there were 314–435 Laysan Teal (95% CI for population estimate; point estimate = 375 individuals) at Midway Atoll in 2015; c. 50% of the global population. In comparison, the most recent estimate for numbers on Laysan Island was of 339 individuals in 2012 (95% CI = 265–413). We suggest that this approach can be used to validate a survey index for any marked, reintroduced resident wildlife population.
Jaiswal, Kishor; Wald, David J.; Earle, Paul S.; Porter, Keith A.; Hearne, Mike
2011-01-01
Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system, estimates of population exposure at various shaking intensities, and a list of the most severely shaken cities in the epicentral area. These estimates help government, scientific, and relief agencies to guide their responses in the immediate aftermath of a significant earthquake. To account for wide variability and uncertainty associated with inventory, structural vulnerability and casualty data, PAGER employs three different global earthquake fatality/loss computation models. This article describes the development of the models and demonstrates the loss estimation capability for earthquakes that have occurred since 2007. The empirical model relies on country-specific earthquake loss data from past earthquakes and makes use of calibrated casualty rates for future prediction. The semi-empirical and analytical models are engineering-based and rely on complex datasets including building inventories, time-dependent population distributions within different occupancies, the vulnerability of regional building stocks, and casualty rates given structural collapse.
USDA-ARS?s Scientific Manuscript database
In the western United States where dairy wastewaters are commonly land applied, there are concerns over individuals being exposed to airborne pathogens. In response, a quantitative microbial risk assessment (QMRA) was performed to estimate infectious risks after inhalation exposure of pathogens aero...
Accounting for rate variation among lineages in comparative demographic analyses.
Hope, Andrew G; Ho, Simon Y W; Malaney, Jason L; Cook, Joseph A; Talbot, Sandra L
2014-09-01
Genetic analyses of contemporary populations can be used to estimate the demographic histories of species within an ecological community. Comparison of these demographic histories can shed light on community responses to past climatic events. However, species experience different rates of molecular evolution, and this presents a major obstacle to comparative demographic analyses. We address this problem by using a Bayesian relaxed-clock method to estimate the relative evolutionary rates of 22 small mammal taxa distributed across northwestern North America. We found that estimates of the relative molecular substitution rate for each taxon were consistent across the range of sampling schemes that we compared. Using three different reference rates, we rescaled the relative rates so that they could be used to estimate absolute evolutionary timescales. Accounting for rate variation among taxa led to temporal shifts in our skyline-plot estimates of demographic history, highlighting both uniform and idiosyncratic evolutionary responses to directional climate trends for distinct ecological subsets of the small mammal community. Our approach can be used in evolutionary analyses of populations from multiple species, including comparative demographic studies. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Kaneoke, Y; Urakawa, T; Kakigi, R
2009-05-19
We investigated whether direction information is represented in the population-level neural response evoked by the visual motion stimulus, as measured by magnetoencephalography. Coherent motions with varied speed, varied direction, and different coherence level were presented using random dot kinematography. Peak latency of responses to motion onset was inversely related to speed in all directions, as previously reported, but no significant effect of direction on latency changes was identified. Mutual information entropy (IE) calculated using four-direction response data increased significantly (>2.14) after motion onset in 41.3% of response data and maximum IE was distributed at approximately 20 ms after peak response latency. When response waveforms showing significant differences (by multivariate discriminant analysis) in distribution of the three waveform parameters (peak amplitude, peak latency, and 75% waveform width) with stimulus directions were analyzed, 87 waveform stimulus directions (80.6%) were correctly estimated using these parameters. Correct estimation rate was unaffected by stimulus speed, but was affected by coherence level, even though both speed and coherence affected response amplitude similarly. Our results indicate that speed and direction of stimulus motion are represented in the distinct properties of a response waveform, suggesting that the human brain processes speed and direction separately, at least in part.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... population program HexSim. Though still at preliminary draft stage, population response simulations from this portion of the modeling process are available for public review by request from our office. These simulations do not estimate what will occur in the future, but provide comparative information on potential...
Quantifying Access Disparities in Response Plans
Indrakanti, Saratchandra; Mikler, Armin R.; O’Neill, Martin; Tiwari, Chetan
2016-01-01
Effective response planning and preparedness are critical to the health and well-being of communities in the face of biological emergencies. Response plans involving mass prophylaxis may seem feasible when considering the choice of dispensing points within a region, overall population density, and estimated traffic demands. However, the plan may fail to serve particular vulnerable subpopulations, resulting in access disparities during emergency response. For a response plan to be effective, sufficient mitigation resources must be made accessible to target populations within short, federally-mandated time frames. A major challenge in response plan design is to establish a balance between the allocation of available resources and the provision of equal access to PODs for all individuals in a given geographic region. Limitations on the availability, granularity, and currency of data to identify vulnerable populations further complicate the planning process. To address these challenges and limitations, data driven methods to quantify vulnerabilities in the context of response plans have been developed and are explored in this article. PMID:26771551
Exum, Natalie G; Pisanic, Nora; Granger, Douglas A; Schwab, Kellogg J; Detrick, Barbara; Kosek, Margaret; Egorov, Andrey I; Griffin, Shannon M; Heaney, Christopher D
2016-09-01
This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.
A Dexterous Optional Randomized Response Model
ERIC Educational Resources Information Center
Tarray, Tanveer A.; Singh, Housila P.; Yan, Zaizai
2017-01-01
This article addresses the problem of estimating the proportion Pi[subscript S] of the population belonging to a sensitive group using optional randomized response technique in stratified sampling based on Mangat model that has proportional and Neyman allocation and larger gain in efficiency. Numerically, it is found that the suggested model is…
Estimation of group means when adjusting for covariates in generalized linear models.
Qu, Yongming; Luo, Junxiang
2015-01-01
Generalized linear models are commonly used to analyze categorical data such as binary, count, and ordinal outcomes. Adjusting for important prognostic factors or baseline covariates in generalized linear models may improve the estimation efficiency. The model-based mean for a treatment group produced by most software packages estimates the response at the mean covariate, not the mean response for this treatment group for the studied population. Although this is not an issue for linear models, the model-based group mean estimates in generalized linear models could be seriously biased for the true group means. We propose a new method to estimate the group mean consistently with the corresponding variance estimation. Simulation showed the proposed method produces an unbiased estimator for the group means and provided the correct coverage probability. The proposed method was applied to analyze hypoglycemia data from clinical trials in diabetes. Copyright © 2014 John Wiley & Sons, Ltd.
Meiklejohn, Jessica; Connor, Jennie; Kypri, Kypros
2012-01-01
Background Response rates for surveys of alcohol use are declining for all modes of administration (postal, telephone, face-to-face). Low response rates may result in estimates that are biased by selective non-response. We examined non-response bias in the NZ GENACIS survey, a postal survey of a random electoral roll sample, with a response rate of 49.5% (n = 1924). Our aim was to estimate the magnitude of non-response bias in estimating the prevalence of current drinking and heavy episodic (binge) drinking. Methods We used the “continuum of resistance” model to guide the investigation. In this model the likelihood of response by sample members is related to the amount of effort required from the researchers to elicit a response. First, the demographic characteristics of respondents and non-respondents were compared. Second, respondents who returned their questionnaire before the first reminder (early), before the second reminder (intermediate) or after the second reminder (late) were compared by demographic characteristics, 12-month prevalence of drinking and prevalence of binge drinking. Results Demographic characteristics and prevalence of binge drinking were significantly different between late respondents and early/intermediate respondents, with the demographics of early and intermediate respondents being similar to people who refused to participate while late respondents were similar to all other non-respondents. Assuming non-respondents who did not actively refuse to participate had the same drinking patterns as late respondents, the prevalence of binge drinking amongst current drinkers was underestimated. Adjusting the prevalence of binge drinkers amongst current drinkers using population weights showed that this method of adjustment still resulted in an underestimate of the prevalence. Conclusions The findings suggest non-respondents who did not actively refuse to participate are likely to have similar or more extreme drinking behaviours than late respondents, and that surveys of health compromising behaviours such as alcohol use are likely to underestimate the prevalence of these behaviours. PMID:22532858
Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses
NASA Astrophysics Data System (ADS)
Ganusov, Vitaly V.; Neher, Richard A.; Perelson, Alan S.
2013-01-01
Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the absence of treatment leads to AIDS and death in almost all infected individuals. HIV infection elicits a vigorous immune response starting about 2-3 weeks postinfection that can lower the amount of virus in the body, but which cannot eradicate the virus. How HIV establishes a chronic infection in the face of a strong immune response remains poorly understood. It has been shown that HIV is able to rapidly change its proteins via mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an HIV-infected patient will generate 4-12 CTL responses specific for parts of viral proteins called epitopes. Such CTL responses lead to strong selective pressure to change the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the viral population ‘escapes’ from about half of the CTL responses by mutation in the first year. Here we review experimental data on HIV evolution in response to CTL pressure, mathematical models developed to explain this evolution, and highlight problems associated with the data and previous modeling efforts. We show that estimates of the strength of the epitope-specific CTL response depend on the method used to fit models to experimental data and on the assumptions made regarding how mutants are generated during infection. We illustrate that allowing CTL responses to decay over time may improve the model fit to experimental data and provides higher estimates of the killing efficacy of HIV-specific CTLs. We also propose a novel method for simultaneously estimating the killing efficacy of multiple CTL populations specific for different epitopes of HIV using stochastic simulations. Lastly, we show that current estimates of the efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by more frequent sampling of viral sequences and by combining data on sequence evolution with experimentally measured CTL dynamics.
The Missing Response to Selection in the Wild.
Pujol, Benoit; Blanchet, Simon; Charmantier, Anne; Danchin, Etienne; Facon, Benoit; Marrot, Pascal; Roux, Fabrice; Scotti, Ivan; Teplitsky, Céline; Thomson, Caroline E; Winney, Isabel
2018-05-01
Although there are many examples of contemporary directional selection, evidence for responses to selection that match predictions are often missing in quantitative genetic studies of wild populations. This is despite the presence of genetic variation and selection pressures - theoretical prerequisites for the response to selection. This conundrum can be explained by statistical issues with accurate parameter estimation, and by biological mechanisms that interfere with the response to selection. These biological mechanisms can accelerate or constrain this response. These mechanisms are generally studied independently but might act simultaneously. We therefore integrated these mechanisms to explore their potential combined effect. This has implications for explaining the apparent evolutionary stasis of wild populations and the conservation of wildlife. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam
2011-01-01
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.
Resistance of neonates and field-collected garter snakes (Thamnophis spp.) to tetrodotoxin.
Ridenhour, Benjamin J; Brodie, Edmund D; Brodie, Edmund D
2004-01-01
Prior studies of tetrodotoxin (TTX) resistance in garter snakes (Thamnophis spp.) have used laboratory-reared neonates as subjects, but the use of field-caught individuals would reduce cost and effort. We compared estimates of TTX resistance in field-caught and laboratory-born garter snakes. We found that a mass-adjusted dose of TTX administered to field-caught garter snakes produces an estimate of a population 50% dose that is comparable and unbiased with respect to those previously reported using laboratory-born neonates. Dose-response curves estimated for three field-caught populations closely matched the curves estimated from neonate data. The method was tested using populations with levels of TTX resistance ranging between approximately 5-90 mass-adjusted mouse units for their respective 50% doses. The technique of using field-caught snakes as test subjects provides larger genetically independent data sets that are more easily obtained. Our results indicate that changes in mass during development parallel ontogenetic shifts in TTX resistance.
NASA Technical Reports Server (NTRS)
Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Fulcher, Clay; Towner, Robert; McDonald, Emmett
2012-01-01
The design and theoretical basis of a new database tool that quickly generates vibroacoustic response estimates using a library of transfer functions (TFs) is discussed. During the early stages of a launch vehicle development program, these response estimates can be used to provide vibration environment specification to hardware vendors. The tool accesses TFs from a database, combines the TFs, and multiplies these by input excitations to estimate vibration responses. The database is populated with two sets of uncoupled TFs; the first set representing vibration response of a bare panel, designated as H(sup s), and the second set representing the response of the free-free component equipment by itself, designated as H(sup c). For a particular configuration undergoing analysis, the appropriate H(sup s) and H(sup c) are selected and coupled to generate an integrated TF, designated as H(sup s +c). This integrated TF is then used with the appropriate input excitations to estimate vibration responses. This simple yet powerful tool enables a user to estimate vibration responses without directly using finite element models, so long as suitable H(sup s) and H(sup c) sets are defined in the database libraries. The paper discusses the preparation of the database tool and provides the assumptions and methodologies necessary to combine H(sup s) and H(sup c) sets into an integrated H(sup s + c). An experimental validation of the approach is also presented.
Jacobson, Jerry O; Cueto, Carmen; Smith, Jennifer L; Hwang, Jimee; Gosling, Roly; Bennett, Adam
2017-01-18
To eliminate malaria, malaria programmes need to develop new strategies for surveillance and response appropriate for the changing epidemiology that accompanies transmission decline, in which transmission is increasingly driven by population subgroups whose behaviours place them at increased exposure. Conventional tools of malaria surveillance and response are likely not sufficient in many elimination settings for accessing high-risk population subgroups, such as mobile and migrant populations (MMPs), given their greater likelihood of asymptomatic infections, illegal risk behaviours, limited access to public health facilities, and high mobility including extended periods travelling away from home. More adaptive, targeted strategies are needed to monitor transmission and intervention coverage effectively in these groups. Much can be learned from HIV programmes' experience with "second generation surveillance", including how to rapidly adapt surveillance and response strategies to changing transmission patterns, biological and behavioural surveys that utilize targeted sampling methods for specific behavioural subgroups, and methods for population size estimation. This paper reviews the strategies employed effectively for HIV programmes and offers considerations and recommendations for adapting them to the malaria elimination context.
Estimating golden-cheeked warbler immigration: Implications for the spatial scale of conservation
Duarte, A.; Weckerly, F.W.; Schaub, M.; Hatfield, Jeffrey S.
2016-01-01
Understanding the factors that drive population dynamics is fundamental to species conservation and management. Since the golden-cheeked warbler Setophaga chrysoparia was first listed as endangered, much effort has taken place to monitor warbler abundance, occupancy, reproduction and survival. Yet, despite being directly related to local population dynamics, movement rates have not been estimated for the species. We used an integrated population model to investigate the relationship between immigration rate, fledging rate, survival probabilities and population growth rate for warblers in central Texas, USA. Furthermore, using a deterministic projection model, we examined the response required by vital rates to maintain a viable population across varying levels of immigration. Warbler abundance fluctuated with an overall positive trend across years. In the absence of immigration, the abundance would have decreased. However, the population could remain viable without immigration if both adult and juvenile survival increased by almost half or if juvenile survival more than doubled. We also investigated the response required by fledging rates across a range of immigration in order to maintain a viable population. Overall, we found that immigration was required to maintain warbler target populations, indicating that warbler conservation and management programs need to be implemented at larger spatial scales than current efforts to be effective. This study also demonstrates that by using limited data within integrated population models, biologists are able to monitor multiple key demographic parameters simultaneously to gauge the efficacy of strategies designed to maximize warbler viability in a changing landscape.
Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...
Victoria A. Saab; Terrell D. Rich
1997-01-01
The status and habitats of Neotropical migratory land birds (NTMB) are evaluated within the interior Columbia River basin (interior basin). Objectives are to examine population trends, estimate NTMB responses to alternative management activities, and provide recommendations by habitat and species for the long-term persistence of NTMB populations. Among 132 NTMBs that...
Developing a general conceptual framework for avian conservation science
Sauer, J.R.
2003-01-01
Avian conservation science in North America has produced a variety of monitoring programs designed to provide information on population status of birds. Waterfowl surveys provide population estimates for breeding ducks over most of the continent, the North American Breeding Bird Survey (BBS) provides indexes to population change for >400 breeding bird species, and many other surveys exist that index bird populations at a variety of scales and seasons. However, many fundamental questions about bird population change remain unanswered. I suggest that analyses of monitoring data provide limited understanding of causes of population change, and that the declining species paradigm (Caughley 1994) is sometimes an inefficient approach to increasing our understanding of causes of population change. In North America, the North American Bird Conservation Initiative (NABCI) provides an opportunity to implement alternative approaches that use management, modeling of population responses to management, and monitoring in combination to increase our understanding of bird populations. In adaptive resources management, modeling provides predictions about consequences of management, and monitoring data allow us to assess the population consequences of management. In this framework, alternative hypotheses about response of populations to management can be evaluated by formulating a series of models with differing structure, and management and monitoring provide information about which model best predicts population response.
Decomposing the effect of crime on population changes.
Foote, Andrew
2015-04-01
This article estimates the effect of crime on migration rates for counties in U.S. metropolitan areas and makes three contributions to the literature. First, I use administrative data on migration flows between counties, which gives me more precise estimates of population changes than data used in previous studies. Second, I am able to decompose net population changes into gross migration flows in order to identify how individuals respond to crime rate changes. Finally, I include county-level trends so that my identification comes from shocks away from the trend. I find effects that are one-fiftieth the size of the most prominent estimate in the literature; and although the long-run effects are somewhat larger, they are still only approximately one-twentieth as large. I also find that responses to crime rates differ by subgroups, and that increases in crime cause white households to leave the county, with effects almost 10 times as large as for black households.
Exum, Natalie G.; Pisanic, Nora; Granger, Douglas A.; Schwab, Kellogg J.; Detrick, Barbara; Kosek, Margaret; Egorov, Andrey I.; Griffin, Shannon M.; Heaney, Christopher D.
2016-01-01
Purpose of review This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). Recent findings We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. Summary We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections. PMID:27352014
Wardrop, N. A.; Jochem, W. C.; Bird, T. J.; Chamberlain, H. R.; Clarke, D.; Kerr, D.; Bengtsson, L.; Juran, S.; Seaman, V.; Tatem, A. J.
2018-01-01
Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data. PMID:29555739
Nicolas, Xavier; Djebli, Nassim; Rauch, Clémence; Brunet, Aurélie; Hurbin, Fabrice; Martinez, Jean-Marie; Fabre, David
2018-05-03
Alirocumab, a human monoclonal antibody against proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly lowers low-density lipoprotein cholesterol levels. This analysis aimed to develop and qualify a population pharmacokinetic/pharmacodynamic model for alirocumab based on pooled data obtained from 13 phase I/II/III clinical trials. From a dataset of 2799 individuals (14,346 low-density lipoprotein-cholesterol values), individual pharmacokinetic parameters from the population pharmacokinetic model presented in Part I of this series were used to estimate alirocumab concentrations. As a second step, we then developed the current population pharmacokinetic/pharmacodynamic model using an indirect response model with a Hill coefficient, parameterized with increasing low-density lipoprotein cholesterol elimination, to relate alirocumab concentrations to low-density lipoprotein cholesterol values. The population pharmacokinetic/pharmacodynamic model allowed the characterization of the pharmacokinetic/pharmacodynamic properties of alirocumab in the target population and estimation of individual low-density lipoprotein cholesterol levels and derived pharmacodynamic parameters (the maximum decrease in low-density lipoprotein cholesterol values from baseline and the difference between baseline low-density lipoprotein cholesterol and the pre-dose value before the next alirocumab dose). Significant parameter-covariate relationships were retained in the model, with a total of ten covariates (sex, age, weight, free baseline PCSK9, total time-varying PCSK9, concomitant statin administration, total baseline PCSK9, co-administration of high-dose statins, disease status) included in the final population pharmacokinetic/pharmacodynamic model to explain between-subject variability. Nevertheless, the high number of covariates included in the model did not have a clinically meaningful impact on model-derived pharmacodynamic parameters. This model successfully allowed the characterization of the population pharmacokinetic/pharmacodynamic properties of alirocumab in its target population and the estimation of individual low-density lipoprotein cholesterol levels.
Demographic responses of Pinguicula ionantha to prescribed fire: a regression-design LTRE approach.
Kesler, Herbert C; Trusty, Jennifer L; Hermann, Sharon M; Guyer, Craig
2008-06-01
This study describes the use of periodic matrix analysis and regression-design life table response experiments (LTRE) to investigate the effects of prescribed fire on demographic responses of Pinguicula ionantha, a federally listed plant endemic to the herb bog/savanna community in north Florida. Multi-state mark-recapture models with dead recoveries were used to estimate survival and transition probabilities for over 2,300 individuals in 12 populations of P. ionantha. These estimates were applied to parameterize matrix models used in further analyses. P. ionantha demographics were found to be strongly dependent on prescribed fire events. Periodic matrix models were used to evaluate season of burn (either growing or dormant season) for fire return intervals ranging from 1 to 20 years. Annual growing and biannual dormant season fires maximized population growth rates for this species. A regression design LTRE was used to evaluate the effect of number of days since last fire on population growth. Maximum population growth rates calculated using standard asymptotic analysis were realized shortly following a burn event (<2 years), and a regression design LTRE showed that short-term fire-mediated changes in vital rates translated into observed increases in population growth. The LTRE identified fecundity and individual growth as contributing most to increases in post-fire population growth. Our analyses found that the current four-year prescribed fire return intervals used at the study sites can be significantly shortened to increase the population growth rates of this rare species. Understanding the role of fire frequency and season in creating and maintaining appropriate habitat for this species may aid in the conservation of this and other rare herb bog/savanna inhabitants.
Tinker, M. Timothy; Doak, Daniel F.; Estes, James A.; Hatfield, Brian B.; Staedler, Michelle M.; Gross, Arthur
2006-01-01
Reliable information on historical and current population dynamics is central to understanding patterns of growth and decline in animal populations. We developed a maximum likelihood-based analysis to estimate spatial and temporal trends in age/sex-specific survival rates for the threatened southern sea otter (Enhydra lutris nereis), using annual population censuses and the age structure of salvaged carcass collections. We evaluated a wide range of possible spatial and temporal effects and used model averaging to incorporate model uncertainty into the resulting estimates of key vital rates and their variances. We compared these results to current demographic parameters estimated in a telemetry-based study conducted between 2001 and 2004. These results show that survival has decreased substantially from the early 1990s to the present and is generally lowest in the north-central portion of the population's range. The greatest temporal decrease in survival was for adult females, and variation in the survival of this age/sex class is primarily responsible for regulating population growth and driving population trends. Our results can be used to focus future research on southern sea otters by highlighting the life history stages and mortality factors most relevant to conservation. More broadly, we have illustrated how the powerful and relatively straightforward tools of information-theoretic-based model fitting can be used to sort through and parameterize quite complex demographic modeling frameworks. ?? 2006 by the Ecological Society of America.
Role of genomics and transcriptomics in selection of reintroduction source populations.
He, Xiaoping; Johansson, Mattias L; Heath, Daniel D
2016-10-01
The use and importance of reintroduction as a conservation tool to return a species to its historical range from which it has been extirpated will increase as climate change and human development accelerate habitat loss and population extinctions. Although the number of reintroduction attempts has increased rapidly over the past 2 decades, the success rate is generally low. As a result of population differences in fitness-related traits and divergent responses to environmental stresses, population performance upon reintroduction is highly variable, and it is generally agreed that selecting an appropriate source population is a critical component of a successful reintroduction. Conservation genomics is an emerging field that addresses long-standing challenges in conservation, and the potential for using novel molecular genetic approaches to inform and improve conservation efforts is high. Because the successful establishment and persistence of reintroduced populations is highly dependent on the functional genetic variation and environmental stress tolerance of the source population, we propose the application of conservation genomics and transcriptomics to guide reintroduction practices. Specifically, we propose using genome-wide functional loci to estimate genetic variation of source populations. This estimate can then be used to predict the potential for adaptation. We also propose using transcriptional profiling to measure the expression response of fitness-related genes to environmental stresses as a proxy for acclimation (tolerance) capacity. Appropriate application of conservation genomics and transcriptomics has the potential to dramatically enhance reintroduction success in a time of rapidly declining biodiversity and accelerating environmental change. © 2016 Society for Conservation Biology.
Dunham, Kylee; Grand, James B.
2016-10-11
The Alaskan breeding population of Steller’s eiders (Polysticta stelleri) was listed as threatened under the Endangered Species Act in 1997 in response to perceived declines in abundance throughout their breeding and nesting range. Aerial surveys suggest the breeding population is small and highly variable in number, with zero birds counted in 5 of the last 25 years. Research was conducted to evaluate competing population process models of Alaskan-breeding Steller’s eiders through comparison of model projections to aerial survey data. To evaluate model efficacy and estimate demographic parameters, a Bayesian state-space modeling framework was used and each model was fit to counts from the annual aerial surveys, using sequential importance sampling and resampling. The results strongly support that the Alaskan breeding population experiences population level nonbreeding events and is open to exchange with the larger Russian-Pacific breeding population. Current recovery criteria for the Alaskan breeding population rely heavily on the ability to estimate population viability. The results of this investigation provide an informative model of the population process that can be used to examine future population states and assess the population in terms of the current recovery and reclassification criteria.
Heritability in the genomics era--concepts and misconceptions.
Visscher, Peter M; Hill, William G; Wray, Naomi R
2008-04-01
Heritability allows a comparison of the relative importance of genes and environment to the variation of traits within and across populations. The concept of heritability and its definition as an estimable, dimensionless population parameter was introduced by Sewall Wright and Ronald Fisher nearly a century ago. Despite continuous misunderstandings and controversies over its use and application, heritability remains key to the response to selection in evolutionary biology and agriculture, and to the prediction of disease risk in medicine. Recent reports of substantial heritability for gene expression and new estimation methods using marker data highlight the relevance of heritability in the genomics era.
Ferreira, Sam M.; Greaver, Cathy; Knight, Grant A.; Knight, Mike H.; Smit, Izak P. J.; Pienaar, Danie
2015-01-01
The onslaught on the World’s rhinoceroses continues despite numerous initiatives aimed at curbing it. When losses due to poaching exceed birth rates, declining rhino populations result. We used previously published estimates and growth rates for black rhinos (2008) and white rhinos (2010) together with known poaching trends at the time to predict population sizes and poaching rates in Kruger National Park, South Africa for 2013. Kruger is a stronghold for the south-eastern black rhino and southern white rhino. Counting rhinos on 878 blocks 3x3 km in size using helicopters, estimating availability bias and collating observer and detectability biases allowed estimates using the Jolly’s estimator. The exponential escalation in number of rhinos poached per day appears to have slowed. The black rhino estimate of 414 individuals (95% confidence interval: 343-487) was lower than the predicted 835 individuals (95% CI: 754-956). The white rhino estimate of 8,968 individuals (95% CI: 8,394-9,564) overlapped with the predicted 9,417 individuals (95% CI: 7,698-11,183). Density- and rainfall-dependent responses in birth- and death rates of white rhinos provide opportunities to offset anticipated poaching effects through removals of rhinos from high density areas to increase birth and survival rates. Biological management of rhinos, however, need complimentary management of the poaching threat as present poaching trends predict detectable declines in white rhino abundances by 2018. Strategic responses such as anti-poaching that protect supply from illegal harvesting, reducing demand, and increasing supply commonly require crime network disruption as a first step complimented by providing options for alternative economies in areas abutting protected areas. PMID:26121681
Recent population trends of mountain goats in the Olympic Mountains, Washington
Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John
2012-01-01
Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.
Capture-recapture analysis for estimating manatee reproductive rates
Kendall, W.L.; Langtimm, C.A.; Beck, C.A.; Runge, M.C.
2004-01-01
Modeling the life history of the endangered Florida manatee (Trichechus manatus latirostris) is an important step toward understanding its population dynamics and predicting its response to management actions. We developed a multi-state mark-resighting model for data collected under Pollock's robust design. This model estimates breeding probability conditional on a female's breeding state in the previous year; assumes sighting probability depends on breeding state; and corrects for misclassification of a cow with first-year calf, by estimating conditional sighting probability for the calf. The model is also appropriate for estimating survival and unconditional breeding probabilities when the study area is closed to temporary emigration across years. We applied this model to photo-identification data for the Northwest and Atlantic Coast populations of manatees, for years 1982?2000. With rare exceptions, manatees do not reproduce in two consecutive years. For those without a first-year calf in the previous year, the best-fitting model included constant probabilities of producing a calf for the Northwest (0.43, SE = 0.057) and Atlantic (0.38, SE = 0.045) populations. The approach we present to adjust for misclassification of breeding state could be applicable to a large number of marine mammal populations.
Winter survival of lesser scaup in east-central Florida
Herring, G.; Collazo, J.A.
2004-01-01
The North American continental population of lesser scaup (Aythya affinis) has been declining since the mid-1980s. Seasonal survival estimates may provide insights about the ecological basis for this decline, but such data are not available. We estimated post-harvest winter survival of lesser scaup in east-central Florida, USA, where 62% of the Atlantic Flyway population winters. The Kaplan-Meier survival estimate from 11 January to 14 March 2002 was 0.95 ?? 0.04 (SE) for females and 0.90 ?? 0.09 for males. These estimates were not different (P = 0.64), and pooled survival was 0.93 ?? 0.04. Temporary emigration (movement out of and return to the study area) was exhibited by 25% of the birds during survey periods, but absences were short and were believed to have had little effect on precision of survival estimates. Our findings suggested that natural mortality at Merritt Island National Wildlife Refuge (MINWR) and surrounding estuarine areas was relatively low. Our results also indicate that habitat quality in this portion of east-central Florida was sufficient to meet overwintering requirements and likely contributed to the reported survival rates. Estimating survival during other stages of the annual cycle, as well as an overall winter estimate reflecting harvest mortality, is necessary to determine whether low survival rates are responsible for continental population declines.
Ruiz-Gutierrez, Viviana; Zipkin, Elise F.; Dhondt, Andre A.
2010-01-01
1. Worldwide loss of biodiversity necessitates a clear understanding of the factors driving population declines as well as informed predictions about which species and populations are at greatest risk. The biggest threat to the long-term persistence of populations is the reduction and changes in configuration of their natural habitat. 2. Inconsistencies have been noted in the responses of populations to the combined effects of habitat loss and fragmentation. These have been widely attributed to the effects of the matrix habitats in which remnant focal habitats are typically embedded. 3. We quantified the potential effects of the inter-patch matrix by estimating occupancy and colonization of forest and surrounding non-forest matrix (NF). We estimated species-specific parameters using a dynamic, multi-species hierarchical model on a bird community in southwestern Costa Rica. 4. Overall, we found higher probabilities of occupancy and colonization of forest relative to the NF across bird species, including those previously categorized as open habitat generalists not needing forest to persist. Forest dependency was a poor predictor of occupancy dynamics in our study region, largely predicting occupancy and colonization of only non-forest habitats. 5. Our results indicate that the protection of remnant forest habitats is key for the long-term persistence of all members of the bird community in this fragmented landscape, including species typically associated with open, non-forest habitats. 6.Synthesis and applications. We identified 39 bird species of conservation concern defined by having high estimates of forest occupancy, and low estimates of occupancy and colonization of non-forest. These species survive in forest but are unlikely to venture out into open, non-forested habitats, therefore, they are vulnerable to the effects of habitat loss and fragmentation. Our hierarchical community-level model can be used to estimate species-specific occupancy dynamics for focal and inter-patch matrix habitats to identify which species within a community are likely to be impacted most by habitat loss and fragmentation. This model can be applied to other taxa (i.e. amphibians, mammals and insects) to estimate species and community occurrence dynamics in response to current environmental conditions and to make predictions in response to future changes in habitat configurations.
Davis, Amy J; Leland, Bruce; Bodenchuk, Michael; VerCauteren, Kurt C; Pepin, Kim M
2017-06-01
Population density is a key driver of disease dynamics in wildlife populations. Accurate disease risk assessment and determination of management impacts on wildlife populations requires an ability to estimate population density alongside management actions. A common management technique for controlling wildlife populations to monitor and mitigate disease transmission risk is trapping (e.g., box traps, corral traps, drop nets). Although abundance can be estimated from trapping actions using a variety of analytical approaches, inference is limited by the spatial extent to which a trap attracts animals on the landscape. If the "area of influence" were known, abundance estimates could be converted to densities. In addition to being an important predictor of contact rate and thus disease spread, density is more informative because it is comparable across sites of different sizes. The goal of our study is to demonstrate the importance of determining the area sampled by traps (area of influence) so that density can be estimated from management-based trapping designs which do not employ a trapping grid. To provide one example of how area of influence could be calculated alongside management, we conducted a small pilot study on wild pigs (Sus scrofa) using two removal methods 1) trapping followed by 2) aerial gunning, at three sites in northeast Texas in 2015. We estimated abundance from trapping data with a removal model. We calculated empirical densities as aerial counts divided by the area searched by air (based on aerial flight tracks). We inferred the area of influence of traps by assuming consistent densities across the larger spatial scale and then solving for area impacted by the traps. Based on our pilot study we estimated the area of influence for corral traps in late summer in Texas to be ∼8.6km 2 . Future work showing the effects of behavioral and environmental factors on area of influence will help mangers obtain estimates of density from management data, and determine conditions where trap-attraction is strongest. The ability to estimate density alongside population control activities will improve risk assessment and response operations against disease outbreaks. Published by Elsevier B.V.
A Hierarchical Model for Simultaneous Detection and Estimation in Multi-subject fMRI Studies
Degras, David; Lindquist, Martin A.
2014-01-01
In this paper we introduce a new hierarchical model for the simultaneous detection of brain activation and estimation of the shape of the hemodynamic response in multi-subject fMRI studies. The proposed approach circumvents a major stumbling block in standard multi-subject fMRI data analysis, in that it both allows the shape of the hemodynamic response function to vary across region and subjects, while still providing a straightforward way to estimate population-level activation. An e cient estimation algorithm is presented, as is an inferential framework that not only allows for tests of activation, but also for tests for deviations from some canonical shape. The model is validated through simulations and application to a multi-subject fMRI study of thermal pain. PMID:24793829
Jennifer E. Carlson; Douglas D. Piirto; John J. Keane; Samantha J. Gill
2015-01-01
Long-term monitoring programs that can detect a population change over time can be useful for managers interested in assessing population trends in response to forest management activities for a particular species. Such long-term monitoring programs have been designed for the Northern Goshawk (Accipiter gentilis), but not for the more elusive Sharp...
Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J
2014-01-01
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations. PMID:25558365
Wirtz, Andrea L; Poteat, Tonia C; Malik, Mannat; Glass, Nancy
2018-01-01
Gender-based violence (GBV) is an umbrella term for any harm that is perpetrated against a person's will and that results from power inequalities based on gender roles. Most global estimates of GBV implicitly refer only to the experiences of cisgender, heterosexually identified women, which often comes at the exclusion of transgender and gender nonconforming (trans) populations. Those who perpetrate violence against trans populations often target gender nonconformity, gender expression or identity, and perceived sexual orientation and thus these forms of violence should be considered within broader discussions of GBV. Nascent epidemiologic research suggests a high burden of GBV among trans populations, with an estimated prevalence that ranges from 7% to 89% among trans populations and subpopulations. Further, 165 trans persons have been reported murdered in the United States between 2008 and 2016. GBV is associated with multiple poor health outcomes and has been broadly posited as a component of syndemics, a term used to describe an interaction of diseases with underlying social forces, concomitant with limited prevention and response programs. The interaction of social stigma, inadequate laws, and punitive policies as well as a lack of effective GBV programs limits access to and use of GBV prevention and response programs among trans populations. This commentary summarizes the current body of research on GBV among trans populations and highlights areas for future research, intervention, and policy.
Guillaumet, Alban; Kuntz, Wendy A.; Samuel, Michael D.; Paxton, Eben H.
2017-01-01
Altitudinal movement by tropical birds to track seasonally variable resources can move them from protected areas to areas of increased vulnerability. In Hawaiʻi, historical reports suggest that many Hawaiian honeycreepers such as the ‘I‘iwi (Drepanis coccinea) once undertook seasonal migrations, but the existence of such movements today is unclear. Because Hawaiian honeycreepers are highly susceptible to avian malaria, currently minimal in high-elevation forests, understanding the degree to which honeycreepers visit lower elevation forests may be critical to predict the current impact of malaria on population dynamics and how susceptible bird populations may respond to climate change and mitigation scenarios. Using radio telemetry data, we demonstrate for the first time that a large fraction of breeding adult and juvenile ‘I‘iwi originating from an upper-elevation (1,920 m) population at Hakalau Forest National Wildlife Refuge exhibit post-breeding movements well below the upper elevational limit for mosquitoes. Bloom data suggest seasonal variation in floral resources is the primary driver of seasonal movement for ‘I‘iwi. To understand the demographic implications of such movement, we developed a spatial individual-based model calibrated using previously published and original data. ʻI‘iwi dynamics were simulated backward in time, to estimate population levels in the absence of avian malaria, and forward in time, to assess the impact of climate warming as well as two potential mitigation actions. Even in disease-free ‘refuge’ populations, we found that breeding densities failed to reach the estimated carrying capacity, suggesting the existence of a seasonal “migration load” as a result of travel to disease-prevalent areas. We predict that ‘I‘iwi may be on the verge of extinction in 2100, with the total number of pairs reaching only ~ 0.2–12.3% of the estimated pre-malaria density, based on an optimistic climate change scenario. The probability of extinction of ‘I‘iwi populations, as measured by population estimates for 2100, is strongly related to their estimated migration propensity. Long-term conservation strategies likely will require a multi-pronged response including a reduction of malaria threats, habitat restoration and continued landscape-level access to seasonally variable nectar resources.
Jung, R.E.; Droege, S.; Sauer, J.R.; Landy, R.B.
2000-01-01
In response to concerns about amphibian declines, a study evaluating and validating amphibian monitoring techniques was initiated in Shenandoah and Big Bend National Parks in the spring of 1998. We evaluate precision, bias, and efficiency of several sampling methods for terrestrial and streamside salamanders in Shenandoah National Park and assess salamander abundance in relation to environmental variables, notably soil and water pH. Terrestrial salamanders, primarily redback salamanders (Plethodon cinereus), were sampled by searching under cover objects during the day in square plots (10 to 35 m2). We compared population indices (mean daily and total counts) with adjusted population estimates from capture-recapture. Analyses suggested that the proportion of salamanders detected (p) during sampling varied among plots, necessitating the use of adjusted population estimates. However, adjusted population estimates were less precise than population indices, and may not be efficient in relating salamander populations to environmental variables. In future sampling, strategic use of capture-recapture to verify consistency of p's among sites may be a reasonable compromise between the possibility of bias in estimation of population size and deficiencies due to inefficiency associated with the estimation of p. The streamside two-lined salamander (Eurycea bislineata) was surveyed using four methods: leaf litter refugia bags, 1 m2 quadrats, 50 x 1 m visual encounter transects, and electric shocking. Comparison of survey methods at nine streams revealed congruent patterns of abundance among sites, suggesting that relative bias among the methods is similar, and that choice of survey method should be based on precision and logistical efficiency. Redback and two-lined salamander abundance were not significantly related to soil or water pH, respectively.
Stark, John D; Vargas, Roger I; Banks, John E
2015-07-01
Historically, point estimates such as the median lethal concentration (LC50) have been instrumental in assessing risks associated with toxicants to rare or economically important species. In recent years, growing awareness of the shortcomings of this approach has led to an increased focus on analyses using population endpoints. However, risk assessment of pesticides still relies heavily on large amounts of LC50 data amassed over decades in the laboratory. Despite the fact that these data are generally well replicated, little or no attention has been given to the sometime high levels of variability associated with the generation of point estimates. This is especially important in agroecosystems where arthropod predator-prey interactions are often disrupted by the use of pesticides. Using laboratory derived data of 4 economically important species (2 fruit fly pest species and 2 braconid parasitoid species) and matrix based population models, the authors demonstrate in the present study a method for bridging traditional point estimate risk assessments with population outcomes. The results illustrate that even closely related species can show strikingly divergent responses to the same exposures to pesticides. Furthermore, the authors show that using different values within the 95% confidence intervals of LC50 values can result in very different population outcomes, ranging from quick recovery to extinction for both pest and parasitoid species. The authors discuss the implications of these results and emphasize the need to incorporate variability and uncertainty in point estimates for use in risk assessment. © 2015 SETAC.
Air pollution as a risk factor in health impact assessments of a travel mode shift towards cycling
Raza, Wasif; Forsberg, Bertil; Johansson, Christer; Sommar, Johan Nilsson
2018-01-01
ABSTRACT Background: Promotion of active commuting provides substantial health and environmental benefits by influencing air pollution, physical activity, accidents, and noise. However, studies evaluating intervention and policies on a mode shift from motorized transport to cycling have estimated health impacts with varying validity and precision. Objective: To review and discuss the estimation of air pollution exposure and its impacts in health impact assessment studies of a shift in transport from cars to bicycles in order to guide future assessments. Methods: A systematic database search of PubMed was done primarily for articles published from January 2000 to May 2016 according to PRISMA guidelines. Results: We identified 18 studies of health impact assessment of change in transport mode. Most studies investigated future hypothetical scenarios of increased cycling. The impact on the general population was estimated using a comparative risk assessment approach in the majority of these studies, whereas some used previously published cost estimates. Air pollution exposure during cycling was estimated based on the ventilation rate, the pollutant concentration, and the trip duration. Most studies employed exposure-response functions from studies comparing background levels of fine particles between cities to estimate the health impacts of local traffic emissions. The effect of air pollution associated with increased cycling contributed small health benefits for the general population, and also only slightly increased risks associated with fine particle exposure among those who shifted to cycling. However, studies calculating health impacts based on exposure-response functions for ozone, black carbon or nitrogen oxides found larger effects attributed to changes in air pollution exposure. Conclusion: A large discrepancy between studies was observed due to different health impact assessment approaches, different assumptions for calculation of inhaled dose and different selection of dose-response functions. This kind of assessments would improve from more holistic approaches using more specific exposure-response functions. PMID:29400262
Calibrating Physical Parameters in House Models Using Aggregate AC Power Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Stevens, Andrew J.; Lian, Jianming
For residential houses, the air conditioning (AC) units are one of the major resources that can provide significant flexibility in energy use for the purpose of demand response. To quantify the flexibility, the characteristics of all the houses need to be accurately estimated, so that certain house models can be used to predict the dynamics of the house temperatures in order to adjust the setpoints accordingly to provide demand response while maintaining the same comfort levels. In this paper, we propose an approach using the Reverse Monte Carlo modeling method and aggregate house models to calibrate the distribution parameters ofmore » the house models for a population of residential houses. Given the aggregate AC power demand for the population, the approach can successfully estimate the distribution parameters for the sensitive physical parameters based on our previous uncertainty quantification study, such as the mean of the floor areas of the houses.« less
Santini, Luca; Cornulier, Thomas; Bullock, James M; Palmer, Stephen C F; White, Steven M; Hodgson, Jenny A; Bocedi, Greta; Travis, Justin M J
2016-07-01
Estimating population spread rates across multiple species is vital for projecting biodiversity responses to climate change. A major challenge is to parameterise spread models for many species. We introduce an approach that addresses this challenge, coupling a trait-based analysis with spatial population modelling to project spread rates for 15 000 virtual mammals with life histories that reflect those seen in the real world. Covariances among life-history traits are estimated from an extensive terrestrial mammal data set using Bayesian inference. We elucidate the relative roles of different life-history traits in driving modelled spread rates, demonstrating that any one alone will be a poor predictor. We also estimate that around 30% of mammal species have potential spread rates slower than the global mean velocity of climate change. This novel trait-space-demographic modelling approach has broad applicability for tackling many key ecological questions for which we have the models but are hindered by data availability. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Rolf, Megan M; Taylor, Jeremy F; Schnabel, Robert D; McKay, Stephanie D; McClure, Matthew C; Northcutt, Sally L; Kerley, Monty S; Weaber, Robert L
2010-04-19
Molecular estimates of breeding value are expected to increase selection response due to improvements in the accuracy of selection and a reduction in generation interval, particularly for traits that are difficult or expensive to record or are measured late in life. Several statistical methods for incorporating molecular data into breeding value estimation have been proposed, however, most studies have utilized simulated data in which the generated linkage disequilibrium may not represent the targeted livestock population. A genomic relationship matrix was developed for 698 Angus steers and 1,707 Angus sires using 41,028 single nucleotide polymorphisms and breeding values were estimated using feed efficiency phenotypes (average daily feed intake, residual feed intake, and average daily gain) recorded on the steers. The number of SNPs needed to accurately estimate a genomic relationship matrix was evaluated in this population. Results were compared to estimates produced from pedigree-based mixed model analysis of 862 Angus steers with 34,864 identified paternal relatives but no female ancestors. Estimates of additive genetic variance and breeding value accuracies were similar for AFI and RFI using the numerator and genomic relationship matrices despite fewer animals in the genomic analysis. Bootstrap analyses indicated that 2,500-10,000 markers are required for robust estimation of genomic relationship matrices in cattle. This research shows that breeding values and their accuracies may be estimated for commercially important sires for traits recorded in experimental populations without the need for pedigree data to establish identity by descent between members of the commercial and experimental populations when at least 2,500 SNPs are available for the generation of a genomic relationship matrix.
Evaluation of human response to structural vibration induced by sonic boom
NASA Technical Reports Server (NTRS)
Sutherland, L. C.; Czech, J.
1992-01-01
This paper addresses the topic of building vibration response to sonic boom and the evaluation of the associated human response to this vibration. The paper reexamines some of the issues addressed in the previous extensive coverage of the topic, primarily by NASA, and attempts to offer a fresh viewpoint for some of the problems that may assist in reassessing the potential impact of sonic boom over populated areas. The topics addressed are: (1) human response to vibration; (2) criteria for, and acoustic signature of rattle; (3) structural response to shaped booms, including definition of two new descriptors for assessing the structural response to sonic boom; and (4) a detailed review of the previous NASA/FAA Sonic Boom Test Program involving structural response measurements at Edwards AFB and an initial estimate of structural response to sonic booms from possible high speed civil transport configurations. Finally, these estimated vibration responses are shown to be substantially greater than the human response and rattle criteria developed earlier.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin.
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J; Stenseth, Nils Chr; Trathan, Phil N; Whittington, Jason D; Zanetti, Enrico; Zitterbart, Daniel P; Le Bohec, Céline; Trucchi, Emiliano
2016-06-14
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory.
Full circumpolar migration ensures evolutionary unity in the Emperor penguin
Cristofari, Robin; Bertorelle, Giorgio; Ancel, André; Benazzo, Andrea; Le Maho, Yvon; Ponganis, Paul J.; Stenseth, Nils Chr; Trathan, Phil N.; Whittington, Jason D.; Zanetti, Enrico; Zitterbart, Daniel P.; Le Bohec, Céline; Trucchi, Emiliano
2016-01-01
Defining reliable demographic models is essential to understand the threats of ongoing environmental change. Yet, in the most remote and threatened areas, models are often based on the survey of a single population, assuming stationarity and independence in population responses. This is the case for the Emperor penguin Aptenodytes forsteri, a flagship Antarctic species that may be at high risk continent-wide before 2100. Here, using genome-wide data from the whole Antarctic continent, we reveal that this top-predator is organized as one single global population with a shared demography since the late Quaternary. We refute the view of the local population as a relevant demographic unit, and highlight that (i) robust extinction risk estimations are only possible by including dispersal rates and (ii) colony-scaled population size is rather indicative of local stochastic events, whereas the species' response to global environmental change is likely to follow a shared evolutionary trajectory. PMID:27296726
It's all about balance: propensity score matching in the context of complex survey data.
Lenis, David; Nguyen, Trang Quynh; Dong, Nianbo; Stuart, Elizabeth A
2017-12-27
Many research studies aim to draw causal inferences using data from large, nationally representative survey samples, and many of these studies use propensity score matching to make those causal inferences as rigorous as possible given the non-experimental nature of the data. However, very few applied studies are careful about incorporating the survey design with the propensity score analysis, which may mean that the results do not generate population inferences. This may be because few methodological studies examine how to best combine these methods. Furthermore, even fewer of them investigate different non-response mechanisms. This study examines methods for handling survey weights in propensity score matching analyses of survey data under different non-response mechanisms. Our main conclusions are: (i) whether the survey weights are incorporated in the estimation of the propensity score does not impact estimation of the population treatment effect, as long as good population treated-comparison balance is achieved on confounders, (ii) survey weights must be used in the outcome analysis, and (iii) the transferring of survey weights (i.e., assigning the weights of the treated units to the comparison units matched to them) can be beneficial under certain non-response mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Pronk, Anjoeka; Stewart, Patricia A.; Coble, Joseph B.; Katki, Hormuzd A.; Wheeler, David C.; Colt, Joanne S.; Baris, Dalsu; Schwenn, Molly; Karagas, Margaret R.; Johnson, Alison; Waddell, Richard; Verrill, Castine; Cherala, Sai; Silverman, Debra T.; Friesen, Melissa C.
2012-01-01
Objectives Professional judgment is necessary to assess occupational exposure in population-based case-control studies; however, the assessments lack transparency and are time-consuming to perform. To improve transparency and efficiency, we systematically applied decision rules to the questionnaire responses to assess diesel exhaust exposure in the New England Bladder Cancer Study, a population-based case-control study. Methods 2,631 participants reported 14,983 jobs; 2,749 jobs were administered questionnaires (‘modules’) with diesel-relevant questions. We applied decision rules to assign exposure metrics based solely on the occupational history responses (OH estimates) and based on the module responses (module estimates); we combined the separate OH and module estimates (OH/module estimates). Each job was also reviewed one at a time to assign exposure (one-by-one review estimates). We evaluated the agreement between the OH, OH/module, and one-by-one review estimates. Results The proportion of exposed jobs was 20–25% for all jobs, depending on approach, and 54–60% for jobs with diesel-relevant modules. The OH/module and one-by-one review had moderately high agreement for all jobs (κw=0.68–0.81) and for jobs with diesel-relevant modules (κw=0.62–0.78) for the probability, intensity, and frequency metrics. For exposed subjects, the Spearman correlation statistic was 0.72 between the cumulative OH/module and one-by-one review estimates. Conclusions The agreement seen here may represent an upper level of agreement because the algorithm and one-by-one review estimates were not fully independent. This study shows that applying decision-based rules can reproduce a one-by-one review, increase transparency and efficiency, and provide a mechanism to replicate exposure decisions in other studies. PMID:22843440
Rotella, J.J.; Link, W.A.; Chambert, T.; Stauffer, G.E.; Garrott, R.A.
2012-01-01
1.Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2.We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3.We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4.Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top- and middle-trophic levels were not substantially impacted by human activity. ?? 2011 The Authors. Journal of Animal Ecology ?? 2011 British Ecological Society.
Boldness in two perch populations - long-term differences and the effect of predation pressure.
Magnhagen, Carin; Hellström, Gustav; Borcherding, Jost; Heynen, Martina
2012-11-01
1. Populations of the same species often display different behaviours, for example, in their response to predators. The question is whether this difference is developed as part of a divergent selection caused by differences in predation pressure, or as a result of phenotypic responses to current environmental conditions. 2. Two populations of Eurasian perch were investigated over a time span of 6 years to see whether risk-taking behaviour in young-of-the-year perch were consistent across cohorts, or if behaviour varied over time with changes in predation regime. 3. Boldness was estimated in aquarium studies by looking at how the fish made trade-offs between foraging in a risky area and staying in shelter. Predation risk of each year and lake was estimated from fishing surveys, using an individual-based model calculating attack rates for cannibalistic perch. 4. The average boldness scores were consistently lower in perch from Fisksjön compared with those in Ängersjön, although the magnitude of the difference varied among years. Variance component analyses showed that differences between lakes in boldness scores only explained 12 per cent of the total variation. Differences between years were contributing at least similarly or more to the total variance, and the variation was higher in Fisksjön than in Ängersjön. 5. The observed risk-taking behaviour of young-of-the-year perch, compared across cohorts, was significantly correlated with the year-specific estimates of cannibalistic attack rates, with lower boldness scores in years with higher predation pressure. In Fisksjön, with significant changes over the years in population structure, the range of both predation risk and boldness scores was wider than in Ängersjön. 6. By following the two perch populations over several years, we have been able to show that the differences in risk-taking behaviour mainly are due to direct phenotypic responses to recent experience of predation risk. Long-term differences in behaviour among perch populations thus reflect consistent differences in predation regime rather than diverging inherent traits. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Edwards, Rufus; Turner, Jay R.; Argo, Yuma D.; Olkhanud, Purevdorj B.; Odsuren, Munkhtuul; Guttikunda, Sarath; Ochir, Chimedsuren; Smith, Kirk R.
2017-01-01
Introduction Winter air pollution in Ulaanbaatar, Mongolia is among the worst in the world. The health impacts of policy decisions affecting air pollution exposures in Ulaanbaatar were modeled and evaluated under business as usual and two more-strict alternative emissions pathways through 2024. Previous studies have relied on either outdoor or indoor concentrations to assesses the health risks of air pollution, but the burden is really a function of total exposure. This study combined projections of indoor and outdoor concentrations of PM2.5 with population time-activity estimates to develop trajectories of total age-specific PM2.5 exposure for the Ulaanbaatar population. Indoor PM2.5 contributions from secondhand tobacco smoke (SHS) were estimated in order to fill out total exposures, and changes in population and background disease were modeled. The health impacts were derived using integrated exposure-response curves from the Global Burden of Disease Study. Results Annual average population-weighted PM2.5 exposures at baseline (2014) were estimated at 59 μg/m3. These were dominated by exposures occurring indoors, influenced considerably by infiltrated outdoor pollution. Under current control policies, exposures increased slightly to 60 μg/m3 by 2024; under moderate emissions reductions and under a switch to clean technologies, exposures were reduced from baseline levels by 45% and 80%, respectively. The moderate improvement pathway decreased per capita annual disability-adjusted life year (DALY) and death burdens by approximately 40%. A switch to clean fuels decreased per capita annual DALY and death burdens by about 85% by 2024 with the relative SHS contribution increasing substantially. Conclusion This study demonstrates a way to combine estimated changes in total exposure, background disease and population levels, and exposure-response functions to project the health impacts of alternative policy pathways. The resulting burden analysis highlights the need for aggressive action, including the elimination of residential coal burning and the reduction of current smoking rates. PMID:29088256
Wardrop, N A; Jochem, W C; Bird, T J; Chamberlain, H R; Clarke, D; Kerr, D; Bengtsson, L; Juran, S; Seaman, V; Tatem, A J
2018-04-03
Population numbers at local levels are fundamental data for many applications, including the delivery and planning of services, election preparation, and response to disasters. In resource-poor settings, recent and reliable demographic data at subnational scales can often be lacking. National population and housing census data can be outdated, inaccurate, or missing key groups or areas, while registry data are generally lacking or incomplete. Moreover, at local scales accurate boundary data are often limited, and high rates of migration and urban growth make existing data quickly outdated. Here we review past and ongoing work aimed at producing spatially disaggregated local-scale population estimates, and discuss how new technologies are now enabling robust and cost-effective solutions. Recent advances in the availability of detailed satellite imagery, geopositioning tools for field surveys, statistical methods, and computational power are enabling the development and application of approaches that can estimate population distributions at fine spatial scales across entire countries in the absence of census data. We outline the potential of such approaches as well as their limitations, emphasizing the political and operational hurdles for acceptance and sustainable implementation of new approaches, and the continued importance of traditional sources of national statistical data. Copyright © 2018 the Author(s). Published by PNAS.
Prediction of human population responses to toxic compounds by a collaborative competition.
Eduati, Federica; Mangravite, Lara M; Wang, Tao; Tang, Hao; Bare, J Christopher; Huang, Ruili; Norman, Thea; Kellen, Mike; Menden, Michael P; Yang, Jichen; Zhan, Xiaowei; Zhong, Rui; Xiao, Guanghua; Xia, Menghang; Abdo, Nour; Kosyk, Oksana; Friend, Stephen; Dearry, Allen; Simeonov, Anton; Tice, Raymond R; Rusyn, Ivan; Wright, Fred A; Stolovitzky, Gustavo; Xie, Yang; Saez-Rodriguez, Julio
2015-09-01
The ability to computationally predict the effects of toxic compounds on humans could help address the deficiencies of current chemical safety testing. Here, we report the results from a community-based DREAM challenge to predict toxicities of environmental compounds with potential adverse health effects for human populations. We measured the cytotoxicity of 156 compounds in 884 lymphoblastoid cell lines for which genotype and transcriptional data are available as part of the Tox21 1000 Genomes Project. The challenge participants developed algorithms to predict interindividual variability of toxic response from genomic profiles and population-level cytotoxicity data from structural attributes of the compounds. 179 submitted predictions were evaluated against an experimental data set to which participants were blinded. Individual cytotoxicity predictions were better than random, with modest correlations (Pearson's r < 0.28), consistent with complex trait genomic prediction. In contrast, predictions of population-level response to different compounds were higher (r < 0.66). The results highlight the possibility of predicting health risks associated with unknown compounds, although risk estimation accuracy remains suboptimal.
Kim, Andrea A; Morales, Sonia; Lorenzana de Rivera, Ivette; Paredes, Mayte; Juarez, Sandra; Alvarez, Berta; Liu, Xin; Parekh, Bharat; Monterroso, Edgar; Paz-Bailey, Gabriela
2013-03-01
Honduras has one of the highest HIV prevalence rates in Central America. Data on HIV incidence are needed to identify groups at greatest need of prevention interventions to inform the national HIV response. We applied a test for recent infection to HIV-positive specimens from a biological and behavioral survey to estimate assay-derived incidence among men who have sex with men (MSM), female sex workers (FSW), and the Garifuna population in Honduras. Assay-derived estimates were compared to the mathematically modeled estimates in the same populations to assess plausibility of the assay-based estimates. Assay-derived incidence was 1.1% (95% CI 0.2-2.0) among MSM, 0.4% (95% CI 0.1-0.8) among the Garifuna, and 0% (95% CI 0-0.01) among FSWs. The modeled incidence estimates were similar at 1.03% among MSM, 0.30% among the Garifuna, and 0.23% among FSWs. HIV incidence based on the assay was highest among MSM in Honduras, lowest among FSWs, and similar to modeled incidence in these groups. Targeted programs on HIV prevention, care, and treatment are urgently needed for the MSM population. Continued support for existing prevention programs for FSWs and Garifuna are recommended.
You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change. PMID:27580056
Liu, Wensheng; Zhao, Yao; You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change.
Bancej, Christina M; Maxwell, Colleen J; Snider, Judy
2004-01-01
Background Self-reported information has commonly been used to monitor mammography utilization across populations and time periods. However, longitudinal investigations regarding the prevalence and determinants of inconsistent responses over time and the impact of such responses on population screening estimates are lacking. Methods Based on longitudinal panel data for a representative cohort of Canadian women aged 40+ years (n = 3,537) assessed in the 1994–95 (baseline) and 1996–97 (follow-up) National Population Health Survey (NPHS), we examined the prevalence of inconsistent self-reports of mammography utilization. Logistic regression models were used to estimate the associations between women's baseline sociodemographic and health characteristics and 2 types of inconsistent responses: (i) baseline reports of ever use which were subsequently contradicted by follow-up reports of never use; and (ii) baseline reports of never use which were contradicted by follow-up reports of use prior to 1994–95. Results Among women who reported having a mammogram at baseline, 5.9% (95% confidence interval (CI): 4.6–7.3%) reported at follow-up that they had never had one. Multivariate logistic regression analyses showed that women with such inconsistent responses were more often outside target age groups, from low income households and less likely to report hormone replacement therapy and Pap smear use. Among women reporting never use at baseline and ever use at follow-up, 17.4% (95%CI: 11.7–23.1%) reported their most recent mammogram as occurring prior to 1994–95 (baseline) and such responses were more common among women aged 70+ years and those in poorer health. Conclusions Women with inconsistent responses of type (i), i.e., ever users at baseline but never users at follow-up, appeared to exhibit characteristics typical of never users of mammography screening. Although limited by sample size, our preliminary analyses suggest that type (ii) responses are more likely to be the result of recall bias due to competing morbidity and age. Inconsistent responses, if removed from the analyses, may be a greater source of loss to follow-up than deaths/institutionalization or item non-response. PMID:15541176
Messiaen, Marlies; Janssen, Colin Roger; De Meester, Luc; De Schamphelaere, Karel André Clara
2013-11-15
Genetic variation complicates predictions of both the initial tolerance and the long-term (micro-evolutionary) response of natural Daphnia populations to chemical stressors from results of standard single-clone laboratory ecotoxicity tests. In order to investigate possible solutions to this problem, we aimed to compare the initial sub-lethal tolerance to Cd of 10 naïve natural pond populations of Daphnia magna as well as their evolutionary potential to develop increased resistance. We did so by measuring reproductive performance of 120 clones, i.e. 12 clones hatched from the recent dormant egg bank of each of 10 populations, both in absence (Cd-free control) and presence of 4.4 μg Cd/L. We show that the initial tolerance, defined as the reproductive performance of individuals of the first generation exposed to Cd relative to that in a Cd-free control was not significantly different among the 10 studied pond populations and averaged 0.82 ± 0.04 over these populations. Moreover, these populations' initial tolerances were also not significantly different from the mean initial tolerance of 0.87 ± 0.08 at 4.0 μg Cd/L measured for a group of 7 often-used laboratory clones, collected from a range of European ecotoxicity testing laboratories. This indicates that the initial response of naïve natural pond populations to sub-lethal Cd can be relatively accurately predicted from ecotoxicity test data from only a handful of laboratory clones. We then used estimates of broad-sense heritability of Cd tolerance (H(2)) - based on the same dataset - as a proxy of these populations' capacities to evolutionarily respond to Cd in terms of the development of increased resistance, which is here defined as the increase with time of the frequency of clones with a higher Cd tolerance in the population (accompanied with an increase of mean Cd-tolerance of the population above the initial tolerance). We show that the populations' estimated H(2) values of Cd-tolerance cover almost the entire theoretically possible range, ranging from not significantly different from zero (for five populations) to between 0.48 and 0.81 (for the five other populations). This indicates that, unlike the initial tolerance to Cd, the (long-term) micro-evolutionary response to Cd may be very different among natural pond populations. Therefore, we conclude that it may be very difficult to predict the long-term response of an unstudied population to chemical stress from tolerance data on a sample of other populations. It is therefore suggested that new methods for forecasting long-term responses should be explored, such as the development of predictive models based on the combination of population-genomic and tolerance time-series data. Copyright © 2013 Elsevier B.V. All rights reserved.
An Analysis of Methods Used To Reduce Nonresponse Bias in Survey Research.
ERIC Educational Resources Information Center
Johnson, Victoria A.
The effectiveness of five methods used to estimate the population parameters of a variable of interest from a random sample in the presence of non-response to mail surveys was tested in conditions that vary the return rate and the relationship of the variable of interest to the likelihood of response. Data from 125,092 adult Alabama residents in…
Gately, Conor K; Hutyra, Lucy R; Wing, Ian Sue; Brondfield, Max N
2013-03-05
On-road transportation is responsible for 28% of all U.S. fossil-fuel CO2 emissions. Mapping vehicle emissions at regional scales is challenging due to data limitations. Existing emission inventories use spatial proxies such as population and road density to downscale national or state-level data. Such procedures introduce errors where the proxy variables and actual emissions are weakly correlated, and limit analysis of the relationship between emissions and demographic trends at local scales. We develop an on-road emission inventory product for Massachusetts-based on roadway-level traffic data obtained from the Highway Performance Monitoring System (HPMS). We provide annual estimates of on-road CO2 emissions at a 1 × 1 km grid scale for the years 1980 through 2008. We compared our results with on-road emissions estimates from the Emissions Database for Global Atmospheric Research (EDGAR), with the Vulcan Product, and with estimates derived from state fuel consumption statistics reported by the Federal Highway Administration (FHWA). Our model differs from FHWA estimates by less than 8.5% on average, and is within 5% of Vulcan estimates. We found that EDGAR estimates systematically exceed FHWA by an average of 22.8%. Panel regression analysis of per-mile CO2 emissions on population density at the town scale shows a statistically significant correlation that varies systematically in sign and magnitude as population density increases. Population density has a positive correlation with per-mile CO2 emissions for densities below 2000 persons km(-2), above which increasing density correlates negatively with per-mile emissions.
Bretman, Amanda; Lizé, Anne; Walling, Craig A.; Price, Tom A. R.
2014-01-01
Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations. PMID:24587294
Bretman, Amanda; Lizé, Anne; Walling, Craig A; Price, Tom A R
2014-01-01
Phenotypic plasticity is a key mechanism by which animals can cope with rapidly changeable environments, but the evolutionary lability of such plasticity remains unclear. The socio-sexual environment can fluctuate very rapidly, affecting both the frequency of mating opportunities and the level of competition males may face. Males of many species show plastic behavioural responses to changes in social environment, in particular the presence of rival males. For example, Drosophila pseudoobscura males respond to rivals by extending mating duration and increasing ejaculate size. Whilst such responses are predicted to be adaptive, the extent to which the magnitude of response is heritable, and hence selectable, is unknown. We investigated this using isofemale lines of the fruit fly D. pseudoobscura, estimating heritability of mating duration in males exposed or not to a rival, and any genetic basis to the change in this trait between these environments (i.e. degree of plasticity). The two populations differed in population sex ratio, and the presence of a sex ratio distorting selfish chromosome. We find that mating duration is heritable, but no evidence of population differences. We find no significant heritability of plasticity in mating duration in one population, but borderline significant heritability of plasticity in the second. This difference between populations might be related to the presence of the sex ratio distorting selfish gene in the latter population, but this will require investigation in additional populations to draw any conclusions. We suggest that there is scope for selection to produce an evolutionary response in the plasticity of mating duration in response to rivals in D. pseudoobscura, at least in some populations.
Abundance trends and status of the Little Colorado River population of humpback chub
Coggins, L.G.; Pine, William E.; Walters, C.J.; Van Haverbeke, D. R.; Ward, D.; Johnstone, H.C.
2006-01-01
The abundance of the Little Colorado River population of federally listed humpback chub Gila cypha in Grand Canyon has been monitored since the late 1980s by means of catch rate indices and capture-recapture-based abundance estimators. Analyses of data from all sources using various methods are consistent and indicate that the adult population has declined since monitoring began. Intensive tagging led to a high proportion (>80%) of the adult population being marked by the mid-1990s. Analysis of these data using both closed and open abundance estimation models yields results that agree with catch rate indices about the extent of the decline. Survival rates for age-2 and older fish are age dependent but apparently not time dependent. Back-calculation of recruitment using the apparent 1990s population age structure implies periods of higher recruitment in the late 1970s to early 1980s than is now the case. Our analyses indicate that the U.S. Fish and Wildlife Service recovery criterion of stable abundance is not being met for this population. Also, there is a critical need to develop new abundance indexing and tagging methods so that early, reliable, and rapid estimates of humpback chub recruitment can be obtained to evaluate population responses to management actions designed to facilitate the restoration of Colorado River native fish communities. ?? Copyright by the American Fisheries Society 2006.
Dietary niche variation and its relationship to lizard population density.
Novosolov, Maria; Rodda, Gordon H; Gainsbury, Alison M; Meiri, Shai
2018-01-01
Insular species are predicted to broaden their niches, in response to having fewer competitors. They can thus exploit a greater proportion of the resource spectrum. In turn, broader niches are hypothesized to facilitate (or be a consequence of) increased population densities. We tested whether insular lizards have broader dietary niches than mainland species, how it relates to competitor and predator richness, and the nature of the relationship between population density and dietary niche breadth. We collected population density and dietary niche breadth data for 36 insular and 59 mainland lizard species, and estimated competitor and predator richness at the localities where diet data were collected. We estimated dietary niche shift by comparing island species to their mainland relatives. We controlled for phylogenetic relatedness, body mass and the size of the plots over which densities were estimated. We found that island and mainland species had similar niche breadths. Dietary niche breadth was unrelated to competitor and predator richness, on both islands and the mainland. Population density was unrelated to dietary niche breadth across island and mainland populations. Our results indicate that dietary generalism is not an effective way of increasing population density nor is it result of lower competitive pressure. A lower variety of resources on islands may prevent insular animals from increasing their niche breadths even in the face of few competitors. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Beck, Eduard J; Fasawe, Olufunke; Ongpin, Patricia; Ghys, Peter; Avilla, Carlos; De Lay, Paul
2013-06-01
Community services comprise an important part of a country's HIV response. English language cost and cost-effectiveness studies of HIV community services published between 1986 and 2011 were reviewed but only 74 suitable studies were identified, 66% of which were performed in five countries. Mean study scores by continent varied from 42 to 69% of the maximum score, reflecting variation in topics covered and the quality of coverage: 38% of studies covered key and 11% other vulnerable populations - a country's response is most effective and efficient if these populations are identified given they are key to a successful response. Unit costs were estimated using different costing methods and outcomes. Community services will need to routinely collect and analyze information on their use, cost, outcome and impact using standardized costing methods and outcomes. Cost estimates need to be disaggregated into relevant cost items and stratified by severity and existing comorbidities. Expenditure tracking and costing of services are complementary aspects of the health sector 'resource cycle' that feed into a country's investment framework and the development and implementation of national strategic plans.
Forecasting extinction risk with nonstationary matrix models.
Gotelli, Nicholas J; Ellison, Aaron M
2006-02-01
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.
Muñoz, Eliana M; Ortega, Angela M; Bock, Brian C; Páez, Vivian P
2003-03-01
We studied the demography and nesting ecology of two populations of Iguana iguana that face heavy exploitation and habitat modification in the Momposina Depression, Colombia. Lineal transect data was analyzed using the Fourier model to provide estimates of social group densities, which was found to differ both within and among populations (1.05-6.0 groups/ha). Mean group size and overall iguana density estimates varied between populations as well (1.5-13.7 iguanas/ha). The density estimates were far lower than those reported from more protected areas in Panama and Venezuela. Iguana densities were consistently higher in sites located along rivers (2.5 iguanas/group) than in sites along the margin of marshes, probably due to vegetational differences (1.5 iguanas/group). There was no correlation between density estimates and estimates of relative abundance (number of iguanas seen/hour/person) due to differing detectabilities of iguana groups among sites. The adult sex ratio (1:2.5 males:females) agreed well with other reports in the literature based upon observation of adult social groups, and probably results from the polygynous mating system in this species rather than a real demographic skew. Nesting in this population occurs from the end of January through March and hatching occurs between April and May. We monitored 34 nests, which suffered little vertebrate predation, perhaps due to the lack of a complete vertebrate fauna in this densely inhabited area, but nests suffered from inundation, cattle trampling, and infestation by phorid fly larvae. Clutch sizes in these populations were lower than all other published reports except for the iguana population on the highly xeric island of Curaçao, implying that adult females in our area are unusually small. We argue that this is more likely the result of the exploitation of these populations rather than an adaptive response to environmentally extreme conditions.
Severity of killer whale behavioral responses to ship noise: a dose-response study.
Williams, Rob; Erbe, Christine; Ashe, Erin; Beerman, Amber; Smith, Jodi
2014-02-15
Critical habitats of at-risk populations of northeast Pacific "resident" killer whales can be heavily trafficked by large ships, with transits occurring on average once every hour in busy shipping lanes. We modeled behavioral responses of killer whales to ship transits during 35 "natural experiments" as a dose-response function of estimated received noise levels in both broadband and audiogram-weighted terms. Interpreting effects is contingent on a subjective and seemingly arbitrary decision about severity threshold indicating a response. Subtle responses were observed around broadband received levels of 130 dB re 1 μPa (rms); more severe responses are hypothesized to occur at received levels beyond 150 dB re 1 μPa, where our study lacked data. Avoidance responses are expected to carry minor energetic costs in terms of increased energy expenditure, but future research must assess the potential for reduced prey acquisition, and potential population consequences, under these noise levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
Elliott, Salenna R; Fowkes, Freya J I; Richards, Jack S; Reiling, Linda; Drew, Damien R; Beeson, James G
2014-01-01
Surveillance is a key component of control and elimination programs. Malaria surveillance has been typically reliant on case reporting by health services, entomological estimates and parasitemia (Plasmodium species) point prevalence. However, these techniques become less sensitive and relatively costly as transmission declines. There is great potential for the development and application of serological biomarkers of malaria exposure as sero-surveillance tools to strengthen malaria control and elimination. Antibodies to malaria antigens are sensitive biomarkers of population-level malaria exposure and can be used to identify hotspots of malaria transmission, estimate transmission levels, monitor changes over time or the impact of interventions on transmission, confirm malaria elimination, and monitor re-emergence of malaria. Sero-surveillance tools could be used in reference laboratories or developed as simple point-of-care tests for community-based surveillance, and different applications and target populations dictate the technical performance required from assays that are determined by properties of antigens and antibody responses. To advance the development of sero-surveillance tools for malaria elimination, major gaps in our knowledge need to be addressed through further research. These include greater knowledge of potential antigens, the sensitivity and specificity of antibody responses, and the longevity of these responses and defining antigens and antibodies that differentiate between exposure to Plasmodium falciparum and P. vivax. Additionally, a better understanding of the influence of host factors, such as age, genetics, and comorbidities on antibody responses in different populations is needed.
Elliott, Salenna R.; Fowkes, Freya J.I.; Richards, Jack S.; Reiling, Linda; Drew, Damien R.
2014-01-01
Surveillance is a key component of control and elimination programs. Malaria surveillance has been typically reliant on case reporting by health services, entomological estimates and parasitemia (Plasmodium species) point prevalence. However, these techniques become less sensitive and relatively costly as transmission declines. There is great potential for the development and application of serological biomarkers of malaria exposure as sero-surveillance tools to strengthen malaria control and elimination. Antibodies to malaria antigens are sensitive biomarkers of population-level malaria exposure and can be used to identify hotspots of malaria transmission, estimate transmission levels, monitor changes over time or the impact of interventions on transmission, confirm malaria elimination, and monitor re-emergence of malaria. Sero-surveillance tools could be used in reference laboratories or developed as simple point-of-care tests for community-based surveillance, and different applications and target populations dictate the technical performance required from assays that are determined by properties of antigens and antibody responses. To advance the development of sero-surveillance tools for malaria elimination, major gaps in our knowledge need to be addressed through further research. These include greater knowledge of potential antigens, the sensitivity and specificity of antibody responses, and the longevity of these responses and defining antigens and antibodies that differentiate between exposure to Plasmodium falciparum and P. vivax. Additionally, a better understanding of the influence of host factors, such as age, genetics, and comorbidities on antibody responses in different populations is needed. PMID:25580254
Numerical and functional responses of forest bats to a major insect pest in pine plantations.
Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé
2014-01-01
Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.
Acoustic Studies of the Effects of Environmental Stresses on Marine Mammals in Large Ocean Basins
NASA Astrophysics Data System (ADS)
Sidorovskaia, N.; Ma, B.; Ackleh, A. S.; Tiemann, C.; Ioup, G. E.; Ioup, J. W.
2014-12-01
Effects of environmental stresses on deep-diving marine mammal populations have not been studied systematically. Long-term regional passive acoustic monitoring of phonating marine mammals opens opportunities for such studies. This paper presents a unique multi-year study conducted by the Littoral Acoustic Demonstration Center (LADC) in the Northern Gulf of Mexico to understand short-term and long-term effects of anthropogenic stresses on resident populations of endangered sperm and elusive beaked whales. Both species spend many hours each day in deep dives which last about one hour each, so any visual observations for population estimates and behavioral responses are very limited. However, much more cost-efficient acoustic recordings of the phonations during dives on bottom-mounted hydrophones are not skewed by weather conditions or daylight requirements. Broadband passive acoustic data were collected by LADC in 2007 and 2010 at three ranges, 15, 40, and 80 km away from the 2010 Deep Water Horizon oil spill site. Pre-spill and post-spill data processing and comparison allow observing responses of both species to local short-term environmental condition changes and long-term responses to the spill. The short-term effects are studied by correlating daily activity cycles with anthropogenic noise curve daily and weekly cycles at different sites. The strong correlation between the decrease in overall daily activity and the increase in anthropogenic noise level associated with seismic exploration signals can be seen. After streaming raw acoustic data through detection algorithms and detailed assessment of false detection rates, the temporal densities of acoustic phonations are passed into statistical algorithms for resident population estimations. The statistically significant results have shown different regional abundance trends, associated with long-term responses to environmental stresses, for these two species.
Wallace, Ryan MacLaren; Mehal, Jason; Nakazawa, Yoshinori; Recuenco, Sergio; Bakamutumaho, Barnabas; Osinubi, Modupe; Tugumizemu, Victor; Blanton, Jesse D; Gilbert, Amy; Wamala, Joseph
2017-06-01
Rabies is a neglected disease despite being responsible for more human deaths than any other zoonosis. A lack of adequate human and dog surveillance, resulting in low prioritization, is often blamed for this paradox. Estimation methods are often employed to describe the rabies burden when surveillance data are not available, however these figures are rarely based on country-specific data. In 2013 a knowledge, attitudes, and practices survey was conducted in Uganda to understand dog population, rabies vaccination, and human rabies risk factors and improve in-country and regional rabies burden estimates. Poisson and multi-level logistic regression techniques were conducted to estimate the total dog population and vaccination coverage. Twenty-four villages were selected, of which 798 households completed the survey, representing 4 375 people. Dog owning households represented 12.9% of the population, for which 175 dogs were owned (25 people per dog). A history of vaccination was reported in 55.6% of owned dogs. Poverty and human population density highly correlated with dog ownership, and when accounted for in multi-level regression models, the human to dog ratio fell to 47:1 and the estimated national canine-rabies vaccination coverage fell to 36.1%. This study estimates there are 729 486 owned dogs in Uganda (95% CI: 719 919 - 739 053). Ten percent of survey respondents provided care to dogs they did not own, however unowned dog populations were not enumerated in this estimate. 89.8% of Uganda's human population was estimated to reside in a community that can support enzootic canine rabies transmission. This study is the first to comprehensively evaluate the effect of poverty on dog ownership in Africa. These results indicate that describing a dog population may not be as simple as applying a human: dog ratio, and factors such as poverty are likely to heavily influence dog ownership and vaccination coverage. These modelled estimates should be confirmed through further field studies, however, if validated, canine rabies elimination through mass vaccination may not be as difficult as previously considered in Uganda. Data derived from this study should be considered to improve models for estimating the in-country and regional rabies burden.
Earle, P.S.; Wald, D.J.; Allen, T.I.; Jaiswal, K.S.; Porter, K.A.; Hearne, M.G.
2008-01-01
One half-hour after the May 12th Mw 7.9 Wenchuan, China earthquake, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) system distributed an automatically generated alert stating that 1.2 million people were exposed to severe-to-extreme shaking (Modified Mercalli Intensity VIII or greater). It was immediately clear that a large-scale disaster had occurred. These alerts were widely distributed and referenced by the major media outlets and used by governments, scientific, and relief agencies to guide their responses. The PAGER alerts and Web pages included predictive ShakeMaps showing estimates of ground shaking, maps of population density, and a list of estimated intensities at impacted cities. Manual, revised alerts were issued in the following hours that included the dimensions of the fault rupture. Within a half-day, PAGER’s estimates of the population exposed to strong shaking levels stabilized at 5.2 million people. A coordinated research effort is underway to extend PAGER’s capability to include estimates of the number of casualties. We are pursuing loss models that will allow PAGER the flexibility to use detailed inventory and engineering results in regions where these data are available while also calculating loss estimates in regions where little is known about the type and strength of the built infrastructure. Prototype PAGER fatality estimates are currently implemented and can be manually triggered. In the hours following the Wenchuan earthquake, these models predicted fatalities in the tens of thousands.
Direct and indirect genetic and fine-scale location effects on breeding date in song sparrows.
Germain, Ryan R; Wolak, Matthew E; Arcese, Peter; Losdat, Sylvain; Reid, Jane M
2016-11-01
Quantifying direct and indirect genetic effects of interacting females and males on variation in jointly expressed life-history traits is central to predicting microevolutionary dynamics. However, accurately estimating sex-specific additive genetic variances in such traits remains difficult in wild populations, especially if related individuals inhabit similar fine-scale environments. Breeding date is a key life-history trait that responds to environmental phenology and mediates individual and population responses to environmental change. However, no studies have estimated female (direct) and male (indirect) additive genetic and inbreeding effects on breeding date, and estimated the cross-sex genetic correlation, while simultaneously accounting for fine-scale environmental effects of breeding locations, impeding prediction of microevolutionary dynamics. We fitted animal models to 38 years of song sparrow (Melospiza melodia) phenology and pedigree data to estimate sex-specific additive genetic variances in breeding date, and the cross-sex genetic correlation, thereby estimating the total additive genetic variance while simultaneously estimating sex-specific inbreeding depression. We further fitted three forms of spatial animal model to explicitly estimate variance in breeding date attributable to breeding location, overlap among breeding locations and spatial autocorrelation. We thereby quantified fine-scale location variances in breeding date and quantified the degree to which estimating such variances affected the estimated additive genetic variances. The non-spatial animal model estimated nonzero female and male additive genetic variances in breeding date (sex-specific heritabilities: 0·07 and 0·02, respectively) and a strong, positive cross-sex genetic correlation (0·99), creating substantial total additive genetic variance (0·18). Breeding date varied with female, but not male inbreeding coefficient, revealing direct, but not indirect, inbreeding depression. All three spatial animal models estimated small location variance in breeding date, but because relatedness and breeding location were virtually uncorrelated, modelling location variance did not alter the estimated additive genetic variances. Our results show that sex-specific additive genetic effects on breeding date can be strongly positively correlated, which would affect any predicted rates of microevolutionary change in response to sexually antagonistic or congruent selection. Further, we show that inbreeding effects on breeding date can also be sex specific and that genetic effects can exceed phenotypic variation stemming from fine-scale location-based variation within a wild population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Estimating rates of local species extinction, colonization and turnover in animal communities
Nichols, James D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.
1998-01-01
Species richness has been identified as a useful state variable for conservation and management purposes. Changes in richness over time provide a basis for predicting and evaluating community responses to management, to natural disturbance, and to changes in factors such as community composition (e.g., the removal of a keystone species). Probabilistic capture-recapture models have been used recently to estimate species richness from species count and presence-absence data. These models do not require the common assumption that all species are detected in sampling efforts. We extend this approach to the development of estimators useful for studying the vital rates responsible for changes in animal communities over time; rates of local species extinction, turnover, and colonization. Our approach to estimation is based on capture-recapture models for closed animal populations that permit heterogeneity in detection probabilities among the different species in the sampled community. We have developed a computer program, COMDYN, to compute many of these estimators and associated bootstrap variances. Analyses using data from the North American Breeding Bird Survey (BBS) suggested that the estimators performed reasonably well. We recommend estimators based on probabilistic modeling for future work on community responses to management efforts as well as on basic questions about community dynamics.
Helb, Danica A.; Tetteh, Kevin K. A.; Felgner, Philip L.; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R.; Beeson, James G.; Tappero, Jordan; Smith, David L.; Crompton, Peter D.; Rosenthal, Philip J.; Dorsey, Grant; Drakeley, Christopher J.; Greenhouse, Bryan
2015-01-01
Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual’s recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86–0.93), whereas responses to six antigens accurately estimated an individual’s malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs. PMID:26216993
Helb, Danica A; Tetteh, Kevin K A; Felgner, Philip L; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R; Beeson, James G; Tappero, Jordan; Smith, David L; Crompton, Peter D; Rosenthal, Philip J; Dorsey, Grant; Drakeley, Christopher J; Greenhouse, Bryan
2015-08-11
Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.
Hostetler, Jeffrey A; Onorato, David P; Jansen, Deborah; Oli, Madan K
2013-05-01
1. Genetic restoration has been suggested as a management tool for mitigating detrimental effects of inbreeding depression in small, inbred populations, but the demographic mechanisms underlying population-level responses to genetic restoration remain poorly understood. 2. We studied the dynamics and persistence of the endangered Florida panther Puma concolor coryi population and evaluated the potential influence of genetic restoration on population growth and persistence parameters. As part of the genetic restoration programme, eight female Texas pumas P. c. stanleyana were released into Florida panther habitat in southern Florida in 1995. 3. The overall asymptotic population growth rate (λ) was 1.04 (5th and 95th percentiles: 0.95-1.14), suggesting an increase in the panther population of approximately 4% per year. Considering the effects of environmental and demographic stochasticities and density-dependence, the probability that the population will fall below 10 panthers within 100 years was 0.072 (0-0.606). 4. Our results suggest that the population would have declined at 5% per year (λ = 0.95; 0.83-1.08) in the absence of genetic restoration. Retrospective life table response experiment analysis revealed that the positive effect of genetic restoration on survival of kittens was primarily responsible for the substantial growth of the panther population that would otherwise have been declining. 5. For comparative purposes, we also estimated probability of quasi-extinction under two scenarios - implementation of genetic restoration and no genetic restoration initiative - using the estimated abundance of panthers in 1995, the year genetic restoration was initiated. Assuming no density-dependence, the probability that the panther population would fall below 10 panthers by 2010 was 0.098 (0.002-0.332) for the restoration scenario and 0.445 (0.032-0.944) for the no restoration scenario, providing further evidence that the panther population would have faced a substantially higher risk of extinction if the genetic restoration initiative had not been implemented. 6. Our results, along with those reporting increases in population size and improvements in biomedical correlates of inbreeding depression, provide strong evidence that genetic restoration substantially contributed to the observed increases in the Florida panther population. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamo, Masashi; Ono, Kyoko; Nakanishi, Junko
2006-05-15
A meta-analysis was conducted to derive age- and gender-specific dose-response relationships between urinary cadmium (Cd) concentration and {beta} {sub 2}-microglobulinuria ({beta}2MG-uria) under environmental exposure. {beta}2MG-uria was defined by a cutoff point of 1000 {mu}g {beta} {sub 2}-microglobulin/g creatinine. We proposed a model for describing the relationships among the interindividual variabilities in urinary Cd concentration, the ratio of Cd concentrations in the target organ and in urine, and the threshold Cd concentration in the target organ. The parameters in the model were determined so that good agreement might be achieved between the prevalence rates of {beta}2MG-uria reported in the literature andmore » those estimated by the model. In this analysis, only the data from the literature on populations environmentally exposed to Cd were used. Using the model and estimated parameters, the prevalence rate of {beta}2MG-uria can be estimated for an age- and gender-specific subpopulation for which the distribution of urinary Cd concentrations is known. The maximum permissible level of urinary Cd concentration was defined as the maximum geometric mean of the urinary Cd concentration in an age- and gender-specific subpopulation that would not result in a statistically significant increase in the prevalence rate of {beta}2MG-uria. This was estimated to be approximately 3 {mu}g/g creatinine for a population in a small geographical area and approximately 2 {mu}g/g creatinine for a nationwide population.« less
Estimated prevalence of compulsive buying behavior in the United States.
Koran, Lorrin M; Faber, Ronald J; Aboujaoude, Elias; Large, Michael D; Serpe, Richard T
2006-10-01
Compulsive buying (uncontrolled urges to buy, with resulting significant adverse consequences) has been estimated to affect from 1.8% to 16% of the adult U.S. population. To the authors' knowledge, no study has used a large general population sample to estimate its prevalence. The authors conducted a random sample, national household telephone survey in the spring and summer of 2004 and interviewed 2,513 adults. The interviews addressed buying attitudes and behaviors, their consequences, and the respondents' financial and demographic data. The authors used a clinically validated screening instrument, the Compulsive Buying Scale, to classify respondents as either compulsive buyers or not. The rate of response was 56.3%, which compares favorably with rates in federal national health surveys. The cooperation rate was 97.6%. Respondents included a higher percentage of women and people ages 55 and older than the U.S. adult population. The estimated point prevalence of compulsive buying among respondents was 5.8% (by gender: 6.0% for women, 5.5% for men). The gender-adjusted prevalence rate was 5.8%. Compared with other respondents, compulsive buyers were younger, and a greater proportion reported incomes under 50,000 US dollars. They exhibited more maladaptive responses on most consumer behavior measures and were more than four times less likely to pay off credit card balances in full. A study using clinically valid interviews is needed to evaluate these results. The emotional and functional toll of compulsive buying and the frequency of comorbid psychiatric disorders suggests that studies of treatments and social interventions are warranted.
Ali, Abdullahi H.; Kauffman, Matthew J.; Amin, Rajan; Kibara, Amos; King, Juliet; Mallon, David P.; Musyoki, Charles; Goheen, Jacob R.
2018-01-01
Effective reintroduction strategies require accurate estimates of vital rates and the factors that influence them. The hirola (Beatragus hunteri) is the rarest antelope on Earth, with a global population size of <500 individuals restricted to the Kenya–Somali border. We estimated vital rates of hirola populations exposed to varying levels of predation and rangeland quality from 2012 to 2015, and then built population matrices to estimate the finite rate of population change (λ) and demographic sensitivities. Mean survival for all age classes and population growth was highest in the low‐predation–high‐rangeland‐quality setting (λ = 1.08 ± 0.03 [mean ± SE]), and lowest in the high‐predation–low‐rangeland‐quality setting (λ = 0.70 ± 0.22). Retrospective demographic analyses revealed that increased fecundity (the number of female calves born to adult females annually) and female calf survival were responsible for higher population growth where large carnivores were absent. In contrast, variation in adult female survival was the primary contributor to differences in population growth attributable to rangeland quality. Our analyses suggest that hirola demography is driven by a combination of top‐down (predation) and bottom‐up (rangeland quality) forces, with populations in the contemporary geographic range impacted both by declining rangeland quality and predation. To enhance the chances of successful reintroductions, conservationists can consider rangeland restoration to boost both the survival and fecundity of adult females within the hirola's historical range.
Estimates of alcohol-related oesophageal cancer burden in Japan: systematic review and meta-analyses
Shield, Kevin D; Higuchi, Susumu; Yoshimura, Atsushi; Larsen, Elisabeth; Rehm, Maximilien X; Rehm, Jürgen
2015-01-01
Abstract Objective To refine estimates of the burden of alcohol-related oesophageal cancer in Japan. Methods We searched PubMed for published reviews and original studies on alcohol intake, aldehyde dehydrogenase polymorphisms, and risk for oesophageal cancer in Japan, published before 2014. We conducted random-effects meta-analyses, including subgroup analyses by aldehyde dehydrogenase variants. We estimated deaths and loss of disability-adjusted life years (DALYs) from oesophageal cancer using exposure distributions for alcohol based on age, sex and relative risks per unit of exposure. Findings We identified 14 relevant studies. Three cohort studies and four case-control studies had dose–response data. Evidence from cohort studies showed that people who consumed the equivalent of 100 g/day of pure alcohol had an 11.71 fold, (95% confidence interval, CI: 2.67–51.32) risk of oesophageal cancer compared to those who never consumed alcohol. Evidence from case-control studies showed that the increase in risk was 33.11 fold (95% CI: 8.15–134.43) in the population at large. The difference by study design is explained by the 159 fold (95% CI: 27.2–938.2) risk among those with an inactive aldehyde dehydrogenase enzyme variant. Applying these dose–response estimates to the national profile of alcohol intake yielded 5279 oesophageal cancer deaths and 102 988 DALYs lost – almost double the estimates produced by the most recent global burden of disease exercise. Conclusion Use of global dose–response data results in an underestimate of the burden of disease from oesophageal cancer in Japan. Where possible, national burden of disease studies should use results from the population concerned. PMID:26229204
Impact-based earthquake alerts with the U.S. Geological Survey's PAGER system: what's next?
Wald, D.J.; Jaiswal, K.S.; Marano, K.D.; Garcia, D.; So, E.; Hearne, M.
2012-01-01
In September 2010, the USGS began publicly releasing earthquake alerts for significant earthquakes around the globe based on estimates of potential casualties and economic losses with its Prompt Assessment of Global Earthquakes for Response (PAGER) system. These estimates significantly enhanced the utility of the USGS PAGER system which had been, since 2006, providing estimated population exposures to specific shaking intensities. Quantifying earthquake impacts and communicating estimated losses (and their uncertainties) to the public, the media, humanitarian, and response communities required a new protocol—necessitating the development of an Earthquake Impact Scale—described herein and now deployed with the PAGER system. After two years of PAGER-based impact alerting, we now review operations, hazard calculations, loss models, alerting protocols, and our success rate for recent (2010-2011) events. This review prompts analyses of the strengths, limitations, opportunities, and pressures, allowing clearer definition of future research and development priorities for the PAGER system.
Gatti, Daniel M.; Morgan, Daniel L.; Kissling, Grace E.; Shockley, Keith R.; Knudsen, Gabriel A.; Shepard, Kim G.; Price, Herman C.; King, Deborah; Witt, Kristine L.; Pedersen, Lars C.; Munger, Steven C.; Svenson, Karen L.; Churchill, Gary A.
2014-01-01
Background Inhalation of benzene at levels below the current exposure limit values leads to hematotoxicity in occupationally exposed workers. Objective We sought to evaluate Diversity Outbred (DO) mice as a tool for exposure threshold assessment and to identify genetic factors that influence benzene-induced genotoxicity. Methods We exposed male DO mice to benzene (0, 1, 10, or 100 ppm; 75 mice/exposure group) via inhalation for 28 days (6 hr/day for 5 days/week). The study was repeated using two independent cohorts of 300 animals each. We measured micronuclei frequency in reticulocytes from peripheral blood and bone marrow and applied benchmark concentration modeling to estimate exposure thresholds. We genotyped the mice and performed linkage analysis. Results We observed a dose-dependent increase in benzene-induced chromosomal damage and estimated a benchmark concentration limit of 0.205 ppm benzene using DO mice. This estimate is an order of magnitude below the value estimated using B6C3F1 mice. We identified a locus on Chr 10 (31.87 Mb) that contained a pair of overexpressed sulfotransferases that were inversely correlated with genotoxicity. Conclusions The genetically diverse DO mice provided a reproducible response to benzene exposure. The DO mice display interindividual variation in toxicity response and, as such, may more accurately reflect the range of response that is observed in human populations. Studies using DO mice can localize genetic associations with high precision. The identification of sulfotransferases as candidate genes suggests that DO mice may provide additional insight into benzene-induced genotoxicity. Citation French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA, Shepard KG, Price HC, King D, Witt KL, Pedersen LC, Munger SC, Svenson KL, Churchill GA. 2015. Diversity Outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ Health Perspect 123:237–245; http://dx.doi.org/10.1289/ehp.1408202 PMID:25376053
A health risk benchmark for the neurologic effects of styrene: comparison with NOAEL/LOAEL approach.
Rabovsky, J; Fowles, J; Hill, M D; Lewis, D C
2001-02-01
Benchmark dose (BMD) analysis was used to estimate an inhalation benchmark concentration for styrene neurotoxicity. Quantal data on neuropsychologic test results from styrene-exposed workers [Mutti et al. (1984). American Journal of Industrial Medicine, 5, 275-286] were used to quantify neurotoxicity, defined as the percent of tested workers who responded abnormally to > or = 1, > or = 2, or > or = 3 out of a battery of eight tests. Exposure was based on previously published results on mean urinary mandelic- and phenylglyoxylic acid levels in the workers, converted to air styrene levels (15, 44, 74, or 115 ppm). Nonstyrene-exposed workers from the same region served as a control group. Maximum-likelihood estimates (MLEs) and BMDs at 5 and 10% response levels of the exposed population were obtained from log-normal analysis of the quantal data. The highest MLE was 9 ppm (BMD = 4 ppm) styrene and represents abnormal responses to > or = 3 tests by 10% of the exposed population. The most health-protective MLE was 2 ppm styrene (BMD = 0.3 ppm) and represents abnormal responses to > or = 1 test by 5% of the exposed population. A no observed adverse effect level/lowest observed adverse effect level (NOAEL/LOAEL) analysis of the same quantal data showed workers in all styrene exposure groups responded abnormally to > or = 1, > or = 2, or > or = 3 tests, compared to controls, and the LOAEL was 15 ppm. A comparison of the BMD and NOAEL/LOAEL analyses suggests that at air styrene levels below the LOAEL, a segment of the worker population may be adversely affected. The benchmark approach will be useful for styrene noncancer risk assessment purposes by providing a more accurate estimate of potential risk that should, in turn, help to reduce the uncertainty that is a common problem in setting exposure levels.
Terrorism-related fear and avoidance behavior in a multiethnic urban population.
Eisenman, David P; Glik, Deborah; Ong, Michael; Zhou, Qiong; Tseng, Chi-Hong; Long, Anna; Fielding, Jonathan; Asch, Steven
2009-01-01
We sought to determine whether groups traditionally most vulnerable to disasters would be more likely than would be others to perceive population-level risk as high (as measured by the estimated color-coded alert level) would worry more about terrorism, and would avoid activities because of terrorism concerns. We conducted a random digit dial survey of the Los Angeles County population October 2004 through January 2005 in 6 languages. We asked respondents what color alert level the country was under, how often they worry about terrorist attacks, and how often they avoid activities because of terrorism. Multivariate regression modeled correlates of worry and avoidance, including mental illness, disability, demographic factors, and estimated color-coded alert level. Persons who are mentally ill, those who are disabled, African Americans, Latinos, Chinese Americans, Korean Americans, and non-US citizens were more likely to perceive population-level risk as high, as measured by the estimated color-coded alert level. These groups also reported more worry and avoidance behaviors because of concerns about terrorism. Vulnerable populations experience a disproportionate burden of the psychosocial impact of terrorism threats and our national response. Further studies should investigate the specific behaviors affected and further elucidate disparities in the disaster burden associated with terrorism and terrorism policies.
Terrorism-Related Fear and Avoidance Behavior in a Multiethnic Urban Population
Glik, Deborah; Ong, Michael; Zhou, Qiong; Tseng, Chi-Hong; Long, Anna; Fielding, Jonathan; Asch, Steven
2009-01-01
Objectives. We sought to determine whether groups traditionally most vulnerable to disasters would be more likely than would be others to perceive population-level risk as high (as measured by the estimated color-coded alert level) would worry more about terrorism, and would avoid activities because of terrorism concerns. Methods. We conducted a random digit dial survey of the Los Angeles County population October 2004 through January 2005 in 6 languages. We asked respondents what color alert level the country was under, how often they worry about terrorist attacks, and how often they avoid activities because of terrorism. Multivariate regression modeled correlates of worry and avoidance, including mental illness, disability, demographic factors, and estimated color-coded alert level. Results. Persons who are mentally ill, those who are disabled, African Americans, Latinos, Chinese Americans, Korean Americans, and non-US citizens were more likely to perceive population-level risk as high, as measured by the estimated color-coded alert level. These groups also reported more worry and avoidance behaviors because of concerns about terrorism. Conclusions. Vulnerable populations experience a disproportionate burden of the psychosocial impact of terrorism threats and our national response. Further studies should investigate the specific behaviors affected and further elucidate disparities in the disaster burden associated with terrorism and terrorism policies. PMID:19008521
Population density and racial differences in the performance of emergency medical services.
David, Guy; Harrington, Scott E
2010-07-01
This paper analyzes the existence and scope of possible racial differences/disparities in the provision of emergency medical services (EMS) response capability (time from dispatch to arrival at the scene and level of training of the responding team) using data on approximately 120,000 cardiac incidents in the state of Mississippi during 1995-2004. The conceptual framework and empirical analysis focus on the likely effects of population density on the efficient production of EMS as a local public good subject to congestion, and on the need to control adequately for population density to avoid bias in testing for racial differences. Models that control for aggregate population density at the county-level indicate "reverse" disparities: faster estimated response times for African-Americans than for whites. When a refined county-level measure of population density is used that incorporates differences in African-American and white population density by Census tract, the reverse disparity in response times disappears. There also is little or no evidence of race-related differences in the certification level of EMS responders. However, there is evidence that, controlling for response time, African-Americans on average were significantly more likely to be deceased than whites upon EMS arrival at the scene. The overall results are germane to the debate over the scope of conditioning variables that should be included when testing for racial disparities in health care.
Spatially explicit population estimates for black bears based on cluster sampling
Humm, J.; McCown, J. Walter; Scheick, B.K.; Clark, Joseph D.
2017-01-01
We estimated abundance and density of the 5 major black bear (Ursus americanus) subpopulations (i.e., Eglin, Apalachicola, Osceola, Ocala-St. Johns, Big Cypress) in Florida, USA with spatially explicit capture-mark-recapture (SCR) by extracting DNA from hair samples collected at barbed-wire hair sampling sites. We employed a clustered sampling configuration with sampling sites arranged in 3 × 3 clusters spaced 2 km apart within each cluster and cluster centers spaced 16 km apart (center to center). We surveyed all 5 subpopulations encompassing 38,960 km2 during 2014 and 2015. Several landscape variables, most associated with forest cover, helped refine density estimates for the 5 subpopulations we sampled. Detection probabilities were affected by site-specific behavioral responses coupled with individual capture heterogeneity associated with sex. Model-averaged bear population estimates ranged from 120 (95% CI = 59–276) bears or a mean 0.025 bears/km2 (95% CI = 0.011–0.44) for the Eglin subpopulation to 1,198 bears (95% CI = 949–1,537) or 0.127 bears/km2 (95% CI = 0.101–0.163) for the Ocala-St. Johns subpopulation. The total population estimate for our 5 study areas was 3,916 bears (95% CI = 2,914–5,451). The clustered sampling method coupled with information on land cover was efficient and allowed us to estimate abundance across extensive areas that would not have been possible otherwise. Clustered sampling combined with spatially explicit capture-recapture methods has the potential to provide rigorous population estimates for a wide array of species that are extensive and heterogeneous in their distribution.
Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream
Peterson, J.T.; Wisniewski, J.M.; Shea, C.P.; Rhett, Jackson C.
2011-01-01
The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola- Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Qiu, Fan; Kitchen, Andrew; Beerli, Peter; Miyamoto, Michael M
2013-02-01
A recent study using both mitochondrial DNA (mtDNA) and microsatellite data reported on a population size discrepancy in the eastern tiger salamander where the effective population size (N(e)) estimate of the former exceeded that of the latter. That study suggested, among other hypotheses, that homoplasy of microsatellite alleles is responsible for the discrepancy. In this investigation, we report 10 new cases of a similar discrepancy in five species of tuna. These cases derive from our Bayesian inferences using data from Pacific Bluefin Tuna (Thunnus orientalis) and Yellowfin Tuna (Thunnus albacares), as well as from published estimates of genetic diversity for additional populations of Yellowfin Tuna and three other tuna species. Phylogenetic character analyses of inferred genealogies of Pacific Bluefin and Yellowfin Tuna reveal similar reduced levels of mtDNA and microsatellite homoplasy. Thus, the discrepancy between inferred population sizes from mtDNA and microsatellite data in tuna is most likely not an artifact of the chosen mutation models used in the microsatellite analyses, but may reflect behavioral differences between the sexes such as female-biased philopatry and male-biased dispersal. This explanation now warrants critical testing with more local populations of tuna and with other animal and plant groups that have different life histories. Copyright © 2012 Elsevier Inc. All rights reserved.
Athrey, Giridhar; Lance, Richard F.; Leberg, Paul L.
2015-01-01
Dispersal is a key demographic process, ultimately responsible for genetic connectivity among populations. Despite its importance, quantifying dispersal within and between populations has proven difficult for many taxa. Even in passerines, which are among the most intensely studied, individual movement and its relation to gene flow remains poorly understood. In this study we used two parallel genetic approaches to quantify natal dispersal distances in a Neotropical migratory passerine, the black-capped vireo. First, we employed a strategy of sampling evenly across the landscape coupled with parentage assignment to map the genealogical relationships of individuals across the landscape, and estimate dispersal distances; next, we calculated Wright’s neighborhood size to estimate gene dispersal distances. We found that a high percentage of captured individuals were assigned at short distances within the natal population, and males were assigned to the natal population more often than females, confirming sex-biased dispersal. Parentage-based dispersal estimates averaged 2400m, whereas gene dispersal estimates indicated dispersal distances ranging from 1600–4200 m. Our study was successful in quantifying natal dispersal distances, linking individual movement to gene dispersal distances, while also providing a detailed look into the dispersal biology of Neotropical passerines. The high-resolution information was obtained with much reduced effort (sampling only 20% of breeding population) compared to mark-resight approaches, demonstrating the potential applicability of parentage-based approaches for quantifying dispersal in other vagile passerine species. PMID:26461257
Pitchford, Jonathan L; Garcia, Michael; Pulis, Eric E; Ambert, Ashley Millan; Heaton, Andrew J; Solangi, Moby
2018-01-01
The co-occurrence of the Deepwater Horizon oil spill and the northern Gulf of Mexico cetacean Unusual Mortality Event have raised questions about the stability of inshore bottlenose dolphin (Tursiops truncatus) populations throughout the region. Several factors could have contributed to the ongoing event, but little attention has been paid to the potential effects of increased search effort and reporting of strandings associated with oil spill response activities, which were widespread for an extended period. This study quantified the influence of increased search effort by estimating the number of bottlenose dolphin strandings reported by oil spill responders and comparing monthly stranding rates with and without response-related records. Results showed that response teams reported an estimated 58% of strandings during the Active Response period within the study area. Comparison of Poisson rates tests showed that when responder-influenced stranding records were removed, the monthly stranding rates from the Active Response period (May 2010 -April 2014) were similar to the Post-Removal Actions Deemed Complete period (May 2013 -March 2015) (e.g., p = 0.83 for remote areas in Louisiana). Further, analyses using the Getis-Ord Gi* spatial statistic showed that when response-related stranding reports were removed from the Active Response period, significant spatial clustering of strandings (p < 0.05) was reduced by 48% in coastal Louisiana. Collectively, these results suggest that increased search effort resulting from the Deepwater Horizon oil spill response throughout remote portions of the Unusual Mortality Event geographic region had the capacity to increase reporting and recovery of marine mammal strandings to unusually high levels. To better understand how stranding data relates to actual mortality, more work is needed to quantify dolphin population size, population trends, and carcass detection rates including the role of search effort. This is vital for understanding the status of a protected species within the northern Gulf of Mexico.
Accounting for randomness in measurement and sampling in studying cancer cell population dynamics.
Ghavami, Siavash; Wolkenhauer, Olaf; Lahouti, Farshad; Ullah, Mukhtar; Linnebacher, Michael
2014-10-01
Knowing the expected temporal evolution of the proportion of different cell types in sample tissues gives an indication about the progression of the disease and its possible response to drugs. Such systems have been modelled using Markov processes. We here consider an experimentally realistic scenario in which transition probabilities are estimated from noisy cell population size measurements. Using aggregated data of FACS measurements, we develop MMSE and ML estimators and formulate two problems to find the minimum number of required samples and measurements to guarantee the accuracy of predicted population sizes. Our numerical results show that the convergence mechanism of transition probabilities and steady states differ widely from the real values if one uses the standard deterministic approach for noisy measurements. This provides support for our argument that for the analysis of FACS data one should consider the observed state as a random variable. The second problem we address is about the consequences of estimating the probability of a cell being in a particular state from measurements of small population of cells. We show how the uncertainty arising from small sample sizes can be captured by a distribution for the state probability.
ERIC Educational Resources Information Center
Burton, Alice; Whitebook, Marcy; Young, Marci; Bellm, Dan; Wayne, Claudia; Brandon, Richard N.; Maher, Erin
In response to rising demand for information on the child care workforce, the Center for the Child Care Workforce (CCW) and the Human Services Policy Center (HSPC) have initiated a 2-year project to develop a framework and methodology for quantifying the size and characteristics of the U.S. child care workforce, focusing on the workforce serving…
Geographic variation in the response of Culex pipiens life history traits to temperature.
Ruybal, Jordan E; Kramer, Laura D; Kilpatrick, A Marm
2016-02-29
Climate change is predicted to alter the transmission of many vector-borne pathogens. The quantitative impact of climate change is usually estimated by measuring the temperature-performance relationships for a single population of vectors, and then mapping this relationship across a range of temperatures or locations. However, life history traits of different populations often differ significantly. Specifically, performance across a range of temperatures is likely to vary due to local adaptation to temperature and other factors. This variation can cause spatial variation in pathogen transmission and will influence the impact of climate change on the transmission of vector-borne pathogens. We quantified variation in life history traits for four populations of Culex pipiens (Linnaeus) mosquitoes. The populations were distributed along altitudinal and latitudinal gradients in the eastern United States that spanned ~3 °C in mean summer temperature, which is similar to the magnitude of global warming expected in the next 3-5 decades. We measured larval and adult survival, development rate, and biting rate at six temperatures between 16 and 35 °C, in a common garden experiment. Temperature had strong and consistent non-linear effects on all four life history traits for all four populations. Adult female development time decreased monotonically with increasing temperature, with the largest decrease at cold temperatures. Daily juvenile and adult female survival also decreased with increasing temperature, but the largest decrease occurred at higher temperatures. There was significant among-population variation in the thermal response curves for the four life history traits across the four populations, with larval survival, adult survival, and development rate varying up to 45, 79, and 84 % among populations, respectively. However, variation was not correlated with local temperatures and thus did not support the local thermal adaptation hypothesis. These results suggest that the impact of climate change on vector-borne disease will be more variable than previous predictions, and our data provide an estimate of this uncertainty. In addition, the variation among populations that we observed will shape the response of vectors to changing climates.
Modeling and predicting community responses to events using cultural demographics
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.; Hicklen, Michael L.
2007-04-01
This paper describes a novel capability for modeling and predicting community responses to events (specifically military operations) related to demographics. Demographics in the form of words and/or numbers are used. As an example, State of Alabama annual demographic data for retail sales, auto registration, wholesale trade, shopping goods, and population were used; from which we determined a ranked estimate of the sensitivity of the demographic parameters on the cultural group response. Our algorithm and results are summarized in this paper.
Factoring vs linear modeling in rate estimation: a simulation study of relative accuracy.
Maldonado, G; Greenland, S
1998-07-01
A common strategy for modeling dose-response in epidemiology is to transform ordered exposures and covariates into sets of dichotomous indicator variables (that is, to factor the variables). Factoring tends to increase estimation variance, but it also tends to decrease bias and thus may increase or decrease total accuracy. We conducted a simulation study to examine the impact of factoring on the accuracy of rate estimation. Factored and unfactored Poisson regression models were fit to follow-up study datasets that were randomly generated from 37,500 population model forms that ranged from subadditive to supramultiplicative. In the situations we examined, factoring sometimes substantially improved accuracy relative to fitting the corresponding unfactored model, sometimes substantially decreased accuracy, and sometimes made little difference. The difference in accuracy between factored and unfactored models depended in a complicated fashion on the difference between the true and fitted model forms, the strength of exposure and covariate effects in the population, and the study size. It may be difficult in practice to predict when factoring is increasing or decreasing accuracy. We recommend, therefore, that the strategy of factoring variables be supplemented with other strategies for modeling dose-response.
Sivle, Lise Doksæter; Kvadsheim, Petter Helgevold; Ainslie, Michael
2016-01-01
Effects of noise on fish populations may be predicted by the population consequence of acoustic disturbance (PCAD) model. We have predicted the potential risk of population disturbance when the highest sound exposure level (SEL) at which adult herring do not respond to naval sonar (SEL(0)) is exceeded. When the population density is low (feeding), the risk is low even at high sonar source levels and long-duration exercises (>24 h). With densely packed populations (overwintering), a sonar exercise might expose the entire population to levels >SEL(0) within a 24-h exercise period. However, the disturbance will be short and the response threshold used here is highly conservative. It is therefore unlikely that naval sonar will significantly impact the herring population.
Estimating trends in alligator populations from nightlight survey data
Fujisaki, Ikuko; Mazzotti, Frank J.; Dorazio, Robert M.; Rice, Kenneth G.; Cherkiss, Michael; Jeffery, Brian
2011-01-01
Nightlight surveys are commonly used to evaluate status and trends of crocodilian populations, but imperfect detection caused by survey- and location-specific factors makes it difficult to draw population inferences accurately from uncorrected data. We used a two-stage hierarchical model comprising population abundance and detection probability to examine recent abundance trends of American alligators (Alligator mississippiensis) in subareas of Everglades wetlands in Florida using nightlight survey data. During 2001–2008, there were declining trends in abundance of small and/or medium sized animals in a majority of subareas, whereas abundance of large sized animals had either demonstrated an increased or unclear trend. For small and large sized class animals, estimated detection probability declined as water depth increased. Detection probability of small animals was much lower than for larger size classes. The declining trend of smaller alligators may reflect a natural population response to the fluctuating environment of Everglades wetlands under modified hydrology. It may have negative implications for the future of alligator populations in this region, particularly if habitat conditions do not favor recruitment of offspring in the near term. Our study provides a foundation to improve inferences made from nightlight surveys of other crocodilian populations.
Estimating trends in alligator populations from nightlight survey data
Fujisaki, Ikuko; Mazzotti, F.J.; Dorazio, R.M.; Rice, K.G.; Cherkiss, M.; Jeffery, B.
2011-01-01
Nightlight surveys are commonly used to evaluate status and trends of crocodilian populations, but imperfect detection caused by survey- and location-specific factors makes it difficult to draw population inferences accurately from uncorrected data. We used a two-stage hierarchical model comprising population abundance and detection probability to examine recent abundance trends of American alligators (Alligator mississippiensis) in subareas of Everglades wetlands in Florida using nightlight survey data. During 2001-2008, there were declining trends in abundance of small and/or medium sized animals in a majority of subareas, whereas abundance of large sized animals had either demonstrated an increased or unclear trend. For small and large sized class animals, estimated detection probability declined as water depth increased. Detection probability of small animals was much lower than for larger size classes. The declining trend of smaller alligators may reflect a natural population response to the fluctuating environment of Everglades wetlands under modified hydrology. It may have negative implications for the future of alligator populations in this region, particularly if habitat conditions do not favor recruitment of offspring in the near term. Our study provides a foundation to improve inferences made from nightlight surveys of other crocodilian populations. ?? 2011 US Government.
Application of random effects to the study of resource selection by animals
Gillies, C.S.; Hebblewhite, M.; Nielsen, S.E.; Krawchuk, M.A.; Aldridge, Cameron L.; Frair, J.L.; Saher, D.J.; Stevens, C.E.; Jerde, C.L.
2006-01-01
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence.2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability.3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed.4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects.5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection.6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
Application of random effects to the study of resource selection by animals.
Gillies, Cameron S; Hebblewhite, Mark; Nielsen, Scott E; Krawchuk, Meg A; Aldridge, Cameron L; Frair, Jacqueline L; Saher, D Joanne; Stevens, Cameron E; Jerde, Christopher L
2006-07-01
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.
Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S
2017-10-01
Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.
Dobričić, Valerija; Tomić, Aleksandra; Branković, Vesna; Kresojević, Nikola; Janković, Milena; Westenberger, Ana; Rašić, Vedrana Milić; Klein, Christine; Novaković, Ivana; Svetel, Marina; Kostić, Vladimir S
2017-12-01
GTP cyclohydrolase 1-deficient DOPA-responsive dystonia, caused by autosomal dominant mutation in the gene coding for GTP cyclohydrolase 1, is a rare disorder with a reported prevalence of 0.5 per million. A correct diagnosis of DRD is crucial, given that this is an exquisitely treatable neurogenetic disorder. Although genetic testing is now widely available, we hypothesize that DRD is still underdiagnosed and its prevalence underestimated. Molecular genetic analysis of the GCH1 gene was performed in a representative cohort of 47 Serbian patients with clinical features of DRD and in their 16 available relatives. The DRD prevalence rate in Serbia was estimated based on population size, catchment area, and the centralized Serbian referral system for rare diseases. We identified 9 different GCH1 mutations in 23 individuals from 11 families, 5 of which are novel. Patients displayed a broad range of clinical phenotypes. The estimated prevalence of GCH1-related DOPA-responsive dystonia in Serbia was 2.96 per million individuals and there was no evidence for a common founder. Our data expand the genotypic spectrum of GCH1 and confirm the broad phenotypic spectrum of DRD in the Serbian population. The number of detected mutation carriers in this sample implies that the frequency of DRD in the Serbian population is considerably higher than expected based on published prevalence rates, suggesting that the prevalence of this treatable disease should be revisited also in other populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ristić-Medić, Danijela; Dullemeijer, Carla; Tepsić, Jasna; Petrović-Oggiano, Gordana; Popović, Tamara; Arsić, Aleksandra; Glibetić, Marija; Souverein, Olga W; Collings, Rachel; Cavelaars, Adriënne; de Groot, Lisette; van't Veer, Pieter; Gurinović, Mirjana
2014-03-01
The objective of this systematic review was to identify studies investigating iodine intake and biomarkers of iodine status, to assess the data of the selected studies, and to estimate dose-response relationships using meta-analysis. All randomized controlled trials, prospective cohort studies, nested case-control studies, and cross-sectional studies that supplied or measured dietary iodine and measured iodine biomarkers were included. The overall pooled regression coefficient (β) and the standard error of β were calculated by random-effects meta-analysis on a double-log scale, using the calculated intake-status regression coefficient (β) for each individual study. The results of pooled randomized controlled trials indicated that the doubling of dietary iodine intake increased urinary iodine concentrations by 14% in children and adolescents, by 57% in adults and the elderly, and by 81% in pregnant women. The dose-response relationship between iodine intake and biomarkers of iodine status indicated a 12% decrease in thyroid-stimulating hormone and a 31% decrease in thyroglobulin in pregnant women. The model of dose-response quantification used to describe the relationship between iodine intake and biomarkers of iodine status may be useful for providing complementary evidence to support recommendations for iodine intake in different population groups.
Quantifying the life-history response to increased male exposure in female Drosophila melanogaster.
Edward, Dominic A; Fricke, Claudia; Gerrard, Dave T; Chapman, Tracey
2011-02-01
Precise estimates of costs and benefits, the fitness economics, of mating are of key importance in understanding how selection shapes the coevolution of male and female mating traits. However, fitness is difficult to define and quantify. Here, we used a novel application of an established analytical technique to calculate individual- and population-based estimates of fitness-including those sensitive to the timing of reproduction-to measure the effects on females of increased exposure to males. Drosophila melanogaster females were exposed to high and low frequencies of contact with males, and life-history traits for each individual female were recorded. We then compared different fitness estimates to determine which of them best described the changes in life histories. We predicted that rate-sensitive estimates would be more accurate, as mating influences the rate of offspring production in this species. The results supported this prediction. Increased exposure to males led to significantly decreased fitness within declining but not stable or increasing populations. There was a net benefit of increased male exposure in expanding populations, despite a significant decrease in lifespan. The study shows how a more accurate description of fitness, and new insights can be achieved by considering individual life-history strategies within the context of population growth. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Corso, Phaedra S.; Ingels, Justin B.; Roldos, M. Isabel
2013-01-01
Estimating the benefits of preventing child maltreatment (CM) is essential for policy makers to determine whether there are significant returns on investment from interventions to prevent CM. The aim of this study was to estimate the benefits of preventing CM deaths in an Ecuadorian population, and to compare the results to a similar study in a US population. The study used the contingent valuation method to elicit respondents’ willingness to pay (WTP) for a 1 in 100,000 reduction in the risk of CM mortality. After adjusting for differences in purchasing power, the WTP to prevent the CM mortality risk reduction in the Ecuador population was $237 and the WTP for the same risk reduction in the US population was $175. In the pooled analysis, WTP for a reduction in CM mortality was significantly impacted by country (p = 0.03), history of CM (p = 0.007), payment mechanism (p < 0.001), confidence in response (p = 0.014), and appropriateness of the payment mechanism (p < 0.001). These findings suggest that estimating benefits from one culture may not be transferable to another, and that low- and middle-income countries, such as Ecuador, may be better served by developing their own benefits estimates for use in future benefit-cost analyses of interventions designed to prevent CM. PMID:23538730
Charlson, Fiona J; Steel, Zachary; Degenhardt, Louisa; Chey, Tien; Silove, Derrick; Marnane, Claire; Whiteford, Harvey A
2012-01-01
Mental disorders are likely to be elevated in the Libyan population during the post-conflict period. We estimated cases of severe PTSD and depression and related health service requirements using modelling from existing epidemiological data and current recommended mental health service targets in low and middle income countries (LMIC's). Post-conflict prevalence estimates were derived from models based on a previously conducted systematic review and meta-regression analysis of mental health among populations living in conflict. Political terror ratings and intensity of exposure to traumatic events were used in predictive models. Prevalence of severe cases was applied to chosen populations along with uncertainty ranges. Six populations deemed to be affected by the conflict were chosen for modelling: Misrata (population of 444,812), Benghazi (pop. 674,094), Zintan (pop. 40,000), displaced people within Tripoli/Zlitan (pop. 49,000), displaced people within Misrata (pop. 25,000) and Ras Jdir camps (pop. 3,700). Proposed targets for service coverage, resource utilisation and full-time equivalent staffing for management of severe cases of major depression and post-traumatic stress disorder (PTSD) are based on a published model for LMIC's. Severe PTSD prevalence in populations exposed to a high level of political terror and traumatic events was estimated at 12.4% (95%CI 8.5-16.7) and was 19.8% (95%CI 14.0-26.3) for severe depression. Across all six populations (total population 1,236,600), the conflict could be associated with 123,200 (71,600-182,400) cases of severe PTSD and 228,100 (134,000-344,200) cases of severe depression; 50% of PTSD cases were estimated to co-occur with severe depression. Based upon service coverage targets, approximately 154 full-time equivalent staff would be required to respond to these cases sufficiently which is substantially below the current level of resource estimates for these regions. This is the first attempt to predict the mental health burden and consequent service response needs of such a conflict, and is crucially timed for Libya.
Charlson, Fiona J.; Steel, Zachary; Degenhardt, Louisa; Chey, Tien; Silove, Derrick; Marnane, Claire; Whiteford, Harvey A.
2012-01-01
Background Mental disorders are likely to be elevated in the Libyan population during the post-conflict period. We estimated cases of severe PTSD and depression and related health service requirements using modelling from existing epidemiological data and current recommended mental health service targets in low and middle income countries (LMIC’s). Methods Post-conflict prevalence estimates were derived from models based on a previously conducted systematic review and meta-regression analysis of mental health among populations living in conflict. Political terror ratings and intensity of exposure to traumatic events were used in predictive models. Prevalence of severe cases was applied to chosen populations along with uncertainty ranges. Six populations deemed to be affected by the conflict were chosen for modelling: Misrata (population of 444,812), Benghazi (pop. 674,094), Zintan (pop. 40,000), displaced people within Tripoli/Zlitan (pop. 49,000), displaced people within Misrata (pop. 25,000) and Ras Jdir camps (pop. 3,700). Proposed targets for service coverage, resource utilisation and full-time equivalent staffing for management of severe cases of major depression and post-traumatic stress disorder (PTSD) are based on a published model for LMIC’s. Findings Severe PTSD prevalence in populations exposed to a high level of political terror and traumatic events was estimated at 12.4% (95%CI 8.5–16.7) and was 19.8% (95%CI 14.0–26.3) for severe depression. Across all six populations (total population 1,236,600), the conflict could be associated with 123,200 (71,600–182,400) cases of severe PTSD and 228,100 (134,000–344,200) cases of severe depression; 50% of PTSD cases were estimated to co-occur with severe depression. Based upon service coverage targets, approximately 154 full-time equivalent staff would be required to respond to these cases sufficiently which is substantially below the current level of resource estimates for these regions. Discussion This is the first attempt to predict the mental health burden and consequent service response needs of such a conflict, and is crucially timed for Libya. PMID:22808201
Handel, Colleen M.; Sauer, John
2017-01-01
Management interest in North American birds has increasingly focused on species that breed in Alaska, USA, and Canada, where habitats are changing rapidly in response to climatic and anthropogenic factors. We used a series of hierarchical models to estimate rates of population change in 2 forested Bird Conservation Regions (BCRs) in Alaska based on data from the roadside North American Breeding Bird Survey (BBS) and the Alaska Landbird Monitoring Survey, which samples off-road areas on public resource lands. We estimated long-term (1993–2015) population trends for 84 bird species from the BBS and short-term (2003–2015) trends for 31 species from both surveys. Among the 84 species with long-term estimates, 11 had positive trends and 17 had negative trends in 1 or both BCRs; negative trends were primarily found among aerial insectivores and wetland-associated species, confirming range-wide negative continental trends for many of these birds. Three species with negative trends in the contiguous United States and southern Canada had positive trends in Alaska, suggesting different population dynamics at the northern edges of their ranges. Regional population trends within Alaska differed for several species, particularly those represented by different subspecies in the 2 BCRs, which are separated by rugged, glaciated mountain ranges. Analysis of the roadside and off-road data in a joint hierarchical model with shared parameters resulted in improved precision of trend estimates and suggested a roadside-related difference in underlying population trends for several species, particularly within the Northwestern Interior Forest BCR. The combined analysis highlights the importance of considering population structure, physiographic barriers, and spatial heterogeneity in habitat change when assessing patterns of population change across a landscape as broad as Alaska. Combined analysis of roadside and off-road survey data in a hierarchical framework may be particularly useful for evaluating patterns of population change in relatively undeveloped regions with sparse roadside BBS coverage.
Identification of differences in health impact modelling of salt reduction
Geleijnse, Johanna M.; van Raaij, Joop M. A.; Cappuccio, Francesco P.; Cobiac, Linda C.; Scarborough, Peter; Nusselder, Wilma J.; Jaccard, Abbygail; Boshuizen, Hendriek C.
2017-01-01
We examined whether specific input data and assumptions explain outcome differences in otherwise comparable health impact assessment models. Seven population health models estimating the impact of salt reduction on morbidity and mortality in western populations were compared on four sets of key features, their underlying assumptions and input data. Next, assumptions and input data were varied one by one in a default approach (the DYNAMO-HIA model) to examine how it influences the estimated health impact. Major differences in outcome were related to the size and shape of the dose-response relation between salt and blood pressure and blood pressure and disease. Modifying the effect sizes in the salt to health association resulted in the largest change in health impact estimates (33% lower), whereas other changes had less influence. Differences in health impact assessment model structure and input data may affect the health impact estimate. Therefore, clearly defined assumptions and transparent reporting for different models is crucial. However, the estimated impact of salt reduction was substantial in all of the models used, emphasizing the need for public health actions. PMID:29182636
Horvitz-Thompson survey sample methods for estimating large-scale animal abundance
Samuel, M.D.; Garton, E.O.
1994-01-01
Large-scale surveys to estimate animal abundance can be useful for monitoring population status and trends, for measuring responses to management or environmental alterations, and for testing ecological hypotheses about abundance. However, large-scale surveys may be expensive and logistically complex. To ensure resources are not wasted on unattainable targets, the goals and uses of each survey should be specified carefully and alternative methods for addressing these objectives always should be considered. During survey design, the impoflance of each survey error component (spatial design, propofiion of detected animals, precision in detection) should be considered carefully to produce a complete statistically based survey. Failure to address these three survey components may produce population estimates that are inaccurate (biased low), have unrealistic precision (too precise) and do not satisfactorily meet the survey objectives. Optimum survey design requires trade-offs in these sources of error relative to the costs of sampling plots and detecting animals on plots, considerations that are specific to the spatial logistics and survey methods. The Horvitz-Thompson estimators provide a comprehensive framework for considering all three survey components during the design and analysis of large-scale wildlife surveys. Problems of spatial and temporal (especially survey to survey) heterogeneity in detection probabilities have received little consideration, but failure to account for heterogeneity produces biased population estimates. The goal of producing unbiased population estimates is in conflict with the increased variation from heterogeneous detection in the population estimate. One solution to this conflict is to use an MSE-based approach to achieve a balance between bias reduction and increased variation. Further research is needed to develop methods that address spatial heterogeneity in detection, evaluate the effects of temporal heterogeneity on survey objectives and optimize decisions related to survey bias and variance. Finally, managers and researchers involved in the survey design process must realize that obtaining the best survey results requires an interactive and recursive process of survey design, execution, analysis and redesign. Survey refinements will be possible as further knowledge is gained on the actual abundance and distribution of the population and on the most efficient techniques for detection animals.
An attempt to estimate the global burden of disease due to fluoride in drinking water.
Fewtrell, Lorna; Smith, Stuart; Kay, Dave; Bartram, Jamie
2006-12-01
A study was conducted to examine the feasibility of estimating the global burden of disease due to fluoride in drinking water. Skeletal fluorosis is a serious and debilitating disease which, with the exception of one area in China, is overwhelmingly due to the presence of elevated fluoride levels in drinking water. The global burden of disease due to fluoride in drinking water was estimated by combining exposure-response curves for dental and skeletal fluorosis (derived from published data) with model-derived predicted drinking water fluoride concentrations and an estimate of the percentage population exposed. There are few data with which to validate the output but given the current uncertainties in the data used, both to form the exposure-response curves and those resulting from the prediction of fluoride concentrations, it is felt that the estimate is unlikely to be precise. However, the exercise has identified a number of data gaps and useful research avenues, especially in relation to determining exposure, which could contribute to future estimates of this problem.
Seidler, Andreas; Lüben, Laura; Hegewald, Janice; Bolm-Audorff, Ulrich; Bergmann, Annekatrin; Liebers, Falk; Ramdohr, Christina; Romero Starke, Karla; Freiberg, Alice; Unverzagt, Susanne
2018-06-01
There is consistent evidence from observational studies of an association between occupational lifting and carrying of heavy loads and the diagnosis of hip osteoarthritis. However, due to the heterogeneity of exposure estimates considered in single studies, a dose-response relationship between cumulative physical workload and hip osteoarthritis could not be determined so far. This study aimed to analyze the dose-response relationship between cumulative physical workload and hip osteoarthritis by replacing the exposure categories of the included studies with cumulative exposure values of an external reference population. Our meta-regression analysis was based on a recently conducted systematic review (Bergmann A, Bolm-Audorff U, Krone D, Seidler A, Liebers F, Haerting J, Freiberg A, Unverzagt S, Dtsch Arztebl Int 114:581-8, 2017). The main analysis of our meta-regression comprised six case-control studies for men and five for women. The population control subjects of a German multicentre case-control study (Seidler A, Bergmann A, Jäger M, Ellegast R, Ditchen D, Elsner G, Grifka J, Haerting J, Hofmann F, Linhardt O, Luttmann A, Michaelis M, Petereit-Haack G, Schumann B, Bolm-Audorff U, BMC Musculoskelet Disord 10:48, 2009) served as the reference population. Based on the sex-specific cumulative exposure percentiles of the reference population, we assigned exposure values to each category of the included studies using three different cumulative exposure parameters. To estimate the doubling dose (the amount of physical workload to double the risk of hip osteoarthritis) on the basis of all available case-control-studies, meta-regression analyses were conducted based on the linear association between exposure values of the reference population and the logarithm of reported odds ratios (ORs) from the included studies. In men, the risk to develop hip osteoarthritis was increased by an OR of 1.98 (95% CI 1.20-3.29) per 10,000 tons of weights ≥20 kg handled, 2.08 (95% CI 1.22-3.53) per 10,000 tons handled > 10 times per day and 8.64 (95% CI 1.87-39.91) per 10 6 operations. These estimations result in doubling dosages of 10,100 tons of weights ≥20 kg handled, 9500 tons ≥20 kg handled > 10 times per day and 321,400 operations of weights ≥20 kg. There was no linear association between manual handling of weights at work and risk to develop hip osteoarthritis in women. Under specific conditions, the application of an external reference population allows for the derivation of a dose-response relationship despite high exposure heterogeneities in the pooled studies.
Subsidies and the Demand for Individual Health Insurance in California
Susan Marquis, M; Buntin, Melinda Beeuwkes; Escarce, José J; Kapur, Kanika; Yegian, Jill M
2004-01-01
Objective To estimate the effect of changes in premiums for individual insurance on decisions to purchase individual insurance and how this price response varies among subgroups of the population. Data Source Survey responses from the Current Population Survey (), the Survey of Income and Program Participation (), the National Health Interview Survey (), and data about premiums and plans offered in the individual insurance market in California, 1996–2001. Study Design A logit model was used to estimate the decisions to purchase individual insurance by families without access to group insurance. This was modeled as a function of premiums, controlling for family characteristics and other characteristics of the market. A multinomial model was used to estimate the choice between group coverage, individual coverage, and remaining uninsured for workers offered group coverage as a function of premiums for individual insurance and out-of-pocket costs of group coverage. Principal Findings The elasticity of demand for individual insurance by those without access to group insurance is about −.2 to −.4, as has been found in earlier studies. However, there are substantial differences in price responses among subgroups with low-income, young, and self-employed families showing the greatest response. Among workers offered group insurance, a decrease in individual premiums has very small effects on the choice to purchase individual coverage versus group coverage. Conclusions Subsidy programs may make insurance more affordable for some families, but even sizeable subsidies are unlikely to solve the problem of the uninsured. We do not find evidence that subsidies to individual insurance will produce an unraveling of the employer-based health insurance system. PMID:15333122
Brown, Alan Lex; Lam, Kin Che; van Kamp, Irene
2015-03-07
Particularly in Asia, dense, traffic-intense, and usually high-rise cities are increasingly the norm. Is existing knowledge on exposure to road traffic noise, and on people's response to such exposure, garnered primarily from western cities, equally applicable in these? Hong Kong has high population and traffic density and a high-rise building form. Road traffic noise exposure was estimated, and residents' responses to traffic noise measured, for a sample of 10,077 dwellings. Noise level estimates were based on three-dimensional modelling. Best international survey practice measured self-reported annoyance and sleep-disturbance. Benchmark estimates of exposure, and of annoyance and self-reported sleep disturbance, are provided. We compare Hong Kong exposure with those of European cities, and the exposure-response relationship for annoyance in Hong Kong to those reported from elsewhere - based on the tolerance limits of previous syntheses. Exposure-response for self-reported sleep disturbance is also compared. The distribution of exposures of dwellings in high-rise, high-density, Hong Kong is different from those reported from Europe, but not at the higher noise levels. The exposure-annoyance relationship for road traffic noise was from the same population of exposure-response relationships, being well within the tolerance limits, of studies used to generate the synthesized Miedema and Oudshoorn curves. The exposure-response curve for self-reported sleep disturbance was parallel to that of Miedema and Vos but slightly lower. The proportion of the Hong Kong population exposed to high levels (>70 dB) is similar to that found in Europe. However, a much higher proportion, compared to European cities, is exposed to Lden levels of 60-64 dB, and a much lower proportion to lower levels (<55 dB). There is no evidence that the exposure-response relationships for annoyance and self-reported sleep disturbance in Hong Kong are different from relationships synthesized from earlier studies - despite the western bias and temperate-climate bias in the studies available in the syntheses. This is an important finding for urban planning and traffic noise management of the growing mega-cities in the world whose built forms can be expected to reflect that of Hong Kong more than of cities in the west.
NASA Astrophysics Data System (ADS)
Xu, Jinghai; An, Jiwen; Nie, Gaozong
2016-04-01
Improving earthquake disaster loss estimation speed and accuracy is one of the key factors in effective earthquake response and rescue. The presentation of exposure data by applying a dasymetric map approach has good potential for addressing this issue. With the support of 30'' × 30'' areal exposure data (population and building data in China), this paper presents a new earthquake disaster loss estimation method for emergency response situations. This method has two phases: a pre-earthquake phase and a co-earthquake phase. In the pre-earthquake phase, we pre-calculate the earthquake loss related to different seismic intensities and store them in a 30'' × 30'' grid format, which has several stages: determining the earthquake loss calculation factor, gridding damage probability matrices, calculating building damage and calculating human losses. Then, in the co-earthquake phase, there are two stages of estimating loss: generating a theoretical isoseismal map to depict the spatial distribution of the seismic intensity field; then, using the seismic intensity field to extract statistics of losses from the pre-calculated estimation data. Thus, the final loss estimation results are obtained. The method is validated by four actual earthquakes that occurred in China. The method not only significantly improves the speed and accuracy of loss estimation but also provides the spatial distribution of the losses, which will be effective in aiding earthquake emergency response and rescue. Additionally, related pre-calculated earthquake loss estimation data in China could serve to provide disaster risk analysis before earthquakes occur. Currently, the pre-calculated loss estimation data and the two-phase estimation method are used by the China Earthquake Administration.
Dullemeijer, Carla; Souverein, Olga W; Doets, Esmée L; van der Voet, Hilko; van Wijngaarden, Janneke P; de Boer, Waldo J; Plada, Maria; Dhonukshe-Rutten, Rosalie A M; In 't Veld, Paulette H; Cavelaars, Adrienne E J M; de Groot, Lisette C P G M; van 't Veer, Pieter
2013-02-01
Many randomized controlled trials (RCTs) and observational studies have provided information on the association between vitamin B-12 intake and biomarkers. The use of these data to estimate dose-response relations provides a useful means to summarize the body of evidence. We systematically reviewed studies that investigated vitamin B-12 intake and biomarkers of vitamin B-12 status and estimated dose-response relations with the use of a meta-analysis. This systematic review included all RCTs, prospective cohort studies, nested case-control studies, and cross-sectional studies in healthy adult populations published through January 2010 that supplied or measured dietary vitamin B-12 intake and measured vitamin B-12 status as serum or plasma vitamin B-12, methylmalonic acid (MMA), or holotranscobalamin. We calculated an intake-status regression coefficient ( ) for each individual study and calculated the overall pooled and SE ( ) by using random-effects meta-analysis on a double-log scale. The meta-analysis of observational studies showed a weaker slope of dose-response relations than the meta-analysis of RCTs. The pooled dose-response relation of all studies between vitamin B-12 intake and status indicated that a doubling of the vitamin B-12 intake increased vitamin B-12 concentrations by 11% (95% CI: 9.4%, 12.5%). This increase was larger for studies in elderly persons (13%) than in studies in adults (8%). The dose-response relation between vitamin B-12 intake and MMA concentrations indicated a decrease in MMA of 7% (95% CI: -10%, -4%) for every doubling of the vitamin B-12 intake. The assessment of risk of bias within individual studies and across studies indicated risk that was unlikely to seriously alter these results. The obtained dose-response estimate between vitamin B-12 intake and status provides complementary evidence to underpin recommendations for a vitamin B-12 intake of populations.
Measurement Error and Environmental Epidemiology: A Policy Perspective
Edwards, Jessie K.; Keil, Alexander P.
2017-01-01
Purpose of review Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making. Recent findings We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Summary Under a policy perspective, the analysis must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology. PMID:28138941
Inferring responses to climate dynamics from historical demography in neotropical forest lizards
Xue, Alexander T.; Brown, Jason L.; Alvarado-Serrano, Diego F.; Rodrigues, Miguel T.; Hickerson, Michael J.; Carnaval, Ana C.
2016-01-01
We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future. PMID:27432951
Inferring responses to climate dynamics from historical demography in neotropical forest lizards.
Prates, Ivan; Xue, Alexander T; Brown, Jason L; Alvarado-Serrano, Diego F; Rodrigues, Miguel T; Hickerson, Michael J; Carnaval, Ana C
2016-07-19
We apply a comparative framework to test for concerted demographic changes in response to climate shifts in the neotropical lowland forests, learning from the past to inform projections of the future. Using reduced genomic (SNP) data from three lizard species codistributed in Amazonia and the Atlantic Forest (Anolis punctatus, Anolis ortonii, and Polychrus marmoratus), we first reconstruct former population history and test for assemblage-level responses to cycles of moisture transport recently implicated in changes of forest distribution during the Late Quaternary. We find support for population shifts within the time frame of inferred precipitation fluctuations (the last 250,000 y) but detect idiosyncratic responses across species and uniformity of within-species responses across forest regions. These results are incongruent with expectations of concerted population expansion in response to increased rainfall and fail to detect out-of-phase demographic syndromes (expansions vs. contractions) across forest regions. Using reduced genomic data to infer species-specific demographical parameters, we then model the plausible spatial distribution of genetic diversity in the Atlantic Forest into future climates (2080) under a medium carbon emission trajectory. The models forecast very distinct trajectories for the lizard species, reflecting unique estimated population densities and dispersal abilities. Ecological and demographic constraints seemingly lead to distinct and asynchronous responses to climatic regimes in the tropics, even among similarly distributed taxa. Incorporating such constraints is key to improve modeling of the distribution of biodiversity in the past and future.
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
Segev, Ronen; Schneidman, Elad
2013-01-01
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339
Batteries, from Cradle to Grave
ERIC Educational Resources Information Center
Smith, Michael J.; Gray, Fiona M.
2010-01-01
As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. In the United Kingdom, estimates of annual…
Hierarchy and extremes in selections from pools of randomized proteins
Boyer, Sébastien; Biswas, Dipanwita; Kumar Soshee, Ananda; Scaramozzino, Natale; Nizak, Clément; Rivoire, Olivier
2016-01-01
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different “frameworks” typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution). PMID:26969726
Hierarchy and extremes in selections from pools of randomized proteins.
Boyer, Sébastien; Biswas, Dipanwita; Kumar Soshee, Ananda; Scaramozzino, Natale; Nizak, Clément; Rivoire, Olivier
2016-03-29
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different "frameworks" typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution).
NASA Technical Reports Server (NTRS)
Deloach, R.
1981-01-01
The Fraction Impact Method (FIM), developed by the National Research Council (NRC) for assessing the amount and physiological effect of noise, is described. Here, the number of people exposed to a given level of noise is multiplied by a weighting factor that depends on noise level. It is pointed out that the Aircraft-noise Levels and Annoyance MOdel (ALAMO), recently developed at NASA Langley Research Center, can perform the NRC fractional impact calculations for given modes of operation at any U.S. airport. The sensitivity of these calculations to errors in estimates of population, noise level, and human subjective response is discussed. It is found that a change in source noise causes a substantially smaller change in contour area than would be predicted simply on the basis of inverse square law considerations. Another finding is that the impact calculations are generally less sensitive to source noise errors than to systematic errors in population or subjective response.
Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.
2016-01-01
Background: High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. Objectives: The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. Methods: We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature–mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). Results: The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. Conclusions: These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47–55; http://dx.doi.org/10.1289/EHP166 PMID:27337737
Petkova, Elisaveta P; Vink, Jan K; Horton, Radley M; Gasparrini, Antonio; Bader, Daniel A; Francis, Joe D; Kinney, Patrick L
2017-01-01
High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information to formulate hypotheses about population sensitivity to high temperatures and future demographics. The present study derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopted a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projected heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporated a range of new scenarios for population change until the end of the 21st century. We then estimated future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs). The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3,331 in the 2080s compared with 638 heat-related deaths annually between 2000 and 2006. These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York City, and they highlight the importance of both demographic change and adaptation responses in modifying future risks. Citation: Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL. 2017. Towards more comprehensive projections of urban heat-related mortality: estimates for New York City under multiple population, adaptation, and climate scenarios. Environ Health Perspect 125:47-55; http://dx.doi.org/10.1289/EHP166.
Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne
2016-05-01
Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.
Estimating black bear density using DNA data from hair snares
Gardner, B.; Royle, J. Andrew; Wegan, M.T.; Rainbolt, R.E.; Curtis, P.D.
2010-01-01
DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capturerecapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level. ?? The Wildlife Society.
Mean Dietary Salt Intake in Urban and Rural Areas in India: A Population Survey of 1395 Persons.
Johnson, Claire; Mohan, Sailesh; Rogers, Kris; Shivashankar, Roopa; Thout, Sudhir Raj; Gupta, Priti; He, Feng J; MacGregor, Graham A; Webster, Jacqui; Krishnan, Anand; Maulik, Pallab K; Reddy, K Srinath; Prabhakaran, Dorairaj; Neal, Bruce
2017-01-06
The scientific evidence base in support of population-wide salt reduction is strong, but current high-quality data about salt intake levels in India are mostly absent. This project sought to estimate daily salt consumption levels in selected communities of Delhi and Haryana in north India and Andhra Pradesh in south India. In this study, 24-hour urine samples were collected using an age- and sex-stratified sampling strategy in rural, urban, and slum areas. Salt intake estimates were made for the overall population of each region and for major subgroups by weighting the survey data for the populations of Delhi and Haryana, and Andhra Pradesh. Complete 24-hour urine samples were available for 637 participants from Delhi and Haryana and 758 from Andhra Pradesh (65% and 68% response rates, respectively). Weighted mean population 24-hour urine excretion of salt was 8.59 g/day (95% CI 7.68-9.51) in Delhi and Haryana and 9.46 g/day (95% CI 9.06-9.85) in Andhra Pradesh (P=0.097). Estimates inflated to account for the minimum likely nonurinary losses of sodium provided corresponding estimates of daily salt intake of 9.45 g/day (95% CI 8.45-10.46) and 10.41 g/day (95% CI 9.97-10.84), respectively. Salt consumption in India is high, with mean population intake well above the World Health Organization recommended maximum of 5 g/day. A national salt reduction program would likely avert much premature death and disability. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Bengtsson, Linus; Lu, Xin; Thorson, Anna; Garfield, Richard; von Schreeb, Johan
2011-01-01
Background Population movements following disasters can cause important increases in morbidity and mortality. Without knowledge of the locations of affected people, relief assistance is compromised. No rapid and accurate method exists to track population movements after disasters. We used position data of subscriber identity module (SIM) cards from the largest mobile phone company in Haiti (Digicel) to estimate the magnitude and trends of population movements following the Haiti 2010 earthquake and cholera outbreak. Methods and Findings Geographic positions of SIM cards were determined by the location of the mobile phone tower through which each SIM card connects when calling. We followed daily positions of SIM cards 42 days before the earthquake and 158 days after. To exclude inactivated SIM cards, we included only the 1.9 million SIM cards that made at least one call both pre-earthquake and during the last month of study. In Port-au-Prince there were 3.2 persons per included SIM card. We used this ratio to extrapolate from the number of moving SIM cards to the number of moving persons. Cholera outbreak analyses covered 8 days and tracked 138,560 SIM cards. An estimated 630,000 persons (197,484 Digicel SIM cards), present in Port-au-Prince on the day of the earthquake, had left 19 days post-earthquake. Estimated net outflow of people (outflow minus inflow) corresponded to 20% of the Port-au-Prince pre-earthquake population. Geographic distribution of population movements from Port-au-Prince corresponded well with results from a large retrospective, population-based UN survey. To demonstrate feasibility of rapid estimates and to identify areas at potentially increased risk of outbreaks, we produced reports on SIM card movements from a cholera outbreak area at its immediate onset and within 12 hours of receiving data. Conclusions Results suggest that estimates of population movements during disasters and outbreaks can be delivered rapidly and with potentially high validity in areas with high mobile phone use. Please see later in the article for the Editors' Summary PMID:21918643
Learning to Estimate Dynamical State with Probabilistic Population Codes.
Makin, Joseph G; Dichter, Benjamin K; Sabes, Philip N
2015-11-01
Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH)-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.
Learning to Estimate Dynamical State with Probabilistic Population Codes
Sabes, Philip N.
2015-01-01
Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF), the parameters of which can be learned via latent-variable density estimation (the EM algorithm). The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, “probabilistic population codes.” We show that a recurrent neural network—a modified form of an exponential family harmonium (EFH)—that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts) to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states. PMID:26540152
Friesen, Melissa C.; Shortreed, Susan M.; Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Silverman, Debra T.; Yu, Kai
2015-01-01
Objectives: Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Methods: Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m−3 respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters’ homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job’s estimate and the mean estimate for all jobs within the cluster. Results: Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. Conclusions: This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process. PMID:25477475
Friesen, Melissa C; Shortreed, Susan M; Wheeler, David C; Burstyn, Igor; Vermeulen, Roel; Pronk, Anjoeka; Colt, Joanne S; Baris, Dalsu; Karagas, Margaret R; Schwenn, Molly; Johnson, Alison; Armenti, Karla R; Silverman, Debra T; Yu, Kai
2015-05-01
Rule-based expert exposure assessment based on questionnaire response patterns in population-based studies improves the transparency of the decisions. The number of unique response patterns, however, can be nearly equal to the number of jobs. An expert may reduce the number of patterns that need assessment using expert opinion, but each expert may identify different patterns of responses that identify an exposure scenario. Here, hierarchical clustering methods are proposed as a systematic data reduction step to reproducibly identify similar questionnaire response patterns prior to obtaining expert estimates. As a proof-of-concept, we used hierarchical clustering methods to identify groups of jobs (clusters) with similar responses to diesel exhaust-related questions and then evaluated whether the jobs within a cluster had similar (previously assessed) estimates of occupational diesel exhaust exposure. Using the New England Bladder Cancer Study as a case study, we applied hierarchical cluster models to the diesel-related variables extracted from the occupational history and job- and industry-specific questionnaires (modules). Cluster models were separately developed for two subsets: (i) 5395 jobs with ≥1 variable extracted from the occupational history indicating a potential diesel exposure scenario, but without a module with diesel-related questions; and (ii) 5929 jobs with both occupational history and module responses to diesel-relevant questions. For each subset, we varied the numbers of clusters extracted from the cluster tree developed for each model from 100 to 1000 groups of jobs. Using previously made estimates of the probability (ordinal), intensity (µg m(-3) respirable elemental carbon), and frequency (hours per week) of occupational exposure to diesel exhaust, we examined the similarity of the exposure estimates for jobs within the same cluster in two ways. First, the clusters' homogeneity (defined as >75% with the same estimate) was examined compared to a dichotomized probability estimate (<5 versus ≥5%; <50 versus ≥50%). Second, for the ordinal probability metric and continuous intensity and frequency metrics, we calculated the intraclass correlation coefficients (ICCs) between each job's estimate and the mean estimate for all jobs within the cluster. Within-cluster homogeneity increased when more clusters were used. For example, ≥80% of the clusters were homogeneous when 500 clusters were used. Similarly, ICCs were generally above 0.7 when ≥200 clusters were used, indicating minimal within-cluster variability. The most within-cluster variability was observed for the frequency metric (ICCs from 0.4 to 0.8). We estimated that using an expert to assign exposure at the cluster-level assignment and then to review each job in non-homogeneous clusters would require ~2000 decisions per expert, in contrast to evaluating 4255 unique questionnaire patterns or 14983 individual jobs. This proof-of-concept shows that using cluster models as a data reduction step to identify jobs with similar response patterns prior to obtaining expert ratings has the potential to aid rule-based assessment by systematically reducing the number of exposure decisions needed. While promising, additional research is needed to quantify the actual reduction in exposure decisions and the resulting homogeneity of exposure estimates within clusters for an exposure assessment effort that obtains cluster-level expert assessments as part of the assessment process. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.
Ehlers Smith, David A; Ehlers Smith, Yvette C
2013-08-01
Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.
Interpreting Nonresponse in Survey Research: Methodological Heresy?
ERIC Educational Resources Information Center
Clark, Sheldon B.; Finn, Michael G.
A study is proposed that seeks to use the normally problematic factor of non-response to a survey in a positive way in order to estimate certain characteristics of a population subgroup. A longitudinal database, the Scientific and Technical Personnel Data System (STPDS) measures the educational, demographic, and employment characteristics of the…
Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R
2014-02-01
Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. © 2013 John Wiley & Sons Ltd.
Representation of pitch chroma by multi-peak spectral tuning in human auditory cortex.
Moerel, Michelle; De Martino, Federico; Santoro, Roberta; Yacoub, Essa; Formisano, Elia
2015-02-01
Musical notes played at octave intervals (i.e., having the same pitch chroma) are perceived as similar. This well-known perceptual phenomenon lays at the foundation of melody recognition and music perception, yet its neural underpinnings remain largely unknown to date. Using fMRI with high sensitivity and spatial resolution, we examined the contribution of multi-peak spectral tuning to the neural representation of pitch chroma in human auditory cortex in two experiments. In experiment 1, our estimation of population spectral tuning curves from the responses to natural sounds confirmed--with new data--our recent results on the existence of cortical ensemble responses finely tuned to multiple frequencies at one octave distance (Moerel et al., 2013). In experiment 2, we fitted a mathematical model consisting of a pitch chroma and height component to explain the measured fMRI responses to piano notes. This analysis revealed that the octave-tuned populations-but not other cortical populations-harbored a neural representation of musical notes according to their pitch chroma. These results indicate that responses of auditory cortical populations selectively tuned to multiple frequencies at one octave distance predict well the perceptual similarity of musical notes with the same chroma, beyond the physical (frequency) distance of notes. Copyright © 2014 Elsevier Inc. All rights reserved.
Myers, Samuel S; Wessells, K Ryan; Kloog, Itai; Zanobetti, Antonella; Schwartz, Joel
2015-10-01
Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc deficiency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc deficiency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the effect of anthropogenic CO2 emissions on the global risk of zinc deficiency. We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375-384 ppm) using food balance sheet data for 2003-07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specific theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the different nations under the two scenarios (ambient and elevated CO2). The difference between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc deficiency) was our measure of impact. The total number of people estimated to be placed at new risk of zinc deficiency by 2050 was 138 million (95% CI 120-156). The people likely to be most affected live in Africa and South Asia, with nearly 48 million (32-63) residing in India alone. Global maps of increased risk show significant heterogeneity. Our results indicate that one heretofore unquantified human health effect associated with anthropogenic CO2 emissions will be a significant increase in the human population at risk of zinc deficiency. Our country-specific findings can be used to help guide interventions aimed at reducing this vulnerability. Bill & Melinda Gates Foundation, Winslow Foundation. Copyright © 2015 Myers et al. Open access article published under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.
Alexander, H J; Richardson, J M L; Anholt, B R
2014-09-01
Polygenic sex determination (PSD) is relatively rare and theoretically evolutionary unstable, yet has been reported across a range of taxa. Evidence for multilocus PSD is provided by (i) large between-family variance in sex ratio, (ii) paternal and maternal effects on family sex ratio and (iii) response to selection for family sex ratio. This study tests the polygenic hypothesis of sex determination in the harpacticoid copepod Tigriopus californicus using the criterion of response to selection. We report the first multigenerational quantitative evidence that clutch sex ratio responds to artificial selection in both directions (selection for male- and female-biased families) and in multiple populations of T. californicus. In the five of six lines that showed a response to selection, realized heritability estimated by multigenerational analysis ranged from 0.24 to 0.58. Divergence of clutch sex ratio between selection lines is rapid, with response to selection detectable within the first four generations of selection. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Pairing call-response surveys and distance sampling for a mammalian carnivore
Hansen, Sara J. K.; Frair, Jacqueline L.; Underwood, Harold B.; Gibbs, James P.
2015-01-01
Density estimates accounting for differential animal detectability are difficult to acquire for wide-ranging and elusive species such as mammalian carnivores. Pairing distance sampling with call-response surveys may provide an efficient means of tracking changes in populations of coyotes (Canis latrans), a species of particular interest in the eastern United States. Blind field trials in rural New York State indicated 119-m linear error for triangulated coyote calls, and a 1.8-km distance threshold for call detectability, which was sufficient to estimate a detection function with precision using distance sampling. We conducted statewide road-based surveys with sampling locations spaced ≥6 km apart from June to August 2010. Each detected call (be it a single or group) counted as a single object, representing 1 territorial pair, because of uncertainty in the number of vocalizing animals. From 524 survey points and 75 detections, we estimated the probability of detecting a calling coyote to be 0.17 ± 0.02 SE, yielding a detection-corrected index of 0.75 pairs/10 km2 (95% CI: 0.52–1.1, 18.5% CV) for a minimum of 8,133 pairs across rural New York State. Importantly, we consider this an index rather than true estimate of abundance given the unknown probability of coyote availability for detection during our surveys. Even so, pairing distance sampling with call-response surveys provided a novel, efficient, and noninvasive means of monitoring populations of wide-ranging and elusive, albeit reliably vocal, mammalian carnivores. Our approach offers an effective new means of tracking species like coyotes, one that is readily extendable to other species and geographic extents, provided key assumptions of distance sampling are met.
Mishra, Vinod; Vaessen, Martin; Boerma, J. Ties; Arnold, Fred; Way, Ann; Barrere, Bernard; Cross, Anne; Hong, Rathavuth; Sangha, Jasbir
2006-01-01
OBJECTIVES: To describe the methods used in the Demographic and Health Surveys (DHS) to collect nationally representative data on the prevalence of human immunodeficiency virus (HIV) and assess the value of such data to country HIV surveillance systems. METHODS: During 2001-04, national samples of adult women and men in Burkina Faso, Cameroon, Dominican Republic, Ghana, Mali, Kenya, United Republic of Tanzania and Zambia were tested for HIV. Dried blood spot samples were collected for HIV testing, following internationally accepted ethical standards. The results for each country are presented by age, sex, and urban versus rural residence. To estimate the effects of non-response, HIV prevalence among non-responding males and females was predicted using multivariate statistical models for those who were tested, with a common set of predictor variables. RESULTS: Rates of HIV testing varied from 70% among Kenyan men to 92% among women in Burkina Faso and Cameroon. Despite large differences in HIV prevalence between the surveys (1-16%), fairly consistent patterns of HIV infection were observed by age, sex and urban versus rural residence, with considerably higher rates in urban areas and in women, especially at younger ages. Analysis of non-response bias indicates that although predicted HIV prevalence tended to be higher in non-tested males and females than in those tested, the overall effects of non-response on the observed national estimates of HIV prevalence are insignificant. CONCLUSIONS: Population-based surveys can provide reliable, direct estimates of national and regional HIV seroprevalence among men and women irrespective of pregnancy status. Survey data greatly enhance surveillance systems and the accuracy of national estimates in generalized epidemics. PMID:16878227
A probabilistic assessment of health risks associated with short-term exposure to tropospheric ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, R.G; Biller, W.F.; Jusko, M.J.
1996-06-01
The work described in this report is part of a larger risk assessment sponsored by the U.S. Environmental Protection Agency. Earlier efforts developed exposure-response relationships for acute health effects among populations engaged in heavy exertion. Those efforts also developed a probabilistic national ambient air quality standards exposure model and a general methodology for integrating probabilistic exposure-response relation- ships and exposure estimates to calculate overall risk results. Recently published data make it possible to model additional health endpoints (for exposure at moderate exertion), including hospital admissions. New air quality and exposure estimates for alternative national ambient air quality standards for ozonemore » are combined with exposure-response models to produce the risk results for hospital admissions and acute health effects. Sample results explain the methodology and introduce risk output formats.« less
Estimating Lion Abundance using N-mixture Models for Social Species
Belant, Jerrold L.; Bled, Florent; Wilton, Clay M.; Fyumagwa, Robert; Mwampeta, Stanslaus B.; Beyer, Dean E.
2016-01-01
Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170–551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species. PMID:27786283
Estimating Lion Abundance using N-mixture Models for Social Species.
Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E
2016-10-27
Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.
Bagley, Justin C; Johnson, Jerald B
2014-01-01
A central goal of comparative phylogeography is determining whether codistributed species experienced (1) concerted evolutionary responses to past geological and climatic events, indicated by congruent spatial and temporal patterns (“concerted-response hypothesis”); (2) independent responses, indicated by spatial incongruence (“independent-response hypothesis”); or (3) multiple responses (“multiple-response hypothesis”), indicated by spatial congruence but temporal incongruence (“pseudocongruence”) or spatial and temporal incongruence (“pseudoincongruence”). We tested these competing hypotheses using DNA sequence data from three livebearing fish species codistributed in the Nicaraguan depression of Central America (Alfaro cultratus, Poecilia gillii, and Xenophallus umbratilis) that we predicted might display congruent responses due to co-occurrence in identical freshwater drainages. Spatial analyses recovered different subdivisions of genetic structure for each species, despite shared finer-scale breaks in northwestern Costa Rica (also supported by phylogenetic results). Isolation-with-migration models estimated incongruent timelines of among-region divergences, with A. cultratus and Xenophallus populations diverging over Miocene–mid-Pleistocene while P. gillii populations diverged over mid-late Pleistocene. Approximate Bayesian computation also lent substantial support to multiple discrete divergences over a model of simultaneous divergence across shared spatial breaks (e.g., Bayes factor [B10] = 4.303 for Ψ [no. of divergences] > 1 vs. Ψ = 1). Thus, the data support phylogeographic pseudoincongruence consistent with the multiple-response hypothesis. Model comparisons also indicated incongruence in historical demography, for example, support for intraspecific late Pleistocene population growth was unique to P. gillii, despite evidence for finer-scale population expansions in the other taxa. Empirical tests for phylogeographic congruence indicate that multiple evolutionary responses to historical events have shaped the population structure of freshwater species codistributed within the complex landscapes in/around the Nicaraguan depression. Recent community assembly through different routes (i.e., different past distributions or colonization routes), and intrinsic ecological differences among species, has likely contributed to the unique phylogeographical patterns displayed by these Neotropical fishes. PMID:24967085
Spijkerman, Renske; Knibbe, Ronald; Knoops, Kim; Van De Mheen, Dike; Van Den Eijnden, Regina
2009-10-01
Rather than using the traditional, costly method of personal interviews in a general population sample, substance-use prevalence rates can be derived more conveniently from data collected among members of an online access panel. To examine the utility of this method, we compared the outcomes of an online survey with those obtained with the computer-assisted personal interviews (CAPI) method. Data were gathered from a large sample of online panellists and in a two-stage stratified sample of the Dutch population using the CAPI method. The Netherlands. Participants The online sample comprised 57 125 Dutch online panellists (15-64 years) of Survey Sampling International LLC (SSI), and the CAPI cohort 7204 respondents (15-64 years). All participants answered identical questions about their use of alcohol, cannabis, ecstasy, cocaine and performance-enhancing drugs. The CAPI respondents were asked additionally about internet access and online panel membership. Both data sets were weighted statistically according to the distribution of demographic characteristics of the general Dutch population. Response rates were 35.5% (n = 20 282) for the online panel cohort and 62.7% (n = 4516) for the CAPI cohort. The data showed almost consistently lower substance-use prevalence rates for the CAPI respondents. Although the observed differences could be due to bias in both data sets, coverage and non-response bias were higher in the online panel survey. Despite its economic advantage, the online panel survey showed stronger non-response and coverage bias than the CAPI survey, leading to less reliable estimates of substance use in the general population. © 2009 The Authors. Journal compilation © 2009 Society for the Study of Addiction.
Please don't misuse the museum: 'declines' may be statistical
Grant, Evan H. Campbell
2015-01-01
Detecting declines in populations at broad spatial scales takes enormous effort, and long-term data are often more sparse than is desired for estimating trends, identifying drivers for population changes, framing conservation decisions or taking management actions. Museum records and historic data can be available at large scales across multiple decades, and are therefore an attractive source of information on the comparative status of populations. However, changes in populations may be real (e.g., in response to environmental covariates) or resulting from variation in our ability to observe the true population response (also possibly related to environmental covariates). This is a (statistical) nuisance in understanding the true status of a population. Evaluating statistical hypotheses alongside more interesting ecological ones is important in the appropriate use of museum data. Two statistical considerations are generally applicable to use of museum records: first without initial random sampling, comparison with contemporary results cannot provide inference to the entire range of a species, and second the availability of only some individuals in a population may respond to environmental changes. Changes in the availability of individuals may reduce the proportion of the population that is present and able to be counted on a given survey event, resulting in an apparent decline even when population size is stable.
Climate-driven vital rates do not always mean climate-driven population.
Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel
2016-12-01
Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gilmore, E.; Calvin, K. V.; Puett, R.; Sapkota, A.; Schwarber, A.
2014-12-01
Climate change is projected to increase risks to human health. One pathway that may be particularly difficult to manage is adverse human health impacts (e.g. premature mortality and morbidity) from increases in mean temperatures and changing patterns of temperature extremes. Modeling how these health risks evolve over decadal time-scales is challenging as the severity of the impacts depends on changes in climate as well as socioeconomic conditions. Here, we show estimates of health damages as well as both direct and indirect economic damages that span climate and socioeconomic dimensions for each US state to 2050. We achieve this objective by extending the integrated assessment model (IAM), Global Change Assessment Model (GCAM-USA). First, we quantify the change in premature mortality. We identify a range of exposure-response relationships for temperature related mortality through a critical review of the literature. We then implement these relationships in the GCAM by coupling them with projections of future temperature patterns and population estimates. Second, we monetize the effect of these adverse health effects, including both direct and indirect economic costs through labor force participation and productivity along a range of possible economic pathways. Finally, we evaluate how uncertainty in the parameters and assumptions affects the range of possible estimates. We conclude that the model is sensitive to assumptions regarding exposure-response relationship and population growth. The economic damages, however, are driven by the estimates of income and GDP growth as well as the potential for adaptation measures, namely the use and effectiveness of air conditioning.
Wildhaber, Mark L.; Dey, Rima; Wikle, Christopher K.; Moran, Edward H.; Anderson, Christopher J.; Franz, Kristie J.
2015-01-01
In managing fish populations, especially at-risk species, realistic mathematical models are needed to help predict population response to potential management actions in the context of environmental conditions and changing climate while effectively incorporating the stochastic nature of real world conditions. We provide a key component of such a model for the endangered pallid sturgeon (Scaphirhynchus albus) in the form of an individual-based bioenergetics model influenced not only by temperature but also by flow. This component is based on modification of a known individual-based bioenergetics model through incorporation of: the observed ontogenetic shift in pallid sturgeon diet from marcroinvertebrates to fish; the energetic costs of swimming under flowing-water conditions; and stochasticity. We provide an assessment of how differences in environmental conditions could potentially alter pallid sturgeon growth estimates, using observed temperature and velocity from channelized portions of the Lower Missouri River mainstem. We do this using separate relationships between the proportion of maximum consumption and fork length and swimming cost standard error estimates for fish captured above and below the Kansas River in the Lower Missouri River. Critical to our matching observed growth in the field with predicted growth based on observed environmental conditions was a two-step shift in diet from macroinvertebrates to fish.
NASA Technical Reports Server (NTRS)
Petkova, Elisaveta P.; Vink, Jan K.; Horton, Radley M.; Gasparrini, Antonio; Bader, Daniel A.; Francis, Joe D.; Kinney, Patrick L.
2016-01-01
High temperatures have substantial impacts on mortality and, with growing concerns about climate change, numerous studies have developed projections of future heat-related deaths around the world. Projections of temperature-related mortality are often limited by insufficient information necessary to formulate hypotheses about population sensitivity to high temperatures and future demographics. This study has derived projections of temperature-related mortality in New York City by taking into account future patterns of adaptation or demographic change, both of which can have profound influences on future health burdens. We adopt a novel approach to modeling heat adaptation by incorporating an analysis of the observed population response to heat in New York City over the course of eight decades. This approach projects heat-related mortality until the end of the 21st century based on observed trends in adaptation over a substantial portion of the 20th century. In addition, we incorporate a range of new scenarios for population change until the end of the 21st century. We then estimate future heat-related deaths in New York City by combining the changing temperature-mortality relationship and population scenarios with downscaled temperature projections from the 33 global climate models (GCMs) and two Representative Concentration Pathways (RCPs).The median number of projected annual heat-related deaths across the 33 GCMs varied greatly by RCP and adaptation and population change scenario, ranging from 167 to 3331 in the 2080s compared to 638 heat-related deaths annually between 2000 and 2006.These findings provide a more complete picture of the range of potential future heat-related mortality risks across the 21st century in New York, and highlight the importance of both demographic change and adaptation responses in modifying future risks.
Prevalence and predictors of food allergy in Canada: a focus on vulnerable populations.
Soller, Lianne; Ben-Shoshan, Moshe; Harrington, Daniel W; Knoll, Megan; Fragapane, Joseph; Joseph, Lawrence; St Pierre, Yvan; La Vieille, Sebastien; Wilson, Kathi; Elliott, Susan J; Clarke, Ann E
2015-01-01
Studies suggest that individuals of low education and/or income, new Canadians (immigrated <10 years ago), and individuals of Aboriginal identity may have fewer food allergies than the general population. However, given the difficulty in recruiting such populations (hereafter referred to as vulnerable populations), by using conventional survey methodologies, the prevalence of food allergy among these populations in Canada has not been estimated. To estimate the prevalence of food allergy among vulnerable populations in Canada, to compare with the nonvulnerable populations and to identify demographic characteristics predictive of food allergy. By using 2006 Canadian Census data, postal codes with high proportions of vulnerable populations were identified and households were randomly selected to participate in a telephone survey. Information on food allergies and demographics was collected. Prevalence estimates were weighted by using Census data to account for the targeted sampling. Multivariable logistic regression was used to identify predictors of food allergy. Of 12,762 eligible households contacted, 5734 households completed the questionnaire (45% response rate). Food allergy was less common among adults without postsecondary education versus those with postsecondary education (6.4% [95% CI, 5.5%-7.3%] vs 8.9% [95% CI, 7.7%-10%]) and new Canadians versus those born in Canada (3.2% [95% CI, 2.2%-4.3%] vs 8.2% [95% CI, 7.4%-9.1%]). There was no difference in prevalence between those of low and of high income or those with and without Aboriginal identity. Analysis of our data suggests that individuals of low education and new Canadians self-report fewer allergies, which may be due to genetics, environment, lack of appropriate health care, or lack of awareness of allergies, which reduces self-report. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Wright, Edward; Grueter, Cyril C; Seiler, Nicole; Abavandimwe, Didier; Stoinski, Tara S; Ortmann, Sylvia; Robbins, Martha M
2015-11-01
Here, we compare food availability and relate this to differences in energy intake rates, time spent feeding, and daily travel distance of gorillas in the two populations. Comparative intraspecific studies investigating spatiotemporal variation in food availability can help us understand the complex relationships between ecology, behavior, and life history in primates and are relevant to understanding hominin evolution. Differences in several variables have been documented between the two mountain gorilla populations in the Virunga Massif and Bwindi Impenetrable National Park, but few direct comparisons that link ecological conditions to feeding behavior have been made. Using similar data collection protocols we conducted vegetation sampling and nutritional analysis on important foods to estimate food availability. Detailed observations of feeding behavior were used to compute energy intake rates and daily travel distance was estimated through GPS readings. Food availability was overall lower and had greater temporal variability in Bwindi than in the Virungas. Energy intake rates and time spent feeding were similar in both populations, but energy intake rates were significantly higher in Bwindi during the period of high fruit consumption. Daily travel distances were significantly shorter in the Virungas. Overall, despite the differences in food availability, we did not find large differences in the energetics of gorillas in the two populations, although further work is needed to more precisely quantify energy expenditure and energy balance. These results emphasize that even species with high food availability can exhibit behavioral and energetic responses to variable ecological conditions, which are likely to affect growth, reproduction, and survival. © 2015 Wiley Periodicals, Inc.
Brooke, Russell J; Kretzschmar, Mirjam E E; Hackert, Volker; Hoebe, Christian J P A; Teunis, Peter F M; Waller, Lance A
2017-01-01
We develop a novel approach to study an outbreak of Q fever in 2009 in the Netherlands by combining a human dose-response model with geostatistics prediction to relate probability of infection and associated probability of illness to an effective dose of Coxiella burnetii. The spatial distribution of the 220 notified cases in the at-risk population are translated into a smooth spatial field of dose. Based on these symptomatic cases, the dose-response model predicts a median of 611 asymptomatic infections (95% range: 410, 1,084) for the 220 reported symptomatic cases in the at-risk population; 2.78 (95% range: 1.86, 4.93) asymptomatic infections for each reported case. The low attack rates observed during the outbreak range from (Equation is included in full-text article.)to (Equation is included in full-text article.). The estimated peak levels of exposure extend to the north-east from the point source with an increasing proportion of asymptomatic infections further from the source. Our work combines established methodology from model-based geostatistics and dose-response modeling allowing for a novel approach to study outbreaks. Unobserved infections and the spatially varying effective dose can be predicted using the flexible framework without assuming any underlying spatial structure of the outbreak process. Such predictions are important for targeting interventions during an outbreak, estimating future disease burden, and determining acceptable risk levels.
Income-based projections of water footprint of food consumption in Uzbekistan
NASA Astrophysics Data System (ADS)
Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur
2013-11-01
Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.
Subsidies and the demand for individual health insurance in California.
Marquis, M Susan; Buntin, Melinda Beeuwkes; Escarce, José J; Kapur, Kanika; Yegian, Jill M
2004-10-01
To estimate the effect of changes in premiums for individual insurance on decisions to purchase individual insurance and how this price response varies among subgroups of the population. Survey responses from the Current Population Survey (http://www.bls.census.gov/cps/cpsmain.htm), the Survey of Income and Program Participation (http://www.sipp.census.gov/sipp), the National Health Interview Survey (http://www.cdc.gov/nchs/nhis.htm), and data about premiums and plans offered in the individual insurance market in California, 1996-2001. A logit model was used to estimate the decisions to purchase individual insurance by families without access to group insurance. This was modeled as a function of premiums, controlling for family characteristics and other characteristics of the market. A multinomial model was used to estimate the choice between group coverage, individual coverage, and remaining uninsured for workers offered group coverage as a function of premiums for individual insurance and out-of-pocket costs of group coverage. The elasticity of demand for individual insurance by those without access to group insurance is about -.2 to -.4, as has been found in earlier studies. However, there are substantial differences in price responses among subgroups with low-income, young, and self-employed families showing the greatest response. Among workers offered group insurance, a decrease in individual premiums has very small effects on the choice to purchase individual coverage versus group coverage. Subsidy programs may make insurance more affordable for some families, but even sizeable subsidies are unlikely to solve the problem of the uninsured. We do not find evidence that subsidies to individual insurance will produce an unraveling of the employer-based health insurance system.
A Nonresponse Bias Analysis of the Health Information National Trends Survey (HINTS).
Maitland, Aaron; Lin, Amy; Cantor, David; Jones, Mike; Moser, Richard P; Hesse, Bradford W; Davis, Terisa; Blake, Kelly D
2017-07-01
We conducted a nonresponse bias analysis of the Health Information National Trends Survey (HINTS) 4, Cycles 1 and 3, collected in 2011 and 2013, respectively, using three analysis methods: comparison of response rates for subgroups, comparison of estimates with weighting adjustments and external benchmarks, and level-of-effort analysis. Areas with higher concentrations of low socioeconomic status, higher concentrations of young households, and higher concentrations of minority and Hispanic populations had lower response rates. Estimates of health information seeking behavior were higher in HINTS compared to the National Health Interview Survey (NHIS). The HINTS estimate of doctors always explaining things in a way that the patient understands was not significantly different from the same estimate from the Medical Expenditure Panel Survey (MEPS); however, the HINTS estimate of health professionals always spending enough time with the patient was significantly lower than the same estimate from MEPS. A level-of-effort analysis found that those who respond later in the survey field period were less likely to have looked for information about health in the past 12 months, but found only small differences between early and late respondents for the majority of estimates examined. There is some evidence that estimates from HINTS could be biased toward finding higher levels of health information seeking.
Lopez-Teros, Veronica; Chileshe, Justin; Idohou-Dossou, Nicole; Fajarwati, Tetra; Medoua Nama, Gabriel; Newton, Sam; Vinod Kumar, Malavika; Wang, Zhixu; Wasantwisut, Emorn; Hunt, Janet R
2014-01-01
Inadequate vitamin A (VA) nutrition continues to be a major problem worldwide, and many interventions being implemented to improve VA status in various populations need to be evaluated. The interpretation of results after an intervention depends greatly on the method selected to assess VA status. To evaluate the effect of an intervention on VA status, researchers in Cameroon, India, Indonesia, Mexico, Senegal and Zambia have used serum retinol as an indicator, and have not always found improvement in response to supplementation. One problem is that homeostatic control of serum retinol may mask positive effects of treatment in that changes in concentration are observed only when status is either moderately to severely depleted or excessive. Because VA is stored mainly in the liver, measurements of hepatic VA stores are the gold standard for assessing VA status. Dose response tests such as the relative dose response (RDR) and the modified relative dose response (MRDR), allow a qualitative assessment of VA liver stores. On the other hand, the use of the vitamin A-labeled isotope dilution (VALID) technique, (using 13C or 2H-labeled retinyl acetate) serves as an indirect method to quantitatively estimate total body and liver VA stores. Countries including Cameroon, China, Ghana, Mexico, Thailand and Zambia are now applying the VALID method to sensitively assess changes in VA status during interventions, or to estimate a populations dietary requirement for VA. Transition to the use of more sensitive biochemical indicators of VA status such as the VALID technique is needed to effectively assess interventions in populations where mild to moderate VA deficiency is more prevalent than severe deficiency.
Palta, Mari; Chen, Han-Yang; Kaplan, Robert M; Feeny, David; Cherepanov, Dasha; Fryback, Dennis G
2011-01-01
Standard errors of measurement (SEMs) of health-related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics, and is a component of reliability. To estimate the SEM of 5 HRQoL indexes. The National Health Measurement Study (NHMS) was a population-based survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures. A total of 3844 randomly selected adults from the noninstitutionalized population aged 35 to 89 y in the contiguous United States and 265 cataract patients. The SF6-36v2™, QWB-SA, EQ-5D, HUI2, and HUI3 were included. An item-response theory approach captured joint variation in indexes into a composite construct of health (theta). The authors estimated 1) the test-retest standard deviation (SEM-TR) from COMHS, 2) the structural standard deviation (SEM-S) around theta from NHMS, and 3) reliability coefficients. SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2), and 0.134 (HUI3), whereas SEM-S was 0.071, 0.094, 0.084, 0.074, and 0.117, respectively. These yield reliability coefficients 0.66 (COMHS) and 0.71 (NHMS) for SF-6D, 0.59 and 0.64 for QWB-SA, 0.61 and 0.70 for EQ-5D, 0.64 and 0.80 for HUI2, and 0.75 and 0.77 for HUI3, respectively. The SEM varied across levels of health, especially for HUI2, HUI3, and EQ-5D, and was influenced by ceiling effects. Limitations. Repeated measures were 5 mo apart, and estimated theta contained measurement error. The 2 types of SEM are similar and substantial for all the indexes and vary across health.
Natural selection and inheritance of breeding time and clutch size in the collared flycatcher.
Sheldon, B C; Kruuk, L E B; Merilä, J
2003-02-01
Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on laying date is partially constrained by underlying life-history trade-offs, and illustrate the difficulties in using purely phenotypic measures and incomplete fitness estimates to assess evolution of life-history trade-offs. We discuss some of the difficulties associated with understanding the evolution of laying date and clutch size in natural populations.
Letcher, Benjamin H.; Schueller, Paul; Bassar, Ronald D.; Nislow, Keith H.; Coombs, Jason A.; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B.; Whiteley, Andrew R.; O'Donnell, Matthew J.; Dubreuil, Todd L.
2015-01-01
Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses.We developed an integrated capture–recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival.We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature.Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall.These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful.
Letcher, Benjamin H; Schueller, Paul; Bassar, Ronald D; Nislow, Keith H; Coombs, Jason A; Sakrejda, Krzysztof; Morrissey, Michael; Sigourney, Douglas B; Whiteley, Andrew R; O'Donnell, Matthew J; Dubreuil, Todd L
2015-03-01
Modelling the effects of environmental change on populations is a key challenge for ecologists, particularly as the pace of change increases. Currently, modelling efforts are limited by difficulties in establishing robust relationships between environmental drivers and population responses. We developed an integrated capture-recapture state-space model to estimate the effects of two key environmental drivers (stream flow and temperature) on demographic rates (body growth, movement and survival) using a long-term (11 years), high-resolution (individually tagged, sampled seasonally) data set of brook trout (Salvelinus fontinalis) from four sites in a stream network. Our integrated model provides an effective context within which to estimate environmental driver effects because it takes full advantage of data by estimating (latent) state values for missing observations, because it propagates uncertainty among model components and because it accounts for the major demographic rates and interactions that contribute to annual survival. We found that stream flow and temperature had strong effects on brook trout demography. Some effects, such as reduction in survival associated with low stream flow and high temperature during the summer season, were consistent across sites and age classes, suggesting that they may serve as robust indicators of vulnerability to environmental change. Other survival effects varied across ages, sites and seasons, indicating that flow and temperature may not be the primary drivers of survival in those cases. Flow and temperature also affected body growth rates; these responses were consistent across sites but differed dramatically between age classes and seasons. Finally, we found that tributary and mainstem sites responded differently to variation in flow and temperature. Annual survival (combination of survival and body growth across seasons) was insensitive to body growth and was most sensitive to flow (positive) and temperature (negative) in the summer and fall. These observations, combined with our ability to estimate the occurrence, magnitude and direction of fish movement between these habitat types, indicated that heterogeneity in response may provide a mechanism providing potential resilience to environmental change. Given that the challenges we faced in our study are likely to be common to many intensive data sets, the integrated modelling approach could be generally applicable and useful. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Tsai, Max C; Wu, Jingtao; Kupfer, Stuart; Vakilynejad, Majid
2016-08-01
Population pharmacokinetic and exposure-response models for azilsartan medoxomil (AZL-M) and chlorthalidone (CLD) were developed using data from an 8-week placebo-controlled phase 3, factorial study of 20, 40, and 80 mg AZL-M every day (QD) and 12.5 and 25 mg CLD QD in fixed-dose combination (FDC) in subjects with moderate to severe essential hypertension. A 2-compartment model with first-order absorption and elimination was developed to describe pharmacokinetics. An Emax model for exposure-response analysis evaluated AZL-M/CLD effects on ambulatory systolic blood pressure (SBP). Estimated oral clearance and apparent volume of distribution (central compartment) were 1.47 L/h and 3.98 L for AZL, and 4.13 L/h and 62.1 L for CLD. Age as a covariate had the largest effect on AZL and CLD exposure (±20% change). Predicted maximal SBP responses (Emax ) were -15.6 and -23.9 mm Hg for AZL and CLD. Subgroup analysis identified statistically significant Emax differences for black vs nonblack subjects, whereby the reduced AZL response in black subjects was offset by greater response to CLD. The estimated Emax for AZL and CLD was generally greater in subjects with higher baseline BP. In conclusion, no dose adjustments to AZL-M or CLD are warranted based on identified covariates, and antihypertensive efficacy of AZL-M/CLD combination therapy is comparable in black and nonblack subjects. © 2015, The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
Assessing Wildlife Habitat And Range Utilization in Arizona Using Satellite Data
NASA Astrophysics Data System (ADS)
Hutchinson, C. F.; Marsh, S. E.; Krausman, P. R.; Enns, R. M.; Howery, L. D.; Trobia, E.; Wallace, C. S.; Walker, J. J.; Mauz, K.; Boyd, H.; Salazar, H.
2001-05-01
Since their reintroduction in 1914, elk (Cervus elaphus) have grown to be a major issue in the western United States. Most land is controlled by federal or state agencies, but individual ranchers have agreements that permit them to graze cattle on much of this land. Elk often compete with cattle for forage, and damage infrastructure (i.e. fences, watering points, and crops). Conversely, environmentalists and hunters also have an interest in the management of elk populations. As a result, consequence of these conflicting interests, there is little agreement about the size of the elk population or the nature, location, and timing of conflicts that elk might cause. This study was intended to provide information that might help managers understand the distribution of elk in Arizona as a consequence of seasonal variation and in response to extreme climatic events (i.e. El Niño and La Niña). The first task involved modeling elk populations over time. There are no long term or large-scale studies of elk movements through continuous observation (i.e. radiocollars). A technique for modeling elk population has been developed that is based on harvest data, gender ratios, and estimates of male mortality. This provided estimates of elk populations for individual game management units (areas for which harvest is reported and within which elk are managed by the Arizona Game and Fish Department). The second task involved the use of satellite data to characterize vegetation responses to seasonal and interannual climate variation among vegetation associations within game management units. This involved the use of NOAA Advanced Very High Resolution Radiometer (AVHRR) time series data to describe temporal vegetation behavior, Landsat and Ikonos data to describe spatial vegetation distribution in conjunction with U.S. Forest Service vegetation maps. Elk population estimates were correlated with satellite-derived vegetation measures by vegetation association through time. The patterns of elk distribution that this revealed were complex. Not surprisingly, animals appear to respond to differences in vegetation availability - both seasonally and interannually - as portrayed by satellite data.
Sasaki, Ryo; Angelaki, Dora E.
2017-01-01
We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. PMID:29030435
Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data.
Zanella, Ricardo; Peixoto, Jane O; Cardoso, Fernando F; Cardoso, Leandro L; Biegelmeyer, Patrícia; Cantão, Maurício E; Otaviano, Antonio; Freitas, Marcelo S; Caetano, Alexandre R; Ledur, Mônica C
2016-03-30
Genetic improvement in livestock populations can be achieved without significantly affecting genetic diversity if mating systems and selection decisions take genetic relationships among individuals into consideration. The objective of this study was to examine the genetic diversity of two commercial breeds of pigs. Genotypes from 1168 Landrace (LA) and 1094 Large White (LW) animals from a commercial breeding program in Brazil were obtained using the Illumina PorcineSNP60 Beadchip. Inbreeding estimates based on pedigree (F x) and genomic information using runs of homozygosity (F ROH) and the single nucleotide polymorphisms (SNP) by SNP inbreeding coefficient (F SNP) were obtained. Linkage disequilibrium (LD), correlation of linkage phase (r) and effective population size (N e ) were also estimated. Estimates of inbreeding obtained with pedigree information were lower than those obtained with genomic data in both breeds. We observed that the extent of LD was slightly larger at shorter distances between SNPs in the LW population than in the LA population, which indicates that the LW population was derived from a smaller N e . Estimates of N e based on genomic data were equal to 53 and 40 for the current populations of LA and LW, respectively. The correlation of linkage phase between the two breeds was equal to 0.77 at distances up to 50 kb, which suggests that genome-wide association and selection should be performed within breed. Although selection intensities have been stronger in the LA breed than in the LW breed, levels of genomic and pedigree inbreeding were lower for the LA than for the LW breed. The use of genomic data to evaluate population diversity in livestock animals can provide new and more precise insights about the effects of intense selection for production traits. Resulting information and knowledge can be used to effectively increase response to selection by appropriately managing the rate of inbreeding, minimizing negative effects of inbreeding depression and therefore maintaining desirable levels of genetic diversity.
NASA Astrophysics Data System (ADS)
Loehman, R.; Heinsch, F. A.; Mills, J. N.; Wagoner, K.; Running, S.
2003-12-01
Recent predictive models for hantavirus pulmonary syndrome (HPS) have used remotely sensed spectral reflectance data to characterize risk areas with limited success. We present an alternative method using gross primary production (GPP) from the MODIS sensor to estimate the effects of biomass accumulation on population density of Peromyscus maniculatus (deer mouse), the principal reservoir species for Sin Nombre virus (SNV). The majority of diagnosed HPS cases in North America are attributed to SNV, which is transmitted to humans through inhalation of excretions and secretions from infected rodents. A logistic model framework is used to evaluate MODIS GPP, temperature, and precipitation as predictors of P. maniculatus density at established trapping sites across the western United States. Rodent populations are estimated using monthly minimum number alive (MNA) data for 2000 through 2002. Both local meteorological data from nearby weather stations and 1.25 degree x 1 degree gridded data from the NASA DAO were used in the regression model to determine the spatial sensitivity of the response. MODIS eight-day GPP data (1-km resolution) were acquired and binned to monthly average and monthly sum GPP for 3km x 3km grids surrounding each rodent trapping site. The use of MODIS GPP to forecast HPS risk may result in a marked improvement over past reflectance-based risk area characterizations. The MODIS GPP product provides a vegetation dynamics estimate that is unique to disease models, and targets the fundamental ecological processes responsible for increased rodent density and amplified disease risk.
Assessment of Flood Disaster Impacts in Cambodia: Implications for Rapid Disaster Response
NASA Astrophysics Data System (ADS)
Ahamed, Aakash; Bolten, John; Doyle, Colin
2016-04-01
Disaster monitoring systems can provide near real time estimates of population and infrastructure affected by sudden onset natural hazards. This information is useful to decision makers allocating lifesaving resources following disaster events. Floods are the world's most common and devastating disasters (UN, 2004; Doocy et al., 2013), and are particularly frequent and severe in the developing countries of Southeast Asia (Long and Trong, 2001; Jonkman, 2005; Kahn, 2005; Stromberg, 2007; Kirsch et al., 2012). Climate change, a strong regional monsoon, and widespread hydropower construction contribute to a complex and unpredictable regional hydrodynamic regime. As such, there is a critical need for novel techniques to assess flood impacts to population and infrastructure with haste during and following flood events in order to enable governments and agencies to optimize response efforts following disasters. Here, we build on methods to determine regional flood extent in near real time and develop systems that automatically quantify the socioeconomic impacts of flooding in Cambodia. Software developed on cloud based, distributed processing Geographic Information Systems (GIS) is used to demonstrate spatial and numerical estimates of population, households, roadways, schools, hospitals, airports, agriculture and fish catch affected by severe monsoon flooding occurring in the Cambodian portion of Lower Mekong River Basin in 2011. Results show modest agreement with government and agency estimates. Maps and statistics generated from the system are intended to complement on the ground efforts and bridge information gaps to decision makers. The system is open source, flexible, and can be applied to other disasters (e.g. earthquakes, droughts, landslides) in various geographic regions.
Detection of sea otters in boat-based surveys of Prince William Sound, Alaska
Udevitz, Mark S.; Bodkin, James L.; Costa, Daniel P.
1995-01-01
Boat-based surveys have been commonly used to monitor sea otter populations, but there has been little quantitative work to evaluate detection biases that may affect these surveys. We used ground-based observers to investigate sea otter detection probabilities in a boat-based survey of Prince William Sound, Alaska. We estimated that 30% of the otters present on surveyed transects were not detected by boat crews. Approximately half (53%) of the undetected otters were missed because the otters left the transects, apparently in response to the approaching boat. Unbiased estimates of detection probabilities will be required for obtaining unbiased population estimates from boat-based surveys of sea otters. Therefore, boat-based surveys should include methods to estimate sea otter detection probabilities under the conditions specific to each survey. Unbiased estimation of detection probabilities with ground-based observers requires either that the ground crews detect all of the otters in observed subunits, or that there are no errors in determining which crews saw each detected otter. Ground-based observer methods may be appropriate in areas where nearly all of the sea otter habitat is potentially visible from ground-based vantage points.
Human-experienced temperature changes exceed global average climate changes for all income groups
NASA Astrophysics Data System (ADS)
Hsiang, S. M.; Parshall, L.
2009-12-01
Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The distribution of temperature changes experienced by the world population between 2011-2030 and 2080-2099. Lower 3 panels: Temperatures experienced 2011-2030 (dashed, circle = mean) and 2080-2099 (solid, cross = mean) by income tercile. The poor do not experience larger changes than the wealthy. However, the poor begin the 21st century at higher temperatures.
Estimation of population size using open capture-recapture models
McDonald, T.L.; Amstrup, Steven C.
2001-01-01
One of the most important needs for wildlife managers is an accurate estimate of population size. Yet, for many species, including most marine species and large mammals, accurate and precise estimation of numbers is one of the most difficult of all research challenges. Open-population capture-recapture models have proven useful in many situations to estimate survival probabilities but typically have not been used to estimate population size. We show that open-population models can be used to estimate population size by developing a Horvitz-Thompson-type estimate of population size and an estimator of its variance. Our population size estimate keys on the probability of capture at each trap occasion and therefore is quite general and can be made a function of external covariates measured during the study. Here we define the estimator and investigate its bias, variance, and variance estimator via computer simulation. Computer simulations make extensive use of real data taken from a study of polar bears (Ursus maritimus) in the Beaufort Sea. The population size estimator is shown to be useful because it was negligibly biased in all situations studied. The variance estimator is shown to be useful in all situations, but caution is warranted in cases of extreme capture heterogeneity.
Saviane, Chiara; Silver, R Angus
2006-06-15
Synapses play a crucial role in information processing in the brain. Amplitude fluctuations of synaptic responses can be used to extract information about the mechanisms underlying synaptic transmission and its modulation. In particular, multiple-probability fluctuation analysis can be used to estimate the number of functional release sites, the mean probability of release and the amplitude of the mean quantal response from fits of the relationship between the variance and mean amplitude of postsynaptic responses, recorded at different probabilities. To determine these quantal parameters, calculate their uncertainties and the goodness-of-fit of the model, it is important to weight the contribution of each data point in the fitting procedure. We therefore investigated the errors associated with measuring the variance by determining the best estimators of the variance of the variance and have used simulations of synaptic transmission to test their accuracy and reliability under different experimental conditions. For central synapses, which generally have a low number of release sites, the amplitude distribution of synaptic responses is not normal, thus the use of a theoretical variance of the variance based on the normal assumption is not a good approximation. However, appropriate estimators can be derived for the population and for limited sample sizes using a more general expression that involves higher moments and introducing unbiased estimators based on the h-statistics. Our results are likely to be relevant for various applications of fluctuation analysis when few channels or release sites are present.
Pennsylvania roundwood purchases and movements by origin and destination
Jamie A. Murphy; Paul M. Smith; Bruce G. Hansen
2008-01-01
A mail survey of all identified roundwood purchasers in Pennsylvania was conducted in 2004 to quantify the roundwood purchasing industry in terms of roundwood volume, origin, destination, roundwood type, and species of 2003 purchases. An adjusted response rate of 50 percent was obtained from the estimated overall population of 334 Pennsylvania roundwood purchasers....
James T. Peterson; Nolan P. Banish; Russell F. Thurow
2005-01-01
Fish movement during sampling may negatively bias sample data and population estimates. We evaluated the short-term movements of stream-dwelling salmonids by recapture of marked individuals during day and night snorkeling and backpack electrofishing. Bull trout Salvelinus confluentus and rainbow trout Oncorhynchus mykiss were...
Most observations of stressor effects on marine crustaceans are made on individuals or even-aged cohorts. Results of these studies are difficult to translate into ecological predictions, either because life cycle models are incomplete, or because stressor effects on mixed age po...
Estimation of Latent Group Effects: Psychometric Technical Report No. 2.
ERIC Educational Resources Information Center
Mislevy, Robert J.
Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…
We present a novel approach to quantifying estuarine habitat use by fish using stable isotopes. In brief, we further developed and evaluated an existing stable isotope turnover model to estimate the time American shad, an anadromous clupeid, spend in various river habitats durin...
White-tailed deer age ratios as herd management and predator impact measures in Pennsylvania
Rosenberry, Christopher S.; Norton, Andrew S.; Diefenbach, Duane R.; Fleegle, Jeannine T.; Wallingford, Bret D.
2011-01-01
A review of the Pennsylvania Game Commission's (PGC) deer management program and public concern about predator impacts on deer (Odocoileus virginianus) populations compelled the PGC to investigate the role of age ratios in developing management recommendations. Age ratios, such as proportion of juveniles in the antlerless harvest, may provide an index to population productivity and predator impacts. We estimated proportion of juveniles in the antlerless harvest from hunter-killed deer, population trends using the Pennsylvania (USA) sex–age–kill model, and reproduction from road-killed females. Using these estimates and a simulation model, we concluded that no single age-ratio value would serve as a reliable measure of population status. Wildlife Management Unit-specific trends in proportion of juveniles in the antlerless harvest and population trends provided the most relevant management information. We also provide an example decision chart to guide management actions in response to declining age ratios in the harvest. Although predator management activities and juvenile survival studies are often desired by the public, our decision-chart example indicated a number of deer management options exist before investing resources in predator management activities and juvenile survival studies.
Tamate, Satoshi; Iwasaki, Watal M; Krysko, Kenneth L; Camposano, Brian J; Mori, Hideaki; Funayama, Ryo; Nakayama, Keiko; Makino, Takashi; Kawata, Masakado
2017-12-21
Invaded species often can rapidly expand and establish in novel environments through adaptive evolution, resulting in devastating effects on native communities. However, it is unclear if genetic variation at whole-genomic levels is actually reduced in the introduced populations and which genetic changes have occurred responding to adaptation to new environments. In the 1960s, Anolis carolinensis was introduced onto one of the Ogasawara Islands, Japan, and subsequently expanded its range rapidly throughout two of the islands. Morphological comparison showed that lower hindlimb length in the introduced populations tended to be longer than those in its native Florida populations. Using re-sequenced whole genomic data, we estimated that the effective population size at the time of introduction was actually small (less than 50). We also inferred putative genomic regions subject to natural selection after this introduction event using SweeD and a method based on Tajima's D, π and F ST . Five candidate genes that were potentially subject to selection were estimated by both methods. The results suggest that there were standing variations that could potentially contribute to adaptation to nonnative environments despite the founder population being small.
Forecasting climate change impacts on plant populations over large spatial extents
Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; ...
2016-10-24
Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less
Forecasting climate change impacts on plant populations over large spatial extents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.
Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less
Forecasting climate change impacts on plant populations over large spatial extents
Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.
2016-01-01
Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.
Novikov, Eugene; Petrovski, Dmitry; Mak, Viktoria; Kondratuk, Ekaterina; Krivopalov, Anton; Moshkin, Mikhail
2016-08-01
Restricted mobility and spatial isolation of social units in gregarious subterranean mammals ensure good defence mechanisms against parasites, which in turn allows for a reduction of immunity components. In contrast, a parasite invasion may cause an increased adaptive immune response. Therefore, it can be expected that spatial and temporal distribution of parasites within a population will correlate with the local variability in the host's immunocompetence. To test this hypothesis, the intra-population variability of a whipworm infestation and the humoral immune response to non-replicated antigens in mole voles (Ellobius talpinus Pall.), social subterranean rodents, was estimated. Whipworm prevalence in mole voles increased from spring to autumn, and this tendency was more pronounced in settlements living in natural meadows compared to settlements in man-made meadows. However, humoral immune response was lowest in animals from natural meadows trapped in autumn. Since whipworm infestation does not directly affect the immunity of mole voles, the reciprocal tendencies in seasonal dynamics and spatial distribution of whipworm abundance and host immunocompetence may be explained by local deterioration of habitat conditions, which increases the probability of an infestation.
Alberti, K P; Guthmann, J P; Fermon, F; Nargaye, K D; Grais, R F
2008-03-01
Inadequate evaluation of vaccine coverage after mass vaccination campaigns, such as used in national measles control programmes, can lead to inappropriate public health responses. Overestimation of vaccination coverage may leave populations at risk, whilst underestimation can lead to unnecessary catch-up campaigns. The problem is more complex in large urban areas where vaccination coverage may be heterogeneous and the programme may have to be fine-tuned at the level of geographic subunits. Lack of accurate population figures in many contexts further complicates accurate vaccination coverage estimates. During the evaluation of a mass vaccination campaign carried out in N'Djamena, the capital of Chad, Lot Quality Assurance Sampling was used to estimate vaccination coverage. Using this method, vaccination coverage could be evaluated within smaller geographic areas of the city as well as for the entire city. Despite the lack of accurate population data by neighbourhood, the results of the survey showed heterogeneity of vaccination coverage within the city. These differences would not have been identified using a more traditional method. The results can be used to target areas of low vaccination coverage during follow-up vaccination activities.
Automated inference procedure for the determination of cell growth parameters
NASA Astrophysics Data System (ADS)
Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.
2016-01-01
The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.
[Burden of salmonellosis and shigellosis in four departments of Guatemala, 2010].
Díaz, Sheilee L; Jarquin, Claudia; Morales, Ana Judith; Morales, Melissa; Valenzuela, Claudia
2015-10-01
Estimate the burden of disease from Salmonella spp. and Shigella spp. in four departments of Guatemala in 2010. Burden of disease study based on document analysis of published population surveys, laboratory files, and surveillance data from the Health Management Information System (SIGSA) in four departments of Guatemala: Huehuetenango, Jutiapa, Quetzaltenango, and Santa Rosa, in 2010. Information was supplemented by a laboratory survey. Burden of disease was estimated using methodology adapted by the World Health Organization from the United States Centers for Disease Control and Prevention. Surveillance data yielded 72 salmonellosis and 172 shigellosis cases. According to population surveys, the percentage of the population that consults health services for diarrhea is 64.7% (95% CI: 60.6%-68.7%) in Quetzaltenango and 61.0% (95% CI: 56.0%-66.0%) in Santa Rosa. In the 115 laboratories that answered the survey (72.8% response rate), 6 051 suspected samples were collected for stool culture and 3 290 for hemoculture; 39.4% and 100.0% of them were processed, respectively. In all, 85 Salmonella spp. and 113 Shigella spp. strains were isolated. For each reported case of salmonellosis and shigellosis, it was estimated that 40 cases are not reported in Quetzaltenango, 55 in Huehuetenango, 345 in Santa Rosa, and 466 in Jutiapa. Estimated burden of disease ranged from 5 to 2 230 cases per 100 000 population for salmonellosis and from 60 to 1 195 cases per 100 000 population for shigellosis. Salmonellosis and shigellosis are a major public health problem in the departments studied and in Guatemala. Burden of disease from these pathogens is higher than that reported by SIGSA.
Mohammed, Rezwana Begum; Koganti, Ravichandra; Kalyan, Siva V.; Tircouveluri, Saritha; Singh, Johar Rajvinder; Srinivasulu, Enganti
2014-01-01
In recent years, it has become increasingly important to determine the age of living people for a variety of reasons, including identifying criminal and legal responsibility and for many other social events such as birth certificate, marriage, beginning a job, joining the army and retirement Objectives: The aim of this study was to assess the developmental stages of mandibular third molar for estimation of dental age (DA) in different age groups and to evaluate the possible correlation between DA and chronological age (CA) in South Indian population. Materials and Methods: Digital orthopantomography of 330 subjects (165 males, 165 females) who fit the study and the criteria were obtained. Assessment of mandibular third molar development was performed using Demirjian et al., modified method and DA was assessed using tooth specific stages. Results and Discussion: The present study showed a significant correlation between DA and CA in both males and females. Third molar development commenced around 9 years and root completion takes place around 18.9 years in males and in females 9 years and 18.6 years respectively. Demirjian modified method underestimated the mean age of males by 0.8 years and females by 0.5 years and also showed that females mature earlier than males in selected population. Conclusion: Digital radiographic assessment of mandibular third molar development can be used to generate mean DA using Demirjian modified method and also the estimated age range for an individual of unknown CA. Since the Demirjian method is based on French-Canadian population, to enhance the accuracy of forensic age estimates based on third molar development, the use of population-specific standards is recommended. PMID:25177143
Mohammed, Rezwana Begum; Koganti, Ravichandra; Kalyan, Siva V; Tircouveluri, Saritha; Singh, Johar Rajvinder; Srinivasulu, Enganti
2014-09-01
In recent years, it has become increasingly important to determine the age of living people for a variety of reasons, including identifying criminal and legal responsibility and for many other social events such as birth certificate, marriage, beginning a job, joining the army and retirement. The aim of this study was to assess the developmental stages of mandibular third molar for estimation of dental age (DA) in different age groups and to evaluate the possible correlation between DA and chronological age (CA) in South Indian population. Digital orthopantomography of 330 subjects (165 males, 165 females) who fit the study and the criteria were obtained. Assessment of mandibular third molar development was performed using Demirjian et al., modified method and DA was assessed using tooth specific stages. The present study showed a significant correlation between DA and CA in both males and females. Third molar development commenced around 9 years and root completion takes place around 18.9 years in males and in females 9 years and 18.6 years respectively. Demirjian modified method underestimated the mean age of males by 0.8 years and females by 0.5 years and also showed that females mature earlier than males in selected population. Digital radiographic assessment of mandibular third molar development can be used to generate mean DA using Demirjian modified method and also the estimated age range for an individual of unknown CA. Since the Demirjian method is based on French-Canadian population, to enhance the accuracy of forensic age estimates based on third molar development, the use of population-specific standards is recommended.
Age estimation standards for a Western Australian population using the coronal pulp cavity index.
Karkhanis, Shalmira; Mack, Peter; Franklin, Daniel
2013-09-10
Age estimation is a vital aspect in creating a biological profile and aids investigators by narrowing down potentially matching identities from the available pool. In addition to routine casework, in the present global political scenario, age estimation in living individuals is required in cases of refugees, asylum seekers, human trafficking and to ascertain age of criminal responsibility. Thus robust methods that are simple, non-invasive and ethically viable are required. The aim of the present study is, therefore, to test the reliability and applicability of the coronal pulp cavity index method, for the purpose of developing age estimation standards for an adult Western Australian population. A total of 450 orthopantomograms (220 females and 230 males) of Australian individuals were analyzed. Crown and coronal pulp chamber heights were measured in the mandibular left and right premolars, and the first and second molars. These measurements were then used to calculate the tooth coronal index. Data was analyzed using paired sample t-tests to assess bilateral asymmetry followed by simple linear and multiple regressions to develop age estimation models. The most accurate age estimation based on simple linear regression model was with mandibular right first molar (SEE ±8.271 years). Multiple regression models improved age prediction accuracy considerably and the most accurate model was with bilateral first and second molars (SEE ±6.692 years). This study represents the first investigation of this method in a Western Australian population and our results indicate that the method is suitable for forensic application. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Effect of experimental manipulation on survival and recruitment of feral pigs
Hanson, L.B.; Mitchell, M.S.; Grand, J.B.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2009-01-01
Lethal removal is commonly used to reduce the density of invasive-species populations, presuming it reduces population growth rate; the actual effect of lethal removal on the vital rates contributing to population growth, however, is rarely tested. We implemented a manipulative experiment of feral pig (Sus scrofa) populations at Fort Benning, Georgia, USA, to assess the demographic effects of harvest intensity. Using markrecapture data, we estimated annual survival, recruitment, and population growth rates of populations in a moderately harvested area and a heavily harvested area for 200406. Population growth rates did not differ between the populations. The top-ranked model for survival included a harvest intensity effect; model-averaged survival was lower for the heavily harvested population than for the moderately harvested population. Increased immigration and reproduction likely compensated for the increased mortality in the heavily harvested population. We conclude that compensatory responses in feral pig recruitment can limit the success of lethal control efforts. ?? 2009 CSIRO.
Taste Responses to Linoleic Acid: A Crowdsourced Population Study.
Garneau, Nicole L; Nuessle, Tiffany M; Tucker, Robin M; Yao, Mengjie; Santorico, Stephanie A; Mattes, Richard D
2017-10-31
Dietary fats serve multiple essential roles in human health but may also contribute to acute and chronic health complications. Thus, understanding mechanisms that influence fat ingestion are critical. All sensory systems may contribute relevant cues to fat detection, with the most recent evidence supporting a role for the sense of taste. Taste detection thresholds for fat vary markedly between individuals and responses are not normally distributed. Genetics may contribute to these observations. Using crowdsourced data obtained from families visiting the Denver Museum of Nature & Science, our objective was to estimate the heritability of fat taste (oleogustus). A pedigree analysis was conducted with 106 families (643 individuals) who rated the fat taste intensity of graded concentrations of linoleic acid (LA) embedded in taste strips. The findings estimate that 19% (P = 0.043) of the variability of taste response to LA relative to baseline is heritable at the highest concentration tested. © The Author 2017. Published by Oxford University Press.
Taste Responses to Linoleic Acid: A Crowdsourced Population Study
Nuessle, Tiffany M; Tucker, Robin M; Yao, Mengjie; Santorico, Stephanie A; Mattes, Richard D
2017-01-01
Abstract Dietary fats serve multiple essential roles in human health but may also contribute to acute and chronic health complications. Thus, understanding mechanisms that influence fat ingestion are critical. All sensory systems may contribute relevant cues to fat detection, with the most recent evidence supporting a role for the sense of taste. Taste detection thresholds for fat vary markedly between individuals and responses are not normally distributed. Genetics may contribute to these observations. Using crowdsourced data obtained from families visiting the Denver Museum of Nature & Science, our objective was to estimate the heritability of fat taste (oleogustus). A pedigree analysis was conducted with 106 families (643 individuals) who rated the fat taste intensity of graded concentrations of linoleic acid (LA) embedded in taste strips. The findings estimate that 19% (P = 0.043) of the variability of taste response to LA relative to baseline is heritable at the highest concentration tested. PMID:28968903
Dawson, Ree; Lavori, Philip W
2012-01-01
Clinical demand for individualized "adaptive" treatment policies in diverse fields has spawned development of clinical trial methodology for their experimental evaluation via multistage designs, building upon methods intended for the analysis of naturalistically observed strategies. Because often there is no need to parametrically smooth multistage trial data (in contrast to observational data for adaptive strategies), it is possible to establish direct connections among different methodological approaches. We show by algebraic proof that the maximum likelihood (ML) and optimal semiparametric (SP) estimators of the population mean of the outcome of a treatment policy and its standard error are equal under certain experimental conditions. This result is used to develop a unified and efficient approach to design and inference for multistage trials of policies that adapt treatment according to discrete responses. We derive a sample size formula expressed in terms of a parametric version of the optimal SP population variance. Nonparametric (sample-based) ML estimation performed well in simulation studies, in terms of achieved power, for scenarios most likely to occur in real studies, even though sample sizes were based on the parametric formula. ML outperformed the SP estimator; differences in achieved power predominately reflected differences in their estimates of the population mean (rather than estimated standard errors). Neither methodology could mitigate the potential for overestimated sample sizes when strong nonlinearity was purposely simulated for certain discrete outcomes; however, such departures from linearity may not be an issue for many clinical contexts that make evaluation of competitive treatment policies meaningful.
Wired: impacts of increasing power line use by a growing bird population
NASA Astrophysics Data System (ADS)
Moreira, Francisco; Encarnação, Vitor; Rosa, Gonçalo; Gilbert, Nathalie; Infante, Samuel; Costa, Julieta; D'Amico, Marcello; Martins, Ricardo C.; Catry, Inês
2017-02-01
Power lines are increasingly widespread across many regions of the planet. Although these linear infrastructures are known for their negative impacts on bird populations, through collision and electrocution, some species take advantage of electricity pylons for nesting. In this case, estimation of the net impact of these infrastructures at the population level requires an assessment of trade-offs between positive and negative impacts. We compiled historical information (1958-2014) of the Portuguese white stork Ciconia ciconia population to analyze long-term changes in numbers, distribution range and use of nesting structures. White stork population size increased 660% up to 12000 breeding pairs between 1984 and 2014. In the same period, the proportion of nests on electricity pylons increased from 1% to 25%, likely facilitated by the 60% increase in the length of the very high tension power line grid (holding the majority of the nests) in the stork’s distribution range. No differences in breeding success were registered for storks nesting on electricity pylons versus other structures, but a high risk of mortality by collision and electrocution with power lines was estimated. We discuss the implications of this behavioral change, and of the management responses by power line companies, both for stork populations and for managers.
Burden of disease from toxic waste sites in India, Indonesia, and the Philippines in 2010.
Chatham-Stephens, Kevin; Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J; Fuller, Richard
2013-07-01
Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Sites were identified through the Blacksmith Institute's Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934-1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem.
Wallace, Dorothy; Prosper, Olivia; Savos, Jacob; Dunham, Ann M; Chipman, Jonathan W; Shi, Xun; Ndenga, Bryson; Githeko, Andrew
2017-03-01
A dynamical model of Anopheles gambiae larval and adult populations is constructed that matches temperature-dependent maturation times and mortality measured experimentally as well as larval instar and adult mosquito emergence data from field studies in the Kenya Highlands. Spectral classification of high-resolution satellite imagery is used to estimate household density. Indoor resting densities collected over a period of one year combined with predictions of the dynamical model give estimates of both aquatic habitat and total adult mosquito densities. Temperature and precipitation patterns are derived from monthly records. Precipitation patterns are compared with average and extreme habitat estimates to estimate available aquatic habitat in an annual cycle. These estimates are coupled with the original model to produce estimates of adult and larval populations dependent on changing aquatic carrying capacity for larvae and changing maturation and mortality dependent on temperature. This paper offers a general method for estimating the total area of aquatic habitat in a given region, based on larval counts, emergence rates, indoor resting density data, and number of households.Altering the average daily temperature and the average daily rainfall simulates the effect of climate change on annual cycles of prevalence of An. gambiae adults. We show that small increases in average annual temperature have a large impact on adult mosquito density, whether measured at model equilibrium values for a single square meter of habitat or tracked over the course of a year of varying habitat availability and temperature. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van Pelt, Thomas I.; Piatt, John F.
2003-01-01
The Kittlitz's murrelet (Brachyramphus brevirostris) is a rare seabird that nests in alpine terrain and generally forages near tidewater glaciers during the breeding season. More than 95% of the global population breeds in Alaska, with the remainder occurring in the Russian Far East. A global population estimate using best-available data in the early 1990s was 20,000 individuals. However, survey data from two core areas (Prince William Sound and Glacier Bay) suggest that populations have declined by 80-90% during the past 10-20 years. In response to these declines, a coalition of environmental groups petitioned the USFWS in May of 2001 to list the Kittlitz’s murrelet under the Endangered Species Act. In 2002, we began a three-year project to examine population status and trend of Kittlitz’s Murrelets in areas where distribution and abundance are poorly known. Here we report on the first field season, focused on the south coast of the Kenai Peninsula. We re-surveyed selected historical transects to evaluate trends, and surveyed new transects for improved population estimation during early July 2002. From a total of 66 Kittlitz’s Murrelets seen on transects, we estimate a total population of 509 Kittlitz’s Murrelets along the south coast of the Kenai Peninsula. Comparisons with past surveys suggest a decline of 83% since 1976, with an average rate of decline calculated as–6.9 % per annum. This decline is in agreement with population declines observed elsewhere in the species’ core glaciated range, indicating that steep population declines observed to date are likely to be a range-wide phenomenon. While the focus of the study was Kittlitz’s Murrelets, other species of marine birds and mammals were also surveyed. Populations of the closely related Marbled Murrelet appear to have increased during the same time period. The abundance and distribution of other species are presented in appendices.
Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex
Keller, Corey J.; Cash, Sydney S.; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A.; Ulbert, Istvan; Halgren, Eric
2009-01-01
Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a “laminar optode,” a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans. PMID:19428529
Intracranial microprobe for evaluating neuro-hemodynamic coupling in unanesthetized human neocortex.
Keller, Corey J; Cash, Sydney S; Narayanan, Suresh; Wang, Chunmao; Kuzniecky, Ruben; Carlson, Chad; Devinsky, Orrin; Thesen, Thomas; Doyle, Werner; Sassaroli, Angelo; Boas, David A; Ulbert, Istvan; Halgren, Eric
2009-05-15
Measurement of the blood-oxygen-level dependent (BOLD) response with fMRI has revolutionized cognitive neuroscience and is increasingly important in clinical care. The BOLD response reflects changes in deoxy-hemoglobin concentration, blood volume, and blood flow. These hemodynamic changes ultimately result from neuronal firing and synaptic activity, but the linkage between these domains is complex, poorly understood, and may differ across species, cortical areas, diseases, and cognitive states. We describe here a technique that can measure neural and hemodynamic changes simultaneously from cortical microdomains in waking humans. We utilize a "laminar optode," a linear array of microelectrodes for electrophysiological measures paired with a micro-optical device for hemodynamic measurements. Optical measurements include laser Doppler to estimate cerebral blood flow as well as point spectroscopy to estimate oxy- and deoxy-hemoglobin concentrations. The microelectrode array records local field potential gradients (PG) and multi-unit activity (MUA) at 24 locations spanning the cortical depth, permitting estimation of population trans-membrane current flows (Current Source Density, CSD) and population cell firing in each cortical lamina. Comparison of the laminar CSD/MUA profile with the origins and terminations of cortical circuits allows activity in specific neuronal circuits to be inferred and then directly compared to hemodynamics. Access is obtained in epileptic patients during diagnostic evaluation for surgical therapy. Validation tests with relatively well-understood manipulations (EKG, breath-holding, cortical electrical stimulation) demonstrate the expected responses. This device can provide a new and robust means for obtaining detailed, quantitative data for defining neurovascular coupling in awake humans.
González-Rábago, Yolanda; La Parra, Daniel; Martín, Unai; Malmusi, Davide
2014-01-01
Population health surveys have been the main data source for analysis of immigrants' health status in Spain. The aim of this study was to analyze the representation of this population in the Spanish National Health Survey (SNHS) 2011-2012. We analyzed methodological publications and data from the SNHS 2011-2012 and the population registry. Differences in the participation rate between the national and foreign populations and the causes for these differences were analyzed, as well as the representation of 11 countries of birth in the survey with respect to the general population, with and without weighting. Households with any foreign person had a lower participation rate, either due to a higher error in the sampling frame or to a higher non-response rate. In each country of birth, the sample was smaller than would be expected according to the population registry, especially among the Chinese population. When we applied the sample weights to the 11 countries of birth, the estimated population volume was closer to the estimated volume of the population registry for all the countries considered, although globally both the underrepresentation and the intranational bias remained. The lower participation of the immigrant population and differences in participation depending on the country of origin suggest the existence of a potential bias in the SNHS, which should be taken into account in studies analyzing the health of this population. The lower participation rate should be studied in greater depth in order to take appropriate measures to increase the representativeness of health surveys. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.
Yildirim, Funda; Carvalho, Joana; Cornelissen, Frans W
2018-01-01
Visual field or retinotopic mapping is one of the most frequently used paradigms in fMRI. It uses activity evoked by position-varying high luminance contrast visual patterns presented throughout the visual field for determining the spatial organization of cortical visual areas. While the advantage of using high luminance contrast is that it tends to drive a wide range of neural populations - thus resulting in high signal-to-noise BOLD responses - this may also be a limitation, especially for approaches that attempt to squeeze more information out of the BOLD response, such as population receptive field (pRF) mapping. In that case, more selective stimulation of a subset of neurons - despite reduced signals - could result in better characterization of pRF properties. Here, we used a second-order stimulus based on local differences in orientation texture - to which we refer as orientation contrast - to perform retinotopic mapping. Participants in our experiment viewed arrays of Gabor patches composed of a foreground (a bar) and a background. These could only be distinguished on the basis of a difference in patch orientation. In our analyses, we compare the pRF properties obtained using this new orientation contrast-based retinotopy (OCR) to those obtained using classic luminance contrast-based retinotopy (LCR). Specifically, in higher order cortical visual areas such as LO, our novel approach resulted in non-trivial reductions in estimated population receptive field size of around 30%. A set of control experiments confirms that the most plausible cause for this reduction is that OCR mainly drives neurons sensitive to orientation contrast. We discuss how OCR - by limiting receptive field scatter and reducing BOLD displacement - may result in more accurate pRF localization as well. Estimation of neuronal properties is crucial for interpreting cortical function. Therefore, we conclude that using our approach, it is possible to selectively target particular neuronal populations, opening the way to use pRF modeling to dissect the response properties of more clearly-defined neuronal populations in different visual areas. Copyright © 2017 Elsevier Inc. All rights reserved.
Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L
2017-10-01
Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.
Quantitative cancer risk assessment for ethylene oxide inhalation in occupational settings.
Valdez-Flores, Ciriaco; Sielken, Robert L; Teta, M Jane
2011-10-01
The estimated occupational ethylene oxide (EO) exposure concentrations corresponding to specified extra risks are calculated for lymphoid mortality as the most appropriate endpoint, despite the lack of a statistically significant exposure-response relationship. These estimated concentrations are for occupational exposures--40 years of occupational inhalation exposure to EO from age 20 to age 60 years. The estimated occupational inhalation exposure concentrations (ppm) corresponding to specified extra risks of lymphoid mortality to age 70 years in a population of male and female EO workers are based on Cox proportional hazards models of the most recent updated epidemiology cohort mortality studies of EO workers and a standard life-table calculation. An occupational exposure at an inhalation concentration of 2.77 ppm EO is estimated to result in an extra risk of lymphoid mortality of 4 in 10,000 (0.0004) in the combined worker population of men and women from the two studies. The corresponding estimated concentration decreases slightly to 2.27 ppm when based on only the men in the updated cohorts combined. The difference in these estimates reflects the difference between combining all of the available data or focusing on only the men and excluding the women who did not show an increase in lymphoid mortality with EO inhalation exposure. The results of sensitivity analyses using other mortality endpoints (all lymphohematopoietic tissue cancers, leukemia) support the choice of lymphoid tumor mortality for estimation of extra risk.
Chen, Chao; Wang, Huihua; Liu, Zhiguang; Chen, Xiao; Tang, Jiao; Meng, Fanming; Shi, Wei
2018-06-20
The mechanisms by which organisms adapt to variable environments are a fundamental question in evolutionary biology and are important to protect important species in response to a changing climate. An interesting candidate to study this question is the honey bee Apis cerana, a keystone pollinator with a wide distribution throughout a large variety of climates, that exhibits rapid dispersal. Here, we re-sequenced the genome of 180 A. cerana individuals from eighteen populations throughout China. Using a population genomics approach, we observed considerable genetic variation in A. cerana. Patterns of genetic differentiation indicate high divergence at the subspecies level, and physical barriers rather than distance are the driving force for population divergence. Estimations of divergence time suggested that the main branches diverged between 300 and 500 ka. Analyses of the population history revealed a substantial influence of the Earth's climate on the effective population size of A. cerana, as increased population sizes were observed during warmer periods. Further analyses identified candidate genes under natural selection that are potentially related to honey bee cognition, temperature adaptation, and olfactory. Based on our results, A. cerana may have great potential in response to climate change. Our study provides fundamental knowledge of the evolution and adaptation of A. cerana.
NASA Astrophysics Data System (ADS)
Young, E. F.; Belchier, M.; Meredith, M. P.; Tysklind, N.; Carvalho, G. R.
2016-02-01
Understanding the key drivers of larval dispersal and population connectivity in the marine environment is essential for estimating the potential impacts of climate change on the genetic structure and resilience of populations. Small, isolated and fragmented communities will differ fundamentally in their response and resilience to environmental stress, compared with species that are broadly distributed, abundant, and with a frequent exchange of members. Using a `seascape genetics' approach, combining oceanographic modelling and genetic analyses, we have elucidated the fundamental roles of oceanographic transport and planktonic duration on the connectivity and population genetic structure of two Antarctic fish species with contrasting early life histories, Champsocephalus gunnari and Notothenia rossii. Here, we extend these analyses to consider the impact of rising sea temperatures due to climate change on planktonic dispersal and population connectivity. Using a theoretical approach, the effect of increased water temperatures on mortality rates and species-specific egg and larval phase durations has been incorporated into the models, and the relative impact of these climate-related influences on connectivity and population genetic structure has been investigated. Here we present the key findings of our research and consider the roles of early life history and oceanography in the response of fragmented fish populations to climate change.
Please don't misuse the museum: 'declines' may be statistical.
Campbell Grant, Evan H
2015-03-01
Detecting declines in populations at broad spatial scales takes enormous effort, and long-term data are often more sparse than is desired for estimating trends, identifying drivers for population changes, framing conservation decisions, or taking management actions. Museum records and historic data can be available at large scales across multiple decades, and are therefore an attractive source of information on the comparative status of populations. However, changes in populations may be real (e.g. in response to environmental covariates) or resulting from variation in our ability to observe the true population response (also possibly related to environmental covariates). This is a (statistical) nuisance in understanding the true status of a population. Evaluating statistical hypotheses alongside more interesting ecological ones is important in the appropriate use of museum data. Two statistical considerations are generally applicable to use of museum records: first without initial random sampling, comparison with contemporary results cannot provide inference to the entire range of a species, and second the availability of only some individuals in a population may respond to environmental changes. Changes in the availability of individuals may reduce the proportion of the population that is present and able to be counted on a given survey event, resulting in an apparent decline even when population size is stable. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Field heritability of a plant adaptation to fire in heterogeneous landscapes.
Castellanos, M C; González-Martínez, S C; Pausas, J G
2015-11-01
The strong association observed between fire regimes and variation in plant adaptations to fire suggests a rapid response to fire as an agent of selection. It also suggests that fire-related traits are heritable, a precondition for evolutionary change. One example is serotiny, the accumulation of seeds in unopened fruits or cones until the next fire, an important strategy for plant population persistence in fire-prone ecosystems. Here, we evaluate the potential of this trait to respond to natural selection in its natural setting. For this, we use a SNP marker approach to estimate genetic variance and heritability of serotiny directly in the field for two Mediterranean pine species. Study populations were large and heterogeneous in climatic conditions and fire regime. We first estimated the realized relatedness among trees from genotypes, and then partitioned the phenotypic variance in serotiny using Bayesian animal models that incorporated environmental predictors. As expected, field heritability was smaller (around 0.10 for both species) than previous estimates under common garden conditions (0.20). An estimate on a subset of stands with more homogeneous environmental conditions was not different from that in the complete set of stands, suggesting that our models correctly captured the environmental variation at the spatial scale of the study. Our results highlight the importance of measuring quantitative genetic parameters in natural populations, where environmental heterogeneity is a critical aspect. The heritability of serotiny, although not high, combined with high phenotypic variance within populations, confirms the potential of this fire-related trait for evolutionary change in the wild. © 2015 John Wiley & Sons Ltd.
South Asian populations in Canada: migration and mental health.
Islam, Farah; Khanlou, Nazilla; Tamim, Hala
2014-05-26
South Asian populations are the largest visible minority group in Canada; however, there is very little information on the mental health of these populations. The objective of this study was to determine the prevalence rates and characteristics of mental health outcomes for South Asian first-generation immigrant and second-generation Canadian-born populations. The Canadian Community Health Survey (CCHS) 2011 was used to calculate the estimated prevalence rates of the following mental health outcomes: mood disorders, anxiety disorders, fair-poor self-perceived mental health status, and extremely stressful life stress. The characteristics associated with these four mental health outcomes were determined through multivariate logistic regression analysis of merged CCHS 2007-2011 data. South Asian Canadian-born (3.5%, 95% CI 3.4-3.6%) and South Asian immigrant populations (3.5%, 95% CI 3.5-3.5%) did not vary significantly in estimated prevalence rates of mood disorders. However, South Asian immigrants experienced higher estimated prevalence rates of diagnosed anxiety disorders (3.4%, 95% CI 3.4-3.5 vs. 1.1%, 95% CI 1.1-1.1%) and self-reported extremely stressful life stress (2.6%, 95% CI 2.6-2.7% vs. 2.4%, 95% CI 2.3-2.4%) compared to their Canadian-born counterparts. Lastly, South Asian Canadian-born populations had a higher estimated prevalence rate of poor-fair self-perceived mental health status (4.4%, 95% CI 4.3-4.5%) compared to their immigrant counterparts (3.4%, 95% CI 3.3-3.4%). Different profiles of mental health determinants emerged for South Asian Canadian-born and immigrant populations. Female gender, having no children under the age of 12 in the household, food insecurity, poor-fair self-rated health status, being a current smoker, immigrating to Canada before adulthood, and taking the CCHS survey in either English or French was associated with greater risk of negative mental health outcomes for South Asian immigrant populations, while not being currently employed, having a regular medical doctor, and inactive physical activity level were associated with greater risk for South Asian Canadian-born populations. Mental health outreach programs need to be cognizant of the differences in prevalence rates and characteristics of mental health outcomes for South Asian immigrant and Canadian-born populations to better tailor mental health services to be responsive to the unique mental health needs of South Asian populations in Canada.
Human variability in mercury toxicokinetics and steady state biomarker ratios.
Bartell, S M; Ponce, R A; Sanga, R N; Faustman, E M
2000-10-01
Regulatory guidelines regarding methylmercury exposure depend on dose-response models relating observed mercury concentrations in maternal blood, cord blood, and maternal hair to developmental neurobehavioral endpoints. Generalized estimates of the maternal blood-to-hair, blood-to-intake, or hair-to-intake ratios are necessary for linking exposure to biomarker-based dose-response models. Most assessments have used point estimates for these ratios; however, significant interindividual and interstudy variability has been reported. For example, a maternal ratio of 250 ppm in hair per mg/L in blood is commonly used in models, but a 1990 WHO review reports mean ratios ranging from 140 to 370 ppm per mg/L. To account for interindividual and interstudy variation in applying these ratios to risk and safety assessment, some researchers have proposed representing the ratios with probability distributions and conducting probabilistic assessments. Such assessments would allow regulators to consider the range and like-lihood of mercury exposures in a population, rather than limiting the evaluation to an estimate of the average exposure or a single conservative exposure estimate. However, no consensus exists on the most appropriate distributions for representing these parameters. We discuss published reviews of blood-to-hair and blood-to-intake steady state ratios for mercury and suggest statistical approaches for combining existing datasets to form generalized probability distributions for mercury distribution ratios. Although generalized distributions may not be applicable to all populations, they allow a more informative assessment than point estimates where individual biokinetic information is unavailable. Whereas development and use of these distributions will improve existing exposure and risk models, additional efforts in data generation and model development are required.
Quantitative metrics for assessing predicted climate change pressure on North American tree species
Kevin M. Potter; William W. Hargrove
2013-01-01
Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...
Most observations of stressor effects on marine crustaceans are made on individuals or even-aged cohorts. Results of these studies are difficult to translate into ecological predictions, either because life cycle models are incomplete, or because stressor effects on mixed age po...
USDA-ARS?s Scientific Manuscript database
Comparative responses of 21 species of mosquitoes to light traps (LT) and suction traps (ST) and captured using the human landing collection method (HL) varied in accordance with collection technique but data analyses for most species revealed significant interaction between collection method and th...
78 FR 6289 - Estimates of the Voting Age Population for 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... DEPARTMENT OF COMMERCE Office of the Secretary Estimates of the Voting Age Population for 2012... estimates. SUMMARY: This notice announces the voting age population estimates as of July 1, 2012, for each... notice that the estimates of the voting age population for July 1, 2012, for each state and the District...
Cocozza, Claudia; de Miguel, Marina; Pšidová, Eva; Ditmarová, L'ubica; Marino, Stefano; Maiuro, Lucia; Alvino, Arturo; Czajkowski, Tomasz; Bolte, Andreas; Tognetti, Roberto
2016-01-01
Frequency and intensity of heat waves and drought events are expected to increase in Europe due to climate change. European beech (Fagus sylvatica L.) is one of the most important native tree species in Europe. Beech populations originating throughout its native range were selected for common-garden experiments with the aim to determine whether there are functional variations in drought stress responses among different populations. One-year old seedlings from four to seven beech populations were grown and drought-treated in a greenhouse, replicating the experiment at two contrasting sites, in Italy (Mediterranean mountains) and Germany (Central Europe). Experimental findings indicated that: (1) drought (water stress) mainly affected gas exchange describing a critical threshold of drought response between 30 and 26% SWA for photosynthetic rate and Ci/Ca, respectively; (2) the Ci to Ca ratio increased substantially with severe water stress suggesting a stable instantaneous water use efficiency and an efficient regulation capacity of water balance achieved by a tight stomatal control; (3) there was a different response to water stress among the considered beech populations, differently combining traits, although there was not a well-defined variability in drought tolerance. A combined analysis of functional and structural traits for detecting stress signals in beech seedlings is suggested to assess plant performance under limiting moisture conditions and, consequently, to estimate evolutionary potential of beech under a changing environmental scenario. PMID:27446118
Kushnick, Geoff; Hanowell, Ben; Kim, Jun-Hong; Langstieh, Banrida; Magnano, Vittorio; Oláh, Katalin
2015-06-01
Maternal care decision rules should evolve responsiveness to factors impinging on the fitness pay-offs of care. Because the caretaking environments common in industrialized and small-scale societies vary in predictable ways, we hypothesize that heuristics guiding maternal behaviour will also differ between these two types of populations. We used a factorial vignette experiment to elicit third-party judgements about likely caretaking decisions of a hypothetical mother and her child when various fitness-relevant factors (maternal age and access to resources, and offspring age, sex and quality) were varied systematically in seven populations-three industrialized and four small-scale. Despite considerable variation in responses, we found that three of five main effects, and the two severity effects, exhibited statistically significant industrialized/ small-scale population differences. All differences could be explained as adaptive solutions to industrialized versus small-scale caretaking environments. Further, we found gradients in the relationship between the population-specific estimates and national-level socio-economic indicators, further implicating important aspects of the variation in industrialized and small-scale caretaking environments in shaping heuristics. Although there is mounting evidence for a genetic component to human maternal behaviour, there is no current evidence for interpopulation variation in candidate genes. We nonetheless suggest that heuristics guiding maternal behaviour in diverse societies emerge via convergent evolution in response to similar selective pressures.
Hankey, Steve; Brauer, Michael
2011-01-01
Background: Physical inactivity and exposure to air pollution are important risk factors for death and disease globally. The built environment may influence exposures to these risk factors in different ways and thus differentially affect the health of urban populations. Objective: We investigated the built environment’s association with air pollution and physical inactivity, and estimated attributable health risks. Methods: We used a regional travel survey to estimate within-urban variability in physical inactivity and home-based air pollution exposure [particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), nitrogen oxides (NOx), and ozone (O3)] for 30,007 individuals in southern California. We then estimated the resulting risk for ischemic heart disease (IHD) using literature-derived dose–response values. Using a cross-sectional approach, we compared estimated IHD mortality risks among neighborhoods based on “walkability” scores. Results: The proportion of physically active individuals was higher in high- versus low-walkability neighborhoods (24.9% vs. 12.5%); however, only a small proportion of the population was physically active, and between-neighborhood variability in estimated IHD mortality attributable to physical inactivity was modest (7 fewer IHD deaths/100,000/year in high- vs. low-walkability neighborhoods). Between-neighborhood differences in estimated IHD mortality from air pollution were comparable in magnitude (9 more IHD deaths/100,000/year for PM2.5 and 3 fewer IHD deaths for O3 in high- vs. low-walkability neighborhoods), suggesting that population health benefits from increased physical activity in high-walkability neighborhoods may be offset by adverse effects of air pollution exposure. Policy implications: Currently, planning efforts mainly focus on increasing physical activity through neighborhood design. Our results suggest that differences in population health impacts among neighborhoods are similar in magnitude for air pollution and physical activity. Thus, physical activity and exposure to air pollution are critical aspects of planning for cleaner, health-promoting cities. PMID:22004949
Hankey, Steve; Marshall, Julian D; Brauer, Michael
2012-02-01
Physical inactivity and exposure to air pollution are important risk factors for death and disease globally. The built environment may influence exposures to these risk factors in different ways and thus differentially affect the health of urban populations. We investigated the built environment's association with air pollution and physical inactivity, and estimated attributable health risks. We used a regional travel survey to estimate within-urban variability in physical inactivity and home-based air pollution exposure [particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), nitrogen oxides (NOx), and ozone (O3)] for 30,007 individuals in southern California. We then estimated the resulting risk for ischemic heart disease (IHD) using literature-derived dose-response values. Using a cross-sectional approach, we compared estimated IHD mortality risks among neighborhoods based on "walkability" scores. The proportion of physically active individuals was higher in high- versus low-walkability neighborhoods (24.9% vs. 12.5%); however, only a small proportion of the population was physically active, and between-neighborhood variability in estimated IHD mortality attributable to physical inactivity was modest (7 fewer IHD deaths/100,000/year in high- vs. low-walkability neighborhoods). Between-neighborhood differences in estimated IHD mortality from air pollution were comparable in magnitude (9 more IHD deaths/100,000/year for PM2.5 and 3 fewer IHD deaths for O3 in high- vs. low-walkability neighborhoods), suggesting that population health benefits from increased physical activity in high-walkability neighborhoods may be offset by adverse effects of air pollution exposure. Currently, planning efforts mainly focus on increasing physical activity through neighborhood design. Our results suggest that differences in population health impacts among neighborhoods are similar in magnitude for air pollution and physical activity. Thus, physical activity and exposure to air pollution are critical aspects of planning for cleaner, health-promoting cities.
Glei, Dana A; Goldman, Noreen; Ryff, Carol D; Weinstein, Maxine
2017-12-01
We evaluate the variability in estimates of self-reported physical limitations by age across four nationally representative surveys in the US. We consider its implications for determining whether, as previous literature suggests, the US estimates reveal limitations at an earlier age than in three countries with similar life expectancy: England, Taiwan, and Costa Rica. Based on cross-sectional data from seven population-based surveys, we use local mean smoothing to plot self-reported limitations by age for each of four physical tasks for each survey, stratified by sex. We find substantial variation in the estimates in the US across four nationally-representative surveys. For example, one US survey suggests that American women experience a walking limitation 15 years earlier than their Costa Rican counterparts, while another US survey implies that Americans have a 4-year advantage. Differences in mode of survey may account for higher prevalence of limitations in the one survey that used a self-administered mail-in questionnaire than in the other surveys that used in-person or telephone interviews. Yet, even among US surveys that used the same mode, there is still so much variability in estimates that we cannot conclude whether Americans have better or worse function than their counterparts in the other countries. Seemingly minor differences in question wording and response categories may account for the remaining inconsistency. If minor differences in question wording can result in such extensive variation in the estimates within a given population, then lack of comparability is likely to be an even greater problem when examining results across countries that do not share the same language or culture. Despite the potential utility of self-reported physical function within a survey sample, our findings imply that absolute estimates of population-level prevalence of self-reported physical limitations are unlikely to be strictly comparable across countries-or even across surveys within the same population.
Kovanda, Laura L; Walsh, Thomas J; Benjamin, Daniel K; Arrieta, Antonio; Kaufman, David A; Smith, P Brian; Manzoni, Paolo; Desai, Amit V; Kaibara, Atsunori; Bonate, Peter L; Hope, William W
2018-06-01
Neonatal candidiasis causes significant morbidity and mortality in high risk infants. The micafungin dosage regimen of 10 mg/kg established for the treatment of neonatal candidiasis is based on a laboratory animal model of neonatal hematogenous Candida meningoencephalitis and pharmacokinetic (PK)-pharmacodynamic (PD) bridging studies. However, little is known about the how these PK-PD data translate clinically. Micafungin plasma concentrations from infants were used to construct a population PK model using Pmetrics software. Bayesian posterior estimates for infants with invasive candidiasis were used to evaluate the relationship between drug exposure and mycologic response using logistic regression. Sixty-four infants 3-119 days of age were included, of which 29 (45%) infants had invasive candidiasis. A 2-compartment PK model fits the data well. Allometric scaling was applied to clearance and volume normalized to the mean population weight (kg). The mean (standard deviation) estimates for clearance and volume in the central compartment were 0.07 (0.05) L/h/1.8 kg and 0.61 (0.53) L/1.8 kg, respectively. No relationship between average daily area under concentration-time curve or average daily area under concentration-time curve:minimum inhibitory concentration ratio and mycologic response was demonstrated (P > 0.05). Although not statistically significant, mycologic response was numerically higher when area under concentration-time curves were at or above the PD target. While a significant exposure-response relationship was not found, PK-PD experiments support higher exposures of micafungin in infants with invasive candidiasis. More patients would clarify this relationship; however, low incidence deters the feasibility of these studies.
Improved population estimates through the use of auxiliary information
Johnson, D.H.; Ralph, C.J.; Scott, J.M.
1981-01-01
When estimating the size of a population of birds, the investigator may have, in addition to an estimator based on a statistical sample, information on one of several auxiliary variables, such as: (1) estimates of the population made on previous occasions, (2) measures of habitat variables associated with the size of the population, and (3) estimates of the population sizes of other species that correlate with the species of interest. Although many studies have described the relationships between each of these kinds of data and the population size to be estimated, very little work has been done to improve the estimator by incorporating such auxiliary information. A statistical methodology termed 'empirical Bayes' seems to be appropriate to these situations. The potential that empirical Bayes methodology has for improved estimation of the population size of the Mallard (Anas platyrhynchos) is explored. In the example considered, three empirical Bayes estimators were found to reduce the error by one-fourth to one-half of that of the usual estimator.
Falk Hvidberg, Michael; Brinth, Louise Schouborg; Olesen, Anne V; Petersen, Karin D; Ehlers, Lars
2015-01-01
Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is a common, severe condition affecting 0.2 to 0.4 per cent of the population. Even so, no recent international EQ-5D based health-related quality of life (HRQoL) estimates exist for ME/CFS patients. The main purpose of this study was to estimate HRQoL scores using the EQ-5D-3L with Danish time trade-off tariffs. Secondary, the aims were to explore whether the results are not influenced by other conditions using regression, to compare the estimates to 20 other conditions and finally to present ME/CFS patient characteristics for use in clinical practice. All members of the Danish ME/CFS Patient Association in 2013 (n=319) were asked to fill out a questionnaire including the EQ-5D-3L. From these, 105 ME/CFS patients were identified and gave valid responses. Unadjusted EQ-5D-3L means were calculated and compared to the population mean as well as to the mean of 20 other conditions. Furthermore, adjusted estimates were calculated using ordinary least squares (OLS) regression, adjusting for gender, age, education, and co-morbidity of 18 self-reported conditions. Data from the North Denmark Health Profile 2010 was used as population reference in the regression analysis (n=23,392). The unadjusted EQ-5D-3L mean of ME/CFS was 0.47 [0.41-0.53] compared to a population mean of 0.85 [0.84-0.86]. The OLS regression estimated a disutility of -0.29 [-0.21;-0.34] for ME/CFS patients in this study. The characteristics of ME/CFS patients are different from the population with respect to gender, relationship, employment etc. The EQ-5D-3L-based HRQoL of ME/CFS is significantly lower than the population mean and the lowest of all the compared conditions. The adjusted analysis confirms that poor HRQoL of ME/CFS is distinctly different from and not a proxy of the other included conditions. However, further studies are needed to exclude the possible selection bias of the current study.
Senar, J.C.; Conroy, M.J.
2004-01-01
Disease is one of the evolutionary forces shaping populations. Recent studies have shown that epidemics like avian pox, malaria, or mycoplasmosis have affected passerine population dynamics, being responsible for the decline of some populations or disproportionately killing males and larger individuals and thus selecting for specific morphotypes. However, few studies have estimated the effects of an epidemic by following individual birds using the capture-recapture approach. Because avian pox can be diagnosed by direct examination of the birds, we are here able to analyze, using multistate models, the development and consequences of an avian pox epidemic affecting in 1996, a population of Serins (Serinus serinus) in northeastern Spain. The epidemics lasted from June to the end of November of 1996, with a maximum apparent prevalence rate > 30% in October. However, recapture rate of sick birds was very high (0.81, range 0.37-0.93) compared to that of healthy birds (0.21, range 0.020-32), which highly inflated apparent prevalence rate. This was additionally supported by the low predicted transition from the state of being uninfected to the state of being infected (0.03, SE 0.03). Once infected, Serin avian pox was very virulent with (15-day) survival rate of infected birds being of only 0.46 (SE 0.17) compared to that of healthy ones (0.87, SE 0.03). Probability of recovery from disease, provided that the bird survived the first two weeks, however, was very high (0.65, SE 0.25). The use of these estimates together with a simple model, allowed us to predict an asymptotic increase to prevalence of about 4% by the end of the outbreak period, followed by a sharp decline, with the only remaining infestations being infected birds that had not yet recovered. This is in contrast to the apparent prevalence of pox and stresses the need to estimate recapture rates when estimating population dynamics parameters. ?? 2004 Museu de Cie??ncies Naturals.
Pinichka, Chayut; Bundhamcharoen, Kanitta; Shibuya, Kenji
2015-05-14
Ambient ozone (O3) pollution has increased globally since preindustrial times. At present, O3 is one of the major air pollution concerns in Thailand, and is associated with health impacts such as chronic obstructive pulmonary disease (COPD). The objective of our study is to estimate the burden of disease attributed to O3 in 2009 in Thailand based on empirical evidence. We estimated disability-adjusted life years (DALYs) attributable to O3 using the comparative risk assessment framework in the Global Burden of Diseases (GBD) study. We quantified the population attributable fraction (PAF), integrated from Geographic Information Systems (GIS)-based spatial interpolation, the population distribution of exposure, and the exposure-response coefficient to spatially characterize exposure to ambient O3 pollution on a national scale. Exposure distribution was derived from GIS-based spatial interpolation O3 exposure model using Pollution Control Department Thailand (PCD) surface air pollution monitor network sources. Relative risk (RR) and population attributable fraction (PAF) were determined using health impact function estimates for O3. PAF (%) of COPD attributable to O3 were determined by region: at approximately, Northern=2.1, Northeastern=7.1, Central=9.6, Eastern=1.75, Western=1.47 and Southern=1.74. The total COPD burden attributable to O3 for Thailand in 2009 was 61,577 DALYs. Approximately 0.6% of the total DALYs in Thailand is male: 48,480 DALYs; and female: 13,097 DALYs. This study provides the first empirical evidence on the health burden (DALYs) attributable to O3 pollution in Thailand. Varying across regions, the disease burden attributable to O3 was 0.6% of the total national burden in 2009. Better empirical data on local specific sites, e.g. urban and rural areas, alternative exposure assessment, e.g. land use regression (LUR), and a local concentration-response coefficient are required for future studies in Thailand.
Approximate median regression for complex survey data with skewed response.
Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi
2016-12-01
The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
Abbott, Ronald E; Doak, Daniel F; Peterson, Megan L
2017-04-01
The mechanisms that stabilize small populations in the face of environmental variation are crucial to their long-term persistence. Building from diversity-stability concepts in community ecology, within-population diversity is gaining attention as an important component of population stability. Genetic and microhabitat variation within populations can generate diverse responses to common environmental fluctuations, dampening temporal variability across the population as a whole through portfolio effects. Yet, the potential for portfolio effects to operate at small scales within populations or to change with systematic environmental shifts, such as climate change, remain largely unexplored. We tracked the abundance of a rare alpine perennial plant, Saussurea weberi, in 49 1-m 2 plots within a single population over 20 yr. We estimated among-plot correlations in log annual growth rate to test for population-level synchrony and quantify portfolio effects across the 20-yr study period and also in 5-yr subsets based on June temperature quartiles. Asynchrony among plots, due to different plot-level responses to June temperature, reduced overall fluctuations in abundance and the probability of decline in population models, even when accounting for the effects of density dependence on dynamics. However, plots became more synchronous and portfolio effects decreased during the warmest years of the study, suggesting that future climate warming may erode stabilizing mechanisms in populations of this rare plant. © 2017 by the Ecological Society of America.
Kendall, W.L.; Nichols, J.D.; North, P.M.; Nichols, J.D.
1995-01-01
The use of the Cormack- Jolly-Seber model under a standard sampling scheme of one sample per time period, when the Jolly-Seber assumption that all emigration is permanent does not hold, leads to the confounding of temporary emigration probabilities with capture probabilities. This biases the estimates of capture probability when temporary emigration is a completely random process, and both capture and survival probabilities when there is a temporary trap response in temporary emigration, or it is Markovian. The use of secondary capture samples over a shorter interval within each period, during which the population is assumed to be closed (Pollock's robust design), provides a second source of information on capture probabilities. This solves the confounding problem, and thus temporary emigration probabilities can be estimated. This process can be accomplished in an ad hoc fashion for completely random temporary emigration and to some extent in the temporary trap response case, but modelling the complete sampling process provides more flexibility and permits direct estimation of variances. For the case of Markovian temporary emigration, a full likelihood is required.
Population estimates of Nearctic shorebirds
Morrison, R.I.G.; Gill, Robert E.; Harrington, B.A.; Skagen, S.K.; Page, G.W.; Gratto-Trevor, C. L.; Haig, S.M.
2000-01-01
Estimates are presented for the population sizes of 53 species of Nearctic shorebirds occurring regularly in North America, plus four species that breed occasionally. Shorebird population sizes were derived from data obtained by a variety of methods from breeding, migration and wintering areas, and formal assessments of accuracy of counts or estimates are rarely available. Accurate estimates exist only for a few species that have been the subject of detailed investigation, and the likely accuracy of most estimates is considered poor or low. Population estimates range from a few tens to several millions. Overall, population estimates most commonly fell in the range of hundreds of thousands, particularly the low hundreds of thousands; estimated population sizes for large shorebird species currently all fall below 500,000. Population size was inversely related to size (mass) of the species, with a statistically significant negative regression between log (population size) and log (mass). Two outlying groups were evident on the regression graph: one, with populations lower than predicted, included species considered either to be "at risk" or particularly hard to count, and a second, with populations higher than predicted, included two species that are hunted. Population estimates are an integral part of conservation plans being developed for shorebirds in the United States and Canada, and may be used to identify areas of key international and regional importance.
Estimates of shorebird populations in North America
Morrison, R.I.G.; Gill, Robert E.; Harrington, B.A.; Skagen, S.K.; Page, G.W.; Gratto-Trevor, C. L.; Haig, S.M.
2001-01-01
Estimates are presented for the population sizes of 53 species of Nearctic shorebirds occurring regularly in North America, plus four species that breed occasionally. Population estimates range from a few tens to several millions. Overall, population estimates most commonly fall in the range of hundreds of thousands, particularly the low hundreds of thousands; estimated population sizes for large shorebird species currently all fall below 500 000. Population size is inversely related to size (mass) of the species, with a statistically significant negative regression between log(population size) and log(mass). Two outlying groups are evident on the regression graph: one, with populations lower than predicted, includes species considered to be either “at risk” or particularly hard to count, and a second, with populations higher than predicted, includes two species that are hunted. Shorebird population sizes were derived from data obtained by a variety of methods from breeding, migration, and wintering areas, and formal assessments of accuracy of counts or estimates are rarely available. Accurate estimates exist only for a few species that have been the subject of detailed investigation, and the likely accuracy of most estimates is considered poor or low. Population estimates are an integral part of conservation plans being developed for shorebirds in the United States and Canada and may be used to identify areas of key international and regional importance.
Kuempel, Eileen D.; Sweeney, Lisa M.; Morris, John B.; Jarabek, Annie M.
2015-01-01
The purpose of this article is to provide an overview and practical guide to occupational health professionals concerning the derivation and use of dose estimates in risk assessment for development of occupational exposure limits (OELs) for inhaled substances. Dosimetry is the study and practice of measuring or estimating the internal dose of a substance in individuals or a population. Dosimetry thus provides an essential link to understanding the relationship between an external exposure and a biological response. Use of dosimetry principles and tools can improve the accuracy of risk assessment, and reduce the uncertainty, by providing reliable estimates of the internal dose at the target tissue. This is accomplished through specific measurement data or predictive models, when available, or the use of basic dosimetry principles for broad classes of materials. Accurate dose estimation is essential not only for dose-response assessment, but also for interspecies extrapolation and for risk characterization at given exposures. Inhalation dosimetry is the focus of this paper since it is a major route of exposure in the workplace. Practical examples of dose estimation and OEL derivation are provided for inhaled gases and particulates. PMID:26551218
Dugenne, Mathilde; Thyssen, Melilotus; Nerini, David; Mante, Claude; Poggiale, Jean-Christophe; Garcia, Nicole; Garcia, Fabrice; Grégori, Gérald J.
2014-01-01
Phytoplankton is a key component in marine ecosystems. It is responsible for most of the marine primary production, particularly in eutrophic lagoons, where it frequently blooms. Because they are very sensitive to their environment, the dynamics of these microbial communities has to be observed over different time scales, however, assessment of short term variability is often out of reach of traditional monitoring methods. To overcome these limitations, we set up a Cytosense automated flow cytometer (Cytobuoy b.v.), designed for high frequency monitoring of phytoplankton composition, abundance, cell size, and pigment content, in one of the largest Mediterranean lagoons, the Berre lagoon (South-Eastern France). During October 2011, it recorded the cell optical properties of 12 groups of pico-, nano-, and microphytoplankton. Daily variations in the cluster optical properties were consistent with individual changes observed using microscopic imaging, during the cell cycle. We therefore used an adaptation of the size-structured matrix population model, developed by Sosik et al. (2003) to process the single cell analysis of the clusters and estimate the division rates of 2 dinoflagellate populations before, during, and after a strong wind event. The increase in the estimated in situ daily cluster growth rates suggest that physiological changes in the cells can prevail over the response of abundance. PMID:25309523
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process
Haines, Aaron M.; Zak, Matthew; Hammond, Katie; Scott, J. Michael; Goble, Dale D.; Rachlow, Janet L.
2013-01-01
Simple Summary The objective of our study was to evaluate the mention of uncertainty (i.e., variance) associated with population size estimates within U.S. recovery plans for endangered animals. To do this we reviewed all finalized recovery plans for listed terrestrial vertebrate species. We found that more recent recovery plans reported more estimates of population size and uncertainty. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty. We recommend that updated recovery plans combine uncertainty of population size estimates with a minimum detectable difference to aid in successful recovery. Abstract United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data. PMID:26479531
Economic burden of seasonal influenza in the United States.
Putri, Wayan C W S; Muscatello, David J; Stockwell, Melissa S; Newall, Anthony T
2018-05-22
Seasonal influenza is responsible for a large disease and economic burden. Despite the expanding recommendation of influenza vaccination, influenza has continued to be a major public health concern in the United States (U.S.). To evaluate influenza prevention strategies it is important that policy makers have current estimates of the economic burden of influenza. To provide an updated estimate of the average annual economic burden of seasonal influenza in the U.S. population in the presence of vaccination efforts. We evaluated estimates of age-specific influenza-attributable outcomes (ill-non medically attended, office-based outpatient visit, emergency department visits, hospitalizations and death) and associated productivity loss. Health outcome rates were applied to the 2015 U.S. population and multiplied by the relevant estimated unit costs for each outcome. We evaluated both direct healthcare costs and indirect costs (absenteeism from paid employment) reporting results from both a healthcare system and societal perspective. Results were presented in five age groups (<5 years, 5-17 years, 18-49 years, 50-64 years and ≥65 years of age). The estimated average annual total economic burden of influenza to the healthcare system and society was $11.2 billion ($6.3-$25.3 billion). Direct medical costs were estimated to be $3.2 billion ($1.5-$11.7 billion) and indirect costs $8.0 billion ($4.8-$13.6 billion). These total costs were based on the estimated average numbers of (1) ill-non medically attended patients (21.6 million), (2) office-based outpatient visits (3.7 million), (3) emergency department visit (0.65 million) (4) hospitalizations (247.0 thousand), (5) deaths (36.3 thousand) and (6) days of productivity lost (20.1 million). This study provides an updated estimate of the total economic burden of influenza in the U.S. Although we found a lower total cost than previously estimated, our results confirm that influenza is responsible for a substantial economic burden in the U.S. Copyright © 2018. Published by Elsevier Ltd.
Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Andersen, David E
2018-01-01
Assessing outcomes of habitat management is critical for informing and adapting conservation plans. From 2013-2019, a multi-stage management initiative, led by the American Bird Conservancy (ABC), aims to create >25,000 ha of shrubland and early-successional vegetation to benefit Golden-winged Warblers ( Vermivora chrysoptera ) in managed forested landscapes of the western Great Lakes region. We studied a dense breeding population of Golden-winged Warblers at Rice Lake National Wildlife Refuge (NWR) in Minnesota, USA, where ABC initiative management was implemented to benefit the species. We monitored abundance before (2011-2014) and after (2015-2016) management, and we estimated full-season productivity (i.e., young recruited into the fall population) from predictive, spatially explicit models, informed by nest and fledgling survival data collected at sites in the western Great Lakes region, including Rice Lake NWR, during 2011 and 2012. Then, using biologically informed models of bird response to observed and predicted vegetation succession, we estimated the cumulative change in population recruitment over various scenarios of vegetation succession and demographic response. We observed an 32% decline in abundance of breeding pairs and estimated a 27% decline in per-pair full-season productivity following management, compared to no change in a nearby control site. In models that ranged from highly optimistic to progressively more realistic scenarios, we estimated a net loss of 72-460 juvenile Golden-winged Warblers produced from the managed site in the 10-20 years following management. Even if our well-informed and locally validated productivity models produced erroneous estimates and the management resulted in only a temporary reduction in abundance (i.e., no change in productivity), our forecast models still predicted a net loss of 137-260 juvenile Golden-winged Warblers from the managed area over the same time frame. Our study site represents only a small portion of a massive management initiative; however, the management at our site was conducted in accordance with the initiative's management plans, the resulting vegetation structure is consistent with that of other areas managed under the initiative, and those responsible for the initiative have described the management at our study site as successful Golden-winged Warbler management. Our assessment demonstrates that, at least for the only site for which pre- and post-management data on Golden-winged Warblers exist, the ABC management initiative is having a substantial and likely enduring negative impact on the species it purports to benefit. We suggest that incorporating region-specific, empirical information about Golden-winged Warbler-habitat relations into habitat management efforts would increase the likelihood of a positive response by Golden-winged Warblers.
Gimeno, Teresa E; Pías, Beatriz; Lemos-Filho, José P; Valladares, Fernando
2009-01-01
Plant populations of widely distributed species experience a broad range of environmental conditions that can be faced by phenotypic plasticity or ecotypic differentiation and local adaptation. The strategy chosen will determine a population's ability to respond to climate change. To explore this, we grew Quercus ilex (L.) seedlings from acorns collected at six selected populations from climatically contrasting localities and evaluated their response to drought and late season cold events. Maximum photosynthetic rate (A(max)), instantaneous water use efficiency (iWUE), and thermal tolerance to freeze and heat (estimated from chlorophyll fluorescence versus temperature curves) were measured in 5-month-old seedlings in control (no stress), drought (water-stressed), and cold (low suboptimal temperature) conditions. The observed responses were similar for the six populations: drought decreased A(max) and increased iWUE, and cold reduced A(max) and iWUE. All the seedlings maintained photosynthetic activity under adverse conditions (drought and cold), and rapidly increased their iWUE by closing stomata when exposed to drought. Heat and freeze tolerances were similarly high for seedlings from all the populations, and they were significantly increased by drought and cold, respectively; and were positively related to each other. Differences in seedling performance across populations were primarily induced by maternal effects mediated by seed size and to a lesser extent by idiosyncratic physiologic responses to drought and low temperatures. Tolerance to multiple stresses together with the capacity to physiologically acclimate to heat waves and cold snaps may allow Q. ilex to cope with the increasingly stressful conditions imposed by climate change. Lack of evidence of physiologic seedling adaptation to local climate may reflect opposing selection pressures to complex, multidimensional environmental conditions operating within the distribution range of this species.
Demographic response of black bears at Cold Lake, Alberta, to the removal of adult males
Sargeant, Glen A.; Ruff, Robert L.
2001-01-01
Previous reports described an increase in population density following the removal of 23 adult male black bears (Ursus americanus) from a 218-km2 study area near Cold Lake, Alberta (the CLSA). This finding plays a central role in continuing debates over population regulation in bears, but has recently been criticized because density estimates were based on assumptions that were not met. Moreover, subsequent discussion has been predicated on conjecture that human exploitation had minimal influence on population dynamics. Our reanalysis supports previous descriptions of trends in bear density at Cold Lake. However, survival records revealed heavier exploitation than previously suspected. An underlying assumption of previous interpretationsCthat the Cold Lake bear population was naturally regulated near carrying capacityCno longer seems reasonable. Adult males deterred bears in other sex-age groups from using the CLSA; however, we found no evidence that birth or death rates were affected. The observed increase in local density should not be construed as a density-dependent response. Abrupt changes in local density might not have occurred if males had been removed from a larger area encompassing the CLSA.
NASA Astrophysics Data System (ADS)
Gurley, L. N.; Garcia, A. M.
2017-12-01
Sustainable growth in coastal areas with rapidly increasing populations, such as the coastal regions of North and South Carolina, relies on an understanding of the current state of coastal natural resources coupled with the ability to assess future impacts of changing coastal communities and resources. Changes in climate, water use, population, and land use (e.g. urbanization) will place additional stress on societal and ecological systems that are already competing for water resources. The potential effects of these stressors on water availability are not fully known. To meet societal and ecological needs, water resources management and planning efforts require estimates of likely impacts of population growth, land-use, and climate. Two Soil and Water Assessment (SWAT) hydrologic models were developed to help address the challenges that water managers face in the Carolinas: the (1) Cape Fear and (2) Pee Dee drainage basins. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model areas were divided into two square mile sub-basins to evaluate ecological response at headwater streams. The sub-basins were subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. Monthly and annual water-use data were used for 2000 to 2014 and included estimates of municipal, industrial, agricultural, and commercial water use. Models were calibrated for 2000 to 2014 and potential future streamflows were estimated through 2060 based on a suite of scenarios that integrated land use change projections, climate projections and water-use forecasts. The approaches and new techniques developed as part of this research could be applied to other coastal areas that face similar current and future water availability demands.
Porter, C K; Welsh, M; Riddle, M S; Nieh, C; Boyko, E J; Gackstetter, G; Hooper, T I
2017-04-01
Crohn's disease (CD) and ulcerative colitis (UC) are two pathotypes of inflammatory bowel disease (IBD) with unique pathology, risk factors and significant morbidity. To estimate incidence and identify IBD risk factors in a US military population, a healthy subset of the US population, using information from the Millennium Cohort Study. Incident IBD was identified from medical encounters from 2001 to 2009 or by self-report. Our primary risk factor of interest, infectious gastroenteritis, was identified from medical encounters and self-reported post-deployment health assessments. Other potential risk factors were assessed using self-reported survey responses and military personnel files. Hazard ratios were estimated using Cox proportional hazards analysis. We estimated 23.2 and 21.9 diagnoses per 100 000 person-years, respectively, for CD and UC. For CD, significant risk factors included [adjusted hazard ratio (aHR), 95% confidence interval]: current smoking (aHR: 2.7, 1.4-5.1), two life stressors (aHR: 2.8, 1.4-5.6) and prior irritable bowel syndrome (aHR: 4.7, 1.5-15.2). There was no significant association with prior infectious gastroenteritis. There was an apparent dose-response relationship between UC risk and an increasing number of life stressors. In addition, antecedent infectious gastroenteritis was associated with almost a three-fold increase in UC risk (aHR: 2.9, 1.4-6.0). Moderate alcohol consumption (aHR: 0.4, 0.2-0.6) was associated with lower UC risk. Stressful conditions and the high risk of infectious gastroenteritis in deployment operations may play a role in the development of IBD in military populations. However, observed differences in risk factors for UC and CD warrant further investigation. © 2017 John Wiley & Sons Ltd.
Estimating population size with correlated sampling unit estimates
David C. Bowden; Gary C. White; Alan B. Franklin; Joseph L. Ganey
2003-01-01
Finite population sampling theory is useful in estimating total population size (abundance) from abundance estimates of each sampled unit (quadrat). We develop estimators that allow correlated quadrat abundance estimates, even for quadrats in different sampling strata. Correlated quadrat abundance estimates based on markârecapture or distance sampling methods occur...
Estimating numbers of greater prairie-chickens using mark-resight techniques
Clifton, A.M.; Krementz, D.G.
2006-01-01
Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.
Al-Arydah, Mo'tassem
2018-06-01
Lung cancer (LC) is the leading cause of death of cancer in Canada in both men and women, and indoor radon is the second leading cause of LC after tobacco smoking. The Population Attributable Risk (PAR) is used to assess radon exposure risk. In this work we estimate the burden of LC in some Canadian provinces. We use the PAR to identify the radon levels responsible for most LC cases. Finally, we use the PAR function of the two variables, radon action and target levels, to search for a possible optimal mitigation program. The LC burden for Ontario, Alberta, Manitoba, Quebec and British Columbia was estimated using provincial radon and mortality data. Then the PAR and LC cases for these provinces were estimated over the period 2006-2009 at different given indoor radon exposure levels. Finally, the PAR function when radon action levels and radon target levels are variables was analyzed. The highest burden of LC in 2006-2009 was in Ontario and Quebec. During the period 2006-2009, 6% of houses in Ontario, 9% of houses in Alberta, 19% of houses in Manitoba, 7% of houses in Quebec, and 5% of houses in British Columbia had radon levels higher than 200 Bq/m 3 and were responsible about 913, 211, 260, 972, and 258 lives, respectively. Radon mitigation programs could have prevented these LC cases. The BEIR VI assumption for the United States (US) population, 95% of LC deaths in men and 90% of LC deaths in women are Ever-Smokers (ES), can be applied to the Canadian population. The PAR is a linear function in the target radon value with an estimated slope of 0.0001 for Ontario, Alberta, Quebec and British Columbia, and 0.0004 for Manitoba. The PAR is almost a square root function in the radon action level. The PAR is sensitive to changes in the radon mitigation program and as such, any improvement is a worthwhile investment. Copyright © 2018 Elsevier B.V. All rights reserved.
2014-01-01
Background Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Results Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. Conclusions We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed. PMID:24903056
Hansen, Michael M; Limborg, Morten T; Ferchaud, Anne-Laure; Pujolar, José-Martin
2014-06-05
Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.
Salgado, María V; Pérez, Adriana; Abad-Vivero, Erika N; Thrasher, James F; Sargent, James D; Mejía, Raúl
2016-04-01
Smoking scenes in movies promote adolescent smoking onset; thus, the analysis of the number of images of smoking in movies really reaching adolescents has become a subject of increasing interest. The aim of this study was to estimate the level of exposure to images of smoking in movies watched by adolescents in Argentina and Mexico. First-year secondary school students from Argentina and Mexico were surveyed. One hundred highest-grossing films from each year of the period 2009-2013 (Argentina) and 2010-2014 (Mexico) were analyzed. Each participant was assigned a random sample of 50 of these movies and was asked if he/she had watched them. The total number of adolescents who had watched each movie in each country was estimated and was multiplied by the number of smoking scenes (occurrences) in each movie to obtain the number of gross smoking impressions seen by secondary school adolescents from each country. Four-hundred and twenty-two movies were analyzed in Argentina and 433 in Mexico. Exposure to more than 500 million smoking impressions was estimated for adolescents in each country, averaging 128 and 121 minutes of smoking scenes seen by each Argentine and Mexican adolescent, respectively. Although 15, 16 and 18-rated movies had more smoking scenes in average, movies rated for younger teenagers were responsible for the highest number of smoking scenes watched by the students (67.3% in Argentina and 54.4% in Mexico) due to their larger audience. At the population level, movies aimed at children are responsible for the highest tobacco burden seen by adolescents.
Safarnejad, Ali; Nga, Nguyen Thien; Son, Vo Hai
2017-06-01
This study aims to estimate the number of men who have sex with men (MSM) in Ho Chi Minh City (HCMC) and Nghe An province, Viet Nam, using a novel method of population size estimation, and to assess the feasibility of the method in implementation. An innovative approach to population size estimation grounded on the principles of the multiplier method, and using social app technology and internet-based surveys was undertaken among MSM in two regions of Viet Nam in 2015. Enumeration of active users of popular social apps for MSM in Viet Nam was conducted over 4 weeks. Subsequently, an independent online survey was done using respondent driven sampling. We also conducted interviews with key informants in Nghe An and HCMC on their experience and perceptions of this method and other methods of size estimation. The population of MSM in Nghe An province was estimated to be 1765 [90% CI 1251-3150]. The population of MSM in HCMC was estimated to be 37,238 [90% CI 24,146-81,422]. These estimates correspond to 0.17% of the adult male population in Nghe An province [90% CI 0.12-0.30], and 1.35% of the adult male population in HCMC [90% CI 0.87-2.95]. Our size estimates of the MSM population (1.35% [90% CI 0.87%-2.95%] of the adult male population in HCMC) fall within current standard practice of estimating 1-3% of adult male population in big cities. Our size estimates of the MSM population (0.17% [90% CI 0.12-0.30] of the adult male population in Nghe An province) are lower than the current standard practice of estimating 0.5-1.5% of adult male population in rural provinces. These estimates can provide valuable information for sub-national level HIV prevention program planning and evaluation. Furthermore, we believe that our results help to improve application of this population size estimation method in other regions of Viet Nam.
Suryan, R.M.; Craig, D.P.; Roby, D.D.; Chelgren, N.D.; Collis, K.; Shuford, W.D.; Lyons, Donald E.
2004-01-01
We examined nesting distribution and demography of the Pacific Coast population of Caspian Terns (Sterna caspia) using breeding records and band recoveries spanning two decades since the first population assessment. Since 1980, population size has more than doubled to about 12 900 pairs, yet the proportion of the population nesting at inland (18%) versus coastal sites (82%) has remained constant. Although the breeding range of the Pacific Coast population has expanded northward into Alaska and farther south in Mexico, there was no net latitudinal shift in the distribution of breeding pairs or new colonies. The distribution of breeding birds among areas changed dramatically, however, with 69% of breeding terns now nesting in Oregon (primarily in the Columbia River estuary) versus 4% during the late 1970s. During the past 20 years, there has continued to be a greater proportion of Caspian Terns breeding at anthropogenic sites compared to natural sites. Estimated annual survival rates for hatch-year and after-third-year birds during 1981-1998 were greater than during 1955-1980, consistent with the higher rate of population increase in recent decades. Fecundity required to maintain a stable population (?? = 1) was estimated at 0.32-0.74 fledglings pair-1, depending on band recovery probabilities for sub-adults. Caspian Terns readily moved among breeding sites and rapidly colonized new areas; however, a greater concentration of breeding Caspian Terns among fewer colonies in response to anthropogenic factors is an important conservation concern for this species.
Population dynamics of king eiders breeding in northern Alaska
Bentzen, Rebecca L.; Powell, Abby N.
2012-01-01
The North American population of king eiders (Somateria spectabilis) has declined by more than 50% since the late 1970s for unknown reasons. King eiders spend most of their lives in remote areas, forcing managers to make regulatory and conservation decisions based on very little information. We incorporated available published estimates of vital rates with new estimates to build a female, stage-based matrix population model for king eiders and examine the processes underlying population dynamics of king eiders breeding at 2 sites, Teshekpuk and Kuparuk, on the coastal plain of northern Alaska and wintering around the Bering Sea (2001–2010). We predicted a decreasing population (λ = 0.981, 95% CI: 0.978–0.985), and that population growth was most sensitive to changes in adult female survival (sensitivity = 0.92). Low duckling survival may be a bottleneck to productivity (variation in ducking survival accounted for 66% of retrospective variation in λ). Adult survival was high (0.94) and invariant (σ = 0.0002, 95% CI: 0.0000–0.0007); however, catastrophic events could have a major impact and we need to consider how to mitigate and manage threats to adult survival. A hypothetical oil spill affecting breeding females in a primary spring staging area resulted in a severe population decline; although, transient population dynamics were relatively stable. However, if no catastrophic events occur, the more variable reproductive parameters (duckling and nest survival) may be more responsive to management actions.
[A Meta-analysis on tea drinking and the risk of lung cancer in Chinese population].
Jin, Zi-yi; Han, Ren-qiang; Liu, Ai-min; Wang, Xu-shan; Wu, Ming; Zhang, Zuo-feng; Zhao, Jin-kou
2012-08-01
To examine the association between tea drinking and the risk of lung cancer in Chinese population. All relevant published articles in Chinese and English literature database were identified. Meta-analysis was conducted. Combined odds ratio (OR) and 95% confidence interval (CI) were calculated to estimate the associations and dose-response relationship between tea drinking and the risk of lung cancer. Twelve studies were included. An inverse association with lung cancer was observed on tea drinkers when compared to non-tea drinkers (OR = 0.66, 95%CI: 0.49 - 0.89). Tea drinking might serve as a protective factor on lung cancer in the Chinese population.
Newcom, D W; Baas, T J; Stalder, K J; Schwab, C R
2005-04-01
Three selection models were evaluated to compare selection candidate rankings based on EBV and to evaluate subsequent effects of model-derived EBV on the selection differential and expected genetic response in the population. Data were collected from carcass- and ultrasound-derived estimates of loin i.m. fat percent (IMF) in a population of Duroc swine under selection to increase IMF. The models compared were Model 1, a two-trait animal model used in the selection experiment that included ultrasound IMF from all pigs scanned and carcass IMF from pigs slaughtered to estimate breeding values for both carcass (C1) and ultrasound IMF (U1); Model 2, a single-trait animal model that included ultrasound IMF values on all pigs scanned to estimate breeding values for ultrasound IMF (U2); and Model 3, a multiple-trait animal model including carcass IMF from slaughtered pigs and the first three principal components from a total of 10 image parameters averaged across four longitudinal ultrasound images to estimate breeding values for carcass IMF (C3). Rank correlations between breeding value estimates for U1 and C1, U1 and U2, and C1 and C3 were 0.95, 0.97, and 0.92, respectively. Other rank correlations were 0.86 or less. In the selection experiment, approximately the top 10% of boars and 50% of gilts were selected. Selection differentials for pigs in Generation 3 were greatest when ranking pigs based on C1, followed by U1, U2, and C3. In addition, selection differential and estimated response were evaluated when simulating selection of the top 1, 5, and 10% of sires and 50% of dams. Results of this analysis indicated the greatest selection differential was for selection based on C1. The greatest loss in selection differential was found for selection based on C3 when selecting the top 10 and 1% of boars and 50% of gilts. The loss in estimated response when selecting varying percentages of boars and the top 50% of gilts was greatest when selection was based on C3 (16.0 to 25.8%) and least for selection based on U1 (1.3 to 10.9%). Estimated genetic change from selection based on carcass IMF was greater than selection based on ultrasound IMF. Results show that selection based on a combination of ultrasonically predicted IMF and sib carcass IMF produced the greatest selection differentials and should lead to the greatest genetic change.
Jatautis, Šarūnas; Jankauskas, Rimantas
2018-02-01
Objectives. The present study addresses the following two main questions: a) Is the pattern of skeletal ageing observed in well-known western European reference collections applicable to modern eastern Baltic populations, or are population-specific standards needed? b) What are the consequences for estimating the age-at-death distribution in the target population when differences in the estimates from reference data are not taken into account? Materials and methods. The dataset consists of a modern Lithuanian osteological reference collection, which is the only collection of this type in the eastern Baltic countries (n = 381); and two major western European reference collections, Coimbra (n = 264) and Spitalfields (n = 239). The age-related changes were evaluated using the scoring systems of Suchey-Brooks (Brooks & Suchey 1990) and Lovejoy et al. (1985), and were modelled via regression models for multinomial responses. A controlled experiment based on simulations and the Rostock Manifesto estimation protocol (Wood et al. 2002) was then carried out to assess the effect of using estimates from different reference samples and different regression models on estimates of the age-at-death distribution in the hypothetical target population. Results. The following key results were obtained in this study. a) The morphological alterations in the pubic symphysis were much faster among women than among men at comparable ages in all three reference samples. In contrast, we found no strong evidence in any of the reference samples that sex is an important factor to explain rate of changes in the auricular surface. b) The rate of ageing in the pubic symphysis seems to be similar across the three reference samples, but there is little evidence of a similar pattern in the auricular surface. That is, the estimated rate of age-related changes in the auricular surface was much faster in the LORC and the Coimbra samples than in the Spitalfields sample. c) The results of simulations showed that the differences in the estimates from the reference data result in noticeably different age-at-death distributions in the target population. Thus, a degree bias may be expected if estimates from the western European reference data are used to collect information on ages at death in the eastern Baltic region based on the changes in the auricular surface. d) Moreover, the bias is expected to be more pronounced if the fitted regression model improperly describes the reference data. Conclusions. Differences in the timing of age-related changes in skeletal traits are to be expected among European reference samples, and cannot be ignored when seeking to reliably estimate an age-at-death distribution in the target population. This form of bias should be taken into consideration in further studies of skeletal samples from the eastern Baltic region.
Johansson Blight, Karin; Persson, Jan-Olov; Ekblad, Solvig; Ekberg, Jan
2008-01-01
Objective: Research into medical and licit drug use in resettled refugee populations is scarce, despite the fact that mental health status often has been found to be poorer than in general populations. Hence the aim of this study was to estimate the prevalence of self-rated use of medicine and licit drugs among adults who came to Sweden from Bosnia-Herzegovina (1993/94) and who in 2001 were living in either an urban (low employment context) or a rural (high employment context) region (n=4185). Methods: Prevalence was estimated from a cross-sectional questionnaire distributed to a representative sample (n=650) in 2001 (63.5% response rate). Results: The study population estimates of usage of sedatives (26.5%), sleeping tablets (26.2%) and antidepressants (22.3%) did not differ by gender but did so by region, with a higher urban prevalence. The consumption of alcohol (5.1%) and cigarettes (41.0%) did not differ by region but men reported higher alcohol consumption than women. Conclusion: The high consumption of medicine (compared with general populations) raises the question of treatment efficiency and the need for public health attention and evaluation many years after resettlement. Factors to consider for further research with analytic prerequisites concern indications that regional differences may be influenced, not only by urban employment being lower but also by urban/rural differences in prescription rates and/or access to health care; moreover, there might have been a selection to the urban region of older people, with a more vulnerable family situation, and/or poorer mental health. Finally, the overall alcohol (low) and cigarettes (high) consumption in the study population followed prevalence patterns found in Bosnia-Herzegovina rather than in Sweden. PMID:19742286
[Krigle estimation and its simulated sampling of Chilo suppressalis population density].
Yuan, Zheming; Bai, Lianyang; Wang, Kuiwu; Hu, Xiangyue
2004-07-01
In order to draw up a rational sampling plan for the larvae population of Chilo suppressalis, an original population and its two derivative populations, random population and sequence population, were sampled and compared with random sampling, gap-range-random sampling, and a new systematic sampling integrated Krigle interpolation and random original position. As for the original population whose distribution was up to aggregative and dependence range in line direction was 115 cm (6.9 units), gap-range-random sampling in line direction was more precise than random sampling. Distinguishing the population pattern correctly is the key to get a better precision. Gap-range-random sampling and random sampling are fit for aggregated population and random population, respectively, but both of them are difficult to apply in practice. Therefore, a new systematic sampling named as Krigle sample (n = 441) was developed to estimate the density of partial sample (partial estimation, n = 441) and population (overall estimation, N = 1500). As for original population, the estimated precision of Krigle sample to partial sample and population was better than that of investigation sample. With the increase of the aggregation intensity of population, Krigel sample was more effective than investigation sample in both partial estimation and overall estimation in the appropriate sampling gap according to the dependence range.
Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population
Letcher, Benjamin H.; Nislow, Keith H.; Coombs, Jason A.; O'Donnell, Matthew J.; Dubreuil, Todd L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∼45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation. PMID:18188404
Population response to habitat fragmentation in a stream-dwelling brook trout population
Letcher, B.H.; Nislow, K.H.; Coombs, J.A.; O'Donnell, M. J.; Dubreuil, T.L.
2007-01-01
Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (-45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tribuory populations caused rapid (2-6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7-46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can 'rescue' isolated populations, particularly in one-dimensional stream networks where both natural and anthropegenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation.
A review of the population estimation approach of the North American landbird conservation plan
Thogmartin, Wayne E.; Howe, Frank P.; James, Frances C.; Johnson, Douglas H.; Reed, Eric T.; Sauer, John R.; Thompson, Frank R.
2006-01-01
As part of their development of a continental plan for monitoring landbirds (Rich et al. 2004), Partners in Flight (PIF) applied a new method to make preliminary estimates of population size for all 448 species of landbirds present in the continental United States and Canada (Table 1). Estimation of the global population size of North American landbirds was intended to (1) identify the degree of vulnerability of each species, (2) provide estimates of the current population size for each species, and (3) provide a starting point for estimating population sizes in states, provinces, territories, and Bird Conservation Regions (Rich et al. 2004). A method proposed by Rosenberg and Blancher (2005) was used to derive population estimates from available survey data. To enhance the credibility of these estimates, PIF organized a review of the methodology used to estimate North American landbird population sizes. A planning committee selected members from the ornithological and biometrical communities (hereafter “the panel”), with the aim of selecting individuals from academia, state natural-resource agencies, and the U.S. and Canadian federal governments, including the Canadian Wildlife Service, the U.S. Geological Survey, and the U.S. Department of Agriculture Forest Service.The panel addressed three questions: (1) Were the methods of population estimation proposed by PIF reasonable? (2) What actions could be taken to improve the data or analyses on which the PIF population estimates were based? and (3) How should the PIF population estimates be interpreted?
Disordered Gambling Prevalence: Methodological Innovations in a General Danish Population Survey.
Harrison, Glenn W; Jessen, Lasse J; Lau, Morten I; Ross, Don
2018-03-01
We study Danish adult gambling behavior with an emphasis on discovering patterns relevant to public health forecasting and economic welfare assessment of policy. Methodological innovations include measurement of formative in addition to reflective constructs, estimation of prospective risk for developing gambling disorder rather than risk of being falsely negatively diagnosed, analysis with attention to sample weights and correction for sample selection bias, estimation of the impact of trigger questions on prevalence estimates and sample characteristics, and distinguishing between total and marginal effects of risk-indicating factors. The most significant novelty in our design is that nobody was excluded on the basis of their response to a 'trigger' or 'gateway' question about previous gambling history. Our sample consists of 8405 adult Danes. We administered the Focal Adult Gambling Screen to all subjects and estimate prospective risk for disordered gambling. We find that 87.6% of the population is indicated for no detectable risk, 5.4% is indicated for early risk, 1.7% is indicated for intermediate risk, 2.6% is indicated for advanced risk, and 2.6% is indicated for disordered gambling. Correcting for sample weights and controlling for sample selection has a significant effect on prevalence rates. Although these estimates of the 'at risk' fraction of the population are significantly higher than conventionally reported, we infer a significant decrease in overall prevalence rates of detectable risk with these corrections, since gambling behavior is positively correlated with the decision to participate in gambling surveys. We also find that imposing a threshold gambling history leads to underestimation of the prevalence of gambling problems.
Johnston, Lisa G; McLaughlin, Katherine R; Rhilani, Houssine El; Latifi, Amina; Toufik, Abdalla; Bennani, Aziza; Alami, Kamal; Elomari, Boutaina; Handcock, Mark S
2015-01-01
Background Respondent-driven sampling is used worldwide to estimate the population prevalence of characteristics such as HIV/AIDS and associated risk factors in hard-to-reach populations. Estimating the total size of these populations is of great interest to national and international organizations, however reliable measures of population size often do not exist. Methods Successive Sampling-Population Size Estimation (SS-PSE) along with network size imputation allows population size estimates to be made without relying on separate studies or additional data (as in network scale-up, multiplier and capture-recapture methods), which may be biased. Results Ten population size estimates were calculated for people who inject drugs, female sex workers, men who have sex with other men, and migrants from sub-Sahara Africa in six different cities in Morocco. SS-PSE estimates fell within or very close to the likely values provided by experts and the estimates from previous studies using other methods. Conclusions SS-PSE is an effective method for estimating the size of hard-to-reach populations that leverages important information within respondent-driven sampling studies. The addition of a network size imputation method helps to smooth network sizes allowing for more accurate results. However, caution should be used particularly when there is reason to believe that clustered subgroups may exist within the population of interest or when the sample size is small in relation to the population. PMID:26258908
2018-01-01
The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses. PMID:29495443
Ganusov, Vitaly V
2018-02-27
The ability of human immunodeficiency virus (HIV) to avoid recognition by humoral and cellular immunity (viral escape) is well-documented, but the strength of the immune response needed to cause such a viral escape remains poorly quantified. Several previous studies observed a more rapid escape of HIV from CD8 T cell responses in the acute phase of infection compared to chronic infection. The rate of HIV escape was estimated with the help of simple mathematical models, and results were interpreted to suggest that CD8 T cell responses causing escape in acute HIV infection may be more efficient at killing virus-infected cells than responses that cause escape in chronic infection, or alternatively, that early escapes occur in epitopes mutations in which there is minimal fitness cost to the virus. However, these conclusions were challenged on several grounds, including linkage and interference of multiple escape mutations due to a low population size and because of potential issues associated with modifying the data to estimate escape rates. Here we use a sampling method which does not require data modification to show that previous results on the decline of the viral escape rate with time since infection remain unchanged. However, using this method we also show that estimates of the escape rate are highly sensitive to the time interval between measurements, with longer intervals biasing estimates of the escape rate downwards. Our results thus suggest that data modifications for early and late escapes were not the primary reason for the observed decline in the escape rate with time since infection. However, longer sampling periods for escapes in chronic infection strongly influence estimates of the escape rate. More frequent sampling of viral sequences in chronic infection may improve our understanding of factors influencing the rate of HIV escape from CD8 T cell responses.
Evans, T A
2001-12-01
Although mark-recapture protocols produce inaccurate population estimates of termite colonies, they might be employed to estimate a relative change in colony size. This possibility was tested using two Australian, mound-building, wood-eating, subterranean Coptotermes species. Three different toxicants delivered in baits were used to decrease (but not eliminate) colony size, and a single mark-recapture protocol was used to estimate pre- and postbaiting population sizes. For both species, the numbers of termites retrieved from bait stations varied widely, resulting in no significant differences in the numbers of termites sampled between treatments in either the pre- or postbaiting protocols. There were significantly fewer termites sampled in all treatments, controls included, in the postbaiting protocol compared with the pre-, suggesting a seasonal change in forager numbers. The comparison of population estimates shows a large decrease in toxicant treated colonies compared with little change in control colonies, which suggests that estimating the relative decline in population size using mark-recapture protocols might to be possible. However, the change in population estimate was due entirely to the significantly lower recapture rate in the control colonies relative to the toxicant treated colonies, as numbers of unmarked termites did not change between treatments. The population estimates should be treated with caution because low recapture rates produce dubious population estimates and, in some cases, postbaiting mark-recapture population estimates could be much greater than those at prebaiting, despite consumption of bait in sufficient quantities to cause population decline. A possible interaction between fat-stain markers and toxicants should be investigated if mark-recapture population estimates are used. Alternative methods of population change are advised, along with other indirect measures.
Dunham, Kylee; Grand, James B.
2016-01-01
We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.
Long-term selection strategies for complex traits using high-density genetic markers.
Kemper, K E; Bowman, P J; Pryce, J E; Hayes, B J; Goddard, M E
2012-08-01
Selection of animals for breeding ranked on estimated breeding value maximizes genetic gain in the next generation but does not necessarily maximize long-term response. An alternative method, as practiced by plant breeders, is to build a desired genotype by selection on specific loci. Maximal long-term response in animal breeding requires selection on estimated breeding values with constraints on coancestry. In this paper, we compared long-term genetic response using either a genotype building or a genomic estimated breeding value (GEBV) strategy for the Australian Selection Index (ASI), a measure of profit. First, we used real marker effects from the Australian Dairy Herd Improvement Scheme to estimate breeding values for chromosome segments (approximately 25 cM long) for 2,650 Holstein bulls. Second, we selected 16 animals to be founders for a simulated breeding program where, between them, founders contain the best possible combination of 2 segments from 2 animals at each position in the genome. Third, we mated founder animals and their descendants over 30 generations with 2 breeding objectives: (1) to create a population with the "ideal genotype," where the best 2 segments from the founders segregate at each position, or (2) obtain the highest possible response in ASI with coancestry lower than that achieved under breeding objective 1. Results show that genotype building achieved the ideal genotype for breeding objective 1 and obtained a large gain in ASI over the current population (+A$864.99). However, selection on overall GEBV had greater short-term response and almost as much long-term gain (+A$820.42). When coancestry was lowered under breeding objective 2, selection on overall GEBV achieved a higher response in ASI than the genotype building strategy. Selection on overall GEBV seems more flexible in its selection decisions and was therefore better able to precisely control coancestry while maximizing ASI. We conclude that selection on overall GEBV while minimizing average coancestry is the more practical strategy for dairy cattle where selection is for highly polygenic traits, the reproductive rate is relatively low, and there is low tolerance of coancestry. The outcome may be different for traits controlled by few loci of relatively large effects or for different species. In contrast to other simulations, our results indicate that response to selection on overall GEBV may continue for several generations. This is because long-term genetic change in complex traits requires favorable changes to allele frequencies for many loci located throughout the genome. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
RECENT ADVANCES OF GENETIC ANCESTRY TESTING IN BIOMEDICAL RESEARCH AND DIRECT TO CONSUMER TESTING
Via, Marc; Ziv, Elad; Burchard, Esteban González
2010-01-01
In the post-Human Genome Project era, the debate on the concept of race/ethnicity and its implications for biomedical research are dependent on two critical issues: whether and how to classify individuals and whether biological factors play a role in health disparities. The advent of reliable estimates of genetic (or biogeographic) ancestry has provided this debate with a quantitative and more objective tool. The estimation of genetic ancestry allows investigators to control for population stratification in association studies and helps to detect biological causation behind population-specific differences in disease and drug response. New techniques such as admixture mapping can specifically detect population-specific risk alleles for a disease in admixed populations. However, researchers have to be mindful of the correlation between genetic ancestry and socioeconomic and environmental factors that could underlie these differences. More importantly, researchers must avoid the stigmatization of individuals based on perceived or real genetic risks. The latter point will become increasingly sensitive as several “for profit companies” are offering ancestry and genetic testing directly to consumers and the consequences of the spread of the services of these companies is still unforeseeable. PMID:19793051
Murray, Charlotte; Rathod, Trishna; Bowen, Catherine J.; Menz, Hylton B.; Roddy, Edward
2018-01-01
Objectives To identify by systematic review published prevalence estimates of radiographic ankle osteoarthritis (OA) and to subsequently estimate the prevalence of ankle pain and symptomatic, radiographic ankle OA within community-dwelling older adults from North Staffordshire, UK. Methods Electronic databases were searched using terms for ankle, osteoarthritis and radiography. Data regarding population, radiographic methods, definitions and prevalence estimates of ankle OA were extracted from papers meeting predetermined selection criteria. Adults aged ≥50 years and registered with four general practices in North Staffordshire were mailed a health questionnaire. Ankle pain in the previous month was determined using a foot and ankle pain manikin. Respondents reporting pain in or around the foot in the last 12 months were invited to attend a research clinic where weight-bearing, antero-posterior and lateral ankle radiographs were obtained and scored for OA using a standardised atlas. Prevalence estimates for ankle pain and symptomatic, radiographic ankle OA were calculated using multiple imputation and weighted logistic regression, and stratified by age, gender and socioeconomic status. Results Eighteen studies were included in the systematic review. The methods of radiographic classification of ankle OA were poorly reported and showed heterogeneity. No true general population prevalence estimates of radiographic ankle OA were found, estimates in select sporting and medical community-dwelling populations ranged from 0.0–97.1%. 5109 participants responded to the health survey questionnaire (adjusted response 56%). Radiographs were obtained in 557 participants. The prevalence of ankle pain was 11.7% (10.8,12.6) and symptomatic, radiographic ankle OA grade≥2 was 3.4% (2.3, 4.5) (grade≥1: 8.8% (7.9,9.8); grade = 3: 1.9% (1.0,2.7). Prevalence was higher in females, younger adults (50–64 years) and those with routine/manual occupations. Conclusion No general population prevalence estimates of radiographic ankle OA were identified in the published literature. Our prevalence study found that ankle pain was common in community-dwelling older adults, whereas moderate to severe symptomatic, radiographic ankle OA occurred less frequently. Further investigations of the prevalence of ankle OA using more sensitive imaging modalities are warranted. PMID:29708977
Challenges of Estimating the Annual Caseload of Severe Acute Malnutrition: The Case of Niger
Hallarou, Mahaman; Gérard, Jean-Christophe; Donnen, Philippe; Macq, Jean
2016-01-01
Introduction Reliable prospective estimates of annual severe acute malnutrition (SAM) caseloads for treatment are needed for policy decisions and planning of quality services in the context of competing public health priorities and limited resources. This paper compares the reliability of SAM caseloads of children 6–59 months of age in Niger estimated from prevalence at the start of the year and counted from incidence at the end of the year. Methods Secondary data from two health districts for 2012 and the country overall for 2013 were used to calculate annual caseload of SAM. Prevalence and coverage were extracted from survey reports, and incidence from weekly surveillance systems. Results The prospective caseload estimate derived from prevalence and duration of illness underestimated the true burden. Similar incidence was derived from two weekly surveillance systems, but differed from that obtained from the monthly system. Incidence conversion factors were two to five times higher than recommended. Discussion Obtaining reliable prospective caseloads was challenging because prevalence is unsuitable for estimating incidence of SAM. Different SAM indicators identified different SAM populations, and duration of illness, expected contact coverage and population figures were inaccurate. The quality of primary data measurement, recording and reporting affected incidence numbers from surveillance. Coverage estimated in population surveys was rarely available, and coverage obtained by comparing admissions with prospective caseload estimates was unrealistic or impractical. Conclusions Caseload estimates derived from prevalence are unreliable and should be used with caution. Policy and service decisions that depend on these numbers may weaken performance of service delivery. Niger may improve SAM surveillance by simplifying and improving primary data collection and methods using innovative information technologies for single data entry at the first contact with the health system. Lessons may be relevant for countries with a high burden of SAM, including for targeted emergency responses. PMID:27606677
Total Body Capacitance for Estimating Human Basal Metabolic Rate in an Egyptian Population
M. Abdel-Mageed, Samir; I. Mohamed, Ehab
2016-01-01
Determining basal metabolic rate (BMR) is important for estimating total energy needs in the human being yet, concerns have been raised regarding the suitability of sex-specific equations based on age and weight for its calculation on an individual or population basis. It has been shown that body cell mass (BCM) is the body compartment responsible for BMR. The objectives of this study were to investigate the relationship between total body capacitance (TBC), which is considered as an expression for BCM, and BMR and to develop a formula for calculating BMR in comparison with widely used equations. Fifty healthy nonsmoking male volunteers [mean age (± SD): 24.93 ± 4.15 year and body mass index (BMI): 25.63 ± 3.59 kg/m2] and an equal number of healthy nonsmoking females matched for age and BMI were recruited for the study. TBC and BMR were measured for all participants using octopolar bioelectric impedance analysis and indirect calorimetry techniques, respectively. A significant regressing equation based on the covariates: sex, weight, and TBC for estimating BMR was derived (R=0.96, SEE=48.59 kcal, and P<0.0001), which will be useful for nutritional and health status assessment for both individuals and populations. PMID:27127453
Measuring Fisher Information Accurately in Correlated Neural Populations
Kohn, Adam; Pouget, Alexandre
2015-01-01
Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735
Jaramillo, Diana; Dürr, Salome; Hick, Paul; Whittington, Richard
2016-01-01
Diagnosis of nervous necrosis virus (NNV) infection in susceptible fish species is mostly performed post-mortem due to the neurotropism of the causative agent and the only validated diagnostic assays require samples from brain and retinal tissue. However, a non-lethal alternative to test for exposure of fish to NNV is needed. An indirect ELISA for the detection of anti-NNV antibodies in was recently developed and evaluated to detect responses in the sera from immunized fish. For this study, we assessed the accuracy of the assay at detecting specific antibodies from naturally exposed fish using field samples from populations with differing infection status. We applied a Bayesian model, using RTqPCR as a second test. Median estimates of the diagnostic sensitivity and specificity of the VNN ELISA were 81.8% and 86.7%, respectively. We concluded that the assay was fit for the purpose of identifying animals in naturally exposed populations. With further evaluation in larger populations the test might be used to inform implementation of control measures, and for estimating infection prevalence to facilitate risk analysis. To our knowledge this is the first report on the diagnostic accuracy of an antibody ELISA for an infectious disease in finfish. Copyright © 2015 Elsevier B.V. All rights reserved.
Cryptosporidiosis susceptibility and risk: a case study.
Makri, Anna; Modarres, Reza; Parkin, Rebecca
2004-02-01
Regional estimates of cryptosporidiosis risks from drinking water exposure were developed and validated, accounting for AIDS status and age. We constructed a model with probability distributions and point estimates representing Cryptosporidium in tap water, tap water consumed per day (exposure characterization); dose response, illness given infection, prolonged illness given illness; and three conditional probabilities describing the likelihood of case detection by active surveillance (health effects characterization). The model predictions were combined with population data to derive expected case numbers and incidence rates per 100,000 population, by age and AIDS status, borough specific and for New York City overall in 2000 (risk characterization). They were compared with same-year surveillance data to evaluate predictive ability, assumed to represent true incidence of waterborne cryptosporidiosis. The predicted mean risks, similar to previously published estimates for this region, overpredicted observed incidence-most extensively when accounting for AIDS status. The results suggest that overprediction may be due to conservative parameters applied to both non-AIDS and AIDS populations, and that biological differences for children need to be incorporated. Interpretations are limited by the unknown accuracy of available surveillance data, in addition to variability and uncertainty of model predictions. The model appears sensitive to geographical differences in AIDS prevalence. The use of surveillance data for validation and model parameters pertinent to susceptibility are discussed.
Nguyen, Nguyen H.; Hamzah, Azhar; Thoa, Ngo P.
2017-01-01
The extent to which genetic gain achieved from selection programs under strictly controlled environments in the nucleus that can be expressed in commercial production systems is not well-documented in aquaculture species. The main aim of this paper was to assess the effects of genotype by environment interaction on genetic response and genetic parameters for four body traits (harvest weight, standard length, body depth, body width) and survival in Red tilapia (Oreochromis spp.). The growth and survival data were recorded on 19,916 individual fish from a pedigreed population undergoing three generations of selection for increased harvest weight in earthen ponds from 2010 to 2012 at the Aquaculture Extension Center, Department of Fisheries, Jitra in Kedah, Malaysia. The pedigree comprised a total of 224 sires and 262 dams, tracing back to the base population in 2009. A multivariate animal model was used to measure genetic response and estimate variance and covariance components. When the homologous body traits in freshwater pond and cage were treated as genetically distinct traits, the genetic correlations between the two environments were high (0.85–0.90) for harvest weight and square root of harvest weight but the estimates were of lower magnitudes for length, width and depth (0.63–0.79). The heritabilities estimated for the five traits studied differed between pond (0.02 to 0.22) and cage (0.07 to 0.68). The common full-sib effects were large, ranging from 0.23 to 0.59 in pond and 0.11 to 0.31 in cage across all traits. The direct and correlated responses for four body traits were generally greater in pond than in cage environments (0.011–1.561 vs. −0.033–0.567 genetic standard deviation units, respectively). Selection for increased harvest body weight resulted in positive genetic changes in survival rate in both pond and cage culture. In conclusion, the reduced selection response and the magnitude of the genetic parameter estimates in the production environment (i.e., cage) relative to those achieved in the nucleus (pond) were a result of the genotype by environment interaction and this effect should be taken into consideration in the future breeding program for Red tilapia. PMID:28659970
Overview of chytrid emergence and impacts on amphibians
2016-01-01
Chytridiomycosis is an emerging infectious disease of amphibians that affects over 700 species on all continents where amphibians occur. The amphibian–chytridiomycosis system is complex, and the response of any amphibian species to chytrid depends on many aspects of the ecology and evolutionary history of the amphibian, the genotype and phenotype of the fungus, and how the biological and physical environment can mediate that interaction. Impacts of chytridiomycosis on amphibians are varied; some species have been driven extinct, populations of others have declined severely, whereas still others have not obviously declined. Understanding patterns and mechanisms of amphibian responses to chytrids is critical for conservation and management. Robust estimates of population numbers are needed to identify species at risk, prioritize taxa for conservation actions, design management strategies for managing populations and species, and to develop effective measures to reduce impacts of chytrids on amphibians. This article is part of the themed issue ‘Tackling emerging fungal threats to animal health, food security and ecosystem resilience’. PMID:28080989
Necessary but Not Sufficient? Youth Responses to Localised Returns to Education in Australia
ERIC Educational Resources Information Center
Biddle, Nicholas
2013-01-01
In this paper, the 2001 Australian Census is used to estimate predicted net benefits of education at a small geographic level. These are then linked to youth in the areas to test the associations with high school participation. This is done separately for Indigenous youth, a population sub-group with historically low levels of education…
Under the Same Blue Sky? Inequity in Migrant Children's Education in China
ERIC Educational Resources Information Center
Tan, Guangyu
2010-01-01
It is estimated that more than 10% of China's population has left their villages and hometowns as millions of farmers have descended upon cities and urban centers in response to a huge demand for labor since the economic reform launched in the late 1970s (Li, 2006). Approximately 19.8 million children are believed to have accompanied their parents…
Nichols, James D.; Pollock, Kenneth H.; Hines, James E.
1984-01-01
The robust design of Pollock (1982) was used to estimate parameters of a Maryland M. pennsylvanicus population. Closed model tests provided strong evidence of heterogeneity of capture probability, and model M eta (Otis et al., 1978) was selected as the most appropriate model for estimating population size. The Jolly-Seber model goodness-of-fit test indicated rejection of the model for this data set, and the M eta estimates of population size were all higher than the Jolly-Seber estimates. Both of these results are consistent with the evidence of heterogeneous capture probabilities. The authors thus used M eta estimates of population size, Jolly-Seber estimates of survival rate, and estimates of birth-immigration based on a combination of the population size and survival rate estimates. Advantages of the robust design estimates for certain inference procedures are discussed, and the design is recommended for future small mammal capture-recapture studies directed at estimation.
Global Projection of Coastal Exposure Associated with Sea-level Rise beyond Tipping Points
NASA Astrophysics Data System (ADS)
Tawatari, R.; Miyazaki, C.; Iseri, Y.; Kiguchi, M.; Kanae, S.
2015-12-01
Sea-level rise due to global warming becomes a great matter of concern for global coastal area. Additionally, it has reported in fifth report of IPCC (Intergovernmental Panel on Climate Change) that deglaciation of Greenland ice sheet and Antarctic ice sheet would occur rapidly and enhance sea-level rise if temperature passes certain "Tipping point". In terms of projecting damage induced by sea-level rise globally, some previous studies focused on duration until mainly 2100. Furthermore long-term estimations on centuries to millennial climatic response of the ice sheets which are supposed to be triggered within this or next century would be also important to think about future climate and lifestyle in coastal . In this study, I estimated the long term sea-level which take into account the tipping points of Greenland ice sheet (1.4℃) as sum of 4 factors (thermal expansion, glacier and ice cap, Greenland ice sheet, Antarctic ice sheet). The sea-level follows 4 representative concentration pathways up to 3000 obtained through literature reviewing since there were limited available sea-level projections up to 3000. I also estimated a number of affected population lives in coastal area up to 3000 with using the estimated sea-level. The cost for damage, adaptation and mitigation would be also discussed. These estimations would be useful when decision-makers propose policies for construction of dikes and proposing mitigation plans for sustainable future. The result indicates there would be large and relatively rapid increases in both sea-level rise and coastal exposure if global mean temperature passes the tipping point of Greenland ice sheet. However the tipping points, melting rate and timescale of response are highly uncertain and still discussed among experts. Thus more precise and credible information is required for further accurate estimation of long-term sea-level rise and population exposure in the future.
Wang, Qing; Wang, Jiaonan; He, Mike Z; Kinney, Patrick L; Li, Tiantian
2018-01-01
Ambient fine particulate matter (PM 2.5 ) pollution is currently a serious environmental problem in China, but evidence of health effects with higher resolution and spatial coverage is insufficient. This study aims to provide a better overall understanding of long-term mortality effects of PM 2.5 pollution in China and a county-level spatial map for estimating PM 2.5 related premature deaths of the entire country. Using four sets of satellite-derived PM 2.5 concentration data and the integrated exposure-response model which has been employed by the Global Burden of Disease (GBD) to estimate global mortality of ambient and household air pollution in 2010, we estimated PM 2.5 related premature mortality for five endpoints across China in 2010. Premature deaths attributed to PM 2.5 nationwide amounted to 1.27million in total, and 119,167, 83,976, 390,266, 670,906 for adult chronic obstructive pulmonary disease, lung cancer, ischemic heart disease, and stroke, respectively; 3995 deaths for acute lower respiratory infections were estimated in children under the age of 5. About half of the premature deaths were from counties with annual average PM 2.5 concentrations above 63.61μg/m 3 , which cover 16.97% of the Chinese territory. These counties were largely located in the Beijing-Tianjin-Hebei region and the North China Plain. High population density and high pollution areas exhibited the highest health risks attributed to air pollution. On a per capita basis, the highest values were mostly located in heavily polluted industrial regions. PM 2.5 -attributable health risk is closely associated with high population density and high levels of pollution in China. Further estimates using long-term historical exposure data and concentration-response (C-R) relationships should be completed in the future to investigate longer-term trends in the effects of PM 2.5 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Sarnat, Stefanie Ebelt; Raysoni, Amit U; Li, Wen-Whai; Holguin, Fernando; Johnson, Brent A; Flores Luevano, Silvia; Garcia, Jose Humberto; Sarnat, Jeremy A
2012-03-01
Concerns regarding the health impact of urban air pollution on asthmatic children are pronounced along the U.S.-Mexico border because of rapid population growth near busy border highways and roads. We conducted the first binational study of the impacts of air pollution on asthmatic children in Ciudad Juarez, Mexico, and El Paso, Texas, USA, and compared different exposure metrics to assess acute respiratory response. We recruited 58 asthmatic children from two schools in Ciudad Juarez and two schools in El Paso. A marker of airway inflammation [exhaled nitric oxide (eNO)], respiratory symptom surveys, and pollutant measurements (indoor and outdoor 48-hr size-fractionated particulate matter, 48-hr black carbon, and 96-hr nitrogen dioxide) were collected at each school for 16 weeks. We examined associations between the pollutants and respiratory response using generalized linear mixed models. We observed small but consistent associations between eNO and numerous pollutant metrics, with estimated increases in eNO ranging from 1% to 3% per interquartile range increase in pollutant concentrations. Effect estimates from models using school-based concentrations were generally stronger than corresponding estimates based on concentrations from ambient air monitors. Both traffic-related and non-traffic-related particles were typically more robust predictors of eNO than was nitrogen dioxide, for which associations were highly sensitive to model specification. Associations differed significantly across the four school-based cohorts, consistent with heterogeneity in pollutant concentrations and cohort characteristics. Models examining respiratory symptoms were consistent with the null. The results indicate adverse effects of air pollution on the subclinical respiratory health of asthmatic children in this region and provide preliminary support for the use of air pollution monitors close to schools to track exposure and potential health risk in this population.
Hall, Ailsa J; McConnell, Bernie J; Schwacke, Lori H; Ylitalo, Gina M; Williams, Rob; Rowles, Teri K
2018-02-01
The potential impact of exposure to polychlorinated biphenyls (PCBs) on the health and survival of cetaceans continues to be an issue for conservation and management, yet few quantitative approaches for estimating population level effects have been developed. An individual based model (IBM) for assessing effects on both calf survival and immunity was developed and tested. Three case study species (bottlenose dolphin, humpback whale and killer whale) in four populations were taken as examples and the impact of varying levels of PCB uptake on achievable population growth was assessed. The unique aspect of the model is its ability to evaluate likely effects of immunosuppression in addition to calf survival, enabling consequences of PCB exposure on immune function on all age-classes to be explored. By incorporating quantitative tissue concentration-response functions from laboratory animal model species into an IBM framework, population trajectories were generated. Model outputs included estimated concentrations of PCBs in the blubber of females by age, which were then compared to published empirical data. Achievable population growth rates were more affected by the inclusion of effects of PCBs on immunity than on calf survival, but the magnitude depended on the virulence of any subsequent encounter with a pathogen and the proportion of the population exposed. Since the starting population parameters were from historic studies, which may already be impacted by PCBs, the results should be interpreted on a relative rather than an absolute basis. The framework will assist in providing quantitative risk assessments for populations of concern. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sasaki, Ryo; Angelaki, Dora E; DeAngelis, Gregory C
2017-11-15
We use visual image motion to judge the movement of objects, as well as our own movements through the environment. Generally, image motion components caused by object motion and self-motion are confounded in the retinal image. Thus, to estimate heading, the brain would ideally marginalize out the effects of object motion (or vice versa), but little is known about how this is accomplished neurally. Behavioral studies suggest that vestibular signals play a role in dissociating object motion and self-motion, and recent computational work suggests that a linear decoder can approximate marginalization by taking advantage of diverse multisensory representations. By measuring responses of MSTd neurons in two male rhesus monkeys and by applying a recently-developed method to approximate marginalization by linear population decoding, we tested the hypothesis that vestibular signals help to dissociate self-motion and object motion. We show that vestibular signals stabilize tuning for heading in neurons with congruent visual and vestibular heading preferences, whereas they stabilize tuning for object motion in neurons with discrepant preferences. Thus, vestibular signals enhance the separability of joint tuning for object motion and self-motion. We further show that a linear decoder, designed to approximate marginalization, allows the population to represent either self-motion or object motion with good accuracy. Decoder weights are broadly consistent with a readout strategy, suggested by recent computational work, in which responses are decoded according to the vestibular preferences of multisensory neurons. These results demonstrate, at both single neuron and population levels, that vestibular signals help to dissociate self-motion and object motion. SIGNIFICANCE STATEMENT The brain often needs to estimate one property of a changing environment while ignoring others. This can be difficult because multiple properties of the environment may be confounded in sensory signals. The brain can solve this problem by marginalizing over irrelevant properties to estimate the property-of-interest. We explore this problem in the context of self-motion and object motion, which are inherently confounded in the retinal image. We examine how diversity in a population of multisensory neurons may be exploited to decode self-motion and object motion from the population activity of neurons in macaque area MSTd. Copyright © 2017 the authors 0270-6474/17/3711204-16$15.00/0.
Revitalizing the HIV response in Pakistan: a systematic review and policy implications.
Singh, Sonal; Ambrosio, Marco; Semini, Iris; Tawil, Oussama; Saleem, Muhammad; Imran, Muhammad; Beyrer, Chris
2014-01-01
We sought to describe the epidemiology of HIV in Pakistan and prioritize interventions to improve the effectiveness and efficiency of the response to HIV. We conducted a systematic review of the epidemiology of HIV in Pakistan. Data sources included PUBMED and EMBASE and unpublished reports from public, non-governmental organizations and provincial and national stakeholders. We focused on findings from the last 5 years and only evaluated data before 2005 on at risk groups where there were insufficient data published after 2005. A population attributable risk analysis was conducted to estimate the burden of HIV among most at risk populations (people who inject drugs, female sex workers, male sex workers, Hijra or transgender sex workers and men who have sex with men). Pakistan has a concentrated epidemic of HIV-1 among most at risk populations with very low prevalence rates in the general population (0.04%). The majority of current HIV infections are estimated to occur among four at risk populations, despite their accounting for under 2% of all adults. Injecting drug users accounted for 36.4% of HIV cases - the largest share of infections in any one group. Female, male and transgender sex workers accounted for 24%, 12% and 17.5% respectively, a cumulative population attributable risk of 53.5% of all infections occurring among sex workers. Pakistan must continue to invest in targeted, evidence-based interventions to prevent the spread of HIV and curb the epidemic trajectory in Pakistan. A comprehensive range of services should include needle and syringe exchange, opiate substitution therapy for people who inject drugs, outreach and engagement with injecting drug users, Hijra' community as well as male and female sex workers and their clients and improved linkage between services and voluntary counseling, testing and anti-retroviral therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
Demography of the Pacific walrus (Odobenus rosmarus divergens): 1974-2006
Taylor, Rebecca L.; Udevitz, Mark S.
2015-01-01
Global climate change may fundamentally alter population dynamics of many species for which baseline population parameter estimates are imprecise or lacking. Historically, the Pacific walrus is thought to have been limited by harvest, but it may become limited by global warming-induced reductions in sea ice. Loss of sea ice, on which walruses rest between foraging bouts, may reduce access to food, thus lowering vital rates. Rigorous walrus survival rate estimates do not exist, and other population parameter estimates are out of date or have well-documented bias and imprecision. To provide useful population parameter estimates we developed a Bayesian, hidden process demographic model of walrus population dynamics from 1974 through 2006 that combined annual age-specific harvest estimates with five population size estimates, six standing age structure estimates, and two reproductive rate estimates. Median density independent natural survival was high for juveniles (0.97) and adults (0.99), and annual density dependent vital rates rose from 0.06 to 0.11 for reproduction, 0.31 to 0.59 for survival of neonatal calves, and 0.39 to 0.85 for survival of older calves, concomitant with a population decline. This integrated population model provides a baseline for estimating changing population dynamics resulting from changing harvests or sea ice.
Lincoln estimates of mallard (Anas platyrhynchos) abundance in North America.
Alisauskas, Ray T; Arnold, Todd W; Leafloor, James O; Otis, David L; Sedinger, James S
2014-01-01
Estimates of range-wide abundance, harvest, and harvest rate are fundamental for sound inferences about the role of exploitation in the dynamics of free-ranging wildlife populations, but reliability of existing survey methods for abundance estimation is rarely assessed using alternative approaches. North American mallard populations have been surveyed each spring since 1955 using internationally coordinated aerial surveys, but population size can also be estimated with Lincoln's method using banding and harvest data. We estimated late summer population size of adult and juvenile male and female mallards in western, midcontinent, and eastern North America using Lincoln's method of dividing (i) total estimated harvest, [Formula: see text], by estimated harvest rate, [Formula: see text], calculated as (ii) direct band recovery rate, [Formula: see text], divided by the (iii) band reporting rate, [Formula: see text]. Our goal was to compare estimates based on Lincoln's method with traditional estimates based on aerial surveys. Lincoln estimates of adult males and females alive in the period June-September were 4.0 (range: 2.5-5.9), 1.8 (range: 0.6-3.0), and 1.8 (range: 1.3-2.7) times larger than respective aerial survey estimates for the western, midcontinent, and eastern mallard populations, and the two population estimates were only modestly correlated with each other (western: r = 0.70, 1993-2011; midcontinent: r = 0.54, 1961-2011; eastern: r = 0.50, 1993-2011). Higher Lincoln estimates are predictable given that the geographic scope of inference from Lincoln estimates is the entire population range, whereas sampling frames for aerial surveys are incomplete. Although each estimation method has a number of important potential biases, our review suggests that underestimation of total population size by aerial surveys is the most likely explanation. In addition to providing measures of total abundance, Lincoln's method provides estimates of fecundity and population sex ratio and could be used in integrated population models to provide greater insights about population dynamics and management of North American mallards and most other harvested species.
Palta, Mari; Chen, Han-Yang; Kaplan, Robert M.; Feeny, David; Cherepanov, Dasha; Fryback, Dennis
2011-01-01
Background Standard errors of measurement (SEMs) of health related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics and provides guidance on using indexes on the individual and group level. SEM is also a component of reliability. Purpose To estimate SEM of five HRQoL indexes. Design The National Health Measurement Study (NHMS) was a population based telephone survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures 1 and 6 months post cataract surgery. Subjects 3844 randomly selected adults from the non-institutionalized population 35 to 89 years old in the contiguous United States and 265 cataract patients. Measurements The SF6-36v2™, QWB-SA, EQ-5D, HUI2 and HUI3 were included. An item-response theory (IRT) approach captured joint variation in indexes into a composite construct of health (theta). We estimated: (1) the test-retest standard deviation (SEM-TR) from COMHS, (2) the structural standard deviation (SEM-S) around the composite construct from NHMS and (3) corresponding reliability coefficients. Results SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2) and 0.134 (HUI3), while SEM-S was 0.071, 0.094, 0.084, 0.074 and 0.117, respectively. These translate into reliability coefficients for SF-6D: 0.66 (COMHS) and 0.71 (NHMS), for QWB: 0.59 and 0.64, for EQ-5D: 0.61 and 0.70 for HUI2: 0.64 and 0.80, and for HUI3: 0.75 and 0.77, respectively. The SEM varied considerably across levels of health, especially for HUI2, HUI3 and EQ-5D, and was strongly influenced by ceiling effects. Limitations Repeated measures were five months apart and estimated theta contain measurement error. Conclusions The two types of SEM are similar and substantial for all the indexes, and vary across the range of health. PMID:20935280
NASA Astrophysics Data System (ADS)
Paron, Paolo; von Hagen, Craig; Peppino Disperati, Stefano; Hermansyah, Budi; Shaheen, Imra; Jan, Qasim; Berloffa, Andrea; Khan, Ruby; Fakhre, Alam
2013-04-01
Pakistan is highly disaster-prone, with three major flood disasters occurred in the past three years, yet major losses are not inevitable. Farming-based families still struggling to recover from 2010 and 2011 floods have again faced another bad monsoon season in 2012. Meanwhile, the likelihood of yet more natural disasters in the future is high as the phenomenon of climate change is increasing the prevalence of extreme weather conditions. Even with less rainfall, the risk of flooding this year remains high, while many villages have not fully recovered from the 2011-2012 floods. It is of utmost importance to support the most vulnerable rural communities to recover their flood-affected livelihoods. In the meantime, prioritizing disaster preparedness through flood hazard and population mapping is crucial to ensure that realistic contingency plans are in place to deliver an effective and timely response and reduce the impact of floods before they strike. To increase preparedness in future floods, an integrated approach that builds the resilience of flood affected community and enhances emergency preparedness based on reliable data is critical. We present here the innovative methodology developed for estimating population and livelihood that could potentially be affected by a future flood scenario, as well as a methodology for knowing where these people are located, along with an overview of their livelihood pattern. This project has used only freely available dataset, due to the urgency of providing a toolbox to the humanitarian community and the absence of readily available detailed information on natural hazards and exposure in Pakistan. The estimated figures resulting from this project, would provide the Food Security stakeholders with adequate information and data for programming a tailored response in case of floods during future monsoon season. For the purpose of preparedness, understanding the risks, and its potential magnitude, is crucial to provide decision makers with timely information that can serve as a baseline to inform assessments, data analysis and programming of response. Having an estimate of the potentially affected people and agricultural areas before a disaster occurs, can contribute to an organized, appropriate, more timely and targeted response. We also developed a web-based mapping tool to allow remote access to relevant real-time data and scenarios. By combining maps of land cover, crop zones, flood hazard and population, this project has provided essential geographic orientation for food security preparedness analysis, and is essential for the following reasons: i. It provides the basis for quantifying population at risk of food insecurity before a disaster occurs; ii. It provides a stratification for any post-disaster assessment; iii. Combined with a FS&L (Food Security and Livelihood Assessment), it helps to inform the Food Security response analyses and assistance targeting; iv. It complements and inform the district-based HLV (Hazard Livelihood and Vulnerability baseline and contingency plans) with data and analyses at country and provincial level linked with agriculture seasonal calendars, main key production cycles, and seasonal hazards; v. It provides inputs to any future activities under the Integrated Phase Classification (IPC) project.
van Pelt, Thomas I.; Piatt, John F.
2005-01-01
The Kittlitz's murrelet (Brachyramphus brevirostris) is a rare seabird that nests in alpine terrain and generally forages near tidewater glaciers during the breeding season. An estimated 95% of the global population breeds in Alaska, with some unknown proportion breeding in the Russian Far East. A global population estimate using bestavailable data in the early 1990s was 20,000 individuals. However, recent survey data from two core areas (Prince William Sound and Glacier Bay) suggest that populations have declined by 75-90% during the past 10-20 years. In response to these declines, a coalition of environmental groups petitioned the USFWS in May 2001 to list the Kittlitz’s murrelet under the Endangered Species Act (ESA), and in 2004 Kittlitz’s Murrelet was declared a candidate species under the ESA. In 2005, BirdLife International classified the species as “critically endangered”. In 2002, we began a three-year project to examine population status and trend of Kittlitz’s Murrelets in areas where distribution and abundance were poorly known. Results from the 2002 field season, focused on the south coast of the Kenai Peninsula, suggested that the local population of Kittlitz’s Murrelets has declined by ca. 74% since 1986, with a current population of ca. 500 individuals. Here we present results from the 2003 field season when we surveyed Kittlitz’s Murrelets along the southern coast of the Alaska Peninsula. This is a large region that encompasses a substantial portion of the known range of the Kittlitz’s Murrelet, yet has never been surveyed rigorously for murrelets or any other non-colonial marine birds. During four weeks of surveys, we established a set of nearshore and offshore transects (over 825 linear kilometers in total) with a stratified sample design, combining random and systematically selected transects. From a total of 123 individuals seen on transects, we estimate a total population of 2265 (95% CI 1165-4405) Kittlitz’s Murrelets along the south coast of the Alaska Peninsula. For comparison, we estimate the population size of the congeneric Marbled Murrelet (Brachyramphus marmoratus). We discuss broad-scale murrelet habitat relationships and species comparisons, and present recommendations for management and future work. Other species of marine birds and mammals were also surveyed; summarized information is included as an appendix.
Tornøe, Christoffer W; Agersø, Henrik; Senderovitz, Thomas; Nielsen, Henrik A; Madsen, Henrik; Karlsson, Mats O; Jonsson, E Niclas
2007-01-01
Aims To develop a population pharmacokinetic/pharmacodynamic (PK/PD) model of the hypothalamic–pituitary–gonadal (HPG) axis describing the changes in luteinizing hormone (LH) and testosterone concentrations following treatment with the gonadotropin-releasing hormone (GnRH) agonist triptorelin and the GnRH receptor blocker degarelix. Methods Fifty-eight healthy subjects received single subcutaneous or intramuscular injections of 3.75 mg of triptorelin and 170 prostate cancer patients received multiple subcutaneous doses of degarelix of between 120 and 320 mg. All subjects were pooled for the population PK/PD data analysis. A systematic population PK/PD model-building framework using stochastic differential equations was applied to the data to identify nonlinear dynamic dependencies and to deconvolve the functional feedback interactions of the HPG axis. Results In our final PK/PD model of the HPG axis, the half-life of LH was estimated to be 1.3 h and that of testosterone 7.69 h, which corresponds well with literature values. The estimated potency of LH with respect to testosterone secretion was 5.18 IU l−1, with a maximal stimulation of 77.5 times basal testosterone production. The estimated maximal triptorelin stimulation of the basal LH pool release was 1330 times above basal concentrations, with a potency of 0.047 ng ml−1. The LH pool release was decreased by a maximum of 94.2% by degarelix with an estimated potency of 1.49 ng ml−1. Conclusions Our model of the HPG axis was able to account for the different dynamic responses observed after administration of both GnRH agonists and GnRH receptor blockers, suggesting that the model adequately characterizes the underlying physiology of the endocrine system. PMID:17096678
Combining multiple sources of data to inform conservation of Lesser Prairie-Chicken populations
Ross, Beth; Haukos, David A.; Hagen, Christian A.; Pitman, James
2018-01-01
Conservation of small populations is often based on limited data from spatially and temporally restricted studies, resulting in management actions based on an incomplete assessment of the population drivers. If fluctuations in abundance are related to changes in weather, proper management is especially important, because extreme weather events could disproportionately affect population abundance. Conservation assessments, especially for vulnerable populations, are aided by a knowledge of how extreme events influence population status and trends. Although important for conservation efforts, data may be limited for small or vulnerable populations. Integrated population models maximize information from various sources of data to yield population estimates that fully incorporate uncertainty from multiple data sources while allowing for the explicit incorporation of environmental covariates of interest. Our goal was to assess the relative influence of population drivers for the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) in the core of its range, western and southern Kansas, USA. We used data from roadside lek count surveys, nest monitoring surveys, and survival data from telemetry monitoring combined with climate (Palmer drought severity index) data in an integrated population model. Our results indicate that variability in population growth rate was most influenced by variability in juvenile survival. The Palmer drought severity index had no measurable direct effects on adult survival or mean number of offspring per female; however, there were declines in population growth rate following severe drought. Because declines in population growth rate occurred at a broad spatial scale, declines in response to drought were likely due to decreases in chick and juvenile survival rather than emigration outside of the study area. Overall, our model highlights the importance of accounting for environmental and demographic sources of variability, and provides a thorough method for simultaneously evaluating population demography in response to long-term climate effects.
Modeling post-fledging survival of lark buntings in response to ecological and biological factors
Yackel Adams, A.A.; Skagen, S.K.; Savidge, J.A.
2006-01-01
We evaluated the influences of several ecological, biological, and methodological factors on post-fledging survival of a shortgrass prairie bird, the Lark Bunting (Calamospiza melanocorys). We estimated daily post-fledging survival (n = 206, 82 broods) using radiotelemetry and color bands to track fledglings. Daily survival probabilities were best explained by drought intensity, time in season (quadratic trend), ages ≤3 d post-fledging, and rank given drought intensity. Drought intensity had a strong negative effect on survival. Rank was an important predictor of fledgling survival only during the severe drought of 2002 when the smallest fledglings had lower survival. Recently fledged young (ages ≤3 d post-fledging) undergoing the transition from nest to surrounding habitat experienced markedly lower survival, demonstrating the vulnerable nature of this time period. Survival was greater in mid and late season than early season, corresponding to our assumptions of food availability. Neither mark type nor sex of attending parent influenced survival. The model-averaged product of the 22-d survival calculated using mean rank and median value of time in season was 0.360 ± 0.08 in 2001 and 0.276 ± 0.08 in 2002. Survival estimates that account for age, condition of young, ecological conditions, and other factors are important for parameterization of realistic population models. Biologists using population growth models to elucidate mechanisms of population declines should attempt to estimate species-specific of post-fledging survival rather than use generalized estimates.
Sand lizard (Lacerta agilis) phenology in a warming world.
Ljungström, Gabriella; Wapstra, Erik; Olsson, Mats
2015-10-08
Present-day climate change has altered the phenology (the timing of periodic life cycle events) of many plant and animal populations worldwide. Some of these changes have been adaptive, leading to an increase in population fitness, whereas others have been associated with fitness decline. Representing short-term responses to an altered weather regime, hitherto observed changes are largely explained by phenotypic plasticity. However, to track climatically induced shifts in optimal phenotype as climate change proceeds, evolutionary capacity in key limiting climate- and fitness-related traits is likely to be crucial. In order to produce realistic predictions about the effects of climate change on species and populations, a main target for conservation biologists is thus to assess the potential of natural populations to respond by these two mechanisms. In this study we use a large 15-year dataset on an ectotherm model, the Swedish sand lizard (Lacerta agilis), to investigate how higher spring temperature is likely to affect oviposition timing in a high latitude population, a trait strongly linked to offspring fitness and survival. With an interest in both the short- and potential long-term effect of rising temperatures, we applied a random regression model, which yields estimates of population-level plasticity and among-individual variation in the average, as well as the plastic, response to temperature. Population plasticity represents capacity for short-term adjustments whereas variation among individuals in a fitness-related trait indicates an opportunity for natural selection and hence for evolutionary adaptation. The analysis revealed both population-level plasticity and individual-level variation in average laying date. In contrast, we found no evidence for variation among females in their plastic responses to spring temperature, which could demonstrate a similarity in responses amongst females, but may also be due to a lack of statistical power to detect such an effect. Our findings indicate that climate warming may have positive fitness effects in this lizard population through an advancement of oviposition date. This prediction is consistent over shorter and potentially also longer time scales as the analysis revealed both population-level plasticity and individual-level variation in average laying date. However, the genetic basis for this variation would have to be examined in order to predict an evolutionary response.
Long, Michael W.; Brownell, Kelly D.
2010-01-01
In light of proposals to improve diets by shifting food prices, it is important to understand how price changes affect demand for various foods. We reviewed 160 studies on the price elasticity of demand for major food categories to assess mean elasticities by food category and variations in estimates by study design. Price elasticities for foods and nonalcoholic beverages ranged from 0.27 to 0.81 (absolute values), with food away from home, soft drinks, juice, and meats being most responsive to price changes (0.7–0.8). As an example, a 10% increase in soft drink prices should reduce consumption by 8% to 10%. Studies estimating price effects on substitutions from unhealthy to healthy food and price responsiveness among at-risk populations are particularly needed. PMID:20019319
Andreyeva, Tatiana; Long, Michael W; Brownell, Kelly D
2010-02-01
In light of proposals to improve diets by shifting food prices, it is important to understand how price changes affect demand for various foods. We reviewed 160 studies on the price elasticity of demand for major food categories to assess mean elasticities by food category and variations in estimates by study design. Price elasticities for foods and nonalcoholic beverages ranged from 0.27 to 0.81 (absolute values), with food away from home, soft drinks, juice, and meats being most responsive to price changes (0.7-0.8). As an example, a 10% increase in soft drink prices should reduce consumption by 8% to 10%. Studies estimating price effects on substitutions from unhealthy to healthy food and price responsiveness among at-risk populations are particularly needed.
Analysis of antigen-specific B-cell memory directly ex vivo.
McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G
2004-01-01
Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.
Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana.
Eggert, L S; Eggert, J A; Woodruff, D S
2003-06-01
African forest elephants are difficult to observe in the dense vegetation, and previous studies have relied upon indirect methods to estimate population sizes. Using multilocus genotyping of noninvasively collected samples, we performed a genetic survey of the forest elephant population at Kakum National Park, Ghana. We estimated population size, sex ratio and genetic variability from our data, then combined this information with field observations to divide the population into age groups. Our population size estimate was very close to that obtained using dung counts, the most commonly used indirect method of estimating the population sizes of forest elephant populations. As their habitat is fragmented by expanding human populations, management will be increasingly important to the persistence of forest elephant populations. The data that can be obtained from noninvasively collected samples will help managers plan for the conservation of this keystone species.
U.S. Population Data 1969-2016 - SEER Population Data
Download county population estimates used in SEER*Stat to calculate cancer incidence and mortality rates. The estimates are a modification of the U.S. Census Bureau's Population Estimates Program, in collaboration with National Center for Health Statistics.
A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.
Chiu, Weihsueh A; Slob, Wout
2015-12-01
When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. We developed a unified framework for probabilistic dose-response assessment. We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes. Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.
Scheibe, Andrew; Grasso, Michael; Raymond, Henry Fisher; Manyuchi, Albert; Osmand, Thomas; Lane, Tim; Struthers, Helen
2018-03-01
A data triangulation exercise was carried out between 2013 and 2015 to assess the HIV epidemic and response among gay, bisexual and other men who have sex with men (GBMSM) in South Africa. We used the findings to assess progress in achieving the UNAIDS 90-90-90 goals for GBMSM in the country. Three scenarios were developed using different GBMSM population factors (2.0, 3.5 and 5.0% of males aged ≥15) to estimate the population size, HIV prevalence of 13.2-49.5%, and 68% of GBMSM knowing their status. Due to data gaps, general population data were used as estimates of GBMSM on antiretroviral therapy (ART) and virologically suppressed (25.7 and 84.0%, respectively). The biggest gap is access to ART. To address the data gap we recommend developing data collection tools, indicators, and further quantification of HIV cascades. Targeted testing, linkage to services and scaled-up prevention interventions (including pre-exposure prophylaxis) are also required.
NASA Astrophysics Data System (ADS)
Magyar, Andrew
The recent discovery of cells that respond to purely conceptual features of the environment (particular people, landmarks, objects, etc) in the human medial temporal lobe (MTL), has raised many questions about the nature of the neural code in humans. The goal of this dissertation is to develop a novel statistical method based upon maximum likelihood regression which will then be applied to these experiments in order to produce a quantitative description of the coding properties of the human MTL. In general, the method is applicable to any experiments in which a sequence of stimuli are presented to an organism while the binary responses of a large number of cells are recorded in parallel. The central concept underlying the approach is the total probability that a neuron responds to a random stimulus, called the neuronal sparsity. The model then estimates the distribution of response probabilities across the population of cells. Applying the method to single-unit recordings from the human medial temporal lobe, estimates of the sparsity distributions are acquired in four regions: the hippocampus, the entorhinal cortex, the amygdala, and the parahippocampal cortex. The resulting distributions are found to be sparse (large fraction of cells with a low response probability) and highly non-uniform, with a large proportion of ultra-sparse neurons that possess a very low response probability, and a smaller population of cells which respond much more frequently. Rammifications of the results are discussed in relation to the sparse coding hypothesis, and comparisons are made between the statistics of the human medial temporal lobe cells and place cells observed in the rodent hippocampus.
School District Crisis Preparedness, Response, and Recovery Plans - United States, 2012.
Silverman, Brenda; Chen, Brenda; Brener, Nancy; Kruger, Judy; Krishna, Nevin; Renard, Paul; Romero-Steiner, Sandra; Avchen, Rachel Nonkin
2016-09-16
The unique characteristics of children dictate the need for school-based all-hazards response plans during natural disasters, emerging infectious diseases, and terrorism (1-3). Schools are a critical community institution serving a vulnerable population that must be accounted for in public health preparedness plans; prepared schools are adopting policies and plans for crisis preparedness, response, and recovery (2-4). The importance of having such plans in place is underscored by the development of a new Healthy People 2020 objective (PREP-5) to "increase the percentage of school districts that require schools to include specific topics in their crisis preparedness, response, and recovery plans" (5). Because decisions about such plans are usually made at the school district level, it is important to examine district-level policies and practices. Although previous reports have provided national estimates of the percentage of districts with policies and practices in place (6), these estimates have not been analyzed by U.S. Census region* and urbanicity.(†) Using data from the 2012 School Health Policies and Practices Study (SHPPS), this report examines policies and practices related to school district preparedness, response, and recovery. In general, districts in the Midwest were less likely to require schools to include specific topics in their crisis preparedness plans than districts in the Northeast and South. Urban districts tended to be more likely than nonurban districts to require specific topics in school preparedness plans. Southern districts tended to be more likely than districts in other regions to engage with partners when developing plans. No differences in district collaboration (with the exception of local fire department engagement) were observed by level of urbanicity. School-based preparedness planning needs to be coordinated with interdisciplinary community partners to achieve Healthy People 2020 PREP-5 objectives for this vulnerable population.
NASA Astrophysics Data System (ADS)
Jordan, L.
2017-10-01
Recent violence in South Sudan produced significant levels of conflict-driven migration undermining the accuracy and utility of both national and local level population forecasts commonly used in demographic estimates, public health metrics and food security proxies. This article explores the use of Thiessen Polygons and population grids (Gridded Population of the World, WorldPop and LandScan) as weights for estimating the catchment areas for settlement locations that serve large populations of internally displaced persons (IDP), in order to estimate the county-level in- and out-migration attributable to conflict-driven displacement between 2014-2015. Acknowledging IDP totals improves internal population estimates presented by global population databases. Unlike other forecasts, which produce spatially uniform increases in population, accounting for displaced population reveals that 15 percent of counties (n = 12) increased in population over 20 percent, and 30 percent of counties (n = 24) experienced zero or declining population growth, due to internal displacement and refugee out-migration. Adopting Thiessen Polygon catchment zones for internal migration estimation can be applied to other areas with United Nations IDP settlement data, such as Yemen, Somalia, and Nigeria.
Baral, Stefan D; Edwards, Jessie K; Zadrozny, Sabrina; Hargreaves, James; Zhao, Jinkou; Sabin, Keith
2018-01-01
Background Normative guidelines from the World Health Organization recommend tracking strategic information indicators among key populations. Monitoring progress in the global response to the HIV epidemic uses indicators put forward by the Joint United Nations Programme on HIV/AIDS. These include the 90-90-90 targets that require a realignment of surveillance data, routinely collected program data, and medical record data, which historically have developed separately. Objective The aim of this study was to describe current challenges for monitoring HIV-related strategic information indicators among key populations ((men who have sex with men [MSM], people in prisons and other closed settings, people who inject drugs, sex workers, and transgender people) and identify future opportunities to enhance the use of surveillance data, programmatic data, and medical record data to describe the HIV epidemic among key populations and measure the coverage of HIV prevention, care, and treatment programs. Methods To provide a historical perspective, we completed a scoping review of the expansion of HIV surveillance among key populations over the past three decades. To describe current efforts, we conducted a review of the literature to identify published examples of SI indicator estimates among key populations. To describe anticipated challenges and future opportunities to improve measurement of strategic information indicators, particularly from routine program and health data, we consulted participants of the Third Global HIV Surveillance Meeting in Bangkok, where the 2015 World Health Organization strategic information guidelines were launched. Results There remains suboptimal alignment of surveillance and programmatic data, as well as routinely collected medical records to facilitate the reporting of the 90-90-90 indicators for HIV among key populations. Studies (n=3) with estimates of all three 90-90-90 indicators rely on cross-sectional survey data. Programmatic data and medical record data continue to be insufficiently robust to provide estimates of the 90-90-90 targets for key populations. Conclusions Current reliance on more active data collection processes, including key population-specific surveys, remains warranted until the quality and validity of passively collected routine program and medical record data for key populations is optimized. PMID:29789279
South Asian populations in Canada: migration and mental health
2014-01-01
Background South Asian populations are the largest visible minority group in Canada; however, there is very little information on the mental health of these populations. The objective of this study was to determine the prevalence rates and characteristics of mental health outcomes for South Asian first-generation immigrant and second-generation Canadian-born populations. Methods The Canadian Community Health Survey (CCHS) 2011 was used to calculate the estimated prevalence rates of the following mental health outcomes: mood disorders, anxiety disorders, fair-poor self-perceived mental health status, and extremely stressful life stress. The characteristics associated with these four mental health outcomes were determined through multivariate logistic regression analysis of merged CCHS 2007–2011 data. Results South Asian Canadian-born (3.5%, 95% CI 3.4-3.6%) and South Asian immigrant populations (3.5%, 95% CI 3.5-3.5%) did not vary significantly in estimated prevalence rates of mood disorders. However, South Asian immigrants experienced higher estimated prevalence rates of diagnosed anxiety disorders (3.4%, 95% CI 3.4-3.5 vs. 1.1%, 95% CI 1.1-1.1%) and self-reported extremely stressful life stress (2.6%, 95% CI 2.6-2.7% vs. 2.4%, 95% CI 2.3-2.4%) compared to their Canadian-born counterparts. Lastly, South Asian Canadian-born populations had a higher estimated prevalence rate of poor-fair self-perceived mental health status (4.4%, 95% CI 4.3-4.5%) compared to their immigrant counterparts (3.4%, 95% CI 3.3-3.4%). Different profiles of mental health determinants emerged for South Asian Canadian-born and immigrant populations. Female gender, having no children under the age of 12 in the household, food insecurity, poor-fair self-rated health status, being a current smoker, immigrating to Canada before adulthood, and taking the CCHS survey in either English or French was associated with greater risk of negative mental health outcomes for South Asian immigrant populations, while not being currently employed, having a regular medical doctor, and inactive physical activity level were associated with greater risk for South Asian Canadian-born populations. Conclusions Mental health outreach programs need to be cognizant of the differences in prevalence rates and characteristics of mental health outcomes for South Asian immigrant and Canadian-born populations to better tailor mental health services to be responsive to the unique mental health needs of South Asian populations in Canada. PMID:24884792
The Improved Estimation of Ratio of Two Population Proportions
ERIC Educational Resources Information Center
Solanki, Ramkrishna S.; Singh, Housila P.
2016-01-01
In this article, first we obtained the correct mean square error expression of Gupta and Shabbir's linear weighted estimator of the ratio of two population proportions. Later we suggested the general class of ratio estimators of two population proportions. The usual ratio estimator, Wynn-type estimator, Singh, Singh, and Kaur difference-type…
Fouracre, David; Smith, Graham C.
2017-01-01
Policy development, implementation, and effective contingency response rely on a strong evidence base to ensure success and cost-effectiveness. Where this includes preventing the establishment or spread of zoonotic or veterinary diseases infecting companion cats and dogs, descriptions of the structure and density of the populations of these pets are useful. Similarly, such descriptions may help in supporting diverse fields of study such as; evidence-based veterinary practice, veterinary epidemiology, public health and ecology. As well as maps of where pets are, estimates of how many may rarely, or never, be seen by veterinarians and might not be appropriately managed in the event of a disease outbreak are also important. Unfortunately both sources of evidence are absent from the scientific and regulatory literatures. We make this first estimate of the structure and density of pet populations by using the most recent national population estimates of cats and dogs across Great Britain and subdividing these spatially, and categorically across ownership classes. For the spatial model we used the location and size of veterinary practises across GB to predict the local density of pets, using client travel time to define catchments around practises, and combined this with residential address data to estimate the rate of ownership. For the estimates of pets which may provoke problems in managing a veterinary or zoonotic disease we reviewed the literature and defined a comprehensive suite of ownership classes for cats and dogs, collated estimates of the sub-populations for each ownership class as well as their rates of interaction and produced a coherent scaled description of the structure of the national population. The predicted density of pets varied substantially, with the lowest densities in rural areas, and the highest in the centres of large cities where each species could exceed 2500 animals.km-2. Conversely, the number of pets per household showed the opposite relationship. Both qualitative and quantitative validation support key assumptions in the model structure and suggest the model is useful at predicting the populations of cats at geographical scales important for decision-making, although it also indicates where further research may improve model performance. In the event of an animal health crisis, it appears that almost all dogs could be brought under control rapidly. For cats, a substantial and unknown number might never be bought under control and would be less likely to receive veterinary support to facilitate surveillance and disease management; we estimate this to be at least 1.5 million cats. In addition, the lack of spare capacity to care for unowned cats in welfare organisations suggests that any increase in their rate of acquisition of cats, or any decrease in the rate of re-homing might provoke problems during a period of crisis. PMID:28403172
An estimate of the prevalence of hypertension in Nigeria: a systematic review and meta-analysis.
Adeloye, Davies; Basquill, Catriona; Aderemi, Adewale V; Thompson, Jacqueline Y; Obi, Felix A
2015-02-01
Hypertension is a leading cause of morbidity and mortality in Africa, and Nigeria, the most populous country in the continent, hugely contributes to this burden. To provide an improved estimate of the prevalence and number of cases of hypertension in Nigeria based on the cut-off 'at least 140/90 mmHg', towards ensuring better awareness, control and policy response in the country. We conducted a systematic search of Medline, EMBASE and Global Health from January 1980 to December 2013 for population-based studies providing estimates on the prevalence of hypertension in Nigeria. From the extracted crude prevalence rates, we conducted a random-effects meta-analysis, and further estimated the overall awareness rate of hypertension in Nigeria, expressed as percentage of all hypertension cases. We applied a meta-regression epidemiological modelling, using United Nations population demographics for the years 2010 and 2030, to determine the prevalence and number of cases of hypertension in Nigeria for the 2 years. Our search returned 2260 publications, 27 of which met our selection criteria. From the random-effects meta-analysis, we estimated an overall hypertension prevalence of 28.9% (25.1, 32.8), with a prevalence of 29.5% (24.8, 34.3) among men and 25.0% (20.2, 29.7) among women. We estimated a prevalence of 30.6% (24.5, 36.6) and 26.4% (19.4, 33.4) among urban and rural dwellers, respectively. The pooled awareness rate of hypertension was 17.4% (11.4, 23.3). The overall mean SBP was 128.6 (125.5, 130.8) mmHg, and the DBP was 80.6 (78.5, 82.7) mmHg. From our modelling, we estimated about 20.8 million cases of hypertension in Nigeria among people aged at least 20 years in 2010, with a prevalence of 28.0% (24.6, 31.9) in both sexes - 30.7% (24.9, 33.7) among men and 25.2% (22.7, 31.9) among women. By 2030, we projected an increase to 39.1 million cases of hypertension among people aged at least 20 years with a prevalence of 30.8% (24.5, 33.7) in both sexes - 32.6% (27.3, 38.2) among men and 29.0% (21.9-32.2) among women. Our findings suggest the prevalence of hypertension is high in Nigeria, and the overall awareness of raised blood pressure among hypertension cases is low in the country. We hope this study will inform appropriate public health response towards reducing this burden.
Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc
2016-04-01
The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.
Diagnosis, Epidemiology, and Management of Hypertension in Children.
Rao, Goutham
2016-08-01
National guidelines for the diagnosis and management of hypertension in children have been available for nearly 40 years. Unfortunately, knowledge and recognition of the problem by clinicians remain poor. Prevalence estimates are highly variable because of differing standards, populations, and blood pressure (BP) measurement techniques. Estimates in the United States range from 0.3% to 4.5%. Risk factors for primary hypertension include overweight and obesity, male sex, older age, high sodium intake, and African American or Latino ancestry. Data relating hypertension in childhood to later cardiovascular events is currently lacking. It is known that BP in childhood is highly predictive of BP in adulthood. Compelling data about target organ damage is available, including the association of hypertension with left ventricular hypertrophy, carotid-intima media thickness, and microalbuminuria. Guidelines from both the United States and Europe include detailed recommendations for diagnosis and management. Diagnostic standards are based on clinic readings, ambulatory BP monitoring is useful in confirming diagnosis of hypertension and identifying white-coat hypertension, masked hypertension, and secondary hypertension, as well as monitoring response to therapy. Research priorities include the need for reliable prevalence estimates based on diverse populations and data about the long-term impact of childhood hypertension on cardiovascular morbidity and mortality. Priorities to improve clinical practice include more education among clinicians about diagnosis and management, clinical decision support to aid in diagnosis, and routine use of ambulatory BP monitoring to aid in diagnosis and to monitor response to treatment. Copyright © 2016 by the American Academy of Pediatrics.
Implications of the Medicaid Undercount in a High-Penetration Medicaid State
Goidel, R Kirby; Procopio, Steven; Schwalm, Douglas; Terrell, Dek
2007-01-01
Research Objective This study investigates the impact of misreporting by Medicaid recipients on estimates of the uninsured in Louisiana, and is based on similar work by Call et al. in Minnesota and Klerman, Ringel, and Roth in California. With its unique charity hospital system, culture, and high poverty, Louisiana provides an interesting and unique context for examining Medicaid underreporting. Study Design Results are based on a random sample of 2,985 Medicaid households. Respondents received a standard questionnaire to identify health insurance status, and individual records were matched to Medicaid enrollment data to identify misreporting. Data Sources Data were collected by the Public Policy Research Lab at Louisiana State University using computer-assisted telephone interviewing. Using Medicaid enrollment data to obtain contact information, the Louisiana Health Insurance Survey was administered to 2,985 households containing Medicaid recipients. Matching responses on individuals from these households to Medicaid enrollment data yielded responses for 3,199 individuals. Conclusions Results suggest relatively high rates of underreporting among Medicaid recipients in Louisiana for both children and adults. Given the very high proportion of Medicaid recipients in the population, this may translate up to a 3 percent bias in estimates of uninsured populations. Implications Medicaid bias may be particularly pronounced in areas with high Medicaid enrollments. Misreporting rates and thus the bias in estimates of the uninsured may differ across areas of the United States with important consequences for Medicaid funding. Funding Source Louisiana Department of Health and Hospitals. PMID:17995551
An operational procedure for rapid flood risk assessment in Europe
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Kalas, Milan; Salamon, Peter; Bianchi, Alessandra; Alfieri, Lorenzo; Feyen, Luc
2017-07-01
The development of methods for rapid flood mapping and risk assessment is a key step to increase the usefulness of flood early warning systems and is crucial for effective emergency response and flood impact mitigation. Currently, flood early warning systems rarely include real-time components to assess potential impacts generated by forecasted flood events. To overcome this limitation, this study describes the benchmarking of an operational procedure for rapid flood risk assessment based on predictions issued by the European Flood Awareness System (EFAS). Daily streamflow forecasts produced for major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in terms of flood-prone areas, economic damage and affected population, infrastructures and cities.An extensive testing of the operational procedure has been carried out by analysing the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-based and report-based flood extent data, while modelled estimates of economic damage and affected population are compared against ground-based estimations. Finally, we evaluate the skill of risk estimates derived from EFAS flood forecasts with different lead times and combinations of probabilistic forecasts. Results highlight the potential of the real-time operational procedure in helping emergency response and management.
Burden of Disease from Toxic Waste Sites in India, Indonesia, and the Philippines in 2010
Caravanos, Jack; Ericson, Bret; Sunga-Amparo, Jennifer; Susilorini, Budi; Sharma, Promila; Landrigan, Philip J.; Fuller, Richard
2013-01-01
Background: Prior calculations of the burden of disease from toxic exposures have not included estimates of the burden from toxic waste sites due to the absence of exposure data. Objective: We developed a disability-adjusted life year (DALY)-based estimate of the disease burden attributable to toxic waste sites. We focused on three low- and middle-income countries (LMICs): India, Indonesia, and the Philippines. Methods: Sites were identified through the Blacksmith Institute’s Toxic Sites Identification Program, a global effort to identify waste sites in LMICs. At least one of eight toxic chemicals was sampled in environmental media at each site, and the population at risk estimated. By combining estimates of disease incidence from these exposures with population data, we calculated the DALYs attributable to exposures at each site. Results: We estimated that in 2010, 8,629,750 persons were at risk of exposure to industrial pollutants at 373 toxic waste sites in the three countries, and that these exposures resulted in 828,722 DALYs, with a range of 814,934–1,557,121 DALYs, depending on the weighting factor used. This disease burden is comparable to estimated burdens for outdoor air pollution (1,448,612 DALYs) and malaria (725,000 DALYs) in these countries. Lead and hexavalent chromium collectively accounted for 99.2% of the total DALYs for the chemicals evaluated. Conclusions: Toxic waste sites are responsible for a significant burden of disease in LMICs. Although some factors, such as unidentified and unscreened sites, may cause our estimate to be an underestimate of the actual burden of disease, other factors, such as extrapolation of environmental sampling to the entire exposed population, may result in an overestimate of the burden of disease attributable to these sites. Toxic waste sites are a major, and heretofore underrecognized, global health problem. PMID:23649493
Grimm, Annegret; Gruber, Bernd; Henle, Klaus
2014-01-01
Reliable estimates of population size are fundamental in many ecological studies and biodiversity conservation. Selecting appropriate methods to estimate abundance is often very difficult, especially if data are scarce. Most studies concerning the reliability of different estimators used simulation data based on assumptions about capture variability that do not necessarily reflect conditions in natural populations. Here, we used data from an intensively studied closed population of the arboreal gecko Gehyra variegata to construct reference population sizes for assessing twelve different population size estimators in terms of bias, precision, accuracy, and their 95%-confidence intervals. Two of the reference populations reflect natural biological entities, whereas the other reference populations reflect artificial subsets of the population. Since individual heterogeneity was assumed, we tested modifications of the Lincoln-Petersen estimator, a set of models in programs MARK and CARE-2, and a truncated geometric distribution. Ranking of methods was similar across criteria. Models accounting for individual heterogeneity performed best in all assessment criteria. For populations from heterogeneous habitats without obvious covariates explaining individual heterogeneity, we recommend using the moment estimator or the interpolated jackknife estimator (both implemented in CAPTURE/MARK). If data for capture frequencies are substantial, we recommend the sample coverage or the estimating equation (both models implemented in CARE-2). Depending on the distribution of catchabilities, our proposed multiple Lincoln-Petersen and a truncated geometric distribution obtained comparably good results. The former usually resulted in a minimum population size and the latter can be recommended when there is a long tail of low capture probabilities. Models with covariates and mixture models performed poorly. Our approach identified suitable methods and extended options to evaluate the performance of mark-recapture population size estimators under field conditions, which is essential for selecting an appropriate method and obtaining reliable results in ecology and conservation biology, and thus for sound management. PMID:24896260
ERIC Educational Resources Information Center
Abbott, Rosemary A.; Ploubidis, George B.; Huppert, Felicia A.; Kuh, Diana; Croudace, Tim J.
2010-01-01
The aim of this study is to assess the effective measurement range of Ryff's Psychological Well-being scales (PWB). It applies normal ogive item response theory (IRT) methodology using factor analysis procedures for ordinal data based on a limited information estimation approach. The data come from a sample of 1,179 women participating in a…
Kraatz, Miriam; Coberley, Carter R.; Pope, James E.
2016-01-01
Abstract Well-being is linked to important societal factors such as health care costs and productivity and has experienced a surge in development activity of both theories and measurement. This study builds on validation of the Well-Being 5 survey and for the first time applies Item Response Theory, a modern and flexible measurement paradigm, to form the basis of adaptive population well-being measurement. Adaptive testing allows survey questions to be administered selectively, thereby reducing the number of questions required of the participant. After the graded response model was fit to a sample of size N = 12,035, theta scores were estimated based on both the full-item bank and a simulation of Computerized Adaptive Testing (CAT). Comparisons of these 2 sets of score estimates with each other and of their correlations with external outcomes of job performance, absenteeism, and hospital admissions demonstrate that the CAT well-being scores maintain accuracy and validity. The simulation indicates that the average survey taker can expect a reduction in number of items administered during the CAT process of almost 50%. An increase in efficiency of this extent is of considerable value because of the time savings during the administration of the survey and the potential improvement of user experience, which in turn can help secure the success of a total population-based well-being improvement program. (Population Health Management 2016;19:284–290) PMID:26674396
Prey life-history and bioenergetic responses across a predation gradient.
Rennie, M D; Purchase, C F; Shuter, B J; Collins, N C; Abrams, P A; Morgan, G E
2010-10-01
To evaluate the importance of non-consumptive effects of predators on prey life histories under natural conditions, an index of predator abundance was developed for naturally occurring populations of a common prey fish, the yellow perch Perca flavescens, and compared to life-history variables and rates of prey energy acquisition and allocation as estimated from mass balance models. The predation index was positively related to maximum size and size at maturity in both male and female P. flavescens, but not with life span or reproductive investment. The predation index was positively related to size-adjusted specific growth rates and growth efficiencies but negatively related to model estimates of size-adjusted specific consumption and activity rates in both vulnerable (small) and invulnerable (large) size classes of P. flavescens. These observations suggest a trade-off between growth and activity rates, mediated by reduced activity in response to increasing predator densities. Lower growth rates and growth efficiencies in populations with fewer predators, despite increased consumption suggests either 1) a reduction in prey resources at lower predator densities or 2) an intrinsic cost of rapid prey growth that makes it unfavourable unless offset by a perceived threat of predation. This study provides evidence of trade-offs between growth and activity rates induced by predation risk in natural prey fish populations and illustrates how behavioural modification induced through predation can shape the life histories of prey fish species. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Naturally acidified habitat selects for ocean acidification–tolerant mussels
Thomsen, Jörn; Stapp, Laura S.; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K. Mathias; Melzner, Frank
2017-01-01
Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change. PMID:28508039
Naturally acidified habitat selects for ocean acidification-tolerant mussels.
Thomsen, Jörn; Stapp, Laura S; Haynert, Kristin; Schade, Hanna; Danelli, Maria; Lannig, Gisela; Wegner, K Mathias; Melzner, Frank
2017-04-01
Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae ( Mytilus edulis ) in a periodically CO 2 -enriched habitat. The larval fitness of the population originating from the CO 2 -enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO 2 -adapted population showed higher fitness under elevated P co 2 (partial pressure of CO 2 ) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO 2 tolerance differed substantially between the families within the F 1 generation, and survival was drastically decreased in the highest, yet realistic, P co 2 treatment. Selection of CO 2 -tolerant F 1 animals resulted in higher calcification performance of F 2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO 2 -enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumen, A, E-mail: Annie.Lumen@fda.hhs.gov
The risk of ubiquitous perchlorate exposure and the dose-response on thyroid hormone levels in pregnant women in the United States (U.S.) have yet to be characterized. In the current work, we integrated a previously developed perchlorate submodel into a recently developed population-based pregnancy model to predict reductions in maternal serum free thyroxine (fT4) levels for late-gestation pregnant women in the U.S. Our findings indicated no significant difference in geometric mean estimates of fT4 when perchlorate exposure from food only was compared to no perchlorate exposure. The reduction in maternal fT4 levels reached statistical significance when an added contribution from drinkingmore » water (i.e., 15 μg/L, 20 μg/L, or 24.5 μg/L) was assumed in addition to the 90th percentile of food intake for pregnant women (0.198 μg/kg/day). We determined that a daily intake of 0.45 to 0.50 μg/kg/day of perchlorate was necessary to produce results that were significantly different than those obtained from no perchlorate exposure. Adjusting for this food intake dose, the relative source contribution of perchlorate from drinking water (or other non-dietary sources) was estimated to range from 0.25–0.3 μg/kg/day. Assuming a drinking water intake rate of 0.033 L/kg/day, the drinking water concentration allowance for perchlorate equates to 7.6–9.2 μg/L. In summary, we have demonstrated the utility of a probabilistic biologically-based dose-response model for perchlorate risk assessment in a sensitive life-stage at a population level; however, there is a need for continued monitoring in regions of the U.S. where perchlorate exposure may be higher. - Highlights: • Probabilistic risk assessment for perchlorate in U.S. pregnant women was conducted. • No significant change in maternal fT4 predicted due to perchlorate from food alone. • Drinking water concentration allowance for perchlorate estimated as 7.6–9.2 μg/L.« less
Welt, Rachel S; Litt, Amy; Franks, Steven J
2015-03-27
The impact of environmental change on population structure is not well understood. This study aimed to examine the effect of a climate change event on gene flow over space and time in two populations of Brassica rapa that evolved more synchronous flowering times over 5 years of drought in southern California. Using plants grown from seeds collected before and after the drought, we estimated genetic parameters within and between populations and across generations. We expected that with greater temporal opportunity to cross-pollinate, due to reduced phenological isolation, these populations would exhibit an increase in gene flow following the drought. We found low but significant FST, but no change in FST or Nm across the drought, in contrast to predictions. Bayesian analysis of these data indicates minor differentiation between the two populations but no noticeable change in structure before and after the shift in flowering times. However, we found high and significant levels of FIS, indicating that inbreeding likely occurred in these populations despite self-incompatibility in B. rapa. In this system, we did not find an impact of climate change on gene flow or population structuring. The contribution of gene flow to adaptive evolution may vary by system, however, and is thus an important parameter to consider in further studies of natural responses to environmental change. Published by Oxford University Press on behalf of the Annals of Botany Company.
Tveraa, Torkild; Stien, Audun; Brøseth, Henrik; Yoccoz, Nigel G
2014-01-01
A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans. Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human–carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practice of compensation payments. This disagreement sustains the human–carnivore conflict. The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems. We utilized a long-term, large-scale data set to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry. Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates were much stronger than the effects of variation in lynx and wolverine densities. Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semi-domestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programmes, open access to data, herder involvement and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions. PMID:25558085
Bromaghin, Jeffrey F.; Evenson, D.F.; McLain, T.H.; Flannery, B.G.
2011-01-01
Fecundity is a vital population characteristic that is directly linked to the productivity of fish populations. Historic data from Yukon River (Alaska) Chinook salmon Oncorhynchus tshawytscha suggest that length‐adjusted fecundity differs among populations within the drainage and either is temporally variable or has declined. Yukon River Chinook salmon have been harvested in large‐mesh gill‐net fisheries for decades, and a decline in fecundity was considered a potential evolutionary response to size‐selective exploitation. The implications for fishery conservation and management led us to further investigate the fecundity of Yukon River Chinook salmon populations. Matched observations of fecundity, length, and genotype were collected from a sample of adult females captured from the multipopulation spawning migration near the mouth of the Yukon River in 2008. These data were modeled by using a new mixture model, which was developed by extending the conditional maximum likelihood mixture model that is commonly used to estimate the composition of multipopulation mixtures based on genetic data. The new model facilitates maximum likelihood estimation of stock‐specific fecundity parameters without first using individual assignment to a putative population of origin, thus avoiding potential biases caused by assignment error. The hypothesis that fecundity of Chinook salmon has declined was not supported; this result implies that fecundity exhibits high interannual variability. However, length‐adjusted fecundity estimates decreased as migratory distance increased, and fecundity was more strongly dependent on fish size for populations spawning in the middle and upper portions of the drainage. These findings provide insights into potential constraints on reproductive investment imposed by long migrations and warrant consideration in fisheries management and conservation. The new mixture model extends the utility of genetic markers to new applications and can be easily adapted to study any observable trait or condition that may vary among populations.
Abdalla, Ibrahim M
2002-01-01
This paper examines crash and safety statistics from the Emirate of Dubai in an attempt to identify factors responsible for making this population at greater risk of crashes compared to other countries. In developing countries such as the United Arab Emirates (U.A.E.), motor-vehicle-related mortalities frequently exceed those of the industrialized nations of North America and Europe. Fatality and injury data used in the analysis mainly come from Dubai Emirate police reports and from other relevant international sources. Groups of the population are identified according to associated risk and exposure factors. Influence and strength of the most common risk factors are quantified using relative risk, the Lorenz curve, and the Gini index. Further analysis employed logit modeling, and possible predictors available in Dubai police reports, to estimate probability and odds ratios associated with drivers that are deemed responsible for causing traffic accidents. Traffic fatality risk was found to be higher in Dubai, compared to some developed nations, and to vary considerably between different classes of road users and groups of the resident population. The likelihood of a driver causing an accident is considerably higher for those driving goods vehicles, but it is also associated with other factors. Results provide epidemiological inferences about traffic mortality and morbidity, and suggest priorities and appropriate measures for intervention, targeting resident population.
SALGADO, MARÍA V.; PÉREZ, ADRIANA; ABAD-VIVERO, ERIKA N.; THRASHER, JAMES F.; SARGENT, JAMES D.; MEJÍA, RAÚL
2016-01-01
Background Smoking scenes in movies promote adolescent smoking onset; thus, the analysis of the number of images of smoking in movies really reaching adolescents has become a subject of increasing interest. Objective The aim of this study was to estimate the level of exposure to images of smoking in movies watched by adolescents in Argentina and Mexico. Methods First-year secondary school students from Argentina and Mexico were surveyed. One hundred highest-grossing films from each year of the period 2009-2013 (Argentina) and 2010-2014 (Mexico) were analyzed. Each participant was assigned a random sample of 50 of these movies and was asked if he/she had watched them. The total number of adolescents who had watched each movie in each country was estimated and was multiplied by the number of smoking scenes (occurrences) in each movie to obtain the number of gross smoking impressions seen by secondary school adolescents from each country. Results Four-hundred and twenty-two movies were analyzed in Argentina and 433 in Mexico. Exposure to more than 500 million smoking impressions was estimated for adolescents in each country, averaging 128 and 121 minutes of smoking scenes seen by each Argentine and Mexican adolescent, respectively. Although 15, 16 and 18-rated movies had more smoking scenes in average, movies rated for younger teenagers were responsible for the highest number of smoking scenes watched by the students (67.3% in Argentina and 54.4% in Mexico) due to their larger audience. Conclusion At the population level, movies aimed at children are responsible for the highest tobacco burden seen by adolescents. PMID:27354756
Fetherman, Eric R.; Winkelman, Dana L.; Schisler, George J.; Antolin, Michael F.
2012-01-01
We used a quantitative genetics approach and estimated broad sense heritability (h2b) of myxospore count and the number of genes involved in myxospore formation to gain a better understanding of how resistance to Myxobolus cerebralis, the parasite responsible for whirling disease, is inherited in rainbow trout Oncorhynchus mykiss. An M. cerebralis-resistant strain of rainbow trout, the German Rainbow (GR), and a wild, susceptible strain of rainbow trout, the Colorado River Rainbow (CRR), were spawned to create 3 intermediate crossed populations (an F1 cross, F2 intercross, and a B2 backcross between the F1 and the CRR). Within each strain or cross, h2b was estimated from the between-family variance of myxospore counts using full-sibling families. Estimates of h2b and average myxospore counts were lowest in the GR strain, F1 cross, and F2 intercross (h2b = 0.34, 0.42, and 0.34; myxospores fish−1 = 275, 9566, and 45780, respectively), and highest in the B2 backcross and CRR strain (h2b = 0.93 and 0.89; myxospores fish−1 = 97865 and 187595, respectively). Comparison of means and a joint-scaling test suggest that resistance alleles arising from the GR strain are dominant to susceptible alleles from the CRR strain. Resistance was retained in the intermediate crosses but decreased as filial generation number increased (F2) or backcrossing occurred (B2). The estimated number of segregating loci responsible for differences in myxospore count in the parental strains was 9 ± 5. Our results indicate that resistance to M. cerebralis is a heritable trait within these populations and would respond to either artificial selection in hatcheries or natural selection in the wild.
Birznieks, Ingvars; Redmond, Stephen J.
2015-01-01
Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866
Nasari, Masoud M; Szyszkowicz, Mieczysław; Chen, Hong; Crouse, Daniel; Turner, Michelle C; Jerrett, Michael; Pope, C Arden; Hubbell, Bryan; Fann, Neal; Cohen, Aaron; Gapstur, Susan M; Diver, W Ryan; Stieb, David; Forouzanfar, Mohammad H; Kim, Sun-Young; Olives, Casey; Krewski, Daniel; Burnett, Richard T
2016-01-01
The effectiveness of regulatory actions designed to improve air quality is often assessed by predicting changes in public health resulting from their implementation. Risk of premature mortality from long-term exposure to ambient air pollution is the single most important contributor to such assessments and is estimated from observational studies generally assuming a log-linear, no-threshold association between ambient concentrations and death. There has been only limited assessment of this assumption in part because of a lack of methods to estimate the shape of the exposure-response function in very large study populations. In this paper, we propose a new class of variable coefficient risk functions capable of capturing a variety of potentially non-linear associations which are suitable for health impact assessment. We construct the class by defining transformations of concentration as the product of either a linear or log-linear function of concentration multiplied by a logistic weighting function. These risk functions can be estimated using hazard regression survival models with currently available computer software and can accommodate large population-based cohorts which are increasingly being used for this purpose. We illustrate our modeling approach with two large cohort studies of long-term concentrations of ambient air pollution and mortality: the American Cancer Society Cancer Prevention Study II (CPS II) cohort and the Canadian Census Health and Environment Cohort (CanCHEC). We then estimate the number of deaths attributable to changes in fine particulate matter concentrations over the 2000 to 2010 time period in both Canada and the USA using both linear and non-linear hazard function models.
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process.
Haines, Aaron M; Zak, Matthew; Hammond, Katie; Scott, J Michael; Goble, Dale D; Rachlow, Janet L
2013-08-13
United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.
NASA Astrophysics Data System (ADS)
Chamidah, Nur; Rifada, Marisa
2016-03-01
There is significant of the coeficient correlation between weight and height of the children. Therefore, the simultaneous model estimation is better than partial single response approach. In this study we investigate the pattern of sex difference in growth curve of children from birth up to two years of age in Surabaya, Indonesia based on biresponse model. The data was collected in a longitudinal representative sample of the Surabaya population of healthy children that consists of two response variables i.e. weight (kg) and height (cm). While a predictor variable is age (month). Based on generalized cross validation criterion, the modeling result based on biresponse model by using local linear estimator for boy and girl growth curve gives optimal bandwidth i.e 1.41 and 1.56 and the determination coefficient (R2) i.e. 99.99% and 99.98%,.respectively. Both boy and girl curves satisfy the goodness of fit criterion i.e..the determination coefficient tends to one. Also, there is difference pattern of growth curve between boy and girl. The boy median growth curves is higher than those of girl curve.
Gruber, Jonathan; Sen, Anindya; Stabile, Mark
2003-09-01
A central parameter for evaluating tax policies is the price elasticity of demand for cigarettes. But in many countries this parameter is difficult to estimate reliably due to widespread smuggling, which significantly biases estimates using legal sales data. An excellent example is Canada, where widespread smuggling in the early 1990s, in response to large tax increases, biases upwards the response of legal cigarette sales to price. We surmount this problem through two approaches: excluding the provinces and years where smuggling was greatest; and using household level expenditure data on smoking. These two approaches yield a tightly estimated elasticity in the range of -0.45 to -0.47. We also show that the sensitivity of smoking to price is much larger among lower income Canadians. In the context of recent behavioral models of smoking, whereby higher taxes reduce unwanted smoking among price sensitive populations, this finding suggests that cigarette taxes may not be as regressive as previously suggested. Finally, we show that price increases on cigarettes do not increase, and may actually decrease, consumption of alcohol; as a result, smuggling of cigarettes may have raised consumption of alcohol as well.
Estimating avian population size using Bowden's estimator
Diefenbach, D.R.
2009-01-01
Avian researchers often uniquely mark birds, and multiple estimators could be used to estimate population size using individually identified birds. However, most estimators of population size require that all sightings of marked birds be uniquely identified, and many assume homogeneous detection probabilities. Bowden's estimator can incorporate sightings of marked birds that are not uniquely identified and relax assumptions required of other estimators. I used computer simulation to evaluate the performance of Bowden's estimator for situations likely to be encountered in bird studies. When the assumptions of the estimator were met, abundance and variance estimates and confidence-interval coverage were accurate. However, precision was poor for small population sizes (N < 50) unless a large percentage of the population was marked (>75%) and multiple (≥8) sighting surveys were conducted. If additional birds are marked after sighting surveys begin, it is important to initially mark a large proportion of the population (pm ≥ 0.5 if N ≤ 100 or pm > 0.1 if N ≥ 250) and minimize sightings in which birds are not uniquely identified; otherwise, most population estimates will be overestimated by >10%. Bowden's estimator can be useful for avian studies because birds can be resighted multiple times during a single survey, not all sightings of marked birds have to uniquely identify individuals, detection probabilities among birds can vary, and the complete study area does not have to be surveyed. I provide computer code for use with pilot data to design mark-resight surveys to meet desired precision for abundance estimates.
Assessing Multivariate Constraints to Evolution across Ten Long-Term Avian Studies
Teplitsky, Celine; Tarka, Maja; Møller, Anders P.; Nakagawa, Shinichi; Balbontín, Javier; Burke, Terry A.; Doutrelant, Claire; Gregoire, Arnaud; Hansson, Bengt; Hasselquist, Dennis; Gustafsson, Lars; de Lope, Florentino; Marzal, Alfonso; Mills, James A.; Wheelwright, Nathaniel T.; Yarrall, John W.; Charmantier, Anne
2014-01-01
Background In a rapidly changing world, it is of fundamental importance to understand processes constraining or facilitating adaptation through microevolution. As different traits of an organism covary, genetic correlations are expected to affect evolutionary trajectories. However, only limited empirical data are available. Methodology/Principal Findings We investigate the extent to which multivariate constraints affect the rate of adaptation, focusing on four morphological traits often shown to harbour large amounts of genetic variance and considered to be subject to limited evolutionary constraints. Our data set includes unique long-term data for seven bird species and a total of 10 populations. We estimate population-specific matrices of genetic correlations and multivariate selection coefficients to predict evolutionary responses to selection. Using Bayesian methods that facilitate the propagation of errors in estimates, we compare (1) the rate of adaptation based on predicted response to selection when including genetic correlations with predictions from models where these genetic correlations were set to zero and (2) the multivariate evolvability in the direction of current selection to the average evolvability in random directions of the phenotypic space. We show that genetic correlations on average decrease the predicted rate of adaptation by 28%. Multivariate evolvability in the direction of current selection was systematically lower than average evolvability in random directions of space. These significant reductions in the rate of adaptation and reduced evolvability were due to a general nonalignment of selection and genetic variance, notably orthogonality of directional selection with the size axis along which most (60%) of the genetic variance is found. Conclusions These results suggest that genetic correlations can impose significant constraints on the evolution of avian morphology in wild populations. This could have important impacts on evolutionary dynamics and hence population persistence in the face of rapid environmental change. PMID:24608111
NASA Astrophysics Data System (ADS)
Fung, D. C. N.; Wang, J. P.; Chang, S. H.; Chang, S. C.
2014-12-01
Using a revised statistical model built on past seismic probability models, the probability of different magnitude earthquakes occurring within variable timespans can be estimated. The revised model is based on Poisson distribution and includes the use of best-estimate values of the probability distribution of different magnitude earthquakes recurring from a fault from literature sources. Our study aims to apply this model to the Taipei metropolitan area with a population of 7 million, which lies in the Taipei Basin and is bounded by two normal faults: the Sanchaio and Taipei faults. The Sanchaio fault is suggested to be responsible for previous large magnitude earthquakes, such as the 1694 magnitude 7 earthquake in northwestern Taipei (Cheng et. al., 2010). Based on a magnitude 7 earthquake return period of 543 years, the model predicts the occurrence of a magnitude 7 earthquake within 20 years at 1.81%, within 79 years at 6.77% and within 300 years at 21.22%. These estimates increase significantly when considering a magnitude 6 earthquake; the chance of one occurring within the next 20 years is estimated to be 3.61%, 79 years at 13.54% and 300 years at 42.45%. The 79 year period represents the average lifespan of the Taiwan population. In contrast, based on data from 2013, the probability of Taiwan residents experiencing heart disease or malignant neoplasm is 11.5% and 29%. The inference of this study is that the calculated risk that the Taipei population is at from a potentially damaging magnitude 6 or greater earthquake occurring within their lifetime is just as great as of suffering from a heart attack or other health ailments.
Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi
2014-11-01
Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Long-term monitoring of endangered Laysan ducks: Index validation and population estimates 1998–2012
Reynolds, Michelle H.; Courtot, Karen; Brinck, Kevin W.; Rehkemper, Cynthia; Hatfield, Jeffrey
2015-01-01
Monitoring endangered wildlife is essential to assessing management or recovery objectives and learning about population status. We tested assumptions of a population index for endangered Laysan duck (or teal; Anas laysanensis) monitored using mark–resight methods on Laysan Island, Hawai’i. We marked 723 Laysan ducks between 1998 and 2009 and identified seasonal surveys through 2012 that met accuracy and precision criteria for estimating population abundance. Our results provide a 15-y time series of seasonal population estimates at Laysan Island. We found differences in detection among seasons and how observed counts related to population estimates. The highest counts and the strongest relationship between count and population estimates occurred in autumn (September–November). The best autumn surveys yielded population abundance estimates that ranged from 674 (95% CI = 619–730) in 2003 to 339 (95% CI = 265–413) in 2012. A population decline of 42% was observed between 2010 and 2012 after consecutive storms and Japan’s To¯hoku earthquake-generated tsunami in 2011. Our results show positive correlations between the seasonal maximum counts and population estimates from the same date, and support the use of standardized bimonthly counts of unmarked birds as a valid index to monitor trends among years within a season at Laysan Island.
The burden of disease from indoor air pollution in developing countries: comparison of estimates.
Smith, Kirk R; Mehta, Sumi
2003-08-01
Four different methods have been applied to estimate the burden of disease due to indoor air pollution from household solid fuel use in developing countries (LDCs). The largest number of estimates involves applying exposure-response information from urban ambient air pollution studies to estimate indoor exposure concentrations of particulate air pollution. Another approach is to construct child survival curves using the results of large-scale household surveys, as has been done for India. A third approach involves cross-national analyses of child survival and household fuel use. The fourth method, referred to as the 'fuel-based' approach, which is explored in more depth here, involves applying relative risk estimates from epidemiological studies that use exposure surrogates, such as fuel type, to estimates of household solid fuel use to determine population attributable fractions by disease and age group. With this method and conservative assumptions about relative risks, 4-5 percent of the global LDC totals for both deaths and DALYs (disability adjusted life years) from acute respiratory infections, chronic obstructive pulmonary disease, tuberculosis, asthma, lung cancer, ischaemic heart disease, and blindness can be attributed to solid fuel use in developing countries. Acute respiratory infections in children under five years of age are the largest single category of deaths (64%) and DALYs (81%) from indoor air pollution, apparently being responsible globally for about 1.2 million premature deaths annually in the early 1990s.
Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits
Pintor, Anna F. V.; Schwarzkopf, Lin; Krockenberger, Andrew K.
2016-01-01
Species’ tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species’ physiological capacities and may consequently be of limited value. PMID:26990769
Xu, Yujin; Wang, Zhun; Liu, Guan; Zheng, Xiao; Wang, Yuezhen; Feng, Wei; Lai, Xiaojing; Zhou, Xia; Li, Pu; Ma, Honglian; Wang, Jin; Hu, Xiao; Chen, Ming
2016-10-01
To evaluate the clinical efficacy and toxicity of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in patients with esophageal squamous cell carcinoma (ESCC) in Chinese population. Patients with ESCC, who received SIB-IMRT from September 2011 to January 2013 were retrospectively analyzed. The SIB-IMRT plans were designed to deliver primary gross tumor volume at 60-64.4 Gy in 28-30 fractions, and planning target volume at 50.4-56 Gy in 28-30 fractions. Treatment-related toxicities were estimated based on Common Terminology Criteria for Adverse Events version 4.0, and tumor response after the treatment was estimated according to Response Evaluation Criteria in Solid Tumors version 1.0. Overall survival (OS), locoregional progression-free survival (LPFS), and progression-free survival (PFS) were estimated with Kaplan-Meier. All patients completed definitive radiotherapy, 54 (78.3%) received combined chemotherapy, of which 31 (44.9%) were concurrent chemoradiotherapy and 23 (33.3%) were sequential chemotherapy. The objective response rate is 82.6% (56/69), with complete response 11 (15.9%), partial response 45 (65.2%), stable disease 8 (11.6%), and progressive disease 5 (7.2%). The 1-, 2- and 3-year LPFS was 74.4%, 57.8%, and 55.6%, respectively. The 1-, 2- and 3-year PFS was 62.3%, 41.0%, and 34.2%, respectively, and the 1-, 2-, and 3-year OS was 73.8%, 57.4%, and 41.0%, respectively, with a median OS of 27.1 months (4.5-54.9 m). For those who received concurrent chemotherapy, the 1-, 2-, and 3-year OS was 75.9%, 69.0%, and 55.2%, respectively, better than those who had sequential chemotherapy or radiotherapy alone (χ2 = 3.115, P = 0.078). Radiation esophagitis occurred in 63.8% and 14.5% with Grade 2 and 3, respectively. No patients occurred ≥ Grade 3 radiation pneumonia. It is safe and effective using SIB-IMRT technology to treat patients with ESCC. More prospective clinical studies should be needed.
Extensive Acclimation in Ectotherms Conceals Interspecific Variation in Thermal Tolerance Limits.
Pintor, Anna F V; Schwarzkopf, Lin; Krockenberger, Andrew K
2016-01-01
Species' tolerance limits determine their capacity to tolerate climatic extremes and limit their potential distributions. Interspecific variation in thermal tolerances is often proposed to indicate climatic vulnerability and is, therefore, the subject of many recent meta-studies on differential capacities of species from climatically different habitats to deal with climate change. Most studies on thermal tolerances do not acclimate animals or use inconsistent, and insufficient, acclimation times, limiting our knowledge of the shape, duration and extent of acclimation responses. Consequently patterns in thermal tolerances observed in meta-analyses, based on data from the literature are based on inconsistent, partial acclimation and true trends may be obscured. In this study we describe time-course of complete acclimation of critical thermal minima in the tropical ectotherm Carlia longipes and compare it to the average acclimation response of other reptiles, estimated from published data, to assess how much acclimation time may contribute to observed differences in thermal limits. Carlia longipes decreased their lower critical thermal limits by 2.4°C and completed 95% of acclimation in 17 weeks. Wild populations did not mirror this acclimation process over the winter. Other reptiles appear to decrease cold tolerance more quickly (95% in 7 weeks) and to a greater extent, with an estimated average acclimation response of 6.1°C. However, without data on tolerances after longer acclimation times available, our capacity to estimate final acclimation state is very limited. Based on the subset of data available for meta-analysis, much of the variation in cold tolerance observed in the literature can be attributed to acclimation time. Our results indicate that (i) acclimation responses can be slow and substantial, even in tropical species, and (ii) interspecific differences in acclimation speed and extent may obscure trends assessed in some meta-studies. Cold tolerances of wild animals are representative of cumulative responses to recent environments, while lengthy acclimation is necessary for controlled comparisons of physiological tolerances. Measures of inconsistent, intermediate acclimation states, as reported by many studies, represent neither the realised nor the potential tolerance in that population, are very likely underestimates of species' physiological capacities and may consequently be of limited value.
Arbes, Samuel J; Gergen, Peter J; Elliott, Leslie; Zeldin, Darryl C
2005-08-01
Allergy skin tests were administered in the second and third National Health and Nutrition Examination Surveys (NHANES II and III) conducted in the United States from 1976 through 1980 and 1988 through 1994, respectively. This study estimated positive skin test response rates in NHANES III and identified predictors of one or more positive test responses. Comparisons with NHANES II were also made. In NHANES III, 10 allergens and 2 controls were tested in all subjects aged 6 to 19 years and a random half-sample of subjects aged 20 to 59 years. A wheal-based definition of a positive test response was used. In NHANES III, 54.3% of the population had positive test responses to 1 or more allergens. Prevalences were 27.5% for dust mite, 26.9% for perennial rye, 26.2% for short ragweed, 26.1% for German cockroach, 18.1% for Bermuda grass, 17.0% for cat, 15.2% for Russian thistle, 13.2% for white oak, 12.9% for Alternaria alternata, and 8.6% for peanut. Among those with positive test responses, the median number of positive responses was 3.0. Adjusted odds of a positive test response were higher for the following variables: age of 20 to 29 years, male sex, minority race, western region, old homes, and lower serum cotinine levels. For the 6 allergens common to NHANES II and III, prevalences were 2.1 to 5.5 times higher in NHANES III. The majority of the US population represented in NHANES III was sensitized to 1 or more allergens. Whether the higher prevalences observed in NHANES III reflect true changes in prevalence or methodological differences between the surveys cannot be determined with certainty.
Effects of a flooding event on a threatened black bear population in Louisiana
O'Connell-Goode, Kaitlin C.; Lowe, Carrie L.; Clark, Joseph D.
2014-01-01
The Louisiana black bear, Ursus americanus luteolus, is listed as threatened under the Endangered Species Act as a result of habitat loss and human-related mortality. Information on population-level responses of large mammals to flooding events is scarce, and we had a unique opportunity to evaluate the viability of the Upper Atchafalaya River Basin (UARB) black bear population before and after a significant flooding event. We began collecting black bear hair samples in 2007 for a DNA mark-recapture study to estimate abundance (N) and apparent survival (φ). In 2011, the Morganza Spillway was opened to divert floodwaters from the Mississippi River through the UARB, inundating > 50% of our study area, potentially impacting recovery of this important bear population. To evaluate the effects of this flooding event on bear population dynamics, we used a robust design multistate model to estimate changes in transition rates from the flooded area to non-flooded area (ψF→NF) before (2007–2010), during (2010–2011) and after (2011–2012) the flood. Average N across all years of study was 63.2 (SE = 5.2), excluding the year of the flooding event. Estimates of ψF→NF increased from 0.014 (SE = 0.010; meaning that 1.4% of the bears moved from the flooded area to non-flooded areas) before flooding to 0.113 (SE = 0.045) during the flood year, and then decreased to 0.028 (SE= 0.035) after the flood. Although we demonstrated a flood effect on transition rates as hypothesized, the effect was small (88.7% of the bears remained in the flooded area during flooding) and φ was unchanged, suggesting that the 2011 flooding event had minimal impact on survival and site fidelity.
Garfield, Richard M; Polonsky, Jonathan; Burkle, Frederick M
2012-10-01
Armed conflicts include declared cross-border and internal wars and political, ethnic, and religious hostilities. The number of conflicts worldwide and their level of intensity have varied widely during the last 5 decades. Tracking conflicts throughout this period has focused predominantly on the number of individuals killed or displaced from these hostilities through count-based estimation systems, or establishing rates of excess mortality from demographic surveys. This report focuses on people living in areas with conflict by applying an estimated level of conflict intensity to data on the population of each territory with hostilities during 1946 to 2007. Data from the Uppsala Conflict Data Program/Peace Research Institute Oslo (UCDP/PRIO) Armed Conflict project database on 324 conflicts of any type in countries with populations greater than 500 000 were combined with conflict-intensity estimates from the Center for Systemic Peace and population data from the US Census Bureau International Data Base. More than half a billion people lived in conflict-affected areas in 2007. An increasing proportion of those affected by conflict lived in early postconflict areas, where hostilities were judged or declared during the last 5 years. In the past 2 decades, the average intensity of conflict among those living in areas with a current conflict has gradually declined. A burgeoning population lives in areas where conflict has recently ended, yet most of the world's large-scale medical responses to emergencies focus on high-intensity conflicts. Effective emergency and reconstruction activities in the health sector will depend on reorganizing services to increasingly focus on and transition to low-level and postconflict environments.
Real-time earthquake shake, damage, and loss mapping for Istanbul metropolitan area
NASA Astrophysics Data System (ADS)
Zülfikar, A. Can; Fercan, N. Özge Zülfikar; Tunç, Süleyman; Erdik, Mustafa
2017-01-01
The past devastating earthquakes in densely populated urban centers, such as the 1994 Northridge; 1995 Kobe; 1999 series of Kocaeli, Düzce, and Athens; and 2011 Van-Erciş events, showed that substantial social and economic losses can be expected. Previous studies indicate that inadequate emergency response can increase the number of casualties by a maximum factor of 10, which suggests the need for research on rapid earthquake shaking damage and loss estimation. The reduction in casualties in urban areas immediately following an earthquake can be improved if the location and severity of damages can be rapidly assessed by information from rapid response systems. In this context, a research project (TUBITAK-109M734) titled "Real-time Information of Earthquake Shaking, Damage, and Losses for Target Cities of Thessaloniki and Istanbul" was conducted during 2011-2014 to establish the rapid estimation of ground motion shaking and related earthquake damages and casualties for the target cities. In the present study, application to Istanbul metropolitan area is presented. In order to fulfill this objective, earthquake hazard and risk assessment methodology known as Earthquake Loss Estimation Routine, which was developed for the Euro-Mediterranean region within the Network of Research Infrastructures for European Seismology EC-FP6 project, was used. The current application to the Istanbul metropolitan area provides real-time ground motion information obtained by strong motion stations distributed throughout the densely populated areas of the city. According to this ground motion information, building damage estimation is computed by using grid-based building inventory, and the related loss is then estimated. Through this application, the rapidly estimated information enables public and private emergency management authorities to take action and allocate and prioritize resources to minimize the casualties in urban areas during immediate post-earthquake periods. Moreover, it is expected that during an earthquake, rapid information of ground shaking, damage, and loss estimations will provide vital information to allow appropriate emergency agencies to take immediate action, which will help to save lives. In general terms, this study can be considered as an example for application to metropolitan areas under seismic risk.
Community characteristics as predictors of perceived HMO quality.
Ahern, M M; Hendryx, M S
1998-06-01
We model the impact of community characteristics on people's perceptions of the quality of their health care experiences in HMOs. We focus on three community characteristics: sense of community, population density, and population diversity. Sense of community refers to people's perception of interconnection, shared responsibility, and common goals. Population density and population diversity are community characteristics that affect transactions costs in terms of time and energy, and affect people's perceptions of their community. We use data from a 1993 Florida poll to estimate the relationship between HMO members' perceptions of problems with health care experiences (cost, choice, access, satisfaction) and community characteristics. We find that all three community variables are significantly associated with perceptions of health care problems. We also find that effects of community variables operate differently for those in HMOs vs. those under traditional insurance. This study is consistent with research showing that community characteristics impact the health status of community institutions. Results suggest that providers may be able to improve care by being more responsive to individuals' need for community, that providers and communities can mutually gain by collaborating to improve community health, and that it may be cost-beneficial to factor community issues more strongly into health care policy.
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
Change-in-ratio density estimator for feral pigs is less biased than closed mark-recapture estimates
Hanson, L.B.; Grand, J.B.; Mitchell, M.S.; Jolley, D.B.; Sparklin, B.D.; Ditchkoff, S.S.
2008-01-01
Closed-population capture-mark-recapture (CMR) methods can produce biased density estimates for species with low or heterogeneous detection probabilities. In an attempt to address such biases, we developed a density-estimation method based on the change in ratio (CIR) of survival between two populations where survival, calculated using an open-population CMR model, is known to differ. We used our method to estimate density for a feral pig (Sus scrofa) population on Fort Benning, Georgia, USA. To assess its validity, we compared it to an estimate of the minimum density of pigs known to be alive and two estimates based on closed-population CMR models. Comparison of the density estimates revealed that the CIR estimator produced a density estimate with low precision that was reasonable with respect to minimum known density. By contrast, density point estimates using the closed-population CMR models were less than the minimum known density, consistent with biases created by low and heterogeneous capture probabilities for species like feral pigs that may occur in low density or are difficult to capture. Our CIR density estimator may be useful for tracking broad-scale, long-term changes in species, such as large cats, for which closed CMR models are unlikely to work. ?? CSIRO 2008.
Hare, Matthew P; Nunney, Leonard; Schwartz, Michael K; Ruzzante, Daniel E; Burford, Martha; Waples, Robin S; Ruegg, Kristen; Palstra, Friso
2011-06-01
Effective population size (N(e)) determines the strength of genetic drift in a population and has long been recognized as an important parameter for evaluating conservation status and threats to genetic health of populations. Specifically, an estimate of N(e) is crucial to management because it integrates genetic effects with the life history of the species, allowing for predictions of a population's current and future viability. Nevertheless, compared with ecological and demographic parameters, N(e) has had limited influence on species management, beyond its application in very small populations. Recent developments have substantially improved N(e) estimation; however, some obstacles remain for the practical application of N(e) estimates. For example, the need to define the spatial and temporal scale of measurement makes the concept complex and sometimes difficult to interpret. We reviewed approaches to estimation of N(e) over both long-term and contemporary time frames, clarifying their interpretations with respect to local populations and the global metapopulation. We describe multiple experimental factors affecting robustness of contemporary N(e) estimates and suggest that different sampling designs can be combined to compare largely independent measures of N(e) for improved confidence in the result. Large populations with moderate gene flow pose the greatest challenges to robust estimation of contemporary N(e) and require careful consideration of sampling and analysis to minimize estimator bias. We emphasize the practical utility of estimating N(e) by highlighting its relevance to the adaptive potential of a population and describing applications in management of marine populations, where the focus is not always on critically endangered populations. Two cases discussed include the mechanisms generating N(e) estimates many orders of magnitude lower than census N in harvested marine fishes and the predicted reduction in N(e) from hatchery-based population supplementation. ©2011 Society for Conservation Biology.
On the demand for prescription drugs: heterogeneity in price responses.
Skipper, Niels
2013-07-01
This paper estimates the price elasticity of demand for prescription drugs using an exogenous shift in consumer co-payment caused by a reform in the Danish subsidy scheme for the general public. Using purchasing records for the entire Danish population, I show that the average price response for the most commonly used drug yields demand elasticities in the range of -0.36 to -0.5. The reform is shown to affect women, the elderly, and immigrants the most. Furthermore, this paper shows significant heterogeneity in the price response over different types of antibiotics, suggesting that the price elasticity of demand varies considerably even across relatively similar drugs. Copyright © 2012 John Wiley & Sons, Ltd.
Chlorine truck attack consequences and mitigation.
Barrett, Anthony Michael; Adams, Peter J
2011-08-01
We develop and apply an integrated modeling system to estimate fatalities from intentional release of 17 tons of chlorine from a tank truck in a generic urban area. A public response model specifies locations and actions of the populace. A chemical source term model predicts initial characteristics of the chlorine vapor and aerosol cloud. An atmospheric dispersion model predicts cloud spreading and movement. A building air exchange model simulates movement of chlorine from outdoors into buildings at each location. A dose-response model translates chlorine exposures into predicted fatalities. Important parameters outside defender control include wind speed, atmospheric stability class, amount of chlorine released, and dose-response model parameters. Without fast and effective defense response, with 2.5 m/sec wind and stability class F, we estimate approximately 4,000 (half within ∼10 minutes) to 30,000 fatalities (half within ∼20 minutes), depending on dose-response model. Although we assume 7% of the population was outdoors, they represent 60-90% of fatalities. Changing weather conditions result in approximately 50-90% lower total fatalities. Measures such as sheltering in place, evacuation, and use of security barriers and cryogenic storage can reduce fatalities, sometimes by 50% or more, depending on response speed and other factors. © 2011 Society for Risk Analysis.
Long-term population monitoring: Lessons learned from an endangered passerine in Hawai‘i
Johnson, Luanne; Camp, Richard J.; Brinck, Kevin W.; Banko, Paul C.
2006-01-01
Obtaining reliable population estimates is crucial to monitoring endangered species and developing recovery strategies. The palila (Loxioides bailleui) is an endangered seed-eating Hawaiian honeycreeper restricted to the subalpine forests of Mauna Kea, a volcano on the island of Hawai‘i, USA. The species is vulnerable to extinction primarily because >90% of the population is concentrated in <30 km2 of habitat on the western slope of this high, dormant volcano. Annual surveys of the palila population have been conducted for ecological, legal, and other purposes since 1980. Because refinements to sampling protocols and analytical methods have evolved, we examined means of adapting the monitoring program to produce comparable estimates of abundance over the past 25-year period and into the future. We conducted variable circular plot surveys during the nonbreeding season (Jan–Mar) and this used data to obtain estimates of effective detection radius and annual density with Distance 4.0, Release 2. For comparability over the time-series, we excluded from analysis the data from new transects. We partitioned the 25-year data set (1980–1996 and 1997–2004) into 2 separate analyses because, beginning in 1997, observers received more training to reduce their tendency to estimate distances to 5-m intervals. We used geographic strata in the analysis of recent surveys because changes in habitat may have invalidated the density-based strata used previously. By adding observer and year and observer and time of day as co-variables, we improved the model fit to the 2 data sets, respectively. Annual estimates were confounded by changes in sampling methodology and analytical procedures over time. However, the addition of new transects, increased training for observers, and use of exact distance estimates instead of rounding also improved model fit. Habitat characteristics and behavior of palila that potentially influenced detection probability, sampling, analysis, and interpretation were regeneration of trees in response to reduced numbers of introduced browsing mammals, seasonally variable rates of vocalization, non-territoriality, and resource-tracking along an elevation gradient. We believe our adaptive approach to analysis and interpretation of 25 years of annual variable circular plot data could help guide similar long-term monitoring efforts.
Clear: Composition of Likelihoods for Evolve and Resequence Experiments.
Iranmehr, Arya; Akbari, Ali; Schlötterer, Christian; Bafna, Vineet
2017-06-01
The advent of next generation sequencing technologies has made whole-genome and whole-population sampling possible, even for eukaryotes with large genomes. With this development, experimental evolution studies can be designed to observe molecular evolution "in action" via evolve-and-resequence (E&R) experiments. Among other applications, E&R studies can be used to locate the genes and variants responsible for genetic adaptation. Most existing literature on time-series data analysis often assumes large population size, accurate allele frequency estimates, or wide time spans. These assumptions do not hold in many E&R studies. In this article, we propose a method-composition of likelihoods for evolve-and-resequence experiments (Clear)-to identify signatures of selection in small population E&R experiments. Clear takes whole-genome sequences of pools of individuals as input, and properly addresses heterogeneous ascertainment bias resulting from uneven coverage. Clear also provides unbiased estimates of model parameters, including population size, selection strength, and dominance, while being computationally efficient. Extensive simulations show that Clear achieves higher power in detecting and localizing selection over a wide range of parameters, and is robust to variation of coverage. We applied the Clear statistic to multiple E&R experiments, including data from a study of adaptation of Drosophila melanogaster to alternating temperatures and a study of outcrossing yeast populations, and identified multiple regions under selection with genome-wide significance. Copyright © 2017 by the Genetics Society of America.
Antunes, R; Kvadsheim, P H; Lam, F P A; Tyack, P L; Thomas, L; Wensveen, P J; Miller, P J O
2014-06-15
The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Foreword: Contributions of Arctic PRISM to monitoring western hemispheric shorebirds
Skagen, Susan K.; Smith, Paul A.; Andres, Brad A.; Donaldson, Garry; Brown, Stephen; Bart, Jonathan R.; Johnston, Victoria H.
2012-01-01
Long-term monitoring of populations is of paramount importance to understanding responses of organisms to global environmental change and to evaluating whether conservation practices are yielding intended results through time (Wiens 2009). The population status of many shorebird species, the focus of this volume, remain poorly known. Long-distance migrant shorebirds have proven particularly difficult to monitor, in part because of their highly inaccessible regions. As migrant shorebirds travel the length of the hemisphere, the congregate and disperse in ways that vary among species, locations, and years, presenting serious challenges to designing and implementing monitoring programs. Rigorous field and quantitative methods that estimate population size and monitor trends are vitally needed to direct and evaluate effective conservation measures. Many management efforts depend on unbiased population size estimates; for examples, the shorebird conservation plans for both Canada and the United States seek to restore populations to levels calculated for the 1970s based on the best information available from existing surveys. Further, federal wildlife agencies within the United States and Canada have mandates to understand the state of their nations' resources under various conventions for the protection of migratory birds. Accurate estimates of population size are vital statistics for a variety of conservation activities, such as prioritizing species for conservation action and setting management targets. Areas of essential habitat, such as those designated under the Western Hemisphere Shorebird Reserve Network, the Important Bird Areas program of BirdLife Internationals and the National Audubon Society, or Canada's National Wildlife Areas program, are all evaluated on the basis of proportions of species' populations which they contain. The size, and trends in size, of a species' population are considered key information for assessing its vulnerability and subsequent listing under the U.S. Endangered Species Act and the Canadian Species at Risk Act. To meet the need for information on population size and trends, shorebird biologists from Canada and the United States proposed a shared blueprint for shorebird monitoring across the Western Hemisphere in the late 1990s; this effort was undertaken in concert with the development of the Canadian and the U.S. Shorebird Conservation Plans. Soon thereafter, partners in the monitoring effort adopted the name "Program for Regional and International Shorebird Monitoring" (PRISM). Among the primary objectives of PRISM were to estimate the population sizes and trends of breeding North American shorebirds and describe their distributions. PRISM members evaluated ongoing and potential monitoring approached to address 74 taxa (including subspecies) and proposed a combination of arctic and boreal breeding surveys, temperate breeding and non-breeding surveys, and neotropical surveys.
Genetic selection for temperament traits in dairy and beef cattle.
Haskell, Marie J; Simm, Geoff; Turner, Simon P
2014-01-01
Animal temperament can be defined as a response to environmental or social stimuli. There are a number of temperament traits in cattle that contribute to their welfare, including their response to handling or milking, response to challenge such as human approach or intervention at calving, and response to conspecifics. In a number of these areas, the genetic basis of the trait has been studied. Heritabilities have been estimated and in some cases quantitative trait loci (QTL) have been identified. The variation is sometimes considerable and moderate heritabilities have been found for the major handling temperament traits, making them amenable to selection. Studies have also investigated the correlations between temperament and other traits, such as productivity and meat quality. Despite this, there are relatively few examples of temperament traits being used in selection programmes. Most often, animals are screened for aggression or excessive fear during handling or milking, with extreme animals being culled, or EBVs for temperament are estimated, but these traits are not commonly included routinely in selection indices, despite there being economic, welfare and human safety drivers for their. There may be a number of constraints and barriers. For some traits and breeds, there may be difficulties in collecting behavioral data on sufficiently large populations of animals to estimate genetic parameters. Most selection indices require estimates of economic values, and it is often difficult to assign an economic value to a temperament trait. The effects of selection primarily for productivity traits on temperament and welfare are discussed. Future opportunities include automated data collection methods and the wider use of genomic information in selection.
Nonlinear association between betel quid chewing and oral cancer: Implications for prevention.
Madathil, Sreenath Arekunnath; Rousseau, Marie-Claude; Wynant, Willy; Schlecht, Nicolas F; Netuveli, Gopalakrishnan; Franco, Eduardo L; Nicolau, Belinda
2016-09-01
Betel quid chewing is a major oral cancer risk factor and the human papillomaviruses (HPV) may play an aetiological role in these cancers. However, little is known about the shape of the dose-response relationship between the betel quid chewing habit and oral cancer risk in populations without HPV. We estimate the shape of this dose-response relationship, and discuss implications for prevention. Cases with oral squamous cell carcinoma (350) and non-cancer controls (371) were recruited from two major teaching hospitals in South India. Information on socio-demographic and behavioral factors was collected using a questionnaire and the life grid technique. The effect of daily amount of use and duration of the habit were estimated jointly as risk associated with cumulative exposure (chew-years). The shape of the dose-response curve was estimated using restricted cubic spline transformation of chew-years in a conditional logistic regression model. Risk estimates for low dose combinations of daily amount and duration of the habit were computed from flexible regression. Most (72%) oral cancer cases were betel quid chewers in contrast to only 18% of controls. A nonlinear dose-response relationship was observed; the risk increased steeply at low doses and plateaued at high exposures to betel quid (>425 chew-years). A threefold increase in risk (OR=3.92, 95%CI: 1.87-8.21) was observed for the lowest dose; equivalent to the use of one quid per day for one year. Our findings may be used to counsel people to refrain from even low betel quid chewing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genetic selection for temperament traits in dairy and beef cattle
Haskell, Marie J.; Simm, Geoff; Turner, Simon P.
2014-01-01
Animal temperament can be defined as a response to environmental or social stimuli. There are a number of temperament traits in cattle that contribute to their welfare, including their response to handling or milking, response to challenge such as human approach or intervention at calving, and response to conspecifics. In a number of these areas, the genetic basis of the trait has been studied. Heritabilities have been estimated and in some cases quantitative trait loci (QTL) have been identified. The variation is sometimes considerable and moderate heritabilities have been found for the major handling temperament traits, making them amenable to selection. Studies have also investigated the correlations between temperament and other traits, such as productivity and meat quality. Despite this, there are relatively few examples of temperament traits being used in selection programmes. Most often, animals are screened for aggression or excessive fear during handling or milking, with extreme animals being culled, or EBVs for temperament are estimated, but these traits are not commonly included routinely in selection indices, despite there being economic, welfare and human safety drivers for their. There may be a number of constraints and barriers. For some traits and breeds, there may be difficulties in collecting behavioral data on sufficiently large populations of animals to estimate genetic parameters. Most selection indices require estimates of economic values, and it is often difficult to assign an economic value to a temperament trait. The effects of selection primarily for productivity traits on temperament and welfare are discussed. Future opportunities include automated data collection methods and the wider use of genomic information in selection. PMID:25374582
Garcia, Rita de Cassia Maria; Calderón, Néstor; Ferreira, Fernando
2012-08-01
The objective of this study is to propose a generic program for the management of urban canine populations with suggestion of performance indicators. The following international guidelines on canine population management were revised and consolidated: World Health Organization, World Organisation for Animal Health, World Society for the Protection of Animals, International Companion Animal Management Coalition, and the Food and Agriculture Organization. Management programs should cover: situation diagnosis, including estimates of population size; social participation with involvement of various sectors in the planning and execution of strategies; educational actions to promote humane values, animal welfare, community health, and responsible ownership (through purchase or adoption); environmental and waste management to eliminate sources of food and shelter; registration and identification of animals; animal health care, reproductive control; prevention and control of zoonoses; control of animal commerce; management of animal behavior and adequate solutions for abandoned animals; and laws regulating responsible ownership, prevention of abandonment and zoonoses. To monitor these actions, four groups of indicators are suggested: animal population indicators, human/animal interaction indicators, public service indicators, and zoonosis indicators. The management of stray canine populations requires political, sanitary, ethologic, ecologic, and humanitarian strategies that are socially acceptable and environmentally sustainable. Such measures must also include the control of zoonoses such as rabies and leishmaniasis, considering the concept of "one health," which benefits both the animals and people in the community.
Hierarchical modeling of population stability and species group attributes from survey data
Sauer, J.R.; Link, W.A.
2002-01-01
Many ecological studies require analysis of collections of estimates. For example, population change is routinely estimated for many species from surveys such as the North American Breeding Bird Survey (BBS), and the species are grouped and used in comparative analyses. We developed a hierarchical model for estimation of group attributes from a collection of estimates of population trend. The model uses information from predefined groups of species to provide a context and to supplement data for individual species; summaries of group attributes are improved by statistical methods that simultaneously analyze collections of trend estimates. The model is Bayesian; trends are treated as random variables rather than fixed parameters. We use Markov Chain Monte Carlo (MCMC) methods to fit the model. Standard assessments of population stability cannot distinguish magnitude of trend and statistical significance of trend estimates, but the hierarchical model allows us to legitimately describe the probability that a trend is within given bounds. Thus we define population stability in terms of the probability that the magnitude of population change for a species is less than or equal to a predefined threshold. We applied the model to estimates of trend for 399 species from the BBS to estimate the proportion of species with increasing populations and to identify species with unstable populations. Analyses are presented for the collection of all species and for 12 species groups commonly used in BBS summaries. Overall, we estimated that 49% of species in the BBS have positive trends and 33 species have unstable populations. However, the proportion of species with increasing trends differs among habitat groups, with grassland birds having only 19% of species with positive trend estimates and wetland birds having 68% of species with positive trend estimates.
NASA Astrophysics Data System (ADS)
Sidorovskaia, N.; Ackleh, A.; Ma, B.; Tiemann, C.; Ioup, J. W.; Ioup, G. E.
2012-12-01
The Littoral Acoustic Demonstration Center (LADC) is a consortium of scientists from four universities and the U.S. Navy, which performs acoustic measurements and analysis in littoral waters. For the present work, six passive autonomous broadband acoustic sensors were deployed by LADC in the vicinity of the Deep Water Horizon oil spill site in the Northern Gulf of Mexico in fall 2010. The objective of the project is to assess long-term impact of the spill on the deep-diving residential population of marine mammals, particularly, sperm and beaked whales. Collected data were processed to detect, extract, and count acoustic signals produced by different types of marine mammals. As a next step, a statistical model which uses acoustic inputs was developed to estimate residential populations of different types of marine mammals at different distances from the spill site. The estimates were compared to population estimates from years prior to the spill, using pre-spill collected data in the area by LADC from 2001, 2002, and 2007. The results indicate different responses from sperm and beaked whales in the first months following the spill. A recently published article by our research group (Ackleh et al., J. Acoust. Soc. Am. 131, 2306-2314) provides a comparison of 2007 and 2010 estimates showing a decrease in acoustic activity and abundance of sperm whales at the 9-mile distant site, whereas acoustic activity and abundance at the 25-mile distant site has clearly increased. This may indicate that some sperm whales have relocated farther away from the spill subject to food source availability. The beaked whale population appears to return to 2007 numbers after the spill even at the closest 9-mile distant site. Several acoustically observed changes in the animals' habitat associated with the spill, such as anthropogenic noise level, prey presence, etc., can be connected with the observed population trends. Preliminary results for interpreting observed population trends will be also discussed. Follow-up experiments will be critical for understanding the long-term impact on different species. [Research supported by ONR, SPAWAR, NSF, and Greenpeace.
A meta-analysis of crop pest and natural enemy response to landscape complexity.
Chaplin-Kramer, Rebecca; O'Rourke, Megan E; Blitzer, Eleanor J; Kremen, Claire
2011-09-01
Many studies in recent years have investigated the relationship between landscape complexity and pests, natural enemies and/or pest control. However, no quantitative synthesis of this literature beyond simple vote-count methods yet exists. We conducted a meta-analysis of 46 landscape-level studies, and found that natural enemies have a strong positive response to landscape complexity. Generalist enemies show consistent positive responses to landscape complexity across all scales measured, while specialist enemies respond more strongly to landscape complexity at smaller scales. Generalist enemy response to natural habitat also tends to occur at larger spatial scales than for specialist enemies, suggesting that land management strategies to enhance natural pest control should differ depending on whether the dominant enemies are generalists or specialists. The positive response of natural enemies does not necessarily translate into pest control, since pest abundances show no significant response to landscape complexity. Very few landscape-scale studies have estimated enemy impact on pest populations, however, limiting our understanding of the effects of landscape on pest control. We suggest focusing future research efforts on measuring population dynamics rather than static counts to better characterise the relationship between landscape complexity and pest control services from natural enemies. © 2011 Blackwell Publishing Ltd/CNRS.
A Population Genetic Signal of Polygenic Adaptation
Berg, Jeremy J.; Coop, Graham
2014-01-01
Adaptation in response to selection on polygenic phenotypes may occur via subtle allele frequencies shifts at many loci. Current population genomic techniques are not well posed to identify such signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge from GWAS with robust population genetic modeling to identify traits that may have been influenced by local adaptation. We exploit the fact that GWAS provide an estimate of the additive effect size of many loci to estimate the mean additive genetic value for a given phenotype across many populations as simple weighted sums of allele frequencies. We use a general model of neutral genetic value drift for an arbitrary number of populations with an arbitrary relatedness structure. Based on this model, we develop methods for detecting unusually strong correlations between genetic values and specific environmental variables, as well as a generalization of comparisons to test for over-dispersion of genetic values among populations. Finally we lay out a framework to identify the individual populations or groups of populations that contribute to the signal of overdispersion. These tests have considerably greater power than their single locus equivalents due to the fact that they look for positive covariance between like effect alleles, and also significantly outperform methods that do not account for population structure. We apply our tests to the Human Genome Diversity Panel (HGDP) dataset using GWAS data for height, skin pigmentation, type 2 diabetes, body mass index, and two inflammatory bowel disease datasets. This analysis uncovers a number of putative signals of local adaptation, and we discuss the biological interpretation and caveats of these results. PMID:25102153
Pels, Elmar G M; Aarnoutse, Erik J; Ramsey, Nick F; Vansteensel, Mariska J
2017-07-01
People who suffer from paralysis have difficulties participating in society. Particularly burdensome is the locked-in syndrome (LIS). LIS patients are not able to move and speak but are cognitively healthy. They rely on assistive technology to interact with the world and may benefit from neurotechnological advances. Optimal research and design of such aids requires a well-defined target population. However, the LIS population is poorly characterized and the number of patients in this condition is unknown. Here we estimated and described the LIS patient population in the Netherlands to define the target population for assistive (neuro)technology. We asked physicians in the Netherlands if they had patients suffering from severe paralysis and communication problems in their files. Physicians responding affirmatively were asked to fill out a questionnaire on the patients' status. We sent out 9570 letters to general practitioners (GPs), who reported 83 patients. After first screening, the GPs of 46 patients received the questionnaire. Based on the responses, 26 patients were classified as having LIS. Extrapolation of these numbers resulted in a prevalence of 0.73 patients per 100 000 inhabitants. Notable results from the questionnaire were the percentage of patients with neuromuscular disease (>50%) and living at home (>70%). We revealed an etiologically diverse group of LIS patients. The functioning and needs of these patients were, however, similar and many relied on assistive technology. By characterizing the LIS population, our study may contribute to optimal development of assistive (neuro)technology.
Bossart, J L; Scriber, J M
1995-12-01
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.
An empirical model for estimating annual consumption by freshwater fish populations
Liao, H.; Pierce, C.L.; Larscheid, J.G.
2005-01-01
Population consumption is an important process linking predator populations to their prey resources. Simple tools are needed to enable fisheries managers to estimate population consumption. We assembled 74 individual estimates of annual consumption by freshwater fish populations and their mean annual population size, 41 of which also included estimates of mean annual biomass. The data set included 14 freshwater fish species from 10 different bodies of water. From this data set we developed two simple linear regression models predicting annual population consumption. Log-transformed population size explained 94% of the variation in log-transformed annual population consumption. Log-transformed biomass explained 98% of the variation in log-transformed annual population consumption. We quantified the accuracy of our regressions and three alternative consumption models as the mean percent difference from observed (bioenergetics-derived) estimates in a test data set. Predictions from our population-size regression matched observed consumption estimates poorly (mean percent difference = 222%). Predictions from our biomass regression matched observed consumption reasonably well (mean percent difference = 24%). The biomass regression was superior to an alternative model, similar in complexity, and comparable to two alternative models that were more complex and difficult to apply. Our biomass regression model, log10(consumption) = 0.5442 + 0.9962??log10(biomass), will be a useful tool for fishery managers, enabling them to make reasonably accurate annual population consumption predictions from mean annual biomass estimates. ?? Copyright by the American Fisheries Society 2005.
Double-survey estimates of bald eagle populations in Oregon
Anthony, R.G.; Garrett, Monte G.; Isaacs, F.B.
1999-01-01
The literature on abundance of birds of prey is almost devoid of population estimates with statistical rigor. Therefore, we surveyed bald eagle (Haliaeetus leucocephalus) populations on the Crooked and lower Columbia rivers of Oregon and used the double-survey method to estimate populations and sighting probabilities for different survey methods (aerial, boat, vehicle) and bald eagle ages (adults vs. subadults). Sighting probabilities were consistently 20%. The results revealed variable and negative bias (percent relative bias = -9 to -70%) of direct counts and emphasized the importance of estimating populations where some measure of precision and ability to conduct inference tests are available. We recommend use of the double-survey method to estimate abundance of bald eagle populations and other raptors in open habitats.
Population Intervention Models to Estimate Ambient NO2 Health Effects in Children with Asthma
Snowden, Jonathan M.; Mortimer, Kathleen M.; Dufour, Mi-Suk Kang; Tager, Ira B.
2015-01-01
Health effects of ambient air pollution are most frequently expressed in individual studies as responses to a standardized unit of air pollution changes (e.g., an interquartile interval), which is thought to enable comparison of findings across studies. However, this approach does not necessarily convey health effects in terms of a real-world air pollution scenario. In the present study, we employ population intervention modeling to estimate the effect of an air pollution intervention that makes explicit reference to the observed exposure data and is identifiable in those data. We calculate the association between ambient summertime NO2 and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25–75) in a cohort of children with asthma in Fresno, California. We scale the effect size to reflect NO2 abatement on a majority of summer days. The effect estimates were small, imprecise, and consistently indicated improved pulmonary function with decreased NO2. The effects ranged from −0.8% of mean FEF25–75 (95% Confidence Interval: −3.4 , 1.7) to −3.3% (95% CI: −7.5, 0.9). We conclude by discussing the nature and feasibility of the exposure change analyzed here given the observed air pollution profile, and we propose additional applications of the population intervention model in environmental epidemiology. PMID:25182844
A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys
Jousimo, Jussi; Ovaskainen, Otso
2016-01-01
Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov–Malyshev–Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683
Decreasing stochasticity through enhanced seasonality in measles epidemics.
Mantilla-Beniers, N B; Bjørnstad, O N; Grenfell, B T; Rohani, P
2010-05-06
Seasonal changes in the environment are known to be important drivers of population dynamics, giving rise to sustained population cycles. However, it is often difficult to measure the strength and shape of seasonal forces affecting populations. In recent years, statistical time-series methods have been applied to the incidence records of childhood infectious diseases in an attempt to estimate seasonal variation in transmission rates, as driven by the pattern of school terms. In turn, school-term forcing was used to show how susceptible influx rates affect the interepidemic period. In this paper, we document the response of measles dynamics to distinct shifts in the parameter regime using previously unexplored records of measles mortality from the early decades of the twentieth century. We describe temporal patterns of measles epidemics using spectral analysis techniques, and point out a marked decrease in birth rates over time. Changes in host demography alone do not, however, suffice to explain epidemiological transitions. By fitting the time-series susceptible-infected-recovered model to measles mortality data, we obtain estimates of seasonal transmission in different eras, and find that seasonality increased over time. This analysis supports theoretical work linking complex population dynamics and the balance between stochastic and deterministic forces as determined by the strength of seasonality.
Walling, Craig A; Morrissey, Michael B; Foerster, Katharina; Clutton-Brock, Tim H; Pemberton, Josephine M; Kruuk, Loeske E B
2014-12-01
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance-covariance matrix ( G: ) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G: on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. Copyright © 2014 Walling et al.
Walling, Craig A.; Morrissey, Michael B.; Foerster, Katharina; Clutton-Brock, Tim H.; Pemberton, Josephine M.; Kruuk, Loeske E. B.
2014-01-01
Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to other recent findings and to the problems of estimating these parameters for natural populations. PMID:25278555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhki, Naoya; O'Brien, S.J.
1990-01-01
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragmentmore » length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.« less
Yuhki, N; O'Brien, S J
1990-01-01
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. We present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations. Images PMID:1967831
Friesen, Melissa C; Bassig, Bryan A; Vermeulen, Roel; Shu, Xiao-Ou; Purdue, Mark P; Stewart, Patricia A; Xiang, Yong-Bing; Chow, Wong-Ho; Ji, Bu-Tian; Yang, Gong; Linet, Martha S; Hu, Wei; Gao, Yu-Tang; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2017-01-01
To provide insight into the contributions of exposure measurements to job exposure matrices (JEMs), we examined the robustness of an association between occupational benzene exposure and non-Hodgkin lymphoma (NHL) to varying exposure assessment methods. NHL risk was examined in a prospective population-based cohort of 73087 women in Shanghai. A mixed-effects model that combined a benzene JEM with >60000 short-term, area benzene inspection measurements was used to derive two sets of measurement-based benzene estimates: 'job/industry-specific' estimates (our presumed best approach) were derived from the model's fixed effects (year, JEM intensity rating) and random effects (occupation, industry); 'calibrated JEM' estimates were derived using only the fixed effects. 'Uncalibrated JEM' (using the ordinal JEM ratings) and exposure duration estimates were also calculated. Cumulative exposure for each subject was calculated for each approach based on varying exposure definitions defined using the JEM's probability ratings. We examined the agreement between the cumulative metrics and evaluated changes in the benzene-NHL associations. For our primary exposure definition, the job/industry-specific estimates were moderately to highly correlated with all other approaches (Pearson correlation 0.61-0.89; Spearman correlation > 0.99). All these metrics resulted in statistically significant exposure-response associations for NHL, with negligible gain in model fit from using measurement-based estimates. Using more sensitive or specific exposure definitions resulted in elevated but non-significant associations. The robust associations observed here with varying benzene assessment methods provide support for a benzene-NHL association. While incorporating exposure measurements did not improve model fit, the measurements allowed us to derive quantitative exposure-response curves. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2017.
Grosche, Bernd; Lackland, Daniel T.; Land, Charles E.; Simon, Steven L.; Apsalikov, Kazbek N.; Pivina, Ludmilla M.; Bauere, Susanne; Gusev, Boris I.
2013-01-01
The data on risk of mortality from cardiovascular disease due to radiation exposure at low or medium doses are inconsistent. This paper reports an analysis of the Semipalatinsk historical cohort exposed to radioactive fallout from nuclear testing in the vicinity of the Semipalatinsk Nuclear Test Site, Kazakhstan. The cohort study, which includes 19,545 persons of exposed and comparison villages in the Semipalatinsk region, had been set up in the 1960s and comprises 582,656 person-years of follow-up between 1960 and 1999. A dosimetric approach developed by the U.S. National Cancer Institute (NCI) has been used. Radiation dose estimates in this cohort range from 0 to 630 mGy (wholebody external). Overall, the exposed population showed a high mortality from cardiovascular disease. Rates of mortality from cardiovascular disease in the exposed group substantially exceeded those of the comparison group. Dose–response analyses were conducted for both the entire cohort and the exposed group only. A dose–response relationship that was found when analyzing the entire cohort could be explained completely by differences between the baseline rates in exposed and unexposed groups. When taking this difference into account, no statistically significant dose–response relationship for all cardiovascular disease, for heart disease, or for stroke was found. Our results suggest that within this population and at the level of doses estimated, there is no detectable risk of radiation related mortality from cardiovascular disease. PMID:21787182
Grosche, Bernd; Lackland, Daniel T; Land, Charles E; Simon, Steven L; Apsalikov, Kazbek N; Pivina, Ludmilla M; Bauer, Susanne; Gusev, Boris I
2011-11-01
The data on risk of mortality from cardiovascular disease due to radiation exposure at low or medium doses are inconsistent. This paper reports an analysis of the Semipalatinsk historical cohort exposed to radioactive fallout from nuclear testing in the vicinity of the Semipalatinsk Nuclear Test Site, Kazakhstan. The cohort study, which includes 19,545 persons of exposed and comparison villages in the Semipalatinsk region, had been set up in the 1960s and comprises 582,656 person-years of follow-up between 1960 and 1999. A dosimetric approach developed by the U.S. National Cancer Institute (NCI) has been used. Radiation dose estimates in this cohort range from 0 to 630 mGy (whole-body external). Overall, the exposed population showed a high mortality from cardiovascular disease. Rates of mortality from cardiovascular disease in the exposed group substantially exceeded those of the comparison group. Dose-response analyses were conducted for both the entire cohort and the exposed group only. A dose-response relationship that was found when analyzing the entire cohort could be explained completely by differences between the baseline rates in exposed and unexposed groups. When taking this difference into account, no statistically significant dose-response relationship for all cardiovascular disease, for heart disease, or for stroke was found. Our results suggest that within this population and at the level of doses estimated, there is no detectable risk of radiation-related mortality from cardiovascular disease.
Nord, Mark; Hopwood, Heather
2007-12-01
To assess whether interview mode (telephone vs. in-person) affects the results of surveys that measure food security. Responses given by households interviewed by telephone and in-person in recent US Current Population Survey Food Security Supplements (CPS-FSS) were compared. Statistical methods based on the Rasch measurement model were used to assess whether response patterns differed between the two interview modes. Multivariate logistic regression analysis was then used to gauge the effect of interview mode on the measured household prevalence rates of food insecurity and very low food security while controlling for income, employment, household structure, and other household characteristics that affect food security. Response patterns to the indicators that comprise the food security scale did not differ substantially between interview modes. Prevalence rates of food insecurity and very low food security estimated from the two interview modes differed by only small proportions after accounting for differences in the socio-economic characteristics of households. Findings suggest that effects of interview mode on food security measurement in the CPS-FSS are small, or at most modest. Prevalence estimates may be biased upwards somewhat for households interviewed in-person compared with those interviewed by telephone. The extent to which these results can be generalised may depend, to some extent, on survey characteristics other than interview mode, such as surveyor name recognition and respondents' trust and confidence in the surveyor.
Parpia, Alyssa S; Ndeffo-Mbah, Martial L; Wenzel, Natasha S; Galvani, Alison P
2016-03-01
Response to the 2014-2015 Ebola outbreak in West Africa overwhelmed the healthcare systems of Guinea, Liberia, and Sierra Leone, reducing access to health services for diagnosis and treatment for the major diseases that are endemic to the region: malaria, HIV/AIDS, and tuberculosis. To estimate the repercussions of the Ebola outbreak on the populations at risk for these diseases, we developed computational models for disease transmission and infection progression. We estimated that a 50% reduction in access to healthcare services during the Ebola outbreak exacerbated malaria, HIV/AIDS, and tuberculosis mortality rates by additional death counts of 6,269 (2,564-12,407) in Guinea; 1,535 (522-2,8780) in Liberia; and 2,819 (844-4,844) in Sierra Leone. The 2014-2015 Ebola outbreak was catastrophic in these countries, and its indirect impact of increasing the mortality rates of other diseases was also substantial.
Williams, K.A.; Frederick, P.C.; Nichols, J.D.
2011-01-01
Many populations of animals are fluid in both space and time, making estimation of numbers difficult. Much attention has been devoted to estimation of bias in detection of animals that are present at the time of survey. However, an equally important problem is estimation of population size when all animals are not present on all survey occasions. Here, we showcase use of the superpopulation approach to capture-recapture modeling for estimating populations where group membership is asynchronous, and where considerable overlap in group membership among sampling occasions may occur. We estimate total population size of long-legged wading bird (Great Egret and White Ibis) breeding colonies from aerial observations of individually identifiable nests at various times in the nesting season. Initiation and termination of nests were analogous to entry and departure from a population. Estimates using the superpopulation approach were 47-382% larger than peak aerial counts of the same colonies. Our results indicate that the use of the superpopulation approach to model nesting asynchrony provides a considerably less biased and more efficient estimate of nesting activity than traditional methods. We suggest that this approach may also be used to derive population estimates in a variety of situations where group membership is fluid. ?? 2011 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qai, Qiang; Rushton, Gerald; Bhaduri, Budhendra L
The objective of this research is to compute population estimates by age and sex for small areas whose boundaries are different from those for which the population counts were made. In our approach, population surfaces and age-sex proportion surfaces are separately estimated. Age-sex population estimates for small areas and their confidence intervals are then computed using a binomial model with the two surfaces as inputs. The approach was implemented for Iowa using a 90 m resolution population grid (LandScan USA) and U.S. Census 2000 population. Three spatial interpolation methods, the areal weighting (AW) method, the ordinary kriging (OK) method, andmore » a modification of the pycnophylactic method, were used on Census Tract populations to estimate the age-sex proportion surfaces. To verify the model, age-sex population estimates were computed for paired Block Groups that straddled Census Tracts and therefore were spatially misaligned with them. The pycnophylactic method and the OK method were more accurate than the AW method. The approach is general and can be used to estimate subgroup-count types of variables from information in existing administrative areas for custom-defined areas used as the spatial basis of support in other applications.« less
Gupta, Manan; Joshi, Amitabh; Vidya, T N C
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species.
Joshi, Amitabh; Vidya, T. N. C.
2017-01-01
Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates. Therefore, the effect of social organization on bias in population estimation could be removed by using POPAN with specific parameter combinations, to obtain population size estimates in a social species. PMID:28306735
Comparing population size estimators for plethodontid salamanders
Bailey, L.L.; Simons, T.R.; Pollock, K.H.
2004-01-01
Despite concern over amphibian declines, few studies estimate absolute abundances because of logistic and economic constraints and previously poor estimator performance. Two estimation approaches recommended for amphibian studies are mark-recapture and depletion (or removal) sampling. We compared abundance estimation via various mark-recapture and depletion methods, using data from a three-year study of terrestrial salamanders in Great Smoky Mountains National Park. Our results indicate that short-term closed-population, robust design, and depletion methods estimate surface population of salamanders (i.e., those near the surface and available for capture during a given sampling occasion). In longer duration studies, temporary emigration violates assumptions of both open- and closed-population mark-recapture estimation models. However, if the temporary emigration is completely random, these models should yield unbiased estimates of the total population (superpopulation) of salamanders in the sampled area. We recommend using Pollock's robust design in mark-recapture studies because of its flexibility to incorporate variation in capture probabilities and to estimate temporary emigration probabilities.
Improving size estimates of open animal populations by incorporating information on age
Manly, Bryan F.J.; McDonald, Trent L.; Amstrup, Steven C.; Regehr, Eric V.
2003-01-01
Around the world, a great deal of effort is expended each year to estimate the sizes of wild animal populations. Unfortunately, population size has proven to be one of the most intractable parameters to estimate. The capture-recapture estimation models most commonly used (of the Jolly-Seber type) are complicated and require numerous, sometimes questionable, assumptions. The derived estimates usually have large variances and lack consistency over time. In capture–recapture studies of long-lived animals, the ages of captured animals can often be determined with great accuracy and relative ease. We show how to incorporate age information into size estimates for open populations, where the size changes through births, deaths, immigration, and emigration. The proposed method allows more precise estimates of population size than the usual models, and it can provide these estimates from two sample occasions rather than the three usually required. Moreover, this method does not require specialized programs for capture-recapture data; researchers can derive their estimates using the logistic regression module in any standard statistical package.
Worldwide F(ST) estimates relative to five continental-scale populations.
Steele, Christopher D; Court, Denise Syndercombe; Balding, David J
2014-11-01
We estimate the population genetics parameter FST (also referred to as the fixation index) from short tandem repeat (STR) allele frequencies, comparing many worldwide human subpopulations at approximately the national level with continental-scale populations. FST is commonly used to measure population differentiation, and is important in forensic DNA analysis to account for remote shared ancestry between a suspect and an alternative source of the DNA. We estimate FST comparing subpopulations with a hypothetical ancestral population, which is the approach most widely used in population genetics, and also compare a subpopulation with a sampled reference population, which is more appropriate for forensic applications. Both estimation methods are likelihood-based, in which FST is related to the variance of the multinomial-Dirichlet distribution for allele counts. Overall, we find low FST values, with posterior 97.5 percentiles < 3% when comparing a subpopulation with the most appropriate population, and even for inter-population comparisons we find FST < 5%. These are much smaller than single nucleotide polymorphism-based inter-continental FST estimates, and are also about half the magnitude of STR-based estimates from population genetics surveys that focus on distinct ethnic groups rather than a general population. Our findings support the use of FST up to 3% in forensic calculations, which corresponds to some current practice.
Jewett, Ethan M.; Steinrücken, Matthias; Song, Yun S.
2016-01-01
Many approaches have been developed for inferring selection coefficients from time series data while accounting for genetic drift. These approaches have been motivated by the intuition that properly accounting for the population size history can significantly improve estimates of selective strengths. However, the improvement in inference accuracy that can be attained by modeling drift has not been characterized. Here, by comparing maximum likelihood estimates of selection coefficients that account for the true population size history with estimates that ignore drift by assuming allele frequencies evolve deterministically in a population of infinite size, we address the following questions: how much can modeling the population size history improve estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of selection coefficients? We conduct our analysis under the discrete Wright–Fisher model by deriving the exact probability of an allele frequency trajectory in a population of time-varying size and we replicate our results under the diffusion model. For both models, we find that ignoring drift leads to estimates of selection coefficients that are nearly as accurate as estimates that account for the true population history, even when population sizes are small and drift is high. This result is of interest because inference methods that ignore drift are widely used in evolutionary studies and can be many orders of magnitude faster than methods that account for population sizes. PMID:27550904
Svinurai, Walter; Mapanda, Farai; Sithole, Dingane; Moyo, Elisha N; Ndidzano, Kudzai; Tsiga, Alois; Zhakata, Washington
2018-03-01
Without disregarding its role as one of the key sources of sustainable livelihoods in Zimbabwe and other developing countries, livestock production contributes significantly to greenhouse gas (GHG) emissions through enteric fermentation. For the livestock sector to complement global efforts to mitigate climate change, accurate estimations of GHG emissions are required. Methane emissions from enteric fermentation in Zimbabwe were quantified over 35years under four production systems and five agro-ecological regions. The Intergovernmental Panel on Climate Change emission factor methodology was used to derive CH 4 emissions from seven livestock categories at national level. Emission intensities based on human population, domestic export of livestock meat and climate variables were used to assess emission drivers and predict future emission trends. Over the past 35years, enteric fermentation CH 4 emissions from all livestock categories ranged between 158.3 and 204.3Ggyear -1 . Communal lands, typified by indigenous livestock breeds, had the highest contribution of between 58% and 75% of the total annual emissions followed by livestock from large scale commercial (LSC) farms. The decreasing livestock population on LSC farms and consequent decline in production could explain the lack of a positive response of CH 4 emissions to human population growth, and decreasing emissions per capita over time at -0.3kg CH 4 capita -1 year -1 . The emissions trend showed that even if Zimbabwe's national livestock population doubles in 2030 relative to the 2014 estimates, the country would still remain with similar magnitude of CH 4 emission intensity as that of 1980. No significant correlations (P>0.05) were found between emissions and domestic export of beef and pork. Further research on enhanced characterisation of livestock species, population and production systems, as well as direct measurements and modelling of emissions from indigenous and exotic livestock breeds were recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.
Fish farms, parasites, and predators: implications for salmon population dynamics.
Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A
2011-04-01
For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.
Wandeler, Peter; Camenisch, Glauco
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583
Ahlborn, W; Tuz, H J; Uberla, K
1990-03-01
In cohort studies the Mantel-Haenszel estimator ORMH is computed from sample data and is used as a point estimator of relative risk. Test-based confidence intervals are estimated with the help of the asymptotic chi-squared distributed MH-statistic chi 2MHS. The Mantel-extension-chi-squared is used as a test statistic for a dose-response relationship. Both test statistics--the Mantel-Haenszel-chi as well as the Mantel-extension-chi--assume homogeneity of risk across strata, which is rarely present. Also an extended nonparametric statistic, proposed by Terpstra, which is based on the Mann-Whitney-statistics assumes homogeneity of risk across strata. We have earlier defined four risk measures RRkj (k = 1,2,...,4) in the population and considered their estimates and the corresponding asymptotic distributions. In order to overcome the homogeneity assumption we use the delta-method to get "test-based" confidence intervals. Because the four risk measures RRkj are presented as functions of four weights gik we give, consequently, the asymptotic variances of these risk estimators also as functions of the weights gik in a closed form. Approximations to these variances are given. For testing a dose-response relationship we propose a new class of chi 2(1)-distributed global measures Gk and the corresponding global chi 2-test. In contrast to the Mantel-extension-chi homogeneity of risk across strata must not be assumed. These global test statistics are of the Wald type for composite hypotheses.(ABSTRACT TRUNCATED AT 250 WORDS)
Zimmerman, Guthrie S.; Sauer, John; Boomer, G. Scott; Devers, Patrick K.; Garrettson, Pamela R.
2017-01-01
The U.S. Fish and Wildlife Service (USFWS) uses data from the North American Breeding Bird Survey (BBS) to assist in monitoring and management of some migratory birds. However, BBS analyses provide indices of population change rather than estimates of population size, precluding their use in developing abundance-based objectives and limiting applicability to harvest management. Wood Ducks (Aix sponsa) are important harvested birds in the Atlantic Flyway (AF) that are difficult to detect during aerial surveys because they prefer forested habitat. We integrated Wood Duck count data from a ground-plot survey in the northeastern U.S. with AF-wide BBS, banding, parts collection, and harvest data to derive estimates of population size for the AF. Overlapping results between the smaller-scale intensive ground-plot survey and the BBS in the northeastern U.S. provided a means for scaling BBS indices to the breeding population size estimates. We applied these scaling factors to BBS results for portions of the AF lacking intensive surveys. Banding data provided estimates of annual survival and harvest rates; the latter, when combined with parts-collection data, provided estimates of recruitment. We used the harvest data to estimate fall population size. Our estimates of breeding population size and variability from the integrated population model (N̄ = 0.99 million, SD = 0.04) were similar to estimates of breeding population size based solely on data from the AF ground-plot surveys and the BBS (N̄ = 1.01 million, SD = 0.04) from 1998 to 2015. Integrating BBS data with other data provided reliable population size estimates for Wood Ducks at a scale useful for harvest and habitat management in the AF, and allowed us to derive estimates of important demographic parameters (e.g., seasonal survival rates, sex ratio) that were not directly informed by data.
Evaluating the impact of the HIV pandemic on measles control and elimination.
Helfand, Rita F; Moss, William J; Harpaz, Rafael; Scott, Susana; Cutts, Felicity
2005-05-01
To estimate the impact of the HIV pandemic on vaccine-acquired population immunity to measles virus because high levels of population immunity are required to eliminate transmission of measles virus in large geographical areas, and HIV infection can reduce the efficacy of measles vaccination. A literature review was conducted to estimate key parameters relating to the potential impact of HIV infection on the epidemiology of measles in sub-Saharan Africa; parameters included the prevalence of HIV, child mortality, perinatal HIV transmission rates and protective immune responses to measles vaccination. These parameter estimates were incorporated into a simple model, applicable to regions that have a high prevalence of HIV, to estimate the potential impact of HIV infection on population immunity against measles. The model suggests that the HIV pandemic should not introduce an insurmountable barrier to measles control and elimination, in part because higher rates of primary and secondary vaccine failure among HIV-infected children are counteracted by their high mortality rate. The HIV pandemic could result in a 2-3% increase in the proportion of the birth cohort susceptible to measles, and more frequent supplemental immunization activities (SIAs) may be necessary to control or eliminate measles. In the model the optimal interval between SIAs was most influenced by the coverage rate for routine measles vaccination. The absence of a second opportunity for vaccination resulted in the greatest increase in the number of susceptible children. These results help explain the initial success of measles elimination efforts in southern Africa, where measles control has been achieved in a setting of high HIV prevalence.
Fernandez, Anne R; Omar, Siti Zawiah; Husain, Ruby
2013-11-01
To develop and validate a food frequency questionnaire (FFQ) to estimate the genistein intake in a Malaysian population of pregnant women. A single 24-h dietary recall was obtained from 40 male and female volunteers. A FFQ of commonly consumed genistein-rich foods was developed from these recalls, and a database of the genistein content of foods found in Malaysia was set up. The FFQ was validated against 7-d food diary (FD) kept by 46 pregnant women and against non-fasting serum samples obtained from 64 pregnant women. Reproducibility was assessed by comparing the responses on two FFQs administered approximately 1 month apart. The Pearson correlation coefficient between FFQ1 and FD was 0.724 and that between FFQ2 and FD was 0.807. Classification into the same or adjacent quintiles was 78% for FFQ1 versus FD and 88% for FFQ2 versus FD. A significant dose -- response relation was found between FFQ-estimated genistein intake and serum levels. The FFQ developed is a reliable, valid tool for categorising people by level of genistein intake.
Worldwide incidence of hepatocellular carcinoma cases attributable to major risk factors.
Baecker, Aileen; Liu, Xing; La Vecchia, Carlo; Zhang, Zuo-Feng
2018-05-01
To facilitate regionally specific liver cancer prevention and control, this study estimates the fraction of hepatocellular carcinoma (HCC) cases attributable to five major liver cancer risk factors by geographic region. Prevalence estimates of major HCC risk factors, including chronic infection with hepatitis B and hepatitis C, alcohol drinking, tobacco smoking, obesity, and diabetes, were extracted for each country from the literature, along with recent incidence and risk estimate data, to calculate regionally specific population attributable fractions. Overall, 44% of HCC cases worldwide were attributable to chronic hepatitis B infection, with the majority of cases occurring in Asia. Hepatitis C was responsible for 21% of cases. Lifestyle risk factors such as alcohol drinking and obesity were responsible for a larger percentage of cases in North America and Western, Central, and Eastern Europe. In addition, strong sex disparities were observed when looking at lifestyle risk factors, particularly tobacco smoking, in Asia and Africa. Prominent risk factors for HCC vary depending on the region. Our findings provide useful data for developing regionally specific guidelines for liver cancer prevention and control worldwide.
Estimating the size of an open population using sparse capture-recapture data.
Huggins, Richard; Stoklosa, Jakub; Roach, Cameron; Yip, Paul
2018-03-01
Sparse capture-recapture data from open populations are difficult to analyze using currently available frequentist statistical methods. However, in closed capture-recapture experiments, the Chao sparse estimator (Chao, 1989, Biometrics 45, 427-438) may be used to estimate population sizes when there are few recaptures. Here, we extend the Chao (1989) closed population size estimator to the open population setting by using linear regression and extrapolation techniques. We conduct a small simulation study and apply the models to several sparse capture-recapture data sets. © 2017, The International Biometric Society.
PAGER--Rapid assessment of an earthquake?s impact
Wald, D.J.; Jaiswal, K.; Marano, K.D.; Bausch, D.; Hearne, M.
2010-01-01
PAGER (Prompt Assessment of Global Earthquakes for Response) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world. Earthquake alerts--which were formerly sent based only on event magnitude and location, or population exposure to shaking--now will also be generated based on the estimated range of fatalities and economic losses.
Wu, S.-S.; Wang, L.; Qiu, X.
2008-01-01
This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies.
Anderson, Weston; Guikema, Seth; Zaitchik, Ben; Pan, William
2014-01-01
Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in countries with limited data. In lieu of available population data, small area estimate models draw information from previous time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density, we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is important for regions with incomplete census data and has implications for economic, health and development policies. PMID:24992657
Vu, Lung; Adebajo, Sylvia; Tun, Waimar; Sheehy, Meredith; Karlyn, Andrew; Njab, Jean; Azeez, Aderemi; Ahonsi, Babatunde
2013-06-01
This study provides population-based estimates of HIV prevalence and factors associated with HIV infection among men who have sex with men (MSM) in 3 large cities in Nigeria. We aimed to increase the knowledge base of the evolving HIV epidemic among MSM, highlight risk factors that may fuel the epidemic, and inform future HIV prevention packages. A total of 712 MSM, aged 18 years and older, living in Abuja, Ibadan, and Lagos were recruited using respondent-driven sampling. Participants completed a behavioral questionnaire and tested for HIV. Population-based estimates were obtained using RDSAT software. Factors associated with HIV infection were ascertained using multiple logistic regression adjusting for RDSAT individualized weights. A high proportion of MSM reported high-risk behaviors, including unprotected anal sex with men (30-50%), unprotected vaginal sex with women (40%), bisexual behavior (30-45%), and never been tested for HIV (40-55%). The population-based estimates of HIV among MSM in the 3 cities were 34.9%, 11.3%, and 15.2%, respectively. In Abuja, HIV was significantly associated with unprotected sex and transactional sex. In Ibadan, HIV was significantly associated with unprotected sex and self-identified bisexual. In Lagos, HIV was significantly associated with the older age. HIV prevalence among MSM in the 3 cities was 4-10 times higher than the general population prevalence and was behaviorally linked. In response to a complex set of risks and disadvantages that put African MSM at a greater risk of HIV infection, future interventions targeting MSM should focus on a comprehensive approach that combines behavioral, biomedical, and structural interventions.
NASA Astrophysics Data System (ADS)
Park, Jang-Hyun; Lee, Young-Wook
1997-02-01
The suggestion of Lee that the age spread among galaxies is responsible for the systematic variation of the ultraviolet upturn among early-type systems is examined here with detailed population synthesis models. Our models differ from previous ones by including (1) the effect of metallicity spreads and (2) detailed modeling of the variations in H-R diagram morphology (including the helium-burning phase) with age and metallicity. Our models suggest that the far-UV radiation of these systems is dominated by a minority population of metal-poor, hot horizontal-branch (HB) stars and their post-HB progeny, with some contribution from metal-rich post-asymptotic giant branch stars, while the optical radiation is dominated by a metal-rich population. The systematic variation of the UV upturn depends on the contribution from metal-poor, hot HB stars and their post-HB progeny, which in turn depends on the ages of old stellar populations in galaxies. Our result implies a prolonged epoch of galaxy formation, in the sense that more massive galaxies (in denser environments) formed first. With the assumption that the UV-upturn phenomenon is solely due to the age variations among galaxies, we estimate the difference in age between the giant elliptical galaxies and the spiral bulges of the Local Group to be ~3 Gyr. This suggests that the best estimate for the lower limit of the age of the universe is ~19 Gyr, which of course would be in conflict with the current estimate of H0, together with the standard cosmological models with zero cosmological constant.
The risk of familial Mediterranean fever in MEFV heterozygotes: a statistical approach.
Jéru, Isabelle; Hentgen, Véronique; Cochet, Emmanuelle; Duquesnoy, Philippe; Le Borgne, Gaëlle; Grimprel, Emmanuel; Stojanovic, Katia Stankovic; Karabina, Sonia; Grateau, Gilles; Amselem, Serge
2013-01-01
Familial Mediterranean fever (FMF) is an autosomal recessive autoinflammatory disorder due to MEFV mutations and one of the most frequent Mediterranean genetic diseases. The observation of many heterozygous patients in whom a second mutated allele was excluded led to the proposal that heterozygosity could be causal. However, heterozygosity might be coincidental in many patients due to the very high rate of mutations in Mediterranean populations. To better delineate the pathogenicity of heterozygosity in order to improve genetic counselling and disease management. Complementary statistical approaches were used: estimation of FMF prevalence at population levels, genotype comparison in siblings from 63 familial forms, and genotype study in 557 patients from four Mediterranean populations. At the population level, we did not observe any contribution of heterozygosity to disease prevalence. In affected siblings of patients carrying two MEFV mutations, 92% carry two mutated alleles, whereas 4% are heterozygous with typical FMF diagnosis. We demonstrated statistically that patients are more likely to be heterozygous than healthy individuals, as shown by the higher ratio heterozygous carriers/non carriers in patients (p<10(-7)-p<0.003). The risk for heterozygotes to develop FMF was estimated between 2.1 × 10(-3) and 5.8 × 10(-3) and the relative risk, as compared to non carriers, between 6.3 and 8.1. This is the first statistical demonstration that heterozygosity is not responsible for classical Mendelian FMF per se, but constitutes a susceptibility factor for clinically-similar multifactorial forms of the disease. We also provide a first estimate of the risk for heterozygotes to develop FMF.
Generalizing the Network Scale-Up Method: A New Estimator for the Size of Hidden Populations*
Feehan, Dennis M.; Salganik, Matthew J.
2018-01-01
The network scale-up method enables researchers to estimate the size of hidden populations, such as drug injectors and sex workers, using sampled social network data. The basic scale-up estimator offers advantages over other size estimation techniques, but it depends on problematic modeling assumptions. We propose a new generalized scale-up estimator that can be used in settings with non-random social mixing and imperfect awareness about membership in the hidden population. Further, the new estimator can be used when data are collected via complex sample designs and from incomplete sampling frames. However, the generalized scale-up estimator also requires data from two samples: one from the frame population and one from the hidden population. In some situations these data from the hidden population can be collected by adding a small number of questions to already planned studies. For other situations, we develop interpretable adjustment factors that can be applied to the basic scale-up estimator. We conclude with practical recommendations for the design and analysis of future studies. PMID:29375167
The unrecognized burden of typhoid fever.
Obaro, Stephen K; Iroh Tam, Pui-Ying; Mintz, Eric Daniel
2017-03-01
Typhoid fever (TF), caused by Salmonella enterica serovar Typhi, is the most common cause of enteric fever, responsible for an estimated 129,000 deaths and more than 11 million cases annually. Although several reviews have provided global and regional TF disease burden estimates, major gaps in our understanding of TF epidemiology remain. Areas covered: We provide an overview of the gaps in current estimates of TF disease burden and offer suggestions for addressing them, so that affected communities can receive the full potential of disease prevention offered by vaccination and water, sanitation, and hygiene interventions. Expert commentary: Current disease burden estimates for TF do not capture cases from certain host populations, nor those with atypical presentations of TF, which may lead to substantial underestimation of TF cases and deaths. These knowledge gaps pose major obstacles to the informed use of current and new generation typhoid vaccines.
Jones, Roderick C; Weaver, Kingsley N; Smith, Shamika; Blanco, Claudia; Flores, Cristina; Gibbs, Kevin; Markowski, Daniel; Mutebi, John-Paul
2011-09-01
We sought to estimate West Nile virus (WNV) activity in mosquito populations weekly at the census tract level in Chicago, IL, and to provide this information graphically. Each week we calculated a vector index (VI) for each mosquito trap then generated tract estimates using geographic information systems. During June 29-September 13, 2008, a median of 527 (60%) of 874 possible tracts per week had a VI value. Overall, 94% of the weekly VI tract estimates were 0; among those with a VI estimate greater than 0, the median was 0.33 (range 0.003-3.5). Officials deemed risk levels and weather conditions appropriate for adulticide treatments on 3 occasions, resulting in the treatment of approximately 252 linear kilometers of residential streets and alleys. Our analysis successfully converted complex, raw surveillance data into a format that highlighted areas of elevated WNV activity and facilitated the determination of appropriate response procedures.
Wanat: Combat Action in Afghanistan, 2008
2010-01-01
estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources , gathering and maintaining the...fled to Pakistan, not to return until the later years of the Soviet war. With that area pacified, most significant heavy fighting was centered along...Northern Alliance. Neither side attempted to lay a heavy hand on the region out of fear of driving the local population into the arms of its enemies
ERIC Educational Resources Information Center
Bertram, Dennis A.
1994-01-01
This pilot study provides information on the effort required to conduct a telephone survey on access to care of persons with angina. Allowing for noncontact calls, refusal to participate, and ineligibility, the response rate for whites was 23.4% (2,724 of 11,559), and that of African Americans was 24.3% (2,003 of 8,242). (SLD)
An Update to the Budget and Economic Outlook: 2014 to 2024
2014-08-01
shares of gross domestic income (GDI). In principle , GDI equals GDP because each dollar of production yields a dollar of income; in practice, they...Projected Actual Percentage of GDP Percentage of the Population 1999 20092004 CONGRESS OF THE UNITED STATES CONGRESSIONAL BUDGET OFFICE CBO An Update to...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
Gordon Luikart; Nils Ryman; David A. Tallmon; Michael K. Schwartz; Fred W. Allendorf
2010-01-01
Population census size (NC) and effective population sizes (Ne) are two crucial parameters that influence population viability, wildlife management decisions, and conservation planning. Genetic estimators of both NC and Ne are increasingly widely used because molecular markers are increasingly available, statistical methods are improving rapidly, and genetic estimators...
Green, James W M; Stastna, Jana J; Orbidans, Helen E; Harvey, Simon C
2014-01-01
Determining how complex traits are genetically controlled is a requirement if we are to predict how they evolve and how they might respond to selection. This requires understanding how distinct, and often more simple, life history traits interact and change in response to environmental conditions. In order to begin addressing such issues, we have been analyzing the formation of the developmentally arrested dauer larvae of Caenorhabditis elegans under different conditions. We find that 18 of 22 previously identified quantitative trait loci (QTLs) affecting dauer larvae formation in growing populations, assayed by determining the number of dauer larvae present at food patch exhaustion, can be recovered under various environmental conditions. We also show that food patch size affects both the ability to detect QTLs and estimates of effect size, and demonstrate that an allele of nath-10 affects dauer larvae formation in growing populations. To investigate the component traits that affect dauer larvae formation in growing populations we map, using the same introgression lines, QTLs that affect dauer larvae formation in response to defined amounts of pheromone. This identifies 36 QTLs, again demonstrating the highly polygenic nature of the genetic variation underlying dauer larvae formation. These data indicate that QTLs affecting the number of dauer larvae at food exhaustion in growing populations of C. elegans are highly reproducible, and that nearly all can be explained by variation affecting dauer larvae formation in response to defined amounts of pheromone. This suggests that most variation in dauer larvae formation in growing populations is a consequence of variation in the perception of the food and pheromone environment (i.e. chemosensory variation) and in the integration of these cues.
Cabrera-León, A; Lopez-Villaverde, V; Rueda, M; Moya-Garrido, M N
2015-11-01
How does the estimated prevalence of infertility among 30- to 49-year-old women vary when using different approaches to its measurement? The prevalence of women with difficulties in conceiving differed widely according to the measurement approach adopted. Establishing the true magnitude of infertility as a public health problem is challenging, given that it is not categorized as a disability or chronic condition and may be largely unreported. The time required to conceive is an increasingly frequent concern among couples of reproductive age. Population-based studies do not consider multiple approaches to infertility measurement in the same sample. A face-to-face cross-sectional population-based survey of 443 women aged between 30 and 49 years residing in Huelva, southern Spain, was carried out. The sample size estimation was based on an assumed prevalence of infertility of 19%, a sampling error of ±4.84 percentage points, a design effect of 1.8 and a 95% confidence level. The information was collected in 2011. Self-reported information was gathered on socio-demographic data, pregnancy history, time required to become pregnant and perception of difficulties in becoming pregnant. Eight approaches to the estimation of infertility prevalence were considered: diagnosed infertility, subjective infertility, 1-year infertility, primary infertility, secondary infertility and subfertility based on the time taken to conceive (6, 12 or 24 months). Calibration estimators (indirect estimation techniques) were used to extrapolate the infertility prevalences to the whole of Spain. The response rate was 61.05%. Among 30- to 49-year-old Spanish women, 1.26% had a clinical diagnosis of infertility, 17.58% did not achieve pregnancy in 1 year (1-year infertility), 8.22% perceived difficulties in procreation (subjective infertility), 6.12% had not succeeded in having biological children (primary infertility) and 11.33% had not been able to have another biological child (secondary infertility). Finally, pregnancy was not achieved within 6, 12 and 24 months of starting to attempt conception in 19.98, 11.21 and 4.36% of women, respectively. These approaches to estimate the prevalence of infertility show similar socio-demographic patterns except for educational level. Calibration adjustments allowed extrapolation of these prevalences to Spain and a reduction of from 3.7 to 90.4% in their variances. The response rate was moderate but acceptable in comparison to similar studies. We only asked whether the women had practiced intercourse without contraceptive methods for >1 year. Hence, we could only calculate the time for which a couple were trying to become pregnant when the woman became pregnant, and we do not know whether it was longer than 1 year for the women failing to conceive. Future research should avoid this study weakness by gathering quantitative data on the months during which vaginal sexual intercourse was practiced, with no time limit. The only prevalence with a high coefficient of variation was that for diagnosed infertility, and our estimation for this prevalence should be interpreted with caution. Despite major differences according to the approach adopted, the prevalences of infertility estimated in our study are comparable with those obtained in other similar studies. A set of categories to measure infertility including subjective infertility, 1-year infertility and subfertility have been proposed here, which may be useful for cross-disciplinary comparisons of infertility in clinical and population-based studies. These measures may also assist health managers to tailor fertility resources and services to the real needs of the population and provide a more rapid and effective response to couples. Finally, the calibration adjustments (indirect estimation techniques) applied to the infertility prevalences help to maximize their generalization and improve accuracy. This technique may be considered as a model for application in other epidemiological studies. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.
2006-01-01
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited. ?? 2006 British Ecological Society.
Ezoe, Satoshi; Morooka, Takeo; Noda, Tatsuya; Sabin, Miriam Lewis; Koike, Soichi
2012-01-01
Men who have sex with men (MSM) are one of the groups most at risk for HIV infection in Japan. However, size estimates of MSM populations have not been conducted with sufficient frequency and rigor because of the difficulty, high cost and stigma associated with reaching such populations. This study examined an innovative and simple method for estimating the size of the MSM population in Japan. We combined an internet survey with the network scale-up method, a social network method for estimating the size of hard-to-reach populations, for the first time in Japan. An internet survey was conducted among 1,500 internet users who registered with a nationwide internet-research agency. The survey participants were asked how many members of particular groups with known population sizes (firepersons, police officers, and military personnel) they knew as acquaintances. The participants were also asked to identify the number of their acquaintances whom they understood to be MSM. Using these survey results with the network scale-up method, the personal network size and MSM population size were estimated. The personal network size was estimated to be 363.5 regardless of the sex of the acquaintances and 174.0 for only male acquaintances. The estimated MSM prevalence among the total male population in Japan was 0.0402% without adjustment, and 2.87% after adjusting for the transmission error of MSM. The estimated personal network size and MSM prevalence seen in this study were comparable to those from previous survey results based on the direct-estimation method. Estimating population sizes through combining an internet survey with the network scale-up method appeared to be an effective method from the perspectives of rapidity, simplicity, and low cost as compared with more-conventional methods.
Hisano, Mizue; Connolly, Sean R; Robbins, William D
2011-01-01
Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.
Hisano, Mizue; Connolly, Sean R.; Robbins, William D.
2011-01-01
Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing. PMID:21966402
Luminance, Colour, Viewpoint and Border Enhanced Disparity Energy Model
Martins, Jaime A.; Rodrigues, João M. F.; du Buf, Hans
2015-01-01
The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas. PMID:26107954
Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.
Sokoloski, Sacha
2017-09-01
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.