Science.gov

Sample records for estimating atmospheric pollutant

  1. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  2. Atmospheric pollution

    SciTech Connect

    Schlesinger, R.B. )

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  3. Atmospheric pollution.

    PubMed

    Schlesinger, R B

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  4. Students 'Weigh' Atmospheric Pollution.

    ERIC Educational Resources Information Center

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  5. Deposition of Atmospheric Pollutants

    NASA Astrophysics Data System (ADS)

    Malet, L. M.

    Deposition of Atmospheric Pollutants, containing the proceedings of a colloquium held at Oberursel/Taunus, FRG, November 9-11, 1981, is divided into three main parts: dry deposition; wet deposition; and deposition on plants and vegetation.The 20 articles in the volume permit a fair survey of present-day knowledge and will be a useful tool to all working on the topic. Pollution by deposition of either the dry or wet sort is very insidious; its importance only appears in the long range, when its effects are or are almost irreversible. That is why concern was so long in emerging from decision makers.

  6. PLATIN (plant-atmosphere interaction) I: A model of plant-atmosphere interaction for estimating absorbed doses of gaseous air pollutants.

    PubMed

    Grünhage, L; Haenel, H D

    1997-01-01

    A PLant-ATmosphere INteraction model (PLATIN) was developed for estimating air pollutant absorbed doses under ambient conditions. PLATIN is based on the canopy energy balance combined with a gas transport submodel. The model has three major resistance components: (1) a turbulent atmospheric resistance Rah(zm) that describes the atmospheric transport properties between a measurement height above the canopy and the conceptual height z=d+z0m which represents the sink for momentum according to the big-leaf concept; (2) a quasilaminar layer resistance R(b,A) that quantifies the way in which the transfer of sensible heat and matter (e.g. latent heat, ozone) differs from momentum transfer; (3) a canopy or surface resistance R(c,A) that describes the influences of the plant/soil system on the exchange processes. Soil water content is simulated by a Force-Restore model. By a simple interception submodel precipitation and dew are partitioned into intercepted water and water reaching the soil surface. PLATIN can be run in a prognostic or a diagnostic mode. It is also intended for on-line use in air quality monitoring networks.

  7. Atmospheric pollution and lung cancer.

    PubMed Central

    Doll, R

    1978-01-01

    Lung cancer is consistently more common in urban areas than in rural. The excess cannot be accounted for by specific occupational hazards but some of it might be due to the presence of carcinogens in urban air. The excess cannot be wholly due to such agents, because the excess in nonsmokers is small and variable. Cigarette consumption has also been greater in urban areas, but it is difficult to estimate how much of the excess it can account for. Occupational studies confirm that pollutants present in town air are capable of causing lung cancer in man and suggest that the pollutants and cigarette smoke act synergistically. The trends in the mortality from lung cancer in young and middle-aged men in England and Wales provide uncertain evidence but support the belief that atmospheric pollution has contributed to the production of the disease. In the absence of cigarette smoking, the combined effect of all atmospheric carcinogens is not responsible for more than about 5 cases of lung cancer per 100,000 persons per year in European populations. PMID:648488

  8. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    PubMed

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RI<105μm) and it combines source and transport factors for road dust particles <105μm in diameter. It could quantify and differentiate the impact of the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RI<105μm in the Beijing region to assess the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RI<105μm method offers a new and useful tool for assessing the potential risks posed by metals associated with road dust on atmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions.

  9. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  10. Megacities and atmospheric pollution.

    PubMed

    Molina, Mario J; Molina, Luisa T

    2004-06-01

    About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog--induced primarily from traffic, but also from industrial activities, power generation, and solvents--has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to climate change. Yet, with appropriate planning, megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems. This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. While each city--its problems, resources, and outlook--is unique, the need for a holistic approach to the complex environmental problems is the same. There is no single strategy in reducing air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialog is essential to effectively implement the regulations required to address air quality problems.

  11. Atmospheric Chemistry and Air Pollution

    DOE PAGESBeta

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  12. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  13. Atmospheric pollution in Lisbon urban atmosphere

    NASA Astrophysics Data System (ADS)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µm

  14. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  15. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  16. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  17. A mathematical model, algorithm, and package of programs for simulation and prompt estimation of the atmospheric dispersion of radioactive pollutants

    SciTech Connect

    Nikolaev, V.I.; Yatsko, S.N.

    1995-12-01

    A mathematical model and a package of programs are presented for simulating the atmospheric turbulent diffusion of contaminating impurities from land based and other sources. Test calculations and investigations of the effect of various factors are carried out.

  18. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  19. ESTIMATING URBAN WET-WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads in urban watersheds emanating from wet-weather flow discharge. Equations for pollutant loading estimates will focus on the effects of wastewater characteristics, sewer flow carrying velocity, and sewer-solids depositi...

  20. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: Does it make a difference?

    PubMed

    Ouidir, Marion; Giorgis-Allemand, Lise; Lyon-Caen, Sarah; Morelli, Xavier; Cracowski, Claire; Pontet, Sabrina; Pin, Isabelle; Lepeule, Johanna; Siroux, Valérie; Slama, Rémy

    2015-11-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=-0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=-0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them.

  1. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: does it make a difference?

    PubMed Central

    Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA

    2016-01-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245

  2. Atmospheric pollutants and trace gases

    SciTech Connect

    Ranieri, A.; Schenone, G.; Lencioni, L.; Soldatini, G.F.

    1994-03-01

    Pumpkin [Cucurbita pepo (L.) cv. Ambassador] plants were grown under either nonfiltered or filtered ambient air in open-top field chambers (OTCs) near the urban area of Milan, Northern Italy. The effects of ambient air pollution on the enzymatic detoxfication system of the leaves, both in terms of activity and isoform pattern were investigated. The data on air quality showed that ozone was the main phytotoxic pollutant present in ambient air, reaching a 7 h mean of 63 nL L{sup -1} and a maximum hourly peak of 104 nL L{sup -1} The peroxidase and catalase activities increased fourfold and twofold, respectively in the nonfiltered air plants In comparison to the filtered air ones. The peroxidase patterns were very modified in the polluted plants. In contrast no significant changes were found in the activity and isoenzyme pattern of superoxide dismutase. The data reported here suggest that in field-grown pumpkin plants exposed to ambient levels of photooxidants, a stimulation of the peroxddase-catalase detoxification system takes place. 32 refs., 3 figs., 3 tabs.

  3. Medical aspects of atmosphere pollution in Tbilisi, Georgia.

    PubMed

    Lagidze, Lamzira; Matchavariani, Lia; Tsivtsivadze, Nodar; Khidasheli, Nargiz; Paichadze, Nino; Motsonelidze, Nargiz; Vakhtangishvili, Maia

    2015-01-01

    Climate change and its impact on ecosystems is one of the main problem of 21st century. Increase in green house gas in the atmosphere was regarded as an important cause. Atmospheric composition had significantly changed due to intensive technogenic pollution. Increase in aerosol (solid, liquid and gas) concentration had serious impact on human health and raised the level of risk factors for longevity of life. Despite, global character of climatic change and its intensity in numerous ways was influenced by local specificity of regions, their geographical location and meteorological factors. A study on the atmospheric quality (quantitative and percentage estimation of aerosols) of Georgia was carried out. Also the assessment of impact of meteorological and ecological conditions on human health was made for Tbilisi city. A relation between contaminants and meteorological factors was evaluated, particularly gas pollutants were strongly correlated with each other due to their photochemical activity; positive correlation (0.65; 0.69) between air temperature and pollutants. All the contaminants showed negative correlation with relative humidity, due to hydrolyzing ability. On the basis of multi-factorial statistical analysis, correlation between ambulance call, weather type, atmosphere pollution index, change in ground ozone quantity and earth magnetic field were determined. Atmospheric pollution due to dust, carbon, sulfur and nitrogen oxides, ground ozone quantity in Tbilisi significantly exceeded maximum permissible level, that effected human health.

  4. Medical aspects of atmosphere pollution in Tbilisi, Georgia.

    PubMed

    Lagidze, Lamzira; Matchavariani, Lia; Tsivtsivadze, Nodar; Khidasheli, Nargiz; Paichadze, Nino; Motsonelidze, Nargiz; Vakhtangishvili, Maia

    2015-01-01

    Climate change and its impact on ecosystems is one of the main problem of 21st century. Increase in green house gas in the atmosphere was regarded as an important cause. Atmospheric composition had significantly changed due to intensive technogenic pollution. Increase in aerosol (solid, liquid and gas) concentration had serious impact on human health and raised the level of risk factors for longevity of life. Despite, global character of climatic change and its intensity in numerous ways was influenced by local specificity of regions, their geographical location and meteorological factors. A study on the atmospheric quality (quantitative and percentage estimation of aerosols) of Georgia was carried out. Also the assessment of impact of meteorological and ecological conditions on human health was made for Tbilisi city. A relation between contaminants and meteorological factors was evaluated, particularly gas pollutants were strongly correlated with each other due to their photochemical activity; positive correlation (0.65; 0.69) between air temperature and pollutants. All the contaminants showed negative correlation with relative humidity, due to hydrolyzing ability. On the basis of multi-factorial statistical analysis, correlation between ambulance call, weather type, atmosphere pollution index, change in ground ozone quantity and earth magnetic field were determined. Atmospheric pollution due to dust, carbon, sulfur and nitrogen oxides, ground ozone quantity in Tbilisi significantly exceeded maximum permissible level, that effected human health. PMID:26591888

  5. Atmospheric Pollution: Its Origins and Prevention.

    ERIC Educational Resources Information Center

    Meetham, A. R.

    Although atmospheric pollution can be reduced or eliminated in many different ways, each way involves questions of economics, the time factor, availability of materials, priority over other urgent reforms, and individual and social psychology. To provide a basis for consideration of these questions, this book gives information not only about the…

  6. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  7. Estimation of the efficiency of the hybrid LIDAR-DOAS system of lidar sensing of the polluted atmosphere using pulsed excilamps

    NASA Astrophysics Data System (ADS)

    Krekov, G. M.; Krekova, M. M.; Lisenko, A. A.; Sukhanov, A. Ya.; Erofeev, M. V.; Lomaev, M. I.; Tarasenko, V. F.

    2010-12-01

    Results of a closed numerical experiment on laser sensing of minor gas impurity concentrations in the tropospheric layer of the atmosphere based on new hybrid LIDAR-DOAS technique with a XeCl* excilamp used for a pulsed wideband radiation source are discussed. Quantitative estimates obtained using a new stochastic genetic search algorithm confirm that the suggested approach, expanding the possibilities of the classical Differential Optical Absorption Spectroscopy (DOAS) system to remote monitoring and localization of dangerous anthropogenic emissions of toxic gases up to the tropopause height, is promising. The necessity of estimating backscattered signals with high spectral resolution by solving the nonstationary radiative transfer equation calls for a significant modification of the statistical simulation algorithms. A combination of the Monte Carlo method with a genetic algorithm of solving inverse problems of reconstructing profiles of gaseous components in the troposphere enables exact quantitative prediction of the efficiency of new promising lidar systems of environmental monitoring to be provided.

  8. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p

  9. ESTIMATING URBAN WET WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...

  10. Estimating the benefits of pollution reduction on agricultural yields: Taiwan's air pollution emission fees program.

    PubMed

    Chen, Tser-yieth; Li, Chun-sheng

    2003-07-01

    Taiwan's implementation of the 1997 Air Pollution Emissions Fees Program will conceivably lead to long-term reductions in pollution emissions. The purpose of this paper is to estimate the benefits to Taiwan from the expected reduction in crop losses as a direct result of such a decrease in air pollution. We employ a demand-supply framework for rice production to estimate the change in social welfare resulting from changes in the concentration of certain pollutants in the atmosphere. Our empirical results show that, in the year 1997, social welfare increments resulting from the decline in sulfur dioxide concentrations in the atmosphere ranged between US dollars 946200 and US dollars 2435800. Meanwhile, during the same period, the increase in social welfare due to the decline in the ozone concentration in the atmosphere ranged between US dollars 838100 and US dollars 1927000. The average benefit from the reduction in both sulfur dioxide and ozone concentrations is calculated to be between US dollars 2.67 and US dollars 6.86 per acre (for sulfur dioxide), and from US dollars 2.36 to US dollars 5.43 per acre (for ozone). PMID:12837257

  11. Atmospheric pollutant outflow from southern Asia: a review

    NASA Astrophysics Data System (ADS)

    Lawrence, M. G.; Lelieveld, J.

    2010-11-01

    Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook

  12. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  13. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    ERIC Educational Resources Information Center

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  14. Adaptation of plants to atmospheric pollutants.

    PubMed

    Hutchinson, T C

    1984-01-01

    Man-made air pollutants are a recent phenomenon in the evolutionary experience of plants and animals although natural air pollutants from volcanic eruptions, forest fires and dust storms have accompanied evolution for geological eras. Plants have responded to increasing concentrations of such pollutants as sulphur dioxide, fluorides, photochemical oxidants and acid rain at the community, species, population and individual levels. The lichens and bryophytes have shown particularly dramatic changes in urban and industrial areas. Many species have had their distribution severely limited. Tolerances to sulphur dioxide have evolved in populations of a number of grasses and herbs, and some sulphur dioxide-tolerant lichens have invaded inner city areas. Sensitivity to pollutants is partly a function of substrate chemistry. Synergistic interactions occur between various pollutants and also between pollutants and pathogens. A good deal of genetic variation occurs within crops, and this allows for selection of pollution-tolerant varieties. The nature of specific adaptations is not generally well known although, for sulphur dioxide, recent studies in poplar and spinach strongly suggest that increased production of the enzyme superoxide dismutase may be a key factor. In other adaptations, morphological and anatomical features play a part.

  15. Application of computational fluid mechanics to atmospheric pollution problems

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  16. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  17. Plants as bioassay systems for monitoring atmospheric pollutants

    PubMed Central

    Feder, William A.

    1978-01-01

    Plant species act as natural bioindicators of atmospheric pollutants. Plants can be used as bioassay systems for monitoring atmospheric pollutants. Plant injury symptoms, altered growth and reproductive pattern, changes in yield and/or productivity, and changes in species distribution can be used singly or in combination as monitoring devices. The results must be accepted as semiquantitative, but within that constraint, air quality can be sufficiently well defined to enable the setting of air quality standards. Genetic variability of higher plant species has yielded cultivars which display a range of tolerance to gaseous and particulate atmospheric pollutants. Asexual propagation of these cultivars provides pollutant-sensitive and pollutant-tolerant plant material which can be grown on selected sites for observation. Gymnosperm and Angiosperm species as well as species of lichens and mosses have been used to establish field monitoring networks in Europe, Canada, and the United States. White pine, shade tobacco, mosses, and lichens have proven particularly useful as bioassay tools. Pollen from pollutant-sensitive and pollutant-tolerant plant cultivars has also been used as a sensitive laboratory bioassay tool for studying air quality. Epiphytic mosses are particularly efficient as monitors of particulate pollutants, especially heavy metals, some of which may act as chemical mutagens. The cost, complexity, and lack of reliability of instrumented systems for air quality monitoring make imperative the need to develop successful plant bioassay systems for monitoring air quality. PMID:738233

  18. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    PubMed Central

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-01-01

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective. PMID:25748923

  19. ZASPE: Zonal Atmospheric Stellar Parameters Estimator

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordan, Andres; Hartman, Joel; Bakos, Gaspar

    2016-07-01

    ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.

  20. Constraining CO emission estimates using atmospheric observations

    NASA Astrophysics Data System (ADS)

    Hooghiemstra, P. B.

    2012-06-01

    We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions

  1. Effects of pollutant atmospheres on surface receptors of pulmonary macrophages

    SciTech Connect

    Prasad, S.B.; Rao, V.S.; Mannix, R.C.; Phalen, R.F.

    1988-01-01

    The effects of two multicomponent pollutant atmospheres on the surface receptors (FcR) and phagocytic activity of rat pulmonary alveolar macrophages have been studied. FcR are crucial for the macrophages to become cytotoxic against target cells. The atmospheres were composed of pollutants that are prevalent in the South Coast Air Basin of southern California. Rats were exposed nose-only to a 7-component oxidant-and sulfate-containing atmosphere for 4 h/d for either 7 or 21 consecutive days. In another experiment rats were exposed 5 h/d for 5 consecutive days to another pollutant combination--acid droplets plus carbon-containing dilute diesel engine exhaust. In both experiments matched rats were exposed nose-only to purified air to be used as controls. Each of the atmospheres studied significantly reduced FcR activity for at least 3 d following the exposure, with the group of rats exposed to the 7-component atmosphere for 21 d exhibiting the most pronounced effect. Macrophages from rats exposed to the diesel exhaust plus acid atmosphere and the 7-component atmosphere for 7 d had significantly reduced phagocytic activity for at least 3 d postexposure, while the macrophages from rats exposed to the latter atmosphere for 21 d had phagocytic activity near control values. The decrease in phagocytosis and inhibition of FcR of macrophages suggests an impairment of macrophage function that probably renders the host vulnerable to bacterial and/or viral infections.

  2. Particle Pollution Estimation Based on Image Analysis.

    PubMed

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction. PMID:26828757

  3. Particle Pollution Estimation Based on Image Analysis

    PubMed Central

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction. PMID:26828757

  4. Particle Pollution Estimation Based on Image Analysis.

    PubMed

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

  5. Atmospheric ozone and man-made pollution.

    PubMed

    Fabian, P

    1976-06-01

    Atmospheric photochemistry and transport processes, related to the ozone layer, are discussed. Natural or man-made changes of the biosphere, variations of radiation, or general circulation as well as anthropogenic release of ozone-destroying catalysts are likely to alter the earth's ozone shield. The possible effects of ozone depletion caused by supersonic aircraft, nuclear weapons, nitrogen fertilizers, and chlorofluoromethanes are discussed.

  6. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    PubMed Central

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples. PMID:17671615

  7. Supplemental mathematical formulations, Atmospheric pathway: The Multimedia Environmental Pollutant Assessment System (MEPAS)

    SciTech Connect

    Droppo, J.G.; Buck, J.W.

    1996-03-01

    The Multimedia Environmental Pollutant Assessment System (MEPAS) is an integrated software implementation of physics-based fate and transport models for health and environmental risk assessments of both radioactive and hazardous pollutants. This atmospheric component report is one of a series of formulation reports that document the MEPAS mathematical models. MEPAS is a ``multimedia`` model; pollutant transport is modeled within, through, and between multiple media (air, soil, groundwater, and surface water). The estimated concentrations in the various media are used to compute exposures and impacts to the environment, to maximum individuals, and to populations.

  8. Estimating the social costs of nitrogen pollution

    NASA Astrophysics Data System (ADS)

    Gourevitch, J.; Keeler, B.; Polasky, S.

    2014-12-01

    Agricultural expansion can degrade water quality and related ecosystem services through increased export of nutrients. Such damages to water quality can negatively affect recreation, property values, and human health. While the relationship between agricultural production and nitrogen export is well-studied, the economic costs of nitrogen loss are less well understood. We present a comprehensive assessment of the full costs associated with nitrate pollution from agricultural sources in Minnesota. We found that the most significant economic costs are likely from groundwater contamination of nitrate in public and private wells. For example, we estimated that loss of grassland to corn cultivation in Minnesota between 2007 and 2012 is expected to increase the future number of domestic wells exceeding nitrate concentrations of 10 ppm by 31%. This increase in contamination is estimated to cost well owners $1.4 to 19 million (present values over a 20 year horizon) through remediation, avoidance, and replacement. Our findings demonstrate linkages between changes in land use, water quality, and human well-being.

  9. Global Monitoring of Atmospheric Pollutants from the Aura Satellite

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Leptoukh, G.; Johnson, J.; Farley, J.; Kempler, S.

    2007-12-01

    Atmospheric measurements of O3, CO, NO2, SO2, HCHO, Aerosol and other pollutants are routinely made by the OMI, MLS, HIRDLS and TES instruments flown on the EOS Aura satellite since its launch in July 2004. These measurements provide information on the vertical and horizontal distribution of atmospheric pollutants. High concentrations of these pollutants come principally from motor vehicle exhaust, coal and oil combustion, refineries, and biomass burning. These gases play a major role in the formation of unhealthy ground level ozone (or smog) and can trigger serious respiratory problems. The convective transport of these gases, smoke and dust also pollute the upper troposphere and lower stratosphere where the residence time of these pollutants is relatively long and atmospheric winds transport these pollutants to far distances across the oceans and continents. This presentation provides some examples of how Aura data can be used in monitoring air quality by identifying sources of air pollution and understanding the distribution of these pollutants as they get transported extensive distances from their source. In this study we have also used the Aerosol Index data from TOMS, CO data from MOPITT and AIRS, Aerosol data from MODIS, Aerosol layer height information from CALIPSO, and wind information from the NCEP/NCAR reanalysis. This study uses the web based data exploration and analysis tool Giovanni developed at the NASA Goddard Earth Sciences Data Services and Information Center (GES DSIC). Giovanni provides easy access to satellite data, eliminating the need to download large data sets and thus saving the user time. Giovanni capabilities include on- line animations of 2D maps, time-series plots (including statistics), several combinations of 2D cross-section maps (latitude/longitude/height/time), scatter plots, correlation maps, and collocated subsets of the data along CALIPSO tracks.

  10. Estimating mixing in hot Jupiter atmospheres

    NASA Astrophysics Data System (ADS)

    Kataria, Tiffany; Lewis, Nikole; Lian, Yuan; Marley, Mark S.

    2016-10-01

    Ground- and space-based observations of exoplanets have shown that like solar system planets and brown dwarfs, clouds are ubiquitous in exoplanet atmospheres. However, the dynamics that underpin their formation and transport are still poorly understood. In order to further elucidate the three-dimensional mixing in exoplanet atmospheres, we present a generalized study comparing the dynamics of exoplanets to brown dwarfs and solar system planets. We utilize previously published hot Jupiter GCMs to estimate the microphysical timescales that dictate cloud formation and calculate horizontal and vertical wind profiles, and compare those to these other classes of substellar objects. In doing so, we can provide a framework for which to explain the small cloud particle sizes observed in hot Jupiters, and create a generalized profile for vertical mixing in hot Jupiter atmospheres.

  11. Estimating Atmospheric Turbulence From Flight Records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.

    1991-01-01

    Method for estimation of atmospheric turbulence encountered by airplanes utilizes wealth of data captured by multichannel digital flight-data recorders and air-traffic-control radar. Developed as part of continuing effort to understand how airplanes respond to such potentially hazardous phenomena as: clear-air turbulence generated by destabilized wind-shear layers above mountains and thunderstorms, and microbursts (intense downdrafts striking ground), associated with thunderstorms. Reconstructed wind fields used to predict and avoid future hazards.

  12. A Regulation for the Control of Atmospheric Pollution, Amended Version.

    ERIC Educational Resources Information Center

    Puerto Rico Environmental Quality Board, San Juan.

    Nine articles, related to the preservation of the natural quality of the air, and to prevention, elimination and control of atmospheric pollution in the Commonwealth of Puerto Rico, are contained in this document. These articles were written and enacted by the Environmental Quality Board in accordance with Law No. 9, approved June 18, 1970 -…

  13. Nonlinear dynamics of the atmospheric pollutants in Mexico City

    NASA Astrophysics Data System (ADS)

    Muñoz-Diosdado, Alejandro; Barrera-Ferrer, Amilcar; Angulo-Brown, Fernando

    2014-05-01

    The atmospheric pollution in the Metropolitan Zone of Mexico City (MZMC) is a serious problem with social, economical and political consequences, in virtue that it is the region which concentrates both the greatest country population and a great part of commercial and industrial activities. According to the World Health Organization, maximum permissible concentrations of atmospheric pollutants are exceeded frequently. In the MZMC, the environmental monitoring has been limited to criteria pollutants, named in this way due to when their levels are measured in the atmosphere, they indicate in a precise way the air quality. The Automatic Atmospheric Monitoring Network monitors and registers the values of pollutants concentration in air in the MZMC. Actually, it is integrated by approximately 35 automatic-equipped remote stations, which report an every-hour register. Local and global invariant quantities have been widely used to describe the fractal properties of diverse time series. In the study of certain time series, many times it is assumed that they are monofractal, which means that they can be described only with one fractal dimension. But this hypothesis is unrealistic because a lot of time series are heterogeneous and non stationary, so their scaling properties are not the same throughout time and therefore they may require more fractal dimensions for their description. Complexity of the atmospheric pollutants dynamics suggests us to analyze its time series of hourly concentration registers with the multifractal formalism. So, in this work, air concentration time series of MZMC criteria pollutants were studied with the proposed method. The chosen pollutants to perform this analysis are ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide and PM10 (particles less than 10 micrometers). We found that pollutants air concentration time series are multifractal. When we calculate the degree of multifractality for each time series we know that while more

  14. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.

    PubMed

    Harmens, H; Foan, L; Simon, V; Mills, G

    2013-02-01

    Worldwide there is concern about the continuing release of persistent organic pollutants (POPs) into the environment. In this study we review the application of mosses as biomonitors of atmospheric deposition of POPs. Examples in the literature show that mosses are suitable organisms to monitor spatial patterns and temporal trends of atmospheric concentrations or deposition of POPs. These examples include polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), dioxins and furans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). The majority of studies report on PAHs concentrations in mosses and relative few studies have been conducted on other POPs. So far, many studies have focused on spatial patterns around pollution sources or the concentration in mosses in remote areas such as the polar regions, as an indication of long-range transport of POPs. Very few studies have determined temporal trends or have directly related the concentrations in mosses with measured atmospheric concentrations and/or deposition fluxes.

  15. Prediction of asthma exacerbations among children through integrating air pollution, upper atmosphere, and school health surveillances.

    PubMed

    Jayawardene, Wasantha Parakrama; Youssefagha, Ahmed Hassan; Lohrmann, David Kurt; El Afandi, Gamal Salah

    2013-01-01

    Climatic factors and air pollution are important in predicting asthma exacerbations among children. This study was designed to determine if a relationship exists between asthma exacerbations among elementary school children and the combined effect of daily upper atmosphere observations (temperature, relative humidity, dew point, and mixing ratio) and daily air pollution (particulate matter, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) and, if so, to predict asthma exacerbations among children using a mathematical model. Using an ecological study design, school health records of 168,825 students in elementary schools enrolled in "Health eTools for Schools" within 49 Pennsylvania counties were analyzed. Data representing asthma exacerbations were originally recorded by school nurses as the type of treatment given to a student during a clinic visit on a particular day. Daily upper atmosphere measurements from ground level to the 850-mb pressure level and air pollution measurements were obtained. A generalized estimating equation model was used to predict the occurrence of >48 asthma exacerbations, the daily mean for 2008-2010. The greatest occurrence of asthma among school children was in the fall, followed by summer, spring, and winter. Upper atmosphere temperature, dew point, mixing ratio, and six air pollutants as well as their interactions predicted the probability of asthma exacerbations occurring among children. Monitoring of upper atmosphere observation data and air pollutants over time can be a reliable means for predicting increases of asthma exacerbations among elementary school children. Such predictions could help parents and school officials implement effective precautionary measures.

  16. Estimating atmospheric mercury concentrations with lichens.

    PubMed

    Vannini, Andrea; Nicolardi, Valentina; Bargagli, Roberto; Loppi, Stefano

    2014-01-01

    The uptake kinetics of elemental gaseous Hg (Hg(0)) in three species of epiphytic lichens (Pseudevernia furfuracea, Evernia prunastri, and Xanthoria parietina) were investigated under four different Hg concentrations (10, 15, 30, and 45 μg/m(3)) and three different temperatures (10, 20, and 30 °C) with the aim of evaluating the lichen efficiency for Hg(0) accumulation and their potential use in the estimate of atmospheric concentrations of this metal in the field. The results showed that under our experimental conditions the lichens accumulated Hg according to exposure time and that the metal is not released back to the atmosphere after Hg(0) was removed from the air (clearance). Pseudevernia furfuracea showed the highest Hg accumulation capacity and Evernia prunastri showed the lowest, but in these species the metal uptake kinetics was affected by temperature. Xanthoria parietina showed an intermediate metal accumulation capacity and a Hg accumulation rate independent of temperature (in the range 10-30 °C). The use of first-order kinetics equations for Hg uptake in X. parietina and available field data on Hg bioaccumulation in this species allowed reliable estimates of atmospheric Hg concentrations in the environment.

  17. Atmospheric pollution originating from the interaction of different gaseous effluents.

    PubMed

    Bartùli, C; Botrè, C; Botrè, F; Pecci, G

    1997-01-01

    During the last few years, several episodes of atmospheric pollution have been reported in a limited area near Guidonia, Rome. The area contains a disposal plant, Inviolata, for the collection of municipal solid waste (MSW) and a famous thermal water resort, the Acque Albule spring, which is a source of water rich in H2S. We conducted a multiparametric study in the areas surrounding the solid waste disposal plant and the Acque Albule spring. The concentration of main gaseous effluent was continuously monitored over a period of 4 months and the data relating to the meteorologic conditions in the area during the last few decades were examined. Our results suggest that most of the atmospheric pollution is due to the interaction of different gaseous effluents. Specifically, the presence of relatively high levels of hydrogen sulfide in the atmosphere, constantly released in large amounts by the Acque Albule springs, and of biogases (mainly hydrocarbons) from the organic matter present in the solid waste continuously unloaded and stored at the disposal plant, lead to mixing and photochemical interactions between these chemical compounds, which in turn are responsible for most of the polluting effects. Such interactions are promoted by the strong solar irradiation in the area that is enhanced by the peculiar local meteorological features that do not allow the pollutants to disperse.

  18. Atmospheric corrections for TIMS estimated emittance

    NASA Technical Reports Server (NTRS)

    Warner, T. A.; Levandowski, D. W.

    1992-01-01

    The estimated temperature of the average of 500 lines of Thermal Infrared Multispectral Scanner (TIMS) data of the Pacific Ocean, from flight line 94, collected on 30 Sep. 1988, at 1931 GMT is shown. With no atmospheric corrections, estimated temperature decreases away from nadir (the center of the scan line). A LOWTRAN modeled correction, using local radiosonde data and instrument scan angle information, results in reversed limb darkening effects for most bands, and does not adequately correct all bands to the same temperature. The atmosphere tends to re-radiate energy at the wavelengths at which it most absorbs, and thus the overall difference between corrected and uncorrected temperatures is approximately 40 C, despite the average LOWTRAN calculated transmittance of only 60 percent between 8.1 and 11.6 microns. An alternative approach to atmospheric correction is a black body normalization. This is done by calculating a normalization factor for each pixel position and wavelength, which when applied results in a single calculated temperature, as would be expected for a gray body with near uniform emittance. The black body adjustment is based on the atmospheric conditions over the sea. The ground elevation profile along the remaining 3520 scan lines (approximately 10 km) of flight line 94, up the slopes of Kilauea, determined from aircraft pressure and laser altimeter data is shown. This flight line includes a large amount of vegetation that is clearly discernible on the radiance image, being much cooler than the surrounding rocks. For each of the 3520 scan lines, pixels were classified as vegetation or 'other'. A moving average of 51 lines was applied to the composite vegetation emittance for each scan line, to reduce noise. Assuming vegetation to be like water, and to act as gray body with an emittance of 0.986 across the spectrum, it is shown that that the LOWTRAN induced artifacts are severe, and other than for the 0.9.9 micron channel, not significantly

  19. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  20. Filtering effect of wind flow turbulence on atmospheric pollutant dispersion.

    PubMed

    Yassin, Mohamed F

    2012-06-01

    This paper presents a model for coupling the statistics of wind velocity distribution and atmospheric pollutant dispersion. The effect of wind velocity distribution is modeled as a three-dimensional finite-impulse response (3D-FIR) filter. A phase space representation of the 3D-FIR filter window is discussed. The resulting pollutant dispersion is the multiplication in the phase space of the 3-D Fourier transform of the pollutant concentration and the volume described by the filter window coefficients. The shape of the filter window in the phase space enables representing such effects as vortex shedding thermal currents, etc. The impact of spatial distribution of the sensors on the resulting pollutant spatial distribution and the 3-D FIR filter model employed also discuss. The case of a neutrally buoyant plume emitted from an elevated point source in a turbulent boundary layer considers. The results show that wind turbulence is an important factor in the pollutant dispersion and introduces expected random fluctuations in pollutant distribution and leads to spreading the distribution due to wind mixing.

  1. Using smog chambers to estimate the toxic effects of reactive atmospheric mixtures

    NASA Astrophysics Data System (ADS)

    Doyle, Melanie Lynn

    , understanding which products induce the greatest overall effect is particularly helpful when regulating ambient pollutants. In the final part, a preconditioning method was developed to ascertain if repeated ozone exposures modify the respiratory effects induced by subsequent challenges to atmospheric mixtures. Combined, these results characterize and estimate the toxic potential of a realistic, complex, reacting, polluted atmosphere.

  2. Monitoring atmospheric levels and deposition of dioxin-like pollutants in sub-alpine Northern Italy

    NASA Astrophysics Data System (ADS)

    Castro-Jiménez, J.; Eisenreich, S. J.; Mariani, G.; Skejo, H.; Umlauf, G.

    2012-09-01

    The objective of this work was to assess the atmospheric occurrence, seasonal variations and deposition of dioxin-like pollutants (17 PCDD/Fs + 12 DL-PCBs) in sub-alpine northern Italy. A total of 108 weekly integrated samples (aerosol + gas phases) were collected during a 1-year period (2005-2006) at the Ispra EMEP site (Northern Italy, 45°49'N, 8°38'E). Atmospheric loadings into Lake Maggiore were also estimated by implementing a deposition model. ∑2,3,7,8-PCDD/F atmospheric total concentrations were dominated by the aerosol-bound fraction which ranged from 50 to 3080 (1-215 WHO98 TEQ) fg m-3. In contrast DL-PCB levels were dominated by the gas phase concentrations and varied from 1800 to 14800 (1-5 WHO98 TEQ) fg m-3. The aerosol and gas phase concentrations of PCDD/Fs and DL-PCBs exhibited a similar seasonality (higher values in winter time for aerosol-bound contaminants and lower concentrations for gas phase contaminants) in spite of their different environmental sources and properties. Estimated total atmospheric (dry + wet) depositional fluxes of dioxin-like pollutants in sub-alpine northern Italy were ˜0.2-˜9.5 ng m-2 d-1, with wet deposition dominating. Total atmospheric inputs (2,3,7,8-PCDD/Fs + DL-PCBs) into Lake Maggiore ranged from 14 to 304 g y-1. Higher environmental concentrations of dioxin-like pollutants in sub-alpine northern Italy are expected in the cold season and in rainy days due to a combined effect of stagnant atmospheric conditions (low winds), household wood burning in the region and higher pollutant loads via rainfall in winter.

  3. Urban air pollution and atmospheric diffusion research in China

    NASA Astrophysics Data System (ADS)

    Ning, Datong; Whitney, Joseph B.; Yap, David

    1987-11-01

    Air pollution has become a serious problem in China as a result of that country's efforts in the last 30 years to become a great industrial power. The burning of coal, which currently provides over 70% of all China's energy needs, is a major source of air pollution. Because Chinese coal is high in sulfur and ash content and because most combustion devices in China have low efficiencies, SO2 and particulate emissions are a serious problem and are comparable to or exceed those found in many countries that are much more industrialized. Although most coal is burned in North China, acid precipitation is most severe in South China because of the lack of buffering loess dust found in the former region. The Chinese government has already taken major steps to mitigate air pollution, such as relocating polluting industries, supplying coal with lower sulfur content, using gas instead of coal for residential heating, and levying fines on industries that exceed pollution standards. Atmospheric environmental impact assessment (AEIA) is also required for all major new projects. This article describes three types of mathematical diffusion models and field and wind-tunnel experiments that are used in such assessments. The Chinese authorities believe that a range of technological, managerial, locational, and behavioral changes must be effected before the air of Chinese cities can be significantly improved.

  4. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    NASA Technical Reports Server (NTRS)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  5. Atmospheric transport and deposition of acidic air pollutants

    SciTech Connect

    Murphy, C.E. Jr.

    1981-01-01

    Although general principles which govern atmospheric chemistry of sulfur are understood, a purely theoretical estimation of the magnitude of the processes is not likely to be useful. Furthermore, the data base necessary to make empirical estimates does not yet exist. The sulfur budget of the atmosphere appears to be dominated by man-associated sulfur. The important processes in deposition of man-associated sulfur are wet deposition of sulfate and dry deposition of SO/sub 2/. The relative importance of sulfate and SO/sub 2/ to sulfur deposition (input to watersheds) depends on the air concentrations, and either compound may be the greater contributor depending on conditions. (PSB)

  6. Microbial release of sulphur ions from atmospheric pollution deposits

    SciTech Connect

    Killhan, K.; Wainwright, M.

    1981-12-01

    The surfaces of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electron microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for the in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sup 2 -//sub 3/; S/sub 4/O/sup 2 -//sub 6/ and SO/sup 2 -//sub 4/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred in fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We concluded that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  7. Microbial release of sulphur ions from atmospheric pollution deposits

    SciTech Connect

    Killham, K.; Wainwright, M.

    1981-12-01

    The surface of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electric microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sub 3//sup 2/ btw/sup -/ and; S/sub 4/O/sub 6//sup 2 -/ and SO/sub 4//sup 2 -/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred is fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We conclude that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  8. Detecting Industrial Pollution in the Atmospheres of Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Lin, Henry W.; Gonzalez Abad, Gonzalo; Loeb, Abraham

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF4) and trichlorofluoromethane (CCl3F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ~1.2 days (~1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl3F (CF4) to ~10 times the current terrestrial level.

  9. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    SciTech Connect

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham E-mail: ggonzalezabad@cfa.harvard.edu

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  10. Polybromobenzene pollutants in the atmosphere of North China: levels, distribution, and sources.

    PubMed

    Lin, Yan; Qiu, Xinghua; Zhao, Yifan; Ma, Jin; Yang, Qiaoyun; Zhu, Tong

    2013-11-19

    Brominated flame retardants (BFRs) are important persistent organic pollutants. Analysis of BFRs in atmospheric samples in a previous study led us to suspect the presence of unidentified organic bromides, other than polybrominated diphenyl ethers (PBDEs), in the atmosphere. In this study, we identified and quantified polybromobenzenes, a group of organic bromides, in air samples collected through passive sampling in gridded observations in North China. We investigated their concentrations and spatial distribution, and estimated the proportion due to different sources. We detected seven species of polybromobenzenes, including hexabromobenzene (HBB), pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), pentabromobenzene (PeBB), tetrabromobenzenes (TeBBs), and tribromotoluene (TrBT), in all or most of the field samples, indicating widespread occurrence of this class of pollutants. The median concentrations of each pollutant ranged from 20.0 to 144 pg/sample (or from 0.07 to 1.16 pg/m(3)), with relatively high concentrations found near e-waste recycling sites, BFR manufacturing sites, and areas of high population density. Positive matrix factorization (PMF) analysis revealed that ∼70% of HBB, PBT, PBEB, and PeBB was from commercial products, while ∼80% of 1,2,3,5-TeBB, 1,2,4,5-TeBB, and 2,4,5-TrBT was linked with BFR manufacturing. This study provides essential information on widespread polybromobenzene pollutants in the atmosphere, particularly TeBBs and TrBT, for which this is the first report of their presence as atmospheric pollutants.

  11. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  12. Global Transport of Organic Pollutants: Ambient Concentrations in the Remote Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Atlas, E.; Giam, C. S.

    1981-01-01

    Concentrations of organic pollutants in the air and in precipitation have been measured at Enewetak Atoll in the North Pacific Ocean. These data from a site removed from industrial and human activity indicate the present concentrations of synthetic organic pollutants in the atmosphere and establish the long-range atmospheric transport of organic pollutants to remote marine areas. Hexachlorobenzene and hexachlorocyclohexane isomers are present in the remote marine atmosphere. Polychlorobiphenyls, total DDT, dieldrin, chlordane, and two phthalate ester plasticizers were also found in the samples. The concentrations of pollutants in the atmosphere remote from continental sources are good measures of the minimum concentrations of air pollutants on Earth.

  13. Estimation of microwave absorption in the Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Coombs, W. C.

    1971-01-01

    A procedure for estimating the microwave absorption loss of the Jupiter atmosphere is presented. Estimation of microwave absorption by planetary atmospheres involves two different investigative disciplines (1) the determination of an acceptable model of the atmosphere itself and (2) the determination of the microwave attenuation rate applicable to each different volume sample of the atmosphere, and the integration of this loss over the varying radio propagation path for any given entry trajectory to obtain the total loss.

  14. The effect of atmospheric pollution on building materials

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Brimblecombe, P.

    2002-11-01

    This chapter surveys main effects of atmospheric pollution on building materials. It summarises these effects on stone, bricks, mortar, concrete, glass, metals (iron, zinc, copper, bronze, aluminium, lead and silver), polymers, paints and timber. Special attention is paid to stone because of its extensive use as building material in the cultural heritage. In general, main damaging agent is sulfur dioxide which leads to sulfation of many materials, particularly carbonate-bearing stones. However, the decline of sulfur dioxide in cities means that the recognition of the prime role of this pollutant presents something of a dilemma. It is increasingly necessary to consider other substances that can contribute to material decay e.g. nitrogen oxides, chlorides and ozone, either acting as synergistic to the sulfation reaction or as main decay agents, such as the case of aluminium and polymers. Particulate matter often from diesel vehicles can also accelerate the oxidation of SO2 on the surface (traditionally sulfur dioxide with Fe-rich particles) and blacken the materials surface in the case of soot. These processes contribute to the formation of black-crusts when embedded in the gypsum layer resulting from the material sulfation, but again the rate in the modem atmosphere is a matter of much research.

  15. Study of the Mechanism of Nucleation in the Polluted Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chen, Modi

    Atmospheric aerosols can affect human health and earth's radiation balance. The formation of these aerosols has been shown to cast high uncertainty in current global climate modeling. Most observed nucleation events in the boundary layers are correlated with high sulfuric acid concentration. Nucleation rates are usually proportional to sulfuric acid concentration up to the third power. After atmospheric aerosol particles are formed, they often grow at a speed faster than can be explained by sulfuric acid condensation, suggesting that other chemical species also participate in this process. The detailed mechanisms of how these particles are formed and their subsequent growth are still unclear. This work is focused on furthering our understanding of atmospheric nucleation. My contribution is mainly on the following three topics: (1) characterizing condensation particle counters (CPCs) for accurate particle measurements down to 1 nm, the size close to the smallest stable sulfuric acid clusters; (2) developing a method of estimating time and size resolved particle growth rates and atmospheric nucleation rates based on data from both atmospheric and laboratory studies; (3) deriving of a simple semi-empirical acid-base reaction model for atmospheric nucleation in the polluted atmospheric boundary layer.

  16. Study of organic pollutants oxidation by atmospheric plasma discharge

    NASA Astrophysics Data System (ADS)

    Gumuchian, Diane; Cavadias, Simeon; Duten, Xavier; Tatoulian, Michael; da Costa, Patrick; Ognier, Stephanie

    2013-09-01

    Ozonation is one of the usual steps in water treatment processes. However, some organic molecules (acetic acid) cannot be decomposed during ozonation. In that context, we are developing an Advanced Oxidation Process based on the use of a needle plate discharge at atmospheric pressure. The process is a reactor with a plasma discharge between a high voltage electrode and the solution in controlled atmosphere. Characterizations of the plasma obtained in different atmospheres were carried out (Optical Emission Spectroscopy, iCCD camera observations, etc). The efficiency of the process was evaluated by the percentage of degradation of the model-pollutant, measured by liquid chromatography analysis. Treatments in nitrogen lead to the formation of NOx species that decrease the efficiency of the process. Indeed, NOx lead to the consumption of actives species created. Treatments in argon are the most efficient. Two hypotheses are considered: (i) metastable argon participates to the degradation of acetic acid or to the formation of radicals (ii) discharges in argon lead to the formation of many streamers of low energy that increase the interface plasma/solution.

  17. Extensive regional atmospheric hydrocarbon pollution in the southwestern United States.

    PubMed

    Katzenstein, Aaron S; Doezema, Lambert A; Simpson, Isobel J; Blake, Donald R; Rowland, F Sherwood

    2003-10-14

    Light alkane hydrocarbons are present in major quantities in the near-surface atmosphere of Texas, Oklahoma, and Kansas during both autumn and spring seasons. In spring 2002, maximum mixing ratios of ethane [34 parts per 109 by volume (ppbv)], propane (20 ppbv), and n-butane (13 ppbv) were observed in north-central Texas. The elevated alkane mixing ratios are attributed to emissions from the oil and natural gas industry. Measured alkyl nitrate mixing ratios were comparable to urban smog values, indicating active photochemistry in the presence of nitrogen oxides, and therefore with abundant formation of tropospheric ozone. We estimate that 4-6 teragrams of methane are released annually within the region and represents a significant fraction of the estimated total U.S. emissions. This result suggests that total U.S. natural gas emissions may have been underestimated. Annual ethane emissions from the study region are estimated to be 0.3-0.5 teragrams.

  18. An advanced open path atmospheric pollution monitor for large areas

    SciTech Connect

    Taylor, L.; Suhre, D.; Mani, S.

    1996-12-31

    Over 100 million gallons of radioactive and toxic waste materials generated in weapon materials production are stored in 322 tanks buried within large areas at DOE sites. Toxic vapors occur in the tank headspace due to the solvents used and chemical reactions within the tanks. To prevent flammable or explosive concentration of volatile vapors, the headspace are vented, either manually or automatically, to the atmosphere when the headspace pressure exceeds preset values. Furthermore, 67 of the 177 tanks at the DOE Hanford Site are suspected or are known to be leaking into the ground. These underground storage tanks are grouped into tank farms which contain closely spaced tanks in areas as large as 1 km{sup 2}. The objective of this program is to protect DOE personnel and the public by monitoring the air above these tank farms for toxic air pollutants without the monitor entering the tanks farms, which can be radioactive. A secondary objective is to protect personnel by monitoring the air above buried 50 gallon drums containing moderately low radioactive materials but which could also emit toxic air pollutants.

  19. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  20. A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region.

    PubMed

    Lai, I-Chien; Lee, Chon-Lin; Huang, Hu-Ching

    2016-03-01

    Transboundary transport of air pollution is a serious environmental concern as pollutant affects both human health and the environment. Many numerical approaches have been utilized to quantify the amounts of pollutants transported to receptor regions, based on emission inventories from possible source regions. However, sparse temporal-spatial observational data and uncertainty in emission inventories might make the transboundary transport contribution difficult to estimate. This study presents a conceptual quantitative approach that uses transport pathway classification in combination with curve fitting models to simulate an air pollutant concentration baseline for pollution background concentrations. This approach is used to investigate the transboundary transport contribution of atmospheric pollutants to a metropolitan area in the East Asian Pacific rim region. Trajectory analysis categorized pollution sources for the study area into three regions: East Asia, Southeast Asia, and Taiwan cities. The occurrence frequency and transboundary contribution results suggest the predominant source region is the East Asian continent. This study also presents an application to evaluate heavy pollution cases for health concerns. This new baseline construction model provides a useful tool for the study of the contribution of transboundary pollution delivered to receptors, especially for areas deficient in emission inventories and regulatory monitoring data for harmful air pollutants. PMID:26760713

  1. A new conceptual model for quantifying transboundary contribution of atmospheric pollutants in the East Asian Pacific rim region.

    PubMed

    Lai, I-Chien; Lee, Chon-Lin; Huang, Hu-Ching

    2016-03-01

    Transboundary transport of air pollution is a serious environmental concern as pollutant affects both human health and the environment. Many numerical approaches have been utilized to quantify the amounts of pollutants transported to receptor regions, based on emission inventories from possible source regions. However, sparse temporal-spatial observational data and uncertainty in emission inventories might make the transboundary transport contribution difficult to estimate. This study presents a conceptual quantitative approach that uses transport pathway classification in combination with curve fitting models to simulate an air pollutant concentration baseline for pollution background concentrations. This approach is used to investigate the transboundary transport contribution of atmospheric pollutants to a metropolitan area in the East Asian Pacific rim region. Trajectory analysis categorized pollution sources for the study area into three regions: East Asia, Southeast Asia, and Taiwan cities. The occurrence frequency and transboundary contribution results suggest the predominant source region is the East Asian continent. This study also presents an application to evaluate heavy pollution cases for health concerns. This new baseline construction model provides a useful tool for the study of the contribution of transboundary pollution delivered to receptors, especially for areas deficient in emission inventories and regulatory monitoring data for harmful air pollutants.

  2. A review of atmospheric nitrogen loading estimates to Chesapeake Bay

    SciTech Connect

    Valigura, R.A.; Baker, J.E.; McConnell, L.L.

    1994-12-31

    The importance of atmospheric nitrogen deposition to the Chesapeake Bay and its watershed has been reflected in the number of articles recently published on the peer reviewed literature. Based upon a recent literature synthesis, an evaluation of the magnitude and relative importance of atmospheric nitrogen deposition to the Chesapeake Bay and its watershed will be presented. Key steps required to reduce the uncertainty in atmospheric deposition loading estimates will be outlined. Estimates of nitrogen loadings to Chesapeake Bay will be compared to estimates published for other waterbodies.

  3. Atmospheric Pollution over the Eastern Mediterranean during summer - A Review

    NASA Astrophysics Data System (ADS)

    Dayan, Uri; Ricaud, Philippe; Zbinden, Regina; Dulac, François

    2016-04-01

    The subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, control the spatio-temporal distribution of the boundary layer during summer. The shallow mixed layer and weak zonal flow, leads to poor ventilation rates, inhibiting an efficient dispersion of the pollutants. Several studies pointing at specific local (e.g. ventilation rates) and regional peculiarities (long range transport) enhancing the building up of pollutant concentrations are presented. Tropospheric-ozone concentrations over the EM basin are among the highest over the Northern Hemisphere. The processes controlling its formation (i.e., long range transport from Europe, dynamic subsidence at mid-troposphere, and stratosphere-to-troposphere exchange) are reviewed. Airborne and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen are 2 to 10 times higher than in the hemispheric background troposphere. Models, aircraft measurements, and satellite data, have shown that sulfate has a maximum during spring and summer. The CO seasonal cycle, mainly governed by the concentration of the hydroxyl radical demonstrates high concentrations over winter months and lowest during summer when photochemistry is active. The daily variations in CO concentration are caused by long-range CO transport from European anthropogenic sources. The spatial distribution of methane, derived from satellite identified August as the month with the highest levels over the EM. The results of a comprehensive analysis of atmospheric methane over the EM Basin as part of the ChArMEx program, using satellite data and model simulations is consistent with other previous studies.

  4. Comparative influences of airborne pollutants and meteorological parameters on atmospheric visibility and turbidity

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Chung; Yeh, Hui-Hsuan

    2010-06-01

    The purpose of this paper was to investigate how atmospheric air pollutants and meteorological conditions affect atmospheric visibility and turbidity. Meteorological parameter and anthropogenic air pollutant values were recorded during 2004 and 2005 at the Wuchi weather station and the Sha-lu environmental quality database station at the Taichung Harbor near the Taiwan Strait. Local weather conditions (temperature, relative humidity and solar radiation) and airborne pollutant (PM 10, SO 2, NO 2, CO and O 3) concentrations were used to analyze the relative effects of atmospheric air pollutants and meteorological conditions on atmospheric visibility and turbidity. Based on the analytic results, air pollutant concentrations significantly influence visibility and atmospheric turbidity. Wind speed is an important meteorological parameter that affects atmospheric turbidity parameters at the same atmospheric air pollutant concentrations throughout the periods of observation. At wind speeds of greater than 7 m/s, the turbidity factor β Vis is below 0.3 and visibility is greater than 6.5 km. Under very turbid conditions, β Vis > 0.4, the wind velocity is below 5 m/s, regardless of the atmospheric pollutant concentration. When visibility is ≥ 11 km, the PM 10 concentration is predicted to be below 150 μg/m 3 and the atmosphere is regarded as clear. Under very turbid conditions, the PM 10 concentration exceeds 250 μg/m 3.

  5. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, R.G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  6. Tracking of atmospheric release of pollution using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Šmídl, Václav; Hofman, Radek

    2013-03-01

    Tracking of an atmospheric release of pollution is usually based on measurements provided by stationary networks, occasionally complemented with deployment of mobile sensors. In this paper, we extend the existing concept to the case where the sensors are carried onboard of unmanned aerial vehicles (UAVs). The decision theoretic framework is used to design an unsupervised algorithm that navigates the UAVs to minimize the selected loss function. A particle filter with a problem-tailored proposal function was used as the underlying data assimilation procedure. A range of simulated twin experiments was performed on the problem of tracking an accidental release of radiation from a nuclear power plant in realistic settings. The main uncertainty was in the released activity and in parametric bias of the numerical weather forecast. It was shown that the UAVs can complement the existing stationary network to improve the accuracy of data assimilation. Moreover, two autonomously navigated UAVs alone were shown to provide assimilation results comparable to those obtained using the stationary network with more than thirty sensors.

  7. Change of the dynamics of heavy metals concentration in atmospheric precipitation in chatkal nature reservation of the republic of uzbekistan as anthropogenic index of the atmospheric pollution

    NASA Astrophysics Data System (ADS)

    Smirnova, T.; Tolkacheva, G.

    2003-04-01

    At present the investigation of the chemical composition of precipitation is a very actual task in the monitoring of environmental pollution. It is known that heavy metals can be the indices of the anthropogenic atmospheric pollution. The emissions from the mining enterprises, of non-ferrous metallurgy, of chemical industry, from heat-and-power production plants, from transport vehicles fare the sources of the heavy metals ingress into the atmosphere. Their emissions in atmosphere form fine-disperse aerosol fractions and afterwards they fall down together with precipitation onto the underlying surface. Heavy metals have the property of accumulation in environmental objects, which disturbs its ecological balance. One of the problems of the study of the influence of heavy metals pollution on the environment is their travel with the air masses of different origin on large distance. In this concern it is interesting to study the content of the heavy metals in atmospheric aerosols and precipitation in the background zones. Chatkal nature reservation on the territory of Tashkent province presents such background point. For the estimation of the level of atmospheric pollution by heavy metals and evaluation of the possible impact on the background level of air pollution of Chatkal nature reservation by anthropogenic sources (industrial cities of the capital province of Uzbekistan) the data analysis was carried out by the Administration of Environment Pollution Monitoring (AEPM) of hydrometeorological service of the Republic of Uzbekistan. It is necessary to mention that Chatkal biospheric nature reservation is situated in 100 km from Tashkent (the capital of the Republic of Uzbekistan) and in 60 km from Almalyk (the biggest centre of mining-metallurgical and chemical industry of the republic). The station of the complex background monitoring of atmospheric pollution (SCBM) is situated on the territory of this nature reservation. This area is characterized by a typical

  8. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  9. Geoinformation modeling system for analysis of atmosphere pollution impact on vegetable biosystems using space images

    NASA Astrophysics Data System (ADS)

    Polichtchouk, Yuri; Ryukhko, Viatcheslav; Tokareva, Olga; Alexeeva, Mary

    2002-02-01

    Geoinformation modeling system structure for assessment of the environmental impact of atmospheric pollution on forest- swamp ecosystems of West Siberia is considered. Complex approach to the assessment of man-caused impact based on the combination of sanitary-hygienic and landscape-geochemical approaches is reported. Methodical problems of analysis of atmosphere pollution impact on vegetable biosystems using geoinformation systems and remote sensing data are developed. Landscape structure of oil production territories in southern part of West Siberia are determined on base of processing of space images from spaceborn Resource-O. Particularities of atmosphere pollution zones modeling caused by gas burning in torches in territories of oil fields are considered. For instance, a pollution zones were revealed modeling of contaminants dispersal in atmosphere by standard model. Polluted landscapes areas are calculated depending on oil production volume. It is shown calculated data is well approximated by polynomial models.

  10. The magnetic way of quantifying road traffic pollution in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Spassov, S.; Egli, R.; Heller, F.

    2003-12-01

    The steadily increasing number of motor vehicles requires continuous air quality monitoring in large urban and sub-urban areas. We present a fast and simple method for analysing samples of atmospheric particulate matter (PM) based on magnetic measurements, which is suitable for systematic pollution monitoring of extensive areas at low costs. Representative samples have been collected in Switzerland at sites with variable exposure to pollution sources. Atmospheric PM consists of natural and of anthropogenic components which both contain magnetic mineral fractions with specific magnetic properties. Our method relies on the analysis of the remanent magnetisation of PM samples. Detailed demagnetisation curves of anhysteretic remanent magnetisation (ARM) of these samples have been modelled using a linear combination of appropriate model functions, which represent the contribution of different magnetic mineral sources to the total magnetisation. Two magnetic components C1 and C2 with well-defined magnetic properties have been identified in all samples. The low-coercivity component C1 predominates in less polluted sites, whereas the concentration of the higher coercivity component C2 is large in urban areas. Once the coercivity distributions of C1 and C2 have been characterised, a simple method has been developed to quantify C1 and C2. This method is based on four-step demagnetisation curves, which can be measured in 12 minutes using a 2G cryogenic magnetometer with an in-line AF degausser. Our results are confirmed by independent chemical investigations at the same sites. The magnetic contribution of C2 is shown to be proportional to the chemically estimated total PM10 mass contribution of exhaust emissions. The mass concentration of traffic related elements in PM10 such as Fe, Ba, Cu, Mo, Br and elemental carbon also correlates with our results. Traffic is the most important PM pollution source in Switzerland: it includes exhaust emissions and abrasion products released

  11. Verification of greenhouse gas emission reductions: the prospect of atmospheric monitoring in polluted areas.

    PubMed

    Levin, Ingeborg; Hammer, Samuel; Eichelmann, Elke; Vogel, Felix R

    2011-05-28

    Independent verification of greenhouse gas emissions reporting is a legal requirement of the Kyoto Protocol, which has not yet been fully accomplished. Here, we show that dedicated long-term atmospheric measurements of greenhouse gases, such as carbon dioxide (CO(2)) and methane (CH(4)), continuously conducted at polluted sites can provide the necessary tool for this undertaking. From our measurements at the semi-polluted Heidelberg site in the upper Rhine Valley, we find that in the catchment area CH(4) emissions decreased on average by 32±6% from the second half of the 1990s until the first half of the 2000s, but the observed long-term trend of emissions is considerably smaller than that previously reported for southwest Germany. In contrast, regional fossil fuel CO(2) levels, estimated from high-precision (14)CO(2) observations, do not show any significant decreasing trend since 1986, in agreement with the reported emissions for this region. In order to provide accurate verification, these regional measurements would best be accompanied by adequate atmospheric transport modelling as required to precisely determine the relevant catchment area of the measurements. Furthermore, reliable reconciliation of reported emissions will only be possible if these are known at high spatial resolution in the catchment area of the observations. This information should principally be available in all countries that regularly report their greenhouse gas emissions to the United Nations Framework Convention on Climate Change.

  12. Improved Estimates of Air Pollutant Emissions from Biorefinery

    SciTech Connect

    Tan, Eric C. D.

    2015-11-13

    We have attempted to use detailed kinetic modeling approach for improved estimation of combustion air pollutant emissions from biorefinery. We have developed a preliminary detailed reaction mechanism for biomass combustion. Lignin is the only biomass component included in the current mechanism and methane is used as the biogas surrogate. The model is capable of predicting the combustion emissions of greenhouse gases (CO2, N2O, CH4) and criteria air pollutants (NO, NO2, CO). The results are yet to be compared with the experimental data. The current model is still in its early stages of development. Given the acknowledged complexity of biomass oxidation, as well as the components in the feed to the combustor, obviously the modeling approach and the chemistry set discussed here may undergo revision, extension, and further validation in the future.

  13. Trans boundary transport of pollutants by atmospheric mineral dust.

    PubMed

    Erel, Yigal; Dayan, Uri; Rabi, Reut; Rudich, Yinon; Stein, Mordechai

    2006-05-01

    The transport of anthropogenic pollution by desert dust in the Eastern Mediterranean region was studied by analyzing major and trace element composition, organic species, and Pb isotope ratios in suspended dust samples collected in Jerusalem, Israel. Dust storms in this region are associated with four distinct synoptic conditions (Red Sea Trough (RS), Eastern High (EH), Sharav Cyclone (SC), and Cold Depression (Cyprus low, CD)) that carry dust mostly from North African (SC, CD, EH) and Arabian and Syrian (RS, EH) deserts. Substantial contamination of dust particles by Pb, Cu, Zn, and Ni is observed, while other elements (Na, Ca, Mg, Mn, Sr, Rb, REE, U, and Th) display natural concentrations. Sequential extraction of the abovementioned elements from the dust samples shows that the carbonate and sorbed fractions contain most of the pollution, yet the Al-silicate fraction is also contaminated, implying that soils and sediments in the source terrains of the dust are already polluted. We identified the pollutant sources by using Pb isotopes. It appears that before the beginning of the dust storm, the pollutants in the collected samples are dominated by local sources but with the arrival of dust from North Africa, the proportion of foreign pollutants increases. Organic pollutants exhibit behavior similar and complementary to that of the inorganic tracers, attesting to the importance of anthropogenic-pollutant addition en route of the dust from its remote sources. Pollution of suspended dust is observed under all synoptic conditions, yet it appears that easterly winds carry higher proportions of local pollution and westerly winds carry pollution emitted in the Cairo basin. Therefore, pollution transport by mineral dust should be accounted for in environmental models and in assessing the health-related effects of mineral dust.

  14. On cancer risk estimation of urban air pollution.

    PubMed Central

    Törnqvist, M; Ehrenberg, L

    1994-01-01

    The usefulness of data from various sources for a cancer risk estimation of urban air pollution is discussed. Considering the irreversibility of initiations, a multiplicative model is preferred for solid tumors. As has been concluded for exposure to ionizing radiation, the multiplicative model, in comparison with the additive model, predicts a relatively larger number of cases at high ages, with enhanced underestimation of risks by short follow-up times in disease-epidemiological studies. For related reasons, the extrapolation of risk from animal tests on the basis of daily absorbed dose per kilogram body weight or per square meter surface area without considering differences in life span may lead to an underestimation, and agreements with epidemiologically determined values may be fortuitous. Considering these possibilities, the most likely lifetime risks of cancer death at the average exposure levels in Sweden were estimated for certain pollution fractions or indicator compounds in urban air. The risks amount to approximately 50 deaths per 100,000 for inhaled particulate organic material (POM), with a contribution from ingested POM about three times larger, and alkenes, and butadiene cause 20 deaths, respectively, per 100,000 individuals. Also, benzene and formaldehyde are expected to be associated with considerable risk increments. Comparative potency methods were applied for POM and alkenes. Due to incompleteness of the list of compounds considered and the uncertainties of the above estimates, the total risk calculation from urban air has not been attempted here. PMID:7821292

  15. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  16. Atmospheric water on Mars, energy estimates for extraction

    NASA Technical Reports Server (NTRS)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  17. Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter.

    PubMed

    Avino, Pasquale; Brocco, Domenico; Lepore, Luca; Pareti, Salvatore

    2003-01-01

    In this paper the results of seasonal monitoring campaign for primary (benzene and carbon monoxide) and secondary (nitrogen dioxide and ozone) pollutants and for the natural radioactivity of the particulate matter in the urban area of Rome, are reported to investigate acute atmospheric pollution episodes. Comparing the daily concentration trends of primary and secondary pollutants with those of the natural radioactivity, considered as index of the vertical diffusion in the low boundary layer, it has been evidenced that the acute pollution episodes in Rome occur in the winter period for the high atmospheric stability (primary pollution) and in the summer period for the strong diurnal atmospheric remixing (secondary pollution).

  18. Atmospheric pollutants and hospital admissions due to pneumonia in children

    PubMed Central

    Negrisoli, Juliana; Nascimento, Luiz Fernando C.

    2013-01-01

    OBJECTIVE: To analyze the relationship between exposure to air pollutants and hospitalizations due to pneumonia in children of Sorocaba, São Paulo, Brazil. METHODS: Time series ecological study, from 2007 to 2008. Daily data were obtained from the State Environmental Agency for Pollution Control for particulate matter, nitric oxide, nitrogen dioxide, ozone, besides air temperature and relative humidity. The data concerning pneumonia admissions were collected in the public health system of Sorocaba. Correlations between the variables of interest using Pearson cofficient were calculated. Models with lags from zero to five days after exposure to pollutants were performed to analyze the association between the exposure to environmental pollutants and hospital admissions. The analysis used the generalized linear model of Poisson regression, being significant p<0.05. RESULTS: There were 1,825 admissions for pneumonia, with a daily mean of 2.5±2.1. There was a strong correlation between pollutants and hospital admissions, except for ozone. Regarding the Poisson regression analysis with the multi-pollutant model, only nitrogen dioxide was statistically significant in the same day (relative risk - RR=1.016), as well as particulate matter with a lag of four days (RR=1.009) after exposure to pollutants. CONCLUSIONS: There was an acute effect of exposure to nitrogen dioxide and a later effect of exposure to particulate matter on children hospitalizations for pneumonia in Sorocaba. PMID:24473956

  19. Fluid mechanics simulation of fog formation associated with polluted atmosphere produced by energy related fuel combustion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.

  20. [Prolonged exposure to atmospheric air pollution and mortality from respiratory causes].

    PubMed

    Eilstein, D

    2009-12-01

    Different designs can be used to analyze the relationships between respiratory mortality and long term exposure to atmospheric pollution: epidemiological studies (cohort, prevalence study) demonstrate the reality of the relationship and toxicological studies explain it. Cohort studies have the advantage of being able to take into account many confounding factors and thus avoid biases (which is not the case with prevalence studies), but require significant human and financial resources. They were first adopted in the US, but are now more often applied in Europe. The results are relatively consistent, as they all show a statistically significant association between an increase in particulate pollution and cardiopulmonary mortality. Mortality from lung cancer is also associated with long term exposition to particles and sometimes to ozone or nitrogen oxides. Cerebrovascular diseases and sudden death of young children have also been associated with particulate pollution. The relationships are more powerful for long term than short term exposure but are also linear and without threshold. In order to explain these effects (today the causality of the relationship is certain) there are many possible factors, particularly regarding particulate exposures: an increase in cardiovascular risk biomarkers (fibrinogen, white blood cells, and platelets), atherosclerosis, chronic inflammation of lung tissues increased by acute exposure, etc. More and more studies address the interaction between gene and environment and even epigenetic phenomena which could be responsible of these effects. Public Health impact could be quantified. The European E&H surveillance program Apheis, for example, estimated that if PM2.5 levels remained below 15 microg/m(3), a 30 year old person could see his life expectancy increased by 1 month to 2 years, depending on the studied city. Finally, mortality is not the only relevant indicator for health effects of air pollution. ISAAC studies address asthma

  1. Improving estimates of air pollution exposure through ubiquitous sensing technologies.

    PubMed

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-05-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. We found that information from CalFit could substantially alter exposure estimates. For instance, on average travel activities accounted for 6% of people's time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost.

  2. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011. PMID:26530824

  3. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011.

  4. Estimation of atmospheric turbulence parameters with wave front sensor data

    NASA Astrophysics Data System (ADS)

    Iroshnikov, N. G.; Koryabin, A. V.; Larichev, A. V.; Shmalhausen, V. I.; Andreeva, M. S.

    2012-11-01

    Estimates of atmospheric turbulence parameters can be calculated on the basis of data, obtained with wave front sensor. The method described is based on decomposition of phase fluctuations into Zernike series and analysis of statistics of this decomposition coefficients. Estimates of turbulence outer scale L0 and refractive index structure constant C2/n obtained in experiments with turbulence in water cell showed good agreement with previous results.

  5. Current and future levels of mercury atmospheric pollution on a global scale

    NASA Astrophysics Data System (ADS)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  6. [Simulation of air pollution characteristics and estimates of environmental capacity in Zibo City].

    PubMed

    Xue, Wen-Bo; Wang, Jin-Nan; Yang, Jin-Tian; Lei, Yu; Yan, Li; He, Jin-Yu; Han, Bao-Ping

    2013-04-01

    To develop a new pattern of air pollution control that is based on the integration of "concentration control, total amount control, and quality control", and in the context of developing national (2011-2015 air pollution control plan for key areas) and (Environmental protection plan of Zibo municipality for the "12th Five-Year Plan" period), a simulation of atmospheric dispersion of air pollutants in Zibo City and its peripheral areas is carried out by employing CALPUFF model, and the atmospheric environmental capacity of SO2, NO(x) and PM10 is estimated based on the results of model simulation and using multi-objective linear programming optimization. The results indicates that the air pollution in Zibo City is significantly related to the pollution sources outside of Zibo City, which contributes to the annual average concentration of SO2, NO2 and PM10 in Zibo City by 26.34%, 21.23%, and 14.58% respectively. There is a notable interaction between districts and counties of Zibo municipality, in which the contribution of SO2, NO(x) and PM10 emissions in surrounding counties and districts to the annual average concentrations of SO2, NO2 and PM10 in downtown area are 35.96%, 43.17%, and 17.69% respectively. There is a great variation in spatial sensitivity of air pollutant emission, and the environmental impact of unit pollutant emissions from Zhoucun, Huantai, Zhangdian and Zichuan is greater than that released from other districts/counties. To meet the requirement of (Ambient air quality standard) (GB 3095-2012), the environmental capacities of SO2, NO(x) and PM10 of Zibo City are only 8.03 x 10(4) t, 19.16 x 10(4) t and 3.21 x 10(4) t, respectively. Therefore, it is imperative to implement regional air pollution joint control in Shandong peninsula in order to ensure the achievement of air quality standard in Zibo City.

  7. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  8. Atmospheric transport of persistent pollutants governs uptake by holarctic terrestrial biota

    SciTech Connect

    Larsson, P.; Okla, L.; Woin, Per )

    1990-10-01

    The atmospheric deposition of PCBs, DDT, and lindane, governed uptake in terrestrial biota in the Scandinavian peninsula. Mammalian herbivores and predators as well as predatory insects contained higher levels of pollutants at locations where the fallout load was high than at stations where atmospheric deposition was lower, and the two variables were significantly correlated.

  9. [Respiratory health of children and atmospheric pollution. I. Respiratory symptoms].

    PubMed

    Aubry, C; Teculescu, D; Chau, N; Viaggi, M N; Pham, Q T; Manciaux, M

    1989-01-01

    The impact on the respiratory system of complex industrial pollution (dust, sulphur dioxide, nitrogen oxides, hydrocarbons) was assessed by an analytical epidemiological study in a population of school children in the northeast of France. The parents of 375 children aged from 9-12 (middle school course 1 and 2) from the polluted zone and 523 children of the same age in a neighboring zone which was not polluted have filled in standardised questionnaires (respiratory symptoms, previous infections and allergies, frequency of infection in infancy; tobacco habits, professional and educational attainments of the parents, domestic environment). In the exposed children the majority of respiratory symptoms were more frequent (e.g., respiratory sounds in the boys, 15.6% against 7.9% p less than 0.01) and the absenteeism from school was more numerous (66.9% against 59.1% p less than 0.01). However, the interpretation of the results had to take into account the existence of confusing factors: parental smoking habits and the use of coal fires increased the prevalence of symptoms in the polluted zone, whereas a less crowded population worked in the inverse direction; likewise the educational level of the parents was higher in the polluted zone. After adjusting for these confusing factors, the frequency of rhinitis and absenteeism from school was significantly higher in exposed children.

  10. Atmospheric pollutants in Uludağ National Park.

    PubMed

    Tuncel, S G; Karakaş, S Y; Ozer, U

    1996-01-01

    Gas phase pollutants and major ions were measured in the Sarýalan region of Uludağ Mountain, which is experiencing severe deforestation. Short- and long-term trends in the concentration of the gas pollutants were computed from the samples obtained in order to identify the source of these pollutants. The higher concentration of O3 during summer months was consistent with the higher photochemical production from precursor gases (NOx) with increased solar flux. The diurnal pattern of O3, NO, NO2 and TSP describes a photochemical smog scenario. A lower pH in aerosols associated with high levels of SO4(2-) and NO3- is an indication of acid deposition. Wind sector analysis revealed that the major contributing source regions are north and south of the sampling site, that is, the city of Bursa, local industries, and the Orhaneli power plant.

  11. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  12. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-05-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  13. A chemical adsorption system for the sampling of gaseous organic pollutants in operating theatre atmospheres.

    PubMed

    Halliday, M M; Carter, K B

    1978-10-01

    The development of an air sampler and its use in measuring organic pollutants in operating theatre atmospheres are described. Air was sampled continuously during an operating session and the results obtained represent the average pollution at the sample site during that session. The technique involved the chemical adsorption of organic vapours to polymer beads and pollutants thus trapped could be stored for several days before thermal desorption and analysis by gas chromatography. The three most abundant organic pollutants were ethanol, propan-2-ol (isopropanol) and halothane.

  14. Low level atmospheric sulfur dioxide pollution and childhood asthma

    SciTech Connect

    Tseng, R.Y.; Li, C.K. )

    1990-11-01

    Quarterly analysis (1983-1987) of childhood asthma in Hong Kong from 13,620 hospitalization episodes in relation to levels of pollutants (SO{sub 2}, NO{sub 2}, NO, O{sub 3}, TSP, and RSP) revealed a seasonal pattern of attack rates that correlates inversely with exposure to sulfur dioxide (r = -.52, P less than .05). The same cannot be found with other pollutants. Many factors may contribute to the seasonal variation of asthma attacks. We speculate that prolonged exposure (in terms of months) to low level SO{sub 2} is one factor that might induce airway inflammation and bronchial hyperreactivity and predispose to episodes of asthma.

  15. [Atmospheric parameter estimation for LAMOST/GUOSHOUJING spectra].

    PubMed

    Lu, Yu; Li, Xiang-Ru; Yang, Tan

    2014-11-01

    It is a key task to estimate the atmospheric parameters from the observed stellar spectra in exploring the nature of stars and universe. With our Large Sky Area Multi-Object Fiber Spectroscopy Telescope (LAMOST) which begun its formal Sky Survey in September 2012, we are obtaining a mass of stellar spectra in an unprecedented speed. It has brought a new opportunity and a challenge for the research of galaxies. Due to the complexity of the observing system, the noise in the spectrum is relatively large. At the same time, the preprocessing procedures of spectrum are also not ideal, such as the wavelength calibration and the flow calibration. Therefore, there is a slight distortion of the spectrum. They result in the high difficulty of estimating the atmospheric parameters for the measured stellar spectra. It is one of the important issues to estimate the atmospheric parameters for the massive stellar spectra of LAMOST. The key of this study is how to eliminate noise and improve the accuracy and robustness of estimating the atmospheric parameters for the measured stellar spectra. We propose a regression model for estimating the atmospheric parameters of LAMOST stellar(SVM(lasso)). The basic idea of this model is: First, we use the Haar wavelet to filter spectrum, suppress the adverse effects of the spectral noise and retain the most discrimination information of spectrum. Secondly, We use the lasso algorithm for feature selection and extract the features of strongly correlating with the atmospheric parameters. Finally, the features are input to the support vector regression model for estimating the parameters. Because the model has better tolerance to the slight distortion and the noise of the spectrum, the accuracy of the measurement is improved. To evaluate the feasibility of the above scheme, we conduct experiments extensively on the 33 963 pilot surveys spectrums by LAMOST. The accuracy of three atmospheric parameters is log Teff: 0.006 8 dex, log g: 0.155 1 dex

  16. Improving estimates of air pollution exposure through ubiquitous sensing technologies

    PubMed Central

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-01-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743

  17. [Characteristics of Winter Atmospheric Mixing Layer Height in Beijing-Tianjin-Hebei Region and Their Relationship with the Atmospheric Pollution].

    PubMed

    Li, Meng; Tang, Gui-qian; Huang, Jun; Liu, Zi-rui; An, Jun-lin; Wang, Yue-si

    2015-06-01

    Atmospheric mixing layer height (MLH) is one of the main factors affecting the atmospheric diffusion and plays an important role in air quality assessment and distribution of the pollutants. Based on the ceilometers data, this paper has made synchronous observation on MLH in Beijing-Tianjin-Hebei region (Beijing, Tianjin, Shijiazhuang and Qinhuangdao) in heavy polluted February 2014 and analyzed the respective overall change and its regional features. Results show that in February 2014,the average of mixing layer height in Qinhuangdao is the highest, up to 865 +/- 268 m, and in Shijiazhuang is the lowest (568 +/- 207 m), Beijing's and Tianjin's are in between, 818 +/- 319 m and 834 +/- 334 m respectively; Combined with the meteorological data, we find that radiation and wind speed are main factors of the mixing layer height; The relationship between the particle concentration and mixing layer height in four sites suggests that mixing layer is less than 800 m, concentration of fine particulate matter in four sites will exceed the national standard (GB 3095-2012, 75 microg x m(-3)). During the period of observation, the proportion of days that mixing layer is less than 800 m in Beijing, Tianjin, Shijiazhuang and Qinhuangdao are 50%, 43%, 80% and 50% respectively. Shijiazhuang though nearly formation contaminant concentration is high, within the atmospheric mixed layer pollutant load is not high. Unfavorable atmospheric diffusion conditions are the main causes of heavy pollution in Shijiazhuang for a long time. The results of the study are of great significance for cognitive Beijing-Tianjin-Hebei area pollution distribution, and can provide a scientific reference for reasonable distribution of regional pollution sources.

  18. Global atmospheric emissions and transport of polycyclic aromatic hydrocarbons: Evaluation of modeling and transboundary pollution

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu

    2014-05-01

    Global atmospheric emissions of 16 polycyclic aromatic hydrocarbons (PAHs) from 69 major sources were estimated for a period from 1960 to 2030. Regression models and a technology split method were used to estimated country and time specific emission factors, resulting in a new estimate of PAH emission factor variation among different countries and over time. PAH emissions in 2007 were spatially resolved to 0.1° × 0.1° grids based on a newly developed global high-resolution fuel combustion inventory (PKU-FUEL-2007). MOZART-4 (The Model for Ozone and Related Chemical Tracers, version 4) was applied to simulate the global tropospheric transport of Benzo(a)pyrene, one of the high molecular weight carcinogenic PAHs, at a horizontal resolution of 1.875° (longitude) × 1.8947° (latitude). The reaction with OH radical, gas/particle partitioning, wet deposition, dry deposition, and dynamic soil/ocean-air exchange of PAHs were considered. The simulation was validated by observations at both background and non-background sites, including Alert site in Canadian High Arctic, EMEP sites in Europe, and other 254 urban/rural sites reported from literatures. Key factors effecting long-range transport of BaP were addressed, and transboundary pollution was discussed.

  19. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    NASA Astrophysics Data System (ADS)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU

  20. Estimating the Neutral Atmospheric Forcing Using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Ward, J.; Swenson, C.; Carlson, C.; Minter, C. F.; Fuller-Rowell, T. J.; Codrescu, M. V.

    2003-12-01

    Based on data assimilation techniques developed in meteorology and oceanography, a data assimilation system has been developed to provide a time-dependent estimate of the thermospheric density, temperature, and composition. Through its application, distinct characteristics of the neutral atmosphere have become apparent. It has been long realized that, unlike the troposphere, the neutral atmosphere is more strongly driven by external forcing, which includes Joule, particle, and solar heating. It has also been understood that knowing the forcing alone, over a period of days, can allow for a fairly accurate modeling of the neutral atmospheric conditions: density, temperature, and composition. Unfortunately, the magnitude and the distribution of the forcing are difficult to observe since scalar values are typically used to describe complicated processes. The research presented here attempts to better estimate the forcing and its effect on the neutral atmosphere from observing the neutral atmospheric conditions and the changes in these conditions spatially and temporally. Since the magnitude and distribution of the forcing cannot be observed directly, a statistical approach is used to provide the `best' description for this process through data assimilation.

  1. Spectral Optical Properties of the Polluted Atmosphere of Mexico City (Spring-Summer 1992)

    NASA Technical Reports Server (NTRS)

    Vasilyev, O. B.; Contreras, A. Leyva; Valazquez, A. Muhlia; Peralta-Fabi, R.; Ivlev, L. S.; Kovalenko, A. P.; Vasilyev, A. V.; Jukov, V. M.; Welch, Ronald M.

    1995-01-01

    A joint Mexican, Russian, and American research effort has been initiated to develop new methods to remotely sense atmospheric parameters using ground-based, aircraft, and satellite observations. As a first step in this program, ground-based spectrophotometric measurements of the direct solar radiation have been obtained for the extremely polluted Mexico City atmosphere for the period of April-June 1992. These observations were made at more than 1300 channels in the spectral range of 0.35-0.95 microns. In the UltraViolet (UV) portions of the spectrum (e.g., 0.35 microns), aerosol optical thicknesses were found to range between 0.6 and 1.2; in the visible portion of the spectrum (e. g., 0.5 microns) they ranged from 0.5 to 0.8; and in the Near-Infrared (NIR) spectra (e.g., 0.85 micron), values of 0.3 - 0.5 were found. Applying a Spectral Optical Depth (SOD) model of tau(lambda) = C + A(lambda(sup -varies as), values of 1.55 less than varies as less than 1.85 were obtained for polluted, cloudless days, with values of 1.25 less than varies as less than 1.60 on days with haze. The aerosol particles in the polluted Mexico City atmosphere were found to be strongly absorbing, with a single-scattering albedo of 0.7 - 0.9 in the UV, 0.6 - 0.8 in the visible portion of the spectrum, and 0.4 - 0.7 in the NIR. These values are possibly consistent with a high soot concentration, contributed both by vehicular traffic and heavy industry. Analysis of the measured aerosol SOD using the optical parameters of an urban aerosol model pemiits the concentration of aerosol particles to be estimated in the vertical column; a maximum value of 3 x 10(exp 9) 1/sq cm was found. This concentration of aerosol particles exceeds that found in most other regions of the globe by at least an order of magnitude. Near the ground the aerosol size distributions measured using an optical particle counter were found to be strongly multimodal.

  2. [Influence of atmospheric transport on air pollutant levels at a mountain background site of East China].

    PubMed

    Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin

    2014-08-01

    Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.

  3. The automated system of detection and research of pollution in the atmosphere

    NASA Astrophysics Data System (ADS)

    Isakova, Anna I.; Smal, Oksana V.; Chistyakova, Liliya K.; Penin, Sergei T.

    2004-02-01

    In the paper, the automated system of data processing (ASDP) for a hardware complex DAN-2, assigned for registration of emission and absorption of optical and the microwave radiation initiated by gas-aerosol pollution in the atmosphere, is presented. The complex DAN-2 has been developed in the Institute of Atsmospheric Optics of the Siberian Branch of the Russian Academy of Science. In the ASDP, a problem of automation of recording processes, storage and processing of the information measured in experiment has been solved. Using in ASDP subsystems of the forecast of optical noise, the forecast of distribution of an impurity in a plume of gas-aerosol emission from industrial plants allows us to carry out the express-analysis of ecological pollution in the inspection zone. Application of a modular principle has created an opportunity to realize all subsystems ASPD independently from each other, thus, they can operate as independently, and in the general complex of programs. As a tool for creation of the system software, the object-oriented instrument of programming Delphi 5.0 has been chosen. It has a number of advantages and distinctive features such as the convenient graphic interface with displaying of calculation results as uniform scrolling tables and graphics, access to the data files, high speed of mathematical calculations, an opportunity of the further expansion and change of the calculation algorithms. Use of the ASPD has allowed us to improve quality of data recording, their processing, and visualization of the processed results. For the first time in the automated system, the complex estimation of ecological situation with use of experimental data in real time has been realized. The ASPD can be used also by other experimental equipment intended for the solution of problems of the atmospheric optics.

  4. An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Luo, X. S.; Liu, P.; Tang, A. H.; Liu, J. Y.; Zong, X. Y.; Zhang, Q.; Kou, C. L.; Zhang, L. J.; Fowler, D.; Fangmeier, A.; Christie, P.; Zhang, F. S.; Liu, X. J.

    2013-08-01

    North China is known for its large population densities and rapid development of industry and agriculture. Air quality around Beijing improved substantially during the 2008 Summer Olympics. We measured atmospheric concentrations of various Nr compounds at three urban sites and three rural sites in North China from 2010 to 2012 and estimated N dry and wet deposition by inferential models and the rain gauge method to determine current air conditions with respect to reactive nitrogen (Nr) compounds and nitrogen (N) deposition in Beijing and the surrounding area. NH3, NO2, and HNO3 and particulate NH4+ and NO3-, and NH4+-N and NO3--N in precipitation averaged 8.2, 11.5, 1.6, 8.2 and 4.6 μg N m-3, and 2.9 and 1.9 mg N L-1, respectively, with large seasonal and spatial variability. Atmospheric Nr (especially oxidized N) concentrations were highest at urban sites. Dry deposition of Nr ranged from 35.2 to 60.0 kg N ha-1 yr-1, with wet deposition of Nr of 16.3 to 43.2 kg N ha-1 yr-1 and total deposition of 54.4-103.2 kg N ha-1 yr-1. The rates of Nr dry and wet deposition were 36.4 and 33.2% higher, respectively, at the urban sites than at the rural sites. These high levels reflect the occurrence of a wide range of Nr pollution in North China and suggest that further strict air pollution control measures are required.

  5. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity.

    PubMed

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  6. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    PubMed Central

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  7. Detection of atmospheric pollutants by pulsed photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Roman, Miruna; Pascu, Mihail-Lucian; Staicu, Angela

    1998-07-01

    Pulsed laser photoacoustic detection of NO2 and SO2 is reported. The laser source is a pulsed molecular nitrogen laser emitting at 337.1 nm. The average energy per pulse is about 350 (mu) J and the pulse duration 10 nsec. For detection we used a piezoelectric transducer (TUSIM-N.I.M.P., resonance frequency 4 MHz) and an electret condenser microphone (Trevi EM 27). The photoacoustic cell was a nonresonant one, with a cylindrical shape. The laser beam was centered along the cylinder axis. Linear dependence of the photoacoustic signal on pollutant pressure was obtained. This linearity is in a good agreement with theoretical considerations. The photoacoustic signal was measured for pollutants pressure between 1 torr and 100 torr for NO2 and between 35 torr and 100 torr for SO2.

  8. Effects of atmospheric pollutants on forests, wetlands, and agricultural ecosystems

    SciTech Connect

    Hutchinson, T.C.; Meema, K.M.

    1987-01-01

    This book reports on the knowledge of the sensitivities and responses of forests, wetlands and crops to airborne pollutants. Pollutants examined include: acidic depositions, heavy metal particulates, sulphur dioxide, ozone, nitrogen oxides, acid fogs, and mixtures of these. Various types of ecosystem stresses and physiological mechanisms pertinent to acid deposition are also discussed. Related subjects, such as the effects of ethylene on vegetation, the physiology of drought in trees, the ability of soils to generate acidity naturally, the role of Sphagnum moss in natural peatland acidity, the use of lichens as indicators of changing air quality, and the magnitude of natural emissions of reduced sulphur gases from tropical rainforests and temperate deciduous forests, are covered.

  9. Biomonitoring of the atmospheric pollution by heavy metals in Morocco

    NASA Astrophysics Data System (ADS)

    Gaudry, A.; Senhou, A.; Chouak, A.; Cherkaoui, R.; Moutia, Z.; Lferde, M.; Elyahyaoui, A.; El Khoukhi, T.; Bounakhla, M.; Embarch, K.; Ayrault, S.; Moskura, M.

    2003-05-01

    In this study, the accumulation sensitivities of trace elements in six types of air pollution biomonitors (lichens, tree barks and a moss) are compared. Three analytical methods were used:14MeV neutron activation analysis, thermal neutron activation analysis method and X-ray fluorescence analysis. Studies of the local concentration variations versus the sizes of lichen and of their altitude of collection from grounds, revealed that a standardisation of the procedures for collecting samples was necessary.

  10. AICE Survey of USSR Air Pollution Literature, Volume 12: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part I.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Twelve papers dealing with the meteorological aspects of air pollution were translated. These papers were initially presented at an international symposium held in Leningrad during July 1968. The papers are: Status and prospective development of meteorological studies of atmospheric pollution, Effect of the stability of the atmosphere on the…

  11. Estimation of atmospheric parameters from time-lapse imagery

    NASA Astrophysics Data System (ADS)

    McCrae, Jack E.; Basu, Santasri; Fiorino, Steven T.

    2016-05-01

    A time-lapse imaging experiment was conducted to estimate various atmospheric parameters for the imaging path. Atmospheric turbulence caused frame-to-frame shifts of the entire image as well as parts of the image. The statistics of these shifts encode information about the turbulence strength (as characterized by Cn2, the refractive index structure function constant) along the optical path. The shift variance observed is simply proportional to the variance of the tilt of the optical field averaged over the area being tracked. By presuming this turbulence follows the Kolmogorov spectrum, weighting functions can be derived which relate the turbulence strength along the path to the shifts measured. These weighting functions peak at the camera and fall to zero at the object. The larger the area observed, the more quickly the weighting function decays. One parameter we would like to estimate is r0 (the Fried parameter, or atmospheric coherence diameter.) The weighting functions derived for pixel sized or larger parts of the image all fall faster than the weighting function appropriate for estimating the spherical wave r0. If we presume Cn2 is constant along the path, then an estimate for r0 can be obtained for each area tracked, but since the weighting function for r0 differs substantially from that for every realizable tracked area, it can be expected this approach would yield a poor estimator. Instead, the weighting functions for a number of different patch sizes can be combined through the Moore-Penrose pseudo-inverse to create a new weighting function which yields the least-squares optimal linear combination of measurements for estimation of r0. This approach is carried out, and it is observed that this approach is somewhat noisy because the pseudo-inverse assigns weights much greater than one to many of the observations.

  12. Study of atmospheric dynamics and pollution in the coastal area of English Channel using clustering technique

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmenten, Marc

    2016-04-01

    The problem of atmospheric contamination by principal air pollutants was considered in the industrialized coastal region of English Channel in Dunkirk influenced by north European metropolitan areas. MESO-NH nested models were used for the simulation of the local atmospheric dynamics and the online calculation of Lagrangian backward trajectories with 15-minute temporal resolution and the horizontal resolution down to 500 m. The one-month mesoscale numerical simulation was coupled with local pollution measurements of volatile organic components, particulate matter, ozone, sulphur dioxide and nitrogen oxides. Principal atmospheric pathways were determined by clustering technique applied to backward trajectories simulated. Six clusters were obtained which describe local atmospheric dynamics, four winds blowing through the English Channel, one coming from the south, and the biggest cluster with small wind speeds. This last cluster includes mostly sea breeze events. The analysis of meteorological data and pollution measurements allows relating the principal atmospheric pathways with local air contamination events. It was shown that contamination events are mostly connected with a channelling of pollution from local sources and low-turbulent states of the local atmosphere.

  13. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively. PMID:26978937

  14. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively.

  15. Atmospheric Density Corrections Estimated from Fitted Drag Coefficients

    NASA Astrophysics Data System (ADS)

    McLaughlin, C. A.; Lechtenberg, T. F.; Mance, S. R.; Mehta, P.

    2010-12-01

    Fitted drag coefficients estimated using GEODYN, the NASA Goddard Space Flight Center Precision Orbit Determination and Geodetic Parameter Estimation Program, are used to create density corrections. The drag coefficients were estimated for Stella, Starlette and GFZ using satellite laser ranging (SLR) measurements; and for GEOSAT Follow-On (GFO) using SLR, Doppler, and altimeter crossover measurements. The data analyzed covers years ranging from 2000 to 2004 for Stella and Starlette, 2000 to 2002 and 2005 for GFO, and 1995 to 1997 for GFZ. The drag coefficient was estimated every eight hours. The drag coefficients over the course of a year show a consistent variation about the theoretical and yearly average values that primarily represents a semi-annual/seasonal error in the atmospheric density models used. The atmospheric density models examined were NRLMSISE-00 and MSIS-86. The annual structure of the major variations was consistent among all the satellites for a given year and consistent among all the years examined. The fitted drag coefficients can be converted into density corrections every eight hours along the orbit of the satellites. In addition, drag coefficients estimated more frequently can provide a higher frequency of density correction.

  16. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    PubMed

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

  17. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    PubMed

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation. PMID:26620865

  18. The etymological role of the main atmosphere pollutants in development of human diseases.

    PubMed

    Lomtatidze, N; Kiknadze, N; Khakhnalidze, R; Tusishvili, Kh; Alasania, N; Kiknadze, M

    2013-04-01

    The aim of research was monitoring of the main atmospheric air pollutants concentration on Adjara Autonomous Republic territory in order to determine their role in causing different diseases. The following atmospheric air pollutants have been determined in Batumi: dust, carbon monoxide, sulfur and nitrogen dioxide. The number of diseases registered in Adjara Autonomous Republic, which may be linked to the air pollution, has been studied. These are the following: chronic and nonspecific bronchitis, asthma and asthma status diseases, allergic rhinitis, trachea-, bronchi- and lung malignant tumor. In order to reduce the number of risk-factors significant attention should be paid to the proper functionality of the vehicles and systematic observations should continue on the chemical pollution of the air to make proper decisions to reduce the number of diseases. PMID:23676494

  19. [Long-distance transportation of atmospheric pollutants and its effects on ecosystems].

    PubMed

    Guardans, R; Gimeno, B S

    1994-01-01

    It was known, as far back as the nineteenth century, that rain water from industrial areas was more acid than that from rural areas. The potential risks for life in general were discussed, but no further attention was paid to the issue. At the end of the twentieth century, the ecosystems of Europe, Canada and the United States have been severely damaged by pollutants borne by atmospheric winds to places distant from their origin. The main effects of these atmospheric pollutants are due to sulfur and nitrogen oxide dilution and to photochemical reactions. International organizations have been formed and agreements pronounced and ratified by many countries for a universal study on the pollution process, on the transport of pollutants--mostly sulfur, nitrogen and ozone--and on how to collaborate in order to reduce emissions in the respective countries of origin for the worldwide profit.

  20. Study of atmospheric pollution scavenging. Eighteenth progress report

    SciTech Connect

    Semonin, R.G.; Bartlett, J.D.; Bowersox, V.C.; Gatz, D.F.; Naiman, D.Q.; Peden, M.E.; Stahlhut, R.K.; Stensland, G.J.

    1980-07-01

    The analysis of aerosol samples obtained in rural east-central Illinois reveals a seasonal maximum in SO/sub 4/ during May to July and a similar pattern for NH/sub 4/. The annual median SO/sub 4/ is about 1 to 1.5 ..mu..g/m/sup 3/. In contrast to these ions, NO/sub 3/ displays highest values in the cold season. Soil-related species (Ca, K) seem to maximize in relation to farm tillage and harvesting practices. The NO/sub 3/ in recent precipitation samples over the northeast US increased between 1 and 2 times the values observed in the mid-1950's. A case study from SCORE-78 suggests that all ion concentrations analyzed from sequentially collected samples decreased from the onset of rain to a minimum corresponding to the heaviest rain rates. Four groups of elements in 10 event rain samples were identified using factor analysis. The groups include soluble and insoluble crustal elements, soluble pollutant metals and sulfate, and insoluble pollutant metals. Utilizing the factor analysis approach, the St. Louis METROMEX precipitation chemistry data showed that the SO/sub 4/ deposition patterns group consistently with those of other soluble pollutants. Additional factor analysis efforts on the St. Louis rainwater data set revealed that soluble and insoluble concentrations of a given element have different deposition patterns suggesting that scavenging and/or precipitation formation processes dictate the patterns. An approach to managing the vast data base of rain chemistry used in the above studies is described. The software also examines the data for certain aspects of quality assurance. The procedures used to analyze ambient air filter samples are discussed.

  1. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  2. Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.

  3. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  4. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we

  5. A network-based approach for estimating pedestrian journey-time exposure to air pollution.

    PubMed

    Davies, Gemma; Whyatt, J Duncan

    2014-07-01

    Individual exposure to air pollution depends not only upon pollution concentrations in the surrounding environment, but also on the volume of air inhaled, which is determined by an individual's physiology and activity level. This study focuses on journey-time exposure, using network analysis in a GIS environment to identify pedestrian routes between multiple origins and destinations throughout the city of Lancaster, North West England. For each segment of a detailed footpath network, exposure was calculated accounting for PM2.5 concentrations (estimated using an atmospheric dispersion model) and respiratory minute volume (varying between individuals and with slope). For each of the routes generated the cumulative exposure to PM2.5 was estimated, allowing for easy comparison between multiple routes. Significant variations in exposure were found between routes depending on their geography, as well as in response to variations in background concentrations and meteorology between days. Differences in physiological characteristics such as age or weight were also seen to impact journey-time exposure considerably. In addition to assessing exposure for a given route, the approach was used to identify alternative routes that minimised journey-time exposure. Exposure reduction potential varied considerably between days, with even subtle shifts in route location, such as to the opposite side of the road, showing significant benefits. The method presented is both flexible and scalable, allowing for the interactions between physiology, activity level, pollution concentration and journey duration to be explored. In enabling physiology and activity level to be integrated into exposure calculations a more comprehensive estimate of journey-time exposure can be made, which has potential to provide more realistic inputs for epidemiological studies.

  6. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  7. [Measurement of atmospheric boundary layer pollutants by mobile lidar in Beijing].

    PubMed

    Wang, Shao-Lin; Xie, Pin-Hua; Hu, Shun-Xing; Wei, He-Li; Hu, Huan-Ling; Xie, Jun; Cao, Kai-Fa; Fang, Xin

    2008-03-01

    The parameters of AML-2 mobile lidar were introduced, which was based on differential absorption principle and designed by our institute. In Yufa of Beijing, the pollutants including O3, NO2, SO2 in atmospheric boundary layer were monitored in August and September of 2006 under different weather conditions. Vertical profile and diurnal variation of concentrations of these pollutants were analyzed. If without the influence of pollution air transport from south region, the concentrations of these pollutants are low under the overcast weather condition. The concentrations of O3 and NO2 decrease with altitude, and this characteristic is not obvious for SO2, but there is a high concentration layer of SO2 near ground (about 0.6km). The quality of atmosphere Beijing is influenced significantly by air transportation from south region, and the altitude of the severe pollution air transport is about 1km to 1.5km in August 23rd to 25th. As a result, the characteristics of vertical profile and daily variation of the pollutants are changed, and the concentrations of O3, NO2, SO2 in atmospheric boundary layer of Yufa area increased obviously.

  8. Combined methodology for estimating dose rates and health effects from exposure to radioactive pollutants

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.

    1980-12-01

    The work described in the report is basically a synthesis of two previously existing computer codes: INREM II, developed at the Oak Ridge National Laboratory (ORNL); and CAIRD, developed by the Environmental Protection Agency (EPA). The INREM II code uses contemporary dosimetric methods to estimate doses to specified reference organs due to inhalation or ingestion of a radionuclide. The CAIRD code employs actuarial life tables to account for competing risks in estimating numbers of health effects resulting from exposure of a cohort to some incremental risk. The combined computer code, referred to as RADRISK, estimates numbers of health effects in a hypothetical cohort of 100,000 persons due to continuous lifetime inhalation or ingestion of a radionuclide. Also briefly discussed in this report is a method of estimating numbers of health effects in a hypothetical cohort due to continuous lifetime exposure to external radiation. This method employs the CAIRD methodology together with dose conversion factors generated by the computer code DOSFACTER, developed at ORNL; these dose conversion factors are used to estimate dose rates to persons due to radionuclides in the air or on the ground surface. The combination of the life table and dosimetric guidelines for the release of radioactive pollutants to the atmosphere, as required by the Clean Air Act Amendments of 1977.

  9. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values

  10. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.

    PubMed

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming

    2016-09-01

    Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. PMID:27295441

  11. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  12. Estimation of Dynamical Parameters in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark O.

    2004-01-01

    In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.

  13. Atmospheric input of organic pollutants to the Venice Lagoon.

    PubMed

    Rossini, P; De Lazzari, A; Guerzoni, S; Molinaroli, E; Rampazzo, G; Zancanaro, A

    2001-01-01

    The atmospheric deposition of dioxins and furans (PCDD-Fs), dioxin-like polychlorobyphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and hexachlorobenzene (HCB) was determined in the Lagoon of Venice. Sampling was carried out monthly, for a total of 13 months (July 1998-July 1999) using "bulk" samplers (passive collectors of wet and dry depositions) at four sites, inside the lagoon and close to its edge. Calculated PCDD-F loadings to the Lagoon turned out to be quite homogeneous, their range being approximately 10-20 ng m-2 y-1, whereas in the station located close to the industrial zone of Porto Marghera the value was approximately 50 ng m-2 y-1. PCB deposition in the industrial fallout sampling site and in the city centre of Venice was approximately 2500 ng m-2 y-1, that is, almost five times higher than the values measured at the northern and southern lagoon stations. HCB annual loading (approximately 8000 ng m-2 y-1) was almost six times higher in the industrial zone than in the other sites (approximately 1500 ng m-2 y-1). PAH loadings in the city centre of Venice and at Porto Marghera were 314 and 389 micrograms m-2 y-1, respectively. The amount of 2,3,7,8-TCDD equivalents (TEQ) of PCDD-Fs and PCBs in the Venice and Porto Marghera bulk depositions was compared with the guideline value of 15 pg m-2 d-1 for dioxins in depositions proposed by De Fré et al. (1998). Moreover, as some of the effects which drive the risk assessment of dioxin-like compounds were also observed after exposure to other molecules, the TEQs of PAHs and HCB were also calculated: nine out of 13 samples exceeded the guideline value. Lastly, an atmospheric emission source related to vinyl chloride monomer production, which may affect atmospheric deposition on the whole Lagoon, is reported in the industrial zone of Porto Marghera.

  14. Estimating the natural background atmospheric deposition rate of mercury utilizing ombrotrophic bogs in southern Sweden.

    PubMed

    Bindler, R

    2003-01-01

    A critical gap in the understanding of the global cycling of mercury is the limited data describing the natural background atmospheric deposition rate of mercury before the advent of pollution. Existing estimates of the natural deposition rate are typically about 2-5 microg of Hg m(-2) year(-1) (see, for example, Swain et al. Science 1992, 257, 784-787), based on studies that generally rely on short, 210Pb-dated lake sediment and peat cores that span the past 150 years. Analyses of mercury in long peat cores in southcentral Sweden indicate that natural mercury deposition rates in the period 4000-500 BP were lower, about 0.5-1 microg of Hg m(-2) year(-1). This suggests that recent mercury accumulation rates in the peat (15-25 microg of Hg m(-2) year(-1)) and measured atmospheric deposition rates of mercury in Sweden over the past 3 decades (5-30 microg of Hg m(-2) year(-1)) (Munthe et al. Water, Air, Soil Pollut.: Focus 2001, 1, 299-310) are at least an order of magnitude greater than the prepollution deposition rate, rather than representing only a 3-5-fold increase, as has generally been estimated.

  15. Solar Radiation Estimated Through Mesoscale Atmospheric Modeling over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    de Menezes Neto, Otacilio Leandro; Costa, Alexandre Araújo; Ramalho, Fernando Pinto; de Maria, Paulo Henrique Santiago

    2009-03-01

    The use of renewable energy sources, like solar, wind and biomass is rapidly increasing in recent years, with solar radiation as a particularly abundant energy source over Northeast Brazil. A proper quantitative knowledge of the incoming solar radiation is of great importance for energy planning in Brazil, serving as basis for developing future projects of photovoltaic power plants and solar energy exploitation. This work presents a methodology for mapping the incoming solar radiation at ground level for Northeast Brazil, using a mesoscale atmospheric model (Regional Atmospheric Modeling System—RAMS), calibrated and validated using data from the network of automatic surface stations from the State Foundation for Meteorology and Water Resources from Ceará (Fundação Cearense de Meteorologia e Recursos Hídricos- FUNCEME). The results showed that the model exhibits systematic errors, overestimating surface radiation, but that, after the proper statistical corrections, using a relationship between the model-predicted cloud fraction, the ground-level observed solar radiation and the incoming solar radiation estimated at the top of the atmosphere, a correlation of 0.92 with a confidence interval of 13.5 W/m2 is found for monthly data. Using this methodology, we found an estimate for annual average incoming solar radiation over Ceará of 215 W/m2 (maximum in October: 260 W/m2).

  16. [Observation on atmospheric pollution in Xianghe during Beijing 2008 Olympic Games].

    PubMed

    Pan, Yue-Peng; Wang, Yue-Si; Hu, Bo; Liu, Quan; Wang, Ying-Hong; Nan, Wei-Dong

    2010-01-01

    There is a concern that much of the atmospheric pollution experienced in Beijing is regional in nature and not attributable to local sources. The objective of this study is to examine the contribution of sources outside Beijing to atmospheric pollution levels during Beijing 2008 Olympic Games. The observations of SO2, NO(x), O3, PM2.5 and PM10 were conducted from June 1 to September 30, 2008 in Xianghe, a rural site about 70 km southeast of Beijing. Sources and transportation of atmospheric pollution during the experiment were discussed with surface meteorology data and backward trajectories calculated using HYSPLIT model. The results showed that the daily average maximum (mean +/- standard deviation) concentrations of SO2, NO(x), O3, PM2.5, and PM10 during observation reached 84.4(13.4 +/- 15.2), 43.3 (15.9 +/- 9.1), 230 (82 +/- 38), 184 (76 +/- 42) and 248 (113 +/- 52) microg x m(-3), respectively. In particular, during the pollution episodes from July 20 to August 12, the hourly average concentration of O3 exceeded the National Ambient Air Quality Standard II for 46 h (9%), and the daily average concentration of PM10 exceeded the Standard for 11 d (46%); PM2.5 exceeded the US EPA Standard for 18 d (75%). The daily average concentrations of SO2, NO(x), O3, PM2.5 and PM10 decreased from 27.7, 18.6, 96, 90, 127 microg x m(-3) in June-July to 5.8, 13.2, 80, 60, 106 microg x m(-3) during Olympic Games (August-September), respectively. The typical diurnal variations of NO(x), PM2.5 and PM10 were similar, peaking at 07:00 and 20:00, while the maximum of O3 occurred between 14:00 to 16:00 local time. The findings also suggested that the atmospheric pollution in Xianghe is related to local emission, regional transport as well as the meteorological conditions. Northerly wind and precipitation are favorable for diffusion and wet deposition of pollutants, while sustained south flows make the atmospheric pollution more serious. The lead-lag correlation analysis during the

  17. Greenland precipitation estimates from the atmospheric moisture budget

    SciTech Connect

    Robasky, F.M.; Bromwich, D.H.

    1994-11-15

    Eight radiosonde stations surrounding Greenland at an average separation of 750 km are used to compute the atmospheric moisture budget. Radiosonde data were available from 1963-89, but were not used for 1963-79 due to insufficient data coverage which likely resulted in a major underestimation of large moisture inflow events. There is a mean annual inflow of moisture to the atmospheric volume over Greenland through its southeast and southwest sectors, and outflow to the northeast. Moisture convergences, equivalent to precipitation minus evaporation, yield an areal average of 32 cm yr{sup {minus}1} of water equivalent; they also show high inter- and intra-annual agreement with earlier modeled precipitation estimates found by the authors and serve as further confirmation of their modeling results. The time-averaged eddy component accounts for 90% of the total moisture convergence, reflecting the dominant contribution of precipitation from synoptic-scale cyclones. 20 refs., 5 figs.

  18. Organics in the atmosphere: From air pollution to biogeochemical cycles and climate (Vilhelm Bjerknes Medal)

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria

    2016-04-01

    Organics are key players in the biosphere-atmosphere-climate interactions. They have also a significant anthropogenic component due to primary emissions or interactions with pollution. The organic pool in the atmosphere is a complex mixture of compounds of variable reactivity and properties, variable content in C, H, O, N and other elements depending on their origin and their history in the atmosphere. Multiphase atmospheric chemistry is known to produce organic acids with high oxygen content, like oxalic acid. This water soluble organic bi-acid is used as indicator for cloud processing and can form complexes with atmospheric Iron, affecting Iron solubility. Organics are also carriers of other nutrients like nitrogen and phosphorus. They also interact with solar radiation and with atmospheric water impacting on climate. In line with this vision for the role of organics in the atmosphere, we present results from a global 3-dimensional chemistry-transport model on the role of gaseous and particulate organics in atmospheric chemistry, accounting for multiphase chemistry and aerosol ageing in the atmosphere as well as nutrients emissions, atmospheric transport and deposition. Historical simulations and projections highlight the human impact on air quality and atmospheric deposition to the oceans. The results are put in the context of climate change. Uncertainties and implications of our findings for biogeochemical and climate modeling are discussed.

  19. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Dörner, Steffen; He, Kebin; Wagner, Thomas

    2016-04-01

    We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in a polluted background. NO2 patterns under calm wind conditions are used as proxy for the spatial patterns of NOx emissions, and the effective atmospheric NOx lifetime is determined from the change of spatial patterns measured at larger wind speeds. Emissions are subsequently derived from the NO2 mass above the background, integrated around the source of interest. Lifetimes and emissions are estimated for 17 power plants and 53 cities located in non-mountainous regions across China and the USA. The derived lifetimes for the ozone season (May-September) are 3.8 ± 1.0 h (mean ± standard deviation) with a range of 1.8 to 7.5 h. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Regional inventory shows better agreement with top-down estimates for Chinese cities compared to global inventory, most likely due to different downscaling approaches adopted in the two inventories.

  20. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies.

  1. Methods of valuing air pollution and estimated monetary values of air pollutants in various U.S. regions

    SciTech Connect

    Wang, M.Q.; Santini, D.J.; Warinner, S.A.

    1994-12-01

    Air pollutant emission values are used to determine the social costs of various technologies that cause air pollution and to estimate the benefits of emission control technologies. In this report, the authors present two methods of estimating air pollutant emission values--the damage value method and the control cost method--and review 15 recent studies in which these methods were employed to estimate emission values. The reviewed studies derived emission values for only a limited number of areas; emission value estimates are needed for other US regions. Using the emission values estimated in the reviewed studies, they establish regression relationships between emission values, air pollutant concentrations, and total population exposed, and apply the established relationships to 17 US metropolitan areas to estimate damage-based and control-cost-based emission values for reactive organic gases, nitrogen oxides, particulate matter measuring less than 10 microns, sulfur oxides, and carbon monoxide in these areas. Their estimates show significant variations in emission values across the 17 regions.

  2. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  3. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  4. Tracing combustion-derived atmospheric pollutants using compound-specific isotope analysis

    NASA Astrophysics Data System (ADS)

    Ballentine, Donna Christine

    1997-04-01

    The use of compound specific carbon isotopic analysis (CSIA) has been investigated as a means to trace the origin and fate of organic pollutants in the atmosphere. Polycyclic aromatic hydrocarbons (PAH) and fatty acids have been suggested as two chemical classes which may serve as suitable molecular markers for anthropogenic combustion processes, such as fossil fuel combustion and biomass burning, that introduce significant quantities of organic pollutants into the atmospheric environment. First, analytical procedures for the extraction and isolation of these compounds from particulate aerosols, as well as a description of the isotopic measurement techniques, have been presented. Second, the precision and accuracy of these methods and measurements have been demonstrated. Third, the isotopic variability of PAH and fatty acids produced from different combustion processes has been investigated. In addition, in order to demonstrate the applicability of this technique as a means to monitor the fate of atmospheric pollutants, isotopic measurements of PAH, fatty acids, and alkanes isolated from a series of ambient aerosol samples have been made in a preliminary attempt to determine if compound specific isotope analysis of molecular markers in aerosols can be used in conjunction with other chemical and atmospheric data in order to reflect the transport of pollution episodes.

  5. Laser systems for stand-off detection of contamination and pollution of atmosphere

    NASA Astrophysics Data System (ADS)

    Mierczyk, Zygmunt

    2007-02-01

    The paper presents selected laser systems used for remote detection of contamination and pollution of atmosphere. Having in view a way of taking samples for analysis, the methods used for atmosphere monitoring can be divided into two groups: sampling at the place of existing pollution and remote detection, identification, and measurement of concentration. "Stand-off" and "remote" systems of atmosphere monitoring are described here. The "stand-off" systems provide detection of pollution (gas, aerosol, smoke, dust) at long distances, without the contact with a contaminated area. These systems are active laser systems (lidars) or passive thermal systems with narrow filters matched to the bands of gas absorption and imaging the transmission changes of radiation absorbed along the path of gas presence. A single "stand-off" station can cover significant area, the size of which depends on the range of sampling radiation, field of view, and scanning speed. "Remote" systems employ various types of small point sensors and the data from these sensors are transmitted by wire or wireless connections to alarm centres. It should be pointed out that in this case, a contact between sensor and analysed area is necessary and remote detection is performed by the transmission systems of measurement data. The paper presents construction, principle of operation, and basic analytical characteristics of the chosen "standoff" and "remote" measuring systems developed at Military University of Technology, devoted to continuous monitoring of contaminations and pollution of atmosphere.

  6. [Atmospheric asbestos pollution in the urban environment: Milan, Casale Monferrato, Brescia, Ancona, Bologna and Florence].

    PubMed

    Chiappino, G; Sebastien, P; Todaro, A

    1991-01-01

    The atmospheric concentrations of asbestos fibres were measured in 6 towns by long term sampling of air (3 weeks) and by counting at TEM both long and short fibres. Chrisotile and amphiboles were separately counted. For each town high traffic, low traffic and no traffic zones were considered as well as industrial areas and areas with possible and probable sources of asbestos pollution. For Milano the seasonal variations in atmospheric concentrations of asbestos fibres were also recorded in a central square. The maximum concentrations of total fibres was found in Milano (251.7 fibres/liter) and the minimum in Bologna (0.3 fibres/liter). Chrisotile and ultrashort fibres are the most frequent component of the atmospheric pollution. The fibre counts to which people is exposed are far below the levels at which it has been possible to detect risks in industry: however the possibility of a synergism between asbestos and other pollutants with consequent increase of the total carcinogenic potential of the polluted atmosphere cannot be ruled out. The control of the most active sources of asbestos dispersion must be considered in a correct balance between costs and social benefits.

  7. The Mobile Atmospheric Pollutant Mapping (MAPM) System - A coherent CO2, DIAL system

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1989-01-01

    The hardware for the Mobile Atmospheric Pollutant Mapping System is described. Measurement results using the hardware are reported along with absorption coefficients and measurement sensitivities for a number of molecular species. The factor that limit measurement accuracy and range are considered.

  8. Formaldehyde in the ambient atmosphere: from an indoor pollutant to an outdoor pollutant?

    PubMed

    Salthammer, Tunga

    2013-03-18

    Formaldehyde has been discussed as a typical indoor pollutant for decades. Legal requirements and ever-lower limits for formaldehyde in indoor air have led to a continual reduction in the amount of formaldehyde released from furniture, building materials, and household products over many years. Slowly, and without much attention from research on indoor air, a change of paradigm is taking place, however. Today, the formaldehyde concentrations in outdoor air, particularly in polluted urban areas, sometimes already reach indoor levels. This is largely a result of photochemical processes and the use of biofuels. In the medium term, this development might have consequences for the way buildings are ventilated and lead to a change in the way we evaluate human exposure.

  9. Atmospheric transport of pollutants from North America to the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Sebacher, D. I.; Gregory, G. L.; Hinton, R. R.; Beck, S. M.; Mcdougal, D. S.; Shipley, S. T.

    1984-01-01

    Ground-based measurements strongly support the hypothesis that pollutant materials of anthropogenic origin are being transported over long distances in the midtroposphere and are a significant source of acid rain, acid snow, trace metal deposition, ozone and visibility-reducing aerosols in remote oceanic and polar regions of the Norhern Hemisphere. Atmospheric sulphur budget calculations and studies of acid rain on Bermuda indicate that a large fraction of pollutant materials emitted into the atmosphere in eastern North America are advected eastwards over the North Atlantic Ocean. The first direct airborne measurements of the vertical distribution of tropospheric aerosols over the western North Atlantic is reported here. A newly developed airborne differential adsorption lidar system was used to obtain continuous, remotely sensed aerosol distributions along its flight path. The data document two episodes of long-distance transport of pollutant materials from North America over the North Atlantic Ocean.

  10. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    PubMed

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map.

  11. The medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe

    SciTech Connect

    Braennvall, M.L.; Bindler, R.; Renberg, I.; Emteryd, O.; Bartnicki, J.; Billstroem, K.

    1999-12-15

    There is great concern for contamination of sensitive ecosystems in high latitudes by long-range transport of heavy metals and other pollutants derived from industrial areas in lower latitudes. Atmospheric pollution of heavy metals has a very long history, and since metals accumulate in the environment, understanding of present-day pollution conditions requires knowledge of past atmospheric deposition. The authors use analyses of lead concentrations and stable lead isotopes ({sup 206}Pb/{sup 207}Pb ratios) of annually laminated sediments from four lakes in northern Sweden to provide a decadal record of atmospheric lead pollution for the last 3000 years. There is a clear signal in the sediments of airborne pollution from Greek and Roman cultures 2000 years ago, followed by a period of clean conditions 400--900 A.D. From 900 A.D. there was a conspicuous, permanent increase in atmospheric lead pollution fallout, The sediments reveal peaks in atmospheric lead pollution at 1200 and 1530 A.D. comparable to present-day levels. These peaks match the history of metal production in Europe. This study indicates that the contemporary atmospheric pollution climate in northern Europe was established in Medieval time, rather than in the industrial period. Atmospheric lead pollution deposition did not, when seen in a historical perspective, increase as much as usually assumed with the Industrial Revolution.

  12. Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2015-04-01

    China's anthropogenic emissions of atmospheric mercury (Hg) are effectively constrained by national air pollution control and energy efficiency policies. In this study, improved methods, based on available data from domestic field measurements, are developed to quantify the benefits of Hg abatement by various emission control measures. Those measures include increased use of (1) flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems in power generation; (2) precalciner kilns with fabric filters (FF) in cement production; (3) mechanized coking ovens with electrostatic precipitators (ESP) in iron and steel production; and (4) advanced production technologies in nonferrous metal smelting. Investigation reveals declining trends in emission factors for each of these sources, which together drive a much slower growth of total Hg emissions than the growth of China's energy consumption and economy, from 679 metric tons (t) in 2005 to 750 t in 2012. In particular, estimated emissions from the above-mentioned four source types declined 3% from 2005 to 2012, which can be attributed to expanded deployment of technologies with higher energy efficiencies and air pollutant removal rates. Emissions from other anthropogenic sources are estimated to increase by 22% during the period. The species shares of total Hg emissions have been stable in recent years, with mass fractions of around 55, 39, and 6% for gaseous elemental Hg (Hg0), reactive gaseous mercury (Hg2+), and particle-bound mercury (Hgp), respectively. The higher estimate of total Hg emissions than previous inventories is supported by limited simulation of atmospheric chemistry and transport. With improved implementation of emission controls and energy saving, a 23% reduction in annual Hg emissions from 2012 to 2030, to below 600 t, is expected at the most. While growth in Hg emissions has been gradually constrained, uncertainties quantified by Monte Carlo simulation for recent years have increased

  13. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  14. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.

    PubMed

    Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2.

  15. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.

    PubMed

    Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2. PMID:27058127

  16. A method for sampling dimethylsulfide in polluted and remote marine atmospheres

    NASA Astrophysics Data System (ADS)

    Davison, Brian M.; Allen, Andrew G.

    Methods have been developed for the measurement of atmospheric dimethylsulfide in both polluted and clean marine environments, avoiding Sampling losses due to reactions with atmospheric oxidants. Preconcentration of DMS on Molecular Sieve 5A was followed by analysis using gas chromatography with flame photometric detection. Prolonged contact of polluted air samples with a potassium iodide-based solution resulted in total oxidant destruction. Dimethylsulfide was measured over the Atlantic Ocean during a cruise between the U.K. and the Antarctic, between October 1992 and January 1993. In equatorial regions (30° N-30° S) the atmospheric DMS concentration ranged from 5 to 90 ng m -3 with an average of 30 ng m -3 In the polar waters and regions south of the Falkland Islands concentrations from 5 to 1050 ng m -3 were observed with a mean concentration of 120 ng m -3

  17. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    SciTech Connect

    Datta, D.

    2010-10-26

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  18. Estimating the dose from atmospheric releases of HT

    SciTech Connect

    Murphy, C.E. Jr.

    1990-11-13

    Measurements of uptake of tritium by humans and laboratory animals following exposure to tritiated hydrogen gas, HT, suggest that the radiotoxicity of HT is four orders of magnitude less than that of tritiated water, HTO. However, this analysis does not take into account the conversion of HT into HTO following release into the environment. Experimental releases of HT have demonstrated that HT release to the environment is converted to HTO by soil microorganisms. In this report two methods are used to estimate the effect of HT to HTO conversion on the inhalation dose of individuals exposed to tritium downwind of a release of HT. From this analysis it is predicted that the ratio of dose from inhalation of tritium following an atmospheric release of HT, as compared to inhalation of HTO, is closer to 0.01 than the 0.0001 attributed to simple HT inhalation. Under meteorologic conditions which keep the HT release near the surface and promote optimum soil microbial activity, the analysis suggests that the ratio of dose from an atmospheric HT release could be as high as 25% of that from an atmospheric HTO release.

  19. A Direct Estimate of Climate Sensitivity from Atmospheric Structure

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.

    2014-12-01

    The nominal equilibrium climate sensitivity of about 3°C for doubled CO2 is obtained from direct climate model calculations and from simulations of the historical surface temperature record. A similar value of equilibrium climate sensitivity has been inferred from the geological ice core record. A further independent estimate of climate sensitivity can be derived directly from the atmospheric temperature, cloud, and absorbing gas structure. Attribution of individual contributions to the terrestrial greenhouse effect by individual atmospheric constituents shows that water vapor and clouds account for about 75% of the total greenhouse effect, while CO2 and the other minor non-condensing green house gases account for the remaining 25%. It is generally understood that water vapor and cloud contributions to the greenhouse effect arise as feedback effects, and that the non-condensing greenhouse gas contribution can be identified as the radiative forcing component. From this alone, a climate feedback sensitivity of f = 4, or about 5°C for doubled CO2 can be inferred. Accounting further for the negative temperature lapse rate feedback that is not directly included in the attribution analysis, and allowing for a residual non-condensing component of the water vapor feedback, brings the equilibrium climate sensitivity that is inferred from atmospheric structural analysis to the 3°C range for doubled CO2, in good agreement with the equilibrium climate sensitivity that is obtained from comparisons to historical and geological global temperature changes.

  20. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  1. Seasonal comparison of moss bag technique against vertical snow samples for monitoring atmospheric pollution.

    PubMed

    Salo, Hanna; Berisha, Anna-Kaisa; Mäkinen, Joni

    2016-03-01

    This is the first study seasonally applying Sphagnum papillosum moss bags and vertical snow samples for monitoring atmospheric pollution. Moss bags, exposed in January, were collected together with snow samples by early March 2012 near the Harjavalta Industrial Park in southwest Finland. Magnetic, chemical, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), K-means clustering, and Tomlinson pollution load index (PLI) data showed parallel spatial trends of pollution dispersal for both materials. Results strengthen previous findings that concentrate and slag handling activities were important (dust) emission sources while the impact from Cu-Ni smelter's pipe remained secondary at closer distances. Statistically significant correlations existed between the variables of snow and moss bags. As a summary, both methods work well for sampling and are efficient pollutant accumulators. Moss bags can be used also in winter conditions and they provide more homogeneous and better controlled sampling method than snow samples. PMID:26969058

  2. Effects of point-source atmospheric pollution on boreal-forest vegetation of northwestern Siberia

    SciTech Connect

    Vlasova, T.M.; Kovalev, B.I.; Filipchuk, A.N.

    1992-03-01

    Atmospheric pollution from the Noril'sk Mining-Metallurgical Complex, in the form of heavy metals and sulfur components, has resulted in damage to plant communities in the area. Vegetation on over 550,000 ha has been detrimentally affected by the pollution fallout, primarily sulfur dioxide. Forests (mainly Larix sibirica) and most lichens have been killed within a 300,000-ha zone around Noril'sk and extending about 50 km to the south and southeast. Less severe damage to lichens and vascular plants extends 170 km to the south and 80 km to the east of the pollution source consistent with prevailing winds during the period of plant growth. Terricolous lichens are particularly vulnerable to the pollution products and among vascular plants Larix gmelinii, Picea obovata, Ledum palustre, Calamagrostis sp., and Salix lanata show least resistance.

  3. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements

    PubMed Central

    Arnold, Tim; Harth, Christina M.; Mühle, Jens; Manning, Alistair J.; Salameh, Peter K.; Kim, Jooil; Ivy, Diane J.; Steele, L. Paul; Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Weiss, Ray F.

    2013-01-01

    Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing. PMID:23341630

  4. Variation of atmospheric air pollution under conditions of rapid economic change—Estonia 1994-1999

    NASA Astrophysics Data System (ADS)

    Kimmel, V.; Tammet, H.; Truuts, T.

    Estonia is an example of a country with economy in transition whose atmospheric air pollution has been remarkably influenced by economic changes. During the period of 1994-1999 GDP increased by one-fourth, while agricultural production, electricity and heat production dropped by one-sixths during the studied period. These processes are reflected in the quantity of emissions and structure of air pollution. The study is based on the measurements of concentrations of pollutants at six Estonian Euroairnet monitoring stations—at three sites in the capital city and at three sites in remote areas. The pollutants concerned are the first-priority pollutants in the European Union legislation—nitrogen oxides, SO 2, O 3, particulate matter, and additionally CO. The study reveals that concentrations of gaseous pollutants in Estonia remain within the EU limit values except for ozone in remote areas. The main trend during the studied period was a significant, up to several times, decrease in concentrations of SO 2 and CO while the decrease of nitrogen oxides was less remarkable. The paper propose ratio of NO x/SO 2 as an index describing increasing transport loads and drop in use of sulphur-rich fuels—thus of structure of economy. The annual variation of pollutants is explained by seasonal variations of anthropogenic activity in conditions where local fuels are widely used for heating during winter. Air pollution in Estonian rural stations mostly originated from transboundary fluxes. The 1-3 day delay of the weekly minimum of pollutant concentrations and the wind roses allow to conclude that essential part of pollutants is imported from West Europe.

  5. a Mesoscale Atmospheric Dispersion Modeling System for Simulations of Topographically Induced Atmospheric Flow and Air Pollution Dispersion.

    NASA Astrophysics Data System (ADS)

    Boybeyi, Zafer

    A mesoscale atmospheric dispersion modeling system has been developed to investigate mesoscale circulations and associated air pollution dispersion, including effects of terrain topography, large water bodies and urban areas. The system is based on a three-dimensional mesoscale meteorological model coupled with two dispersion models (an Eulerian dispersion model and a Lagrangian particle dispersion model). The mesoscale model is hydrostatic and based on primitive equations formulated in a terrain-following coordinate system with a E-varepsilon turbulence closure scheme. The Eulerian dispersion model is based on numerical solution of the advection-diffusion equation to allow one to simulate releases of non-buoyant pollutants (especially from area and volume sources). The Lagrangian particle dispersion model allows one to simulate releases of buoyant pollutants from arbitrary sources (particularly from point and line sources). The air pollution dispersion models included in the system are driven by the meteorological information provided by the mesoscale model. Mesoscale atmospheric circulations associated with sea and lake breezes have been examined using the mesoscale model. A series of model sensitivity studies were performed to investigate the effects of different environmental parameters on these circulations. It was found that the spatial and temporal variation of the sea and lake breeze convergence zones and the associated convective activities depend to a large extent on the direction and the magnitude of the ambient wind. Dispersion of methyl isocyanate gas from the Bhopal accident was investigated using the mesoscale atmospheric dispersion modeling system. A series of numerical experiments were performed to investigate the possible role of the mesoscale circulations on this industrial gas episode. The temporal and spatial variations of the wind and turbulence fields were simulated with the mesoscale model. The dispersion characteristics of the accidental

  6. Atmospheric Particulate Matter Pollution During The 2008 Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Wang, W.; Primbs, T.; Tao, S.; Zhu, T.; Simonich, S. M.

    2009-05-01

    To assess the particulate matter (PM) pollution during the 2008 Beijing Olympic games, size fractionated PM samples of >PM10, PM2.5-PM10, and

  7. Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model

    NASA Astrophysics Data System (ADS)

    Saito, Keisuke; Ogawa, Susumu

    2016-06-01

    On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The

  8. Cluster Analysis of Atmospheric Dynamics and Pollution Transport in a Coastal Area

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Maksimovich, Elena; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmentin, Marc; Locoge, Nadine

    2016-06-01

    Summertime atmospheric dynamics in the coastal zone of the industrialized Dunkerque agglomeration in northern France was characterized by a cluster analysis of back trajectories in the context of pollution transport. The MESO-NH atmospheric model was used to simulate the local dynamics at multiple scales with horizontal resolution down to 500 m, and for the online calculation of the Lagrangian backward trajectories with 30-min temporal resolution. Airmass transport was performed along six principal pathways obtained by the weighted k-means clustering technique. Four of these centroids corresponded to a range of wind speeds over the English Channel: two for wind directions from the north-east and two from the south-west. Another pathway corresponded to a south-westerly continental transport. The backward trajectories of the largest and most dispersed sixth cluster contained low wind speeds, including sea-breeze circulations. Based on analyses of meteorological data and pollution measurements, the principal atmospheric pathways were related to local air-contamination events. Continuous air quality and meteorological data were collected during the Benzene-Toluene-Ethylbenzene-Xylene 2006 campaign. The sites of the pollution measurements served as the endpoints for the backward trajectories. Pollutant transport pathways corresponding to the highest air contamination were defined.

  9. Cluster Analysis of Atmospheric Dynamics and Pollution Transport in a Coastal Area

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Maksimovich, Elena; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmentin, Marc; Locoge, Nadine

    2016-11-01

    Summertime atmospheric dynamics in the coastal zone of the industrialized Dunkerque agglomeration in northern France was characterized by a cluster analysis of back trajectories in the context of pollution transport. The MESO-NH atmospheric model was used to simulate the local dynamics at multiple scales with horizontal resolution down to 500 m, and for the online calculation of the Lagrangian backward trajectories with 30-min temporal resolution. Airmass transport was performed along six principal pathways obtained by the weighted k-means clustering technique. Four of these centroids corresponded to a range of wind speeds over the English Channel: two for wind directions from the north-east and two from the south-west. Another pathway corresponded to a south-westerly continental transport. The backward trajectories of the largest and most dispersed sixth cluster contained low wind speeds, including sea-breeze circulations. Based on analyses of meteorological data and pollution measurements, the principal atmospheric pathways were related to local air-contamination events. Continuous air quality and meteorological data were collected during the Benzene-Toluene-Ethylbenzene-Xylene 2006 campaign. The sites of the pollution measurements served as the endpoints for the backward trajectories. Pollutant transport pathways corresponding to the highest air contamination were defined.

  10. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    PubMed

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  11. Possible influence of atmospheric circulations on winter haze pollution in the Beijing-Tianjin-Hebei region, northern China

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhang, X.; Gong, D.; Kim, S.-J.; Mao, R.; Zhao, X.

    2016-01-01

    neighboring areas, which are favorable for the formation of haze pollution in BTH winter, and vice versa. The high level of the prediction statistics and the reasonable mechanism suggested that the winter haze pollution in BTH can be forecasted or estimated credibly based on the optimized atmospheric circulation indices. Thus it is helpful for government decision-making departments to take action in advance in dealing with probably severe haze pollution in BTH indicated by the atmospheric circulation conditions.

  12. [Acid fog: hygiene and health observations correlated with an aspect of atmospheric pollution].

    PubMed

    Gilli, G; Bono, R; Scursatone, E; Carraro, E

    1989-01-01

    In the last years the interest about acid depositions has been shifted to heterogeneous phase reactions and, particularly, to occult precipitations (fog, mist, ecc.). It is very improbable that some kind of human health hazards could derive from acid rain exposure. Instead, the human exposure to acid fog could represent a possible respiratory vehicle for the assumption of acid pollutants as well as of many other pollutants. This last assertion can be supported by the following considerations: 1) Fog may represent an important chemical reactor that can modify the nature of pollutant material in the atmosphere (acidification and other events). 2) Fog is formed near the ground where pollution sources are located so that pollution is the heaviest. The fog water droplets coalesce around preexisting aerosol which is most highly concentrated near the ground (cities and industrial areas). Since fog water droplets contain muc less water than rain drops, they do not dilute the acidity as much as rain. 3) Finally, fog is partially inhalable. In certain areas of the world, wet deposition by fog can be important to the human health, even if the acqueous concentrations of fog droplets, the acidity per volume of air and the acid deposition rate are all important factors to consider. Particularly the pH of fog does not tell the whole story, but it represents a sufficient information about the severity of the atmospheric situation that can be correlated to seriousness of human risk.

  13. [Characteristics of atmospheric pollutants during the period of summer and autumn in Shijiazhuang].

    PubMed

    Du, Wu-peng; Wang, Yue-si; Song, Tao; Xin, Jin-yuan; Cheng, Yi-song; Ji, Dong-sheng

    2010-07-01

    Atmospheric pollutants and their concentration change characteristics during Beijing Olympics in Shijiazhuang were studied. Air quality was measured by automatic on-line continuous monitoring equipments in summer and autumn of 2007 and 2008. The objectives of this study were to identify the effect of pollutants decrease on atmospheric environment, and develop the potential influence to Beijing and surrounding areas. The results show that the pollutants concentration often exceeds state criterion except nitrogen oxides, O3 concentration in summer and autumn is higher, averaged hourly maximum concentration (O3-Max) is (177.2 +/- 63.0) and (105.8 +/- 61.7) microg x m(-3), the concentrations of NO and NO2 are (4.5 +/- 4.0), (32.7 +/- 12.4) microg x m(-3) and (21.5 +/- 16.9), (60.5 +/- 16.9) microg x m(-3) respectively, SO2 concentration is (72.0 +/- 27.5) and (92.0 +/- 44.4) microg x m(-3), PM2.5 and PM10 concentrations reach to (102.3 +/- 47.6), (153.3 +/- 58.3) microg x m(-3) and (95.8 +/- 50.0), (147.4 +/- 67.0) microg x m(-3). Generally, pollutants declined obviously in Olympics period, the concentrations of NOx, O3-Max, SO2, PM2.5 and PM10 are (43.8 +/- 15.0), (142.0 +/- 54.9), (52.4 +/- 18.8), (76.7 +/- 35.1) and (116.5 +/- 38.8) microg x m(-3), and the reduction ratio of SO2, PM2.5 and PM10 are 34.6%, 22.8% and 21.0% compared with the whole monitoring period in 2008. The actuality of atmospheric pollution in summer and autumn was analyzed systemically, and which provided scientific evidences for evaluating the control measures of pollutants emission.

  14. Assessment of the spatial and temporal distribution of persistent organic pollutants (POPs) in the Nordic atmosphere

    NASA Astrophysics Data System (ADS)

    Anttila, Pia; Brorström-Lundén, Eva; Hansson, Katarina; Hakola, Hannele; Vestenius, Mika

    2016-09-01

    Long-term atmospheric monitoring data (1994-2011) of persistent organic pollutants (POPs) were assembled from a rural site in southern Sweden, Råö, and a remote, sub-Arctic site in Finland, Pallas. The concentration levels, congener profiles, seasonal and temporal trends, and projections were evaluated in order to assess the status of POPs in the Scandinavian atmosphere. Our data include atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), altogether comprising a selection of 27 different compounds. The atmospheric POP levels were generally higher in the south, closer to the sources (primary emissions) of the pollutants. The levels of low-chlorinated PCBs and chlordanes were equal at the two sites, and one of the studied POPs, α-HCH, showed higher levels in the north than in the south. Declining temporal trends in the atmospheric concentrations for the legacy POPs - PCBs (2-4% per year), HCHs (6-7% per year), chlordanes (3-4% per year) and DTTs (2-5% per year) - were identified both along Sweden's west coast and in the sub-Arctic area of northern Finland. Most of PAHs did not show any significant long-term trends. The future projections for POP concentrations suggest that in Scandinavia, low-chlorinated PCBs and p,p‧-DDE will remain in the atmospheric compartment the longest (beyond 2030). HCH's and PCB180 will be depleted from the Nordic atmosphere first, before 2020, whereas chlordanes and rest of the PCBs will be depleted between the years 2020 and 2025. PCBs tend to deplete sooner and chlordanes later from the sub-Arctic compared to the south of Sweden. This study demonstrates that the international bans on legacy POPs have successfully reduced the concentrations of these particular substances in the Nordic atmosphere. However, the most long-lived compounds may continue in the atmospheric cycle for another couple of decades.

  15. Comparison of laser methods for the remote detection of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Kildal, H.; Byer, R. L.

    1971-01-01

    Three methods of remote air pollution detection - Raman backscattering, resonance backscattering, and resonance absorption - are discussed and compared. Theoretical expressions are derived for the minimum detectable pollutant concentration, and in each case the depth resolution and the problems of interference, pump depletion, and background noise are discussed. A brief discussion of possible laser sources is included, numerical examples of the detectabilities based on present technology are given. The atmospheric transparency limits the useful range to a few kilometers for the Raman and resonance backscattering schemes. F or the resonance absorption technique the useful range can be as great as 50 kilometers.

  16. The Role of Urban Landscape Green in Urban Atmospheric Pollution Prevention

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Kong, H.

    Through the investigation to understand the different nature of the city, the scale of the different planning and design, different varieties of seedlings of different plant configurations, different green hard landscape materials and air quality within the respective plots, find out toxic and harmful substances in the atmosphere absorb absorption, resistance stagnation, degradation of the strongest, least amount of dust generated dust, improving urban air quality best green landscape design, ideas and principles, and thus adjust and optimize the urban landscape, the landscape green purifying improve urban air quality, improve the urban environment repair of air pollution, urban centers in urban air pollution prevention role.

  17. [Water pollution load in coastal zone of Xiamen: estimation and forecast].

    PubMed

    Chen, Ke-Liang; Zhu, Xiao-Dong; Wang, Jin-Keng; La, Meng-Ke

    2007-09-01

    By the methods of grey prediction and curve regression, the estimation and forecast models of water pollution load in coastal zone of Xiamen City, Southeast China were established, and validated with the statistic data of the pollution load in past decade. The estimation revealed that the industrial wastewater discharge per ten thousand RMB production value decreased yearly, while the total discharge of main pollutants increased gradually. In the total discharge of point source wastewater, about 76% of nitrogen and phosphorus came from domestic wastewater. In non-point source pollution loads, nitrogen and phosphorus of agricultural source occupied a larger proportion, while those of urban source were the least. In 2005, the nitrogen pollution load from different sources was in the order of domestic wastewater (DW) > agricultural non-point source (ANPS) > industrial wastewater (IW) > tourism wastewater (TW) > urban non-point source (UNPS), while phosphorus pollution load was ANPS > DW > IW > TW > UNPS.

  18. Concentrations and δ13C values of atmospheric CO2 from oceanic atmosphere through time: polluted and non-polluted areas

    NASA Astrophysics Data System (ADS)

    Longinelli, Antonio; Lenaz, Renzo; Ori, Carlo; Selmo, Enrico

    2005-11-01

    CO2 is one of the primary agents of global climate changes. The increase of atmospheric CO2 concentration is essentially related to human-induced emissions and, particularly, to the burning of fossil fuel whose δ13C values are quite negative. Consequently, an increase of the CO2 concentration in the atmosphere should be paralleled by a decrease of its δ13C. Continuous and/or spot measurements of CO2 concentrations were repeatedly carried out during the last decade and in the same period of the year along hemispheric courses from Italy to Antarctica on a vessel of the Italian National Research Program in Antarctica. During these expeditions, discrete air samples were also collected in 4-l Pyrex flasks in order to carry out precise carbon isotope analyses on atmospheric CO2 from different areas, including theoretically 'clean' open ocean areas, with the main purpose of comparing these open ocean results with the results obtained by the National Oceanic and Atmospheric Administration/World Meteorological Organization (NOAA/WMO) at land-based stations. According to the data obtained for these two variables, a relatively large atmospheric pollution is apparent in the Mediterranean area where the CO2 concentration has reached the value of 384 ppmv while quite negative δ13C values have been measured only occasionally. In this area, southerly winds probably help to reduce the effect of atmospheric pollution even though, despite a large variability of CO2 concentrations, these values are consistently higher than those measured in open ocean areas by a few ppmv to about 10 ppmv. A marked, though non-continuous, pollution is apparent in the area of the Bab-el-Mandeb strait where δ13C values considerably more negative than in the Central and Southern Red Sea were measured. The concentration of atmospheric CO2 over the Central Indian Ocean increased from about 361 ppmv at the end of 1996 to about 373 ppmv at the end of 2003 (mean growth rate of about 1.7 ppmv yr

  19. Atmosphere-surface exchange and long-range transport of persistent organic pollutants

    SciTech Connect

    Pul, W.A.J. van; Jaarsveld, J.A. van; Jacobs, C.M.J.

    1996-12-31

    Persistent Organic Pollutants (POPs) are compounds that are resistant to photolytic, biological and chemical degradation. Many POPs are semi-volatile at atmospheric conditions. Because of these characteristics POPs have a atmospheric lifetime of weeks or more and are subject to long-range atmospheric transport. During this transport POPs can be deposited as well as be re-emitted from soil and water bodies. In this study a model for the exchange of POP at the soil and sea surface is presented as well as its application in a long-range atmospheric transport model. The main goal of this study is to simulate the spatial distribution of POP deposition (accumulation) over Europe.

  20. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    PubMed

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed.

  1. Remote sensing applications for diagnostics of the radioactive pollution of the ground surface and in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Boyarchuk, Kirill; Laverov, Nikolay

    2013-04-01

    21.We are presenting new theoretical estimates and results of experimental measurements showing that the heat flux released during ionization of the atmospheric boundary layer under significant radioactive pollution is sufficient for recording anomalous heat fluxes using the means of remote sounding (infrared radiometers) installed on satellites, and ionospheric anomalies are generated due to changes of the boundary layer conductivity.

  2. Influence of meteorological parameters on particulates and atmospheric pollutants at Taichung harbor sampling site.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Wen, Chih-Chung; Lee, Wen-Jhy; Chang, Shih-Yu

    2007-05-01

    Atmospheric aerosol particles and metallic concentrations, ionic species were monitored at the Experimental harbor of Taichung sampling site in this study. This work attempted to characterize metallic elements and ionic species associated with meteorological conditions variation on atmospheric particulate matter in TSP, PM2.5, PM2.5-10. The concentration distribution trend between TSP, PM2.5, PM2.5-10 particle concentration at the TH (Taichung harbor) sampling site were also displayed in this study. Besides, the meteorological conditions variation of metallic elements (Fe, Mg, Cr, Cu, Zn, Mn and Pb) and ions species (Cl(-), NO3 (-), SO4 (2-), NH4+, Mg2+, Ca2+ and Na+) concentrations attached with those particulate were also analyzed in this study. On non-parametric (Spearman) correlation analysis, the results indicated that the meteorological conditions have high correlation at largest particulate concentrations for TSP at TH sampling site in this study. In addition, the temperature and relative humidity of meteorological conditions that played a key role to affect particulate matter (PM) and have higher correlations then other meteorological conditions such as wind speed and atmospheric pressure. The parameter temperature and relative humidity also have high correlations with atmospheric pollutants compared with those of the other meteorological variables (wind speed, atmospheric pressure and prevalent wind direction). In addition, relative statistical equations between pollutants and meteorological variables were also characterized in this study. PMID:17057996

  3. MULTIPOLLUTANT MODEL FOR ESTIMATING THE IMPACT OF POLLUTANTS ON INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses a multipollutant model for estimating the impact of pollutant on indoor air quality (IAQ). [NOTE: Most existing IAQ models are not well suited for analysis of the impacts of sources that emit several pollutants into the indoor environment. These models are als...

  4. Bronchitis in two integrated steel works: III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution

    PubMed Central

    Lowe, C. R.; Campbell, H.; Khosla, T.

    1970-01-01

    Lowe, C. R., Campbell, H., and Khosla, T.(1970).Brit. J. industr. Med.,27, 121-129. Bronchitis in two integrated steel works. III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution. This is the third in a series of papers presenting the results of an epidemiological study of respiratory symptomatology and lung function among men employed in two integrated steel works in South Wales. In this paper measurements of atmospheric pollution are related to respiratory symptoms and ventilatory capacity among 10 449 men who spent the greater part of their working hours in one or other of 114 defined working areas. The problem has been explored in three different ways. In the first, each man was assigned the mean value of sulphur dioxide and respirable dust for the area in which he was working and this was related to his ventilatory capacity (FEV1·0), age, smoking habits, and the number of years he had spent in his present department. In the second, the 114 working areas were divided into four sub-groups, according to defined levels of atmospheric pollution, and the prevalence of chronic bronchitis and mean FEV1·0 in the four sub-groups was examined. In the third way, the mean atmospheric pollution levels in each of the 114 areas were related to the prevalence of bronchitis and to the mean FEV1·0, age, and smoking habits in those areas. The analysis demonstrates very clearly the over-riding importance of cigarette smoking in the aetiology of chronic bronchitis, but, so far as the main purpose of the survey is concerned, it is concluded that, if there is any relation between respiratory disability and atmospheric pollution in the two steel works, it is so slight that none of the three approaches to the problem was sensitive enough to detect it. The implications of this are discussed in the light of the levels of pollution that were recorded in and around the two works. PMID:5428631

  5. Characterisation of gaseous and particulate atmospheric pollutants in the East Mediterranean by diffusion denuder sampling lines.

    PubMed

    Perrino, C; Catrambone, M; Esposito, G; Lahav, D; Mamane, Y

    2009-05-01

    A field study aimed to characterize atmospheric pollutants in the gaseous and the particulate phases was conducted during the fall-winter of 2004 and the summer of 2005 in the Ashdod area, Israel. The site is influenced by both anthropogenic sources (power plants, refineries, chemical and metal industries, a cargo port, road traffic) and natural sources (sea-spray and desert dust). The use of diffusion lines--a series of annular diffusion denuders for sampling gaseous compounds followed by a cyclone and a filter pack for determining PM(2.5) composition--allowed a good daily characterization of the main inorganic compounds in both the gaseous (HCl, HNO(3), SO(2), NH(3)) and the particulate phase (Cl(-), NO(3)(-), SO(4)(=), NH(4)(+), and base cations). During the summer campaign two other activities were added: an intensive 3-h sampling period and the determination of PM(2.5) bulk composition. The results were interpreted on the basis of meteorological condition, especially the mixing properties of the lower atmosphere as determined by monitoring the natural radioactivity due to Radon progeny, a good proxy of the atmospheric ability to dilute pollutants. Several pollution episodes were identified and the predominance of different sources was highlighted (sea-spray, desert dust, secondary photochemical pollutants). During the summer period a considerable increase of nitric acid and particulate sulphate was observed. Secondary inorganic pollutants (nitrate, sulphate and ammonium) constituted, on the average, 57% of the fine particle fraction, organic compounds 20%, primary anthropogenic compounds 14%, natural components (sea-spray and crustal elements) 9%. The advantages of the diffusion lines in determining gaseous and particulate N- and S- inorganic compounds are discussed. PMID:18535917

  6. Characterisation of gaseous and particulate atmospheric pollutants in the East Mediterranean by diffusion denuder sampling lines.

    PubMed

    Perrino, C; Catrambone, M; Esposito, G; Lahav, D; Mamane, Y

    2009-05-01

    A field study aimed to characterize atmospheric pollutants in the gaseous and the particulate phases was conducted during the fall-winter of 2004 and the summer of 2005 in the Ashdod area, Israel. The site is influenced by both anthropogenic sources (power plants, refineries, chemical and metal industries, a cargo port, road traffic) and natural sources (sea-spray and desert dust). The use of diffusion lines--a series of annular diffusion denuders for sampling gaseous compounds followed by a cyclone and a filter pack for determining PM(2.5) composition--allowed a good daily characterization of the main inorganic compounds in both the gaseous (HCl, HNO(3), SO(2), NH(3)) and the particulate phase (Cl(-), NO(3)(-), SO(4)(=), NH(4)(+), and base cations). During the summer campaign two other activities were added: an intensive 3-h sampling period and the determination of PM(2.5) bulk composition. The results were interpreted on the basis of meteorological condition, especially the mixing properties of the lower atmosphere as determined by monitoring the natural radioactivity due to Radon progeny, a good proxy of the atmospheric ability to dilute pollutants. Several pollution episodes were identified and the predominance of different sources was highlighted (sea-spray, desert dust, secondary photochemical pollutants). During the summer period a considerable increase of nitric acid and particulate sulphate was observed. Secondary inorganic pollutants (nitrate, sulphate and ammonium) constituted, on the average, 57% of the fine particle fraction, organic compounds 20%, primary anthropogenic compounds 14%, natural components (sea-spray and crustal elements) 9%. The advantages of the diffusion lines in determining gaseous and particulate N- and S- inorganic compounds are discussed.

  7. Observable Effects of Atmospheric Pollution on Outpatient and Inpatient Morbidity in Bulgaria

    PubMed Central

    PLATIKANOVA, Magdalena; PENKOVA-RADICHEVA, Mariana

    2016-01-01

    Background: One of Europe’s most well-developed industrial regions is found in the Republic of Bulgaria. The industrialization of the region has a big impact on air pollution. Thermal power plant “Maritza East” (the largest of its kind in southeastern Europe), the army training range, machine manufacturers, household heating and high volume of automobile traffic are all major sources of pollution in the region. Methods: A five year study (2009–2013) followed yearly concentrations of principal atmospheric pollutants such as sulfur dioxide, dust, nitrogen dioxide, lead aerosols and hydrogen sulfide, and the way in which those levels had an effect on morbidity (outpatient and inpatient medical care) in the area. Statistical processing of data has been completed to represent and analyze the collected data in nonparametric and alternative format. Results: Atmospheric pollution affects human health directly through pathological changes in the human organism. The registered outpatient care provided for the period 2009–2013 is highest for diseases of the cardiovascular system (11.85%), the respiratory system (17.34%) and the genitourinary system (9.76%). The registered rate of hospitalization for the same period is for diseases of the digestive system (11.90%), the cardiovascular system (11.85%), respiratory system (10.86%) and the genitourinary system (8.88%). Conclusion: The observed period shows a decrease in average yearly concentrations of the principal atmospheric pollutants in the industrial region (Bulgaria) and reflects a decrease in morbidity based on outpatient care and an increase in morbidity by inpatient care (hospitalization). Our findings should be corroborated in future longitudinal studies. PMID:27252921

  8. AICE Survey of USSR Air Pollution Literature, Volume 14: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 3.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Fifteen papers were translated: On the removal of impurities from the atmosphere by clouds and precipitation; Some aspects of the adoption of automatic methods of determining atmospheric pollutants; Recording of sulfur dioxide content at the outskirts of a city. Comparison of measurement results for a valley and an elevation; Theoretical and…

  9. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  10. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  11. [Pollution Level and Source Apportionment of Atmospheric Particles PM₂.₅ in Southwest Suburb of Chengdu in Spring].

    PubMed

    Lin, Yu; Ye, Zhi-xiang; Yang, Huai-jin; Zhang, Ju; Yin, Wei-wen; Li, Xiao-fen

    2016-05-15

    In order to understand the characteristics of PM₂.₅ pollution in the atmosphere of Chengdu southwest suburb, PM₂.₅ particles in Chengdu southwest suburb were collected and analyzed from March 18 to March 31st, 2015. The results showed that the daily average concentration of PM₂.₅ in the southwest suburb of Chengdu reached 121.21 µg · m⁻³, and the average daily concentration of 24 samples in 31 PM₂.₅ samples was over 75 µg · m⁻³, the daily excessive rate was 77%, indicating the PM₂.₅ pollution in the study area was serious in March. When studying the relationship between atmospheric and meteorological factors, it was found that there was a significant index correlation between PM₂.₅ concentration and atmospheric visibility, and it had a positive correlation with temperature and humidity, but the correlation was not obvious. NH₄⁺ (16.24%), SO₄²- (12.58%) and NO₃⁻ (9.91%) were dominant in PM₂.₅ The ratio of NO₃⁻/SO₄²⁻ was 0.77, which indicated that the pollution of stationary sources in the southwest suburb was more severe than that of mobile sources. Organic carbon (OC)/elemental carbon (EC) ratios were higher than 2, which indicated the existence of second organic carbon (SOC). Using OC/EC ratio method to estimate the concentration of SOC, it was found that the average concentration of SOC in the southwest suburb of Chengdu in March was 3.49 µ · m⁻³, and the contribution rate of OC was 20.6%, which showed that the main source of OC in the southwest suburb of Chengdu was primary discharge. The correlation analysis of OC and EC showed that the correlation coefficient reached 0.95, indicating that the OC and EC sources were similar and relatively stable, and there was a great impact of local source emissions on Chengdu southwest suburb in spring, and primary discharge played a dominant role, while the contribution of SOC to OC was relatively small, which was consistent with the SOC characteristics obtained

  12. Sequential optimal monitoring network design and iterative spatial estimation of pollutant concentration for identification of unknown groundwater pollution source locations.

    PubMed

    Prakash, Om; Datta, Bithin

    2013-07-01

    One of the difficulties in accurate characterization of unknown groundwater pollution sources is the uncertainty regarding the number and the location of such sources. Only when the number of source locations is estimated with some degree of certainty that the characterization of the sources in terms of location, magnitude, and activity duration can be meaningful. A fairly good knowledge of source locations can substantially decrease the degree of nonuniqueness in the set of possible aquifer responses to subjected geochemical stresses. A methodology is developed to use a sequence of dedicated monitoring network design and implementation and to screen and identify the possible source locations. The proposed methodology utilizes a combination of spatial interpolation of concentration measurements and simulated annealing as optimization algorithm for optimal design of the monitoring network. These monitoring networks are to be designed and implemented sequentially. The sequential design is based on iterative pollutant concentration measurement information from the sequentially designed monitoring networks. The optimal monitoring network design utilizes concentration gradient information from the monitoring network at previous iteration to define the objective function. The capability of the feedback information based iterative methodology is shown to be effective in estimating the source locations when no such information is initially available. This unknown pollution source locations identification methodology should be very useful as a screening model for subsequent accurate estimation of the unknown pollution sources in terms of location, magnitude, and activity duration.

  13. Estimation of monetary values of air pollutant emissions in various US areas

    SciTech Connect

    Wang, M.Q.; Santini, D.J.

    1994-08-17

    Two general methods of estimating monetary values of air pollutants are presented in this paper. The damage estimate method directly estimated, air pollutant by simulating air quality, identifying health and other welfare impacts damage values and valuing the identified impacts of air pollution, and valuing the identified impacts. Although the method is theoretically sound, many assumptions are involved in each of its estimation steps, and uncertainty exists in each step. The control cost estimate method estimates the marginal emission control cost, which represents the opportunity cost offset by emission reductions from some given control measures. Studies conducted to estimate emission values in US regions used either the damage estimate method or the control cost estimate method. Taking emission values estimated for some US air basins, this paper establishes regression relationships between emission values and total population and air pollutant concentrations. On the basis of the established relationships, both damage-based and control-cost-based emission values are estimated for 17 major US urban areas.

  14. Air pollution and survival within the Washington University-EPRI Veterans Cohort: risks based on modelled estimates of ambient levels of hazardous and criteria air pollutants

    SciTech Connect

    Frederick W. Lipfert; Ronald E. Wyzga; Jack D. Baty; J. Philip Miller

    2009-04-15

    For this paper, we considered relationships between mortality, vehicular traffic density, and ambient levels of 12 hazardous air pollutants, elemental carbon (EC), oxides of nitrogen (NOx), sulfur dioxide (SO{sub 2}), and sulfate (SO{sub 4}{sup -2}). These pollutant species were selected as markers for specific types of emission sources, including vehicular traffic, coal combustion, smelters, and metal-working industries. Pollutant exposures were estimated using emissions inventories and atmospheric dispersion models. We analyzed associations between county ambient levels of these pollutants and survival patterns among approximately 70,000 U.S. male veterans by mortality period (1976-2001 and subsets), type of exposure model, and traffic density level. We found significant associations between all-cause mortality and traffic-related air quality indicators and with traffic density per se, with stronger associations for benzene, formaldehyde, diesel particulate, NOx, and EC. The maximum effect on mortality for all cohort subjects during the 26-yr follow-up period is approximately 10%, but most of the pollution-related deaths in this cohort occurred in the higher-traffic counties, where excess risks approach 20%. However, mortality associations with diesel particulates are similar in high- and low-traffic counties. Sensitivity analyses show risks decreasing slightly over time and minor differences between linear and logarithmic exposure models. We conclude that tailpipe emissions of both gases and particles are among the most significant and robust predictors of mortality in this cohort and that most of those associations have weakened over time. There may be concerns associated with large stationary sources burning coal, residual fuel oil and municipal solid wastes. Nickel and arsenic have been identified in coal fly ash and residual oil. 81 refs., 3 figs., 7 tabs.

  15. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    SciTech Connect

    Kurniawan, Jermanto S. Khardi, S.

    2011-04-15

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly or indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.

  16. Predicting changes of glass optical properties in polluted atmospheric environment by a neural network model

    NASA Astrophysics Data System (ADS)

    Verney-Carron, A.; Dutot, A. L.; Lombardo, T.; Chabas, A.

    2012-07-01

    Soiling results from the deposition of pollutants on materials. On glass, it leads to an alteration of its intrinsic optical properties. The nature and intensity of this phenomenon mirrors the pollution of an environment. This paper proposes a new statistical model in order to predict the evolution of haze (H) (i.e. diffuse/direct transmitted light ratio) as a function of time and major pollutant concentrations in the atmosphere (SO2, NO2, and PM10 (Particulate Matter < 10 μm)). The model was parameterized by using a large set of data collected in European cities (especially, Paris and its suburbs, Athens, Krakow, Prague, and Rome) during field exposure campaigns (French, European, and international programs). This statistical model, called NEUROPT-Glass, comes from an artificial neural network with two hidden layers and uses a non-linear parametric regression named Multilayer Perceptron (MLP). The results display a high determination coefficient (R2 = 0.88) between the measured and the predicted hazes and minimizes the dispersion of data compared to existing multilinear dose-response functions. Therefore, this model can be used with a great confidence in order to predict the soiling of glass as a function of time in world cities with different levels of pollution or to assess the effect of pollution reduction policies on glass soiling problems in urban environments.

  17. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  18. The health and visibility cost of air pollution: a comparison of estimation methods.

    PubMed

    Delucchi, Mark A; Murphy, James J; McCubbin, Donald R

    2002-02-01

    Air pollution from motor vehicles, electricity-generating plants, industry, and other sources can harm human health, injure crops and forests, damage building materials, and impair visibility. Economists sometimes analyze the social cost of these impacts, in order to illuminate tradeoffs, compare alternatives, and promote efficient use of scarce resource. In this paper, we compare estimates of the health and visibility costs of air pollution derived from a meta-hedonic price analysis, with an estimate of health costs derived from a damage-function analysis and an estimate of the visibility cost derived from contingent valuation. We find that the meta-hedonic price analysis produces an estimate of the health cost that lies at the low end of the range of damage-function estimates. This is consistent with hypotheses that on the one hand, hedonic price analysis does not capture all of the health costs of air pollution (because individuals may not be fully informed about all of the health effects), and that on the other hand, the value of mortality used in the high-end damage function estimates is too high. The analysis of the visibility cost of air pollution derived from a meta-hedonic price analysis produces an estimate that is essentially identical to an independent estimate based on contingent valuation. This close agreement lends some credence to the estimates. We then apply the meta hedonic-price model to estimate the visibility cost per kilogram of motor vehicle emissions.

  19. Atmospheric transport of persistent organic pollutants to the Arctic, today and in a future climate

    NASA Astrophysics Data System (ADS)

    Octaviani, Mega; Stemmler, Irene; Lammel, Gerhard

    2013-04-01

    Persistent organic pollutants are of great concern because of their long residence time and long-range transport potential in the environment and because they are readily bioaccumulated along food chains and toxic for wildlife and humans. A multicompartment model is used to study global-scale and long term chemodynamics of anthropogenic organic substances in the Earth system. Model components are the atmosphere (ECHAM5) and ocean general circulation models (MPIOM), which include dynamic sub-models for atmospheric aerosols and the marine biogeochemistry, two-dimensional surface compartments (topsoil, vegetation surfaces, ice, and temporal snow cover) and intercompartmental mass exchange process parameterisations [1-3]. The transports into and out of the Arctic (66° N) are characterized for 1950-2000 under one realisation of present-day climate [4-5] and for 2001-2100 under one realisation of future climate (greenhouse gas emission scenario A1B of IPCC-AR4). Despite decaying primary emissions (since decades) polychlorinated biphenyls (PCB) and dichlorodimephenyltrichloromethane (DDT) are continuing to accumulate in the Arctic, which is fed by atmospheric transports. The main regions of import (and export) are identified and the vertical distribution and seasonalities are characterized. Changes by the end of the 21st century are discussed in the context of a major teleconnection, i.e. the Arctic Oscillation. References [1] Guglielmo F, Lammel G, Maier-Reimer E: Global environmental cycling of DDT and ?-HCH in the 1980s - a study using a coupled atmosphere and ocean general circulation model. Chemosphere 76 (2009) 1509-1517 [2] Stemmler I, Lammel G: Cycling of DDT in the global oceans 1950-2002: World ocean returns the pollutant. Geophys. Res. Lett. 36 (2009) L24602 [3] Hofmann L, Stemmler I, Lammel G: The impact of organochlorines cycling in the cryosphere on their global distributions and fate - 2. Land ice and temporary snow cover. Environ. Pollut. 162 (2012) 482

  20. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2014-10-01

    China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example

  1. The influence of scales of atmospheric motion on air pollution over Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  2. Relationship between Atmospheric Pollution Processes and Atmospheric Circulation in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, J.; Cong, J.; Wang, J.

    2014-12-01

    Severe haze weather occurred in Shanghai in the beginning of 2013. In this paper,spatial-temporal characteristics of the smog days was analyzed using the data of 10 stations in the downtown, the suburb & the outer suburb of Shanghai from 2002-2013. In addition, we discussed the correlation between PM2.5, PM10, SO2 & NO2 and the smog days. At last, the situation of atmospheric circulation during a severe haze weather process between Jan, 2, 2013 to Feb, 4, 2013 was studied. Results show that: (1) from 2002 to 2012, the average smog days in Shanghai and in the outer suburb of Shanghai show a trend of fluctuating decrease generally with the rates of 6.031d/a and 5.89d/a, respectively. The smog days in the downtown of Shanghai decrease most quickly, with the rate of 15.418d/a. The smog days in the suburb of Shanghai decreased most slowly, with the rate of 2.495d/a. Smog happens most frequently in January, November and December (accounting for 31%) and least in August and September. The inter-annual variation of smog days shows the trend of decreasing in all four seasons. The smog days decreases most slowly in spring, with the ratio of 1.16d/a, it decreases most quickly in winter, with the ratio of 1.65d/a, and decreases at the medium ratio of 1.58d/a and 1.49d/a in summer and autumn respectively. (2) The number of monthly average smog days is positively related to the monthly average concentration of PM10, SO2, PM2.5 and NO2. The correlative coefficient between the number of monthly average smog days and the monthly average PM10 and NO2 concentrations are 0.756 and 0.610, respectively. (3) Atmospheric circulation analysis shows that stable west straight current in the air, weak high pressure on the ground and sufficient supplement of water steam are good for the formation and maintenance of haze weather.

  3. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGESBeta

    Ray, J.; Lee, J.; Yadav, V.; Lefantzi, S.; Michalak, A. M.; van Bloemen Waanders, B.

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO2 (ffCO2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  4. Statistical estimate of mercury removal efficiencies for air pollution control devices of municipal solid waste incinerators.

    PubMed

    Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki

    2010-10-15

    Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories.

  5. Estimation of Regional Carbon Balance from Atmospheric Observations

    NASA Astrophysics Data System (ADS)

    Denning, S.; Uliasz, M.; Skidmore, J.

    2002-12-01

    Variations in the concentration of CO2 and other trace gases in time and space contain information about sources and sinks at regional scales. Several methods have been developed to quantitatively extract this information from atmospheric measurements. Mass-balance techniques depend on the ability to repeatedly sample the same mass of air, which involves careful attention to airmass trajectories. Inverse and adjoint techniques rely on decomposition of the source field into quasi-independent "basis functions" that are propagated through transport models and then used to synthesize optimal linear combinations that best match observations. A recently proposed method for regional flux estimation from continuous measurements at tall towers relies on time-mean vertical gradients, and requires careful trajectory analysis to map the estimates onto regional ecosystems. Each of these techniques is likely to be applied to measurements made during the North American Carbon Program. We have also explored the use of Bayesian synthesis inversion at regional scales, using a Lagrangian particle dispersion model driven by mesoscale transport fields. Influence functions were calculated for each hypothetical observation in a realistic diurnally-varying flow. These influence functions were then treated as basis functions for the purpose of separate inversions for daytime photosynthesis and 24-hour mean ecosystem respiration. Our results highlight the importance of estimating CO2 fluxes through the lateral boundaries of the model. Respiration fluxes were well constrained by one or two hypothetical towers, regardless of inflow fluxes. Time-varying assimilation fluxes were less well constrained, and much more dependent on knowledge of inflow fluxes. The small net difference between respiration and photosynthesis was the most difficult to determine, being extremely sensitive to knowledge of inflow fluxes. Finally, we explored the feasibility of directly incorporating mid-day concentration

  6. Estimating Serious Decompression Sickness after Loss of Spacecraft Atmosphere

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael; Abercromby, Andrew F. J.

    2016-01-01

    INTRODUCTION: Pressure suits are worn inside spacecraft to protect crewmembers in the event of contamination or depressurization of the spacecraft cabin. Protection against serious (Type II) decompression sickness (DCS) in the event of an unplanned rapid cabin depressurization depends on providing adequate suit pressure to crewmembers because there is no opportunity for oxygen prebreathe. METHODS: A model was developed using literature reports from 41 altitude chamber tests totaling 3,256 decompressions (1,445 including exercise at altitude) with 282 cases of serious DCS. All data involved prebreathe durations < 30 min followed by = 120 min exposures at 13.8 to 34.5 kPa (2 to 5 psia) in young men. A time-dependent index of decompression stress was calculated for the historical decompressions using an existing Tissue Bubble Dynamics Model. This index, in combination with physical activity level at altitude (resting vs. active), provided significant prediction of serious DCS in the dataset when used in a logistic regression model, which was then used to estimate serious DCS risk for a range of hypothetical suit pressures and decompression scenarios. RESULTS: The probability of one or more cases of serious DCS in a four person crew was estimated as 0.73 assuming initial saturation at 1 atmosphere, no prebreathe, ascent to 24.1 kPa (3.5 psia) in 30 sec, and 120 min of activity at 3.5 psia. The estimated probability reduced to 0.36 and 0.16 for equivalent exposures at 31.0 and 40.0 kPa (4.5 and 5.8 psia), respectively. Extrapolation to exposures longer than 120 min suggest further increases in serous DCS risk. DISCUSSION: The need to operate critical spacecraft functions coupled with delayed access to hyperbaric treatment further increases the risk to crewmember safety if serious DCS symptoms are experienced following cabin depressurization. A suit pressure of 5.8 psia provides significantly greater protection to crewmembers than lower pressure alternatives. Lower

  7. Impacts of the NAO on atmospheric pollution in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Dayan, U.

    2010-09-01

    The measured concentrations of air pollutants in the lower atmosphere are the result of the combined effect of local-, meso -, and synoptic scale processes. However, there are several inherent problems in attributing pollution concentrations to changes in large-scale atmospheric circulation: 1) the year to year variability being modulated by both, changes in circulation and changes in upwind emissions, 2) the shorter life-time of some pollutants precluding a meaningful relationship with changes in circulation, and 3) the both-ways interaction between trace gases, aerosols and climate. In order to understand the relationship between atmospheric circulation to climatically related variables such as air pollutants, few examples are presented while using Yarnal's (1993) both fundamental approaches: "Circulation to Environment" and "Environment to Circulation". In the first method, an atmospheric circulation classification is performed and then related to an environmental phenomenon. In the second method, the circulation classification is carried over along specific environment-based criteria set for a particular environmental phenomenon. Simulations of transport of anthropogenic CO for high and low phases of the NAO are presented followed by an observational-based study relating the ozone seasonal variability across North Atlantic and the Western Mediterranean to the NAO. Both phases of the NAO controlling dust transport to the Mediterranean are described: the positive phase during summer over the western region and the negative one regulating dust transport over the Eastern Mediterranean in winter. Low NAO indices have been related to a higher cyclonic activity over the western basin. However, Avila and Roda (2002) found no correlation between annual wet deposition of African dust-related elements and the NAO. Their results indicate that, contrary to the Eastern Mediterranean, the two variables (precipitation inversely and dust updraft directly) controlling wet

  8. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴). PMID:27506017

  9. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic. PMID:27011970

  10. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  11. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴).

  12. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins.

    PubMed

    He, Bin; Oki, Kazuo; Wang, Yi; Oki, Taikan

    2009-01-01

    Land cover changes around river basins have caused serious environmental degradation in global surface water areas, in which the direct monitoring and numerical modeling is inherently difficult. Prediction of pollutant loads is therefore crucial to river environmental management under the impact of climate change and intensified human activities. This research analyzed the relationship between land cover types estimated from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery and the potential annual pollutant loads of river basins in Japan. Then an empirical approach, which estimates annual pollutant loads directly from satellite imagery and hydrological data, was investigated. Six water quality indicators were examined, including total nitrogen (TN), total phosphorus (TP), suspended sediment (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and Dissolved Oxygen (DO). The pollutant loads of TN, TP, SS, BOD, COD, and DO were then estimated for 30 river basins in Japan. Results show that the proposed simulation technique can be used to predict the pollutant loads of river basins in Japan. These results may be useful in establishing total maximum annual pollutant loads and developing best management strategies for surface water pollution at river basin scale.

  13. Impact of a future H2 transportation on atmospheric pollution in Europe

    NASA Astrophysics Data System (ADS)

    Popa, Maria Elena; Segers, Arjo; Denier van der Gon, Hugo; Schaap, Martijn; Krol, Maarten; Visschedijk, Antoon; Röckmann, Thomas

    2014-05-01

    Traditionally fuelled road traffic is a major source of greenhouse gases and pollutants. Greenhouse gases (e.g. CO2 and CH4) affect the global atmosphere and contribute to global warming. The pollutants emitted by vehicles (e.g. CO, NOx, SO2, particulate matter, volatile organic compounds) are toxic for man and environment and decrease air quality especially in highly populated areas. Burning H2 produces only water, thus H2-powered vehicles are seen as a possibility to reduce greenhouse gas emissions and improve air quality; because of this, H2 usage as a fuel is foreseen to significantly increase in the future. Large scale usage of H2 as a fuel has the potential to affect the atmospheric composition in different ways. On one hand, emissions associated to fossil fuel burning will decrease. On the other hand, large quantities of H2 used will likely lead to increased H2 emissions from leakages during production, transport and storage. Additional H2 in the atmosphere will affect the chemistry of many species, in principal by decreasing the availability of OH radicals, with the result of increasing the lifetime of greenhouse gases and pollutants. Thus the net effect of H2 vehicles on the atmospheric composition depends on the relative strength of these two contrary effects. In order to evaluate the potential influence of a future H2 road transportation on local and regional air quality, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the future (2020) using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that in general the air quality in 2020 will be significantly better than at present in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict

  14. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  15. A Three-Parameter Model for Estimating Atmospheric Tritium Dose at the Savannah River Site

    SciTech Connect

    Simpkins, A.A.; Hamby, D.M.

    1997-12-31

    The models used in the NRC approach to assess chronic atmospheric release of radioactivity generate deterministic dose estimates by using assumptions about exposure conditions and environmental transport mechanisms.

  16. Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study

    NASA Astrophysics Data System (ADS)

    Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

    2009-04-01

    Processes on icy particles attract much attention due to their importance for atmospheric science, ecology and astrophysics. In this work, adsorption and ecologically important reactions of some molecules on pure and mixed water icy films by means of FTIR spectroscopy have been investigated. The cell for spectral studies of adsorbed molecules at variable temperatures (55-370 K), described elsewhere1, enables one to run the spectra in the presence of gaseous adsorbate, and even to perform adsorption from the solution in some cryogenic solvents. For the studies of ice films, it was equipped with a device for water vapour sputtering from the heated capillaries and deposition onto the inner BaF2 or ZnSe windows of the cell, cooled by liquid nitrogen. Lower temperatures were obtained by pumping off evaporating nitrogen from the coolant volume. The estimated specific surface area of freshly deposited at 77 K water ice film was about 160 m2/g and decreases on raising the temperature together with the diminishing intensity of the bands of dangling OH (OD) groups at 3696 (2727) cm-1 until the latter disappear at 130 - 160 K when the changes of bulk absorption provide evidence for a phase transition from amorphous to polycrystalline ice. CO adsorption at 77 K results in two bands at 2153 and 2137 cm-1 assigned to molecules forming weak H-bond with the dangling hydroxyl groups and bound to unsaturated surface oxygen atoms, respectively2. The band of dangling hydroxyl groups moves to lower wavenumbers on adsorption of different molecules (hydrogen, nitrogen, methane, ozone, NO, ethane or chlorinated ethenes, etc.). The shift value depends on the nature of adsorbate. Besides this shift, spectra of adsorbed nitrogen and methane registered at 55 K reveal the adsorption intensity decrease at ~ 2650 cm-1 at the high-frequency slope of bulk adsorption, and increase at about 25 cm-1 below. We interpret this perturbation as a strengthening of H-bonds between surface water molecules

  17. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    NASA Astrophysics Data System (ADS)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements

  18. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    PubMed

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  19. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y.

    PubMed

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A; Vallelonga, Paul; Thompson, Lonnie G

    2015-02-24

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793-1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438-1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history.

  20. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 years

    NASA Astrophysics Data System (ADS)

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin; Vallelonga, Paul; Thompson, Lonnie

    2015-04-01

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice-core record (793-1989 AD) from the high altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the pre-colonial period (i.e., pre-1532 AD), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions indicating that metallurgic production during the Inca Empire (1438-1532 AD) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after 1540 AD, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, 240 years prior to the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (1572 AD), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history.

  1. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y.

    PubMed

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A; Vallelonga, Paul; Thompson, Lonnie G

    2015-02-24

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793-1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438-1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history. PMID:25675506

  2. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y

    PubMed Central

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A.; Vallelonga, Paul; Thompson, Lonnie G.

    2015-01-01

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793–1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438−1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history. PMID:25675506

  3. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    PubMed

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management. PMID:22527002

  4. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Steffens, Jonathan T.; Heist, David K.; Perry, Steven G.; Zhang, K. Max

    2013-04-01

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollutant concentrations. However, there is still a lack of mechanistic understanding of how solid barriers affect pollutant transport, especially under a variety of meteorological conditions. In this study, we utilized the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial gradients of SF6 concentrations behind a solid barrier under a variety of atmospheric stability conditions collected during the Near Road Tracer Study (NRTS08). We employed two different CFD models, RANS and LES. A recirculation zone, characterized by strong mixing, forms in the wake of a barrier. It is found that this region is important for accurately predicting pollutant dispersion, but is often insufficiently resolved by the less complex RANS model. The RANS model was found to perform adequately away from the leading edge of the barrier. The LES model, however, performs consistently well at all flow locations. Therefore, the LES model will make a significant improvement compared to the RANS model in regions of strong recirculating flow or edge effects. Our study suggests that advanced simulation tools can potentially provide a variety of numerical experiments that may prove useful for roadway design communities to intelligently design roadways, making effective use of roadside barriers.

  5. Magnetic Study on Environmental Samples from Guadalajara Mexico for Monitoring of Atmospheric Pollution

    NASA Astrophysics Data System (ADS)

    Aguilar, B.; Cejudo, R.; Bogalo, M. F.; Rosas-Elguera, J.; Quintana, P.; Bautista, F.; Gogichaishvili, A.; Morales, J.

    2013-05-01

    Guadalajara is the second bigger city in Mexico, catalogued as critical zone because of atmospheric pollution levels. The magnetic methodology has been largely used as an alternative way to evaluate the pollution levels as well as identify the critical points in a given area. In this work, results from chemical analyses and magnetic measurements are presented in order to show the correlation between magnetic signal and the pollution level. We analyzed three kinds of environmental samples: urban soils, urban dust and leaves from ficus benjamina. Samples were taken in 30 sites distributed along a main avenue and two secondary avenues, including three points with very poor traffic influence. We determined a ferromagnetic carrier in most of samples, magnetite probably, since the Tc calculated from the thermomagnetic curves is around 580 °C. The magnetic susceptibility (Xlf) as well as the Saturation Isothermal Remanent Magnetization (SIRM) correlate well with the heavy metals content, specially Pb in urban dusts. These results allowed us to identify the most affected points, by vehicular traffic and industrial emissions. Furthermore, the values obtained for these magnetic parameters are above of those found in other studies for polluted cities in Europe and Asia.

  6. Estimating mobile source pollutant emission: Methodological comparison and planning implications.

    PubMed

    Kim, T J; Hoskote, N G

    1983-03-01

    In the United States, the Clean Air Act Amendments of 1977 require that all non-attainment metropolitan areas evaluate the potential of transportation controls in meeting 1982 National Ambient Air Quality Standards. Many of these controls are designed to impact on mobile source emissions by altering vehicular speed.The paper discusses differences in results obtained by two alternative methods for estimating the same area's mobile source emissions. The findings suggest that alternative zonal speed aggregation procedures can lead to widely diverging emission estimates. The paper further discusses the inherent assumptions in the aggregation procedures and the potential consequences of their uses in transportation planning for air quality controls.

  7. Emissions, transport, and evolution of atmospheric pollutants from China: An observational study

    NASA Astrophysics Data System (ADS)

    Li, Can

    China's air pollution issue, a byproduct of recent phenomenal economic growth, has received increasing attention in light of its local and large-scale impacts. I investigated the emissions, transport, and evolution of pollutants from China using measurements near some source regions in northern China in 2005. Surface pollution near Beijing in March was overall heavy but changed dramatically, as passing mid-latitude cyclones led to fast transitions between polluted prefrontal and clean postfrontal conditions. Large differences found between measurements and inventories suggest substantial uncertainties in emission estimates. Small, coal-fired boilers are shown unlikely to be the major source of inventory error; experiments measuring traffic emissions are called for. Ground-level aerosols absorb light and are from both wind-blown dust and anthropogenic emissions. Their effects on climate are to be further studied. Pollutants at higher altitudes are more likely to have large-scale impact than pollutants that remain near the surface. The aircraft campaign in April was among the first efforts to measure the vertical distribution of pollutants over inland China. The largest pollutant levels observed in the free troposphere during the campaign were related to dry convective lofting over an industrial region. This differs from earlier experiments over the Pacific, which recognized the warm conveyor belt (WCB) as the main lofting mechanism. Dry convection over the continent may be followed by WCB lifting as the systems move out over the ocean. Their relative roles are yet to be determined. Analyses of meteorological and satellite cloud data reveal the importance of in-cloud processing in oxidizing SO2 transported behind cold fronts. Through integration of satellite sensors, in-situ measurements, trajectory and chemical transport models, I tracked a pollution plume as it traveled away from source region. The decay of SO2 in the plume over three days was quantified

  8. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters

  9. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the

  10. Estimates of atmospheric O2 in the Paleoproterozoic from paleosols

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2016-02-01

    A weathering model was developed to constrain the partial pressure of atmospheric O2 (PO2) in the Paleoproterozoic from the Fe records in paleosols. The model describes the Fe behavior in a weathering profile by dissolution/precipitation of Fe-bearing minerals, oxidation of dissolved Fe(II) to Fe(III) by oxygen and transport of dissolved Fe by water flow, in steady state. The model calculates the ratio of the precipitated Fe(III)-(oxyhydr)oxides from the dissolved Fe(II) to the dissolved Fe(II) during weathering (ϕ), as a function of PO2 . An advanced kinetic expression for Fe(II) oxidation by O2 was introduced into the model from the literature to calculate accurate ϕ-PO2 relationships. The model's validity is supported by the consistency of the calculated ϕ-PO2 relationships with those in the literature. The model can calculate PO2 for a given paleosol, once a ϕ value and values of the other parameters relevant to weathering, namely, pH of porewater, partial pressure of carbon dioxide (PCO2), water flow, temperature and O2 diffusion into soil, are obtained for the paleosol. The above weathering-relevant parameters were scrutinized for individual Paleoproterozoic paleosols. The values of ϕ, temperature, pH and PCO2 were obtained from the literature on the Paleoproterozoic paleosols. The parameter value of water flow was constrained for each paleosol from the mass balance of Si between water and rock phases and the relationships between water saturation ratio and hydraulic conductivity. The parameter value of O2 diffusion into soil was calculated for each paleosol based on the equation for soil O2 concentration with the O2 transport parameters in the literature. Then, we conducted comprehensive PO2 calculations for individual Paleoproterozoic paleosols which reflect all uncertainties in the weathering-relevant parameters. Consequently, robust estimates of PO2 in the Paleoproterozoic were obtained: 10-7.1-10-5.4 atm at ∼2.46 Ga, 10-5.0-10-2.5 atm at ∼2

  11. Remote sensing of atmospheric urban pollutants with DOAS in Castilla-La Mancha (Spain)

    NASA Astrophysics Data System (ADS)

    Saiz, A.; Poblete, F. J.; Mucientes, A. E.; Maigler, F. J.; Notario, A.; Martínez, E.; Albaladejo, J.

    Urban air pollution is one of the main environmental problems, owing to implications for public health and physical environment. In urban areas, the sources of atmospheric pollutants are distributed very inhomogeneously. Trace gas concentrations measured by conventional air quality monitoring stations are always influenced by small sources in their direct vicinity and surface effects like dry deposition and small-scale wind systems. Differential Optical Absorption Spectroscopy (DOAS) is a field-oriented monitoring technique that allows very fast and continuous measurements of different airborne pollutants along an open light path. Remote sensing techniques like DOAS can avoid the problems of local influences and surface effects, as DOAS can use light paths with range from several hundred of meters to several kilometres, thus the measured concentrations are averaged over the light path and barely influenced by small-scale variances. The technique is based on the fact that all trace gases absorb electromagnetic radiation in some part of the spectrum. If the radiation of the appropriate frequency is transmitted through the atmosphere the features of absorption of each molecule in that spectral region allow the identification and quantification of the gas concentrations. Up to date, only a few long term DOAS measurements of urban air pollution have been reported, and to the best of our knowledge, this study is the first one in the South of Spain. We present here some results obtained in a long term study performed in Ciudad Real and Puertollano, where the daily, weekly and seasonal variation of the concentrations of minor important tropospheric constituents as ozone, nitric oxide, nitrogen dioxide and sulphur dioxide, have been continuously monitored.

  12. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Lin, Shih-Chieh; Chang, Shih-Yu; Lin, Chuan-Yao; Chou, Charles-C K; Wu, Yun-Jui; Chen, Yu-Chieh; Chen, Wei-Tzu; Wu, Tsai-Lin

    2011-06-01

    In autumn of 2008, the chemical characteristics of major secondary ionic aerosols at a suburban site in central Taiwan were measured during an annually occurring season of high pollution. The semicontinuous measurement system measured major soluble inorganic species, including NH(4)(+), NO(3)(-), and SO(4)(2-), in PM(10) with a 15 min resolution time. The atmospheric conditions, except for the influences of typhoons, were dominated by the local sea-land breeze with clear diurnal variations of meteorological parameters and air pollutant concentrations. To evaluate secondary aerosol formation at different ozone levels, daily ozone maximum concentration (O(3,daily max)) was used as an index of photochemical activity for dividing between the heavily polluted period (O(3,daily max) ≧80 ppb) and the lightly polluted period (O(3,daily max)<80 ppb). The concentrations of PM(10), NO(3)(-), SO(4)(2-), NH(4)(+) and total major ions during the heavily polluted period were 1.6, 1.9, 2.4, 2.7 and 2.3 times the concentrations during the lightly polluted period, respectively. Results showed that the daily maximum concentrations of PM(10) occurred around midnight and the daily maximum ozone concentration occurred during daytime. The average concentration of SO(2) was higher during daytime, which could be explained by the transportation of coastal industry emissions to the sampling site. In contrast, the high concentration of NO(2) at night was due to the land breeze flow that transport inland urban air masses toward this site. The simulations of breeze circulations and transitions were reflected in transports and distributions of these pollutants. During heavily polluted periods, NO(3)(-) and NH(4)(+) showed a clear diurnal variations with lower concentrations after midday, possibly due to the thermal volatilization of NH(4)NO(3) during daytime and transport of inland urban plume at night. The diurnal variation of PM(10) showed the similar pattern to that of NO(3)(-) and NH(4

  13. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    PubMed

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations.

  14. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    PubMed

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. PMID:27341116

  15. The Due Innovators II Apollo Project: Monitoring Atmospheric Pollution with Earth Observations

    NASA Astrophysics Data System (ADS)

    Sellitto, P.; Del Frate, F.; Di Noia, A.; Sambucini, V.; Bojkov, B. R.

    2010-12-01

    In this paper we present the Innovators II - APOLLO (monitoring Atmospheric POLLution with earth Observation) project which has been carried out in the framework of the ESA Data User Element programme (http://www.esa.int/due). The projects aims at the development of an innovative service for the monitoring of the air quality from ground based measurements and by means of satellite data e.g. provided by the OMI mission. The core of the APOLLO project is the OMI-TOC NN (neural networks) algorithm.

  16. Acid rain and dry deposition of atmospheric pollutants: ORNL studies the effects

    SciTech Connect

    Shriner, D.

    1984-01-01

    Acidic precipitation and atmospheric deposition may be involved in the decline of some forests and in the elevation of aluminum levels in streams. The research programs at Oak Ridge National Laboratory which are focussed on acid rain are described. Some of the areas currently under scrutiny are: soil buffering capacity, the quantitative relationships between wet and dry deposition, the effects of acid rain on forest growth, forest canopy interactions with acid precipitation, the effects of acid rain on aquatic ecosystems, and innovations in pollution control technology.

  17. National estimates of residential firewood and air pollution emissions

    SciTech Connect

    Lipfert, F. W.; Dungan, J. L.

    1981-01-01

    Estimates are presented for the distribution and quantity of recent (1978-1979) use of residential firewood in the United States, based on a correlation of survey data from 64 New England counties. The available survey data from other states are in agreement with the relationship derived from New England; no constraints due to wood supply are apparent. This relationship indicates that the highest density of wood usage (Kg/ha) occurs in urban areas; thus exacerbation of urban air quality problems is a matter of some concern. The data presentation used here gives an upper limit to this density of firewood usage which will allow realistic estimates of air quality impact to be made.

  18. Estimating the health risks associated with air pollution in Baghdad City, Iraq.

    PubMed

    Rabee, Adel M

    2015-01-01

    Data of total suspended particulate, O₃, SO₂, NO, NO₂, CO, methane, and non-methane hydrocarbons gathered from three monitoring stations in Baghdad City for the period from 2009 to 2012 have been analyzed. So an attempt is made to calculate the monthly quality indexes based on US EPA and UK system. Concentrations of most air pollutants in Baghdad City have shown a downward trend in recent years, but they are generally in many instances worse than natural ambient air; thus, all pollutants (except CO) fluctuated between high and below limits certified by Iraqi and international standards. The results show that the average of TSP during 2009-2012 were very high, and they pose concern for Baghdad population. The SO₂/CO concentration ratios were less than 1 suggesting that mobile emissions are the primary sources within the study area. It has been observed that the concentrations of the most pollutants are high in summer in comparison to the other seasons. The peak concentrations of pollutants are linked to traffic density, private generators, and chemical processes in the atmosphere. Aside from single air pollutant standards, AQI and API indices enable an additional assessment of the air quality conditions. The application of the UK system suppose low pollution with all pollutants expect TSP. Analysis of AQI values for an average of concentrations CO, NO₂, SO₂, and O₃ are categorized as good to moderate during the study period, while the same index indicated that the TSP located within the three categories (unhealthy, very unhealthy, and hazardous).

  19. Comparison of emissions estimates derived from atmospheric measurements with national estimates of HFCs, PFCs and SF6.

    PubMed

    Harnisch, Jochen; Höhne, Niklas

    2002-01-01

    This paper assesses the feasibility of using atmospheric measurement of fluorinated greenhouse gases (HFCs, PFCs and SF6) for the review and verification of greenhouse gas inventories provided by national governments. For this purpose, available data were compiled. It was found that atmospheric measurements of these gases are available and provide an indication of global annual emissions with sufficient certainty to reach the following conclusions: Within the uncertainty of the method, it was found that emissions of HFC-23, a by-product of HCFC-22 production, as obtained from atmospheric measurements did not decrease as fast, as the countries have reported. In contrast, SF6 concentrations in the atmosphere suggest higher emissions than reported by countries. Regional emission estimates from atmospheric measurements are still in a more pioneering state and cannot be compared to national estimates. Intensified efforts to measure HFCs, PFCs and SF6 in the atmosphere are recommended. PMID:12391806

  20. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  1. Long-range atmospheric transport of persistent organic pollutants to remote lacustrine environments.

    PubMed

    Ruiz-Fernández, Ana Carolina; Ontiveros-Cuadras, Jorge Feliciano; Sericano, José L; Sanchez-Cabeza, Joan-Albert; Liong Wee Kwong, Laval; Dunbar, Robert B; Mucciarone, David A; Pérez-Bernal, Libia Hascibe; Páez-Osuna, Federico

    2014-09-15

    Concentrations, temporal trends and fluxes of persistent organic pollutants (POPs: PAHs, PCBs and PBDEs) were determined in soil and (210)Pb-dated sediment cores from remote lacustrine environments (El Tule and Santa Elena lakes) in rural areas of Central Mexico. In both areas, the concentrations of target analytes in soil and sediment samples were comparable and indicative of slightly contaminated environments. The prevalence of low-molecular-weight PAHs in soils suggested their mainly atmospheric origin, in contrast to the aquatic sediments where runoff contribution was also significant. Increasing contamination trends of PCBs and PBDEs were evident, showing maximum fluxes of 4.8 ± 2.1 and 0.3 ± 0.1 ng cm(-2) a(-1) for PCBs and PBDEs, respectively. The predominance of lower-brominated PBDEs and lower-chlorinated PCBs in soils and sediments indicated that their presence is mostly due to long-range atmospheric transport. PMID:24971459

  2. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    PubMed Central

    Hackstadt, Amber J.; Peng, Roger D.

    2014-01-01

    Summary Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects. PMID:25309119

  3. Size and time-resolved roadside enrichment of atmospheric particulate pollutants

    NASA Astrophysics Data System (ADS)

    Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prévôt, A. S. H.; Nava, S.; Lucarelli, F.; Bukowiecki, N.; Alastuey, A.; Reche, C.; Moreno, T.; Pandolfi, M.; Pey, J.; Querol, X.

    2011-03-01

    Size and time-resolved roadside enrichments of atmospheric particulate pollutants in PM10 were detected and quantified in a Mediterranean urban environment (Barcelona, Spain). Simultaneous data from one urban background (UB), one traffic (T) and one heavy traffic (HT) location were analysed, and roadside PM10 enrichments (RE) in a number of elements arising from vehicular emissions were calculated. Tracers of primary traffic emissions (EC, Fe, Ba, Cu, Sb, Cr, Sn) showed the largest REs (>70%). Other traffic tracers (Zr, Cd) showed lower but still consistent REs (25-40%), similar to those obtained for mineral matter resulting from road dust resuspension (Ca, La, Ce, Ti, Ga, Sr, 30-40%). The sum of primary and secondary organic carbon showed a RE of 41%, with contributions of secondary OC (SOC) to total OC ranging from 46% at the HT site, 63% at the T site, and 78% in the UB. Finally, other trace elements (As, Co, Bi) showed unexpected but consistent roadside enrichments (23% up to 69%), suggesting a link to traffic emissions even though the emission process is unclear. Hourly-resolved PM speciation data proved to be a highly resourceful tool to determine the source origin of atmospheric pollutants in urban environments. At the HT site, up to 62% of fine Mn was attributable to industrial plumes, whereas coarse Mn levels were mainly attributed to traffic. Similarly, even though Zn showed on average no roadside enrichment and thus was classified as industrial, the hourly-resolved data proved that at least 15% of coarse Zn may be attributed to road traffic emissions. In addition, our results indicate that secondary nitrate formation occurs within the city-scale, even in the absence of long atmospheric residence times or long-range atmospheric transport processes. Characteristic tracer ratios of road traffic emissions were identified: Cu/Sb = 6.8-8.0, Cu/Sn = 4.7-5.4 and Sn/Sb = 1.5.

  4. Size and time-resolved roadside enrichment of atmospheric particulate pollutants

    NASA Astrophysics Data System (ADS)

    Amato, F.; Viana, M.; Richard, A.; Furger, M.; Prevot, A. S. H.; Nava, S.; Lucarelli, F.; Querol, X.; Alastuey, A.; Reche, C.; Moreno, T.; Pandolfi, M.; Pey, J.

    2011-01-01

    Size and time-resolved roadside enrichments of atmospheric particulate pollutants in PM10 were detected and quantified in a Mediterranean urban environment (Barcelona, Spain). Simultaneous data from one urban background (UB), one traffic (T) and one heavy traffic (HT) location were analysed, and roadside PM10 enrichments (RE) in a number of elements arising from vehicular emissions were calculated. Tracers of primary traffic emissions (EC, Fe, Ba, Cu, Sb, Cr, Sn) showed the largest REs (>70%). Other traffic tracers (Zr, Cd) showed lower but still consistent REs (25-40%), similar to those obtained for mineral matter resulting from road dust resuspension (Ca, La, Ce, Ti, Ga, Sr, 30-40%). The sum of primary and secondary organic carbon showed a RE of 41%, with contributions of secondary OC (SOC) to total OC ranging from 46% at the HT site, 63% at the T site, and 78% in the UB. Finally, other trace elements (As, Co, Bi) showed unexpected but consistent roadside enrichments (23% up to 69%), suggesting a link to traffic emissions even though the emission process is unclear. Hourly-resolved PM speciation data proved to be a highly resourceful tool to determine the source origin of atmospheric pollutants in urban environments. At the HT site, up to 62% of fine Mn was attributable to industrial plumes, whereas coarse Mn levels were mainly attributed to traffic. Similarly, even though Zn showed on average no roadside enrichment and thus was classified as industrial, the hourly-resolved data proved that at least 15% of coarse Zn may be attributed to road traffic emissions. In addition, our results indicate that secondary nitrate formation occurs within the city-scale, even in the absence of long atmospheric residence times or long-range atmospheric transport processes.

  5. Mossbauer study of iron-containing atmospheric aerosol in relation to the air pollution.

    NASA Astrophysics Data System (ADS)

    Kopcewicz, B.; Kopcewicz, M.

    2003-04-01

    Observation and monitoring of the aerosol background in the troposphere is very important for atmospheric physics. It is the first step in studying antropogenic components and their impact on the climate. Iron (both Fe(II) and Fe(III)) plays an important role in the multiphase atmospheric chemistry of S(IV) as a catalyst as well as an oxidant, and a photolytic source of OH radical. In order to assess the extent in which the iron content in the troposphere may change and to which extent that change may be attributed to human activity, it is necessary to have a complete picture of the distribution of iron concentration and its variation. For these purposes the Mössbauer spectroscopy was applied to analyze the iron compounds present in atmospheric aerosol. In this presentation we show results of measurements performed on the atmospheric aerosol collected in Poznan and Lodz (industrial cites in central Poland), Mikolajki (lake district, North-East Poland) and Kasprowy Wierch (mountain observatory, 1985 m a.s.l.). Depending to the sampling period and sampling site the significant changes in the iron concentration and chemical properties of the collected aerosol were observed. As a significant part of air pollution, especially in winter months, iron appeared in the form of iron sulfides, which were products of coal combustion. Also, iron oxyhydroxides and iron oxides, mostly hematite (bulk) and in the form of ultra fine particles in superparamagnetic state were observed. Results obtained from Mössbauer measurements were discussed in relation to the concentration of general air pollution.

  6. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution.

    PubMed

    Eatough Jones, Michele; Paine, Timothy D; Fenn, Mark E

    2008-02-01

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.

  7. Modification of the method of parametric estimation of atmospheric distortion in MODTRAN model

    NASA Astrophysics Data System (ADS)

    Belov, A. M.

    2015-12-01

    The paper presents a modification of the method of parametric estimation of atmospheric distortion in MODTRAN model as well as experimental research of the method. The experimental research showed that the base method does not take into account physical meaning of atmospheric spherical albedo parameter and presence of outliers in source data that results to overall atmospheric correction accuracy decreasing. Proposed modification improves the accuracy of atmospheric correction in comparison with the base method. The modification consists in the addition of nonnegativity constraint on the atmospheric spherical albedo estimated value and the addition of preprocessing stage aimed to adjust source data.

  8. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    SciTech Connect

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  9. A review of existing models and methods to estimate employment effects of pollution control policies

    SciTech Connect

    Darwin, R.F.; Nesse, R.J.

    1988-02-01

    The purpose of this paper is to provide information about existing models and methods used to estimate coal mining employment impacts of pollution control policies. The EPA is currently assessing the consequences of various alternative policies to reduce air pollution. One important potential consequence of these policies is that coal mining employment may decline or shift from low-sulfur to high-sulfur coal producing regions. The EPA requires models that can estimate the magnitude and cost of these employment changes at the local level. This paper contains descriptions and evaluations of three models and methods currently used to estimate the size and cost of coal mining employment changes. The first model reviewed is the Coal and Electric Utilities Model (CEUM), a well established, general purpose model that has been used by the EPA and other groups to simulate air pollution control policies. The second model reviewed is the Advanced Utility Simulation Model (AUSM), which was developed for the EPA specifically to analyze the impacts of air pollution control policies. Finally, the methodology used by Arthur D. Little, Inc. to estimate the costs of alternative air pollution control policies for the Consolidated Coal Company is discussed. These descriptions and evaluations are based on information obtained from published reports and from draft documentation of the models provided by the EPA. 12 refs., 1 fig.

  10. Spectral Dark Subtraction: A MODTRAN-Based Algorithm for Estimating Ground Reflectance without Atmospheric Information

    NASA Technical Reports Server (NTRS)

    Freedman, Ellis; Ryan, Robert; Pagnutti, Mary; Holekamp, Kara; Gasser, Gerald; Carver, David; Greer, Randy

    2007-01-01

    Spectral Dark Subtraction (SDS) provides good ground reflectance estimates across a variety of atmospheric conditions with no knowledge of those conditions. The algorithm may be sensitive to errors from stray light, calibration, and excessive haze/water vapor. SDS seems to provide better estimates than traditional algorithms using on-site atmospheric measurements much of the time.

  11. Estimating sources, sinks and fluxes of reactive atmospheric compounds within a forest canopy

    NASA Astrophysics Data System (ADS)

    Ghannam, K.; Duman, T.; Walker, J. T.; Bash, J. O.; Huang, C. W.; Khlystov, A.; Katul, G. G.

    2015-12-01

    While few dispute the significance of within-canopy sources or sinks of reactive gaseous and particulate compounds, their estimation continues to be the subject of active research and debate. Reactive species undergo turbulent dispersion within an inhomogeneous flow field, and may be subjected to chemical, biological and/or physical deposition, emissions or transformations on leaves, woody elements, and the forest floor. This system involves chemical reactions and biological processes with multiple time scales and represents the terrestrial ecosystem's exposure to nutrient and acid deposition and atmospheric oxidants. The quantification of these processes is a first step in better understanding the ecological impact of air pollution and feedback to atmospheric composition. Hence, it follows that direct measurements of sources or sinks is difficult to conduct in the presence of all these processes. However, mean scalar concentration profiles measured within the canopy can be used to infer the profile distribution of effective sinks and sources if the flow field is known. This is commonly referred to as the 'inverse problem'. In-canopy and above-canopy multi-level concentration measurements of reactive nitrogen compounds (ammonia, nitric acid, nitrous acid), as well as other compounds that are highly reactive to ammonia and its secondary products (hydrochloric acid and sulfur dioxide), are presented within a deciduous second-growth 180 year old oak-hickory forest situated within the Southeastern U.S. Two different approaches are used to solve for the source-sink distribution from the measured mean scalar concentration profiles: (1) an Eulerian high-order closure model that solves the scalar flux budget equation and (2) a new Lagrangian stochastic model that estimates the dispersion matrix. As each of these methods is subject to different assumptions, the combination of the two can be used to constrain the solution to the inverse problem and permit inference on the

  12. Atmospheric ammonia over China: emission estimates and impacts on air quality

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Zhao, Yuanhong; Chen, Youfan; Henze, Daven

    2016-04-01

    Ammonia (NH3) in the atmosphere is an important precursor of inorganic aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. Here we use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. We improve the bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical feritilizer application rates for different crop types, which explains most of the discrepancies between our top-down estimates and prior emission estimates. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to NH3 emissions in cold seasons due to strong nitrate formation. By converting shorted-lived nitric acid to aerosol nitrate, NH3 significantly promotes the regional transport influences of PM2.5 sources.

  13. On the modeling of atmospheric pollutant dispersion during a diurnal cycle: A finite element study

    NASA Astrophysics Data System (ADS)

    Albani, Roseane A. S.; Duda, Fernando P.; Pimentel, Luiz Cláudio G.

    2015-10-01

    In this paper, we present a numerical model to study pollutant dispersion in the atmospheric boundary layer (ABL). The model accounts for the mechanisms of advection by the mean wind in the horizontal direction, turbulent diffusion in the vertical direction to ground surface, dry deposition, and radioactive decay. More importantly, the model is capable of accounting for the evolution of the ABL structure over a diurnal cycle by considering parameterizations for the wind-speed and eddy-diffusivity profiles that depend on the atmospheric stability condition, which in turn undergoes dramatic changes throughout the day. To solve the resulting advection-diffusion equation, we propose a numerical method based on a stabilized finite element formulation. After validating the numerical model by simulating classical experiments and comparing its predictions with those available in literature, we study the dispersion of a pollutant during a full diurnal ABL cycle with the meteorological parameters generated by AERMET for a 24-h period on a 1-h basis.

  14. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects.

    PubMed

    Pinto, Delia M; Blande, James D; Souza, Silvia R; Nerg, Anne-Marja; Holopainen, Jarmo K

    2010-01-01

    Tropospheric ozone (O3) is an important secondary air pollutant formed as a result of photochemical reactions between primary pollutants, such as nitrogen oxides (NOx), and volatile organic compounds (VOCs). O3 concentrations in the lower atmosphere (troposphere) are predicted to continue increasing as a result of anthropogenic activity, which will impact strongly on wild and cultivated plants. O3 affects photosynthesis and induces the development of visible foliar injuries, which are the result of genetically controlled programmed cell death. It also activates many plant defense responses, including the emission of phytogenic VOCs. Plant emitted VOCs play a role in many eco-physiological functions. Besides protecting the plant from abiotic stresses (high temperatures and oxidative stress) and biotic stressors (competing plants, micro- and macroorganisms), they drive multitrophic interactions between plants, herbivores and their natural enemies e.g., predators and parasitoids as well as interactions between plants (plant-to-plant communication). In addition, VOCs have an important role in atmospheric chemistry. They are O3 precursors, but at the same time are readily oxidized by O3, thus resulting in a series of new compounds that include secondary organic aerosols (SOAs). Here, we review the effects of O3 on plants and their VOC emissions. We also review the state of current knowledge on the effects of ozone on ecological interactions based on VOC signaling, and propose further research directions.

  15. Characteristics of atmospheric visibility and its relationship with air pollution in Korea.

    PubMed

    Lee, Jeong-Young; Jo, Wan-Kuen; Chun, Ho-Hwan

    2014-09-01

    Although analysis of long-term data is necessary to obtain reliable information on characteristics of atmospheric visibility and its relationship with air pollution, it has rarely been performed. Therefore, a long-term evaluation of atmospheric visibility in characteristically different Korean cities, as well as a remote island, during 2001 to 2009, was performed in this study. In general, visibility decreased in the studied areas during the 9-yr study period. In addition, all areas displayed a distinct seasonal trend, with high visibility in the cold season relative to the warm season. Weekday visibility, however, did not significantly differ from weekend visibility. Similarly, the number of days per year for both low (<10 km) and high visibility (>19 km) fluctuated during the study period. Busan (a coastal city) exhibited the highest visibility, with an overall average of 17.6 km, followed by Daegu (a basin city), Ulsan (with concentrated petrochemical industries), Ullungdo (a remote island), and Seoul (the capital of Korea). Visibility was found to be significantly correlated with target air pollutants, except for ozone, for all metropolitan cities, whereas it was significantly correlated only with particulate matter with an aerodynamic diameter <10 μm (PM10) and ozone on the remote island (Ullungdo). Among the metropolitan cities, Seoul exhibited the lowest visibility for both the PM10 standard exceedance and non-exceedance days, followed by Ulsan, Daegu, and Busan. The results of this study can be used to establish effective strategies for improving urban visibility and air quality. PMID:25603237

  16. Atmospheric transport of persistent organic pollutants (POPs) to Bjørnøya (Bear island).

    PubMed

    Kallenborn, Roland; Christensen, Guttorm; Evenset, Anita; Schlabach, Martin; Stohl, Andreas

    2007-10-01

    A first medium term monitoring of atmospheric transport and distribution for persistent organic pollutants (POPs) in Bjørnøya (Bear island) air samples has been performed in the period between week 51/1999 and week 28/2003. A total of 50 single compounds consisting of polychlorinated biphenyls (33 congeners), hexachlorobenzene (HCB), hexachlorocyclohexane isomers (alpha-, beta-, gamma-HCH), alpha-endosulfan, cyclodiene pesticides (chlordanes, nonachlor-isomers, oxy-chlordane, heptachlor and chlordane) as well as dichlorodiphenyltrichloroethane (DDT) derivatives were analysed and quantified. Atmospheric transport of POPs was identified as an important contamination source for the island. PCBs, HCB and HCH isomers were the predominant POP groups, contributing with 70-90% to the overall POP burden quantified in the Bjørnøya air samples. The highest concentration levels for a single compound were found for HCB (25-35 pg m(-3)). However, the sum of 33 PCB congeners was found to be in the same concentration range (annual means between 15 and 30 pg m(-3)). Cyclodiene pesticides, DDT derivatives and alpha-endosulfan were identified as minor contaminants. Several atmospheric long-range transport episodes were identified and characterised. Indications for industrial emissions as well as agricultural sources were found for the respective atmospheric transport episodes. A first simple statistical correlation assessment showed that for long-range transport of pollution, the local meteorological situation is not as important as the air mass properties integrated over the time period of the transport event. The local weather situation, on the other hand, is important when investigating deposition rates and up-take/accumulation properties in the local ecosystem. Based upon chemical data interpretation, valuable information about the influence of primary and secondary sources on the air mass contamination with chlorinated insecticides (e.g., HCHs) was found and discussed. The

  17. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  18. Limestone surfaces in built-up environment as indicators of atmospheric pollution.

    PubMed

    Vella, A J; Camilleri, A; Tabone Adami, J P

    1996-12-01

    The concentration of sulphate on limestone surfaces of the external walls of churches in Malta is shown to be related to their position and distance from a power station, the main local point source of sulphur dioxide pollution. Limestone powder collected from these surfaces was examined for the presence of particles which, under low-power optical microscopy, appear as shiny black amorphous bodies which were interpreted as soot particles; the abundance of these bodies was expressed as a 'black particle count' (BPC). The degree of sulphation and BPC were shown to be correlated with each other and both appeared to be strongly dependent on the prevailing wind. The BPC contour map indicated an important contribution to the parameter from vehicular traffic. It is suggested that the degree of sulphation and BPC of limestone surfaces from the built environment should function as environmental indicators of the relative air quality with respect to SO2 and soot pollution. This data is possibly more accurately representative of the relative long-term air-quality status of different areas of habitation than that deduced from single or episodic measurements of atmospheric pollutant levels. PMID:24194411

  19. Limestone surfaces in built-up environment as indicators of atmospheric pollution.

    PubMed

    Vella, A J; Camilleri, A; Tabone Adami, J P

    1996-12-01

    The concentration of sulphate on limestone surfaces of the external walls of churches in Malta is shown to be related to their position and distance from a power station, the main local point source of sulphur dioxide pollution. Limestone powder collected from these surfaces was examined for the presence of particles which, under low-power optical microscopy, appear as shiny black amorphous bodies which were interpreted as soot particles; the abundance of these bodies was expressed as a 'black particle count' (BPC). The degree of sulphation and BPC were shown to be correlated with each other and both appeared to be strongly dependent on the prevailing wind. The BPC contour map indicated an important contribution to the parameter from vehicular traffic. It is suggested that the degree of sulphation and BPC of limestone surfaces from the built environment should function as environmental indicators of the relative air quality with respect to SO2 and soot pollution. This data is possibly more accurately representative of the relative long-term air-quality status of different areas of habitation than that deduced from single or episodic measurements of atmospheric pollutant levels.

  20. Searching ingredients polluted by polycyclic aromatic hydrocarbons in feeds due to atmospheric or pyrolytic sources.

    PubMed

    Yebra-Pimentel, Iria; Fernández-González, Ricardo; Martínez Carballo, Elena; Simal-Gándara, Jesús

    2012-12-01

    The primary aim of the proposed work is to propose the potential sources of pollution by polycyclic aromatic hydrocarbons (PAHs) in feeds and ingredients. To reach this propose the development of a simple, fast, quantitative and economic method for determining PAHs using liquid-liquid extraction (LLE), clean-up and detection by liquid chromatography with fluorescence detection (LC-FD) in polluting feeds and ingredients was developed. The overall method quantification limits range from 0.020 to 4.0μg/kg and analyte recoveries are between 70% and 105% with relative standard deviations (RSD) lower than 20%. Molecular patterns of PAHs were used to study their distribution in the selected samples by cluster analysis, separating them in two groups: contaminated by atmospheric or pyrolytic sources. In order to find a relationship between the nutritional composition (protein, fibre, ash and fat content), and the hypothetical toxicity of selected feeds, a partial least squared (PLS) analysis was used, showing that fibre was a major contributor. Moreover, the complete data set of 27 feed samples and 25 feed ingredients x 13 PAH concentrations were analysed by PCA to find out what ingredients were controlling PAH pollution.

  1. Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing.

    PubMed

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Zhang, Yuan-Hang; Tang, Xiao-Yan

    2006-04-15

    Beijing is a rapidly developing city with severe and unique air pollution problems. Organic matter is the most abundant fraction in fine particles in Beijing, occupying 30-50% of the total mass, indicating its key role in air pollution control. However, detailed chemical characterization of particulate organic matter in Beijing has never been reported. In this study, fine particles in the urban atmosphere in Beijing were investigated for its organic components by GC/MS technique. Over 100 individual organic compounds were identified and quantified in 25 PM2.5 samples from the summer, autumn and winter of 2002-2003. Alkanes, fatty acids, dicarboxylic acids, polycyclic aromatic hydrocarbons and some important tracer compounds (hopanes, levoglucosan and steroids) were the major constituents with the sum of their concentrations of 502, 1471 and 1403 ng m(-3) in summer, autumn and winter, respectively. Different organic compounds presented apparently different seasonal characteristics, reflecting their different dominant emission sources, such as coal combustion, biomass burning and cooking emission. The abundance and origin of these organic compounds are discussed to reveal seasonal air pollution characteristics of Beijing.

  2. Preliminary results of a lidar-dial integrated system for the automatic detection of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Richetta, M.

    2012-11-01

    In the last decades, atmospheric pollution in urban and industrial areas has become a major concern of both developed and developing countries. In this context, surveying relative large areas in an automatic way is an increasing common objective of public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective approach to monitor large portions of the atmosphere and, for example, they have been successful applied to the early detection of forest fire. The studies and preliminary results reported in this paper concern the development of an integrated Lidar-Dial system able to detect sudden releases in air of harmful and polluting substances. The propose approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement (by means of a low cost system). Once a significant increase in the density of a pollutant is revealed, the Dial technique is used to identify the released chemicals. In this paper, the specifications of the proposed station are discussed. The most stringent requirement is the need for a very compact system with a range of at least 600-700 m. Of course, the optical wavelengths must be in an absolute eye-safe range for humans. A conceptual design of the entire system is described and the most important characteristic of the main elements are provided. In particular the capability of the envisaged laser sources, Nd:YAG and CO2 lasers, to provide the necessary quality of the measurements is carefully assessed. Since the detection of dangerous substances must be performed in an automatic way, the monitoring station will be equipped with an adequate set of control and communication devices for independent autonomous operation. The results of the first preliminary tests illustrate the potential of the chosen approach.

  3. Relationship of atmospheric pollution characterized by gas (NO2) and particles (PM10) to microbial communities living in bryophytes at three differently polluted sites (rural, urban, and industrial).

    PubMed

    Meyer, Caroline; Gilbert, Daniel; Gaudry, André; Franchi, Marielle; Nguyen, Hung Viet; Fabure, Juliette; Bernard, Nadine

    2010-02-01

    Atmospheric pollution has become a major problem for modern societies owing to its fatal effects on both human health and ecosystems. We studied the relationships of nitrogen dioxide atmospheric pollution and metal trace elements contained in atmospheric particles which were accumulated in bryophytes to microbial communities of bryophytes at three differently polluted sites in France (rural, urban, and industrial) over an 8-month period. The analysis of bryophytes showed an accumulation of Cr and Fe at the rural site; Cr, Fe, Zn, Cu, Al, and Pb at the urban site; and Fe, Cr, Pb, Al, Sr, Cu, and Zn at the industrial site. During this study, the structure of the microbial communities which is characterized by biomasses of microbial groups evolved differently according to the site. Microalgae, bacteria, rotifers, and testate amoebae biomasses were significantly higher in the rural site. Cyanobacteria biomass was significantly higher at the industrial site. Fungal and ciliate biomasses were significantly higher at the urban and industrial sites for the winter period and higher at the rural site for the spring period. The redundancy analysis showed that the physico-chemical variables ([NO(2)], relative humidity, temperature, and site) and the trace elements which were accumulated in bryophytes ([Cu], [Sr], [Pb]) explained 69.3% of the variance in the microbial community data. Moreover, our results suggest that microbial communities are potential biomonitors of atmospheric pollution. Further research is needed to understand the causal relationship underlined by the observed patterns.

  4. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  5. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  6. [Atmospheric pollution characteristic during fireworks burning time in spring festival in Quanzhou suburb].

    PubMed

    Zhao, Jin-ping; Xu, Ya; Zhang, Fu-wang; Chen, Jin-sheng

    2011-05-01

    Atmospheric pollution characteristics during fireworks burning time in 2009 Spring Festival in Quangzhou suburb were studied. Particulate aerosol has been monitored and collected using real-time monitor and middle-volume sampler during fireworks burning time. The objectives of this study were to identify the contents and distributing characteristics of particles, polycyclic aromatic hydrocarbon (PAHs) and water-soluble ions and to discuss sources of these pollutants. The results showed that PM2.5 and PM10 were increased significantly during fireworks burning time. The highest concentration of particles presented time of 00:57-01:27 on New Year's Eve, which the average concentration of PM2.5 and PM10 were reached 1102.43 microm(-3) and 1610.22 microg x m(-3) in 30 min. The concentration of particle- and gas-PAHs were 54.18 ng x m(-1) and 47.10 ng x m(-3), respectively, during fireworks burning time in New Year's Eve, which were higher than that in the normal day. It can be judged by the diagnostic ratios that the primary source of PAHs in Quanzhou suburb were the combustion of coal, biomass and the exhaust emission from diesel vehicles in this region. Results of water-soluble ions indicated that fireworks burning were the main reason to lead to higher concentration of these ions during Spring Festival. Moreover, pollution gases of NOx and SO2 that were origined from fireworks burning, coal combustion and exhaust emission from motor vehicle were supplied precursors to form secondary pollutants, such as NO3- and SO4(2-).

  7. [Atmospheric asbestos pollution in the urban environment: Rome, Orbassano and a control locality (II)].

    PubMed

    Chiappino, G; Todaro, A; Blanchard, O

    1993-01-01

    To complete our previous study which evaluated by TEM the atmospheric concentrations of asbestos in the urban areas of Milan, Casale Monferrato, Brescia, Ancona, Bologna and Florence, the concentrations measured in Rome, Orbassano and in two mountain test locations, one with serpentine rock (Valle di Susa) and the other with granitic rock (Adamello), are now reported. Compared with the towns in northern Italy, which had already shown decreasing pollution levels from Casale Monferrato to Milan, Brescia, Ancona, Bologna and Florence, the levels measured in Rome were extremely low, about ten times lower than those measured in Florence, which were in turn ten times lower than those measured in Milan. In Orbassano the levels near serpentine quarries were slightly higher than the geologic background values. The geologic background level in Valle di Susa was approximately 1 fibre/litre (> 5 microns) and 2.5 fibres/litre (total fibres); asbestos fibres were totally absent in the mountain area with granitic rock. The clearly decreasing values of pollution starting from the northern cities down to Rome lead to the exclusion of motor vehicle traffic as one of the "primary" sources of fibre dispersion. In fact, traffic becomes significant in producing pollution only in the presence of other dispersion sources since it gives rise to "secondary" pollution consisting of ultra-thin fibres through grinding of coarse fibres dispersed from other sources and sedimented on the ground. The authors attribute the main responsibility in maintaining comparatively high concentrations of asbestos fibres in the urban areas of northern Italy to weathered asbestos-cement coverings which act as "primary" sources.

  8. Estimation of air pollution-related mortality for the Ohio River Basin Energy Study Region

    SciTech Connect

    Arbogast, G.L.

    1982-01-01

    A cross-section analysis for 1976 is performed by estimating conventional health-damage specifications. Better air-quality data are used and socio-economic controls are instituted to derive a more-accurate estimate of the air pollution-related mortality by disease that is attributable to the residuals discharge by the coal-fired electric-utility sector of the Ohio River Basin Energy Study Region (ORBES). Diseases suspected of being sensitively associated with air pollution as mortality responses are categorized as cancer, cardiovascular, and respiratory. Air pollutants are SO/sub 2/, SO/sub 4/, and particulates for years 1976, 1985, and 2000 and for scenarios of utility compliance and noncompliance to state air-pollution regulations. The empirical results reveal that SO/sub 2/, particulates, and SO/sub 4/ are pernicious in that order and that noncompliance-related mortality is 1.6 times the compliance-related mortality. Most important is that logit and ridge regression, respectively, indicate in many instances that stochastic bio-responses to air pollution and multicollinearity among the data vectors strongly bias (overestimate) the linear least-squares estimates.

  9. The Ecological Monitoring Of Atmosphere Pollution In A City With Microwave

    NASA Astrophysics Data System (ADS)

    Shirokov, I. B.; Zemlyanukhina, O. M.; Ivanova, E. V.

    2007-05-01

    The ecological problem is a problem of mutual relation of a society and nature preservation of an environment. The development of industry results in increasing of the atmosphere pollution. This paper presents the measurements of degree of pollution zone on several links with length di each. The amount of links depends on city dimension and on presence of enterprises with emission into atmosphere of harmful substances. It is known, that by the emissions in an atmosphere of harmful substances (CO, CO2 , NO etc) the environment refraction coefficient nAV (average value) is changed. So, the phase progression of microwave kd identifies the properties of an environment, where k - microwave propagation constant. In a paper (I. B. Shirokov, M. V. Ivashina, Amplitude and Phase Progression Measurements on Microwave Line-of- Sight Links, IEEE Conf. Proc. IGARSS'01, Sydney, Australia) it was shown the possibility of phase progression measurement on microwave. In this paper it is suggested to abandon the synchronization of the microwave oscillations by low frequency oscillations and to use the origin microwave oscillations as heterodyne ones with the same initial phase and a frequency shift. The length of measurement link can reach several kilometers, so the phase stability of link in low frequency band was enough for phase measurement on microwave band with high accuracy, because of length of testing link is much less than low frequency wavelength. So, presented method let us measure phase difference, which is proportional to phase progression of microwave on line-of-sight link. Taking into account that phase progression of microwave depends on refraction coefficient of medium n, we have possibility to carry out the ecological monitoring of region, where the testing link is placed. However, the phase measurements are uncertain principally. In a paper it is presented the possibility of elimination of these disadvantages by the changing of the frequency f of microwave

  10. Variational approach to direct and inverse problems of atmospheric pollution studies

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition

  11. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Chen, Bicheng; Zheng, Hui; Zhao, Jingchuan

    2015-04-01

    Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei (BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height (PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers (EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2-2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution. The intensity of the sea-land and mountain-valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants, which is strongly affected by the local atmospheric circulations and the distribution of urban areas.

  12. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  13. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations.

    PubMed

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-22

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  14. Causes of daily cycle variability of atmospheric pollutants in a western Mediterranean urban site (DAURE campaign)

    NASA Astrophysics Data System (ADS)

    Reche, Cristina; Moreno, Teresa; Viana, Mar; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.; Pandolfi, Marco; Amato, Fulvio; Pérez, Noemí; Moreno, Natalia

    2010-05-01

    The 2009 DAURE Aerosol Campaign (23-February-2009 to 27-March-2009 and 1-July to 31-July) (see Presentation: Pandolfi et al., section AS3.2) had the objective of characterising the main sources and chemical processes controlling atmospheric pollution due to particulate matter in the Mediterranean site of Barcelona (Spain). An urban and a rural background site were selected in order to describe both kinds of pollution setting. Several parameters were taken into consideration, including the variability of mass concentration in the coarse and fine fractions, particle number, amount of black carbon and the concentration of gaseous pollutants (SO2, H2S, NO, NO2, CO, O3) present. Comparisons between the chemical composition of ambient atmospheric particles during day versus night were made using twelve-hour PM samples. The data shown here are focused on results obtained for the urban site where two main atmospheric settings were distinguishable in winter, namely Atlantic advection versus local air mass recirculation. During the warmer months Saharan dust intrusions added a third important influence on PM background. The data demonstrate that superimposed upon these background influences on city air quality are important local contributions from road traffic, construction-demolition works and shipping. There is also a major local contribution of secondary aerosols, with elevated number of particles occurring at midday (and especially in summer) when nucleation processes are favoured by photochemistry. Concentrations of SO2 peak at different times to the other gaseous pollutants due to regular daytime onshore south-easterly breezes bringing harbour emissions into the city. Road traffic in Barcelona also has a great impact on air quality, as demonstrated by daily and weekly cycles of gaseous pollutants, black carbon and the finer fraction of PM, with peaks being coincident with traffic rush-hours (8-10h and 20-22h), levels of pollution increasing from Monday to Friday, and

  15. Central Arctic Atmospheric SO2 pollution from smelters: Airborne detection and Arctic Haze formation

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Nau, R.; Jurkat, T.; Schlager, H.; Minikin, A.; Dörnbrack, A.; Pirjola, L.; Stohl, A.

    2009-04-01

    Arctic Haze represents a dramatic manifestation of anthropogenic pollution of a remote and previously pristine atmospheric environment, which presently experiences faster climate warming than any other region on the planet. Arctic haze influences visibility, ecosystems, and may contribute to Arctic climate warming. In spring, Arctic Haze occupies large parts of the Arctic lower troposphere, the so called Arctic Dome. The most abundant Arctic Haze component is sulphate, which was previously thought to stem preferably from Extra-Arctic anthropogenic pollution sources. However, recent model simulations suggest that sulphate particle transport into the Arctic Dome is severely hindered. During the recent POLAR YEAR 2007/2008, in 2007, we have made the first Central Arctic SO2 measurements with high vertical and horizontal resolution and detected SO2 rich pollution plumes in the entire troposphere height range up to 9000 m. Below 2000 m, inside the Arctic Dome, these plumes were most pronounced and stemmed preferably from a giant Ni-Cu smelter complex, located in the Siberian sector of the Arctic Dome, near the city Norilsk, at a distance of 2100 km from our measurement region. Our measurements and accompanying model simulations indicate that SO2 emitted by that smelter complex represents a mayor if not the dominant precursor of Arctic Dome cloud condensation nuclei and haze particles. Along with SO2, were measured aerosol particles and additional trace gases including also gas-phase NOy (sum of reactive nitrogen gases). Importantly, the abundance ratio R=SO2/NOy is quite different for different SO2 source types (about 1-2 for fossil fuel combustion, <0.1 for bio mass burning, and about 40 for Ni/Cu smelting) and therefore serves as an SO2-source marker. In addition to our air craft measurements, we have made accompanying model simulations of pollutant transport and aerosol formation and growth. Our air craft measurements were part of the ASTAR 2007 (ASTAR=Arctic Study

  16. The Growing Network of Arctic Atmospheric Observatories Now Allows for Better Monitoring of Arctic Air Pollution

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.

    2008-12-01

    The NOAA Barrow, Alaska, Atmospheric Baseline Observatory has been in continuous operation for 35 years monitoring a wide range of atmospheric parameters. Clear trends in concentrations of radiatively important trace gases such as carbon dioxide, methane, HFCs and CFCs, and nitrous oxide have been established at Barrow. In addition, measurements of both general background and episodic gas and aerosol events from industrial and forest fire sources in Russia, China, Europe and North America have been observed. Along with atmospheric stations in Alert and Eureka, Canada,and Summit, Greenland, individual air pollution events flowing into and across the Arctic Basin are being tracked in time and space. The large gap in similar monitoring across the Russian Arctic is being addressed by new stations/programs at Tiksi and Cherskiy, Russia that were upgraded in 2007/8. There is special interest in monitoring methane at Tiksi and Cherskiy as there is speculation that permafrost melting in the Arctic will release accelerating amounts of methane further driving greenhouse warming.

  17. Computed and estimated pollutant loads, West Fork Trinity River, Fort Worth, Texas, 1997

    USGS Publications Warehouse

    McKee, Paul W.; McWreath, Harry C.

    2001-01-01

    In 1998 the U.S. Geological Survey, in cooperation with the Trinity River Authority, did a study to estimate storm-runoff pollutant loads using two models?a deterministic model and a statistical model; the estimated loads were compared to loads computed from measured data for a large (118,000 acres) basin in the Dallas-Fort Worth, Texas, metropolitan area. Loads were computed and estimated for 12 properties and constituents in runoff from two 1997 storms at streamflow-gaging station 08048543 West Fork Trinity River at Beach Street in Fort Worth. Each model uses rainfall as a primary variable to estimate pollutant load. In addition to using point rainfall at the Beach Street station to estimate pollutant loads, areal-averaged rainfall for the basin was computed to obtain a more representative estimate of rainfall over the basin. Loads estimated by the models for the two storms, using both point and areal-averaged rainfall, generally did not compare closely to computed loads for the 12 water-quality properties and constituents. Both models overestimated loads more frequently than they underestimated loads. The models tended to yield similar estimates for the same property or constituent. In general, areal-averaged rainfall data yielded better estimates of loads than point rainfall data for both models. Neither the deterministic model nor the statistical model (both using areal-averaged rainfall) was consistently better at estimating loads. Several factors could account for the inability of the models to estimate loads closer to computed loads. Chief among them is the fact that neither model was designed for the specific application of this study.

  18. Seasonal trends, meteorological impacts, and associated health risks with atmospheric concentrations of gaseous pollutants at an Indian coastal city.

    PubMed

    Mahapatra, Parth Sarathi; Panda, Sipra; Walvekar, P P; Kumar, R; Das, Trupti; Gurjar, B R

    2014-10-01

    This study presents surface ozone (O3) and carbon monoxide (CO) measurements conducted at Bhubaneswar from December 2010 to November 2012 and attempts for the very first time a health risk assessment of the atmospheric trace gases. Seasonal variation in average 24 h O3 and CO shows a distinct winter (December to February) maxima of 38.98 ± 9.32 and 604.51 ± 145.91 ppbv, respectively. O3 and CO characteristics and their distribution were studied in the form of seasonal/diurnal variations, air flow patterns, inversion conditions, and meteorological parameters. The observed winter high is likely due to higher regional emissions, the presence of a shallower boundary layer, and long-range transport of pollutants from the Indo-Gangetic Plain (IGP). Large differences between daytime and nighttime O3 values during winter compared to other seasons suggest that photochemistry is much more active on this site during winter. O3 and CO observations are classified in continental and marine air masses, and continental influence is estimated to increase O3 and CO by up to 20 and 120 ppbv, respectively. Correlation studies between O3 and CO in various seasons indicated the role of CO as one of the O3 precursors. Health risk estimates predict 48 cases of total premature mortality in adults due to ambient tropospheric O3 during the study period. Comparatively low CO concentrations at the site do not lead to any health effects even during winter. This study highlights the possible health risks associated with O3 and CO pollution in Bhubaneswar, but these results are derived from point measurements and should be complemented either with regional scale observations or chemical transport models for use in design of mitigation policies.

  19. ESTIMATION OF GROUNDWATER POLLUTION POTENTIAL BY PESTICIDES IN MID-ATLANTIC COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    A simple GIS-based transport model to estimate the potential for groundwater pollution by pesticides has been developed within the ArcView GIS environment. The pesticide leaching analytical model, which is based on one-dimensional advective-dispersive-reactive (ADR) transport, ha...

  20. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  1. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  2. The relation of phase distributions of persistent organic pollutants to estimated fate and human exposure

    SciTech Connect

    Gundel, L.; McKone, T.; Daisey, J.

    1995-12-31

    The purpose of this presentation is to show how advanced measurement technologies for determination of the gas and particulate phase distributions of persistent organic pollutants (POPs) can, with appropriate modeling efforts, lead to better understanding of how atmospheric phase distribution impacts exposure persistence or half-life. New data collected in California with both conventional and diffusion-denuder-based samplers are used to (1) assess the direction and magnitude of sampling biases in existing databases of POPs including organochlorines and polycyclic aromatic hydrocarbons, and (2) compare predictions of persistence and half life using a regional fugacity exposure model (CalTOX). For many POPs, there are data quality problems in measurements of the partitioning between the gas phase and airborne particulate matter, between the gas phase and soils, and between the gas phase and vegetation. Whether intermedia transport takes place in gas or particulate phase can have a strong impact of the estimated persistence of potential human and ecosystem exposure. Most phase distribution measurements use filters followed by adsorbents to determining the relative concentrations of particulate-phase and gas-phase SVOC. In these measurements use filters followed by adsorbents to determining the relative concentrations of particulate-phase and gas-phase SVOC. In these systems, desorption of semi-volatile compounds form the particles on the filters, or adsorption of gases by the filter materials can lead to incorrect measurements of gas- and particulate-phase concentrations. Because the gas phase is collected before the particulate phase, diffusion denuder technology provides a less artifact-encumbered approach for accurate determination of phase distributions of semivolatile species.

  3. Simultaneous estimation of model parameters and diffuse pollution sources for river water quality modeling.

    PubMed

    Jun, K S; Kang, J W; Lee, K S

    2007-01-01

    Diffuse pollution sources along a stream reach are very difficult to both monitor and estimate. In this paper, a systematic method using an optimal estimation algorithm is presented for simultaneous estimation of diffuse pollution and model parameters in a stream water quality model. It was applied with the QUAL2E model to the South Han River in South Korea for optimal estimation of kinetic constants and diffuse loads along the river. Initial calibration results for kinetic constants selected from a sensitivity analysis reveal that diffuse source inputs for nitrogen and phosphorus are essential to satisfy the system mass balance. Diffuse loads for total nitrogen and total phosphorus were estimated by solving the expanded inverse problem. Comparison of kinetic constants estimated simultaneously with diffuse sources to those estimated without diffuse loads, suggests that diffuse sources must be included in the optimization not only for its own estimation but also for adequate estimation of the model parameters. Application of the optimization method to river water quality modeling is discussed in terms of the sensitivity coefficient matrix structure.

  4. SMOG-CHAMBER TOXICOLOGY BETTER ESTIMATES THE TRUE TOXIC POTENTIAL OF ATMOSPHERIC MIXTURES

    EPA Science Inventory

    The chemistry of hazardous air pollutants (HAPs) have been studied for many years, yet little is known about how these chemicals, once interacted with urban atmospheres, affect healthy and susceptible individuals. The toxic potential of these very reactive compounds once they int...

  5. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis.

    PubMed

    Esbrí, José M; López-Berdonces, Miguel Angel; Fernández-Calderón, Sergio; Higueras, Pablo; Díez, Sergi

    2015-04-01

    An integrated analysis approach has been applied to a mercury (Hg) case study on a chlor-alkali plant located in the Ebro River basin, close to the town of Flix (NE Spain). The study focused on atmospheric Hg and its incorporation in soils and lichens close to a mercury cell chlor-alkali plant (CAP), which has been operating since the end of the 19th century. Atmospheric Hg present in the area was characterized by means of seven total gaseous mercury (TGM) surveys carried out from 2007 to 2012. Surveys were carried out by car, walking, and at fixed locations, and covered an area of some 12 km(2) (including the CAP area, the village in which workers live, Flix town, and the Sebes Wildlife Reserve). Finally, an atmospheric Hg dispersion model was developed with ISC-AERMOD software validated by a lichen survey of the area. The results for the atmospheric compartment seem to indicate that the Flix area currently has the highest levels of Hg pollution in Spain on the basis of the extremely high average concentrations in the vicinity of the CAP (229 ng m(-3)). Moreover, the Hg(0) plume affects Flix town center to some extent, with values well above the international thresholds for residential areas. Wet and dry Hg deposition reached its highest values on the banks of the Ebro River, and this contributes to increased soil contamination (range 44-12,900 ng g(-1), average 775 ng g(-1)). A good fit was obtained between anomalous areas indicated by lichens and the dispersion model for 1 year.

  6. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  7. Pollution

    ERIC Educational Resources Information Center

    Terry, Luther L.

    1970-01-01

    Our mechanized environment has produced a variety of man-made pollutants. Prevention of pollution and resulting health hazards is a primary challenge. The Federal Government undertakes a large responsibility in the field of environmental control. (CK)

  8. Estimate of the 42Ar content in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Kornoukhov, V. N.; Jants, V. E.

    1997-02-01

    42Ar is a potential source of background in large volume argon-based detectors. The production of the 42Ar isotope both by cosmic rays and by neutrons produced by testing of nuclear weapons is discussed. We demonstrate that main channel of the 42Ar production is from atmospheric testing of nuclear bombs from 1945 to 1962 and the 42Ar content must be less than 1.3 × 10 -23 parts of 42Ar per part of natAr.

  9. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  10. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  11. Pollutant runoff from non-point sources and its estimation by runoff models.

    PubMed

    Noguchi, M; Hiwatashi, T; Mizuno, Y; Minematsu, M

    2002-01-01

    In order to attain a sound and sustainable water environment, it is important to carry out the environmental management of the watershed. For this purpose, knowledge on the pollutant runoff mechanism from non-point sources becomes very important especially under rainy conditions. At Isahaya, Nagasaki, Japan, a big project of construction of sea-dyke and reclamation is now going on, so reducing the pollutant runoff, especially from non-point sources, becomes more important. Some runoff models of rainwater are developed to predict the rate of pollutant loads from the non-point sources, and their results are compared with each other to investigate the accuracy of prediction. In this paper, runoff analysis of both rainwater and pollutants has been carried out using three models: the tank model, the kinematic wave (K-W) model, and a model using the digital elevation model (DEM). For precise estimation, it becomes necessary to identify the parameters included in these models. Here, total nitrogen has been considered as pollutants, and detachment rates are evaluated, correlated with a class of land use, soil type, and moisture content. Finally, it has been shown that pollutant runoff from non-point sources can be predicted fairly well, identifying the model parameter appropriately.

  12. Soil TPH concentration estimation using vegetation indices in an oil polluted area of eastern China.

    PubMed

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m(-2) to 5.3 g m(-2) with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg(-1) to 652 mg kg(-1). The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R(2) = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg(-1)). For other vegetation indices and red edge parameters, the R(2) and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg(-1) to 106.8 mg kg(-1) respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R(2) = 0.70 and RMSE = 110.1 mg kg(-1)) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable.

  13. Soil TPH concentration estimation using vegetation indices in an oil polluted area of eastern China.

    PubMed

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m(-2) to 5.3 g m(-2) with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg(-1) to 652 mg kg(-1). The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R(2) = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg(-1)). For other vegetation indices and red edge parameters, the R(2) and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg(-1) to 106.8 mg kg(-1) respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R(2) = 0.70 and RMSE = 110.1 mg kg(-1)) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  14. GLANCE - calculatinG heaLth impActs of atmospheric pollutioN in a Changing climatE

    NASA Astrophysics Data System (ADS)

    Vogel, Leif; Faria, Sérgio; Markandya, Anil

    2016-04-01

    Current annual global estimates of premature deaths from poor air quality are estimated in the range of 2.6-4.4 million, and 2050 projections are expected to double against 2010 levels. In Europe, annual economic burdens are estimated at around 750 bn €. Climate change will further exacerbate air pollution burdens; therefore, a better understanding of the economic impacts on human societies has become an area of intense investigation. European research efforts are being carried out within the MACC project series, which started in 2005. The outcome of this work has been integrated into a European capacity for Earth Observation, the Copernicus Atmospheric Monitoring Service (CAMS). In MACC/CAMS, key pollutant concentrations are computed at the European scale and globally by employing chemically-driven advanced transport models. The project GLANCE (calculatinG heaLth impActs of atmospheric pollutioN in a Changing climatE) aims at developing an integrated assessment model for calculating the health impacts and damage costs of air pollution at different physical scales. It combines MACC/CAMS (assimilated Earth Observations, an ensemble of chemical transport models and state of the art ECWMF weather forecasting) with downscaling based on in-situ network measurements. The strengthening of modelled projections through integration with empirical evidence reduces errors and uncertainties in the health impact projections and subsequent economic cost assessment. In addition, GLANCE will yield improved data accuracy at different time resolutions. This project is a multidisciplinary approach which brings together expertise from natural sciences and socio economic fields. Here, its general approach will be presented together with first results for the years 2007 - 2012 on the European scale. The results on health impacts and economic burdens are compared to existing assessments.

  15. Long Term Atmospheric and Erosional Pollution As Recorded in Lake Sediments from Yunnan, China

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Yu, J.; Bain, D.; Chiou-Peng, T.

    2014-12-01

    Human activities including agriculture, metallurgy (e.g. mining, processing, smelting), and deforestation have altered cycles of erosion and sedimentation in lake environments for thousands of years. In the Yunnan province of southwestern China, where written records are incomplete, it is unclear when, where, and how much disturbance occurred. Lake sediments offer a means to investigate a wide variety of human activities. Here, we present a lake sediment record from Erhai (25°43'N, 100°12'E) based on trace metal concentrations that reveals substantial atmospheric and erosional pollution to the lake environment over the last 4,000 years. Sediments indicate the initiation of copper-based metallurgy at 3,600 years BP, the existence of which has been debated amongst archaeologists. Beginning 2,000 years BP, sedimentation rates increase and concentrations of metals such as aluminum, titanium, lead, and zinc increase. This is likely linked to increased sediment flux to the lake associated with the initiation of terraced agriculture according to historical documents. The most prominent feature of the record is an abrupt and intense increase in lead, silver, cadmium, and zinc beginning at 700 years BP. The peak of this increase occurs at 600 years BP and is consistent with historical records that the Mongols established the first government operated silver mine in Yunnan. Notably, the concentrations of lead during this time are an order of magnitude greater than modern day levels of pollution.

  16. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling.

    PubMed

    Gonze, M-A; Sy, M M

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools.

  17. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.

    PubMed

    Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun

    2016-08-01

    Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. PMID:27203467

  18. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    PubMed Central

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-01-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity. PMID:27779222

  19. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling.

    PubMed

    Gonze, M-A; Sy, M M

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. PMID:27156215

  20. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  1. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  2. Estimating the atmospheric correlation length with stochastic parallel gradient descent algorithm.

    PubMed

    Yazdani, R; Hajimahmoodzadeh, M; Fallah, H R

    2014-03-01

    The atmospheric turbulence measurement has received much attention in various fields due to its effects on wave propagation. One of the interesting parameters for characterization of the atmospheric turbulence is the Fried parameter or the atmospheric correlation length. We numerically investigate the feasibility of estimating the Fried parameter using a simple and low-cost system based on the stochastic parallel gradient descent (SPGD) algorithm without the need for wavefront sensing. We simulate the atmospheric turbulence using Zernike polynomials and employ a wavefront sensor-less adaptive optics system based on the SPGD algorithm and report the estimated Fried parameter after compensating for atmospheric-turbulence-induced phase distortions. Several simulations for different atmospheric turbulence strengths are presented to validate the proposed method.

  3. Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications.

    NASA Astrophysics Data System (ADS)

    van Ulden, A. P.; Holtslag, A. A. M.

    1985-11-01

    This paper gives the outline of a `meteorological preprocessor' for air pollution modeling. It is shown how significantly more information can be extracted from routinely available measurements than the traditional Pasquil stability classes and power law wind speed profiles. Also it is shown how additional special measurements-if available-can be accommodated. The methods are primarily intended for application in generally level, but not necessarily homogeneous terrain. The improved characterization of the state of the planetary boundary layer allows a more modern and probably more accurate description of diffusion. The paper is an extended version of an introductory paper presented during the `Workshop on Updating Applied Diffusion Models' Clearwater, Florida, January 1984.

  4. Atmospheric mercury pollution at an urban site in central Taiwan: mercury emission sources at ground level.

    PubMed

    Huang, Jiaoyan; Liu, Chia-Kuan; Huang, Ci-Song; Fang, Guor-Cheng

    2012-04-01

    Total gaseous mercury (Hg) (TGM), gaseous oxidized Hg (GOM), and particulate-bound Hg (PBM) concentrations and dry depositions were measured at an urban site in central Taiwan. The concentrations were 6.14±3.91 ng m(-3), 332±153, and 71.1±46.1 pg m(-3), respectively. These results demonstrate high Hg pollution at the ground level in Taiwan. A back trajectory plot shows the sources of the high TGM concentration were in the low atmosphere (<500 m) and approximately 50% of the air masses coming from upper troposphere (>500 m) were associated with low TGM concentrations. This finding implies that Hg is trapped in the low atmosphere and comes from local Hg emission sources. The conditional probability function (CPF) reveals that the plumes of high TGM concentrations come from the south and northwest of the site. The plume from the south comes from two municipal solid waste incinerators (MSWIs). However, no significant Hg point source is located to the northwest of the site; therefore, the plumes from the northwest are hypothesized to be related to the combustion of agricultural waste. Dry deposition fluxes of Hg measured at this site considerably exceeded those measured in North America. Overall, this area is regarded as a highly Hg contaminated area because of local Hg emission sources.

  5. Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Conceição, R.; Melgão, M.; Nicoll, K.; Mendes, P. B.; Tlemçani, M.; Reis, A. H.; Harrison, R. G.

    2014-11-01

    The weekly dependence of pollutant aerosols in the urban environment of Lisbon (Portugal) is inferred from the records of atmospheric electric field at Portela meteorological station (38°47‧N, 9°08‧W). Measurements were made with a Bendorf electrograph. The data set exists from 1955 to 1990, but due to the contaminating effect of the radioactive fallout during 1960 and 1970s, only the period between 1980 and 1990 is considered here. Using a relative difference method a weekly dependence of the atmospheric electric field is found in these records, which shows an increasing trend between 1980 and 1990. This is consistent with a growth of population in the Lisbon metropolitan area and consequently urban activity, mainly traffic. Complementarily, using a Lomb-Scargle periodogram technique the presence of a daily and weekly cycle is also found. Moreover, to follow the evolution of theses cycles, in the period considered, a simple representation in a colour surface plot representation of the annual periodograms is presented. Further, a noise analysis of the periodograms is made, which validates the results found. Two datasets were considered: all days in the period, and fair-weather days only.

  6. dose-response functions and mapping of risk for materials in urban polluted atmosphere

    NASA Astrophysics Data System (ADS)

    Laurans, E.; Ausset, P.; Chabas, A.; Lefevre, R.-A.

    2003-04-01

    The French field test-site of the United-Nations International Co-operative Programme "Influence of Atmospheric Pollution on Materials, including Historic and Cultural Monuments" (ICP-Materials) located at the top of the Saint-Eustache Church in a pedestrian area in the center of Paris allows to expose various materials (stone, glass, metals, polymers...) and to measure simultaneously the atmospheric parameters (gases, particles, rain, temperature, relative humidity, time of wetness...). The dose-response functions are calculated from the doses recorded on the 30 test-sites of the ICP-Materials network and from the responses analyzed on exposed samples. The critical or acceptable levels and loads are then determined and illustrated by means of mapping. The map of risk for Portland limestone, on the entire French territory and only on Ile-de-France are then given. In conclusion, an improvement of the method is proposed for stone: the mapping of the risk has no meaning except for the area of utilization. Nevertheless, the map of risk for entire Europe concerning materials universally used, like Carrara marble, Portland cement based mortars and Si-Ca-Na modern glass are of better utility.

  7. Mountain cold-trapping increases transfer of persistent organic pollutants from atmosphere to cows' milk.

    PubMed

    Shunthirasingham, Chubashini; Wania, Frank; MacLeod, Matthew; Lei, Ying Duan; Quinn, Cristina L; Zhang, Xianming; Scheringer, Martin; Wegmann, Fabio; Hungerbühler, Konrad; Ivemeyer, Silvia; Heil, Fritz; Klocke, Peter; Pacepavicius, Grazina; Alaee, Mehran

    2013-08-20

    Concentrations of long-lived organic contaminants in snow, soil, lake water, and vegetation have been observed to increase with altitude along mountain slopes. Such enrichment, called "mountain cold-trapping", is attributed to a transition from the atmospheric gas phase to particles, rain droplets, snowflakes, and Earth's surface at the lower temperatures prevailing at higher elevations. Milk sampled repeatedly from cows that had grazed at three different altitudes in Switzerland during one summer was analyzed for a range of persistent organic pollutants. Mountain cold-trapping significantly increased air-to-milk transfer factors of most analytes. As a result, the milk of cows grazing at higher altitudes was more contaminated with substances that have regionally uniform air concentrations (hexachlorobenzene, α-hexachlorocyclohexane, endosulfan sulfate). For substances that have sources, and therefore higher air concentrations, at lower altitudes (polychlorinated biphenyls, γ-hexachlorocyclohexane), alpine milk has lower concentrations, but not as low as would be expected without mountain cold-trapping. Differences in the elevational gradients in soil concentrations and air-to-milk transfer factors highlight that cold-trapping of POPs in pastures is mostly due to increased gas-phase deposition as a result of lower temperatures causing higher uptake capacity of plant foliage, whereas cold-trapping in soils more strongly depends on wet and dry particle deposition. Climatic influences on air-to-milk transfer of POPs needs to be accounted for when using contamination of milk lipids to infer contamination of the atmosphere. PMID:23885857

  8. Hydrocarbon status of soils under atmospheric pollution from a local industrial source

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Zhidkin, A. P.; Pikovskii, Yu. I.; Kovach, R. G.; Koshovskii, T. S.; Khlynina, N. I.

    2016-09-01

    Contents and compositions of bitumoids, polycyclic aromatic hydrocarbons (PAHs), and free and retained hydrocarbon gases in soils along a transect at different distances from the local industrial source of atmospheric pollution with soot emissions have been studied. The reserves of PAHs progressively decrease when the distance from the source increases. Among the individual PAHs, the most significant decrease is observed for benzo[ a]pyrene, tetraphene, pyrene, chrysene, and anthracene. On plowlands, the share of heavy PAHs—benzo[ ghi]perylene, benzo[ a]pyrene, perylene, etc.—is lower than in the forest soils. In automorphic soils of the park zone adjacent to the industrial zone, the penetration depth of four-, five-, and sixring PAHs from the atmosphere is no more than 25 cm. In soils under natural forest vegetation, heavy PAHs do not penetrate deeper than 5 cm; in tilled soils, their penetration depth coincides with the lower boundary of plow horizons. Analysis of free gases in the soil air revealed hydrocarbons only under forest. From the quantitative and qualitative parameters of the content, reserves, and compositions of different hydrocarbons, the following modification types of hydrocarbon status in the studied soils were revealed: injection, atmosedimentation-injection, atmosedimentation-impact, atmosedimentation-distant, and biogeochemical types.

  9. FT-IR remote sensing of atmospheric species: Application to global change and air pollution

    SciTech Connect

    Vazquez, G.J.

    1995-12-31

    In this contribution, the author describes two applications of Fourier Transform Infrared Spectroscopy to the monitoring of atmospheric compounds. Firstly, the author reports FTIR solar spectroscopy measurements carried out at ground level at NCAR and on airplanes employing a spectrometer of 0.06 cm{sup -1} resolution. Sample atmospheric spectra and fitting examples are presented for key species relevant to stratospheric chemistry and global change: ozone (O{sub 3}), a chlorofluorocarbon (CF{sub 2}Cl{sub 2}), a greenhouse gas (N{sub 2}O), HCl, NO and HNO{sub 3}. Secondly, the author briefly describes urban air pollution measurements at an intersection with heavy traffic in Tucson, AZ. Two FTIR spectrometers of 1 cm{sup -1} resolution were employed to carry out long-path open-path measurements of the CO/CO{sub 2} ratio and SF{sub 6}. Two FEAT and two LPUV instruments were employed for ancillary measurements of CO, CO{sub 2}, NO, and aromatic hydrocarbons. Measurements of CO at two heights and a comparison of CO/CO{sub 2} ratios obtained by FEAT exhaust emission and FTIR ambient air measurements are reported.

  10. [Observation of atmospheric pollutants in the urban area of Beibei District, Chongqing].

    PubMed

    Xu, Peng; Hao, Qing-Ju; Ji, Dong-Sheng; Zhang, Jun-Ke; Liu, Zi-Rui; Hu, Bo; Wang, Yue-Si; Jiang, Chang-Sheng

    2014-03-01

    To study the characteristics of atmospheric pollutants in the urban area of Beibei district of Chongqing, the concentrations of the atmospheric pollutants were measured by automatic on-line continuous monitoring equipments from Jan. 2012 to Feb. 2013. The results showed that the concentrations of the pollutants often exceeded the corresponding values of the new National Ambient Air Quality Standards (GB 3095-2012) except SO2. Of these pollutants, PM2.5 was the most serious in this area. The concentrations of the atmospheric pollutants had significant seasonal variation. The concentrations of O3 and O(x) were both the highest in summer and the lowest in winter. The average concentrations of O3 were (36.1 +/- 19.2), (48.8 +/- 32.6), (29.8 +/- 28.6) and (18.2 +/- 15.8) microg x m(-3), and the average O(x) concentrations were (77.6 +/- 20.6), (91.3 +/- 37.6), (77.5 +/- 30.6) and (69.4 +/- 18.2) microg x m(-3) in spring, summer, autumn and winter in 2012, respectively. The concentrations of NO(x) appeared higher in winter and lower in summer, the average concentrations of NO, NO2 and NO(x) were (11.8 +/- 9.4), (42.3 +/- 13.1) and (54.1 +/- 20.8) microg x m(-3) in spring, (8.2 +/- 4.9), (40.5 +/- 9.9) and (48.7 +/- 12.6) microg x m(-3) in summer, (20.7 +/-17.1), (47.2 +/- 14.1) and (67.9 +/- 25.5) microg x m(-3) in autumn, and (30.4 +/- 25.1), (51.2 +/- 15.9), (81.6 +/- 37.9) microg x m(-3) in winter. The concentrations of SO2 appeared higher in spring and winter, and lower in summer and autumn. The concentrations of SO2 were (50.5 +/- 23.3), (26.3 +/- 16.7), (38.8 +/- 18.4) and (53.7 +/- 23.4) microg x m(-3) in spring, summer, autumn and winter, respectively. The concentrations of PM2.5 appeared higher in winter and changed smoothly in other seasons, with the average concentration of (61.4 +/- 28.5), (68.1 +/- 32.5), (61.9 +/- 27.1) and (89.6 +/- 44.2) microg x m(-3) in spring, summer, autumn and winter, respectively. The curves of diurnal variations of O3, O(x), NO, NO

  11. Stellar atmospheric parameter estimation using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  12. Climate Warming and Atmospheric Pollution Effects on Denitrification Rates from Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Enanga, E. M.; Creed, I. F.

    2013-12-01

    Climate controlled biome experiments were conducted to explore the interactive effects of climate warming and changing atmospheric nitrogen deposition rates on gaseous nitrogen (N) loss from forested landscapes. Previous field-based studies showed substantial differences in gaseous N2O efflux among the three topographic positions (upland, ecotone, and wetland) based on gas measurements using static chambers with wetland areas exporting substantially more gaseous N2O than upland areas. We hypothesized that (1) N2O production occurs mainly in the litter-fibric layer of the wetland soil that has a lower carbon to nitrogen (C:N) quotient and more labile carbon than the deeper hemic/peat deposits; and (2) climate warming and atmospheric pollution will have additive or multiplicative effects on N2O effluxes from the wetland soils. Wetland soils were collected and separated into three depths: the litter-fibric layer; 0--30 cm (with C:N quotients < 25, promoting mineralization), and 30--60 cm (with C:N quotients >25, promoting immobilization). A factorial experiment of 2 (+/- labile carbon 0.015 kg/ha/yr) × 3 (0, 15, 30 kg N/ha/yr) was conducted on each of three wetland soil depths. Each 2 × 3 factorial experiment was conducted across a range of temperatures: 10 degrees C, 15 degrees C, 20 degrees C, 25 degrees C, and 30 degrees C. For the highest temperature (30 degrees C), we also examined the potential effect of CO2, by examining ambient versus a doubling of the ambient carbon dioxide (i.e., 750 ppm CO2). The highest N2O efflux was observed in the litter-fibric layer. When all treatments were considered together, the litter-fibric layer had the highest median N2O effluxes (19 kg N2O-N/ha/yr); 0--30 cm depth samples had intermediate effluxes (9 kg N2O-N/ha/yr); and 30--60 cm depth samples had the lowest effluxes (7 kg N2O-N/ha/yr). When the treatments were considered individually, the highest N2O efflux (228 kg N2O-N/ha/yr) was observed at the coolest temperatures (10

  13. A comparison of strategies for estimation of ultrafine particle number concentrations in urban air pollution monitoring networks.

    PubMed

    Reggente, Matteo; Peters, Jan; Theunis, Jan; Van Poppel, Martine; Rademaker, Michael; De Baets, Bernard; Kumar, Prashant

    2015-04-01

    We propose three estimation strategies (local, remote and mixed) for ultrafine particles (UFP) at three sites in an urban air pollution monitoring network. Estimates are obtained through Gaussian process regression based on concentrations of gaseous pollutants (NOx, O3, CO) and UFP. As local strategy, we use local measurements of gaseous pollutants (local covariates) to estimate UFP at the same site. As remote strategy, we use measurements of gaseous pollutants and UFP from two independent sites (remote covariates) to estimate UFP at a third site. As mixed strategy, we use local and remote covariates to estimate UFP. The results suggest: UFP can be estimated with good accuracy based on NOx measurements at the same location; it is possible to estimate UFP at one location based on measurements of NOx or UFP at two remote locations; the addition of remote UFP to local NOx, O3 or CO measurements improves models' performance.

  14. Fire risk and air pollution assessment during the 2007 wildfire events in Greece using the COSMO-ART atmospheric model

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, E.; Giannakopoulos, C.; Vogel, H.; Rieger, D.; Knote, C.; Hatzaki, M.; Vogel, B.; Karali, A.

    2012-04-01

    During 2007, Greece experienced an extreme summer and the worst natural hazard in its modern history. Soil dehydration, following a prolonged dry period in combination with hot temperatures and strong winds, yielded favorable conditions for the ignition and spread of wild fires that burnt approximately 200,000 ha of vegetated land (Founda and Gianakopoulos, 2009; Sifakis et al., 2011). The relationship between meteorology and fire potential can be provided by the Canadian Fire Weather Index (FWI), which is already found applicable in the fire activity of the Mediterranean region (Carvalho et al., 2008). However, lack of meteorological data or remote fire spots can be sources of uncertainties for fire risk estimation. In addition to the direct fire damage, these fires produced large quantities of gaseous air pollutants and particles (PM10) dispersed over the area of Greece. Indeed, PM10 concentration measurements showed two pollution episodes over Athens during late August and early September, 2007 (Liu et al., 2009). Nevertheless, these measurements neither show the large spatial extent of fire effects nor reveal its important role on atmospheric chemistry. In the current study, the application of the atmospheric model COSMO-ART is used to investigate the issues addressed above. COSMO-ART (Vogel et al. 2009) is a regional chemistry transport model (ART stands for Aerosols and Reactive Trace gases) online-coupled to the COSMO regional numerical weather prediction and climate model (Baldauf et al. 2011). The current simulations are performed between August 15 and September 15 over Greece with a horizontal resolution of 2.8 km and a vertical extend up to 20 km. The initial and boundary meteorological conditions are derived from a coarser COSMO simulation performed by the German Weather Service. Fire emissions are retrieved from the Global Fire Emissions Database version 3 (van der Werf et al., 2010). The anthropogenic emission database used is the TNO/MACC (Kuenen et

  15. Modelling the atmospheric boundary layer for remotely sensed estimates of daily evaporation

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Blyth, K.; Camillo, P. J.

    1984-01-01

    An energy and moisture balance model of the soil surface was used to estimate daily evaporation from wheat and barley fields in West Germany. The model was calibrated using remotely sensed surface temperature estimates. Complete atmospheric boundary layer models are difficult to use because of the number of parameters involved and a simplified model was used here. The resultant evaporation estimates were compared to eddy correlation evaporation estimates and good agreement was found.

  16. Estimating the risks of smoking, air pollution, and passive smoke on acute respiratory conditions

    SciTech Connect

    Ostro, B.D. )

    1989-06-01

    Five years of the annual Health Interview Survey, conducted by the National Center for Health Statistics, are used to estimate the effects of air pollution, smoking, and environmental tobacco smoke on respiratory restrictions in activity for adults, and bed disability for children. After adjusting for several socioeconomic factors, the multiple regression estimates indicate that an independent and statistically significant association exists between these three forms of air pollution and respiratory morbidity. The comparative risks of these exposures are computed and the plausibility of the relative risks is examined by comparing the equivalent doses with actual measurements of exposure taken in the homes of smokers. The results indicate that: (1) smokers will have a 55-75% excess in days with respiratory conditions severe enough to cause reductions in normal activity; (2) a 1 microgram increase in fine particulate matter air pollution is associated with a 3% excess in acute respiratory disease; and (3) a pack-a-day smoker will increase respiratory restricted days for a nonsmoking spouse by 20% and increase the number of bed disability days for young children living in the household by 20%. The results also indicate that the estimates of the effects of secondhand smoking on children are improved when the mother's work status is known and incorporated into the exposure estimate.

  17. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution

    PubMed Central

    Brauer, Michael; Amann, Markus; Burnett, Rick T.; Cohen, Aaron; Dentener, Frank; Ezzati, Majid; Henderson, Sarah B.; Krzyzanowski, Michal; Martin, Randall V.; Van Dingenen, Rita; van Donkelaar, Aaron; Thurston, George D.

    2014-01-01

    Ambient air pollution is associated with numerous adverse health impacts. Previous assessments of global attributable disease burden have been limited to urban areas or by coarse spatial resolution of concentration estimates. Recent developments in remote sensing, global chemical-transport models, and improvements in coverage of surface measurements facilitate virtually complete spatially resolved global air pollutant concentration estimates. We combined these data to generate global estimates of long- term average ambient concentrations of fine particles (PM2.5) and ozone at 0.1° × 0.1° spatial resolution for 1990 and 2005. In 2005, 89% of the world’s population lived in areas where the World Health Organization Air Quality Guideline of 10 μg/m3 PM2.5 (annual average) was exceeded. Globally, 32% of the population lived in areas exceeding the WHO Level 1 Interim Target of 35 μg/m3; driven by high proportions in East (76%) and South (26%) Asia. The highest seasonal ozone levels were found in North and Latin America, Europe, South and East Asia, and parts of Africa. Between 1990 and 2005 a 6% increase in global population-weighted PM2.5 and a 1% decrease in global population- weighted ozone concentrations was apparent, highlighted by increased concentrations in East, South and Southeast Asia and decreases in North America and Europe. Combined with spatially resolved population distributions, these estimates expand the evaluation of the global health burden associated with outdoor air pollution. PMID:22148428

  18. Estimating the risks of smoking, air pollution, and passive smoke on acute respiratory conditions.

    PubMed

    Ostro, B D

    1989-06-01

    Five years of the annual Health Interview Survey, conducted by the National Center for Health Statistics, are used to estimate the effects of air pollution, smoking, and environmental tobacco smoke on respiratory restrictions in activity for adults, and bed disability for children. After adjusting for several socioeconomic factors, the multiple regression estimates indicate that an independent and statistically significant association exists between these three forms of air pollution and respiratory morbidity. The comparative risks of these exposures are computed and the plausibility of the relative risks is examined by comparing the equivalent doses with actual measurements of exposure taken in the homes of smokers. The results indicate that: (1) smokers will have a 55-75% excess in days with respiratory conditions severe enough to cause reductions in normal activity; (2) a 1 microgram increase in fine particulate matter air pollution is associated with a 3% excess in acute respiratory disease; and (3) a pack-a-day smoker will increase respiratory restricted days for a nonsmoking spouse by 20% and increase the number of bed disability days for young children living in the household by 20%. The results also indicate that the estimates of the effects of secondhand smoking on children are improved when the mother's work status is known and incorporated into the exposure estimate.

  19. Exposure and measurement contributions to estimates of acute air pollution effects.

    PubMed

    Sheppard, Lianne; Slaughter, James C; Schildcrout, Jonathan; Liu, L-J Sally; Lumley, Thomas

    2005-07-01

    Air pollution health effect studies are intended to estimate the effect of a pollutant on a health outcome. The definition of this effect depends upon the study design, disease model parameterization, and the type of analysis. Further limitations are imposed by the nature of exposure and our ability to measure it. We define a plausible exposure model for air pollutants that are relatively nonreactive and discuss how exposure varies. We discuss plausible disease models and show how their parameterizations are affected by different exposure partitions and by different study designs. We then discuss a measurement model conditional on ambient concentrations and incorporate this into the disease model. We use simulation studies to show the impact of a range of exposure model assumptions on estimation of the health effect in the ecologic time series design. This design only uses information from the time-varying ambient source exposure. When ambient and nonambient sources are independent, exposure variation due to nonambient source exposures behaves like Berkson measurement error and does not bias the effect estimates. Variation in the population attenuation of ambient concentrations over time does bias the estimates with the bias being either positive or negative depending upon the association of this parameter with ambient pollution. It is not realistic to substitute measured average personal exposures into time series studies because so much of the variation in personal exposures comes from nonambient sources that do not contribute information in the time series design. We conclude that general statements about the implications of measurement error need to be conditioned on the health effect study design and the health effect parameter to be estimated. PMID:15602584

  20. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    NASA Astrophysics Data System (ADS)

    Orkin, Vladimir; Kurylo, Michael

    2015-04-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  1. Measuring OH Reaction Rate Constants and Estimating the Atmospheric Lifetimes of Trace Gases.

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Kurylo, M. J., III

    2014-12-01

    Reactions with hydroxyl radicals and photolysis are the main processes dictating a compound's residence time in the atmosphere for a majority of trace gases. In case of very short-lived halocarbons their reaction with OH dictates both the atmospheric lifetime and active halogen release. Therefore, the accuracy of OH kinetic data is of primary importance for the comprehensive modeling of a compound's impact on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP), each of which are dependent on the atmospheric lifetime of the compound. We have demonstrated the ability to conduct very high accuracy determinations of OH reaction rate constants over the temperature range of atmospheric interest, thereby decreasing the uncertainty of kinetic data to 2-3%. The atmospheric lifetime of a tropospherically well-mixed compound due to its reaction with tropospheric hydroxyl radicals can be estimated by using a simple scaling procedure that is based on the results of field observations of methyl chloroform concentrations and detailed modeling of the OH distribution in the atmosphere. The currently available modeling results of the atmospheric fate of various trace gases allow for an improved understanding of the ability and accuracy of simplified semi-empirical estimations of atmospheric lifetimes. These aspects will be illustrated in this presentation for a variety of atmospheric trace gases.

  2. Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions

    NASA Astrophysics Data System (ADS)

    Singh, H. B.; Anderson, B. E.; Brune, W. H.; Cai, C.; Cohen, R. C.; Crawford, J. H.; Cubison, M. J.; Czech, E. P.; Emmons, L.; Fuelberg, H. E.; Huey, G.; Jacob, D. J.; Jimenez, J. L.; Kaduwela, A.; Kondo, Y.; Mao, J.; Olson, J. R.; Sachse, G. W.; Vay, S. A.; Weinheimer, A.; Wennberg, P. O.; Wisthaler, A.; The Arctas Science Team

    2010-11-01

    We analyze detailed atmospheric gas/aerosol composition data acquired during the 2008 NASA ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) airborne campaign performed at high northern latitudes in spring (ARCTAS-A) and summer (ARCTAS-B) and in California in summer (ARCTAS-CARB). Biomass burning influences were widespread throughout the ARCTAS campaign. MODIS data from 2000 to 2009 indicated that 2008 had the second largest fire counts over Siberia and a more normal Canadian boreal forest fire season. Near surface arctic air in spring contained strong anthropogenic signatures indicated by high sulfate. In both spring and summer most of the pollution plumes transported to the Arctic region were from Europe and Asia and were present in the mid to upper troposphere and contained a mix of forest fire and urban influences. The gas/aerosol composition of the high latitude troposphere was strongly perturbed at all altitudes in both spring and summer. The reactive nitrogen budget was balanced with PAN as the dominant component. Mean ozone concentrations in the high latitude troposphere were only minimally perturbed (<5 ppb), although many individual pollution plumes sampled in the mid to upper troposphere, and mixed with urban influences, contained elevated ozone (ΔO 3/ΔCO = 0.11 ± 0.09 v/v). Emission and optical characteristics of boreal and California wild fires were quantified and found to be broadly comparable. Greenhouse gas emission estimates derived from ARCTAS-CARB data for the South Coast Air Basin of California show good agreement with state inventories for CO 2 and N 2O but indicate substantially larger emissions of CH 4. Simulations by multiple models of transport and chemistry were found to be broadly consistent with observations with a tendency towards under prediction at high latitudes.

  3. [Temporal and spatial characteristics of atmospheric NO2 over Hainan Island and the pollutant sources in recent 10 years].

    PubMed

    Fu, Chuan-bo; Chen, You-long; Dan, Li; Tang, Jia-xiang

    2015-01-01

    The temporal-spatial characteristics of the tropospheric column NO2 (TroNO2) and total column NO2 (TotNO2) over Hainan Island are analyzed using remote sensing data derived from OMI sensor, and also combining surface wind, SO2, HYSPLIT model to research the source of atmospheric pollutants over Hainan Island. The results show that: The value of NO2 in northern area is higher than that in southern area, and the value of NO, in central mountainous area is lower than those other places. In addition, the seasonal variation of NO2 indicates that NO2 is higher in winter and lower in summer, which can be attributed to precipitation in summer and external transport of atmospheric pollutants in winter. Long-term changes of NO2 in Hainan Island appear opposite trends during winter and summer, which is declining in winter and has a weak increase in summer. The reasonable explanation is that local emissions of pollutants play an important role in summer, but external transport is the main resource of pollutants over Hainan Island. The TroNO2 in Haikou City has a good relationship with favorable delivered days in PRD, the correlation coefficient is 0.84 with 99% confidence level. Moreover, there are 3 transport paths in Dec. 2013 which can impact Haikou City from backward trajectory analysis, but all of them pass through the PRD, which can further prove that atmospheric pollutants of Hainan Island in winter are mainly delivery from PRD region.

  4. Time and space variability of spectral estimates of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  5. How stellar activity affects exoplanet's parameters estimation and exoplanet's atmosphere

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    2015-07-01

    The next large facility with the potential to characterize the atmosphere of exoplanets will be the James Webb Space Telescope (JWST), a 6.5 m telescope to be launched in 2018. The JWST will be equipped with four instruments; three in the near InfaRed (1-5 microns): NIRCAM, NIRSPEC and NIRISS, and one in the mid-InfraRed (5-28 microns): MIRI. MIRI is of particular interest to characterize temperate exoplanets; it includes an imager with three observing modes: imagery, coronagraphy and low resolution (R=100) spectroscopy, and an Integral Field Spectrometer with a spectral resolution around 3000. I will discuss the capabilities of the instrument to characterize exoplanets, showing simulations of transit observations, as well as direct imaging observations, which include instrumental test results. It should be stressed that the JWST is not dedicated to exoplanets and we can expect a large pressure on the observing time.

  6. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  7. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  8. Estimation of unmeasured particulate air pollution data for an epidemiological study of daily respiratory morbidity.

    PubMed

    Delfino, R J; Becklake, M R; Hanley, J A; Singh, B

    1994-10-01

    The standard approach to government-mandated aerometric monitoring of airborne particulates across North America is to sample every sixth day year round. However, such data are inadequate for epidemiological studies which aim to examine daily time series relationships of particulate air pollution to respiratory health responses. The aim of the present study was to estimate missing daily particulate matter < or = 2.5 and < or = 10 microns in aerometric diameter (PM2.5 and PM10) and sulfate (SO4(2-) to a degree sufficiently accurate and reliable to allow the use of these estimates, along with the measured data, in an investigation of the relationship of air pollution to respiratory hospital admissions in Montreal during the 1980s. Prediction equations were developed for May through October periods using available daily levels of predictor variables which included: relative humidity-corrected light extinction coefficient (bext) derived from airport visual range sightings, coefficient of haze (COH), SO2, NOx, CO, O3, wind speed, wind direction, barometric pressure (BP), temperature, relative humidity, and total precipitation. Three fourths of the available gravimetric particulate data were used to develop prediction models, while the remaining fourth was used to test the reliability of the model (holdout data). All final models explained over 70% of the variability in the particulate air pollutants and were reliable when tested against the holdout data. The strongest (P < 0.001) and most consistent predictors were bext, COH, and O3 measured on the same day as the particulate, and BP lagged 1 day in the past. Other selected variables were same day NOx, BP, and minimum temperature. Although the present approach to the estimation of missing particulate air pollution may increase the level of exposure misclassification, it does allow for the use of existing network databases in epidemiological studies of daily air pollution health effects even though particulate data is

  9. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers

    PubMed Central

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-01-01

    Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076

  10. Patterns in atmospheric carbonaceous aerosols in China: emission estimates and observed concentrations

    NASA Astrophysics Data System (ADS)

    Cui, H.; Mao, P.; Zhao, Y.; Nielsen, C. P.; Zhang, J.

    2015-08-01

    China is experiencing severe carbonaceous aerosol pollution driven mainly by large emissions resulting from intensive use of solid fuels. To gain a better understanding of the levels and trends of carbonaceous aerosol emissions and the resulting ambient concentrations at the national scale, we update an emission inventory of anthropogenic organic carbon (OC) and elemental carbon (EC) and employ existing observational studies to analyze characteristics of these aerosols including temporal, spatial, and size distributions, and the levels and shares of secondary organic carbon (SOC) in total OC. We further use ground observations to test the levels and inter-annual trends of the calculated national and provincial emissions of carbonaceous aerosols, and propose possible improvements in emission estimation for the future. The national OC emissions are estimated to have increased 29 % from 2000 (2127 Gg) to 2012 (2749 Gg) and EC by 37 % (from 1356 to 1857 Gg). The residential, industrial, and transportation sectors contributed an estimated 74-78, 17-21, and 4-6 % of the total emissions of OC, respectively, and 49-55, 30-34, and 14-18 % of EC. Updated emission factors (EFs) based on the most recent local field measurements, particularly for biofuel stoves, led to considerably lower emissions of OC compared to previous inventories. Compiling observational data across the country, higher concentrations of OC and EC are found in northern and inland cities, while higher OC / EC ratios are found in southern sites, due to the joint effects of primary emissions and meteorology. Higher OC / EC ratios are estimated at rural and remote sites compared to urban ones, attributed to more emissions of OC from biofuel use, more biogenic emissions of volatile organic compound (VOC) precursors to SOC, and/or transport of aged aerosols. For most sites, higher concentrations of OC, EC, and SOC are observed in colder seasons, while SOC / OC is reduced, particularly at rural and remote sites

  11. Fast single image haze removal via local atmospheric light veil estimation

    PubMed Central

    Sun, Wei; Wang, Hao; Sun, Changhao; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2015-01-01

    In this study, a novel single-image based dehazing framework is proposed to remove haze artifacts from images through local atmospheric light estimation. We use a novel strategy based on a physical model where the extreme intensity of each RGB pixel is used to define an initial atmospheric veil (local atmospheric light veil). Across bilateral filter is applied to each veil to achieve both local smoothness and edge preservation. A transmission map and a reflection component of each RGB channel are constructed from the physical atmospheric scattering model. The proposed approach avoids adverse effects caused by the error in estimating the global atmospheric light. Experimental results on outdoor hazy images demonstrate that the proposed method produces image output with satisfactory visual quality and color fidelity. Our comparative study demonstrates a higher performance of our method over several state-of-the-art methods. PMID:26744548

  12. Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Argyropoulos, C. D.; Sideris, G. M.; Christolis, M. N.; Nivolianitou, Z.; Markatos, N. C.

    2010-02-01

    Petrochemical industries normally use storage tanks containing large amounts of flammable and hazardous substances. Therefore, the occurrence of a tank fire, such as the large industrial accident on 11th December 2005 at Buncefield Oil Storage Depots, is possible and usually leads to fire and explosions. Experience has shown that the continuous production of black smoke from these fires due to the toxic gases from the combustion process, presents a potential environmental and health problem that is difficult to assess. The goals of the present effort are to estimate the height of the smoke plume, the ground-level concentrations of the toxic pollutants (smoke, SO 2, CO, PAHs, VOCs) and to characterize risk zones by comparing the ground-level concentrations with existing safety limits. For the application of the numerical procedure developed, an external floating-roof tank has been selected with dimensions of 85 m diameter and 20 m height. Results are presented and discussed. It is concluded that for all scenarios considered, the ground-level concentrations of smoke, SO 2, CO, PAHs and VOCs do not exceed the safety limit of IDLH and there are no "death zones" due to the pollutant concentrations.

  13. Approaches for Improved Doppler Estimation in Lidar Remote Sensing of Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Sreevatsan; Calhoun, Ronald

    2016-06-01

    Laser radar (Lidar) has been used extensively for remote sensing of wind patterns, turbulence in the atmospheric boundary layer and other important atmospheric transport phenomenon. As in most narrowband radar application, radial velocity of remote objects is encoded in the Doppler shift of the backscattered signal relative to the transmitted signal. In contrast to many applications, however, the backscattered signal in atmospheric Lidar sensing arises from a multitude of moving particles in a spatial cell under examination rather than from a few prominent "target" scattering features. This complicates the process of extracting a single Doppler value and corresponding radial velocity figure to associate with the cell. This paper summarizes the prevalent methods for Doppler estimation in atmospheric Lidar applications and proposes a computationally efficient scheme for improving Doppler estimation by exploiting the local structure of spectral density estimates near spectral peaks.

  14. Laser Remote Measurements of atmospheric pollutants (Las-R-Map): UV-Visible Laser system description and data processing

    NASA Astrophysics Data System (ADS)

    Sivakumar, V.; Wyk, H. V.

    Laser radar more popularly known as LIDAR LIght Detection And Ranging is becoming one of the most powerful techniques for active remote sensing of the earth s atmosphere Around the globe several new lidar systems have been developed based on the scientific interest Particularly the DIfferential Absorption Lidar DIAL technique is only one which can provide the better accuracy of measuring atmospheric pollutants Using modern advanced techniques and instrumentation a mobile DIAL system called laser remote measurements of atmospheric pollutants hear after referred as Las-R-Map is designed at National Laser Centre NLC --Pretoria 25 r 45 prime S 28 r 17 prime E Las-R-Map is basically used for measuring atmospheric pollutants applying the principle of absorption by constituents The system designed primarily to focus on the following pollutant measurements such as SO 2 CH 4 CO 2 NO 2 and O 3 In future the system could be used to measure few particulate matter between 2 5 mu m and 10 mu m Benzene Hg 1 3-butadiene H 2 S HF and Volatile Organic Compounds VOC Las-R-map comprises of two different laser sources Alexandrite and CO 2 optical receiver data acquisition and signal processor It uses alexandrite laser in the UV-Visible region from 200 nm to 800 nm and CO 2 laser in the Far-IR region from 9 2 mu m to 10 8 mu m Such two different laser sources make feasibility for studying the wide range of atmospheric pollutants The present paper is focused on technical details

  15. Using optimal estimation method for upper atmospheric Lidar temperature retrieval

    NASA Astrophysics Data System (ADS)

    Zou, Rongshi; Pan, Weilin; Qiao, Shuai

    2016-07-01

    Conventional ground based Rayleigh lidar temperature retrieval use integrate technique, which has limitations that necessitate abandoning temperatures retrieved at the greatest heights due to the assumption of a seeding value required to initialize the integration at the highest altitude. Here we suggests the use of a method that can incorporate information from various sources to improve the quality of the retrieval result. This approach inverts lidar equation via optimal estimation method(OEM) based on Bayesian theory together with Gaussian statistical model. It presents many advantages over the conventional ones: 1) the possibility of incorporating information from multiple heterogeneous sources; 2) provides diagnostic information about retrieval qualities; 3) ability of determining vertical resolution and maximum height to which the retrieval is mostly independent of the a priori profile. This paper compares one-hour temperature profiles retrieved using conventional and optimal estimation methods at Golmud, Qinghai province, China. Results show that OEM results show a better agreement with SABER profile compared with conventional one, in some region it is much lower than SABER profile, which is a very different results compared with previous studies, further studies are needed to explain this phenomenon. The success of applying OEM on temperature retrieval is a validation for using as retrieval framework in large synthetic observation systems including various active remote sensing instruments by incorporating all available measurement information into the model and analyze groups of measurements simultaneously to improve the results.

  16. Comparing estimates of EMEP MSC-W and UFORE models in air pollutant reduction by urban trees.

    PubMed

    Guidolotti, Gabriele; Salviato, Michele; Calfapietra, Carlo

    2016-10-01

    There is a growing interest to identify and quantify the benefits provided by the presence of trees in urban environment in order to improve the environmental quality in cities. However, the evaluation and estimate of plant efficiency in removing atmospheric pollutants is rather complicated, because of the high number of factors involved and the difficulty of estimating the effect of the interactions between the different components. In this study, the EMEP MSC-W model was implemented to scale-down to tree-level and allows its application to an industrial-urban green area in Northern Italy. Moreover, the annual outputs were compared with the outputs of UFORE (nowadays i-Tree), a leading model for urban forest applications. Although, EMEP/MSC-W model and UFORE are semi-empirical models designed for different applications, the comparison, based on O3, NO2 and PM10 removal, showed a good agreement in the estimates and highlights how the down-scaling methodology presented in this study may have significant opportunities for further developments. PMID:27392620

  17. Development of local atmospheric model for estimating solar irradiance in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Yeap, E. C.; Lau, A. M. S.; Busu, I.; Kanniah, K. D.; Rasib, A. W.; Kadir, W. H. W.

    2014-02-01

    Incoming solar irradiance covers a wide range of wavelengths with different intensities which drives almost every biological and physical cycle on earth at a selective wavelength. Estimation of the intensities of each wavelength for the solar irradiance on the earth surface provides a better way to understand and predict the radiance energy. It requires that the atmospheric and geometric input and the availability of atmospheric parameter is always the main concern in estimating solar irradiance. In this study, a local static atmospheric model for Peninsular Malaysia was built to provide the atmospheric parameters in the estimation of solar irradiance. Ten years of monthly Atmospheric Infrared Sounder (AIRS) average data (water vapor, temperature, humidity and pressure profile) of the Peninsular Malaysia was used for the building of the atmospheric model and the atmospheric model were assessed based on the measured meteorological data with RMSE of 4.7% and 0.7k for both humidity and temperature respectively. The atmospheric model were applied on a well-established radiative transfer model namely SMARTS2. Some modifications are required in order to include the atmospheric model into the radiative transfer model. The solar irradiance results were then assessed with measured irradiance data and the results show that both the radiative transfer model and atmospheric model were reliable with RMSE value of 0.5 Wm-2. The atmospheric model was further validated based on the measured meteorological data (temperature and humidity) provided by the Department of Meteorology, Malaysia and high coefficient of determination with R2 value of 0.99 (RMSE value = 4.7%) and 0.90 (RMSE value = 0.7k) were found for both temperature and humidity respectively.

  18. [Pollution characteristics and health risk assessment of atmospheric volatile organic compounds (VOCs) in pesticide factory].

    PubMed

    Tan, Bing; Wang, Tie-Yu; Pang, Bo; Zhu, Zhao-Yun; Wang, Dao-Han; Lü, Yong-Long

    2013-12-01

    A method for determining volatile organic compounds (VOCs) in air by summa canister collecting and gas chromatography/ mass spectroscopy detecting was adopted. Pollution condition and characteristics of VOCs were discussed in three representative pesticide factories in Zhangjiakou City, Hebei Province. Meanwhile, an internationally recognized four-step evaluation model of health risk assessment was applied to preliminarily assess the health risk caused by atmospheric VOCs in different exposure ways, inhalation and dermal exposure. Results showed that serious total VOCs pollution existed in all factories. Concentrations of n-hexane (6161.90-6910.00 microg x m(-3)), benzene (126.00-179.30 microg x m(-3)) and 1,3-butadiene (115.00-177.30 microg x m(-3)) exceeded the Chronic Inhalation Reference Concentrations recommended by USEPA, corresponding to 700, 30 and 2 microg x m(-3), respectively. Concentration of dichloromethane (724.00 microg x m(-3)) in factory B was also higher than the reference concentration (600 microg x m(-3)). Results of health risk assessment indicated that non-carcinogenic risk indexes of VOCs ranged from 1.00E-04 to 1.00E + 00 by inhalation exposure, and 1.00E-09 to 1.00E-05 by dermal exposure. Risk indexes of n-hexane and dichloromethane by inhalation exposure in all factories exceeded 1, and risk index of benzene by inhalation in factory B was also higher than 1. Carcinogenic risk indexes exposed to VOCs ranged from 1.00E-08 to 1.00E-03 by inhalation exposure and 1. oo00E -13 to 1.00E-08 by dermal exposure. Cancer risk of 1,3-butadiene by inhalation exceeded 1.0E-04, which lead to definite risk, and those of benzene by inhalation also exceeded the maximum allowable level recommended by International Commission on Radiological Protection (5.0E-05). The risks of dermal exposure presented the same trend as inhalation exposure, but the level was much lower than that of inhalation exposure. Thus, inhalation exposure of atmospheric VOCs was the

  19. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and IQ: estimated benefit of pollution reduction.

    PubMed

    Perera, Frederica; Weiland, Katherine; Neidell, Matthew; Wang, Shuang

    2014-08-01

    Outdoor air pollution, largely from fossil fuel burning, is a major cause of morbidity and mortality in the United States, costing billions of dollars every year in health care and loss of productivity. The developing fetus and young child are especially vulnerable to neurotoxicants, such as polycyclic aromatic hydrocarbons (PAH) released to ambient air by combustion of fossil fuel and other organic material. Low-income populations are disproportionately exposed to air pollution. On the basis of the results of a prospective cohort study in a low-income population in New York City (NYC) that found a significant inverse association between child IQ and prenatal exposure to airborne PAH, we estimated the increase in IQ and related lifetime earnings in a low-income urban population as a result of a hypothesized modest reduction of ambient PAH concentrations in NYC of 0.25 ng/m(3). For reference, the current estimated annual mean PAH concentration is ~1 ng/m(3). Restricting to NYC Medicaid births and using a 5 per cent discount rate, we estimated the gain in lifetime earnings due to IQ increase for a single year cohort to be US$215 million (best estimate). Using much more conservative assumptions, the estimate was $43 million. This analysis suggests that a modest reduction in ambient concentrations of PAH is associated with substantial economic benefits to children.

  20. Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol

    NASA Astrophysics Data System (ADS)

    Tsao, C.-C.; Campbell, J. E.; Mena-Carrasco, M.; Spak, S. N.; Carmichael, G. R.; Chen, Y.

    2012-01-01

    Accelerating biofuel production has been promoted as an opportunity to enhance energy security, offset greenhouse-gas emissions and support rural economies. However, large uncertainties remain in the impacts of biofuels on air quality and climate. Sugar-cane ethanol is one of the most widely used biofuels, and Brazil is its largest producer. Here we use a life-cycle approach to produce spatially and temporally explicit estimates of air-pollutant emissions over the whole life cycle of sugar-cane ethanol in Brazil. We show that even in regions where pre-harvest field burning has been eliminated on half the croplands, regional emissions of air pollutants continue to increase owing to the expansion of sugar-cane growing areas, and burning continues to be the dominant life-cycle stage for emissions. Comparison of our estimates of burning-phase emissions with satellite estimates of burning in São Paulo state suggests that sugar-cane field burning is not fully accounted for in satellite-based inventories, owing to the small spatial scale of individual fires. Accounting for this effect leads to revised regional estimates of burned area that are four times greater than some previous estimates. Our revised emissions maps thus suggest that biofuels may have larger impacts on regional climate forcing and human health than previously thought.

  1. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and IQ: estimated benefit of pollution reduction.

    PubMed

    Perera, Frederica; Weiland, Katherine; Neidell, Matthew; Wang, Shuang

    2014-08-01

    Outdoor air pollution, largely from fossil fuel burning, is a major cause of morbidity and mortality in the United States, costing billions of dollars every year in health care and loss of productivity. The developing fetus and young child are especially vulnerable to neurotoxicants, such as polycyclic aromatic hydrocarbons (PAH) released to ambient air by combustion of fossil fuel and other organic material. Low-income populations are disproportionately exposed to air pollution. On the basis of the results of a prospective cohort study in a low-income population in New York City (NYC) that found a significant inverse association between child IQ and prenatal exposure to airborne PAH, we estimated the increase in IQ and related lifetime earnings in a low-income urban population as a result of a hypothesized modest reduction of ambient PAH concentrations in NYC of 0.25 ng/m(3). For reference, the current estimated annual mean PAH concentration is ~1 ng/m(3). Restricting to NYC Medicaid births and using a 5 per cent discount rate, we estimated the gain in lifetime earnings due to IQ increase for a single year cohort to be US$215 million (best estimate). Using much more conservative assumptions, the estimate was $43 million. This analysis suggests that a modest reduction in ambient concentrations of PAH is associated with substantial economic benefits to children. PMID:24804951

  2. Estimates of the atmospheric deposition of sulfur and nitrogen species: Clean Air Status and Trends Network 1990-2000.

    PubMed

    Baumgardner, Ralph E; Lavery, Thomas F; Rogers, Christopher M; Isil, Selma S

    2002-06-15

    The Clean Air Status and Trends Network (CASTNet) was established by the U.S. EPA in response to the requirements of the 1990 Clean Air Act Amendments. To satisfy these requirements CASTNet was designed to assess and report on geographic patterns and long-term, temporal trends in ambient air pollution and acid deposition in order to gauge the effectiveness of current and future mandated emission reductions. This paper presents an analysis of the spatial patterns of deposition of sulfur and nitrogen pollutants for the period 1990-2000. Estimates of deposition are provided for two 4-yr periods: 1990-1993 and 1997-2000. These two periods were selected to contrast deposition before and after the large decrease in SO2 emissions that occurred in 1995. Estimates of dry deposition were obtained from measurements at CASTNet sites combined with deposition velocities that were modeled using the multilayer model, a 20-layer model that simulates the various atmospheric processes that contribute to dry deposition. Estimates of wet deposition were obtained from measurements at sites operated bythe National Atmospheric Deposition Program. The estimates of dry and wet deposition were combined to calculate total deposition of atmospheric sulfur (dry SO2, dry and wet SO4(2-)) and nitrogen (dry HNO3, dry and wet NO3-, dry and wet NH4+). An analysis of the deposition estimates showed a significant decline in sulfur deposition and no change in nitrogen deposition. The highest rates of sulfur deposition were observed in the Ohio River Valley and downwind states. This region also observed the largest decline in sulfur deposition. The highest rates of nitrogen deposition were observed in the Midwest from Illinois to southern New York State. Sulfur and nitrogen deposition fluxes were significantly higher in the eastern United States as compared to the western sites. Dry deposition contributed approximately 38% of total sulfur deposition and 30% of total nitrogen deposition in the eastern

  3. Atmospheric pollutants in fog and rain events at the northwestern mountains of the Iberian Peninsula.

    PubMed

    Fernández-González, Ricardo; Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Simal-Gándara, Jesús; Pontevedra-Pombal, Xabier

    2014-11-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). While the hydrosphere is the main reservoir for PAHs, the atmosphere serves as the primary route for global transport of PCBs. In this study, fog and rain samples were collected during fourteen events from September 2011 to April 2012 in the Xistral Mountains, a remote range in the NW Iberian Peninsula. PAH compounds [especially of low molecular weight (LMW)] were universally found, but mainly in the fog-water samples. The total PAH concentration in fog-water ranged from non-detected to 216 ng·L(-1) (mean of 45 ng·L(-1)), and was much higher in fall than in winter. Total PAH levels in the rain and fog events varied from non-detected to 1272 and 33 ng·L(-1) for, respectively, LMW and high molecular weight (HMW) PAHs. Diagnostic ratio analysis (LMW PAHs/HMW PAHs) suggested that petroleum combustion was the dominant contributor to PAHs in the area. Total PCB levels in the rain and fog events varied from non-detected to 305 and 91 ng·L(-1) for, respectively, PCBs with 2-3 Cl atoms and 5-10 Cl atoms. PCBs, especially those with 5-10 Cl atoms, were found linked to rain events. The occurrence of the most volatile PCBs, PCBs with 2-3 Cl atoms, is related to wind transport from far away sources, whereas the occurrence of PCBs with 5-10 Cl atoms seems to be related with the increase of its deposition during rainfall at the end of summer and fall. The movement of this fraction of PCBs is facilitated by its binding to air-suspended particles, whose concentrations usually show an increase as the result of a prolonged period of drought in summer.

  4. Atmospheric pollutants in fog and rain events at the northwestern mountains of the Iberian Peninsula.

    PubMed

    Fernández-González, Ricardo; Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Simal-Gándara, Jesús; Pontevedra-Pombal, Xabier

    2014-11-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). While the hydrosphere is the main reservoir for PAHs, the atmosphere serves as the primary route for global transport of PCBs. In this study, fog and rain samples were collected during fourteen events from September 2011 to April 2012 in the Xistral Mountains, a remote range in the NW Iberian Peninsula. PAH compounds [especially of low molecular weight (LMW)] were universally found, but mainly in the fog-water samples. The total PAH concentration in fog-water ranged from non-detected to 216 ng·L(-1) (mean of 45 ng·L(-1)), and was much higher in fall than in winter. Total PAH levels in the rain and fog events varied from non-detected to 1272 and 33 ng·L(-1) for, respectively, LMW and high molecular weight (HMW) PAHs. Diagnostic ratio analysis (LMW PAHs/HMW PAHs) suggested that petroleum combustion was the dominant contributor to PAHs in the area. Total PCB levels in the rain and fog events varied from non-detected to 305 and 91 ng·L(-1) for, respectively, PCBs with 2-3 Cl atoms and 5-10 Cl atoms. PCBs, especially those with 5-10 Cl atoms, were found linked to rain events. The occurrence of the most volatile PCBs, PCBs with 2-3 Cl atoms, is related to wind transport from far away sources, whereas the occurrence of PCBs with 5-10 Cl atoms seems to be related with the increase of its deposition during rainfall at the end of summer and fall. The movement of this fraction of PCBs is facilitated by its binding to air-suspended particles, whose concentrations usually show an increase as the result of a prolonged period of drought in summer. PMID:25129155

  5. Spatial distribution of selected persistent organic pollutants (POPs) in Australia's atmosphere.

    PubMed

    Wang, Xianyu; Kennedy, Karen; Powell, Jennifer; Keywood, Melita; Gillett, Rob; Thai, Phong; Bridgen, Phil; Broomhall, Sara; Paxman, Chris; Wania, Frank; Mueller, Jochen F

    2015-03-01

    A nation-wide passive air sampling campaign recorded concentrations of persistent organic pollutants in Australia's atmosphere in 2012. XAD-based passive air samplers were deployed for one year at 15 sampling sites located in remote/background, agricultural and semi-urban and urban areas across the continent. Concentrations of 47 polychlorinated biphenyls ranged from 0.73 to 72 pg m(-3) (median of 8.9 pg m(-3)) and were consistently higher at urban sites. The toxic equivalent concentration for the sum of 12 dioxin-like PCBs was low, ranging from below detection limits to 0.24 fg m(-3) (median of 0.0086 fg m(-3)). Overall, the levels of polychlorinated biphenyls in Australia were among the lowest reported globally to date. Among the organochlorine pesticides, hexachlorobenzene had the highest (median of 41 pg m(-3)) and most uniform concentration (with a ratio between highest and lowest value ∼5). Bushfires may be responsible for atmospheric hexachlorobenzene levels in Australia that exceeded Southern Hemispheric baseline levels by a factor of ∼4. Organochlorine pesticide concentrations generally increased from remote/background and agricultural sites to urban sites, except for high concentrations of α-endosulfan and DDTs at specific agricultural sites. Concentrations of heptachlor (0.47-210 pg m(-3)), dieldrin (ND-160 pg m(-3)) and trans- and cis-chlordanes (0.83-180 pg m(-3), sum of) in Australian air were among the highest reported globally to date, whereas those of DDT and its metabolites (ND-160 pg m(-3), sum of), α-, β-, γ- and δ-hexachlorocyclohexane (ND-6.7 pg m(-3), sum of) and α-endosulfan (ND-27 pg m(-3)) were among the lowest.

  6. The scavenging of air pollutants by precipitation, and its estimation with the aid of weather radar

    NASA Astrophysics Data System (ADS)

    Jylha, Kirsti Tellervo

    2000-09-01

    Precipitation cleanses the air by capturing airborne pollutants and depositing them onto the ground. The efficiency of this process may be expressed by the fractional depletion rate of pollutant concentrations in the air, designated as the scavenging coefficient. It depends on the size distribution of the raindrops and snow crystals and is thereby related to quantities estimated by weather radar, namely, the radar reflectivity factor and the precipitation rate. On the other hand, there are no universal relationships between the scavenging coefficient and these two quantities; the relationships vary depending on the properties of the precipitation and pollutants. In the present thesis, a few estimates for them were derived theoretically and empirically, using in the latter case observations made in Finland either after the Chernobyl nuclear accident or during a wintertime case study near a coal-fired power plant. The greatest advantage in the use of weather radar in assessing precipitation scavenging arises from the fact that radar estimates the spatial distributions of precipitation in real time with a good spatial and temporal resolution. Radar software usually used to create displays of the precipitation rate can easily be modified to show distributions of the scavenging coefficient. Such images can provide valuable information about the areas where a substantial portion of the pollutants is deposited onto the ground or, alternatively, remains airborne. Based on the movement of the precipitation areas, it is also possible to make short-term forecasts of those areas most likely to be exposed to wet deposition. A network of radars may hence form an important part of a real-time monitoring and warning system that can be immediately effective in the event of an accidental releases of hazardous materials into the air.

  7. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  8. Bjerknes Lecture "Atmospheric Pollution and Climate Change, A Local and Global Perspective"

    NASA Astrophysics Data System (ADS)

    Molina, M. J.

    2004-12-01

    About half of the world's population is now living in urban areas, exposing millions of residents to harmful levels of air pollutants caused mainly by emissions from motor vehicles and industries. Slash-and-burn agricultural practices and forests fires also contribute to worsening air quality on broad regional scales. Emissions from all these fossil fuel and bio-mass burning activities have lead to increases in the amount of atmospheric particulate matter, as well as in the concentration of species such as nitrogen oxides, volatile organic compounds and carbon monoxide. Emissions of these relatively short-lived compounds in turn lead to the formation of tropospheric ozone, which together with particulate matter may also contribute to regional climate change. This deteriorating air quality problem is expected to reach global proportions in the coming decades, with potentially detrimental effects on ecological systems and on human health. On the other hand, improving air quality effectively anywhere in the world requires a holistic approach involving not only science and technology, but also a consideration of economic, social, and political factors.

  9. The polluted atmosphere of the white dwarf NLTT 25792 and the diversity of circumstellar environments

    SciTech Connect

    Vennes, S.; Kawka, A.

    2013-12-10

    We present an analysis of X-shooter spectra of the polluted, hydrogen-rich white dwarf NLTT 25792. The spectra show strong lines of calcium (Ca H and K, near-infrared calcium triplet, and Ca Iλ4226) and numerous lines of iron along with magnesium and aluminum lines from which we draw the abundance pattern. Moreover, the photospheric Ca H and K lines are possibly blended with a circumstellar component shifted by –20 km s{sup –1} relative to the photosphere. A comparison with a sample of four white dwarfs with similar parameters show considerable variations in their abundance patterns, particularly in the calcium to magnesium abundance ratio that varies by a factor of five within this sample. The observed variations, even after accounting for diffusion effects, imply similar variations in the putative accretion source. Also, we find that silicon and sodium are significantly underabundant in the atmosphere of NLTT 25792, a fact that may offer some clues on the nature of the accretion source.

  10. Forecasting long-range atmospheric pollutant transport and dispersion: Approaches and issues

    SciTech Connect

    Griggs, D.P.; Addis, R.P.

    1996-01-11

    The ability to forecast the transport and diffusion of airborne contaminants over long distances is vital when responding to nuclear emergencies. Increases in computing capabilities and ready access to large-scale model output make it possible to employ advanced three-dimensional prognostic models to forecast the long-range transport of toxic or radioactive gases for emergency response. The Savannah River Technology Center (SRTC) of the U.S. Department of Energy`s Savannah River Site demonstrated this during the European Tracer EXperiment (ETEX). ETEX, conducted in the Fall of 1994, is designed to evaluate the performance of models for long-range atmospheric pollutant transport and dispersion. ETEX involved two tracer experiments as well as a multinational real-time modeling exercise. The real-time modeling component tested the ability of participants to provide timely long-range forecasts of the tracer plume transport and diffusion. Notification of the time, location and amount of tracer occurred after the start of the release. Participants provided 60-hour forecasts of tracer surface concentration within 6 hours of being notified, and updated forecasts every 12 hours thereafter. The two tracer experiments were conducted near Rennes, France on October 23, 1994 and November 14, 1994.

  11. Elemental analysis of aerosols in Tehran's atmosphere using PIXE and identification of pollution sources.

    PubMed

    Esmaili, N; Khashman, S; Lamehi-Rachti, M; Agha Aligol, D; Shokouhi, F; Oliaiy, P; Farmahini Farahani, M

    2014-11-01

    In this study, the proton-induced X-ray emission (PIXE) technique has been applied to measure the elemental composition and concentrations of particulate matter of 220 samples of aerosols in Tehran's atmosphere within a 450-day time interval starting from March 2009 and ending in June 2010, covering all four seasons. PIXE analysis shows the samples are comprised of various elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, and Pb. Also, to obtain more information about the sources of pollution and to identify the major sources of urban particulate matter, principal component analysis (PCA) was used. Furthermore, micro-PIXE was performed to study individual aerosols in some samples. Results revealed that the concentration of elements originating from vehicle emissions increases three times in winter; whereas the concentration of elements with soil origin remains constant. Based on wind rose maps, it is inferred that the high concentrations of the elements Al, Si, K, Ca, Ti, Mn, and Fe are associated with natural dust brought by winds into Tehran from the west.

  12. Awareness of bad news, environmental attitudes, and subjective estimates of coastal pollution

    SciTech Connect

    Eiser, J.R.; Reicher, S.D.; Podpadec, T.J. )

    1994-12-01

    Questionnaires distributed to 154 holiday-makers on beaches in Southwest England assessed awareness of local hazards or incidents associated with either the electricity supply industry or the water and sewage industry and examined the relationship between awareness and evaluations of the industry, current and future levels of pollution on the beach in question, and general levels of concern about environmental pollution. With respect to electricity, those respondents who were more aware of reports claiming a higher incidence of childhood leukemia in the vicinity of a nearby nuclear plant evaluated the electricity industry as less competent or trustworthy, showed higher levels of environmental concern, and were more pessimistic in their estimates of present and future levels of specific pollutants on their beach. With respect to the water industry, similar effects were associated with greater awareness of an accident at a water treatment plant and agricultural pollution of a nearby estuary. These findings are interpreted as suggesting a cyclical relationship between risk awareness and concern. On the one hand, reports about environmental hazards may lead to generalized concern across specific contexts; on the other hand, greater levels of concern may sensitize individuals to such reports. 10 refs., 1 tab.

  13. [Estimation of livestock manure nitrogen load and pollution risk evaluation of farmland in Daxing District].

    PubMed

    Yan, Bo-jie; Zhao, Chun-jiang; Pan, Yu-chun; Yan, Jing-jie; Guo, Xin

    2010-02-01

    Based on the livestock statistical data, the nutrient content of livestock manure was calculated and the nutrient transformation from livestock manure to farmland was realized by using the method of spatializing livestock manure nutrient. On this basis, this paper calculated nitrogen load of livestock manure combining with the area of farmland and realized the estimation of nitrogen load of livestock manure and potential pollution evaluation in landmass for unit taking Daxing District in Beijing as an example. The result showed that the average, minimum and maximum nitrogen loads of farmland were 214.02 kg/hm2, 10.64 kg/hm2 and 5996.26 kg/hm2 respectively and near half of farmland was threaten by nitrogen load of livestock manure, accounting for 42.14% of the total farmland. These farmland threaten to polluted had the characters of small area and few nutrient demand and mainly located nearby the inhabitant and the scale raising. The coefficients of variation and average of available nitrogen in topsoil and subsoil were 64.3%, 53.65% and 65.93 microg/g, 45.25 microg/g respectively and the enrichment coefficient was 1.46, which explained the existing pollution risk and the influence degree of livestock manure to soil environment pollution.

  14. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    PubMed

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot. PMID:26352643

  15. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    PubMed

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  16. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  17. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

    PubMed

    Brauer, Michael; Freedman, Greg; Frostad, Joseph; van Donkelaar, Aaron; Martin, Randall V; Dentener, Frank; van Dingenen, Rita; Estep, Kara; Amini, Heresh; Apte, Joshua S; Balakrishnan, Kalpana; Barregard, Lars; Broday, David; Feigin, Valery; Ghosh, Santu; Hopke, Philip K; Knibbs, Luke D; Kokubo, Yoshihiro; Liu, Yang; Ma, Stefan; Morawska, Lidia; Sangrador, José Luis Texcalac; Shaddick, Gavin; Anderson, H Ross; Vos, Theo; Forouzanfar, Mohammad H; Burnett, Richard T; Cohen, Aaron

    2016-01-01

    Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the world's population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.

  18. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

    PubMed

    Brauer, Michael; Freedman, Greg; Frostad, Joseph; van Donkelaar, Aaron; Martin, Randall V; Dentener, Frank; van Dingenen, Rita; Estep, Kara; Amini, Heresh; Apte, Joshua S; Balakrishnan, Kalpana; Barregard, Lars; Broday, David; Feigin, Valery; Ghosh, Santu; Hopke, Philip K; Knibbs, Luke D; Kokubo, Yoshihiro; Liu, Yang; Ma, Stefan; Morawska, Lidia; Sangrador, José Luis Texcalac; Shaddick, Gavin; Anderson, H Ross; Vos, Theo; Forouzanfar, Mohammad H; Burnett, Richard T; Cohen, Aaron

    2016-01-01

    Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the world's population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia. PMID:26595236

  19. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    NASA Technical Reports Server (NTRS)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  20. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    PubMed Central

    Butland, Barbara K.; van Donkelaar, Aaron; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.; One, ISAAC Phase

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1° × 0.1° and modeled estimates of ozone at a resolution of 1° × 1° to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001–2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was –0.043 [95% confidence interval (CI): –0.139, 0.053] and 0.017 (95% CI: –0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was –0.116 (95% CI: –0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was –0.139 (95% CI: –0.347, 0.068). The corresponding association with ozone (per ppbV) was –0.171 (95% CI: –0.275, –0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution

  1. Impact of mixing height estimation on heterogeneous terrains with different algorithms and instruments on atmospheric transport models.

    NASA Astrophysics Data System (ADS)

    Biavati, G.; Kretschmer, R.; Gerbig, C.; Feist, D. G.

    2012-04-01

    The retrieval of mixing height [MH] is a common target of several scientific community all over the world. A strong effort is needed to the fact that modeling of MH generally fails introducing strong errors in the estimate of the concentrations of pollutants and green house gasses within the boundary layer. In Europe local meteorological services and international projects are implementing networks of instruments that can provide atmospheric profiles of different quantities. These networks will continuously provide data which could be used to constrain MH values. The current availability of atmospheric profiles of different nature, such as radiosondes, ground based lidar and ceilometers as well as satellites over Europe grant a spatial coverage that allow to estimate the impact of the knowledge of MH on transport models at synoptic scale of quantities as CO2 and CH4 mixing ratios. In this study we apply several algorithms to retrieve MH from different data sources: the ceilometers network installed by the German Weather Service; the data from CALIPSO satellite and all the WMO radio-soundings available over Europe during the IMECC (Infrastructure for Measurements of the European Carbon Cycle) in 2009. The values obtained from the optical instruments are validated using as reference the estimation retrieved by the virtual potential temperature profiles obtained by the radiosondes where co-location occurs and using statistical interpolation to evaluate the estimates from satellite and non co-located stations.. The impact of this estimates of MH on CO2 mixing ratios will be evaluated with the Stochastic Time Inverted Lagrangian Transport model (STILT) driven by WRF meteorology in comparison with in-situ measurements.

  2. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  3. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Hinckley, Daniel A.; Bidleman, Terry F.; Rice, Clifford P.

    1991-04-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for Organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average α-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average γ-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (α-HCH, average 79% saturation; γ-HCH, average 28% saturation). The flux for α-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of γ-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  4. Hierarchical set of models for estimating the effects of air pollution on vegetation

    SciTech Connect

    Kercher, J.R.; Axelrod, M.C.; Bingham, G.E.

    1981-05-26

    Three models have been developed to estimate the effects of air pollutants on vegetation at the photosynthetic process (PHOTO), plant (GROWl), and community (SILVA) levels of resolution. PHOTO simulates the enhancement of photosynthesis at low H/sub 2/S levels, depression of photosynthesis at high H/sub 2/S levels, and the threshold effects for sulfur pollutants. GROWl simulates the growth and development of a plant during a growing season. GROWl has been used to assess the effects on sugar beets of geothermal energy development in the Imperial Valley, California. SILVA is a community-level model simulating the effects of SO/sub 2/ on growth, species composition, and succession, for the mixed conifer forest types of the Sierra Nevada, California.

  5. First Order Estimates of Energy Requirements for Pollution Control. Interagency Energy-Environment Research and Development Program Report.

    ERIC Educational Resources Information Center

    Barker, James L.; And Others

    This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…

  6. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  7. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  8. MAXINE: An improved methodology for estimating maximum individual dose from chronic atmospheric radioactive releases

    SciTech Connect

    Hamby, D.M.

    1994-02-01

    An EXCEL{reg_sign} spreadsheet has been developed that, when combined with the PC version of XOQDOQ, will generate estimates of maximum individual dose from routine atmospheric releases of radionuclides. The spreadsheet, MAXINE, utilizes a variety of atmospheric dispersion factors to calculate radiation dose as recommended by the US Nuclear Regulatory Commission in Regulatory Guide 1.109 [USNRC 1977a]. The methodology suggested herein includes use of both the MAXINE spreadsheet and the PC version of XOQDOQ.

  9. Estimation of the atmospheric corrosion on metal containers in industrial waste disposal.

    PubMed

    Baklouti, M; Midoux, N; Mazaudier, F; Feron, D

    2001-08-17

    Solid industrial waste are often stored in metal containers filled with concrete, and placed in well-aerated warehouses. Depending on meteorological conditions, atmospheric corrosion can induce severe material damages to the metal casing, and this damage has to be predicted to achieve safe storage. This work provides a first estimation of the corrosivity of the local atmosphere adjacent to the walls of the container through a realistic modeling of heat transfer phenomena which was developed for this purpose. Subsequent simulations of condensation/evaporation of the water vapor in the atmosphere were carried out. Atmospheric corrosion rates and material losses are easily deduced. For handling realistic data and comparison, two different meteorological contexts were chosen: (1) an oceanic and damp atmosphere and (2) a drier storage location. Some conclusions were also made for the storage configuration in order to reduce the extent of corrosion phenomena.

  10. [Estimation and allocation of water environmental capacity in nonpoint source polluted river].

    PubMed

    Chen, Ding-jiang; Lü, Jun; Jin, Shu-quan; Shen, Ye-na

    2007-07-01

    Based on the investigation of the application and emission quantities (QAE) of total nitrogen (TN) and total phosphorus (TP) for nonpoint sources in river catchment' s area, included fertilizer applications, livestock and living pollutants emissions, the quantities of TN and TP entered the river were computed by means of export coefficient model in Changle River, southeast China. Self-purification capacities of TN and TP in the reach were also estimated in terms of input-output balance analysis method. According to the provisions of water function planning in the river, the water environment residual capacity (WERC) or the demand for reducing the application and emission (DRAE) of nitrogen and phosphorus in the corresponding catchment were monthly estimated, and WERC and DRAE were respectively allocated among the pollution sources. Results indicated that about 28.8% of TN loads and 51.2% of TP loads could be self-purified respectively in the reach, i. e., purification of 775.9 t a(-1) for TN and 30.9 t a(-1) for TP. Seasonal variations of the self-purification for the pollutants not only resulted from riverine hydrological and ecological conditions, but also affected by the pollution loading. According to the demand of the water quality protection in the reach, about 1581.0 t a(-1) QAE of TN had to reduce in Changle catchment. The maximum demand for the reducing QAE of TN was the fertilizer application (1047.4 t a(-1)), and the highest ratio for the reducing QAE of TN was livestock-poultry breeding (32.4%). There was about 2335.7 t a(-1) WERC for TP in the reach. The largest DRAE of nitrogen was during mid-water season and the least WERC of TP was during higher-water season.

  11. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    SciTech Connect

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O{sub 3} levels are typically highest

  12. Multimodel estimates of intercontinental source-receptor relationships for ozone pollution

    NASA Astrophysics Data System (ADS)

    Fiore, A. M.; Dentener, F. J.; Wild, O.; Cuvelier, C.; Schultz, M. G.; Hess, P.; Textor, C.; Schulz, M.; Doherty, R. M.; Horowitz, L. W.; MacKenzie, I. A.; Sanderson, M. G.; Shindell, D. T.; Stevenson, D. S.; Szopa, S.; van Dingenen, R.; Zeng, G.; Atherton, C.; Bergmann, D.; Bey, I.; Carmichael, G.; Collins, W. J.; Duncan, B. N.; Faluvegi, G.; Folberth, G.; Gauss, M.; Gong, S.; Hauglustaine, D.; Holloway, T.; Isaksen, I. S. A.; Jacob, D. J.; Jonson, J. E.; Kaminski, J. W.; Keating, T. J.; Lupu, A.; Marmer, E.; Montanaro, V.; Park, R. J.; Pitari, G.; Pringle, K. J.; Pyle, J. A.; Schroeder, S.; Vivanco, M. G.; Wind, P.; Wojcik, G.; Wu, S.; Zuber, A.

    2009-02-01

    Understanding the surface O3 response over a "receptor" region to emission changes over a foreign "source" region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale "import sensitivity" as the ratio of the O3 response to the 20% reductions in foreign versus "domestic" (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual

  13. Estimate of Atmospheric Fluxes of Bioavailable Nutrients to the Gulf of Aqaba

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Street, J.; Paytan, A.

    2005-12-01

    The atmosphere is an important pathway by which many nutrients and metals reach the surface ocean. The impact of dust deposition on an oceanic ecosystem is dependent on the amount of bioavailable nutrients exported along with the dust. To estimate the atmospheric fluxes of bioavailable nutrients to the Gulf of Aqaba, a suit of investigations have been made on the concentrations of nutrient species in aerosols, the solubility of aerosol nutrients in seawater and the deposition rates of aerosol particles over the Gulf. Our results suggest that (1) the soluble inorganic N (SIN) and P (SIP) in pure water can be converted to their seawater-soluble concentrations through two linear equations and used for estimation of bioavailable N and P fluxes; (2) the total aerosol Fe concentrations and the mean solubility of aerosol Fe in seawater (0.3 percent) should be used for the Fe flux calculation. Atmospheric fluxes are calculated from atmospheric concentrations using deposition velocities which are derived from the deposition rate study. Our estimates show that the ratio between SIN and SIP fluxes is about a factor of 4 higher than Redfield ratio (16) suggesting that atmospheric input of nutrients increases the likelihood of P limitation in the Gulf. Soluble Fe flux is in excess compared to that required for the phytoplankton growth driven by the major nutrient deposition. Atmospheric nutrient input can support over 10 percent of surface primary production during the summer months, and may constitute a significant fraction of surface new production of the Gulf.

  14. Lead Isotopes and Temporal Records of Atmospheric Aerosol and Pollutants in Lichens

    NASA Astrophysics Data System (ADS)

    Getty, S. R.; Nash, T.; Asmerom, Y.

    2001-05-01

    Lichens are useful receptors of atmospheric particulate matter (PM) and pollutants due to their retention of body parts (unlike plants), slow growth rates, fairly uniform morphologies, lack of a vascular system, and sessile character over decades to centuries. Lichen biomonitoring has been used widely to map patterns of aerosol deposition, yet few studies have tested whether lichens can preserve a temporal record of airborne PM and pollutants. We show with U-Pb data that epilithic lichens (rock as host) can retain in their porous structure an integrated, decadal-scale history of changing aerosol inputs to desert ecosystems. Three lichens resided along an 80-km transect from a copper smelter (Douglas, AZ) closed in early 1987, to the ENE into adjacent New Mexico. For the radially growing lichen (Xanthoparmelia sp.), U-Pb data were obtained along cm-scale transects in the growth direction on a single thallus. Profiles from lichen rim to interior show increasing [Pb] and [U], or net accumulation with thallus age. Total lead contents are highest near the smelter. In contrast, each lead isotope profile (206Pb/207Pb) is flat during smelter operation, showing low ratios near the smelter (1.152) and high ratios (1.175) 80 km away. This suggests comparable mixtures of crust and smelter lead per locality over decades. Since smelter closure, lichens 80 km from the smelter show a sharp upturn in lead ratio in the recently grown lichen rim, indicating that smelter lead is either dispersed by aeolian recycling, or suppressed in desert soils. The amplitude and position of the isotope signal suggests a soil recovery "half-life" of about 13 yrs, a radial growth rate of 0.57+/-0.1 mm/yr, and a total lichen age of 105+/-18 yrs. Lichens near the smelter have no upturn in isotope ratio, indicating continued aeolian recylcing of lead from soils about 11 yrs after closure. Results at a far-removed desert site (c. New Mexico) also argue that isotope profiles reflect aerosol deposition

  15. Ag, Ta, Ru, and Ir enrichment in surface soil: Evidence for land pollution of heavy metal from atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Xing, Guangxi; Zhu, Jianguo; Xiong, Zhengqin; Yamasaki, Shin-Ichi

    2004-03-01

    No observation has so far been reported that heavy metal elements from atmospheric deposition were accumulated widely in the surface soil layers. In this research, 28 soil profiles from different climate zones and agro-ecosystems in China were studied, and obvious enrichment of Ag, Ta, Ru, and Ir in the surface soils was discovered. It indicates that pollution of heavy metals emitted into the atmosphere from industrial activities is no longer limited to soils in the vicinity of power, metallurgic, metalworking, and machine-making industries, and they may settle down extensively on land besides cities and industrial regions.

  16. Turbulence strength estimation from an arbitrary set of atmospherically degraded images.

    PubMed

    Zamek, Steve; Yitzhaky, Yitzhak

    2006-12-01

    In remote sensing, atmospheric turbulence and aerosols usually limit the image quality. For many practical cases, turbulence is shown to be dominant, especially for horizontal close-to-earth imaging in hot environments. In a horizontal long-range imaging, it is usually impractical to calculate path-averaged refractive index structure constant C(2)(n) (which characterizes the turbulence strength) with conventional equipment. We propose a method for estimating C(2)(n) from the available atmospherically degraded video sequence by calculating temporal intensity fluctuations in spatially high variance areas. Experimental comparison with C(2)(n) measurements using a scintillometer shows reliable estimation results.

  17. Simultaneous measurements of atmospheric pollutants and visibility with a Long-Path DOAS system in urban areas.

    PubMed

    Lee, Jeong Soon; Kim, Young J; Kuk, Bongjae; Geyer, Andreas; Platt, Ulrich

    2005-05-01

    In this paper, the applicability of a Long-Path Differential Optical Absorption Spectroscopy (LP-DOAS) system was checked for the feasibility of the simultaneous measurement of trace gases (such as 03, NO2, SO2, and HCHO) and atmospheric visibility (light extinction by aerosols) in Asian urban areas. Field studies show that an LP-DOAS system can simultaneously measure the key pollutants (such as O3, NO2, SO2, and HCHO) at detection limits in the ppb/sub-ppb range as well as the Mie extinction coefficient with an uncertainty of approximately 0.1 km(-1) at time resolution of a few minutes. It is thus concluded that the use of LP-DOAS system is feasible for simultaneous measurement of gaseous pollutants as well as an atmospheric extinction coefficient which is tightly bound to fine particulate concentration. PMID:15931992

  18. Oxidant air pollution: estimated effects on US vegetation in 1969 and 1974

    SciTech Connect

    Moskowitz, P.D.; Medeiros, W.H.; Morris, S.C.; Coveney, E.A.

    1980-11-01

    In February 1979, the US Environmental Protection Agency (EPA) revised the primary and secondary ambient air quality standards for photochemical oxidants. This revision of the standards, based principally on critical review of health effects data, engendered considerable controversy. Several research efforts were subsequently initiated by EPA to develop data to support promulgation of future standards. Effects of air pollutants on vegetation are now being studied by the National Crop Loss Assessment Network (NCLAN) program. An initial element of the NCLAN effort was critical evaluation and preliminary quantitative economic estimation of oxidant effects on vegetation using the Benedict model. This report gives estimates of vegetation value and of loss caused by oxidants in 1969 and 1974 for 687 counties. Losses are estimated to be $1.3 x 10/sup 8/ and $2.9 x 10/sup 8/ in 1969 and 1974, respectively. These losses represent $1.5% of the total value of vegetation in the counties examined. Ornamentals in 1969 and Field Crops in 1974 dominated the total loss estimates. For agricultural crops, loss appeared to increase in the following order: Seed Crops, Citrus, Fruits and Nuts, Vegetables, and Field Crops. Geographic disaggregation of the estimates suggests that for both 1969 and 1974 oxidant loss was greatest in Federal Region IX, especially within the state of California. These estimates should be used with caution because they are based on subjective dose-response damage functions and on air quality measures that may be inaccurate.

  19. Using daily satellite observations to estimate emissions of short-lived air pollutants on a mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Mijling, B.; van der A, R. J.

    2012-09-01

    Emission inventories of air pollutants are crucial information for policy makers and form important input data for air quality models. Using satellite observations for emission estimates has important advantages over bottom-up emission inventories: they are spatially consistent, have high temporal resolution, and enable updates shortly after the satellite data become available. We present a new algorithm specifically designed to use daily satellite observations of column concentrations for fast updates of emission estimates of short-lived atmospheric constituents on a mesoscopic scale (˜25 × 25 km2). The algorithm needs only one forward model run from a chemical transport model to calculate the sensitivity of concentration to emission, using trajectory analysis to account for transport away from the source. By using a Kalman filter in the inverse step, optimal use of the a priori knowledge and the newly observed data is made. We apply the algorithm for NOx emission estimates of East China, using the CHIMERE model on a 0.25 degree resolution together with tropospheric NO2column retrievals of the OMI and GOME-2 satellite instruments. Closed loop tests show that the algorithm is capable of reproducing new emission scenarios. Applied with real satellite data, the algorithm is able to detect emerging sources (e.g., new power plants), and improves emission information for areas where proxy data are not or badly known (e.g., shipping emissions). Chemical transport model runs with the daily updated emission estimates provide better spatial and temporal agreement between observed and simulated concentrations, facilitating improved air quality forecasts.

  20. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation

    PubMed Central

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-01-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  1. Model assessment of atmospheric pollution control schemes for critical emission regions

    NASA Astrophysics Data System (ADS)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  2. The ability of atmospheric data to resolve discrepancies in wetland methane estimates over North America

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Andrews, A. E.; Benmergui, J.; Commane, R.; Dlugokencky, E. J.; Janssens-Maenhout, G.; Melton, J. R.; Michalak, A. M.; Sweeney, C.; Worthy, D. E. J.

    2015-06-01

    Existing estimates of methane fluxes from North American wetlands vary widely in both magnitude and distribution. In light of these disagreements, this study uses atmospheric methane observations from the US and Canada to analyze seven different bottom-up, wetland methane estimates reported in a recent model comparison project. We first use synthetic data to explore how well atmospheric observations can constrain wetland fluxes. We find that observation sites can identify an atmospheric pattern from Canadian wetlands but not reliably from US wetlands. The network can also identify the spatial distribution of fluxes in Canada at multi-province spatial scales. Based upon these results, we then use real data to evaluate the magnitude, temporal distribution, and spatial distribution of each model estimate. Most models overestimate the magnitude of fluxes across Canada. Most predict a seasonality that is too narrow, potentially indicating an over-sensitivity to air or soil temperatures. In addition, the LPJ-Bern model has a spatial distribution that is most consistent with atmospheric observations. Unlike most models, LPJ-Bern utilizes land cover maps, not just remote sensing inundation data, to estimate wetland coverage. A flux model with a constant spatial distribution outperforms most other existing flux estimates across Canada.

  3. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment.

    PubMed

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  4. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    PubMed Central

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  5. Atmospheric corrections of passive microwave data for estimating land surface temperature.

    PubMed

    Liu, Zeng-Lin; Wu, Hua; Tang, Bo-Hui; Qiu, Shi; Li, Zhao-Liang

    2013-07-01

    Quantitative analysis of the atmospheric effects on observations made by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) has been performed. The differences between observed brightness temperatures at the top of the atmosphere and at the bottom of the atmosphere were analyzed using a database of simulated observations, which were configured to replicate AMSR-E data. The differences between observed brightness temperatures at the top of the atmosphere and land surface-emitted brightness temperatures were also computed. Quantitative results show that the atmosphere has different effects on brightness temperatures in different AMSR-E channels. Atmospheric effects can be neglected at 6.925 and 10.65 GHz, when the standard deviation is less than 1 K. However, at other frequencies and polarizations, atmospheric effects on observations should not be neglected. An atmospheric correction algorithm was developed at 18.7 GHz vertical polarization, based on the classic split-window algorithm used in thermal remote sensing. Land surface emission can be estimated with RMSE = 0.99 K using the proposed method. Using the known land surface emissivity, Land Surface Temperature (LST) can be retrieved. The RMSE of retrieved LST is 1.17 K using the simulated data.

  6. Geochemical evidence for atmospheric pollution derived from prehistoric copper mining at Copa Hill, Cwmystwyth, mid-Wales, UK.

    PubMed

    Mighall, T M; Abrahams, P W; Grattan, J P; Hayes, D; Timberlake, S; Forsyth, S

    2002-06-20

    This paper presents geochemical data from a blanket peat located close to a Bronze Age copper mine on the northern slopes of the Ystwyth valley, Ceredigion, mid-Wales, UK. The research objective was to explore the possibility that the peat contained a geochemical record of the pollution generateD by mining activity. Four peat monoliths were extracted from the blanket peat to reconstruct the pollution history of the prehistoric mine. Three different geochemical measurement techniques were employed and four copper profiles have been reconstructed, two of which are radiocarbon-dated. The radiocarbon dates at one profile located close to the mine confirm that copper enrichment occurs in the peat during the known period of prehistoric mining. Similar enrichment of copper concentrations is shown in one adjacent profile and a profile within 30 m away. In contrast, copper was not enriched in the other radiocarbon-dated monolith, collected approximately 1.35 km to the north of the mine. Whilst other possible explanations to explain the copper concentrations are discussed, it is argued that the high copper concentrations represent evidence of localised atmospheric pollution caused by Bronze Age copper mining in the British Isles. The results of this study suggest that copper may be immobile in blanket peat and such deposits can usefully be used to reconstruct atmospheric pollution histories in former copper mining areas.

  7. Effect of cadmium pollution of atmospheric origin on field-grown maize in two consecutive years with diverse weather conditions.

    PubMed

    Anda, Angéla; Illés, Bernadett; Soós, G

    2013-12-01

    The aim of the study was to analyse the effect of atmospheric cadmium (Cd) pollution of atmospheric origin in maize compared to a control without Cd pollution. The plant parameters investigated were the timing of phenological phases, leaf area index (LAI) and yield, while radiation and water regime parameters were represented by albedo (reflection grade) and evapotranspiration, respectively. In treatments with and without irrigation, Cd caused a significant reduction in LAI, accompanied by lower evapotranspiration. The mean annual albedo in the Cd-polluted treatment only rose to a moderate extent in 2011 (in 2010 there was hardly any change), but changes within the year were more pronounced in certain phases of development. Cd led to greater reflection of radiation by plants during the vegetative phase, so the radiation absorption of the canopy was reduced leading to a lower level of evapotranspiration. In the dry, hot year of 2011 maize plants in the non-irrigated treatments showed a substantial reduction in grain dry matter, but maize yield losses could be reduced by irrigation in areas exposed to Cd pollution.

  8. The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China

    NASA Astrophysics Data System (ADS)

    Ma, J. Z.; Wang, W.; Chen, Y.; Liu, H. J.; Yan, P.; Ding, G. A.; Wang, M. L.; Sun, J.; Lelieveld, J.

    2012-05-01

    In the past decades, regional air pollution characterized by photochemical smog and grey haze-fog has become a severe environmental problem in China. To investigate this, a field measurement campaign was performed in the Huabei region, located between 32-42° N latitude in eastern China, during the period 2 April-16 May 2006 as part of the project "Influence of Pollution on Aerosols and Cloud Microphysics in North China" (IPAC-NC). It appeared that strong pollution emissions from urban and industrial centers tend to accumulate in the lower atmosphere over the central area of Huabei. We observed widespread, very high SO2 mixing ratios, about 20-40 ppbv at 0.5-1.5 km altitude and 10-30 ppbv at 1.5-3.0 km altitude. Average CO mixing ratios were 0.65-0.7 ppmv at 0.5-1.5 km altitude, and very high CO around 1 ppmv was observed during some flights, and even higher levels at the surface. We find the high pollution concentrations to be associated with enhanced levels of OH and HO2 radicals, calculated with a chemical box model constrained by the measurements. In the upper part of the boundary layer and in the lower free troposphere, high CO and SO2 compete with relatively less NO2 in reacting with OH, being efficiently recycled through HO2, preventing a net loss of HOx radicals. In addition to reactive hydrocarbons and CO, the oxidation of SO2 causes significant ozone production over Huabei (up to ~13% or 2.0 ppbv h-1 at 0.8 km altitude). Our results indicate that the lower atmosphere over Huabei is not only strongly polluted but also acts as an oxidation pool, with pollutants undergoing very active photochemistry over this part of China.

  9. Inverse estimation of radon flux distribution for East Asia using measured atmospheric radon concentration.

    PubMed

    Hirao, S; Hayashi, R; Moriizumi, J; Yamazawa, H; Tohjima, Y; Mukai, H

    2015-11-01

    In this study, the (222)Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric (222)Rn transport model. Surface atmospheric (222)Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated (222)Rn flux densities were generally higher than the prior ones. The area-weighted mean (222)Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m(-2) s(-1). The use of the estimated (222)Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island.

  10. Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

    PubMed

    Friberg, Mariel D; Zhai, Xinxin; Holmes, Heather A; Chang, Howard H; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Tolbert, Paige E; Russell, Armistead G; Mulholland, James A

    2016-04-01

    Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology. PMID:26923334

  11. Investigation of Health Risks and Their Prevention in the Rapid Climate Changes and the Rise of Pollution of the Atmosphere in the Mountain Region of the North Caucasus

    NASA Astrophysics Data System (ADS)

    Babyakin, Alexander; Polozkov, Igor; Golitsyn, Georgy; Efimenko, Natalia; Zherlitsina, Liubov; Povolotskaya, Nina; Senik, Irina; Chalaya, Elena; Artamonova, Maria; Pogarski, Fedor

    2010-05-01

    to clarify the criteria for "pathogenicity" of various weather conditions and the factors of air pollution. These criteria were put in a new technology of the Medical Weather Forecast (MWF). In this technology it is proposed to use the integrated Weather Pathogenicity Index (WPI), which is calculated as a weighted average of biotropism indices of various MMM, which include: the dynamics and day to day variability of temperature, pressure and humidity, wind speed, weight content of oxygen and natural air ions in the surface atmosphere, cloudiness, atmospheric phenomena, geomagnetic activity, the ultraviolet index (by UVB solar radiation), the integrated illumination by the sun, the heat conditions of the human. For each of the MMM the five physiological grades of the effects of weather on human adaptation to weather of magnitude and dynamics of WPI are marked out: indifferent, weak, moderate, harsh and overly harsh, according to which the degree of "pathogenicity" of the weather is estimating. Pathogenicity is indicated by quantitative number of medical types of weather (I - a very good weather, II - good weather, III - adverse weather, and IV - a particularly adverse weather). According to the forms of the pressure relief on the sea level, 850 hPa, and 500 hPa, the nature of atmospheric stratification and the presence of atmospheric fronts in the medical types of weather the type of atmospheric circulation is evaluating (anticyclonic - "A", cyclonic - "B", frontal - "C"), which defines a subtype of weather and the possible nature of meteopathia (hypotensive, hypoxic, spastic, etc.). Innovations of the new technology are associated with the introduction of a methodology for the preparation of MWF the modified classifiers to determine the gradation of biotropism degree for various MMM, confirmed by the results of comprehensive empirical medical and climatic studies using dynamic and synoptic weather forecasting making by Hydrometeocenter of Russia and forecast of

  12. Three-parameter model for estimating atmospheric tritium dose at the Savannah River Site.

    PubMed

    Hamby, D M; Simpkins, A A

    1998-09-01

    The models used in the NRC approach to assess chronic atmospheric releases of radioactivity generate deterministic dose estimates by using standard assumptions about exposure conditions and environmental transport mechanisms. This approach has been used at the Savannah River Site since 1983. Total dose to off-site maximally exposed individuals at the SRS from atmospheric releases has been on the order of 1 microSv y(-1), three orders of magnitude lower than the applicable dose limit. When estimating atmospheric dose many parameters remain unchanged each time calculations are performed. These parameters, therefore, are essentially unimportant with regard to routine modeling. It is proposed, therefore, that transport and dosimetry models can be reduced to simple functions of a few parameters that essentially determine dose at all locations across the site. The three-parameter transport and dosimetry model developed in this work is useful for quick and easy estimates of chronic atmospheric tritium dose that are within a factor of 2 of estimates by more sophisticated models. The three parameters critical to estimating annual average concentration at the Savannah River Site are wind-direction frequency, downwind distance, and physical stack height. The model is bounded by physical stack heights between 10 and 61 m and downwind distances between 800 m (0.5 mi.) and 32 km (20 mi.) and should not be used outside its intended domain. It requires knowledge of wind-direction frequency, downwind distance, and physical stack height to estimate an Atmospheric Dose Factor (ADF; in units of microSv GBq(-1)) for the conversion of long-term release activity to maximum individual effective dose equivalent. This concept is being carried forward to the development of a reduced model for particulate emissions from SRS stacks.

  13. [Characteristics of mercury pollution in soil and atmosphere in Songhua River upstream Jia-pi-gou gold mining area].

    PubMed

    Zhang, Gang; Wang, Ning; Wang, Yuan; Liu, Te; Ai, Jian-Chao

    2012-09-01

    In the studied area of Jia-pi-gou at the upstream area of Songhua River, algamation process has been applied as a dominant method to extract gold for more than one hundred and eighty years, resulting in severe mercury environmental pollution. The total mercury contents in the atmosphere and soil have been determined by mercury analyzer (Zeeman RA915+) and cold atomic absorption spectrophotometry (GB/T 17136-1997), respectively. To study the pollution characteristics of mercury in the soil and atmosphere, the mercury flux at the interface between the soil and the atmosphere of 4 sampling sites Lao-jin-chang, Er-dao-gou, Er-dao-cha and community of Jia-pi-gou have been determined with the method of dynamic flux chamber. Furthermore, linear regression analyses on the total mercury contents between soil and atmosphere have been carried out and the correlation coefficient of mercury exchange flux between soil and atmosphere and meteorological factors has been studied. The results are as follows: (1) The mean value of mercury content in the atmosphere is (71.08 +/- 38.22) ng x m(-3). (2) The mean value of mercury content in the soil is (0.913 1 +/- 0.040 8) mg x kg(-1); it shows remarkably positive correlation between the mercury contents in soil and in the atmosphere. (3) The mercury exchange flux between soil and atmosphere in different locations are Lao-jin-chang [(129.13 +/- 496.07) ng (m2 x h)(-1)], Er-dao-gou [(98.64 +/- 43.96) ng x (m2 x h)(-1)], Er-dao-cha [(23.17 +/- 171.23) ng x (m2 x h)(-1)], and community of Jia-pi-gou [(7.12 +/- 46.33) ng x (m2 x h)(-1)]. (4) Solar radiation is the major influential factor in the mercury exchange flux between the soil and atmosphere in Lao-jin-chang, Er-dao-cha and community of Jia-pi-gou. Solar radiation, air temperature and soil temperature jointly influence the process of the mercury exchange flux between the soil and atmosphere in Er-dao-gou. Under the disturbance of terrain, three noticeably distinctive trend features

  14. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    NASA Astrophysics Data System (ADS)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  15. Procedures for the estimation of regional scale atmospheric emissions—An example from the North West Region of England

    NASA Astrophysics Data System (ADS)

    Lindley, S. J.; Longhurst, J. W. S.; Watson, A. F. R.; Conlan, D. E.

    This paper considers the value of applying an alternative pro rata methodology to the estimation of atmospheric emissions from a given regional or local area. Such investigations into less time and resource intensive means of providing estimates in comparison to traditional methods are important due to the potential role of new methods in the development of air quality management plans. A pro rata approach is used here to estimate emissions of SO 2, NO x, CO, CO 2, VOCs and black smoke from all sources and Pb from transportation for the North West region of England. This method has the advantage of using readily available data as well as being an easily repeatable procedure which provides a good indication of emissions to be expected from a particular geographical region. This can then provide the impetus for further emission studies and ultimately a regional/local air quality management plan. Results suggest that between 1987 and 1991 trends in the emissions of the pollutants considered have been less favourable in the North West region than in the nation as a whole.

  16. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    PubMed

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  17. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps

  18. Channel estimation for OFDM system in atmospheric optical communication based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Qingsong; Hao, Shiqi; Geng, Hongjian; Sun, Han

    2015-10-01

    Orthogonal frequency division multiplexing (OFDM) technique applied to the atmospheric optical communication can improve data transmission rate, restrain pulse interference, and reduce effect of multipath caused by atmospheric scattering. Channel estimation, as one of the important modules in OFDM, has been investigated thoroughly and widely with great progress. In atmospheric optical communication system, channel estimation methods based on pilot are common approaches, such as traditional least-squares (LS) algorithm and minimum mean square error (MMSE) algorithm. However, sensitivity of the noise effects and high complexity of computation are shortcomings of LS algorithm and MMSE algorithm, respectively. Here, a new method based on compressive sensing is proposed to estimate the channel state information of atmospheric optical communication OFDM system, especially when the condition is closely associated with turbulence. Firstly, time-varying channel model is established under the condition of turbulence. Then, in consideration of multipath effect, sparse channel model is available for compressive sensing. And, the pilot signal is reconstructed with orthogonal matching tracking (OMP) algorithm, which is used for reconstruction. By contrast, the work of channel estimation is completed by LS algorithm as well. After that, simulations are conducted respectively in two different indexes -signal error rate (SER) and mean square error (MSE). Finally, result shows that compared with LS algorithm, the application of compressive sensing can improve the performance of SER and MSE. Theoretical analysis and simulation results show that the proposed method is reasonable and efficient.

  19. Evaluating near highway air pollutant levels and estimating emission factors: Case study of Tehran, Iran.

    PubMed

    Nayeb Yazdi, Mohammad; Delavarrafiee, Maryam; Arhami, Mohammad

    2015-12-15

    A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined.

  20. Nutrient load estimation in nonpoint source pollution of Hong Kong region.

    PubMed

    Li, H E; Lee, J H W; Koenig, A; Jayawardena, A W

    2005-01-01

    Red tides and eutrophication have been frequently observed over the past two decades in coastal waters around Hong Kong, which are caused by many factors and one of them is the nutrient from nonpoint source pollution (NSP). This paper concentrates on the nutrients carried by river flow from watersheds. Since there are no systematical data sets of nonpoint source pollution in Hong Kong, monthly river water quality measurements, rainfall and river flow data, land uses, and other related information are used to analyze the characteristics of NSP and estimate the nutrient loads for Hong Kong region. Main achievements are as follows: firstly, besides mean concentration for single land use, the concept of integrated mean concentration for mixed land uses was proposed and applied. Secondly, mean concentrations were carried out for different land uses (agriculture, town, grassland, shrubland and woodland), each Water Control Zone, and Hong Kong region. Thirdly, the annual nutrient loads were estimated, for the first time in this paper, with various methods for the whole area of Hong Kong, and about 8000 tons of TN and 1500 tons TP are transported into coastal waters from Hong Kong's land in 1998.

  1. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    PubMed Central

    Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang

    2012-01-01

    Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams. PMID:23202672

  2. Estimation of river pollution index in a tidal stream using kriging analysis.

    PubMed

    Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang

    2012-08-29

    Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  3. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.

    PubMed

    Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A

    2015-07-01

    Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications.

  4. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

    PubMed Central

    Jehle, Michael; Perler, Donat; Small, David; Schubert, Adrian; Meier, Erich

    2008-01-01

    Spaceborne synthetic aperture radar (SAR) measurements of the Earth's surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX) data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS), placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements.

  5. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  6. Atmospheric water balance over oceanic regions as estimated from satellite, merged, and reanalysis data

    NASA Astrophysics Data System (ADS)

    Park, Hyo-Jin; Shin, Dong-Bin; Yoo, Jung-Moon

    2013-05-01

    The column integrated atmospheric water balance over the ocean was examined using satellite-based and merged data sets for the period from 2000 to 2005. The data sets for the components of the atmospheric water balance include evaporation from the HOAPS, GSSTF, and OAFlux and precipitation from the HOAPS, CMAP, and GPCP. The water vapor tendency was derived from water vapor data of HOAPS. The product for water vapor flux convergence estimated using satellite observation data was used. The atmospheric balance components from the MERRA reanalysis data were also examined. Residuals of the atmospheric water balance equation were estimated using nine possible combinations of the data sets over the ocean between 60°N and 60°S. The results showed that there was considerable disagreement in the residual intensities and distributions from the different combinations of the data sets. In particular, the residuals in the estimations of the satellite-based atmospheric budget appear to be large over the oceanic areas with heavy precipitation such as the intertropical convergence zone, South Pacific convergence zone, and monsoon regions. The lack of closure of the atmospheric water cycle may be attributed to the uncertainties in the data sets and approximations in the atmospheric water balance equation. Meanwhile, the anomalies of the residuals from the nine combinations of the data sets are in good agreement with their variability patterns. These results suggest that significant consideration is needed when applying the data sets of water budget components to quantitative water budget studies, while climate variability analysis based on the residuals may produce similar results.

  7. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  8. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  9. Spatial Variation of Atmospheric Nitrogen Deposition and Estimated Critical Loads for Aquatic Ecosystems in the Greater Yellowstone Area

    NASA Astrophysics Data System (ADS)

    Nanus, L.; McMurray, J. A.; Clow, D. W.; Saros, J. E.; Blett, T.

    2015-12-01

    Aquatic ecosystems at high-elevations in the Greater Yellowstone Area (GYA) are sensitive to the effects of atmospheric nitrogen (N) deposition. Current and historic N deposition has impacted aquatic ecosystems in the GYA and N deposition is increasing in many areas. Anticipated changes in atmospheric emissions may further affect these sensitive ecosystems. Understanding the spatial variation in atmospheric N deposition is needed to develop estimates of air pollution critical loads for aquatic ecosystems in complex terrain. For the GYA, high resolution (400 meter) maps were developed for 1993-2014 to identify areas of high loading of mean annual Total N deposition (wet + dry) and wet deposition of inorganic N (nitrate and ammonium). Total N deposition estimates in the GYA range from ≤ 1.4 to 7.5 kg N ha-1 yr-1 and show greater variability than inorganic N deposition. Spatially explicit estimates of critical loads of N deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed using a geostatistical approach. CLNdep in the GYA ranges from less than 1.5 kg N ha-1 yr-1 to over 10 kg N ha-1 yr-1 and variability is controlled by differences in basin characteristics. The lowest CLNdep estimates occurred in high-elevation basins with steep slopes, sparse vegetation, and exposed bedrock, including areas within GYA Wilderness boundaries. These areas often have high inorganic N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances greater than 1.5 kg N ha-1 yr-1. The N deposition maps were used to identify CLNdep exceedances for aquatic ecosystems, and to explore scale dependence and boundary issues related to estimating CLNdep. Based on a NO3- threshold of 1.0 μmol L-1, inorganic N deposition exceeds CLNdep in 12% of the GYA, and Total N deposition is in exceedance for 23% of the GYA. These maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess N deposition in the GYA.

  10. Atmospheric pollution due to mobile sources and effects on human health in Japan.

    PubMed

    Kagawa, J

    1994-10-01

    Following the rapid economic growth after World War II, diseases associated with environmental pollution frequently occurred due to delayed implementation of countermeasures against environmental pollution. These diseases are exemplified by Minamata disease, Itai-itai disease, chronic arsenic poisoning, and Yokkaichi asthma. After multiple episodes of these pollution-related diseases were experienced, the government and the private sector made joint efforts to reduce environmental pollution. As a result of these efforts and because of changes in the industrial structure, pollution-related diseases have declined. Instead, however, air pollution from automobile exhaust and the health effects of automobile exhaust on people living along roads with heavy traffic began to attract the public's attention after an increase in the use of automobiles. The epidemiological surveys carried out by the Environmental Agency and the Tokyo Metropolitan Government also have suggested unfavorable effects of automobile-caused air pollution on people living in large cities or along major roads. To solve this problem, it seems imperative to promote the reasonable use of automobiles and to work toward more efficient transportation of goods based on analyses of city structure, the life-styles of city dwellers, and the socioeconomic composition of cities. In addition, the discharge of pollutants from automobiles could be controlled.

  11. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    EPA Science Inventory

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollut...

  12. [The effect of atmospheric pollution in petroleum refining, petrochemical and chemical regions on population mortality].

    PubMed

    Sabirova, Z F

    1999-01-01

    The composition of ambient air pollution in the towns having petrochemical and other chemical enterprises in 1979-1996 was studied. Hydrocarbons were prevalent in the air of these towns. Air pollution causes a greater neoplasm mortality among males and a higher incidence of respiratory and digestive diseases.

  13. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  14. The atmospheric CH4 increase since the Last Glacial Maximum. I - Source estimates

    NASA Astrophysics Data System (ADS)

    Chappellaz, Jerome A.; Fung, Inez Y.; Thompson, Anne M.

    1993-07-01

    An estimate of the distribution of wetland area and associated CH4 emission is presented for the Last Glacial Maximum (LGM, 18 kyr BP, kiloyear Before Present) and the Pre-Industrial Holocene (PIH, 9000-200 years BP). The wetland source, combined with estimates of the other biogenic sources and sink, yields total source strengths of 120 and 180 Tg CH4/yr for LGM and PIH respectively. These source strengths are shown to be consistent with source estimates inferred from a photochemical model, and point to changes in wetland CH4 source as a major factor driving the atmospheric CH4 increase from LGM to PIH.

  15. The atmospheric CH4 increase since the Last Glacial Maximum. I - Source estimates

    NASA Technical Reports Server (NTRS)

    Chappellaz, Jerome A.; Fung, Inez Y.; Thompson, Anne M.

    1993-01-01

    An estimate of the distribution of wetland area and associated CH4 emission is presented for the Last Glacial Maximum (LGM, 18 kyr BP, kiloyear Before Present) and the Pre-Industrial Holocene (PIH, 9000-200 years BP). The wetland source, combined with estimates of the other biogenic sources and sink, yields total source strengths of 120 and 180 Tg CH4/yr for LGM and PIH respectively. These source strengths are shown to be consistent with source estimates inferred from a photochemical model, and point to changes in wetland CH4 source as a major factor driving the atmospheric CH4 increase from LGM to PIH.

  16. Optical Remote-sensing Monitoring and Forecasting of Atmospheric Pollution in Huaibei Area, China

    NASA Astrophysics Data System (ADS)

    Li, Su-wen; Xie, Pin-hua; Jiang, En-hua; Zhang, Yong; Dai, Hai-feng

    2012-12-01

    Huaibei is an energy city. Coal as the primary energy consumption brings a large number of regional pollution in Huaibei area. Differential optical absorption spectroscopy (DOAS) as optical remote sensing technology has been applied to monitor regional average concentrations and inventory of nitrogen dioxide, sulfur dioxide and ozone. DOAS system was set up and applied to monitor the main air pollutants in Huaibei area. Monitoring data were obtained from 7 to 28 August, 2011. Monitoring results show measurements in controlling pollution are effective, and emissions of pollutants are up to the national standard in Huaibei area. Prediction model was also created to track changing trend of pollutions. These will provide raw data support for effective evaluation of environmental quality in Huaibei area.

  17. The Role of Hydrocarbon and Halocarbon Species In The Polluted Urban Atmosphere of Bristol, England.

    NASA Astrophysics Data System (ADS)

    Rivett, A. C.; Martin, D.; Gray, D. J.; Price, C. S.; Nickless, G.; Simmonds, P. G.; Doherty, S. J. O.; Greally, B.; Shallcross, D. E.

    The urban environment is a complex mixture of chemicals, however, due to the high levels of NOx that are generally present, ozone formation is VOC (volatile organic compound) limited. Therefore, it is of great importance to determine the type of VOC that is present in the urban environment, its concentration and how this varies both spatially and temporally. The results of a field campaign carried out from early spring through to the late sum- mer of 2000, in Bristol, England, are presented. Continuous measurements of over 40 hydrocarbons have been made at an urban background site, located at Bristol Uni- versity, for approximately nine months using a GC-FID system and for a selection of halocarbons for approximately one month using a GC-ECD system. Measurements of a smaller set of hydrocarbons were made simultaneously at a roadside site in the centre of Bristol, as part of the U.K. national monitoring network. In this paper the form of the halocarbon time-series is investigated by comparison with the hydrocarbon time-series, air-mass back trajectories and also local weather condi- tions. The variability of hydrocarbon concentrations within the urban environment are also investigated and reasons for discrepancies are discussed. Using principal com- ponent analysis sources for these hydrocarbons have been apportioned. In addition, ozone levels recorded in Bristol have been compared with hydrocarbon levels and in conjunction with trajectory modelling the role played by certain VOCs in the forma- tion of ozone and radicals such as OH is assessed. A simple approximation of radical fluxes is also presented based on the variations of the measured hydrocarbons and the role of biogenically produced compounds such as isoprene in the urban environment is also considered. This study has investigated both local and remote effects on levels of pollutants in the Bristol conurbation. Like any other town or city, Bristol has its own distinctive atmospheric characteristics. A

  18. The Role of Hydrocarbon and Halocarbon Species in the Polluted Urban Atmosphere of Bristol, England.

    NASA Astrophysics Data System (ADS)

    Rivett, A. C.; Martin, D.; Gray, D. J.; Price, C. S.; Nickless, G.; Simmonds, P. G.; O'Doherty, S. J.; Greally, B.; Shallcross, D. E.

    2001-12-01

    The urban environment is a complex mixture of chemicals, however, due to the high levels of NOx that are generally present, ozone formation is VOC (volatile organic compound) limited. Therefore, it is of great importance to determine the type of VOC that is present in the urban environment, its concentration and how this varies both spatially and temporally. The results of a field campaign carried out from early spring through to the late summer of 2000, in Bristol, England, are presented. Continuous measurements of over 40 hydrocarbons have been made at an urban background site, located at Bristol University, for approximately nine months using a GC-FID system and for a selection of halocarbons for approximately one month using a GC-ECD system. Measurements of a smaller set of hydrocarbons were made simultaneously at a roadside site in the centre of Bristol, as part of the U.K. national monitoring network. In this paper the form of the halocarbon time-series is investigated by comparison with the hydrocarbon time-series, air-mass back trajectories and also local weather conditions. The variability of hydrocarbon concentrations within the urban environment are also investigated and reasons for discrepancies are discussed. Using principal component analysis sources for these hydrocarbons have been apportioned. In addition, ozone levels recorded in Bristol have been compared with hydrocarbon levels and in conjunction with trajectory modelling the role played by certain VOCs in the formation of ozone and radicals such as OH is assessed. A simple approximation of radical fluxes is also presented based on the variations of the measured hydrocarbons and the role of biogenically produced compounds such as isoprene in the urban environment is also considered. This study has investigated both local and remote effects on levels of pollutants in the Bristol conurbation. Like any other town or city, Bristol has its own distinctive atmospheric characteristics. A detailed

  19. [Pollution characteristics and health risk assessment of atmospheric VOCs in the downtown area of Guangzhou, China].

    PubMed

    Li, Lei; Li, Hong; Wang, Xue-Zhong; Zhang, Xin-Min; Wen, Chong

    2013-12-01

    The measurements of 31 kinds of VOCs in the ambient air of a site were carried out in the downtown of Guangzhou by online method from November 5, 2009 to November 9, 2009. The ambient level and composition characteristics, temporal variation characteristics, sources identification, and chemical reactivity of VOCs were studied, and the health risk of VOCs in the ambient air in the study area was assessed by using the international recognized health risk assessment method. Results showed that the mean and the range of the mass concentrations of 31 VOCs were 114.51 microg x m(-3) and 29.42-546.06 microg x m(-3), respectively. The mass concentrations of 31 VOCs, and those of alkanes, alkenes, and aromatics all showed a changing trend of higher in the morning and in the evening, and lower at noontime. Vehicular exhaust, gasoline and liquefied petroleum gas evaporates were the main sources of VOCs with the volatilization of paints and solvents being important emission sources. Toluene, trans-2-butene, m/p-xylene, i-butane, and 1,3,5-trimethylbenzene were the key reactive species among the 31 VOCs. Vehicular exhaust and gasoline evaporation were the main sources of VOCs leading to the formation of ozone. Health risk assessment showed that n-hexane, 1,3-butadiene, benzene, toluene, ethylbenzene, m/p-xylene and o-xylene had no appreciable risk of adverse non-cancer health effect on the exposed population, but 1, 3-butadiene and benzene had potential cancer risk. By comparing the corresponding data about health risk assessment of benzene compounds in some cities in China, it is concluded that benzene can impose relatively high cancer risk to the exposed populations in the ambient air of some cities in China. Therefore, strict countermeasures should be taken to further control the pollution of benzene in the ambient air of cities, and it is imperative to start the related studies and develop the atmospheric environmental health criteria and national ambient air quality

  20. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGESBeta

    Ray, J.; Lee, J.; Yadav, V.; Lefantzi, S.; Michalak, A. M.; van Bloemen Waanders, B.

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) and fitting.more » Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO2 (ffCO2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO2 emissions and synthetic observations of ffCO2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also

  1. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    PubMed

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. PMID:26613353

  2. Interception and attenuation of atmospheric pollution in a lowland ash forested site, Old Pond Close, Northamptonshire, UK.

    PubMed

    Neal, Colin

    2002-01-23

    A study of interception of chemicals at an ash plantation forest in southern-central England shows the modification of acidic pollution as it passes from precipitation, through the vegetation cover and the soil to generate surface runoff. Precipitation is highly acidic (pH 3.7-4.8, alkalinity -16 to -200 microEq/l) and it is enriched in the strong acid anions associated with acidification (sulfate and nitrate) as well as ammonium and the trace elements aluminium and zinc. The concentration of both sea-salt and pollutant components varies considerably over time and this is linked to washout from the atmosphere during precipitation events as marked by an inverse relationship between concentration and volume of catch. The catchment is also supplied by sea-salt and pollutant additions as dry deposition: gaseous inputs of SO(x) may also increase sulfate deposition. Through the vegetation, much of the acidity is neutralised and, particularly during the growth period, calcium, magnesium and potassium is cycled, while sodium and nitrate are partially removed. Within the catchment, weathering ensures that further base cation production occurs leading to enhanced neutralisation of acidity and the generation of positive alkalinities. As a result, surface runoff becomes buffered with alkalinity approximately 490 microEq/l and pH approximately 7.9. Thus, although the acidification input from the atmosphere is high, this does not translate to acidic runoff due to within-canopy and within-soil processes.

  3. Using native epiphytic ferns to estimate the atmospheric mercury levels in a small-scale gold mining area of West Java, Indonesia.

    PubMed

    Kono, Yuriko; Rahajoe, Joeni S; Hidayati, Nuril; Kodamatani, Hitoshi; Tomiyasu, Takashi

    2012-09-01

    Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining. Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009. The A. nidus fronds that were attached to tree trunks 1-3m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS. The highest atmospheric mercury concentration, 1.8 × 10(3) ± 1.6 × 10(3) ngm(-3), was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ngm(-3), was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 10(3) ± 1.6 × 10(3) ngg(-1)) than at the remote site (70 ± 30 ngg(-1)). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r=0.895, P<0.001, n=14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (Hg(A.nidu)/ngg(-1))=0.740 log (Hg(Air)/ngm (-3)) - 1.324.

  4. Adjoint-Based Methods for Estimating CO2 Sources and Sinks from Atmospheric Concentration Data

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.

    2003-01-01

    Work to develop adjoint-based methods for estimating CO2 sources and sinks from atmospheric concentration data was initiated in preparation for last year's summer institute on Carbon Data Assimilation (CDAS) at the National Center for Atmospheric Research in Boulder, CO. The workshop exercises used the GSFC Parameterized Chemistry and Transport Model and its adjoint. Since the workshop, a number of simulations have been run to evaluate the performance of the model adjoint. Results from these simulations will be presented, along with an outline of challenges associated with incorporating a variety of disparate data sources, from sparse, but highly precise, surface in situ observations to less accurate, global future satellite observations.

  5. Atmospheric effects on the remote sensing estimation of forest leaf area index

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.; Wrigley, R. C.; Card, D. H.; Hall, M. J.

    1985-01-01

    An analysis is presented of the magnitude and variability of the effect of the atmosphere on high-altitude Daedalus Airborne Thematic Mapper data. By regressing ATM radiances against ground radiances (from measurements by a helicopter-mounted Barnes Modular Multiband Radiometer), it was possible to account for atmospheric conditions and variability across a 250 km transect in Oregon to estimate coniferous forest leaf area index. The technique permitted scene contrast to be increased, providing an improved capability for measurement of ground feature radiance.

  6. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.

    PubMed

    Yan, Yun; Zhang, Qiang; Wang, G Geoff; Fang, Yan-Ming

    2016-06-01

    We studied atmospheric deposition of heavy metals in Wuxi, China, using moss (Haplocladium microphyllum and H. angustifolium) as a biomonitoring agent. Moss samples were collected from 49 sites determined by a systematic sampling method. The top layer of soil on each site was also sampled. No significant correlation (P < 0.05) was observed between the moss and soil concentrations for any of the six heavy metal elements (Cd, Cr, Cu, Ni, Pb, and Zn), indicating that the soil substrate had little effect on the heavy metal concentrations in the moss materials. The metal enrichment capacity of the moss material, characterized by the concentration ratio between the moss and soil samples for each heavy metal, was topped by Cd and then followed by Zn, Pb, Cu, Cr, and Ni, respectively. Significant (P < 0.05) correlations were found among the six elements in mosses, suggesting potential anthropogenic inputs of these heavy metal pollutants. Based on concentrations of the heavy metals in mosses and the calculated contamination factors, we evaluated the contamination level of each heavy metal on the 49 sampling sites. Spatial distribution maps of heavy metal deposition for each element were interpolated using ArcGIS 9.0. A total pollution coefficient was calculated for each sampling site to identify the seriously polluted areas in the region.

  7. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.

    PubMed

    Yan, Yun; Zhang, Qiang; Wang, G Geoff; Fang, Yan-Ming

    2016-06-01

    We studied atmospheric deposition of heavy metals in Wuxi, China, using moss (Haplocladium microphyllum and H. angustifolium) as a biomonitoring agent. Moss samples were collected from 49 sites determined by a systematic sampling method. The top layer of soil on each site was also sampled. No significant correlation (P < 0.05) was observed between the moss and soil concentrations for any of the six heavy metal elements (Cd, Cr, Cu, Ni, Pb, and Zn), indicating that the soil substrate had little effect on the heavy metal concentrations in the moss materials. The metal enrichment capacity of the moss material, characterized by the concentration ratio between the moss and soil samples for each heavy metal, was topped by Cd and then followed by Zn, Pb, Cu, Cr, and Ni, respectively. Significant (P < 0.05) correlations were found among the six elements in mosses, suggesting potential anthropogenic inputs of these heavy metal pollutants. Based on concentrations of the heavy metals in mosses and the calculated contamination factors, we evaluated the contamination level of each heavy metal on the 49 sampling sites. Spatial distribution maps of heavy metal deposition for each element were interpolated using ArcGIS 9.0. A total pollution coefficient was calculated for each sampling site to identify the seriously polluted areas in the region. PMID:27207630

  8. The estimation of the pollutant emissions on-board vessels by means of numerical methods

    NASA Astrophysics Data System (ADS)

    Jenaru, A.; Arsenie, P.; Hanzu-Pazara, R.

    2016-08-01

    Protection of the environment, especially within the most recent years, has become a constant problem considered by the states and the governments of the world, which are more and more concerned about the serious problems caused by the continuous deterioration of the environment. The long term effects of pollution on the environment generated by the lack of penalty regulations, have directed the attention of statesmen upon the necessity of the elaboration of normative acts meant to be effective in the continuous fight with it. Maritime transportation generates approximately 4% of the total of the CO2 emissions produced by human activities. This paper is intended to present two methods of estimation of the gases emissions on-board a vessel, methods that are very useful for the crews which are exploiting them. For the determination and the validation of these methods we are going to use the determinations from the tank ship. This ship has as a main propulsion engine Wärtsilä DU Sulzer RT Flex 50 - 6 cylinders that develops a maximal power of 9720 kW and has a permanent monitoring system of the pollutant emissions. The methods we develop here are using the values of the polluting elements from the exhaust gases that are determined at the exit of the vessel from the ship yard, in the framework of the acceptance tests. These values have been introduced within the framework of a matrix in the MATHCAD program. This matrix represents the starting point of the two mentioned methods: the analytical method and the graphical method. During the study we are going to evaluate the development and validation of an analytical tool to be used to determine the standard of emissions aimed at thermal machines on ships. One of the main objectives of this article represents an objective assessment of the expediency of using non-fuels for internal combustion engines in vessels.

  9. Examining the effects of air pollution composition on within region differences in PM2.5 mortality risk estimates.

    PubMed

    Baxter, Lisa K; Duvall, Rachelle M; Sacks, Jason

    2013-01-01

    Multi-city population-based epidemiological studies have observed significant heterogeneity in both the magnitude and direction of city-specific risk estimates, but tended to focus on regional differences in PM2.5 mortality risk estimates. Interpreting differences in risk estimates is complicated by city-to-city heterogeneity observed within regions due to city-to-city variations in the PM2.5 composition and the concentration of gaseous pollutants. We evaluate whether variations in PM2.5 composition and gaseous pollutant concentrations have a role in explaining the heterogeneity in PM2.5 mortality risk estimates observed in 27 US cities from 1997 to 2002. Within each region, we select the two cities with the largest and smallest mortality risk estimate. We compare for each region the within- and between-city concentrations and correlations of PM2.5 constituents and gaseous pollutants. We also attempt to identify source factors through principal component analysis (PCA) for each city. The results of this analysis indicate that identifying a PM constituent(s) that explains the differences in the PM2.5 mortality risk estimates is not straightforward. The difference in risk estimates between cities in the same region may be attributed to a group of pollutants, possibly those related to local sources such as traffic.

  10. Estimating atmospheric visibility using synergy of MODIS data and ground-based observations

    NASA Astrophysics Data System (ADS)

    Komeilian, H.; Mohyeddin Bateni, S.; Xu, T.; Nielson, J.

    2015-05-01

    Dust events are intricate climatic processes, which can have adverse effects on human health, safety, and the environment. In this study, two data mining approaches, namely, back-propagation artificial neural network (BP ANN) and supporting vector regression (SVR), were used to estimate atmospheric visibility through the synergistic use of Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B (L1B) data and ground-based observations at fourteen stations in the province of Khuzestan (southwestern Iran), during 2009-2010. Reflectance and brightness temperature in different bands (from MODIS) along with in situ meteorological data were input to the models to estimate atmospheric visibility. The results show that both models can accurately estimate atmospheric visibility. The visibility estimates from the BP ANN network had a root-mean-square error (RMSE) and Pearson's correlation coefficient (R) of 0.67 and 0.69, respectively. The corresponding RMSE and R from the SVR model were 0.59 and 0.71, implying that the SVR approach outperforms the BP ANN.

  11. Assessment of the variability of atmospheric pollution in National Parks of mainland Spain

    NASA Astrophysics Data System (ADS)

    Escudero, M.; Lozano, A.; Hierro, J.; Tapia, O.; del Valle, J.; Alastuey, A.; Moreno, T.; Anzano, J.; Querol, Xavier

    2016-05-01

    Air quality in nine National Parks in mainland Spain was assessed analysing SO2, NOx, O3, PM10 and PM2.5 data from background stations. As emissions in and around parks are limited, the levels of primary pollutants are low. Concentrations of secondary pollutants are high especially in summer due to photochemical production. The geographical variability of pollutants responds to regional emission patterns and the dominant circulation regimes in different regions resulting in west-east gradients for O3 and PM. Seasonal variability of pollutants was also interpreted in virtue of transport scenarios, changes in photochemical activity and emissions variability. NOx and SO2, maximize in winter due to higher emissions while O3 and PM do it in summer due to photochemical production, lower precipitation and, in the case of PM, the occurrence of African dust outbreaks. The diurnal evolution was interpreted in virtue of variability in emissions and changes in the Planetary Boundar Layer height.

  12. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  13. Multi-year Estimates of Methane Fluxes in Alaska from an Atmospheric Inverse Model

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Commane, R.; Chang, R. Y. W.; Miller, C. E.; Michalak, A. M.; Dinardo, S. J.; Dlugokencky, E. J.; Hartery, S.; Karion, A.; Lindaas, J.; Sweeney, C.; Wofsy, S. C.

    2015-12-01

    We estimate methane fluxes across Alaska over a multi-year period using observations from a three-year aircraft campaign, the Carbon Arctic Reservoirs Vulnerability Experiment (CARVE). Existing estimates of methane from Alaska and other Arctic regions disagree in both magnitude and distribution, and before the CARVE campaign, atmospheric observations in the region were sparse. We combine these observations with an atmospheric particle trajectory model and a geostatistical inversion to estimate surface fluxes at the model grid scale. We first use this framework to estimate the spatial distribution of methane fluxes across the state. We find the largest fluxes in the south-east and North Slope regions of Alaska. This distribution is consistent with several estimates of wetland extent but contrasts with the distribution in most existing flux models. These flux models concentrate methane in warmer or more southerly regions of Alaska compared to the estimate presented here. This result suggests a discrepancy in how existing bottom-up models translate wetland area into methane fluxes across the state. We next use the inversion framework to explore inter-annual variability in regional-scale methane fluxes for 2012-2014. We examine the extent to which this variability correlates with weather or other environmental conditions. These results indicate the possible sensitivity of wetland fluxes to near-term variability in climate.

  14. [Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM₂.₅ in Nanjing Region].

    PubMed

    Shi, Lei; Guo, Zhao-bing; Jiang, Wen-juan; Rui, Mao-ling; Zeng, Gang

    2016-01-15

    Potential pollution sources of atmospheric PM₂.₅ in Nanjing region were collected, and sulfur and carbon isotopic compositions were determined by EA-IRMS synchronously. The results showed that δ³⁴S and δ¹³C values ranged from 1.8‰-3.7‰ and -25.50‰- -23.57‰ in coal soot particles; 4.6‰-9.7‰ and -26.32‰- -23.57‰ in vehicle exhaust; 5.2‰-9.9‰ and -19.30‰- -30.42‰ in straw soot particles, respectively. Besides, the δ¹³C value of dust was -13.45‰. It can be observed that sulfur isotopic compositions in coal soot were lower, while the carbon isotopic composition in dust was higher. Comparing with δ³⁴S and δ¹³C values in domestic and foreign polluted sources, we found that sulfur and carbon isotopes in atmospheric PM₂.₅ in Nanjing region presented an obvious regional characteristics. Therefore, the source spectrum of sulfur and carbon isotopic compositions in Nanjing region might provide an insight into source apportionment of atmospheric PM₂.₅. PMID:27078936

  15. [Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM₂.₅ in Nanjing Region].

    PubMed

    Shi, Lei; Guo, Zhao-bing; Jiang, Wen-juan; Rui, Mao-ling; Zeng, Gang

    2016-01-15

    Potential pollution sources of atmospheric PM₂.₅ in Nanjing region were collected, and sulfur and carbon isotopic compositions were determined by EA-IRMS synchronously. The results showed that δ³⁴S and δ¹³C values ranged from 1.8‰-3.7‰ and -25.50‰- -23.57‰ in coal soot particles; 4.6‰-9.7‰ and -26.32‰- -23.57‰ in vehicle exhaust; 5.2‰-9.9‰ and -19.30‰- -30.42‰ in straw soot particles, respectively. Besides, the δ¹³C value of dust was -13.45‰. It can be observed that sulfur isotopic compositions in coal soot were lower, while the carbon isotopic composition in dust was higher. Comparing with δ³⁴S and δ¹³C values in domestic and foreign polluted sources, we found that sulfur and carbon isotopes in atmospheric PM₂.₅ in Nanjing region presented an obvious regional characteristics. Therefore, the source spectrum of sulfur and carbon isotopic compositions in Nanjing region might provide an insight into source apportionment of atmospheric PM₂.₅.

  16. United States: Canada memorandum of intent on transboundary air pollution. Atmospheric modeling, Work Group 2

    SciTech Connect

    Machta, L.

    1981-03-01

    The transport of air pollution from their sources to final deposition was investigated. Depositions in sensitive ecological areas are outlined. Several models were developed in both Canada and the U.S. for application in long range transport studies. The models describe sulfur deposition on an annual basis. A transfer matrix is adopted to establish a quantitative relationship between pollution emission and deposition in sensitive areas.

  17. Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements.

    PubMed

    Krommer, Viktoria; Zechmeister, Harald G; Roder, Ingrid; Scharf, Sigrid; Hanus-Illnar, Andrea

    2007-05-01

    In this study a combined approach of bioindication results correlated with an extensive set of data on air pollution and climate was used to assess the pollution status of the Man and Biosphere Reserve Wienerwald (Austria). Bryophytes served as impact indicators (via the Index of Atmospheric Purity-method IAP) at 30 sites as well as accumulation monitors for airborne trace elements (Al, Pb, V, S, Zn, Fe, Cu, Cr, Ni, Co, Mo, Cd, As, Sb and 16 EPA-PAHs) at 10 sites within the reserve. The results of these bioindication methods were subsequently correlated with further pollution (NO(2), SO(2) and dust) and climate data (precipitation, temperature and humidity). The findings obtained clearly indicate the following: Bryophyte distribution is solely influenced by the status of air quality, without interference by climatic or site-related factors, which is in contrast to several previous investigations. IAP-values correlated significantly with NO(2) (0.553; P=0.004), SO(2) winter values (0.511; P=0.013) and PM10 (dust) (0.561; P=0.013). The results obtained via chemical analyses revealed a strong correlation with data derived from the IAP methodology. In terms of the overall air quality within the biosphere reserve Wienerwald, the north-eastern part appears to be the most affected one with a most likely pollution contribution emitted by the capital city Vienna, agriculture and neighbouring countries.

  18. Predictive estimation of upward pollutant migration during shale gas production using satellite image processing

    NASA Astrophysics Data System (ADS)

    Lyalko, Vadim; Azimov, Oleksandr; Yakovlev, Yevgen

    2016-07-01

    The report considers the relevance of the application of modern remote aerospace and hydrogeological methods in the problems of the ecological safety for the hydrosphere during shale gas production in Ukraine. Case studies of pilot implementation of these methods are present for the Bilyaivska area adjacent to the Yuzivka licensed site within the Dnieper-Donets Depression. A number of the hydrogeological filtration parameters and the thematic processing for remote sensing data of the Earth enable to obtain the rough estimate of the temporal indices for the upward pollutant migration from the fracturing zone to the groundwater aquifers in the potential process of shale gas production (as an example the 400-Bilyaivska well). It is found that the possible variety of the active permeability in tectonic zone, which may be predicted by using remote sensing of the Earth image interpretation in vicinity of the well, is responsible for the passage time of pollution from the fracturing zone level to the groundwater aquifers one and this time interval spans 50˜5 years.

  19. Estimation of river pollution source using the space-time radial basis collocation method

    NASA Astrophysics Data System (ADS)

    Li, Zi; Mao, Xian-Zhong; Li, Tak Sing; Zhang, Shiyan

    2016-02-01

    River contaminant source identification problems can be formulated as an inverse model to estimate the missing source release history from the observed contaminant plume. In this study, the identification of pollution sources in rivers, where strong advection is dominant, is solved by the global space-time radial basis collocation method (RBCM). To search for the optimal shape parameter and scaling factor which strongly determine the accuracy of the RBCM method, a new cost function based on the residual errors of not only the observed data but also the specified governing equation, the initial and boundary conditions, was constructed for the k-fold cross-validation technique. The performance of three global radial basis functions, Hardy's multiquadric, inverse multiquadric and Gaussian, were also compared in the test cases. The numerical results illustrate that the new cost function is a good indicator to search for near-optimal solutions. Application to a real polluted river shows that the source release history is reasonably recovered, demonstrating that the RBCM with the k-fold cross-validation is a powerful tool for source identification problems in advection-dominated rivers.

  20. Impacts of Mercury Pollution Controls on Atmospheric Mercury Concentration and Occupational Mercury Exposure in a Hospital.

    PubMed

    Li, Ping; Yang, Yan; Xiong, Wuyan

    2015-12-01

    Mercury (Hg) and Hg-containing products are used in a wide range of settings in hospitals. Hg pollution control measures were carried out in the pediatric ward of a hospital to decrease the possibility of Hg pollution occurring and to decrease occupational Hg exposure. Total gaseous Hg (TGM) concentrations in the pediatric ward and hair and urine Hg concentrations for the pediatric staff were determined before and after the Hg pollution control measures had been implemented. A questionnaire survey performed indicated that the pediatric staff had little understanding of Hg pollution and that appropriate disposal techniques were not always used after Hg leakage. TGM concentrations in the pediatric ward and urine Hg (UHg) concentrations for the pediatric staff were 25.7 and 22.2% lower, respectively, after the Hg pollution control measures had been implemented than before, which indicated that the control measures were effective. However, TGM concentrations in the pediatric ward remained significantly higher than background concentrations and UHg concentrations for the pediatric staff were remained significantly higher than the concentrations in control group, indicating continued existence of certain Hg pollution.

  1. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    EPA Science Inventory

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  2. Dust pollution of the atmosphere in the vicinity of coal-fired power plant (Omsk City, Russia)

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Raputa, Vladimir F.; Litay, Victoriya V.; Yazikov, Egor G.; Yaroslavtseva, Tatyana V.; Mikhailova, Kseniya Y.; Parygina, Irina A.; Lonchakova, Anna D.; Tretykova, Mariya I.

    2015-11-01

    The article shows the results of dust pollution level of air in the vicinity of coal-fired power plant of Omsk city on the base of study snow cover pollution. The samples were collected west-, east- and northeastwards at a distance of 0,75-6 km from the chimney for range-finding of dust emission transfer. The research findings have shown the dust load changes from 53 till 343 mg•(m2·day)-1 in the vicinity of power plant. The ultimate dust load was detected at a distance of 3-3,5 km. On the basis of asymptotics of equation solution for impurity transfer, we have made numerical analysis of dust load rate. With the usage of ground-based facilities and satellites we have determined the wind shifts in the atmospheric boundary layer have a significant impact on the field forming of long-term dustfall.

  3. Using blood samples to estimate persistent organic pollutants and metals in green sea turtles (Chelonia mydas).

    PubMed

    van de Merwe, Jason P; Hodge, Mary; Olszowy, Henry A; Whittier, Joan M; Lee, Shing Y

    2010-04-01

    Persistent organic pollutants (POPs) and heavy metals have been reported in a number of green turtle (Chelonia mydas) populations worldwide. However, due to ethical considerations, these studies have generally been on tissues from deceased and stranded animals. The purpose of this study was to investigate the use of blood samples to estimate the tissue contamination of live C. mydas populations. This study analysed 125 POP compounds and eight heavy metals in the blood, liver, kidney and muscle of 16 C. mydas from the Sea World Sea Turtle Rehabilitation Program, Gold Coast, Australia. Strong correlations were observed between blood and tissue concentrations for a number of POPs and metals. Furthermore, these correlations were observed over large ranges of turtle size, sex and condition. These results indicate that blood samples are a reliable non-lethal method for predicting chemical contamination in C. mydas.

  4. Estimation of melting points of large set of persistent organic pollutants utilizing QSPR approach.

    PubMed

    Watkins, Marquita; Sizochenko, Natalia; Rasulev, Bakhtiyor; Leszczynski, Jerzy

    2016-03-01

    The presence of polyhalogenated persistent organic pollutants (POPs), such as Cl/Br-substituted benzenes, biphenyls, diphenyl ethers, and naphthalenes has been identified in all environmental compartments. The exposure to these compounds can pose potential risk not only for ecological systems, but also for human health. Therefore, efficient tools for comprehensive environmental risk assessment for POPs are required. Among the factors vital for environmental transport and fate processes is melting point of a compound. In this study, we estimated the melting points of a large group (1419 compounds) of chloro- and bromo- derivatives of dibenzo-p-dioxins, dibenzofurans, biphenyls, naphthalenes, diphenylethers, and benzenes by utilizing quantitative structure-property relationship (QSPR) techniques. The compounds were classified by applying structure-based clustering methods followed by GA-PLS modeling. In addition, random forest method has been applied to develop more general models. Factors responsible for melting point behavior and predictive ability of each method were discussed.

  5. Use of intelligent computational techniques for the estimation and projection of air pollutant emissions

    SciTech Connect

    Kimbrough, E.S.; Mann, C.O.

    1998-12-31

    EPA is developing a fuzzy logic and/or neural network model for predicting US greenhouse gas emissions from the electric utility sector. The model would be a refinement and modification of the existing Electric Utility Model (EUMOD). Development and testing of the model would use similar data inputs and would follow a testing and validation procedure similar to that used for EUMOD. In this case, the output from the model would be estimated future carbon dioxide (CO2) emissions for each state. CO2 is the most significant greenhouse gas pollutant in the US, accounting for about 85% of national greenhouse gas emissions. Currently electric utilities produce about one-third of the national CO2 emissions.

  6. Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics

    SciTech Connect

    Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

    2013-06-04

    Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81

  7. Radar Estimations of Atmospheric Winds in the Troposphere and Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Sheppard, Emory Lamar

    This dissertation deals with the estimation of atmospheric flow field parameters using the spaced antenna (SA) and spatial interferometer (SI) methods. In the first section, a computer simulation of scattering from inhomogeneities in the refractive index is used to compare the SA and SI methods for measuring winds in clear air both with and without turbulent fading. The results show that the SA analysis which is carried out in the time domain and the SI analysis which is carried out in the frequency domain are equivalent in terms of the information that the two methods yield. A data analysis method equivalent to full correlation analysis, which can be carried out in the frequency domain, is presented. The method is applied to model-generated data in order to extract the typical full correlation analysis output parameters such as the apparent and true velocities. The results obtained are consistent with the model input parameters. In the second section a statistical comparison of the SA and SI methods for estimating horizontal winds in the troposphere and the lower stratosphere is presented. The data analyzed were obtained with the Middle and Upper (MU) atmosphere radar from 1910 LT on June 29, 1990, through 0950 LT on July 2, 1990. At all heights, velocity estimates based on frequency domain data are within 4% of those based on time domain data. We conclude that frequency domain techniques provide an alternate method for estimating true horizontal velocity. Nevertheless, it is not clear that they offer any significant advantage over time domain methods. In fact, the results obtained indicate that the SI method for estimating horizontal velocity may be slightly more difficult to apply in practice. The final section presents an analytical evaluation of SA-based instrumental setups with the potential for estimating the vertical component of atmospheric vorticity from a single-radar location. Methods considered are the oblique spaced antenna (OAS) method and a modified

  8. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the h