Science.gov

Sample records for estimating atmospheric pollutant

  1. Atmospheric pollution.

    PubMed

    Schlesinger, R B

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  2. Students 'Weigh' Atmospheric Pollution.

    ERIC Educational Resources Information Center

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  3. Estimated atmospheric emissions from biodiesel and characterization of pollutants in the metropolitan area of Porto Alegre-RS.

    PubMed

    Teixeira, Elba C; Mattiuzi, Camila D P; Feltes, Sabrina; Wiegand, Flavio; Santana, Eduardo R R

    2012-09-01

    The purpose of the present study was to estimate emissions of some pollutants (CO, NO(X), HC, SO(X), and PM) in diesel fleet due to the addition of biodiesel in different blends, as well as to assess atmospheric pollutant concentrations in the metropolitan area of Porto Alegre (MAPA). The methodology was based on inventories from mobile sources based on US EPA's technical report. Regarding air quality the following parameters were determined: PM(10), PM(2.5), CO, NO(X), O(3), SO(2), HC and PAHs. The results showed a decrease for emissions PM, CO, and HC, and a slight increase for NO(X). The characterization of atmospheric pollutants in the metropolitan area of Porto Alegre showed that they are influenced by mobile sources, particularly diesel vehicles. The diagnosis of ratios analysis that was applied to facilitate the identification of sources of PAHs, indicated an influence of diesel oil.

  4. Mobile Instruments Measure Atmospheric Pollutants

    NASA Technical Reports Server (NTRS)

    2009-01-01

    As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.

  5. An index for estimating the potential metal pollution contribution to atmospheric particulate matter from road dust in Beijing.

    PubMed

    Zhao, Hongtao; Shao, Yaping; Yin, Chengqing; Jiang, Yan; Li, Xuyong

    2016-04-15

    The resuspension of road dust from street surfaces could be a big contributor to atmospheric particulate pollution in the rapid urbanization context in the world. However, to date what its potential contribution to the spatial pattern is little known. Here we developed an innovative index model called the road dust index (RI<105μm) and it combines source and transport factors for road dust particles <105μm in diameter. It could quantify and differentiate the impact of the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The factors were ranked and weighted based on road dust characteristics (the amounts, grain sizes, and mobilities of the road dust, and the concentrations and toxicities of metals in the road dust). We then applied the RI<105μm in the Beijing region to assess the spatial distribution of the potential risks posed by metals associated with road dust on atmospheric suspended particles. The results demonstrated that the road dust in urban areas has higher potential risk of metal to atmospheric particles than that in rural areas. The RI<105μm method offers a new and useful tool for assessing the potential risks posed by metals associated with road dust on atmospheric suspended particles and for controlling atmospheric particulate pollution caused by road dust emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Megacities and atmospheric pollution.

    PubMed

    Molina, Mario J; Molina, Luisa T

    2004-06-01

    About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog--induced primarily from traffic, but also from industrial activities, power generation, and solvents--has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to climate change. Yet, with appropriate planning, megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems. This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. While each city--its problems, resources, and outlook--is unique, the need for a holistic approach to the complex environmental problems is the same. There is no single strategy in reducing air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialog is essential to effectively implement the regulations required to address air quality problems.

  7. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  8. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  9. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model

    NASA Astrophysics Data System (ADS)

    Chen, Xueshun; Wang, Zifa; Yu, Fangqun; Pan, Xiaole; Li, Jie; Ge, Baozhu; Wang, Zhe; Hu, Min; Yang, Wenyi; Chen, Huansheng

    2017-08-01

    Mixing state of black carbon (BC) particles has significant impacts on their radiative forcing, visibility impairment and the ability in modifying cloud formation. In this study, an aging scheme of BC particles using prognostic variables based on aerosol microphysics was incorporated into a regional atmospheric chemistry model, Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics (NAQPMS + APM), to investigate the temporal and spatial variations in aging time scale of BC particles in polluted atmosphere over central-eastern China. The model results show that the aging time scale has a clear diurnal variation with a lower value in the daytime and a higher value in the nighttime. The shorter aging time scale in the daytime is due to condensation aging associated with intense photochemical reaction while the longer aging time scale in the nighttime is due to coagulation aging, which is much slower than that due to condensation. In Beijing, the aging time scale is 2 h or less in the surface layer in daytime, which is far below the fixed 1.2 days used in many models. As a result, the fraction of hydrophilic BC particles by the new scheme is larger than that by the scheme with fixed aging time scale though the mean aging time scale by the new scheme is much larger than 1.2 days. Hydrophilic fraction of BC particles increases with the increase of height. Over central-eastern China, the averaged aging time scale calculated by the new scheme is in the range from 12 h to 7 days, with higher values in regions far from the source areas. Hydrophilic fraction of BC particles is more than 90% at the higher levels in polluted atmosphere. Difference of simulated BC concentration with internal mixing and microphysical aging is within 5%, indicating that the assumption of internal mixing for BC particles to respond to in-cloud scavenging is more appropriate than the external mixing assumption in polluted atmosphere over central-eastern China.

  10. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    NASA Astrophysics Data System (ADS)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  11. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  12. Archives of Atmospheric Lead Pollution

    NASA Astrophysics Data System (ADS)

    Weiss, Dominik; Shotyk, William; Kempf, Oliver

    Environmental archives such as peat bogs, sediments, corals, trees, polar ice, plant material from herbarium collections, and human tissue material have greatly helped to assess both ancient and recent atmospheric lead deposition and its sources on a regional and global scale. In Europe detectable atmospheric lead pollution began as early as 6000years ago due to enhanced soil dust and agricultural activities, as studies of peat bogs reveal. Increased lead emissions during ancient Greek and Roman times have been recorded and identified in many long-term archives such as lake sediments in Sweden, ice cores in Greenland, and peat bogs in Spain, Switzerland, the United Kingdom, and the Netherlands. For the period since the Industrial Revolution, other archives such as corals, trees, and herbarium collections provide similar chronologies of atmospheric lead pollution, with periods of enhanced lead deposition occurring at the turn of the century and since 1950. The main sources have been industry, including coal burning, ferrous and nonferrous smelting, and open waste incineration until c.1950 and leaded gasoline use since 1950. The greatest lead emissions to the atmosphere all over Europe occurred between 1950 and 1980 due to traffic exhaust. A marked drop in atmospheric lead fluxes found in most archives since the 1980s has been attributed to the phasing out of leaded gasoline. The isotope ratios of lead in the various archives show qualitatively similar temporal changes, for example, the immediate response to the introduction and phasing out of leaded gasoline. Isotope studies largely confirm source assessments based on lead emission inventories and allow the contributions of various anthropogenic sources to be calculated.

  13. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  14. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  15. Atmospheric science: Warming boosts air pollution

    NASA Astrophysics Data System (ADS)

    Zhang, Renhe

    2017-03-01

    Atmospheric conditions play an important role in driving severe air pollution events in Beijing, China. Now research finds that global warming will enhance weather conditions favouring such events, increasing the chances of severe winter-time haze in the future.

  16. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: Does it make a difference?

    PubMed

    Ouidir, Marion; Giorgis-Allemand, Lise; Lyon-Caen, Sarah; Morelli, Xavier; Cracowski, Claire; Pontet, Sabrina; Pin, Isabelle; Lepeule, Johanna; Siroux, Valérie; Slama, Rémy

    2015-11-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=-0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=-0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Atmospheric Pollution: Its Origins and Prevention.

    ERIC Educational Resources Information Center

    Meetham, A. R.

    Although atmospheric pollution can be reduced or eliminated in many different ways, each way involves questions of economics, the time factor, availability of materials, priority over other urgent reforms, and individual and social psychology. To provide a basis for consideration of these questions, this book gives information not only about the…

  18. ESTIMATING URBAN WET-WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads in urban watersheds emanating from wet-weather flow discharge. Equations for pollutant loading estimates will focus on the effects of wastewater characteristics, sewer flow carrying velocity, and sewer-solids depositi...

  19. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  20. Disentangling interactions between atmospheric pollution and weather

    PubMed Central

    Zanobetti, Antonella; Peters, Annette

    2015-01-01

    The association between short-term exposure to extreme weather events and health has been well established. In addition, there is a large body of epidemiological literature on the short and long-term effects of ambient exposure to PM2.5. We hypothesize that the health impact associated with exposure to air pollution and weather is larger than the risk estimated based on the health effects of air pollution and weather alone. Not much work has been done to estimate the acute and chronic effects associated with simultaneous exposure to multiple environmental agents such as weather and particulate matter. In this editorial we highlight challenges in addressing these interactions. Around the globe, exposure to weather parameters, composition of gaseous and particulate air pollution, and the ventilation rates vary by season. Furthermore, weather and pollution mixtures exhibit different exposure-response function and act through different pathophysiological mechanisms. The synergistic analysis of ambient air pollution and weather require studies collecting appropriate data and advancing methodological approaches. Due to large variation in space and time, carefully designed multi-center studies will be important to address these challenges and provide novel stimuli for promoting measures to slow climate change and improve air pollution in urban areas and in cities around the world. PMID:25452456

  1. Estimation of atmospheric species concentrations from remote sensing data

    NASA Technical Reports Server (NTRS)

    Omatu, S.; Seinfeld, J. H.

    1982-01-01

    The atmospheric species concentration distribution-estimation problem that arises from the measurement configuration of remote sensing, which involves a field of view that moves across the region, is solved by means of the partial differential equation for atmospheric diffusion and the Wiener-Hopf theory. A numerical study is also undertaken for the estimation of concentration distribution downwind of a hypothetical, continuous ground-level source of pollutants.

  2. Identifing Atmospheric Pollutant Sources Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Paes, F. F.; Campos, H. F.; Luz, E. P.; Carvalho, A. R.

    2008-05-01

    The estimation of the area source pollutant strength is a relevant issue for atmospheric environment. This characterizes an inverse problem in the atmospheric pollution dispersion. In the inverse analysis, an area source domain is considered, where the strength of such area source term is assumed unknown. The inverse problem is solved by using a supervised artificial neural network: multi-layer perceptron. The conection weights of the neural network are computed from delta rule - learning process. The neural network inversion is compared with results from standard inverse analysis (regularized inverse solution). In the regularization method, the inverse problem is formulated as a non-linear optimization approach, whose the objective function is given by the square difference between the measured pollutant concentration and the mathematical models, associated with a regularization operator. In our numerical experiments, the forward problem is addressed by a source-receptor scheme, where a regressive Lagrangian model is applied to compute the transition matrix. The second order maximum entropy regularization is used, and the regularization parameter is calculated by the L-curve technique. The objective function is minimized employing a deterministic scheme (a quasi-Newton algorithm) [1] and a stochastic technique (PSO: particle swarm optimization) [2]. The inverse problem methodology is tested with synthetic observational data, from six measurement points in the physical domain. The best inverse solutions were obtained with neural networks. References: [1] D. R. Roberti, D. Anfossi, H. F. Campos Velho, G. A. Degrazia (2005): Estimating Emission Rate and Pollutant Source Location, Ciencia e Natura, p. 131-134. [2] E.F.P. da Luz, H.F. de Campos Velho, J.C. Becceneri, D.R. Roberti (2007): Estimating Atmospheric Area Source Strength Through Particle Swarm Optimization. Inverse Problems, Desing and Optimization Symposium IPDO-2007, April 16-18, Miami (FL), USA, vol 1, p

  3. Meeting Report: Atmospheric Pollution and Human Reproduction

    PubMed Central

    Slama, Rémy; Darrow, Lyndsey; Parker, Jennifer; Woodruff, Tracey J.; Strickland, Matthew; Nieuwenhuijsen, Mark; Glinianaia, Svetlana; Hoggatt, Katherine J.; Kannan, Srimathi; Hurley, Fintan; Kalinka, Jaroslaw; Šrám, Radim; Brauer, Michael; Wilhelm, Michelle; Heinrich, Joachim; Ritz, Beate

    2008-01-01

    Background There is a growing body of epidemiologic literature reporting associations between atmospheric pollutants and reproductive outcomes, particularly birth weight and gestational duration. Objectives The objectives of our international workshop were to discuss the current evidence, to identify the strengths and weaknesses of published epidemiologic studies, and to suggest future directions for research. Discussion Participants identified promising exposure assessment tools, including exposure models with fine spatial and temporal resolution that take into account time–activity patterns. More knowledge on factors correlated with exposure to air pollution, such as other environmental pollutants with similar temporal variations, and assessment of nutritional factors possibly influencing birth outcomes would help evaluate importance of residual confounding. Participants proposed a list of points to report in future publications on this topic to facilitate research syntheses. Nested case–control studies analyzed using two-phase statistical techniques and development of cohorts with extensive information on pregnancy behaviors and biological samples are promising study designs. Issues related to the identification of critical exposure windows and potential biological mechanisms through which air pollutants may lead to intrauterine growth restriction and premature birth were reviewed. Conclusions To make progress, this research field needs input from toxicology, exposure assessment, and clinical research, especially to aid in the identification and exposure assessment of feto-toxic agents in ambient air, in the development of early markers of adverse reproductive outcomes, and of relevant biological pathways. In particular, additional research using animal models would help better delineate the biological mechanisms underpinning the associations reported in human studies. PMID:18560536

  4. Atmospheric pollution in cities of Russia: statistics, causes and characteristics

    NASA Astrophysics Data System (ADS)

    Petrov, A.; Petrova, D.

    2017-06-01

    The article considers the issues of air pollution assessment in Russian industrial regions (2014) and cities (2012). The statistical data is presented both in terms of absolute emissions of pollutants into the atmosphere of Russian cities and relative air pollution calculated for 1 average statistical inhabitant. Classifications of the ecological state of Russian cities on the basis of specific (per inhabitant) air pollution and the air pollution by predominant type source (stationary or non-stationary) are proposed.

  5. Linking Atmospheric Pollution to Cryospheric Changes over the Third Pole

    NASA Astrophysics Data System (ADS)

    Kang, S.; Zhang, Q.; Ji, Z.; Li, Y.; Chen, J.; Zhang, G.; Li, C.; Cong, Z.; Chen, P.; Guo, J.; Huang, J.; Tripathee, L.; Rupakheti, D.; Li, X.; Zhang, Y.; Panday, A. K.; Rupakheti, M.

    2016-12-01

    Known as "the Third Pole" (TP), the Tibetan Plateau and surrounding mountains hold the largest aggregate of glaciers outside the pole regions. Recent monitoring and projection indicated an accelerated glacier decline and increasing glacier runoff. The long-range transport of South Asian atmospheric pollutants, including light absorbing impurities (LAIs) such as black carbon (BC) and mineral dust (MD), can absorb the solar radiation in the atmosphere and reduce albedo after being deposited onto the cryosphere, thereby promoting glacier and snow melt. A coordinated atmospheric pollution monitoring network has been launched covering the TP with emphasis on trans-Himalayan transects since 2013. TSP were collected for 24h at an interval of 3-6 days. BC/OC, polycyclic aromatic hydrocarbons (PAHs) and heavy metals were measured. Results reveal a consistent decrease in almost all analyzed parameters from south to north across the Himalayas. Geochemical signatures of carbonaceous aerosols indicate dominant sources of biomass burning and vehicle exhaust, in line with results of PAHs. Integrated analysis of satellite images and air mass trajectories suggest that the trans-boundary air pollution occurred episodically and concentrated in pre-monsoon seasons via upper air circulation, through-valley wind, and local convection. Simulation results showed that carbonaceous aerosols produced positive/negative shortwave radiative forcing in the atmosphere/ground surface. Aerosols increased surface air temperatures by 0.1-0.5° over the TP and decreased temperatures in South Asia during the monsoon season. Surface snow/ice samples were collected from benchmark glaciers to estimate the impacts of LAIs on glacier melt with model assistance. BC (37%) and MD (32%) contribute to the summer melting of Laohugou Glacier in the northern TP. MD (38%) contributed more glacier melt than BC (11%) on Zhadang Glacier in the southern TP. In the southeastern TP, BC and MD contribute to 30% of the

  6. Estimating the benefits of pollution reduction on agricultural yields: Taiwan's air pollution emission fees program.

    PubMed

    Chen, Tser-yieth; Li, Chun-sheng

    2003-07-01

    Taiwan's implementation of the 1997 Air Pollution Emissions Fees Program will conceivably lead to long-term reductions in pollution emissions. The purpose of this paper is to estimate the benefits to Taiwan from the expected reduction in crop losses as a direct result of such a decrease in air pollution. We employ a demand-supply framework for rice production to estimate the change in social welfare resulting from changes in the concentration of certain pollutants in the atmosphere. Our empirical results show that, in the year 1997, social welfare increments resulting from the decline in sulfur dioxide concentrations in the atmosphere ranged between US dollars 946200 and US dollars 2435800. Meanwhile, during the same period, the increase in social welfare due to the decline in the ozone concentration in the atmosphere ranged between US dollars 838100 and US dollars 1927000. The average benefit from the reduction in both sulfur dioxide and ozone concentrations is calculated to be between US dollars 2.67 and US dollars 6.86 per acre (for sulfur dioxide), and from US dollars 2.36 to US dollars 5.43 per acre (for ozone).

  7. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  8. Ideas in Practice: Studies in Atmospheric Pollution For Science Teachers

    ERIC Educational Resources Information Center

    Rowe, Donald R.

    1974-01-01

    Describes the content and structure of an enviromental course offered by the Department of Engineering Technology at Western Kentucky University. The course focuses on atmospheric pollution and is designed for science teachers currently teaching in the school system. (JR)

  9. Adaptation of plants to atmospheric pollutants.

    PubMed

    Hutchinson, T C

    1984-01-01

    Man-made air pollutants are a recent phenomenon in the evolutionary experience of plants and animals although natural air pollutants from volcanic eruptions, forest fires and dust storms have accompanied evolution for geological eras. Plants have responded to increasing concentrations of such pollutants as sulphur dioxide, fluorides, photochemical oxidants and acid rain at the community, species, population and individual levels. The lichens and bryophytes have shown particularly dramatic changes in urban and industrial areas. Many species have had their distribution severely limited. Tolerances to sulphur dioxide have evolved in populations of a number of grasses and herbs, and some sulphur dioxide-tolerant lichens have invaded inner city areas. Sensitivity to pollutants is partly a function of substrate chemistry. Synergistic interactions occur between various pollutants and also between pollutants and pathogens. A good deal of genetic variation occurs within crops, and this allows for selection of pollution-tolerant varieties. The nature of specific adaptations is not generally well known although, for sulphur dioxide, recent studies in poplar and spinach strongly suggest that increased production of the enzyme superoxide dismutase may be a key factor. In other adaptations, morphological and anatomical features play a part.

  10. ESTIMATING URBAN WET WEATHER POLLUTANT LOADING

    EPA Science Inventory

    This paper presents procedures for estimating pollutant loads emanating from wet-weather flow discharge in urban watersheds. Equations are presented for: annual volume of litter and floatables; the quantity of sand from highway runoff; the quantity of dust-and-dirt accumulation ...

  11. Application of computational fluid mechanics to atmospheric pollution problems

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.; Smith, R. E.

    1986-01-01

    One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.

  12. Plants as bioassay systems for monitoring atmospheric pollutants

    PubMed Central

    Feder, William A.

    1978-01-01

    Plant species act as natural bioindicators of atmospheric pollutants. Plants can be used as bioassay systems for monitoring atmospheric pollutants. Plant injury symptoms, altered growth and reproductive pattern, changes in yield and/or productivity, and changes in species distribution can be used singly or in combination as monitoring devices. The results must be accepted as semiquantitative, but within that constraint, air quality can be sufficiently well defined to enable the setting of air quality standards. Genetic variability of higher plant species has yielded cultivars which display a range of tolerance to gaseous and particulate atmospheric pollutants. Asexual propagation of these cultivars provides pollutant-sensitive and pollutant-tolerant plant material which can be grown on selected sites for observation. Gymnosperm and Angiosperm species as well as species of lichens and mosses have been used to establish field monitoring networks in Europe, Canada, and the United States. White pine, shade tobacco, mosses, and lichens have proven particularly useful as bioassay tools. Pollen from pollutant-sensitive and pollutant-tolerant plant cultivars has also been used as a sensitive laboratory bioassay tool for studying air quality. Epiphytic mosses are particularly efficient as monitors of particulate pollutants, especially heavy metals, some of which may act as chemical mutagens. The cost, complexity, and lack of reliability of instrumented systems for air quality monitoring make imperative the need to develop successful plant bioassay systems for monitoring air quality. PMID:738233

  13. Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver

    NASA Technical Reports Server (NTRS)

    Menzies, R. T. (Inventor)

    1973-01-01

    The presence of selected atmospheric pollutants can be determined by transmitting an infrared beam of proper wavelength through the atmosphere, and detecting the reflections of the transmitted beam with a heterodyne radiometer transmitter-receiver using part of the laser beam as a local oscillator. The particular pollutant and its absorption line strength to be measured are selected by the laser beam wave length. When the round-trip path for the light is known or measured, concentration can be determined. Since pressure (altitude) will affect the shape of the molecular absorption line of a pollutant, tuning the laser through a range of frequencies, which includes a part of the absorption line of the pollutant of interest, yields pollutant altitude data from which the altitude and altitude profile is determined.

  14. Does toxicity of aromatic pollutants increase under remote atmospheric conditions?

    PubMed

    Kroflič, Ana; Grilc, Miha; Grgić, Irena

    2015-03-09

    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective.

  15. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  16. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  17. Study of atmospheric pollution scavenging. [Annotated bibligraphy

    SciTech Connect

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980's became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  18. Reduction of Atmospheric Pollution by Sulphuric Acid Plants,

    DTIC Science & Technology

    1980-01-29

    SULPHURIC ACID PLANTS by N. Popovici , D. Stanciu, T. Ciobanu Approved for public release; distribution unlimited. FTD -ID(RS)T-1686-79 EDITED TRANSLATION FTD...ID(RS)T-1686-79 29 January 1980 MICROFICHE NR: FTD-0-C-000157 CSB78125907 REDUCTION OF ATMOSPHERIC POLLUTION BY SULPHURIC ACID PLANTS By: N. Popovici ...1686-79 Date 29 Jan1980 Oz REDUCTION OF ATMOSPHERIC POLLUTION BY SULPHURIC ACID PLANTS By: N. Popovici , D. Stanciu, T. Ciobanu ABSTRACT D.C. 620.312

  19. Constraining CO emission estimates using atmospheric observations

    NASA Astrophysics Data System (ADS)

    Hooghiemstra, P. B.

    2012-06-01

    We apply a four-dimensional variational (4D-Var) data assimilation system to optimize carbon monoxide (CO) emissions and to reduce the uncertainty of emission estimates from individual sources using the chemistry transport model TM5. In the first study only a limited amount of surface network observations from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL) Global Monitoring Division (GMD) is used to test the 4D-Var system. Uncertainty reduction up to 60% in yearly emissions is observed over well-constrained regions and the inferred emissions compare well with recent studies for 2004. However, since the observations only constrain total CO emissions, the 4D-Var system has difficulties separating anthropogenic and biogenic sources in particular. The inferred emissions are validated with NOAA aircraft data over North America and the agreement is significantly improved from the prior to posterior simulation. Validation with the Measurements Of Pollution In The Troposphere (MOPITT) instrument shows a slight improved agreement over the well-constrained Northern Hemisphere and in the tropics (except for the African continent). However, the model simulation with posterior emissions underestimates MOPITT CO total columns on the remote Southern Hemisphere (SH) by about 10%. This is caused by a reduction in SH CO sources mainly due to surface stations on the high southern latitudes. In the second study, we compare two global inversions to estimate carbon monoxide (CO) emissions for 2004. Either surface flask observations from NOAA or CO total columns from the MOPITT instrument are assimilated in a 4D-Var framework. In the Southern Hemisphere (SH) three important findings are reported. First, due to their different vertical sensitivity, the stations-only inversion increases SH biomass burning emissions by 108 Tg CO/yr more than the MOPITT-only inversion. Conversely, the MOPITT-only inversion results in SH natural emissions

  20. Urban planning and interactions with atmospheric pollution in Arve valley

    NASA Astrophysics Data System (ADS)

    Langlois de Septenville, William; Cossart, Étienne

    2017-04-01

    Atmospheric pollution is a major concern of urbanised areas and territory managers have to conduct efficient policies to decrease population exposure and vulnerability. Even if pollution peaks are subject to an important mediatisation and to a large part of preventive actions, background pollution remains responsible of the largest sanitary effects. They depend on (1) the concentration and the duration of the exposure and (2) to the kind of pollutants considered. Many sources of pollutants can be identified in urban areas as heating, industry or traffic; and each of them generates specific particles. Currently, the major part of pollution risk studies focuses on modelling particle emissions and their dissemination in the environment. These kinds of studies highlight the hazard intensity and its spatiality, commonly named the hazard exposure. Another part of risk studies, less frequent, considers the vulnerability. Vulnerability is a complex concept that involves a wide range of scales and objects ranging from biophysical parameters to social characteristics. They notably concern accessibility to information, knowledge and perceptions about the risk. The Arve valley (south-east of France) is subject to heavy pollution concentrations. High levels recording in this area have imposed the implementation of an Atmosphere Protection Plan. This type of plan is triggered if a peak occurs and enforces provisional binding measures for polluters, such as highway speed limitation for traffic emissions. These measures are only focused on emissions and have no effect for reducing vulnerability and exposition, for a long- and short-term time scales. An opportunity to ensure this objective is to consider how local urban morphologies can combine exposition and vulnerability situations. Indeed, cities have been planned without taking into account atmospheric pollution and morphologies. This context may conduct to the increase in both of these two risk components and producing

  1. The net decay time of anomalies in concentrations of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Vinnikov, Konstantin Y.; Dickerson, Russell R.; Krotkov, Nickolay A.; Edgerton, Eric S.; Schwab, James J.

    2017-07-01

    This paper introduces a new parameter to characterize the random component in temporal variability of atmospheric pollutants and proposes a simple statistical technique for its evaluation. That parameter is the net decay time (or the time scale) of the local anomalies in concentrations of atmospheric pollutants, rather than the traditionally used chemical lifetimes of total amounts of the species. Using widely available data of hourly multi-year surface trace gas pollutant concentrations we demonstrate a simplified way to estimate the net decay time with an exponential approximation of lag-correlation functions. We assessed the decay times of fluctuations in observations of eight atmospheric pollutants (SO2, NO, NO2, NOy, O3, CO, NH3, and HNO3) at two urban sites and one cleaner rural site in the Eastern US. The time scales of temporal fluctuations (net decay times) vary from about one hour to slightly more than one day. These scales are generally much shorter in urban environments than in remote regions. We also compared day- and night-time observations in warm and cold seasons. At night in the cold season, time scales of fluctuations in atmospheric pollutants are usually the longest. Such estimates should be useful to air quality prediction, public health, and satellite remote sensing research communities.

  2. Global Monitoring of Atmospheric Pollutants from the Aura Satellite

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Leptoukh, G.; Johnson, J.; Farley, J.; Kempler, S.

    2007-12-01

    Atmospheric measurements of O3, CO, NO2, SO2, HCHO, Aerosol and other pollutants are routinely made by the OMI, MLS, HIRDLS and TES instruments flown on the EOS Aura satellite since its launch in July 2004. These measurements provide information on the vertical and horizontal distribution of atmospheric pollutants. High concentrations of these pollutants come principally from motor vehicle exhaust, coal and oil combustion, refineries, and biomass burning. These gases play a major role in the formation of unhealthy ground level ozone (or smog) and can trigger serious respiratory problems. The convective transport of these gases, smoke and dust also pollute the upper troposphere and lower stratosphere where the residence time of these pollutants is relatively long and atmospheric winds transport these pollutants to far distances across the oceans and continents. This presentation provides some examples of how Aura data can be used in monitoring air quality by identifying sources of air pollution and understanding the distribution of these pollutants as they get transported extensive distances from their source. In this study we have also used the Aerosol Index data from TOMS, CO data from MOPITT and AIRS, Aerosol data from MODIS, Aerosol layer height information from CALIPSO, and wind information from the NCEP/NCAR reanalysis. This study uses the web based data exploration and analysis tool Giovanni developed at the NASA Goddard Earth Sciences Data Services and Information Center (GES DSIC). Giovanni provides easy access to satellite data, eliminating the need to download large data sets and thus saving the user time. Giovanni capabilities include on- line animations of 2D maps, time-series plots (including statistics), several combinations of 2D cross-section maps (latitude/longitude/height/time), scatter plots, correlation maps, and collocated subsets of the data along CALIPSO tracks.

  3. Role of atmospheric circulations in haze pollution in December 2016

    NASA Astrophysics Data System (ADS)

    Yin, Zhicong; Wang, Huijun

    2017-09-01

    In the east of China, recent haze pollution has been severe and damaging. In addition to anthropogenic emissions, atmospheric circulations and local meteorological conditions were conducive factors. The number of December haze days over North China and the Huanghuai area has increased sharply since 2010 and was greatest in 2016. During 2016, the most aggressive control measures for anthropogenic emissions were implemented from 16 to 21 December, but the most severe haze pollution still occurred, covering approximately 25 % of the land area of China and lasting for 6 days. The atmospheric circulations must play critical roles in the sub-seasonal haze events. Actually, the positive phase of the East Atlantic-West Russia pattern in the middle troposphere strengthened the anomalous anti-cyclone over the NH area that confined vertical motion below. The associated southerly anomalies made the cold air and surface wind speed weaker, but enhanced the humid flow. Thus, the horizontal and vertical dispersion of atmospheric particulates was suppressed and the pollutants gathered within a narrow space. In December 2016, these key indices were strongly beneficial for haze occurrence and combined to result in the severest haze pollution. The influences of the preceding autumn sea surface temperature near the Gulf of Alaska and the subtropical eastern Pacific, October-November snow cover in western Siberia, and associated physical processes on haze pollution are also discussed.

  4. A Regulation for the Control of Atmospheric Pollution, Amended Version.

    ERIC Educational Resources Information Center

    Puerto Rico Environmental Quality Board, San Juan.

    Nine articles, related to the preservation of the natural quality of the air, and to prevention, elimination and control of atmospheric pollution in the Commonwealth of Puerto Rico, are contained in this document. These articles were written and enacted by the Environmental Quality Board in accordance with Law No. 9, approved June 18, 1970 -…

  5. The effect of possible sources of closed ecosystem atmosphere pollution on the growth of test microorganisms

    NASA Astrophysics Data System (ADS)

    Tirranen, L. S.; Puzyr, A. P.; Borodina, E. V.; Kalacheva, G. S.; Shilenko, M. P.

    Volatile products of plants microorganisms and other system elements human beings technological equipment within the closed ecosystem etc influence on formation of microbial communities and on the gas composition of system atmosphere which in its turn influences on the state of plants We estimated the effect of possible sources of pollution of closed ecosystem atmosphere on the growth of a set of 96 test microorganism strains the sensitivity of which to various volatile products had been previously assessed It was revealed that the gas composition of the atmosphere of separate system elements technological equipment plants etc didn t cause negative effect on the state and productivity of plants but influenced on the growth of several test microbes which proves that microorganisms are more sensitive to changes in the gas composition than plants It was established that it was mostly ozone and ethylene that affected the growth of plants and microorganisms among all gas emissions polluting the atmosphere However the effect of the atmosphere of each element without system closing and separate sources of pollution on the growth of microbes was weaker in terms of efficiency and action spectrum than the effect of atmosphere pollution in long-term experiments with the closed system including human beings and higher plants Apparently in the closed system with crew of 2-3 persons and plants it wasn t one factor but a complex of factors that caused influence It is possible to advocate using a set of sensitive microorganisms for monitoring

  6. Estimating Atmospheric Turbulence From Flight Records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.

    1991-01-01

    Method for estimation of atmospheric turbulence encountered by airplanes utilizes wealth of data captured by multichannel digital flight-data recorders and air-traffic-control radar. Developed as part of continuing effort to understand how airplanes respond to such potentially hazardous phenomena as: clear-air turbulence generated by destabilized wind-shear layers above mountains and thunderstorms, and microbursts (intense downdrafts striking ground), associated with thunderstorms. Reconstructed wind fields used to predict and avoid future hazards.

  7. Particle Pollution Estimation Based on Image Analysis

    PubMed Central

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction. PMID:26828757

  8. Particle Pollution Estimation Based on Image Analysis.

    PubMed

    Liu, Chenbin; Tsow, Francis; Zou, Yi; Tao, Nongjian

    2016-01-01

    Exposure to fine particles can cause various diseases, and an easily accessible method to monitor the particles can help raise public awareness and reduce harmful exposures. Here we report a method to estimate PM air pollution based on analysis of a large number of outdoor images available for Beijing, Shanghai (China) and Phoenix (US). Six image features were extracted from the images, which were used, together with other relevant data, such as the position of the sun, date, time, geographic information and weather conditions, to predict PM2.5 index. The results demonstrate that the image analysis method provides good prediction of PM2.5 indexes, and different features have different significance levels in the prediction.

  9. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  10. Filtering effect of wind flow turbulence on atmospheric pollutant dispersion.

    PubMed

    Yassin, Mohamed F

    2012-06-01

    This paper presents a model for coupling the statistics of wind velocity distribution and atmospheric pollutant dispersion. The effect of wind velocity distribution is modeled as a three-dimensional finite-impulse response (3D-FIR) filter. A phase space representation of the 3D-FIR filter window is discussed. The resulting pollutant dispersion is the multiplication in the phase space of the 3-D Fourier transform of the pollutant concentration and the volume described by the filter window coefficients. The shape of the filter window in the phase space enables representing such effects as vortex shedding thermal currents, etc. The impact of spatial distribution of the sensors on the resulting pollutant spatial distribution and the 3-D FIR filter model employed also discuss. The case of a neutrally buoyant plume emitted from an elevated point source in a turbulent boundary layer considers. The results show that wind turbulence is an important factor in the pollutant dispersion and introduces expected random fluctuations in pollutant distribution and leads to spreading the distribution due to wind mixing.

  11. Microscale atmospheric pollution of Pogranichny settlement (Primorsky region, Russia)

    NASA Astrophysics Data System (ADS)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Agoshkov, Alexander; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter in the small urban settlement Pogranichny by means of laser granulometry of snow water. The atmosphere of this settlement is polluted with particles under 10 μm (PM10) to a certain extent. We found microparticles potentially hazardous to health in significant quantities (from 176.3% to 24.9%) in 4 sampling points out of 9. Large particles (sized over 400 μm) dominate on the most territory of the settlement reaching 78.1%.

  12. Long path DOAS measurements of atmospheric pollutants concentration

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2015-11-01

    A differential optical absorption spectroscopy gas-analyzer consisted of a coaxial telescope, a spectrometer, an analyzer and retroreflector was successfully tested. A high pressure 150-W Xe arc lamp was employed as a light source. In order to record the spectra, a monochrometer with a grating and photodiode array was used. Gas analyzer spectral data bank includes more than 35 moleculas absorbed in UV spectral region. The measured absorption spectra were evaluated by using a least-squares fit to determine the average mixing ratio of each species in the atmosphere. As a result of experiments time series of concentrations of gases polluting the atmosphere were trace measured. Minimally detected concentration on pathlength 480 m is the unit of ppb at the time of accumulation of 2 min. The results of the field test measurements of pollutants in Tomsk city are presented.

  13. Intense winter atmospheric pollution episodes affecting the Western Mediterranean.

    PubMed

    Pey, Jorge; Pérez, Noemí; Querol, Xavier; Alastuey, Andrés; Cusack, Michael; Reche, Cristina

    2010-03-15

    The geographic location of the Western Mediterranean Basin and its peculiar topography, the climatic conditions and the intense anthropogenic and natural emissions of atmospheric pollutants are key factors necessary to interpret the atmospheric aerosol phenomenology over this area. During the cold season it is common to have severe atmospheric particulate matter (PM) pollution episodes (of an anthropogenic origin) affecting this region, not only in the urban and industrial areas but also in the regional and rural sites. During these episodes, the midday hourly PM(1) levels at regional background sites are in many cases higher than those at urban areas. Around 10% of the days under winter anticyclonic conditions registered similar PM(1) levels at the regional background than at the urban area and, sporadically the daily PM(1) levels at the regional background sites may exceed those at urban sites. Furthermore, the very high hourly PM(1) levels measured at regional background sites during these episodes are not regularly attained in the closest urban areas, which leads to the hypothesis that an important formation of secondary aerosols occurs during the transport of the polluted air masses towards the elevated rural sites. The interpretation of the variability of PM levels and composition (2002-2008) at one urban site (Barcelona) and at one regional background site (Montseny) allows us to illustrate the phenomenology of these scenarios, to quantify the mean annual contributions to the PM levels and to identify their main tracers. Ammonium nitrate appears to be the most abundant compound during these scenarios, although organic species and trace metals also increase markedly. Owing to the intensity, composition and recurrence of these atmospheric pollution episodes, important health, climatic and ecological implications may be derived.

  14. Effects of atmospheric transport and trade on air pollution mortality in China

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyan; Li, Xin; Zhang, Qiang; Jiang, Xujia; Lin, Jintai; Peters, Glen P.; Li, Meng; Geng, Guannan; Zheng, Bo; Huo, Hong; Zhang, Lin; Wang, Haikun; Davis, Steven J.; He, Kebin

    2017-09-01

    Air quality is a major environmental concern in China, where premature deaths due to air pollution have exceeded 1 million people per year in recent years. Here, using a novel coupling of economic, physical and epidemiological models, we estimate the premature mortality related to anthropogenic outdoor PM2.5 air pollution in seven regions of China in 2010 and show for the first time how the distribution of these deaths in China is determined by a combination of economic activities and physical transport of pollution in the atmosphere. We find that 33 % (338 600 premature deaths) of China's PM2.5-related premature mortality in 2010 were caused by pollutants emitted in a different region of the country and transported in the atmosphere, especially from north to south and from east to west. Trade further extended the cross-regional impact; 56 % of (568 900 premature deaths) China's PM2.5-related premature mortality was related to consumption in another region, including 423 800 (42 % of total) and 145 100 (14 %) premature deaths from domestic consumption and international trade respectively. Our results indicate that multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts, and efforts to reduce the health impacts of air pollution in China should be prioritized according to the source and location of emissions, the type and economic value of the emitting activities, and the related patterns of consumption.

  15. Pollution Load Estimation Based on Characteristic Section Load Method

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Song, JinXi; Liu, WanQing

    2017-12-01

    Weihe River Watershed above Linjiacun Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a new method to estimate pollution loads-Characteristic Section Load Method(CSLM) is proposed and point source pollution and non-point source pollution loads of Weihe River Watershed above Linjiacun Section are calculated in the rainy, normal and dry season in the year 2007. The results show that the monthly point source pollution loads of Weihe River Watershed above Linjiacun Section are discharged stably, the monthly non-point source pollution loads of Weihe River Watershed above Linjiacun Section change greatly, the non-point source pollution load proportions of total pollution load of COD are gradually decreased in the rainy, normal and wet periods.

  16. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    NASA Technical Reports Server (NTRS)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  17. The Influence of Meteorological Factors and Atmospheric Pollutants on the Risk of Preterm Birth.

    PubMed

    Giorgis-Allemand, Lise; Pedersen, Marie; Bernard, Claire; Aguilera, Inmaculada; Beelen, Rob M J; Chatzi, Leda; Cirach, Marta; Danileviciute, Asta; Dedele, Audrius; van Eijsden, Manon; Estarlich, Marisa; Fernández-Somoano, Ana; Fernández, Mariana F; Forastiere, Francesco; Gehring, Ulrike; Grazuleviciene, Regina; Gruzieva, Olena; Heude, Barbara; Hoek, Gerard; de Hoogh, Kees; van den Hooven, Edith H; Håberg, Siri E; Iñiguez, Carmen; Jaddoe, Vincent W V; Korek, Michal; Lertxundi, Aitana; Lepeule, Johanna; Nafstad, Per; Nystad, Wenche; Patelarou, Evridiki; Porta, Daniela; Postma, Dirkje; Raaschou-Nielsen, Ole; Rudnai, Peter; Siroux, Valérie; Sunyer, Jordi; Stephanou, Euripides; Sørensen, Mette; Eriksen, Kirsten Thorup; Tuffnell, Derek; Varró, Mihály J; Vrijkotte, Tanja G M; Wijga, Alet; Wright, John; Nieuwenhuijsen, Mark J; Pershagen, Göran; Brunekreef, Bert; Kogevinas, Manolis; Slama, Rémy

    2017-02-15

    Atmospheric pollutants and meteorological conditions are suspected to be causes of preterm birth. We aimed to characterize their possible association with the risk of preterm birth (defined as birth occurring before 37 completed gestational weeks). We pooled individual data from 13 birth cohorts in 11 European countries (71,493 births from the period 1994-2011, European Study of Cohorts for Air Pollution Effects (ESCAPE)). City-specific meteorological data from routine monitors were averaged over time windows spanning from 1 week to the whole pregnancy. Atmospheric pollution measurements (nitrogen oxides and particulate matter) were combined with data from permanent monitors and land-use data into seasonally adjusted land-use regression models. Preterm birth risks associated with air pollution and meteorological factors were estimated using adjusted discrete-time Cox models. The frequency of preterm birth was 5.0%. Preterm birth risk tended to increase with first-trimester average atmospheric pressure (odds ratio per 5-mbar increase = 1.06, 95% confidence interval: 1.01, 1.11), which could not be distinguished from altitude. There was also some evidence of an increase in preterm birth risk with first-trimester average temperature in the -5°C to 15°C range, with a plateau afterwards (spline coding, P = 0.08). No evidence of adverse association with atmospheric pollutants was observed. Our study lends support for an increase in preterm birth risk with atmospheric pressure. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.

    2016-12-01

    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  19. Estimation of River Towboat Air Pollution in Saint Louis, Missouri

    DOT National Transportation Integrated Search

    1976-02-01

    The study gives an estimate of river towboat air pollution emissions for the St. Louis Air Pollution Study area. No emissions from secondary sources or from recreational boating on the river of other areas are considered. The emission estimate is bas...

  20. Dispersion of atmospheric air pollution in summer and winter season.

    PubMed

    Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech

    2017-11-04

    Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.

  1. Health Risk of Exposure to Atmospheric Pollutant Particles

    EPA Science Inventory

    In relation to multi-component mixture nature of atmospheric PM, this presentation will discuss methods for estimating the respiratory internal dose by experiment and mathematical modeling, limitations of each method and interpretations of the results in the context of health ris...

  2. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    SciTech Connect

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham E-mail: ggonzalezabad@cfa.harvard.edu

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. We estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.

  3. DETECTING INDUSTRIAL POLLUTION IN THE ATMOSPHERES OF EARTH-LIKE EXOPLANETS

    SciTech Connect

    Lin, Henry W.; Abad, Gonzalo Gonzalez; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: ggonzalezabad@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2014-09-01

    Detecting biosignatures, such as molecular oxygen in combination with a reducing gas, in the atmospheres of transiting exoplanets has been a major focus in the search for alien life. We point out that in addition to these generic indicators, anthropogenic pollution could be used as a novel biosignature for intelligent life. To this end, we identify pollutants in the Earth's atmosphere that have significant absorption features in the spectral range covered by the James Webb Space Telescope. We focus on tetrafluoromethane (CF{sub 4}) and trichlorofluoromethane (CCl{sub 3}F), which are the easiest to detect chlorofluorocarbons (CFCs) produced by anthropogenic activity. Wemore » estimate that ∼1.2 days (∼1.7 days) of total integration time will be sufficient to detect or constrain the concentration of CCl{sub 3}F (CF{sub 4}) to ∼10 times the current terrestrial level.« less

  4. Establishment of atmospheric pollution standards for motor vehicles.

    PubMed

    Georgiades, Y; Chiron, M; Joumard, R

    1988-12-01

    First we classify the various emission standards applying to light vehicles, the conditions under which the emissions are measured and the environmental standards. We then describe the way in which a standard is established according to the basic principles and procedures involved in determining acceptable environmental concentrations in practice. We refer to the economic and political considerations involved in deciding on a standard and, as an example, to the positions adopted by the various parties concerned in France when drafting the 15.05 standard. In response to the atmospheric pollution caused by motor vehicles, all the industrial countries have, some earlier than others, drawn up regulations designed to limit the extent of this pollution, to protect the environment and reduce the public health risk. Both environmental and emission standards are aimed at reducing the risks to the environment and in particular to man, arising From the presence of particular pollutants. The procedure concerned in establishing these standards is a complicated one involving scientific, economic and political considerations; furthermore, there is a great diversity of standards.

  5. A model for estimating air-pollutant uptake by forests: calculation of absorption of sulfur dioxide from dispersed sources

    Treesearch

    C. E., Jr. Murphy; T. R. Sinclair; K. R. Knoerr

    1977-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant...

  6. Precision of Atmospheric Persistent Organic Pollutant Concentration Measurements.

    PubMed

    Lehman, Daniel C; Bays, James C; Hites, Ronald A

    2016-12-20

    Environmental measurement programs are often undertaken with the assumption that measurements at a given location will be comparable to others that would be observed at the same time in the immediate vicinity, but this assumption has seldom been tested. This paper does so. We discuss here the precision of atmospheric concentration measurements of persistent organic pollutants (POPs) near the North American Great Lakes-measurements that we have been conducting since 1994. We report the relative percent differences between the measured values for 100-200 duplicate samples, and through our use of surrogate (recovery) standards, we have separated the analytical error from the sampling error for the target compounds. The error contributions we calculated were on the order of 5% for the analytical error and 20% for the sampling error, suggesting that the latter is the greatest hindrance to increased precision. In a comparison of relative percent differences for measurements among different atmospheric phases, we observed the highest errors for precipitation samples, with an average median of 35 ± 3, which is more than for vapor-phase samples (27 ± 3) or particle-phase samples (27 ± 2). We suggest that sampling errors are principally the result of inaccuracies in measuring the sample volume and possibly the result of spatial heterogeneity of the atmosphere.

  7. Estimation of microwave absorption in the Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Coombs, W. C.

    1971-01-01

    A procedure for estimating the microwave absorption loss of the Jupiter atmosphere is presented. Estimation of microwave absorption by planetary atmospheres involves two different investigative disciplines (1) the determination of an acceptable model of the atmosphere itself and (2) the determination of the microwave attenuation rate applicable to each different volume sample of the atmosphere, and the integration of this loss over the varying radio propagation path for any given entry trajectory to obtain the total loss.

  8. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests.

    PubMed

    Jeran, Z; Mrak, T; Jaćimović, R; Batic, F; Kastelec, D; Mavsar, R; Simoncic, P

    2007-03-01

    Two country-wide surveys using epiphytic lichens as biomonitors of atmospheric pollution carried out during 2000 and 2001 in Slovenia were compared with surveys in 1991 and 1992. In the first survey, epiphytic lichen cover was studied in more than 500 plots of the 4 x 4 km national grid carried out within the framework of forest decline inventories. In the second survey, the epiphytic lichen Hypogymnia physodes (L.) Nyl., was collected on a 16 x 16 km bioindication grid and analysed for S, N, As, Br, Ce, Cd, Cr, K, La, Mo, Rb, Sb, Th, U and Zn contents. Only 'forested area' sampling points were included in the present study. Lichen cover was low, with about 70% of plots with less than 10% foliose lichen cover. No relationship was found between Hypogymnia trace element, N and S concentrations and foliose epiphytic lichen cover.

  9. Atmospheric pollution over the eastern Mediterranean during summer - a review

    NASA Astrophysics Data System (ADS)

    Dayan, Uri; Ricaud, Philippe; Zbinden, Régina; Dulac, François

    2017-11-01

    The eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently, mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane, and sulfate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatiotemporal distribution of the mixed boundary layer during summer, is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, led to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g., ventilation rates) and regional peculiarities (long-range transport) enhancing the build-up of air pollutant concentrations are presented. Tropospheric ozone (O3) concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long-range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels, and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of O

  10. Persistent organic pollutants (POPs) in the Arctic atmosphere

    SciTech Connect

    Halsall, C.J.; Barrie, L.A.; Fellin, P.; Dougherty, D.; Muir, D.; Grift, N.; Lockhart, L.

    1995-12-31

    As part of the Canadian Northern Contaminants Research Program, measurements of persistent organic pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) have been made on a weekly basis in the Canadian and Russian Arctic since January 1992. At each site a High-Volume air sampler was used to collect particulate and gaseous fractions of these airborne pollutants. PAH and PCB data will be presented primarily for the sites of Alert (82.5{degree}N) on Ellesmere Island and Tagish (60.3{degree}N) in the Yukon (Pacific Northwest). Other sites include Cape Dorset on Baffin Island and Dunai Island in eastern Siberia. At both Alert and Tagish, seasonal fluctuations in total PAH and total PCB concentrations were apparent. PAHs showed a maxima during the colder months of December to March while PCBs displayed higher concentrations during the warmer months of April to August. At Alert, total PCB concentrations ranged from {approximately} 40 pg/m{sup 3} in the colder months of october to March and {approximately} 140 pg/m{sup 3} in the warmer months of April to August, the profile dominated by the lighter di- and tri-chlorinated homologues. Concentrations of the higher chlorinated penta- hexa- and hepta-CBs peaked during the warmer months. Enhanced partitioning to the particulate phase was evident for both PAHs and PCBs in the Arctic atmosphere.

  11. Severe Pollution in China Amplified by Atmospheric Moisture.

    PubMed

    Tie, Xuexi; Huang, Ru-Jin; Cao, Junji; Zhang, Qiang; Cheng, Yafang; Su, Hang; Chang, Di; Pöschl, Ulrich; Hoffmann, Thorsten; Dusek, Uli; Li, Guohui; Worsnop, Douglas R; O'Dowd, Colin D

    2017-11-17

    In recent years, severe haze events often occurred in China, causing serious environmental problems. The mechanisms responsible for the haze formation, however, are still not well understood, hindering the forecast and mitigation of haze pollution. Our study of the 2012-13 winter haze events in Beijing shows that atmospheric water vapour plays a critical role in enhancing the heavy haze events. Under weak solar radiation and stagnant moist meteorological conditions in winter, air pollutants and water vapour accumulate in a shallow planetary boundary layer (PBL). A positive feedback cycle is triggered resulting in the formation of heavy haze: (1) the dispersal of water vapour is constrained by the shallow PBL, leading to an increase in relative humidity (RH); (2) the high RH induces an increase of aerosol particle size by enhanced hygroscopic growth and multiphase reactions to increase particle size and mass, which results in (3) further dimming and decrease of PBL height, and thus further depressing of aerosol and water vapour in a very shallow PBL. This positive feedback constitutes a self-amplification mechanism in which water vapour leads to a trapping and massive increase of particulate matter in the near-surface air to which people are exposed with severe health hazards.

  12. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOEpatents

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  13. Laser-excited fluorescence for measuring atmospheric pollution

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1975-01-01

    System measures amount of given pollutant at specific location. Infrared laser aimed at location has wavelength that will cause molecules of pollutant to fluoresce. Detector separates fluorescence from other radiation and measures its intensity to indicate concentration of pollutant.

  14. Extensive regional atmospheric hydrocarbon pollution in the southwestern United States.

    PubMed

    Katzenstein, Aaron S; Doezema, Lambert A; Simpson, Isobel J; Blake, Donald R; Rowland, F Sherwood

    2003-10-14

    Light alkane hydrocarbons are present in major quantities in the near-surface atmosphere of Texas, Oklahoma, and Kansas during both autumn and spring seasons. In spring 2002, maximum mixing ratios of ethane [34 parts per 109 by volume (ppbv)], propane (20 ppbv), and n-butane (13 ppbv) were observed in north-central Texas. The elevated alkane mixing ratios are attributed to emissions from the oil and natural gas industry. Measured alkyl nitrate mixing ratios were comparable to urban smog values, indicating active photochemistry in the presence of nitrogen oxides, and therefore with abundant formation of tropospheric ozone. We estimate that 4-6 teragrams of methane are released annually within the region and represents a significant fraction of the estimated total U.S. emissions. This result suggests that total U.S. natural gas emissions may have been underestimated. Annual ethane emissions from the study region are estimated to be 0.3-0.5 teragrams.

  15. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    PubMed

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  16. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  17. Atmospheric emissions and pollution from the coal-fired thermal power plants in India

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2014-08-01

    In India, of the 210 GW electricity generation capacity, 66% is derived from coal, with planned additions of 76 GW and 93 GW during the 12th and the 13th five year plans, respectively. Atmospheric emissions from the coal-fired power plants are responsible for a large burden on human health. In 2010-11, 111 plants with an installed capacity of 121 GW, consumed 503 million tons of coal, and generated an estimated 580 ktons of particulates with diameter less than 2.5 μm (PM2.5), 2100 ktons of sulfur dioxides, 2000 ktons of nitrogen oxides, 1100 ktons of carbon monoxide, 100 ktons of volatile organic compounds, and 665 million tons of carbon dioxide. These emissions resulted in an estimated 80,000 to 115,000 premature deaths and 20.0 million asthma cases from exposure to PM2.5 pollution, which cost the public and the government an estimated INR 16,000 to 23,000 crores (USD 3.2 to 4.6 billion). The emissions were estimated for the individual plants and the atmospheric modeling was conducted using CAMx chemical transport model, coupled with plume rise functions and hourly meteorology. The analysis shows that aggressive pollution control regulations such as mandating flue gas desulfurization, introduction and tightening of emission standards for all criteria pollutants, and updating procedures for environment impact assessments, are imperative for regional clean air and to reduce health impacts. For example, a mandate for installation of flue gas desulfurization systems for the operational 111 plants could reduce the PM2.5 concentrations by 30-40% by eliminating the formation of the secondary sulfates and nitrates.

  18. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    PubMed

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NOx, trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  19. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China.

    PubMed

    Zeng, X T; Tong, Y F; Cui, L; Kong, X M; Sheng, Y N; Chen, L; Li, Y P

    2017-07-15

    In recent years, increscent emissions in the city of Beijing due to expanded population, accelerated industrialization and inter-regional pollutant transportation have led to hazardous atmospheric pollution issues. Although a number of anthropogenic control measures have been put into use, frequent/severe haze events have still challenged regional governments. In this study, a hybrid population-production-pollution nexus model (PPP) is proposed for air pollution management and air quality planning (AMP) with the aim to coordinate human activities and environmental protection. A fuzzy-stochastic mixed quadratic programming method (FSQ) is developed and introduced into a PPP for tackling atmospheric pollution issues with uncertainties. Based on the contribution of an index of population-production-pollution, a hybrid PPP-based AMP model that considers employment structure, industrial layout pattern, production mode, pollutant purification efficiency and a pollution mitigation scheme have been applied in Beijing. Results of the adjustment of employment structure, pollution mitigation scheme, and green gross domestic product under various environmental regulation scenarios are obtained and analyzed. This study can facilitate the identification of optimized policies for alleviating population-production-emission conflict in the study region, as well as ameliorating the hazardous air pollution crisis at an urban level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution

    NASA Astrophysics Data System (ADS)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L.; Colegrove, Dominique P.; Hueber, Jacques; Moore, Christopher W.; Sonke, Jeroen E.; Helmig, Detlev

    2017-07-01

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through ‘atmospheric mercury depletion events’, or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(II)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(II) via precipitation or AMDEs. We find that deposition of Hg(0)—the form ubiquitously present in the global atmosphere—occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  1. Atmospheric Turbulence Estimates from a Pulsed Lidar

    NASA Technical Reports Server (NTRS)

    Pruis, Matthew J.; Delisi, Donald P.; Ahmad, Nash'at N.; Proctor, Fred H.

    2013-01-01

    Estimates of the eddy dissipation rate (EDR) were obtained from measurements made by a coherent pulsed lidar and compared with estimates from mesoscale model simulations and measurements from an in situ sonic anemometer at the Denver International Airport and with EDR estimates from the last observation time of the trailing vortex pair. The estimates of EDR from the lidar were obtained using two different methodologies. The two methodologies show consistent estimates of the vertical profiles. Comparison of EDR derived from the Weather Research and Forecast (WRF) mesoscale model with the in situ lidar estimates show good agreement during the daytime convective boundary layer, but the WRF simulations tend to overestimate EDR during the nighttime. The EDR estimates from a sonic anemometer located at 7.3 meters above ground level are approximately one order of magnitude greater than both the WRF and lidar estimates - which are from greater heights - during the daytime convective boundary layer and substantially greater during the nighttime stable boundary layer. The consistency of the EDR estimates from different methods suggests a reasonable ability to predict the temporal evolution of a spatially averaged vertical profile of EDR in an airport terminal area using a mesoscale model during the daytime convective boundary layer. In the stable nighttime boundary layer, there may be added value to EDR estimates provided by in situ lidar measurements.

  2. Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.

    2016-12-01

    Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to

  3. Atmospheric pollutant deposition to high-elevation ecosystems

    NASA Astrophysics Data System (ADS)

    Lovett, Gary M.; Kinsman, John D.

    Current knowledge regarding deposition of atmospheric pollutants to mountain ecosystem is reviewed focusing on the mountains of eastern North America. Despite a general paucity of published data on the subject, some generalization emerge. Wet deposition (i.e. precipitation input) of SO 42-, NO 3-, H + and Pb tends to increase with elevation, primarily because of the orographic increase in precipitation amount. Cloud water deposition of these substances can be very significant for mountain forests, but is highly variable spatially because of its strong dependence on wind speed, cloud characteristics, and vegetation canopy structure, which are all heterogeneously distributed. Dry deposition has not been quantified sufficiently to draw empirical generalizations, but the processes involved are discussed with regard to expected elevational trends. Based on the few studies in which total annual deposition (wet, dry, plus cloud water inputs for an entire year) has been measured, it appears that some high-elevation sites in the Appalachian Mountains receive substantially more SO 42-, NO 3+ deposition than do typical low-elevation sites. The amount of elevational increase depends largely on the amount of cloud water deposition at the mountain site. Data from two clusters of sites in the northern Appalachians indicate that total deposition of SO 42-, NO 3-, and H + to mountaintop sites is typically 3-7 times greater than deposition to nearby lowland sites. Similarly, some studies of Pb accumulation in organic soil horizons suggest a two- to four-fold increase from lowlands to mountaintops. Deposition in mountain areas can be highly variable over short distances because of the patchiness of meteorological conditions and vegetation canopy characteristics, and also because exposed trees and forest edges can receive deposition loads much higher than the landscape average. Night-time and early-morning O 3 concentrations are greater at high-elevation than at low-elevation sites

  4. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  5. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, Robert G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  6. Estimation of light source colours for light pollution assessment.

    PubMed

    Ziou, D; Kerouh, F

    2018-02-18

    The concept of the smart city raised several technological and scientific issues including light pollution. There are various negative impacts of light pollution on economy, ecology, and heath. This paper deals with the census of the colour of light emitted by lamps used in a city environment. To this end, we derive a light bulb colour estimator based on Bayesian reasoning, directional data, and image formation model in which the usual concept of reflectance is not used. All choices we made are devoted to designing an algorithm which can be run almost in real-time. Experimental results show the effectiveness of the proposed approach. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  8. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors.

    PubMed

    Duo, Bu; Cui, Lulu; Wang, Zhenzhen; Li, Rui; Zhang, Liwu; Fu, Hongbo; Chen, Jianmin; Zhang, Huifang; Qiong, A

    2018-01-01

    Atmospheric pollutants including SO 2 , NO 2 , CO, O 3 and inhalable particulate matter (PM 2.5 and PM 10 ) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O 3 , with the peaks in winter but low valleys in summer. The maximum O 3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O 3 and PM 10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O 3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity (RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed (WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O 3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O 3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future. Copyright © 2017. Published by Elsevier B.V.

  9. Fluid mechanics simulation of fog formation associated with polluted atmosphere produced by energy related fuel combustion

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liaw, G. S.

    1980-01-01

    It is noted that large quantities of atmospheric aerosols with composition SO4(-2), NO3(-1), and NH4(+1) have been detected in highly industrialized areas. Most aerosol products come from energy-related fuel combustion. Fluid mechanics simulation of both microphysical and macrophysical processes is considered in studying the time dependent evolution of the saturation spectra of condensation nuclei associated with polluted and clean atmospheres during the time periods of advection fog formation. The results demonstrate that the condensation nuclei associated with a polluted atmosphere provide more favorable conditions than condensation nuclei associated with a clean atmosphere to produce dense advection fog, and that attaining a certain degree of supersaturation is not necessarily required for the formation of advection fog having condensation nuclei associated with a polluted atmosphere.

  10. The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.

    PubMed

    Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina

    2017-05-01

    Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.

  11. Estimating atmospheric temperature profile by an airborne microwave radiometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Xu, Jian; Kenntner, Mareike; Schreier, Franz; Doicu, Adrian

    2017-04-01

    As the rising atmospheric issues such as climate change, air pollution, and ozone depletion have extracted extensive attraction worldwide, observing and modeling of atmospheric quantities becomes critical to our understanding of the environment. This work focuses on the performance of an airborne passive microwave radiometer called MTP (Microwave Temperature Profiler). We aim to obtain vertically distributed atmospheric temperature from intensities measured by the instrument in terms of three frequencies and ten viewing angles. A retrieval program TIRAMISU (Temperature InveRsion Algorithm for MIcrowave SoUnding) has been utilized for processing the MTP data. To solve this severely ill-posed inverse problem, an analysis of different ways of constructing the penalty term onto the Tikhonov-type objective function is conducted. This numerical analysis can help us to better understand pros and cons of these regularization methods and to investigate the measurement capabilities of MTP.

  12. Evaluation of methodologies for exposure assessment to atmospheric pollutants from a landfill site.

    PubMed

    Mohan, Richard; Leonardi, Giovanni S; Robins, Alan; Jefferis, Stephan; Coy, Joanne; Wight, Jeremy; Murray, Virginia

    2009-04-01

    Epidemiological studies around landfill sites are limited by several factors, particularly a lack of accurate exposure assessment. Traditionally, exposure estimates are based on distance between place of residence and the landfill site. However, this measure of exposure ignores the effects that environmental factors may have upon exposure. A previous epidemiological study at a landfill site in the United Kingdom provided the basis for a case study to investigate exposure assessment methodologies that could support ongoing and future epidemiological work. Estimation of relative exposure to atmospheric pollutants near the site was refined using the Atmospheric Dispersion Modeling System (ADMS) 3.1. Annual average concentrations were calculated around the landfill site, which was modeled as an area source with a steady release rate over its entire active surface. Local meteorological and terrain data were used in the assessment. A geographical information system (GIS) was then used to link the results of the modeling to population and other data. Sensitivity studies were included to examine the variation of predicted exposure with several modeling assumptions and hence set other uncertainties in context. No simple relationship existed between the relative individual exposure measured by distance from the site and by dispersion modeling. A reassessment of exposure assessment in epidemiological studies around landfill sites was then undertaken with the refined estimates of exposure. This concluded that use of distance from the site as a proxy for exposure could lead to significant exposure misclassification in comparison with exposure assessment using atmospheric dispersion modeling and GIS. The study also indicated that assessment of peak exposure rates (i.e., extreme concentration levels) might be necessary in some epidemiological work. Optimum strategies for increasing the probability of observing effects in the more highly exposed population can be derived by

  13. Data processing technique for multiangle lidar sounding of poorly stratified polluted atmospheres: Theory and experiment

    Treesearch

    Cyle E. Wold; Vladimir A. Kovalev; Alexander P. Petkov; Wei Min Hao

    2012-01-01

    Scanning elastic lidar, which can operate in different slant directions, is the most appropriate remote sensing tool for investigating the optical properties of smoke-polluted atmospheres. However, the commonly used methodologies of multiangle measurements are based on the assumption of horizontal stratification of the searched atmosphere1,2. When working in real...

  14. Atmospheric Turbulence Scintillation Effects on Wavefront Tilt Estimation

    DTIC Science & Technology

    1997-12-01

    is a good approximation, but for propagation up through the atmo- sphere it is not such a good approximation, since strength of turbulence has a strong ...Simulations are often used to study the effects of atmospheric turbulence on imaging sys- tems and laser propagation . In this chapter we use the...AFIT/GE/ENG/97D-11 ATMOSPHERIC TURBULENCE SCINTILLATION EFFECTS ON WAVEFRONT TILT ESTIMATION THESIS James Allan Louthain Captain, USAF AFIT/GE/ENG

  15. Atmospheric water on Mars, energy estimates for extraction

    NASA Technical Reports Server (NTRS)

    Meyer, Tom

    1991-01-01

    The Mars atmosphere is considered as a resource for water to support a human expedition. Information obtained from the Viking mission is used to estimate the near-surface water vapor level. The variability over the diurnal cycle is examined and periods of greatest water abundance are identified. Various methods for extracting atmospheric water are discussed including energy costs and the means for optimizing water extraction techniques.

  16. Current and future levels of mercury atmospheric pollution on a global scale

    NASA Astrophysics Data System (ADS)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important

  17. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  18. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-05-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  19. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  20. Soil acidification by atmospheric pollution and forest growth

    Treesearch

    Bengt Jonsson

    1976-01-01

    In recent years concern has been expressed about the danger of harmful pollution deposits which affect areas at great distances from the emission sources. The investigation was so designed that a possible reaction in growth resulting from a supposed acidification could be observed as far as possible. A poorer growth development was observed in regions, which are...

  1. Estimate of mercury emissions to the atmosphere from petroleum.

    PubMed

    Wilhelm, S M

    2001-12-15

    An estimate of the contribution of mercury to the atmospheric environment from petroleum processed in the United States is constructed from recent data. The estimate is based on a mass balance approach for mercury in crude oil, in refined products, and in waste streams (air, water, solid waste) from refineries. Although there are insufficient data at present to have a high degree of confidence in the mean amount and range of mercury concentrations in crude oil or in refined products, the framework of the estimate should assist direction for the acquisition of additional data. On the basis of selected data that put the estimated mean concentration of total mercury in crude oil close to 10 ppb, it is calculated that the total amount of mercury in U.S. petroleum processed yearly is slightly over 8000 kg/yr. Of this amount, approximately 6000 kg/yr is estimated to be emitted to the atmosphere from combustion of liquid hydrocarbon fuels, which represents about 10% of the U.S. yearly emission rate of atmospheric mercury from coal combustion. The material balance predicts that the amount of mercury in air emissions from all U.S. refineries is on the order of 1500 kg/yr based on the assumption that fugitive mercury emissions from refineries are negligible. Atmospheric emissions of mercury from fuel oil burned in the United States are estimated in the U.S. EPA Mercury Report to Congress to be approximately 10000 kg/yr, and this estimate may be in error on the high side by a factor of 3-10. If the mean amounts of mercury in U.S. distillate and residual fuel oils are in the range of 5-15 ppb, as suggested by more recent data, then U.S. fuel oil combustion should contribute no more that about 1000-3000 kg/yr (emission ratio = 1) of mercury to the atmospheric burden.

  2. Spectral Optical Properties of the Polluted Atmosphere of Mexico City (Spring-Summer 1992)

    NASA Technical Reports Server (NTRS)

    Vasilyev, O. B.; Contreras, A. Leyva; Valazquez, A. Muhlia; Peralta-Fabi, R.; Ivlev, L. S.; Kovalenko, A. P.; Vasilyev, A. V.; Jukov, V. M.; Welch, Ronald M.

    1995-01-01

    A joint Mexican, Russian, and American research effort has been initiated to develop new methods to remotely sense atmospheric parameters using ground-based, aircraft, and satellite observations. As a first step in this program, ground-based spectrophotometric measurements of the direct solar radiation have been obtained for the extremely polluted Mexico City atmosphere for the period of April-June 1992. These observations were made at more than 1300 channels in the spectral range of 0.35-0.95 microns. In the UltraViolet (UV) portions of the spectrum (e.g., 0.35 microns), aerosol optical thicknesses were found to range between 0.6 and 1.2; in the visible portion of the spectrum (e. g., 0.5 microns) they ranged from 0.5 to 0.8; and in the Near-Infrared (NIR) spectra (e.g., 0.85 micron), values of 0.3 - 0.5 were found. Applying a Spectral Optical Depth (SOD) model of tau(lambda) = C + A(lambda(sup -varies as), values of 1.55 less than varies as less than 1.85 were obtained for polluted, cloudless days, with values of 1.25 less than varies as less than 1.60 on days with haze. The aerosol particles in the polluted Mexico City atmosphere were found to be strongly absorbing, with a single-scattering albedo of 0.7 - 0.9 in the UV, 0.6 - 0.8 in the visible portion of the spectrum, and 0.4 - 0.7 in the NIR. These values are possibly consistent with a high soot concentration, contributed both by vehicular traffic and heavy industry. Analysis of the measured aerosol SOD using the optical parameters of an urban aerosol model pemiits the concentration of aerosol particles to be estimated in the vertical column; a maximum value of 3 x 10(exp 9) 1/sq cm was found. This concentration of aerosol particles exceeds that found in most other regions of the globe by at least an order of magnitude. Near the ground the aerosol size distributions measured using an optical particle counter were found to be strongly multimodal.

  3. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    NASA Astrophysics Data System (ADS)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias <0.5. Concentrations of benzo[a]pyrene are overestimated, probably because continental emissions may be overestimated. Concentrations of benzo[b]fluoranthene and indeno[1,2,3,cd]pyrene are underestimated, in part because of null boundary conditions. PAH deposition fluxes are consistent with earlier measurements obtained in the Greater Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the

  4. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity

    PubMed Central

    Sénéchal, Hélène; Visez, Nicolas; Charpin, Denis; Shahali, Youcef; Peltre, Gabriel; Biolley, Jean-Philippe; Lhuissier, Franck; Couderc, Rémy; Yamada, Ohri; Malrat-Domenge, Audrey; Pham-Thi, Nhân; Poncet, Pascal; Sutra, Jean-Pierre

    2015-01-01

    This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of “polluen,” some methodological biases are underlined and research tracks in this field are proposed. PMID:26819967

  5. Synoptic and climatological analysis of atmospheric circulation impacts on particulate matter pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Liao, Z.; Fan, S.

    2016-12-01

    This study investigated the particulate matter characteristics within different circulation types (CTs) in the megacity of Shanghai during the period 2001-2015, and provided a quantitative evaluation of atmospheric circulation influences on PM10 pollution across a wide range of spatial and temporal scales, from local to region and daily to interannual. Ten CTs were identified over the Asian-Pacific region by objective Lamb Weather Type approach and each resulting CT was characterized with distinct local meteorology and air mass source. The PM10 loadings in the CTs associated with continental westerly flow were significant higher than that in the CTs linked to marine easterly air masses. Regional backgrounds that transported by the synoptic flows were more responsible for the distinct PM10 levels in different CTs. The locally-produced PM10 generally stabilized in range of 20-25 μg m-3, but enhanced to 41.2 μg m-3 in case of anticyclone type. There were distinct PM10 trends in different CTs (ranged from -3.74 to -0.28 μg m-3 yr-1), indicating the different background trends. Overall, the PM10 concentrations have decreased (-2.33 μg m-3 yr-1) in the studied period and the estimated locally-produced trend (-0.79 μg m-3 yr-1) accounted for 33.9% of overall downward trend. The occurrence frequency presented an increase (0.15 % yr-1) for anticyclone type, but a decrease (-0.10 % yr-1) for the type N associated with invasion of cold air. The 15-yr frequency change of atmospheric circulation induced an increase in PM­10 level (0.17 μg m-3) in Shanghai. On the contrary, controls on the pollutant emission had always positive effects and hence should be always encouraged.

  6. Friction- and mountain-torque estimates from global atmospheric data

    NASA Technical Reports Server (NTRS)

    Wahr, J. M.; Oort, A. H.

    1984-01-01

    Seasonal, zonal surface torques between the atmosphere and the earth are estimated and compared, using data from a number of independent sources. The mountain torque is computed both from surface pressure data and from isobaric height data. The friction torque is estimated from the oceanic stress data of Hellerman and Rosenstein. Results for the total torque are inferred from atmospheric angular momentum data. Finally, the globally integrated total torque is compared with astronomical observations of the earth's rotation rate. These comparisons help us to assess the quality of the different results. Zonal torques are also computed using results from a GFDL general circulation model of the atmosphere. A comparison with the corresponding results inferred from real data is presented and interpreted in terms of model accuracy.

  7. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  8. Study of atmospheric dynamics and pollution in the coastal area of English Channel using clustering technique

    NASA Astrophysics Data System (ADS)

    Sokolov, Anton; Dmitriev, Egor; Delbarre, Hervé; Augustin, Patrick; Gengembre, Cyril; Fourmenten, Marc

    2016-04-01

    The problem of atmospheric contamination by principal air pollutants was considered in the industrialized coastal region of English Channel in Dunkirk influenced by north European metropolitan areas. MESO-NH nested models were used for the simulation of the local atmospheric dynamics and the online calculation of Lagrangian backward trajectories with 15-minute temporal resolution and the horizontal resolution down to 500 m. The one-month mesoscale numerical simulation was coupled with local pollution measurements of volatile organic components, particulate matter, ozone, sulphur dioxide and nitrogen oxides. Principal atmospheric pathways were determined by clustering technique applied to backward trajectories simulated. Six clusters were obtained which describe local atmospheric dynamics, four winds blowing through the English Channel, one coming from the south, and the biggest cluster with small wind speeds. This last cluster includes mostly sea breeze events. The analysis of meteorological data and pollution measurements allows relating the principal atmospheric pathways with local air contamination events. It was shown that contamination events are mostly connected with a channelling of pollution from local sources and low-turbulent states of the local atmosphere.

  9. AICE Survey of USSR Air Pollution Literature, Volume 12: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part I.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Twelve papers dealing with the meteorological aspects of air pollution were translated. These papers were initially presented at an international symposium held in Leningrad during July 1968. The papers are: Status and prospective development of meteorological studies of atmospheric pollution, Effect of the stability of the atmosphere on the…

  10. Estimating accidental pollutant releases in the built environment from turbulent concentration signals

    NASA Astrophysics Data System (ADS)

    Ben Salem, N.; Salizzoni, P.; Soulhac, L.

    2017-01-01

    We present an inverse atmospheric model to estimate the mass flow rate of an impulsive source of pollutant, whose position is known, from concentration signals registered at receptors placed downwind of the source. The originality of this study is twofold. Firstly, the inversion is performed using high-frequency fluctuating, i.e. turbulent, concentration signals. Secondly, the inverse algorithm is applied to a dispersion process within a dense urban canopy, at the district scale, and a street network model, SIRANERISK, is adopted. The model, which is tested against wind tunnel experiments, simulates the dispersion of short-duration releases of pollutant in different typologies of idealised urban geometries. Results allow us to discuss the reliability of the inverse model as an operational tool for crisis management and the risk assessments related to the accidental release of toxic and flammable substances.

  11. Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms.

    PubMed

    Croze, Marine L; Zimmer, Luc

    2018-01-01

    Atmospheric pollution is a well-known environmental hazard, especially in developing countries where millions of people are exposed to airborne pollutant levels above safety standards. Accordingly, several epidemiological and animal studies confirmed its role in respiratory and cardiovascular pathologies and identified a strong link between ambient air pollution exposure and adverse health outcomes such as hospitalization and mortality. More recently, the potential deleterious effect of air pollution inhalation on the central nervous system was also investigated and mounting evidence supports a link between air pollution exposure and neurodegenerative pathologies, especially Alzheimer's disease (AD). The focus of this review is to highlight the possible link between ozone air pollution exposure and AD incidence. This review's approach will go from observational and epidemiological facts to the proposal of molecular mechanisms. First, epidemiological and postmortem human study data concerning residents of ozone-severely polluted megacities will be presented and discussed. Then, the more particular role of ozone air pollution in AD pathology will be described and evidenced by toxicological studies in rat or mouse with ozone pollution exposure only. The experimental paradigms used to reproduce in rodent the human exposure to ozone air pollution will be described. Finally, current insights into the molecular mechanisms through which ozone inhalation can affect the brain and play a role in AD development or progression will be recapitulated.

  12. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry?

    NASA Astrophysics Data System (ADS)

    Brahney, Janice; Mahowald, Natalie; Ward, Daniel S.; Ballantyne, Ashley P.; Neff, Jason C.

    2015-09-01

    Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes (r2 = 0.81, p < 0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations (r2 = 0.20, p < 0.05) however, atmospheric deposition of P appears to be major contributor to this pattern (r2 = 0.65, p < 0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16 times the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine Lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.

  13. Estimation of Atmospheric Mixing Layer Height from radiosonde data

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, K.

    2013-12-01

    Mixing layer is the lowest layer of the troposphere where surface turbulence can reach during the daytime. Mixing layer height (MLH) is an important parameter for understanding the transport process, air pollution, weather and climate change. MLH can be determined from the radiosonde profiles of relative humidity (RH), specific humidity (q), potential temperature (θ) and atmospheric refractivity (N) by searching for the strongest gradients of these parameters within a specific height above the surface. However, substantially different MLHs have been found from different parameters. The occurrence of cloud impacts on MLHs derived in two ways: (1) clouds impact the measurements of θ and RH, resulting in spurious MLHs derived by θ and RH, (2) clouds may amplify or depress turbulence, that is MLH can be at cloud top or cloud base when it occurs. However, MLHs determined by existing methods can generally be at cloud top. To solve these problems, we propose a method to estimate MLH by integrating the information of θ, RH, q, N and discriminating different cloud impacts on MLH. We apply this method to high vertical resolution (~30 m) radiosonde data collected at the 79 stations over North America during the period of 1998 to 2008 released by the Stratospheric Processes and their Role in Climate Data Center. The results show good agreement with those from N as the information of temperature and humidity contained in N, however the impact of clouds including in the new method has increased the reliability of MLH. The new results show good agreement with independent MLH determined from Lidar observations. MLH over the North America is 1647×323 meter with a strong east-west gradient, higher MLH (generally greater than 1800 m) over the Midwest America and lower MLH (less than 1300 m) over Alaska and west coast of America. The scatter plot of climatological MLHnew with MLHθ, MLHRH, MLHq, MLHN and MLHint for the period of 1998 to 2008. Pattern of climatological MLH of our

  14. Epiphytic lichen diversity on dead and dying conifers under different levels of atmospheric pollution.

    PubMed

    Hauck, Markus

    2005-05-01

    Based on literature data, epiphytic lichen abundance was comparably studied in montane woodlands on healthy versus dead or dying conifers of Europe and North America in areas with different levels of atmospheric pollution. Study sites comprised Picea abies forests in the Harz Mountains and in the northern Alps, Germany, Picea rubens-Abies balsamea forests on Whiteface Mountain, Adirondacks, New York, U.S.A. and Picea engelmannii-Abies lasiocarpa forests in the Salish Mountains, Montana, U.S.A. Detrended correspondence analysis showed that epiphytic lichen vegetation differed more between healthy and dead or dying trees at high- versus low-polluted sites. This is attributed to greater differences in chemical habitat conditions between trees of different vitality in highly polluted areas. Based on these results, a hypothetical model of relative importance of site factors for small-scale variation of epiphytic lichen abundance versus atmospheric pollutant load is discussed.

  15. The etymological role of the main atmosphere pollutants in development of human diseases.

    PubMed

    Lomtatidze, N; Kiknadze, N; Khakhnalidze, R; Tusishvili, Kh; Alasania, N; Kiknadze, M

    2013-04-01

    The aim of research was monitoring of the main atmospheric air pollutants concentration on Adjara Autonomous Republic territory in order to determine their role in causing different diseases. The following atmospheric air pollutants have been determined in Batumi: dust, carbon monoxide, sulfur and nitrogen dioxide. The number of diseases registered in Adjara Autonomous Republic, which may be linked to the air pollution, has been studied. These are the following: chronic and nonspecific bronchitis, asthma and asthma status diseases, allergic rhinitis, trachea-, bronchi- and lung malignant tumor. In order to reduce the number of risk-factors significant attention should be paid to the proper functionality of the vehicles and systematic observations should continue on the chemical pollution of the air to make proper decisions to reduce the number of diseases.

  16. Regional and microclimatic pollution effects on atmospheric corrosion in Prague and Europe

    SciTech Connect

    Knotkova, D.; Vlckova, J.; Kreislova, K.

    1995-10-01

    Survey of atmospheric corrosion test results of structural metals in open air and under shelters on the base of multilateral European programs (1968--1992) is presented and in the view point of trend effects of S02 pollution analyzed. The regional and microclimatic pollution effects are documented by SVUOM testing results on Czech permanent test sites, test sites on the territory of Prague and testing places on the St. Vitus cathedral in the locality of Prague castle. The variability of pollution activity and of time of wetness in the regional sense and on different objects` surfaces is considered. Utilization and limits ofmore » the regional approach for pollution effects evaluation are proposed. it is not purposeful to differentiate atmospheric corrosivity when designing a large object; the different corrosivities should be respected in the inspection and maintenance plans.« less

  17. Biologic Effects of Atmospheric Pollutants: Asbestos - The Need For and Feasibility of Air Pollution Controls

    EPA Pesticide Factsheets

    This 1971 report sets forth in a well-organized fashion the currently available information on asbestos as an air pollutant, with special attention to sources health effects, measurements, and feasibility of control.

  18. Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System

    NASA Technical Reports Server (NTRS)

    Karlgaard, Chris; Schoenenberger, Mark

    2017-01-01

    This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.

  19. Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation.

    PubMed

    García-Gómez, Héctor; Aguillaume, Laura; Izquieta-Rojano, Sheila; Valiño, Fernando; Àvila, Anna; Elustondo, David; Santamaría, Jesús M; Alastuey, Andrés; Calvete-Sogo, Héctor; González-Fernández, Ignacio; Alonso, Rocío

    2016-04-01

    Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

  20. Study of atmospheric pollution scavenging. Eighteenth progress report

    SciTech Connect

    Semonin, R.G.; Bartlett, J.D.; Bowersox, V.C.

    1980-07-01

    The analysis of aerosol samples obtained in rural east-central Illinois reveals a seasonal maximum in SO/sub 4/ during May to July and a similar pattern for NH/sub 4/. The annual median SO/sub 4/ is about 1 to 1.5 ..mu..g/m/sup 3/. In contrast to these ions, NO/sub 3/ displays highest values in the cold season. Soil-related species (Ca, K) seem to maximize in relation to farm tillage and harvesting practices. The NO/sub 3/ in recent precipitation samples over the northeast US increased between 1 and 2 times the values observed in the mid-1950's. A case study from SCORE-78 suggests that allmore » ion concentrations analyzed from sequentially collected samples decreased from the onset of rain to a minimum corresponding to the heaviest rain rates. Four groups of elements in 10 event rain samples were identified using factor analysis. The groups include soluble and insoluble crustal elements, soluble pollutant metals and sulfate, and insoluble pollutant metals. Utilizing the factor analysis approach, the St. Louis METROMEX precipitation chemistry data showed that the SO/sub 4/ deposition patterns group consistently with those of other soluble pollutants. Additional factor analysis efforts on the St. Louis rainwater data set revealed that soluble and insoluble concentrations of a given element have different deposition patterns suggesting that scavenging and/or precipitation formation processes dictate the patterns. An approach to managing the vast data base of rain chemistry used in the above studies is described. The software also examines the data for certain aspects of quality assurance. The procedures used to analyze ambient air filter samples are discussed.« less

  1. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  2. Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2003-01-01

    During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.

  3. [Simulation of air pollution characteristics and estimates of environmental capacity in Zibo City].

    PubMed

    Xue, Wen-Bo; Wang, Jin-Nan; Yang, Jin-Tian; Lei, Yu; Yan, Li; He, Jin-Yu; Han, Bao-Ping

    2013-04-01

    To develop a new pattern of air pollution control that is based on the integration of "concentration control, total amount control, and quality control", and in the context of developing national (2011-2015 air pollution control plan for key areas) and (Environmental protection plan of Zibo municipality for the "12th Five-Year Plan" period), a simulation of atmospheric dispersion of air pollutants in Zibo City and its peripheral areas is carried out by employing CALPUFF model, and the atmospheric environmental capacity of SO2, NO(x) and PM10 is estimated based on the results of model simulation and using multi-objective linear programming optimization. The results indicates that the air pollution in Zibo City is significantly related to the pollution sources outside of Zibo City, which contributes to the annual average concentration of SO2, NO2 and PM10 in Zibo City by 26.34%, 21.23%, and 14.58% respectively. There is a notable interaction between districts and counties of Zibo municipality, in which the contribution of SO2, NO(x) and PM10 emissions in surrounding counties and districts to the annual average concentrations of SO2, NO2 and PM10 in downtown area are 35.96%, 43.17%, and 17.69% respectively. There is a great variation in spatial sensitivity of air pollutant emission, and the environmental impact of unit pollutant emissions from Zhoucun, Huantai, Zhangdian and Zichuan is greater than that released from other districts/counties. To meet the requirement of (Ambient air quality standard) (GB 3095-2012), the environmental capacities of SO2, NO(x) and PM10 of Zibo City are only 8.03 x 10(4) t, 19.16 x 10(4) t and 3.21 x 10(4) t, respectively. Therefore, it is imperative to implement regional air pollution joint control in Shandong peninsula in order to ensure the achievement of air quality standard in Zibo City.

  4. Stereo image motion monitor for atmospheric mitigation and estimation

    NASA Astrophysics Data System (ADS)

    Gibson, Kristofor B.

    2015-09-01

    The knowledge of the turbulence strength in the atmosphere is important for many applications. Imagery in the atmosphere experience significant blur when the turbulence is strong. This can be automatically improved (without user intervention) if the turbulence strength is known. The performance of a high-power laser emitting in the atmosphere can be predicted if the statistics of the turbulence strength is known. If not predicted correctly, the laser may unintentionally destroy a target or fail to be able to disable a target. In this article, we review existing methods that estimate turbulence strength, provide a more in depth error analysis, and propose a new method for estimating and mitigating turbulence in the atmosphere. We focus on methods that are passive in design in order to prevent detection in surveillance scenarios and tactical situations. We also propose a new method, stereo image motion monitor (SIMM) which is a system containing two independent apertures. Our goal in this approach is threefold: 1) We can measure r0 using the DIMM method 2) We can simultaneously estimate r0 individually for each aperture and 3) We have multiple views of the same scene thus can increase the number of frames used in turbulence mitigation methods.

  5. Application of cascade lasers to detection of trace gaseous atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Miczuga, Marcin; Kopczyński, Krzysztof

    2016-12-01

    Understanding the impact of gaseous pollutants on the earth's atmosphere, as well as more and more felt by mankind negative effects of its contamination, result in increasing the level of environmental awareness and contribute to the intensification of actions aimed at reducing the emission of harmful gases into the atmosphere. At the same time, the extensive studies are conducted in order to continuously monitor the level of air contamination with harmful gases and the industry compliance with the standards limited the amount of emitted pollutants. Over recent years, there has been increasing use of cascade lasers and multi-pass cells in optical systems detecting the gaseous atmospheric pollutants and measuring the gas concentrations. The paper presents the use of a tunable quantum cascade laser as a source of the IR radiation in an advanced detection system enabling the trace gaseous atmospheric pollutants to be identified. Apart from the laser, the main elements of the system are: a multi-pass cell, an IR detector and a module for control and analysis. Operation of the system is exemplified by measuring the level of the air pollution with ammonia, carbon oxide and nitrous oxide.

  6. Study on polarization features of carbonaceous particles in atmosphere pollutants

    NASA Astrophysics Data System (ADS)

    Li, Da; Zeng, Nan; Wang, Yunfei; Chen, Dongsheng; Chen, Yuerong; Ma, Hui

    2016-09-01

    The carbonaceous particles are the main source of the light absorption in atmospheric aerosol. Different from the case in tissue-like turbid media, the light absorption in atmospheric environments can be described as an inherent attribute on scatterers rather than an interstitial propagation effect. In this paper, we simulated the optical absorption due to carbonaceous scatterers and analyzed the influence of various parameters on their polarization properties, such as the imaginary part refractive index, the size and shape. Also we compare these results with our previous research work on absorption effect in ambient medium. For the single scattering, the polarization scattering angular distribution implies the potential of distinguishing different carbonaceous particles with different structural and absorption parameters. In the other hand, for the week scattering case of suspension system, using the backward Mueller matrix polar decomposition method, we can find out that the additional absorption effect on carbonaceous particles can enhance their depolarization and moreover produce more diattenuation and linear retardance for those anisotropic particles. The subsequent experiments of standard samples show a good agreement with simulation results. The paper further studies the phase function of single scattering and the distribution of scattering numbers, which can explain these unique polarization scattering phenomena. We hope these fundamental results can help to investigate how to identify the carbonaceous particles and characterize their optical features from the atmospheric hybrid suspension system.

  7. Study of atmospheric pollution scavenging. Twenty-fourth progress report

    SciTech Connect

    Williams, A.L.

    1990-08-01

    Atmospheric scavenging research conducted by the Illinois State Water Survey under contract with the Department of Energy has been a significant factor in the historical development of the field of precipitation scavenging. Emphasis of the work during the 1980`s became focused on the problem of acid rain problem with the Survey being chosen as the Central Analytical Laboratory for sample analysis of the National Atmospheric Deposition Program National Trends Network (NADP/NTN). The DOE research was responsible for laying the groundwork from the standpoint of sampling and chemical analysis that has now become routine features of NADP/NTN. A significant aspect of the research has been the participation by the Water Survey in the MAP3S precipitation sampling network which is totally supported by DOE, is the longest continuous precipitation sampling network in existence, and maintains an event sampling protocol. The following review consists of a short description of each of the papers appearing in the Study of Atmospheric Scavenging progress reports starting with the Eighteenth Progress Report in 1980 to the Twenty- Third Progress Report in 1989. In addition a listing of the significant publications and interviews associated with the program are given in the bibliography.

  8. Validating pollutant load estimates from highways and roads.

    DOT National Transportation Integrated Search

    2015-12-31

    Rain and snowmelt that runs off of roadways carries pollutants. Pollutant event mean concentrations have been developed for various land uses to calculate annual pollutant loads. These were developed for total suspended solids, total phosphorus, and ...

  9. Improving estimates of air pollution exposure through ubiquitous sensing technologies.

    PubMed

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-05-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power, or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free-living population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. We found that information from CalFit could substantially alter exposure estimates. For instance, on average travel activities accounted for 6% of people's time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of enhancing epidemiologic exposure data at low cost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  11. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we

  12. Effect of typhoon on atmospheric aerosol particle pollutants accumulation over Xiamen, China.

    PubMed

    Yan, Jinpei; Chen, Liqi; Lin, Qi; Zhao, Shuhui; Zhang, Miming

    2016-09-01

    Great influence of typhoon on air quality has been confirmed, however, rare data especially high time resolved aerosol particle data could be used to establish the behavior of typhoon on air pollution. A single particle aerosol spectrometer (SPAMS) was employed to characterize the particles with particle number count in high time resolution for two typhoons of Soulik (2013) and Soudelor (2015) with similar tracks. Three periods with five events were classified during the whole observation time, including pre - typhoon (event 1 and event 2), typhoon (event 3 and event 4) and post - typhoon (event 5) based on the meteorological parameters and particle pollutant properties. First pollutant group appeared during pre-typhoon (event 2) with high relative contributions of V - Ni rich particles. Pollution from the ship emissions and accumulated by local processes with stagnant meteorological atmosphere dominated the formation of the pollutant group before typhoon. The second pollutant group was present during typhoon (event 3), while typhoon began to change the local wind direction and increase wind speed. Particle number count reached up to the maximum value. High relative contributions of V - Ni rich and dust particles with low value of NO3(-)/SO4(2-) was observed during this period, indicating that the pollutant group was governed by the combined effect of local pollutant emissions and long-term transports. The analysis of this study sheds a deep insight into understand the relationship between the air pollution and typhoon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Transformations of long-living and short-living gaseous pollutants in the atmosphere of urban regions

    NASA Astrophysics Data System (ADS)

    Filippenko, Anna; Smyshlyaev, Sergey

    2010-05-01

    The research was devoted to the problem of estimation of chemical transformations of source species and atmospheric species in high-polluted areas. Box Air Quality Model (BAQM offline) was developed to estimate degree of influence of different species on atmospheric processes by analysis of chemical transformation and consequently lifetimes of these species, i.e. how long a representative molecule of the substance will stay in the atmosphere before it is chemically removed. Preliminary study of chemical mechanisms of Global and Regional weather forecast models with chemical branch (Enviro-HIRLAM, WRF, ALADIN, ECMWF GEMS) helped to develop a universal chemical mechanism for BAQM. The new mechanism describes chemical reaction pathways for the troposphere and lower stratosphere and can be implemented at regional and global scales. The mechanism was developed using lumping technique on the basis of RACM mechanism. Aggregation of primary species into lumped species is based on their reactivities and emission rates. The different chemical solvents were used to simulate change of production and destruction. As initial conditions BAQM considers both biogenic and anthropogenic emissions. Lifetime calculations show that "long-living" gases demand special attention since make the greatest impact on global atmospheric processes. Such species well mix in the atmosphere and can transport for long distances from the source of emissions. "Short-living" species can affect regional processes especially in the urban polluted areas where concentration of polluted species is high. So, in such regions (large cities, industrial areas, megacities) there are high concentrations of O3, NOx, but air quality depends on distribution of these concentrations in observing region. According to the simulations we define "long-living" species: SO2, N2, CH4, CO, H2, H2O (above 70hPa), H2O2, HCl and "short-living" species: O3, O(3P), O(1D), H2, HNO3, OH, HO2, CH3, CH3O2, CH3OOH, N, NO, NO2, NO3, Cl

  14. Chernobyl source term, atmospheric dispersion, and dose estimation

    SciTech Connect

    Gudiksen, P.H.; Harvey, T.F.; Lange, R.

    1988-02-01

    The Chernobyl source term available for long-range transport was estimated by integration of radiological measurements with atmospheric dispersion modeling, and by reactor core radionuclide inventory estimation in conjunction with WASH-1400 release fractions associated with specific chemical groups. These analyses indicated that essentially all of the noble gases, 80% of the radioiodines, 40% of the radiocesium, 10% of the tellurium, and about 1% or less of the more refractory elements were released. Atmospheric dispersion modeling of the radioactive cloud over the Northern Hemisphere revealed that the cloud became segmented during the first day, with the lower section heading toward Scandinavia and the uppper part heading in a southeasterly direction with subsequent transport across Asia to Japan, the North Pacific, and the west coast of North America. The inhalation doses due to direct cloud exposure were estimated to exceed 10 mGy near the Chernobyl area, to range between 0.1 and 0.001 mGy within most of Europe, and to be generally less than 0.00001 mGy within the US. The Chernobyl source term was several orders of magnitude greater than those associated with the Windscale and TMI reactor accidents, while the /sup 137/Cs from the Chernobyl event is about 6% of that released by the US and USSR atmospheric nuclear weapon tests. 9 refs., 3 figs., 6 tabs.

  15. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.

    PubMed

    Wu, Qimei; Wang, Xin; Zhou, Qixing

    2014-05-01

    Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Critical Evaluation of Air-Liquid Interface Exposure Devices for In Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    Exposure of cells to atmospheric pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of attached cells submerged in liquid medium. However, there is still limited understanding of the ideal ALI device design features that permit reproducible a...

  17. Essentials of multiangle data-processing methodology for smoke polluted atmospheres

    Treesearch

    Vladimir Kovalev; A. Petkov; Cyle Wold; Shawn Urbanski; WeiMin Hao

    2011-01-01

    Essentials for investigating smoke plume characteristics with scanning lidar are discussed. Particularly, we outline basic principles for determining dynamics, heights, and optical properties of smoke plumes and layers in wildfire-polluted atmospheres. Both simulated and experimental data obtained in vicinities of wildfires with a two-wavelength scanning lidar are...

  18. Elemental atmospheric pollution assessment via moss-based measurements in Portland, Oregon

    Treesearch

    Demetrios Gatziolis; Sarah Jovan; Geoffrey Donovan; Michael Amacher; Vicente Monleon

    2016-01-01

    Mosses accumulate pollutants from the atmosphere and can serve as an inexpensive screening tool for mapping air quality and guiding the placement of monitoring instruments. We measured 22 elements using 346 moss samples collected across Portland, Oregon, in December 2013. Our objectives were to develop citywide maps showing concentrations of each element in moss and...

  19. Improving estimates of air pollution exposure through ubiquitous sensing technologies

    PubMed Central

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-01-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743

  20. Atmospheric transport of pollutants from North America to the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Sebacher, D. I.; Gregory, G. L.; Hinton, R. R.; Beck, S. M.; Mcdougal, D. S.; Shipley, S. T.

    1984-01-01

    Ground-based measurements strongly support the hypothesis that pollutant materials of anthropogenic origin are being transported over long distances in the midtroposphere and are a significant source of acid rain, acid snow, trace metal deposition, ozone and visibility-reducing aerosols in remote oceanic and polar regions of the Norhern Hemisphere. Atmospheric sulphur budget calculations and studies of acid rain on Bermuda indicate that a large fraction of pollutant materials emitted into the atmosphere in eastern North America are advected eastwards over the North Atlantic Ocean. The first direct airborne measurements of the vertical distribution of tropospheric aerosols over the western North Atlantic is reported here. A newly developed airborne differential adsorption lidar system was used to obtain continuous, remotely sensed aerosol distributions along its flight path. The data document two episodes of long-distance transport of pollutant materials from North America over the North Atlantic Ocean.

  1. Atmospheric Inverse Estimates of Methane Emissions from Central California

    SciTech Connect

    Zhao, Chuanfeng; Andrews, Arlyn E.; Bianco, Laura; Eluszkiewicz, Janusz; Hirsch, Adam; MacDonald, Clinton; Nehrkorn, Thomas; Fischer, Marc L.

    2008-11-21

    Methane mixing ratios measured at a tall-tower are compared to model predictions to estimate surface emissions of CH{sub 4} in Central California for October-December 2007 using an inverse technique. Predicted CH{sub 4} mixing ratios are calculated based on spatially resolved a priori CH{sub 4} emissions and simulated atmospheric trajectories. The atmospheric trajectories, along with surface footprints, are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. An uncertainty analysis is performed to provide quantitative uncertainties in estimated CH{sub 4} emissions. Three inverse model estimates of CH{sub 4} emissions are reported. First, linear regressions of modeled and measured CH{sub 4} mixing ratios obtain slopes of 0.73 {+-} 0.11 and 1.09 {+-} 0.14 using California specific and Edgar 3.2 emission maps respectively, suggesting that actual CH{sub 4} emissions were about 37 {+-} 21% higher than California specific inventory estimates. Second, a Bayesian 'source' analysis suggests that livestock emissions are 63 {+-} 22% higher than the a priori estimates. Third, a Bayesian 'region' analysis is carried out for CH{sub 4} emissions from 13 sub-regions, which shows that inventory CH{sub 4} emissions from the Central Valley are underestimated and uncertainties in CH{sub 4} emissions are reduced for sub-regions near the tower site, yielding best estimates of flux from those regions consistent with 'source' analysis results. The uncertainty reductions for regions near the tower indicate that a regional network of measurements will be necessary to provide accurate estimates of surface CH{sub 4} emissions for multiple regions.

  2. Association of atmospheric pollution and instability indices: A detailed investigation over an Indian urban metropolis

    NASA Astrophysics Data System (ADS)

    Chakraborty, Rohit; Saha, Upal; Singh, A. K.; Maitra, Animesh

    2017-11-01

    Convection has a significant role in maintaining the atmospheric dynamics and thermodynamics, particularly in the tropical regions during pre-monsoon season, which may be due to the changing patterns in atmospheric instability and pollution. A critical analysis is done on the variability of instability indices and their significant signature to meteorological parameters and atmospheric pollution over Indian region in the warming atmosphere during 2005-2015. The present study represents that the solid as well as gaseous pollutants, in combination, produce a damping force in suppressing convective activities over the eastern coastal regions of India. A significant anti-correlation (r - 0.6 to - 0.8) between instability parameters [Convective Available Potential Energy (CAPE) and Lifted Index (LI)] and atmospheric pollutants [gaseous (NO2 and SO2) and solid (BC and PM2.5)] has been obtained in the eastern coastal regions on a long-term basis. To improve the level of agreement between pollution and instability, a unitless and dimensionless index called KLURT index has been introduced, which provides correlation (r) value as high as 0.6. On a real time basis, KLURT index is found to be useful as an effective precursor of thunderstorm events. The final part of this study indicates a prediction technique using KLURT index which gives a high prediction efficacy of 75%, low FAR value, extremely good BS 0.06, an excellent bias ( 0.96) and a good lead time of 1 h for a threshold value of 12.5 in terms of predicting intense convections at the urban location, Kolkata. Thus, the present study provides an appropriate means to manifest convection as a function of changing anthropogenic factors both in long and short-term basis with high correlation values and provides significant efficacy in predicting severe weather, thereby demonstrating the usefulness of this hypothesis in various socio-economic aspects especially at the current tropical urban location.

  3. Uncertainty Modeling of Pollutant Transport in Atmosphere and Aquatic Route Using Soft Computing

    NASA Astrophysics Data System (ADS)

    Datta, D.

    2010-10-01

    Hazardous radionuclides are released as pollutants in the atmospheric and aquatic environment (ATAQE) during the normal operation of nuclear power plants. Atmospheric and aquatic dispersion models are routinely used to assess the impact of release of radionuclide from any nuclear facility or hazardous chemicals from any chemical plant on the ATAQE. Effect of the exposure from the hazardous nuclides or chemicals is measured in terms of risk. Uncertainty modeling is an integral part of the risk assessment. The paper focuses the uncertainty modeling of the pollutant transport in atmospheric and aquatic environment using soft computing. Soft computing is addressed due to the lack of information on the parameters that represent the corresponding models. Soft-computing in this domain basically addresses the usage of fuzzy set theory to explore the uncertainty of the model parameters and such type of uncertainty is called as epistemic uncertainty. Each uncertain input parameters of the model is described by a triangular membership function.

  4. Atmospheric Pollution from Shipping and Oil platforms of West Africa (APSOWA) observed during the airborne DACCIWA campaign

    NASA Astrophysics Data System (ADS)

    Krysztofiak-Tong, Gisèle; Brocchi, Vanessa; Catoire, Valéry; Stratmann, Greta; Sauer, Daniel; Deroubaix, Adrien; Deetz, Konrad; Schlager, Hans

    2017-04-01

    In the framework of the European DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project, the airborne study APSOWA (Atmospheric Pollution from Shipping and Oil platforms of West Africa) has been conducted in July 2016 to study emissions from oil rigs and maritime traffic in the Gulf of Guinea. The measurements were performed during four flights of about 3-4 hours including meandering transects through emission plumes in the planetary boundary layer (around 300 m asl) off the coast of West Africa from Ivory Coast to Togo. Several instruments have been used on-board the DLR Falcon-20, providing measurements of the pollutants O3, CO, NO2, SO2, aerosol content and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local air pollution. The first part of our study is focused on the FPSO Kwame Nkrumah facility operating in the Jubilee oil field off the coast of Ghana. Aircraft observations have been combined with a nested-grid regional scale Lagrangian particle dispersion model (FLEXPART) to estimate surface emission fluxes from this platform. A simplified inverse method is used and repeated until the modelling output and aircraft observations converged. The estimated fluxes of CO, SO2, NO2 are compared to global (EDGAR, MACCity) and regional (Deetz and Vogel, 2017, in press) inventories. A second part of the study provides the first results of the APSOWA flights for the study of the impact of shipping emissions on the regional air quality. Using data from Marine Traffic, ship positions during the campaign are identified. Then, FLEXPART is used to quantify the contributions of the ship emissions to the aircraft observations. Finally, direct measurements in the MBL around 4°N latitude along the Ghana coast show no strong evidence of the presence of an atmospheric pollution maritime corridor simulated by MACCity.

  5. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.

    PubMed

    Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J

    2016-07-15

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2. Published by Elsevier B.V.

  6. Impact of atmospheric pollution inputs and climate change on dissolved inorganic carbon fluxes in karst aquifers: evidences from a 36 years past monitoring of karstic watersheds.

    NASA Astrophysics Data System (ADS)

    Binet, Stephane; Probst, Jean-Luc; Batiot-Guilhe, Christelle; Seidel, Jean-Luc; Emblanch, Christophe; Peyraube, Nicolas; Mangin, Alain; Bakalowicz, Michel; Probst, Anne

    2017-04-01

    Atmospheric pollution is known to modify the soil CO2 consumption associated with carbonate bedrock weathering. To evidence the long term feedbacks of atmospheric pollution and climate change on this chemical reaction, we investigated the inorganic carbon fluxes monitored weekly from 1979 to 2006 in a small forested karstic watershed in the Pyrénées Mountains, characterized by a large precipitation variability, a 0.025 °C air temperature increase per year and a low agricultural pressure. The yearly average concentrations of [Ca + Mg] and dissolved inorganic carbon increases of about 0.057 meq.L-1.yr-1 and the 0.1 meq.L-1.yr-1, respectively. The gap relative to the 1:2 relationship between [Ca + Mg] and HCO3 (in mmole. L-1), noted Delta-HCO3, was founded to be driven by the atmospheric pollution inputs, producing strong acids that inhibit the consumption of carbon from soil during the carbonate dissolution processes. In addition, atmospheric temperature increase is correlated with the [Ca +Mg] change, whereas the decrease of the atmospheric acid inputs observed since the seventies, is linked with a + 0.0022 meq.L-1.yr-1 increase in Delta-HCO3. Similar trends in Delta-HCO3 change were found over other karstic watersheds monitored more recently in the framework of the SNO KARST, one the observatory networks from the OZCAR Research Infrastructure, highlighting that Delta-HCO3 changes over time were partially controlled by atmospheric pollution inputs. The re-interpretation of hydrochemical databases using this Delta-HCO3 indicator enables to evaluate better the impact of atmospheric pollution load and climate change on surface waters. In an indirect way, the dephasing between atmospheric loads recorded in precipitation and Delta-HCO3 observed in groundwater could be a new tracer method to estimate groundwater residence times.

  7. Evaluating the effects of China's pollution controls on inter-annual trends and uncertainties of atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2015-04-01

    China's anthropogenic emissions of atmospheric mercury (Hg) are effectively constrained by national air pollution control and energy efficiency policies. In this study, improved methods, based on available data from domestic field measurements, are developed to quantify the benefits of Hg abatement by various emission control measures. Those measures include increased use of (1) flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems in power generation; (2) precalciner kilns with fabric filters (FF) in cement production; (3) mechanized coking ovens with electrostatic precipitators (ESP) in iron and steel production; and (4) advanced production technologies in nonferrous metal smelting. Investigation reveals declining trends in emission factors for each of these sources, which together drive a much slower growth of total Hg emissions than the growth of China's energy consumption and economy, from 679 metric tons (t) in 2005 to 750 t in 2012. In particular, estimated emissions from the above-mentioned four source types declined 3% from 2005 to 2012, which can be attributed to expanded deployment of technologies with higher energy efficiencies and air pollutant removal rates. Emissions from other anthropogenic sources are estimated to increase by 22% during the period. The species shares of total Hg emissions have been stable in recent years, with mass fractions of around 55, 39, and 6% for gaseous elemental Hg (Hg0), reactive gaseous mercury (Hg2+), and particle-bound mercury (Hgp), respectively. The higher estimate of total Hg emissions than previous inventories is supported by limited simulation of atmospheric chemistry and transport. With improved implementation of emission controls and energy saving, a 23% reduction in annual Hg emissions from 2012 to 2030, to below 600 t, is expected at the most. While growth in Hg emissions has been gradually constrained, uncertainties quantified by Monte Carlo simulation for recent years have increased

  8. Characterization, parameter estimation, and aircraft response statistics of atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1981-01-01

    A nonGaussian three component model of atmospheric turbulence is postulated that accounts for readily observable features of turbulence velocity records, their autocorrelation functions, and their spectra. Methods for computing probability density functions and mean exceedance rates of a generic aircraft response variable are developed using nonGaussian turbulence characterizations readily extracted from velocity recordings. A maximum likelihood method is developed for optimal estimation of the integral scale and intensity of records possessing von Karman transverse of longitudinal spectra. Formulas for the variances of such parameter estimates are developed. The maximum likelihood and least-square approaches are combined to yield a method for estimating the autocorrelation function parameters of a two component model for turbulence.

  9. Estimation of Dynamical Parameters in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark O.

    2004-01-01

    In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.

  10. Public Perceptions of How Long Air Pollution and Carbon Dioxide Remain in the Atmosphere.

    PubMed

    Dryden, Rachel; Morgan, M Granger; Bostrom, Ann; Bruine de Bruin, Wändi

    2017-06-30

    The atmospheric residence time of carbon dioxide is hundreds of years, many orders of magnitude longer than that of common air pollution, which is typically hours to a few days. However, randomly selected respondents in a mail survey in Allegheny County, PA (N = 119) and in a national survey conducted with MTurk (N = 1,013) judged the two to be identical (in decades), considerably overestimating the residence time of air pollution and drastically underestimating that of carbon dioxide. Moreover, while many respondents believed that action is needed today to avoid climate change (regardless of cause), roughly a quarter held the view that if climate change is real and serious, we will be able to stop it in the future when it happens, just as we did with common air pollution. In addition to assessing respondents' understanding of how long carbon dioxide and common air pollution stay in the atmosphere, we also explored the extent to which people correctly identified causes of climate change and how their beliefs affect support for action. With climate change at the forefront of politics and mainstream media, informing discussions of policy is increasingly important. Confusion about the causes and consequences of climate change, and especially about carbon dioxide's long atmospheric residence time, could have profound implications for sustained support of policies to achieve reductions in carbon dioxide emissions and other greenhouse gases. © 2017 Society for Risk Analysis.

  11. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  12. GPS estimation of atmospheric water vapour from a moving platform

    NASA Astrophysics Data System (ADS)

    Dodson, A. H.; Chen, W.; Penna, N. T.; Baker, H. C.

    2001-08-01

    Measuring water vapour content, and its variability, in the atmosphere is important for meteorological and climatological research. Recently, a technique for the remote sensing of water vapour in the atmosphere using ground-based GPS has been rapidly developed. An estimation accuracy for integrated water vapour content of 1-2kg/m2 has been routinely available from such ground-based GPS networks (Dodson and Baker, Proceedings of the ION National Technical Meeting, Navigation 2000, California, January 21-23). Extending this technique into the sea on a moving platform would be greatly beneficial for meteorological research, such as the calibration of satellite data and the investigation of the sea/air interface as well as forecasting and climate studies. However, whether the water vapour can be separated from the motion of the GPS receiver in the estimation process itself, is still an open question. In this paper, a new method, based on a Kalman filter, has been developed to deal with this problem. The initial experiment shows that the accuracy of estimated tropospheric delay from a moving platform is comparable to that from (static) land based receivers.

  13. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    PubMed

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  14. The effect of atmospheric pollution on Vitis vinifera L. pollen ultrastructure under natural conditions.

    PubMed

    Stirban, M; Craciun, C; Bathory, D; Cipleu, D

    1984-06-01

    The ultrastructural modification of pollen grains in Vitis vinifera L. variety and hybrids in areas of SO2 atmospheric pollution (the main polluting SO2 usually reaches 2.72 mg/m3), nitrogen oxide, and other gases derived from noniron metal processing factories have been studied. Strains 1001 and 1002, resistant varieties, do not undergo ultrastructural modifications. Neuburger and Issabelle, medium resistant ones, have a heterogeneity in ultrastructural organization from normal forms to forms having both wall covers as well as the main organelles changed.

  15. The Role of Urban Landscape Green in Urban Atmospheric Pollution Prevention

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Kong, H.

    Through the investigation to understand the different nature of the city, the scale of the different planning and design, different varieties of seedlings of different plant configurations, different green hard landscape materials and air quality within the respective plots, find out toxic and harmful substances in the atmosphere absorb absorption, resistance stagnation, degradation of the strongest, least amount of dust generated dust, improving urban air quality best green landscape design, ideas and principles, and thus adjust and optimize the urban landscape, the landscape green purifying improve urban air quality, improve the urban environment repair of air pollution, urban centers in urban air pollution prevention role.

  16. Foliar Uptake of Atmospheric Reactive Nitrogen Pollution Along an Urban-Rural Gradient in New York State

    NASA Astrophysics Data System (ADS)

    Vallano, D.; Sparks, J. P.

    2008-12-01

    Vegetation is an important sink for atmospheric reactive nitrogen (N) pollution in terrestrial ecosystems, and when soil N is limiting, foliar N uptake can be a source of plant-available N. A proxy for pollution derived N, and in particular foliar assimilated N, would be useful to quantify the impact of the foliar uptake pathway on plant metabolism. Nitrogen stable isotope ratios (15N/14N) are practical for this purpose because forms of plant-available N often have varying isotopic compositions. However, the mechanisms driving differences in foliar N isotopic composition (δ15N) are still unresolved. Current understanding of foliar δ 15N suggests these values primarily represent the integration of the soil water solution δ15N, direct foliar uptake of atmospheric reactive N, within-plant fractionations, and fractionation due to the fungus to root transfer in mycorrhizae. In this study, we investigated the influence of direct foliar uptake, soil solution δ 15N, and mycorrhizae on foliar δ15N in seedlings of two dominant Northeastern tree species, red maple (Acer rubrum) and red oak (Quercus rubra), along an N deposition gradient in New York State. Using a potted plant mesocosm system, we compared foliar δ15N values directly to soil solution δ15N values while controlling for mycorrhizal associations. Both species showed higher foliar δ15N when exposed to fractionation by mycorrhizal associations. Overall, A. rubrum showed higher foliar δ15N than Q. rubra across all sites. In both species, patterns of foliar δ15N values were coupled with soil solution δ15N values across the N deposition gradient. Additionally, increasing atmospheric N deposition was correlated with higher foliar δ15N values in Q. rubra, but not in A. rubrum. Using a mixing model, we estimated that Q. rubra seedlings incorporated up to 7% of their assimilated N via direct foliar uptake of atmospheric N pollution. However, foliar uptake was not detectable in A. rubrum seedlings. Results

  17. Atmospheric processes of organic pollutants over a remote lake on the central Tibetan Plateau: implications for regional cycling

    NASA Astrophysics Data System (ADS)

    Ren, Jiao; Wang, Xiaoping; Wang, Chuanfei; Gong, Ping; Yao, Tandong

    2017-01-01

    Atmospheric processes (air-surface exchange, and atmospheric deposition and degradation) are crucial for understanding the global cycling and fate of organic pollutants (OPs). However, such assessments over the Tibetan Plateau (TP) remain uncertain. More than 50 % of Chinese lakes are located on the TP, which exerts a remarkable influence on the regional water, energy, and chemical cycling. In this study, air and water samples were simultaneously collected in Nam Co, a large lake on the TP, to test whether the lake is a secondary source or sink of OPs. Lower concentrations of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were observed in the atmosphere and lake water of Nam Co, while the levels of polycyclic aromatic hydrocarbons (PAHs) were relatively higher. Results of fugacity ratios and chiral signatures both suggest that the lake acted as the net sink of atmospheric hexachlorocyclohexanes (HCHs), following their long-range transport driven by the Indian monsoon. Different behaviours were observed in the PAHs, which primarily originated from local biomass burning. Acenaphthylene, acenaphthene, and fluorene showed volatilization from the lake to the atmosphere, while other PAHs were deposited into the lake due to the integrated deposition process (wet/dry and air-water gas deposition) and limited atmospheric degradation. As the dominant PAH compound, phenanthrene exhibited a seasonal reversal of air-water gas exchange, which was likely related to the melting of the lake ice in May. The annual input of HCHs from the air to the entire lake area (2015 km2) was estimated as 1.9 kg yr-1, while input estimated for 15PAHs can potentially reach up to 550 kg yr-1. This study highlights the significance of PAH deposition on the regional carbon cycling in the oligotrophic lakes of the TP.

  18. Assessment of the mutagenicity of volatile organic air pollutants before and after atmospheric transformation

    SciTech Connect

    Claxton, L.D.; Kleindienst, T.E.; Perry, E.

    1990-01-01

    During the past decade, there has been renewed effort examining the extent to which hazardous compounds (particularly mutagens and carcinogens) are found in the urban atmosphere. Most of these studies examined organic material associated with the particles emitted from specific sources. In contrast, few studies have examined the volatile airborne organics before and after they undergo atmospheric transformation. Such studies have shown that the mutagenicity of organic material from combustion sources can dramatically increase after photooxidation processes and that a variety of atmospheric hydrocarbons can be transformed into mutagenic species through these same processes. A review of the Salmonella bioassaymore » genotoxicity of volatile organic pollutants and their atmospheric transformation products is presented.« less

  19. A Direct Estimate of Climate Sensitivity from Atmospheric Structure

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.

    2014-12-01

    The nominal equilibrium climate sensitivity of about 3°C for doubled CO2 is obtained from direct climate model calculations and from simulations of the historical surface temperature record. A similar value of equilibrium climate sensitivity has been inferred from the geological ice core record. A further independent estimate of climate sensitivity can be derived directly from the atmospheric temperature, cloud, and absorbing gas structure. Attribution of individual contributions to the terrestrial greenhouse effect by individual atmospheric constituents shows that water vapor and clouds account for about 75% of the total greenhouse effect, while CO2 and the other minor non-condensing green house gases account for the remaining 25%. It is generally understood that water vapor and cloud contributions to the greenhouse effect arise as feedback effects, and that the non-condensing greenhouse gas contribution can be identified as the radiative forcing component. From this alone, a climate feedback sensitivity of f = 4, or about 5°C for doubled CO2 can be inferred. Accounting further for the negative temperature lapse rate feedback that is not directly included in the attribution analysis, and allowing for a residual non-condensing component of the water vapor feedback, brings the equilibrium climate sensitivity that is inferred from atmospheric structural analysis to the 3°C range for doubled CO2, in good agreement with the equilibrium climate sensitivity that is obtained from comparisons to historical and geological global temperature changes.

  20. Uncertainties associated with parameter estimation in atmospheric infrasound arrays.

    PubMed

    Szuberla, Curt A L; Olson, John V

    2004-01-01

    This study describes a method for determining the statistical confidence in estimates of direction-of-arrival and trace velocity stemming from signals present in atmospheric infrasound data. It is assumed that the signal source is far enough removed from the infrasound sensor array that a plane-wave approximation holds, and that multipath and multiple source effects are not present. Propagation path and medium inhomogeneities are assumed not to be known at the time of signal detection, but the ensemble of time delays of signal arrivals between array sensor pairs is estimable and corrupted by uncorrelated Gaussian noise. The method results in a set of practical uncertainties that lend themselves to a geometric interpretation. Although quite general, this method is intended for use by analysts interpreting data from atmospheric acoustic arrays, or those interested in designing and deploying them. The method is applied to infrasound arrays typical of those deployed as a part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization.

  1. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements

    PubMed Central

    Arnold, Tim; Harth, Christina M.; Mühle, Jens; Manning, Alistair J.; Salameh, Peter K.; Kim, Jooil; Ivy, Diane J.; Steele, L. Paul; Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Weiss, Ray F.

    2013-01-01

    Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing. PMID:23341630

  2. Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, S.; Marshall, S. J.

    2014-12-01

    Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.

  3. Bronchitis in two integrated steel works: III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution

    PubMed Central

    Lowe, C. R.; Campbell, H.; Khosla, T.

    1970-01-01

    Lowe, C. R., Campbell, H., and Khosla, T.(1970).Brit. J. industr. Med.,27, 121-129. Bronchitis in two integrated steel works. III. Respiratory symptoms and ventilatory capacity related to atmospheric pollution. This is the third in a series of papers presenting the results of an epidemiological study of respiratory symptomatology and lung function among men employed in two integrated steel works in South Wales. In this paper measurements of atmospheric pollution are related to respiratory symptoms and ventilatory capacity among 10 449 men who spent the greater part of their working hours in one or other of 114 defined working areas. The problem has been explored in three different ways. In the first, each man was assigned the mean value of sulphur dioxide and respirable dust for the area in which he was working and this was related to his ventilatory capacity (FEV1·0), age, smoking habits, and the number of years he had spent in his present department. In the second, the 114 working areas were divided into four sub-groups, according to defined levels of atmospheric pollution, and the prevalence of chronic bronchitis and mean FEV1·0 in the four sub-groups was examined. In the third way, the mean atmospheric pollution levels in each of the 114 areas were related to the prevalence of bronchitis and to the mean FEV1·0, age, and smoking habits in those areas. The analysis demonstrates very clearly the over-riding importance of cigarette smoking in the aetiology of chronic bronchitis, but, so far as the main purpose of the survey is concerned, it is concluded that, if there is any relation between respiratory disability and atmospheric pollution in the two steel works, it is so slight that none of the three approaches to the problem was sensitive enough to detect it. The implications of this are discussed in the light of the levels of pollution that were recorded in and around the two works. PMID:5428631

  4. Remote sensing applications for diagnostics of the radioactive pollution of the ground surface and in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Boyarchuk, Kirill; Laverov, Nikolay

    2013-04-01

    21.We are presenting new theoretical estimates and results of experimental measurements showing that the heat flux released during ionization of the atmospheric boundary layer under significant radioactive pollution is sufficient for recording anomalous heat fluxes using the means of remote sounding (infrared radiometers) installed on satellites, and ionospheric anomalies are generated due to changes of the boundary layer conductivity.

  5. Observable Effects of Atmospheric Pollution on Outpatient and Inpatient Morbidity in Bulgaria

    PubMed Central

    PLATIKANOVA, Magdalena; PENKOVA-RADICHEVA, Mariana

    2016-01-01

    Background: One of Europe’s most well-developed industrial regions is found in the Republic of Bulgaria. The industrialization of the region has a big impact on air pollution. Thermal power plant “Maritza East” (the largest of its kind in southeastern Europe), the army training range, machine manufacturers, household heating and high volume of automobile traffic are all major sources of pollution in the region. Methods: A five year study (2009–2013) followed yearly concentrations of principal atmospheric pollutants such as sulfur dioxide, dust, nitrogen dioxide, lead aerosols and hydrogen sulfide, and the way in which those levels had an effect on morbidity (outpatient and inpatient medical care) in the area. Statistical processing of data has been completed to represent and analyze the collected data in nonparametric and alternative format. Results: Atmospheric pollution affects human health directly through pathological changes in the human organism. The registered outpatient care provided for the period 2009–2013 is highest for diseases of the cardiovascular system (11.85%), the respiratory system (17.34%) and the genitourinary system (9.76%). The registered rate of hospitalization for the same period is for diseases of the digestive system (11.90%), the cardiovascular system (11.85%), respiratory system (10.86%) and the genitourinary system (8.88%). Conclusion: The observed period shows a decrease in average yearly concentrations of the principal atmospheric pollutants in the industrial region (Bulgaria) and reflects a decrease in morbidity based on outpatient care and an increase in morbidity by inpatient care (hospitalization). Our findings should be corroborated in future longitudinal studies. PMID:27252921

  6. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  7. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution

    Treesearch

    Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon

    2016-01-01

    Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....

  8. The Benefits of Air and Water Pollution Control: A Review and Synthesis of Recent Estimates (1979)

    EPA Pesticide Factsheets

    Report provides a survey and critical review of the existing literature (by late 1970s) giving estimates of national benefits or damages, adopting a common framework to provide consistent estimates of air and water pollution benefits.

  9. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Dörner, Steffen; He, Kebin; Wagner, Thomas

    2016-04-01

    We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in a polluted background. NO2 patterns under calm wind conditions are used as proxy for the spatial patterns of NOx emissions, and the effective atmospheric NOx lifetime is determined from the change of spatial patterns measured at larger wind speeds. Emissions are subsequently derived from the NO2 mass above the background, integrated around the source of interest. Lifetimes and emissions are estimated for 17 power plants and 53 cities located in non-mountainous regions across China and the USA. The derived lifetimes for the ozone season (May-September) are 3.8 ± 1.0 h (mean ± standard deviation) with a range of 1.8 to 7.5 h. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Regional inventory shows better agreement with top-down estimates for Chinese cities compared to global inventory, most likely due to different downscaling approaches adopted in the two inventories.

  10. AICE Survey of USSR Air Pollution Literature, Volume 14: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 3.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Fifteen papers were translated: On the removal of impurities from the atmosphere by clouds and precipitation; Some aspects of the adoption of automatic methods of determining atmospheric pollutants; Recording of sulfur dioxide content at the outskirts of a city. Comparison of measurement results for a valley and an elevation; Theoretical and…

  11. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  12. Pollutant discharges to coastal areas: Improving upstream source estimates. Final report

    SciTech Connect

    Rohmann, S.O.

    1989-10-01

    The report describes a project NOAA's Strategic Environmental Assessments Division began to improve the estimates of pollutant discharges carried into coastal areas by rivers and streams. These estimates, termed discharges from upstream sources, take into account all pollution discharged by industries, sewage treatment plants, farms, cities, and other pollution-generating operations, as well as natural phenomena such as erosion and weathering which occur inland or upstream of the coastal US.

  13. Novel Approaches for Estimating Human Exposure to Air Pollutants

    EPA Science Inventory

    Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying on solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal varia...

  14. [Pollution Level and Source Apportionment of Atmospheric Particles PM₂.₅ in Southwest Suburb of Chengdu in Spring].

    PubMed

    Lin, Yu; Ye, Zhi-xiang; Yang, Huai-jin; Zhang, Ju; Yin, Wei-wen; Li, Xiao-fen

    2016-05-15

    In order to understand the characteristics of PM₂.₅ pollution in the atmosphere of Chengdu southwest suburb, PM₂.₅ particles in Chengdu southwest suburb were collected and analyzed from March 18 to March 31st, 2015. The results showed that the daily average concentration of PM₂.₅ in the southwest suburb of Chengdu reached 121.21 µg · m⁻³, and the average daily concentration of 24 samples in 31 PM₂.₅ samples was over 75 µg · m⁻³, the daily excessive rate was 77%, indicating the PM₂.₅ pollution in the study area was serious in March. When studying the relationship between atmospheric and meteorological factors, it was found that there was a significant index correlation between PM₂.₅ concentration and atmospheric visibility, and it had a positive correlation with temperature and humidity, but the correlation was not obvious. NH₄⁺ (16.24%), SO₄²- (12.58%) and NO₃⁻ (9.91%) were dominant in PM₂.₅ The ratio of NO₃⁻/SO₄²⁻ was 0.77, which indicated that the pollution of stationary sources in the southwest suburb was more severe than that of mobile sources. Organic carbon (OC)/elemental carbon (EC) ratios were higher than 2, which indicated the existence of second organic carbon (SOC). Using OC/EC ratio method to estimate the concentration of SOC, it was found that the average concentration of SOC in the southwest suburb of Chengdu in March was 3.49 µ · m⁻³, and the contribution rate of OC was 20.6%, which showed that the main source of OC in the southwest suburb of Chengdu was primary discharge. The correlation analysis of OC and EC showed that the correlation coefficient reached 0.95, indicating that the OC and EC sources were similar and relatively stable, and there was a great impact of local source emissions on Chengdu southwest suburb in spring, and primary discharge played a dominant role, while the contribution of SOC to OC was relatively small, which was consistent with the SOC characteristics obtained

  15. Predicting changes of glass optical properties in polluted atmospheric environment by a neural network model

    NASA Astrophysics Data System (ADS)

    Verney-Carron, A.; Dutot, A. L.; Lombardo, T.; Chabas, A.

    2012-07-01

    Soiling results from the deposition of pollutants on materials. On glass, it leads to an alteration of its intrinsic optical properties. The nature and intensity of this phenomenon mirrors the pollution of an environment. This paper proposes a new statistical model in order to predict the evolution of haze (H) (i.e. diffuse/direct transmitted light ratio) as a function of time and major pollutant concentrations in the atmosphere (SO2, NO2, and PM10 (Particulate Matter < 10 μm)). The model was parameterized by using a large set of data collected in European cities (especially, Paris and its suburbs, Athens, Krakow, Prague, and Rome) during field exposure campaigns (French, European, and international programs). This statistical model, called NEUROPT-Glass, comes from an artificial neural network with two hidden layers and uses a non-linear parametric regression named Multilayer Perceptron (MLP). The results display a high determination coefficient (R2 = 0.88) between the measured and the predicted hazes and minimizes the dispersion of data compared to existing multilinear dose-response functions. Therefore, this model can be used with a great confidence in order to predict the soiling of glass as a function of time in world cities with different levels of pollution or to assess the effect of pollution reduction policies on glass soiling problems in urban environments.

  16. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  17. How stellar activity affects exoplanet's parameters estimation and exoplanet's atmosphere

    NASA Astrophysics Data System (ADS)

    Oshagh, Mahmoudreza

    2015-07-01

    Stellar activity features such as spots and plages can create complications in determining planetary parameters through spectroscopic and photometric observations. The overlap of a transiting planet and stellar spots/plages can produce anomalies in the transit light-curves that may lead to inaccurate estimation of the transit duration, depth and timing. We found that spot anomalies can lead to the transit duration be 4%, overestimated or underestimated, which can affect the planet orbital inclination estimation. The anomalies can also produce transit timing variations (TTV) with significant amplitudes of 200 seconds. Such a large TTV is similar to that induced by an Earth-mass planet on a transiting Jupiter in a three-day orbit. The transmission spectroscopy method, which is based on the measurements of the variations of planet-to-star radius ratio as a function of wavelength, is a powerful technique to study the atmospheric properties of transiting planets. Results of our simulations indicated that transit anomalies can lead to a significant underestimation or overestimation of the planet-to-star radius ratio as a function of wavelength. At short wavelengths, the effect can reach to difference of up to 10% in the planet-to-star radius ratio, mimicking the signature of Rayleigh scattering in the planetary atmosphere. Application of our calculations to HD 189733b and GJ 3470b transmission spectroscopy measurements and especially the reported excess in their planet-to-star radius ratio in the bluer part of the spectra, which were interpreted as the signature of blue sky, can exactly be reproduced by assuming that the planet occults a plage on the surface of these stars.

  18. The influence of scales of atmospheric motion on air pollution over Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  19. Radioactive Pollution Estimate for Fukushima Nuclear Power Plant by a Particle Model

    NASA Astrophysics Data System (ADS)

    Saito, Keisuke; Ogawa, Susumu

    2016-06-01

    On Mar 12, 2011, very wide radioactive pollution occurred by a hydrogen explosion in Fukushima Nuclear Power Plant. A large amount of radioisotopes started with four times of explosions. With traditional atmospheric diffusion models could not reconstruct radioactive pollution in Fukushima. Then, with a particle model, this accident was reconstructed from meteorological archive and Radar- AMeDAS. Calculations with the particle model were carried out for Mar 12, 15, 18 and 20 when east southeast winds blew for five hours continuously. Meteorological archive is expressed by wind speeds and directions in five-km grid every hour with eight classes of height till 3000 m. Radar- AMeDAS is precipitation data in one-km grid every thirty minutes. Particles are ten scales of 0.01 to 0.1 mm in diameter with specific weight of 2.65 and vertical speeds given by Stokes equation. But, on Mar 15, it rained from 16:30 and then the particles fell down at a moment as wet deposit in calculation. On the other hand, the altitudes on the ground were given by DEM with 1 km-grid. The spatial dose by emitted radioisotopes was referred to the observation data at monitoring posts of Tokyo Electric Power Company. The falling points of radioisotopes were expressed on the map using the particle model. As a result, the same distributions were obtained as the surface spatial dose of radioisotopes in aero-monitoring by Ministry of Education, Culture, Sports, Science and Technology. Especially, on Mar 15, the simulated pollution fitted to the observation, which extended to the northwest of Fukushima Daiichi Nuclear Power Plant and caused mainly sever pollution. By the particle model, the falling positions on the ground were estimated each particle size. Particles with more than 0.05 mm of size were affected by the topography and blocked by the mountains with the altitudes of more than 700 m. The particle model does not include the atmospheric stability, the source height, and deposit speeds. The

  20. Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records.

    PubMed

    Engels, S; Fong, L S R Z; Chen, Q; Leng, M J; McGowan, S; Idris, M; Rose, N L; Ruslan, M S; Taylor, D; Yang, H

    2018-04-01

    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2014-10-01

    China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example

  2. Atmospheric dispersion estimates in the vicinity of buildings

    SciTech Connect

    Ramsdell, J.V. Jr.; Fosmire, C.J.

    1995-01-01

    A model describing atmospheric dispersion in the vicinity of buildings was developed for the U.S. Nuclear Regulatory Commission (NRC) in the late 1980s. That model has recently undergone additional peer review. The reviewers identified four areas of concern related to the model and its application. This report describes revisions to the model in response to the reviewers concerns. Model revision involved incorporation of explicit treatment of enhanced dispersion at low wind speeds in addition to explicit treatment of enhanced dispersion at high speeds resulting from building wakes. Model parameters are evaluated from turbulence data. Experimental diffusion data from seven reactor sites are used for model evaluation. Compared with models recommended in current NRC guidance to licensees, the revised model is less biased and shows more predictive skill. The revised model is also compared with two non-Gaussian models developed to estimate maximum concentrations in building wakes. The revised model concentration predictions are nearly the same as the predictions of the non-Gaussian models. On the basis of these comparisons of the revised model concentration predictions with experimental data and the predictions of other models, the revised model is found to be an appropriate model for estimating concentrations in the vicinity of buildings.

  3. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  4. The effect of nitrogen additions on bracken fern and its insect herbivores at sites with high and low atmospheric pollution

    Treesearch

    M.E. Jones; M.E. Fenn; T.D. Paine

    2011-01-01

    The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles,...

  5. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  6. The role of catchment vegetation in reducing atmospheric inputs of pollutant aerosols in Ganga river.

    PubMed

    Shubhashish, Kumar; Pandey, Richa; Pandey, Jitendra

    2012-08-01

    The role of woody perennials in the Ganga river basin in modifying the run-off quality as influenced by atmospheric deposition of pollutant aerosols was investigated. The concentration of seven nutrients and eight metals were measured in atmospheric deposits as well as in run-off water under the influence of five woody perennials. Nutrient retention was recorded maximum for Bougainvillea spectabilis ranged from 4.30 % to 33.70 %. Metal retention was recorded highest for Ficus benghalensis ranged from 5.15 % to 36.98 %. Although some species showed nutrient enrichment, all the species considered in the study invariably contribute to reduce nutrients and metal concentration in run-off water. Reduction in run off was recorded maximum for B. spectabilis (nutrient 6.48 %-40.66 %; metal 7.86 %-22.85 %) and minimum for Ficus religiosa (nutrient 1.68 %-27.19 %; metal 6.55 %-31.55 %). The study forms the first report on the use of woody perennials in reducing input of atmospheric pollutants to Ganga river and has relevance in formulating strategies for river basin management.

  7. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 years

    NASA Astrophysics Data System (ADS)

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin; Vallelonga, Paul; Thompson, Lonnie

    2015-04-01

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice-core record (793-1989 AD) from the high altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the pre-colonial period (i.e., pre-1532 AD), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions indicating that metallurgic production during the Inca Empire (1438-1532 AD) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after 1540 AD, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, 240 years prior to the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (1572 AD), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history.

  8. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y.

    PubMed

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A; Vallelonga, Paul; Thompson, Lonnie G

    2015-02-24

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793-1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438-1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history.

  9. Widespread pollution of the South American atmosphere predates the industrial revolution by 240 y

    PubMed Central

    Uglietti, Chiara; Gabrielli, Paolo; Cooke, Colin A.; Vallelonga, Paul; Thompson, Lonnie G.

    2015-01-01

    In the Southern Hemisphere, evidence for preindustrial atmospheric pollution is restricted to a few geological archives of low temporal resolution that record trace element deposition originating from past mining and metallurgical operations in South America. Therefore, the timing and the spatial impact of these activities on the past atmosphere remain poorly constrained. Here we present an annually resolved ice core record (A.D. 793–1989) from the high-altitude drilling site of Quelccaya (Peru) that archives preindustrial and industrial variations in trace elements. During the precolonial period (i.e., pre-A.D. 1532), the deposition of trace elements was mainly dominated by the fallout of aeolian dust and of ash from occasional volcanic eruptions, indicating that metallurgic production during the Inca Empire (A.D. 1438−1532) had a negligible impact on the South American atmosphere. In contrast, a widespread anthropogenic signal is evident after around A.D. 1540, which corresponds with the beginning of colonial mining and metallurgy in Peru and Bolivia, ∼240 y before the Industrial Revolution. This shift was due to a major technological transition for silver extraction in South America (A.D. 1572), from lead-based smelting to mercury amalgamation, which precipitated a massive increase in mining activities. However, deposition of toxic trace metals during the Colonial era was still several factors lower than 20th century pollution that was unprecedented over the entirety of human history. PMID:25675506

  10. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Steffens, Jonathan T.; Heist, David K.; Perry, Steven G.; Zhang, K. Max

    2013-04-01

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollutant concentrations. However, there is still a lack of mechanistic understanding of how solid barriers affect pollutant transport, especially under a variety of meteorological conditions. In this study, we utilized the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial gradients of SF6 concentrations behind a solid barrier under a variety of atmospheric stability conditions collected during the Near Road Tracer Study (NRTS08). We employed two different CFD models, RANS and LES. A recirculation zone, characterized by strong mixing, forms in the wake of a barrier. It is found that this region is important for accurately predicting pollutant dispersion, but is often insufficiently resolved by the less complex RANS model. The RANS model was found to perform adequately away from the leading edge of the barrier. The LES model, however, performs consistently well at all flow locations. Therefore, the LES model will make a significant improvement compared to the RANS model in regions of strong recirculating flow or edge effects. Our study suggests that advanced simulation tools can potentially provide a variety of numerical experiments that may prove useful for roadway design communities to intelligently design roadways, making effective use of roadside barriers.

  11. Magnetic Study on Environmental Samples from Guadalajara Mexico for Monitoring of Atmospheric Pollution

    NASA Astrophysics Data System (ADS)

    Aguilar, B.; Cejudo, R.; Bogalo, M. F.; Rosas-Elguera, J.; Quintana, P.; Bautista, F.; Gogichaishvili, A.; Morales, J.

    2013-05-01

    Guadalajara is the second bigger city in Mexico, catalogued as critical zone because of atmospheric pollution levels. The magnetic methodology has been largely used as an alternative way to evaluate the pollution levels as well as identify the critical points in a given area. In this work, results from chemical analyses and magnetic measurements are presented in order to show the correlation between magnetic signal and the pollution level. We analyzed three kinds of environmental samples: urban soils, urban dust and leaves from ficus benjamina. Samples were taken in 30 sites distributed along a main avenue and two secondary avenues, including three points with very poor traffic influence. We determined a ferromagnetic carrier in most of samples, magnetite probably, since the Tc calculated from the thermomagnetic curves is around 580 °C. The magnetic susceptibility (Xlf) as well as the Saturation Isothermal Remanent Magnetization (SIRM) correlate well with the heavy metals content, specially Pb in urban dusts. These results allowed us to identify the most affected points, by vehicular traffic and industrial emissions. Furthermore, the values obtained for these magnetic parameters are above of those found in other studies for polluted cities in Europe and Asia.

  12. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    NASA Astrophysics Data System (ADS)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements

  13. Huguangyan Maar Lake (SE China): A solid record of atmospheric mercury pollution history in a non-remote region

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Chen, Jingan; Yang, Yongqiong; Wang, Jianxu; Zhu, Zhengjie; Li, Jian

    2017-10-01

    Mercury is a highly toxic metal that can cause harm to environment and human health. As atmospheric deposition is the main source of total Hg input to aquatic system in remote and pristine regions, almost all the studies on atmospheric Hg pollution history concentrated in these areas, while the studies in non-remote areas are much limited, especially for the long history records. In this study, Huguangyan Maar Lake, an undisturbed lake system at low altitude in China, was selected to reconstruct the atmospheric mercury pollution history. Variation patterns of TOC, Hg and non-residual Sr in the sediment core indicated that, compared to the direct atmospheric Hg deposition, the effect of either Hg scavenging from water column by algae or the catchment inputs of previously deposited Hg on the Hg accumulation in the lake sediment was limited. The sediment Hg content in Huguangyan Lake was mainly controlled by the atmospheric Hg deposition, and thus accurately reflected the atmospheric Hg pollution history. The Hga (Hg content from atmospheric deposition) in Huguangyan Lake presented a comparable variation pattern to that in remote sites. It had the same variation trend as the global atmospheric Hg before 1950 CE, which could be attributed to the Industrial Revolution. After that, it was mainly controlled by Hg emissions from Asian countries. The variation of Hga also indicated that atmospheric Hg deposition accelerated significantly since 2000 CE. This study, along with other investigations in remote sites in China, showed that the sediment Hg in Huguangyan Lake responded to the atmospheric Hg pollution more sensitively than in the alpine regions. It should be noted that, the more intensive acceleration of Hg deposition in Huguangyan Lake may imply that the South of China suffered from much more serious atmospheric Hg pollution than previous studies revealed.

  14. Characteristics of major secondary ions in typical polluted atmospheric aerosols during autumn in central Taiwan.

    PubMed

    Fang, Guor-Cheng; Lin, Shih-Chieh; Chang, Shih-Yu; Lin, Chuan-Yao; Chou, Charles-C K; Wu, Yun-Jui; Chen, Yu-Chieh; Chen, Wei-Tzu; Wu, Tsai-Lin

    2011-06-01

    In autumn of 2008, the chemical characteristics of major secondary ionic aerosols at a suburban site in central Taiwan were measured during an annually occurring season of high pollution. The semicontinuous measurement system measured major soluble inorganic species, including NH(4)(+), NO(3)(-), and SO(4)(2-), in PM(10) with a 15 min resolution time. The atmospheric conditions, except for the influences of typhoons, were dominated by the local sea-land breeze with clear diurnal variations of meteorological parameters and air pollutant concentrations. To evaluate secondary aerosol formation at different ozone levels, daily ozone maximum concentration (O(3,daily max)) was used as an index of photochemical activity for dividing between the heavily polluted period (O(3,daily max) ≧80 ppb) and the lightly polluted period (O(3,daily max)<80 ppb). The concentrations of PM(10), NO(3)(-), SO(4)(2-), NH(4)(+) and total major ions during the heavily polluted period were 1.6, 1.9, 2.4, 2.7 and 2.3 times the concentrations during the lightly polluted period, respectively. Results showed that the daily maximum concentrations of PM(10) occurred around midnight and the daily maximum ozone concentration occurred during daytime. The average concentration of SO(2) was higher during daytime, which could be explained by the transportation of coastal industry emissions to the sampling site. In contrast, the high concentration of NO(2) at night was due to the land breeze flow that transport inland urban air masses toward this site. The simulations of breeze circulations and transitions were reflected in transports and distributions of these pollutants. During heavily polluted periods, NO(3)(-) and NH(4)(+) showed a clear diurnal variations with lower concentrations after midday, possibly due to the thermal volatilization of NH(4)NO(3) during daytime and transport of inland urban plume at night. The diurnal variation of PM(10) showed the similar pattern to that of NO(3)(-) and NH(4

  15. Estimation of NOx emissions from NO2 hotspots in polluted background using satellite observations

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Wagner, Thomas

    2015-04-01

    Satellite observations have been widely used to study NOx emissions from power plants and cities, which are major NOx sources with large impacts on human health and climate. The quantification of NOx emissions from measured column densities of NO2 requires information on the NOx lifetime, which is typically gained from atmospheric chemistry models. But some recent studies determined the NOx lifetime from the satellite observations as well by analyzing the downwind plume evolution; however, this approach was so far only applied for strong isolated 'point sources' located in clean background, like Riyadh in Saudi Arabia. Here we present a modified method for the quantification of NOx emissions and corresponding atmospheric lifetimes based on OMI observations of NO2, together with ECMWF wind fields, but without further model input, for hot spots located in polluted background. We use the observed NO2 patterns under calm wind conditions as proxy for the spatial patterns of NOx emissions; by this approach, even complex source distributions can be treated realistically. From the change of the spatial patterns of NO2 at larger wind speeds (separately for different wind directions), the effective atmospheric lifetime is fitted. Emissions are derived from integrated NO2 columns above background by division by the corresponding lifetime. NOx lifetimes and emissions are estimated for 19 power plants and 50 cities across China and the US. The derived lifetimes are 3.3 ± 1.2 hours on average with extreme values of 0.9 to 7.7 hours. The resulting very short lifetimes for mountainous sites have been found to be uncertain due to the potentially inaccurate ECMWF wind data in mountainous regions. The derived NOx emissions show overall good agreement with bottom-up inventories.

  16. An integrated Bayesian model for estimating the long-term health effects of air pollution by fusing modelled and measured pollution data: A case study of nitrogen dioxide concentrations in Scotland.

    PubMed

    Huang, Guowen; Lee, Duncan; Scott, Marian

    2015-01-01

    The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution.

    PubMed

    Eatough Jones, Michele; Paine, Timothy D; Fenn, Mark E

    2008-02-01

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.

  18. Modelling the long-term impacts of atmospheric pollution deposition and repeated forestry cycles on stream water chemistry for a holm oak forest in northeastern Spain

    NASA Astrophysics Data System (ADS)

    Neal, Colin; Avila, Anna; Rodà, Ferran

    1995-06-01

    Estimates based on the MAGIC model of the long-term effects on stream water quality of forest management cycles as well as of atmospheric pollutant inputs for a holm oak catchment in northeastern Spain, show that despite high pollutant sulphur inputs as well as substantial base cation loss from the catchment owing to forest harvesting, stream water has not deteriorated in any major way. Acidification of the catchment will continue, to a limited degree, unless either sulphur deposition is reduced by more than 60% or forest harvesting schemes are terminated. The detrimental changes in water quality owing to acid deposition and forestry harvesting practice in other parts of Europe are not observed in this region, because of high base inputs from the atmosphere and high base cation weathering rates within the catchment.

  19. Data on microscale atmospheric pollution of Bolshoy Kamen town (Primorsky region, Russia)

    NASA Astrophysics Data System (ADS)

    Kholodov, Aleksei; Ugay, Sergey; Drozd, Vladimir; Maiss, Natalia; Golokhvast, Kirill

    2017-10-01

    The paper discusses the study of atmospheric particulate matter of Bolshoy Kamen town by means of laser granulometry of snow water samples. Snow sampling points were selected close to major enterprises, along the main streets and roads of the town and in the residential area. The near-ground layer of atmospheric air of the town contains particulate matter of three main size classes: under 10 microns, 10-50 microns and over 700 microns. It is shown that the atmosphere of this town is lightly polluted with particles under 10 μm (PM10). Only in 5 sampling points out of 11 we found microparticles potentially hazardous to human health in significant quantities – from 16.2% to 34.6%. On the most territory of the town large particles (over 400 μm) dominate reaching 79.2%. We can conclude that judging by the particle size analysis of snow water samples Bolshoy Kamen town can be considered safe in terms of presence of particles under 10 μm (PM10) in the atmosphere.

  20. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    SciTech Connect

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  1. A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2014-08-20

    We present a sparse reconstruction scheme that can also be used to ensure non-negativity when fitting wavelet-based random field models to limited observations in non-rectangular geometries. The method is relevant when multiresolution fields are estimated using linear inverse problems. Examples include the estimation of emission fields for many anthropogenic pollutants using atmospheric inversion or hydraulic conductivity in aquifers from flow measurements. The scheme is based on three new developments. Firstly, we extend an existing sparse reconstruction method, Stagewise Orthogonal Matching Pursuit (StOMP), to incorporate prior information on the target field. Secondly, we develop an iterative method that uses StOMP tomore » impose non-negativity on the estimated field. Finally, we devise a method, based on compressive sensing, to limit the estimated field within an irregularly shaped domain. We demonstrate the method on the estimation of fossil-fuel CO 2 (ffCO 2) emissions in the lower 48 states of the US. The application uses a recently developed multiresolution random field model and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It also reduces the overall computational cost by a factor of two. Further, the sparse reconstruction scheme imposes non-negativity without introducing strong nonlinearities, such as those introduced by employing log-transformed fields, and thus reaps the benefits of simplicity and computational speed that are characteristic of linear inverse problems.« less

  2. Metal concentrations in homing pigeon lung tissue as a biomonitor of atmospheric pollution.

    PubMed

    Cui, Jia; Halbrook, Richard S; Zang, Shuying; Han, Shuang; Li, Xinyu

    2018-03-01

    Atmospheric pollution in urban areas is a major worldwide concern with potential adverse impacts on wildlife and humans. Biomonitoring can provide direct evidence of the bioavailability and bioaccumulation of toxic metals in the environment that is not available with mechanical air monitoring. The current study continues our evaluation of the usefulness of homing pigeon lung tissue as a biomonitor of atmospheric pollution. Homing pigeons (1-2, 5-6, and 9-10+ year old (yo)) collected from Guangzhou during 2015 were necropsied and concentrations of cadmium (Cd), lead (Pb), and mercury (Hg) were measured in lung tissue. Lung Cd and Pb concentrations were significantly greater in 9-10+-year-old pigeons compared with those in other age groups, indicating their bioavailability and bioaccumulation. Lung Pb and Cd concentrations measured in 5-yo pigeons collected from Guangzhou during 2015 were significantly lower than concentrations reported in 5-yo homing pigeons collected from Guangzhou during 2011 and correlated with concentrations measured using mechanical air monitoring. In addition to temporal differences, spatial differences in concentrations of Cd, Pb, and Hg reported in ambient air samples and in pigeon lung tissues collected from Beijing and Guangzhou are discussed.

  3. A numerical study of atmospheric pollution over complex terrain in Switzerland

    NASA Astrophysics Data System (ADS)

    Beniston, Martin

    1987-12-01

    A pollution-related study has been carried out for the Swiss city of Bienne that is located in complex terrain at the foot of the Jura mountains. The study consists of an analysis of pollutant transport and dispersion from various emittors located in the city, using a coupled system of mesoscale and micro-scale atmospheric numerical models. Simulations of atmospheric flow with the mesoscale model over a 20 × 20 km domain (horizontal resolution: 500 m; vertical resolution: 250 m) are used to initialize a microscale model centered over the city. The domain of this latter model is 4 × 4 km (horizontal resolution: 100 m; vertical resolution: 10 m). Plume trajectories are computed in the micro-scale model, and are a function of the regional-scale flow field previously calculated by the mesoscale model. Results show that the flow — and hence the plume trajectories embedded within this motion field — an sensitive not only to channeling effects by the local valley systems, but also to local or regional meteorological effects resulting from cloud activity, urban heat island, and the direction of the synoptic scale flow with respect to the orientation of the Jura mointains.

  4. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  5. Estimating the contribution of bryophytes to the atmospheric COS budget

    NASA Astrophysics Data System (ADS)

    Gimeno, Teresa; Ogee, Jerome; Wingate, Lisa

    2017-04-01

    In the past decade, global biogeochemical modellers have embraced enthusiastically the potential of carbonyl sulphide (COS) as a tracer for gross primary productivity (GPP). COS is the most abundant sulphur-containing gas in the atmosphere, it is produced mainly in the ocean and it is consumed by the biosphere, with terrestrial vegetation being the most important contributor. Plant COS uptake is proportional to photosynthetic CO2 withdraw and that is why measurements of the biosphere-atmosphere COS flux can serve a proxy for GPP. Plant COS uptake is mediated by the light-independent enzyme carbonic anhydrase that irreversibly hydrolyses COS into H2S, which is quickly utilised as a sulphur source. Currently, there are no described plant-processes with COS as a by-product and hence the atmospheric-plant COS flux is assumed unidirectional. So far, we had focused on characterizing plant COS uptake dynamics on vascular plants and previous studies are consistent with the unidirectional flux assumption. However, although early works on sulphur metabolism suggested non-vascular plants might not abide to this assumption, we lack estimates of COS uptake dynamics for non-vascular communities. Bryophytes are key constituents of biocrusts and non-vascular photoautrophic communities and in temperate and cold latitudes contribute significantly to ecosystem carbon and nutrient cycling. We expect that in these ecosystems the coupling between COS and CO2 uptake will be influenced by specific environmental cues that control gas-exchange in bryophytes. We expect tissue hydration to be the most influential driver on COS uptake. In contrast, light would constrain CO2 but not COS uptake and therefore we expect greater uncoupling of COS and CO2 in the dark than in vascular plants. We characterized COS and CO2 uptake dynamics in two broadly distributed bryophytes, with contrasting life forms and evolutionary origins: the liverwort Marchantia polymorpha and the feather moss Scleropodium

  6. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOxemissions.

    PubMed

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NO x emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NO x emissions during the study period, while energy efficiency and technology improvement factors offset total NO x emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NO x emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NO x emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A quarter century of biomonitoring atmospheric pollution in the Czech Republic.

    PubMed

    Suchara, Ivan; Sucharová, Julie; Holá, Marie

    2017-05-01

    The Czech Republic (CZ) had extremely high emissions and atmospheric deposition of pollutants in the second half of the 1980s. Since the beginning of the 1990s, moss, spruce bark and forest floor humus have been used as bioindicators of air quality. In the first half of the 1990s, seven larger areas were found to be affected by high atmospheric deposition loads. Six of these "hot spots" were caused by industrial pollution sources, mainly situated in coal basins in the NW and NE part of the country, and one large area in the SE was affected by increased deposition loads of eroded soil particles. After restructuring of industry in CZ, these hot spots were substantially reduced or even disappeared between 1995 and 2000. Since 2000, only two larger areas with slightly increased levels of industrial pollutant deposition and a larger area affected by soil dust have repeatedly been identified by biomonitoring. The distribution of lead isotope ratios in moss showed the main deposition zones around important emission sources. Very high SO 2 emissions led to extreme acidity of spruce bark extracts (pH of about 2.3) at the end of the 1980s. The rate of increasing bark pH was strikingly similar to the rate of recovery of acid wet deposition measured at forest stations in CZ. By about 2005, when the median pH value in bark increased to about 3.2, the re-colonisation of trees by several epiphyte lichen species was observed throughout CZ. An increase in the accumulation of Chernobyl-derived 137 Cs in bark was detected at about ten sites affected by precipitation during the time when radioactive plumes crossed CZ (1986). Accumulated deposition loads in forest floor humus corresponded to the position of the moss and bark hot spots.

  8. Preliminary results of a lidar-dial integrated system for the automatic detection of atmospheric pollutants

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Gelfusa, M.; Richetta, M.

    2012-11-01

    In the last decades, atmospheric pollution in urban and industrial areas has become a major concern of both developed and developing countries. In this context, surveying relative large areas in an automatic way is an increasing common objective of public health organisations. The Lidar-Dial techniques are widely recognized as a cost-effective approach to monitor large portions of the atmosphere and, for example, they have been successful applied to the early detection of forest fire. The studies and preliminary results reported in this paper concern the development of an integrated Lidar-Dial system able to detect sudden releases in air of harmful and polluting substances. The propose approach consists of continuous monitoring of the area under surveillance with a Lidar type measurement (by means of a low cost system). Once a significant increase in the density of a pollutant is revealed, the Dial technique is used to identify the released chemicals. In this paper, the specifications of the proposed station are discussed. The most stringent requirement is the need for a very compact system with a range of at least 600-700 m. Of course, the optical wavelengths must be in an absolute eye-safe range for humans. A conceptual design of the entire system is described and the most important characteristic of the main elements are provided. In particular the capability of the envisaged laser sources, Nd:YAG and CO2 lasers, to provide the necessary quality of the measurements is carefully assessed. Since the detection of dangerous substances must be performed in an automatic way, the monitoring station will be equipped with an adequate set of control and communication devices for independent autonomous operation. The results of the first preliminary tests illustrate the potential of the chosen approach.

  9. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (T(sub g)) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing longwave radiation (CLR) is sensitive to upper level moisture (q(sub l)) over wet regions and (T(sub g)) over dry regions The clear sky window flux from 800 to 1200/cm (RadWn) is sensitive to low level moisture (q(sub t)) and T(sub g). Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub l) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in T(sub g), q(sub h) and q(sub l). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing Delta(T(sub g)) and broad layer Delta(q(sub l) from .500 hPa to surface and Delta(q(sub h)) from 200 to .300 hPa provides a good approximation to the full radiative transfer calculations. typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the

  10. Estimates of Ground Temperature and Atmospheric Moisture from CERES Observations

    NASA Technical Reports Server (NTRS)

    Wu, Man Li C.; Schubert, Siegfried; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A method is developed to retrieve surface ground temperature (Tg) and atmospheric moisture using clear sky fluxes (CSF) from CERES-TRMM observations. In general, the clear sky outgoing long-wave radiation (CLR) is sensitive to upper level moisture (q(sub h)) over wet regions and Tg over dry regions The clear sky window flux from 800 to 1200 /cm (RadWn) is sensitive to low level moisture (q(sub j)) and Tg. Combining these two measurements (CLR and RadWn), Tg and q(sub h) can be estimated over land, while q(sub h) and q(sub t) can be estimated over the oceans. The approach capitalizes on the availability of satellite estimates of CLR and RadWn and other auxiliary satellite data. The basic methodology employs off-line forward radiative transfer calculations to generate synthetic CSF data from two different global 4-dimensional data assimilation products. Simple linear regression is used to relate discrepancies in CSF to discrepancies in Tg, q(sub h) and q(sub t). The slopes of the regression lines define sensitivity parameters that can be exploited to help interpret mismatches between satellite observations and model-based estimates of CSF. For illustration, we analyze the discrepancies in the CSF between an early implementation of the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) and a recent operational version of the European Center for Medium-Range Weather Prediction data assimilation system. In particular, our analysis of synthetic total and window region SCF differences (computed from two different assimilated data sets) shows that simple linear regression employing (Delta)Tg and broad layer (Delta)q(sub l) from 500 hPa to surface and (Delta)q(sub h) from 200 to 500 hPa provides a good approximation to the full radiative transfer calculations, typically explaining more than 90% of the 6-hourly variance in the flux differences. These simple regression relations can be inverted to "retrieve" the errors in the geophysical parameters

  11. Socio-economic costs of indoor air pollution: A tentative estimation for some pollutants of health interest in France.

    PubMed

    Boulanger, Guillaume; Bayeux, Thomas; Mandin, Corinne; Kirchner, Séverine; Vergriette, Benoit; Pernelet-Joly, Valérie; Kopp, Pierre

    2017-07-01

    An evaluation of the socio-economic costs of indoor air pollution can facilitate the development of appropriate public policies. For the first time in France, such an evaluation was conducted for six selected pollutants: benzene, trichloroethylene, radon, carbon monoxide, particles (PM 2.5 fraction), and environmental tobacco smoke (ETS). The health impacts of indoor exposure were either already available in published works or were calculated. For these calculations, two approaches were followed depending on the available data: the first followed the principles of quantitative health risk assessment, and the second was based on concepts and methods related to the health impact assessment. For both approaches, toxicological data and indoor concentrations related to each target pollutant were used. External costs resulting from mortality, morbidity (life quality loss) and production losses attributable to these health impacts were assessed. In addition, the monetary costs for the public were determined. Indoor pollution associated with the selected pollutants was estimated to have cost approximately €20 billion in France in 2004. Particles contributed the most to the total cost (75%), followed by radon. Premature death and the costs of the quality of life loss accounted for approximately 90% of the total cost. Despite the use of different methods and data, similar evaluations previously conducted in other countries yielded figures within the same order of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Relationship of atmospheric pollution characterized by gas (NO2) and particles (PM10) to microbial communities living in bryophytes at three differently polluted sites (rural, urban, and industrial).

    PubMed

    Meyer, Caroline; Gilbert, Daniel; Gaudry, André; Franchi, Marielle; Nguyen, Hung Viet; Fabure, Juliette; Bernard, Nadine

    2010-02-01

    Atmospheric pollution has become a major problem for modern societies owing to its fatal effects on both human health and ecosystems. We studied the relationships of nitrogen dioxide atmospheric pollution and metal trace elements contained in atmospheric particles which were accumulated in bryophytes to microbial communities of bryophytes at three differently polluted sites in France (rural, urban, and industrial) over an 8-month period. The analysis of bryophytes showed an accumulation of Cr and Fe at the rural site; Cr, Fe, Zn, Cu, Al, and Pb at the urban site; and Fe, Cr, Pb, Al, Sr, Cu, and Zn at the industrial site. During this study, the structure of the microbial communities which is characterized by biomasses of microbial groups evolved differently according to the site. Microalgae, bacteria, rotifers, and testate amoebae biomasses were significantly higher in the rural site. Cyanobacteria biomass was significantly higher at the industrial site. Fungal and ciliate biomasses were significantly higher at the urban and industrial sites for the winter period and higher at the rural site for the spring period. The redundancy analysis showed that the physico-chemical variables ([NO(2)], relative humidity, temperature, and site) and the trace elements which were accumulated in bryophytes ([Cu], [Sr], [Pb]) explained 69.3% of the variance in the microbial community data. Moreover, our results suggest that microbial communities are potential biomonitors of atmospheric pollution. Further research is needed to understand the causal relationship underlined by the observed patterns.

  13. [Atmospheric pollution characteristic during fireworks burning time in spring festival in Quanzhou suburb].

    PubMed

    Zhao, Jin-ping; Xu, Ya; Zhang, Fu-wang; Chen, Jin-sheng

    2011-05-01

    Atmospheric pollution characteristics during fireworks burning time in 2009 Spring Festival in Quangzhou suburb were studied. Particulate aerosol has been monitored and collected using real-time monitor and middle-volume sampler during fireworks burning time. The objectives of this study were to identify the contents and distributing characteristics of particles, polycyclic aromatic hydrocarbon (PAHs) and water-soluble ions and to discuss sources of these pollutants. The results showed that PM2.5 and PM10 were increased significantly during fireworks burning time. The highest concentration of particles presented time of 00:57-01:27 on New Year's Eve, which the average concentration of PM2.5 and PM10 were reached 1102.43 microm(-3) and 1610.22 microg x m(-3) in 30 min. The concentration of particle- and gas-PAHs were 54.18 ng x m(-1) and 47.10 ng x m(-3), respectively, during fireworks burning time in New Year's Eve, which were higher than that in the normal day. It can be judged by the diagnostic ratios that the primary source of PAHs in Quanzhou suburb were the combustion of coal, biomass and the exhaust emission from diesel vehicles in this region. Results of water-soluble ions indicated that fireworks burning were the main reason to lead to higher concentration of these ions during Spring Festival. Moreover, pollution gases of NOx and SO2 that were origined from fireworks burning, coal combustion and exhaust emission from motor vehicle were supplied precursors to form secondary pollutants, such as NO3- and SO4(2-).

  14. Sodar mixing height estimates and air pollution characteristics over a Mediterranean big city.

    PubMed

    Assimakopoulos, V D; Helmis, C G

    2003-10-01

    Sodar systems are progressively used for quantitative and qualitative profile information on the atmospheric structure parameters. However, there is still a need for well-established relations between atmospheric physics parameters and air quality patterns, especially in urban environments. In this respect it is of importance to investigate the correlations among specific atmospheric quantities and air pollution patterns. It is the purpose of this paper to study correlations between the Sodar produced mixing height using the most recent and accurate methods, and O3, NOx and CO concentrations recorded by the Athens air quality monitoring network, during selected meteorological conditions. The continuous mixing height monitoring allows for deeper investigation of air pollution characteristics, especially during the transitional periods of the day. The obtained results indicate that there is good correlation between the pollutants concentrations and the mixing height especially during episode days. Furthermore, it is indicated that there is a strong dependence between the rate of increase of the mixing height and the concentration levels in the early morning hours as well as during the Atmospheric Boundary Layer (ABL) collapse in the afternoon. These results are of importance for urban air pollution modelling, which has recently attracted the attention of many research groups.

  15. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  16. Variational approach to direct and inverse problems of atmospheric pollution studies

    NASA Astrophysics Data System (ADS)

    Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey

    2016-04-01

    We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition

  17. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Chen, Bicheng; Zheng, Hui; Zhao, Jingchuan

    2015-04-01

    Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei (BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height (PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers (EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2-2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution. The intensity of the sea-land and mountain-valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants, which is strongly affected by the local atmospheric circulations and the distribution of urban areas. Copyright © 2015. Published by Elsevier B.V.

  18. Causes of daily cycle variability of atmospheric pollutants in a western Mediterranean urban site (DAURE campaign)

    NASA Astrophysics Data System (ADS)

    Reche, Cristina; Moreno, Teresa; Viana, Mar; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.; Pandolfi, Marco; Amato, Fulvio; Pérez, Noemí; Moreno, Natalia

    2010-05-01

    The 2009 DAURE Aerosol Campaign (23-February-2009 to 27-March-2009 and 1-July to 31-July) (see Presentation: Pandolfi et al., section AS3.2) had the objective of characterising the main sources and chemical processes controlling atmospheric pollution due to particulate matter in the Mediterranean site of Barcelona (Spain). An urban and a rural background site were selected in order to describe both kinds of pollution setting. Several parameters were taken into consideration, including the variability of mass concentration in the coarse and fine fractions, particle number, amount of black carbon and the concentration of gaseous pollutants (SO2, H2S, NO, NO2, CO, O3) present. Comparisons between the chemical composition of ambient atmospheric particles during day versus night were made using twelve-hour PM samples. The data shown here are focused on results obtained for the urban site where two main atmospheric settings were distinguishable in winter, namely Atlantic advection versus local air mass recirculation. During the warmer months Saharan dust intrusions added a third important influence on PM background. The data demonstrate that superimposed upon these background influences on city air quality are important local contributions from road traffic, construction-demolition works and shipping. There is also a major local contribution of secondary aerosols, with elevated number of particles occurring at midday (and especially in summer) when nucleation processes are favoured by photochemistry. Concentrations of SO2 peak at different times to the other gaseous pollutants due to regular daytime onshore south-easterly breezes bringing harbour emissions into the city. Road traffic in Barcelona also has a great impact on air quality, as demonstrated by daily and weekly cycles of gaseous pollutants, black carbon and the finer fraction of PM, with peaks being coincident with traffic rush-hours (8-10h and 20-22h), levels of pollution increasing from Monday to Friday, and

  19. Atmospheric Ammonia Over China: Emission Estimates And Impact On Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D. K.

    2016-12-01

    Ammonia (NH3) in the atmosphere is an important precursor of aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. We use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. This is consistent with an improved bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical fertilizer application rates for different crop types. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to emissions of ammonia and nitrogen oxides, reflecting strong formation of aerosol nitrate in the cold seasons.

  20. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    PubMed Central

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-01-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12–23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models. PMID:25335435

  1. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  2. Using cell phone location to assess misclassification errors in air pollution exposure estimation.

    PubMed

    Yu, Haofei; Russell, Armistead; Mulholland, James; Huang, Zhijiong

    2018-02-01

    Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Spectral Dark Subtraction: A MODTRAN-Based Algorithm for Estimating Ground Reflectance without Atmospheric Information

    NASA Technical Reports Server (NTRS)

    Freedman, Ellis; Ryan, Robert; Pagnutti, Mary; Holekamp, Kara; Gasser, Gerald; Carver, David; Greer, Randy

    2007-01-01

    Spectral Dark Subtraction (SDS) provides good ground reflectance estimates across a variety of atmospheric conditions with no knowledge of those conditions. The algorithm may be sensitive to errors from stray light, calibration, and excessive haze/water vapor. SDS seems to provide better estimates than traditional algorithms using on-site atmospheric measurements much of the time.

  4. Atmospheric ammonia over China: emission estimates and impacts on air quality

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Zhao, Yuanhong; Chen, Youfan; Henze, Daven

    2016-04-01

    Ammonia (NH3) in the atmosphere is an important precursor of inorganic aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. Here we use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. We improve the bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical feritilizer application rates for different crop types, which explains most of the discrepancies between our top-down estimates and prior emission estimates. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to NH3 emissions in cold seasons due to strong nitrate formation. By converting shorted-lived nitric acid to aerosol nitrate, NH3 significantly promotes the regional transport influences of PM2.5 sources.

  5. Estimating the health risks associated with air pollution in Baghdad City, Iraq.

    PubMed

    Rabee, Adel M

    2015-01-01

    Data of total suspended particulate, O₃, SO₂, NO, NO₂, CO, methane, and non-methane hydrocarbons gathered from three monitoring stations in Baghdad City for the period from 2009 to 2012 have been analyzed. So an attempt is made to calculate the monthly quality indexes based on US EPA and UK system. Concentrations of most air pollutants in Baghdad City have shown a downward trend in recent years, but they are generally in many instances worse than natural ambient air; thus, all pollutants (except CO) fluctuated between high and below limits certified by Iraqi and international standards. The results show that the average of TSP during 2009-2012 were very high, and they pose concern for Baghdad population. The SO₂/CO concentration ratios were less than 1 suggesting that mobile emissions are the primary sources within the study area. It has been observed that the concentrations of the most pollutants are high in summer in comparison to the other seasons. The peak concentrations of pollutants are linked to traffic density, private generators, and chemical processes in the atmosphere. Aside from single air pollutant standards, AQI and API indices enable an additional assessment of the air quality conditions. The application of the UK system suppose low pollution with all pollutants expect TSP. Analysis of AQI values for an average of concentrations CO, NO₂, SO₂, and O₃ are categorized as good to moderate during the study period, while the same index indicated that the TSP located within the three categories (unhealthy, very unhealthy, and hazardous).

  6. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  7. Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport.

    PubMed

    Li, Chaoliu; Kang, Shichang; Zhang, Qianggong

    2009-01-01

    The Tibetan Plateau (TP) is an ideal place for monitoring the atmospheric environment of low to mid latitudes. In total 54 soil samples from the western TP were analyzed for major and trace elements. Results indicate that concentrations of some typical "pollution" elements (such as As) are naturally high here, which may cause incorrect evaluation for the source region of these elements, especially when upper continental crust values are used to calculate enrichment factors. Because only particles <20 microm are transportable as long distances, elemental concentrations of this fraction of the TP soils are more reliable for the future aerosol related studies over the TP. In addition, REE compositions of the TP soils are unusual, highly characteristic and can be used as an effective index for identifying dust aerosol from the TP.

  8. Atmospheric CO2 Concentrations--The Canadian Background Air Pollution Monitoring Network (1993) (NDP-034)

    DOE Data Explorer

    Trivett, N. B. A. [Environment Canada, Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Environment Canada, Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada

    1993-01-01

    Flask air samples collected at roughly weekly intervals at three Canadian sites [Alert, Northwest Territories (July 1975 through July 1992); Sable Island, Nova Scotia (March 1975 through July 1992); and Cape St. James, British Columbia (May 1979 through July 1992)] were analyzed for CO2 concentration with the measurements directly traceable to the WMO primary CO2 standards. Each record includes the date, atmospheric CO2 concentration, and flask classification code. They provide an accurate record of CO2 concentration levels in Canada during the past two decades. Because these data are directly traceable to WMO standards, this record may be compared with records from other Background Air Pollution Monitoring Network (BAPMoN) stations. The data are in three files (one for each of the monitoring stations) ranging in size from 9.4 to 20.1 kB.

  9. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  10. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution

    NASA Astrophysics Data System (ADS)

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-01

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  11. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities.

    PubMed

    Guo, Ling-Chuan; Zhang, Yonghui; Lin, Hualiang; Zeng, Weilin; Liu, Tao; Xiao, Jianpeng; Rutherford, Shannon; You, Jing; Ma, Wenjun

    2016-08-01

    Though rainfall is recognized as one of the main mechanisms to reduce atmospheric particulate pollution, few studies have quantified this effect, particularly the corresponding lag effect and threshold. This study aimed to investigate the association between rainfall and air quality using a distributed lag non-linear model. Daily data on ambient PM2.5 and PM2.5-10 (particulate matter with an aerodynamic diameter less than 2.5 μm and from 2.5 to 10 μm) and meteorological factors were collected in Guangzhou and Xi'an from 2013 to 2014. A better washout effect was found for PM2.5-10 than for PM2.5, and the rainfall thresholds for both particle fractions were 7 mm in Guangzhou and 1 mm in Xi'an. The decrease in PM2.5 levels following rain lasted for 3 and 6 days in Guangzhou and Xi'an, respectively. Rainfall had a better washout effect in Xi'an compared with that in Guangzhou. Findings from this study contribute to a better understanding of the washout effects of rainfall on particulate pollution, which may help to understand the category and sustainability of dust-haze and enforce anthropogenic control measures in time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Lead chromate detected as a source of atmospheric Pb and Cr (VI) pollution.

    PubMed

    Lee, Pyeong-Koo; Yu, Soonyoung; Chang, Hye Jung; Cho, Hye Young; Kang, Min-Ju; Chae, Byung-Gon

    2016-10-25

    Spherical black carbon aggregates were frequently observed in dust dry deposition in Daejeon, Korea. They were tens of micrometers in diameter and presented a mixture of black carbon and several mineral phases. Transmission electron microscopy (TEM) observations with energy-dispersive X-ray spectroscopy (EDS) and selected area diffraction pattern (SADP) analyses confirmed that the aggregates were compact and included significant amounts of lead chromate (PbCrO4). The compositions and morphologies of the nanosized lead chromate particles suggest that they probably originated from traffic paint used in roads and were combined as discrete minerals with black carbon. Based on Pb isotope analysis and air-mass backward trajectories, the dust in Daejeon received a considerable input of anthropogenic pollutants from heavily industrialized Chinese cities, which implies that long-range transported aerosols containing PbCrO4 were a possible source of the lead and hexavalent chromium levels in East Asia. Lead chromate should be considered to be a source of global atmospheric Pb and Cr(VI) pollution, especially given its toxicity.

  13. SMOG-CHAMBER TOXICOLOGY BETTER ESTIMATES THE TRUE TOXIC POTENTIAL OF ATMOSPHERIC MIXTURES

    EPA Science Inventory

    The chemistry of hazardous air pollutants (HAPs) have been studied for many years, yet little is known about how these chemicals, once interacted with urban atmospheres, affect healthy and susceptible individuals. The toxic potential of these very reactive compounds once they int...

  14. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2016-01-01

    This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.

  15. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases.

    PubMed

    Hackstadt, Amber J; Peng, Roger D

    2014-11-01

    Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects.

  16. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    PubMed Central

    Hackstadt, Amber J.; Peng, Roger D.

    2014-01-01

    Summary Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major contributors to air pollution and are also desired when estimating source-specific health effects. However, researchers often lack direct observations of the emissions at the source level. We propose a Bayesian multivariate receptor model to infer information about source contributions from ambient air pollution measurements. The proposed model incorporates information from national databases containing data on both the composition of source emissions and the amount of emissions from known sources of air pollution. The proposed model is used to perform source apportionment analyses for two distinct locations in the United States (Boston, Massachusetts and Phoenix, Arizona). Our results mirror previous source apportionment analyses that did not utilize the information from national databases and provide additional information about uncertainty that is relevant to the estimation of health effects. PMID:25309119

  17. Spatial modeling of PAHs in lichens for fingerprinting of multisource atmospheric pollution.

    PubMed

    Augusto, Sofia; Máguas, Cristina; Matos, João; Pereira, Maria João; Soares, Amílcar; Branquinho, Cristina

    2009-10-15

    PAHs are toxic compounds emitted by several anthropogenic sources, which have a great impact on human health. We show, for the first time, how spatial models based on PAHs intercepted by lichens can be used for fingerprinting multisource atmospheric pollution in a regional area. Urban-industrial areas showed the highest atmospheric deposition of PAHs followed by urban > industrial > agricultural > forest Multivariate analysis of lichen data showed, for the first time, a clear distinction between various sources of PAHs in the same area: urban are dominated by 4-ring PAHs, forest by 3-ring PAHs, and industrial by 5- and 6-ring PAHs or by 2-ring PAHs (petrogenic or pyrogenic, respectively). Heavy metals were also used for supporting the fingerprinting of PAH sources, reinforcing the industrial origin of 5- and 6-ring PAHs and revealing their particular nature. The spatial structure of the models for different PAHs seems to be dependent on the following factors: size and hydrophilic character of different PAHs, type of emission sources (point or nonpoint), and dispersion associated with particulates of different sizes. Based on the long-term integration of PAHs in lichens, these spatial models will significantly improve our knowledge on the impact of PAH chronic-exposure to humans and ecosystems.

  18. Hydrocarbon status of soils under atmospheric pollution from a local industrial source

    NASA Astrophysics Data System (ADS)

    Gennadiev, A. N.; Zhidkin, A. P.; Pikovskii, Yu. I.; Kovach, R. G.; Koshovskii, T. S.; Khlynina, N. I.

    2016-09-01

    Contents and compositions of bitumoids, polycyclic aromatic hydrocarbons (PAHs), and free and retained hydrocarbon gases in soils along a transect at different distances from the local industrial source of atmospheric pollution with soot emissions have been studied. The reserves of PAHs progressively decrease when the distance from the source increases. Among the individual PAHs, the most significant decrease is observed for benzo[ a]pyrene, tetraphene, pyrene, chrysene, and anthracene. On plowlands, the share of heavy PAHs—benzo[ ghi]perylene, benzo[ a]pyrene, perylene, etc.—is lower than in the forest soils. In automorphic soils of the park zone adjacent to the industrial zone, the penetration depth of four-, five-, and sixring PAHs from the atmosphere is no more than 25 cm. In soils under natural forest vegetation, heavy PAHs do not penetrate deeper than 5 cm; in tilled soils, their penetration depth coincides with the lower boundary of plow horizons. Analysis of free gases in the soil air revealed hydrocarbons only under forest. From the quantitative and qualitative parameters of the content, reserves, and compositions of different hydrocarbons, the following modification types of hydrocarbon status in the studied soils were revealed: injection, atmosedimentation-injection, atmosedimentation-impact, atmosedimentation-distant, and biogeochemical types.

  19. Impact of a future H2 transportation on atmospheric pollution in Europe

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A. C.; Krol, M. C.; Visschedijk, A. J. H.; Schaap, M.; Röckmann, T.

    2015-07-01

    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that, in general, the air quality in 2020 is significantly improved compared to the current situation in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict European regulations: annually averaged CO, NOx and PM2.5 over the model domain decrease by 15%, 30% and 20% respectively. The additional improvement brought by replacing 50% or 100% of traditionally-fueled vehicles by H2 vehicles is smaller in absolute terms. If 50% of vehicles are using H2, the CO, NOx and PM2.5 decrease by 1%, 10% and 1% respectively, compared to the future scenario without H2 cars. When all vehicles run on H2, then additional decreases in CO, NOx and PM2.5 are 5%, 40%, and 5% relative to the no-H2 cars future scenario. Our study shows that H2 vehicles may be an effective pathway to fulfill the strict future EU air quality regulations. O3 has a more complicated behavior - its annual average decreases in background areas, but increases in the high-NOx area in western Europe, with the decrease in NOx. A more detailed analysis shows that the population exposure to high O3 levels decreases nevertheless. In all future scenarios, traffic emissions account for only a small proportion of the total anthropogenic emissions, thus it becomes more important

  20. A review of existing models and methods to estimate employment effects of pollution control policies

    SciTech Connect

    Darwin, R.F.; Nesse, R.J.

    1988-02-01

    The purpose of this paper is to provide information about existing models and methods used to estimate coal mining employment impacts of pollution control policies. The EPA is currently assessing the consequences of various alternative policies to reduce air pollution. One important potential consequence of these policies is that coal mining employment may decline or shift from low-sulfur to high-sulfur coal producing regions. The EPA requires models that can estimate the magnitude and cost of these employment changes at the local level. This paper contains descriptions and evaluations of three models and methods currently used to estimate the size and cost of coal mining employment changes. The first model reviewed is the Coal and Electric Utilities Model (CEUM), a well established, general purpose model that has been used by the EPA and other groups to simulate air pollution control policies. The second model reviewed is the Advanced Utility Simulation Model (AUSM), which was developed for the EPA specifically to analyze the impacts of air pollution control policies. Finally, the methodology used by Arthur D. Little, Inc. to estimate the costs of alternative air pollution control policies for the Consolidated Coal Company is discussed. These descriptions and evaluations are based on information obtained from published reports and from draft documentation of the models provided by the EPA. 12 refs., 1 fig.

  1. Fire risk and air pollution assessment during the 2007 wildfire events in Greece using the COSMO-ART atmospheric model

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, E.; Giannakopoulos, C.; Vogel, H.; Rieger, D.; Knote, C.; Hatzaki, M.; Vogel, B.; Karali, A.

    2012-04-01

    During 2007, Greece experienced an extreme summer and the worst natural hazard in its modern history. Soil dehydration, following a prolonged dry period in combination with hot temperatures and strong winds, yielded favorable conditions for the ignition and spread of wild fires that burnt approximately 200,000 ha of vegetated land (Founda and Gianakopoulos, 2009; Sifakis et al., 2011). The relationship between meteorology and fire potential can be provided by the Canadian Fire Weather Index (FWI), which is already found applicable in the fire activity of the Mediterranean region (Carvalho et al., 2008). However, lack of meteorological data or remote fire spots can be sources of uncertainties for fire risk estimation. In addition to the direct fire damage, these fires produced large quantities of gaseous air pollutants and particles (PM10) dispersed over the area of Greece. Indeed, PM10 concentration measurements showed two pollution episodes over Athens during late August and early September, 2007 (Liu et al., 2009). Nevertheless, these measurements neither show the large spatial extent of fire effects nor reveal its important role on atmospheric chemistry. In the current study, the application of the atmospheric model COSMO-ART is used to investigate the issues addressed above. COSMO-ART (Vogel et al. 2009) is a regional chemistry transport model (ART stands for Aerosols and Reactive Trace gases) online-coupled to the COSMO regional numerical weather prediction and climate model (Baldauf et al. 2011). The current simulations are performed between August 15 and September 15 over Greece with a horizontal resolution of 2.8 km and a vertical extend up to 20 km. The initial and boundary meteorological conditions are derived from a coarser COSMO simulation performed by the German Weather Service. Fire emissions are retrieved from the Global Fire Emissions Database version 3 (van der Werf et al., 2010). The anthropogenic emission database used is the TNO/MACC (Kuenen et

  2. Air pollution tracer studies in the lower atmosphere. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    NONE

    1997-05-01

    The bibliography contains citations concerning the use of tracers to study lower atmospheric air pollution movements. Citations discuss project descriptions and results, techniques, and tracer materials. Tracer movement from nuclear power plants, industrial stacks, and urban areas is discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  4. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  5. Recent advances in the estimation of population exposure to mobile source pollutants.

    PubMed

    Johnson, T R

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) has developed several computer-based exposure models applicable to pollutants which are directly or indirectly linked to mobile sources. Probabilistic versions of the National Ambient Air Quality Standards (NAAQS) Exposure Model (pNEM) have been used to estimate the exposures of urban populations to carbon monoxide and ozone. An enhanced version of the Hazardous Air Pollutant Exposure Model (HAPEM-MS) has been used to develop city-specific estimates of exposure to benzene and other volatile organic compounds emitted by mobile sources. These models are similar in that each contains algorithms that simulate microenvironmental pollutant levels, time/activity patterns, and commuting patterns. The pNEM models also provide estimates of equivalent ventilation rate (EVR), defined as ventilation rate divided by body surface area. This paper summarizes the methods and results of selected research projects conducted since 1991 with the goal of improving pNEM, HAPEM-MS, and similar exposure models applicable to mobile source pollutants. The studies include: (1) the development of an improved algorithm for estimating EVR, (2) a field study to measure ozone levels near roadways and inside vehicles, (3) the development of an algorithm for estimating school commuting patterns, and (4) the construction of a comprehensive database containing time/activity data from ten activity diary studies.

  6. Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data

    NASA Astrophysics Data System (ADS)

    Dias, Nelson Luís

    2018-01-01

    A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.

  7. Hotspot Analysis of Spatial Environmental Pollutants Using Kernel Density Estimation and Geostatistical Techniques

    PubMed Central

    Lin, Yu-Pin; Chu, Hone-Jay; Wu, Chen-Fa; Chang, Tsun-Kuo; Chen, Chiu-Yang

    2011-01-01

    Concentrations of four heavy metals (Cr, Cu, Ni, and Zn) were measured at 1,082 sampling sites in Changhua county of central Taiwan. A hazard zone is defined in the study as a place where the content of each heavy metal exceeds the corresponding control standard. This study examines the use of spatial analysis for identifying multiple soil pollution hotspots in the study area. In a preliminary investigation, kernel density estimation (KDE) was a technique used for hotspot analysis of soil pollution from a set of observed occurrences of hazards. In addition, the study estimates the hazardous probability of each heavy metal using geostatistical techniques such as the sequential indicator simulation (SIS) and indicator kriging (IK). Results show that there are multiple hotspots for these four heavy metals and they are strongly correlated to the locations of industrial plants and irrigation systems in the study area. Moreover, the pollution hotspots detected using the KDE are the almost same to those estimated using IK or SIS. Soil pollution hotspots and polluted sampling densities are clearly defined using the KDE approach based on contaminated point data. Furthermore, the risk of hazards is explored by these techniques such as KDE and geostatistical approaches and the hotspot areas are captured without requiring exhaustive sampling anywhere. PMID:21318015

  8. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  9. 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Bloss, William J.; Pope, Francis D.

    2017-02-01

    Reduced visibility is an indicator of poor air quality. Moreover, degradation in visibility can be hazardous to human safety; for example, low visibility can lead to road, rail, sea and air accidents. In this paper, we explore the combined influence of atmospheric aerosol particle and gas characteristics, and meteorology, on long-term visibility. We use visibility data from eight meteorological stations, situated in the UK, which have been running since the 1950s. The site locations include urban, rural and marine environments. Most stations show a long-term trend of increasing visibility, which is indicative of reductions in air pollution, especially in urban areas. Additionally, the visibility at all sites shows a very clear dependence on relative humidity, indicating the importance of aerosol hygroscopicity on the ability of aerosol particles to scatter radiation. The dependence of visibility on other meteorological parameters, such as wind speed and wind direction, is also investigated. Most stations show long-term increases in temperature which can be ascribed to climate change, land-use changes (e.g. urban heat island effects) or a combination of both; the observed effect is greatest in urban areas. The impact of this temperature change upon local relative humidity is discussed. To explain the long-term visibility trends and their dependence on meteorological conditions, the measured data were fitted to a newly developed light-extinction model to generate predictions of historic aerosol and gas scattering and absorbing properties. In general, an excellent fit was achieved between measured and modelled visibility for all eight sites. The model incorporates parameterizations of aerosol hygroscopicity, particle concentration, particle scattering, and particle and gas absorption. This new model should be applicable and is easily transferrable to other data sets worldwide. Hence, historical visibility data can be used to assess trends in aerosol particle

  10. A Wintertime Investigation of Atmospheric Pollutants Deposition in the Alberta Oil Sands Region, Canada

    NASA Astrophysics Data System (ADS)

    Bari, M.; Kindzierski, W.

    2012-12-01

    Atmospheric deposition is a potentially important pathway of trace metals and polycyclic aromatic hydrocarbons (PAH) input to the landscape in the oil sands region of Alberta. With planned expansion of oil sands facilities, there is interest in being able to characterize the magnitude and extent of trace metal and PAH deposition in the oil sands region. A pilot study was undertaken to assess the feasibility of a bulk collection system to characterize atmospheric deposition of selected organic and inorganic contaminants in the Athabasca Oil Sands Region. The study was carried out in four sampling sites near and distant to oil sands facilities from late December 2011 to the end of March 2012 (3-month period). To check the precision of the bulk deposition method, triplicate bulk samplers were used, which were placed next to each other and as close as possible considering similar microenvironment. Monthly deposition samples were analyzed for 36 trace metals (including 13 U.S. EPA priority pollutants), ultra-low mercury, and 25 PAH (including alkylated-, parent-, and carcinogenic-PAH). At two sampling sites located within 20 km of major oil sands facilities, 3-month integrated deposition rates for some priority metals were up to 20-fold higher compared to two background sites located >45 km away from the oil sands facilities. Winter deposition rates of alkylated-PAH and parent-PAH were up to 70-fold lower at the background sampling sites than at sites near oil sands facilities. Deposition fluxes of total carcinogenic PAH were found to be 6- to 75-fold higher at the two sampling sites near oil sands development facilities compared to the north and south background sites. Another notable finding is the apparent precision of the sampling method. Median coefficient of variation for 13 priority metals were ±21% and within ±15% for both alkylated- and parent-PAH. The Athabasca oil sands region is considered a large area of current interest with respect to potential

  11. [Pollution characteristics and health risk assessment of atmospheric volatile organic compounds (VOCs) in pesticide factory].

    PubMed

    Tan, Bing; Wang, Tie-Yu; Pang, Bo; Zhu, Zhao-Yun; Wang, Dao-Han; Lü, Yong-Long

    2013-12-01

    A method for determining volatile organic compounds (VOCs) in air by summa canister collecting and gas chromatography/ mass spectroscopy detecting was adopted. Pollution condition and characteristics of VOCs were discussed in three representative pesticide factories in Zhangjiakou City, Hebei Province. Meanwhile, an internationally recognized four-step evaluation model of health risk assessment was applied to preliminarily assess the health risk caused by atmospheric VOCs in different exposure ways, inhalation and dermal exposure. Results showed that serious total VOCs pollution existed in all factories. Concentrations of n-hexane (6161.90-6910.00 microg x m(-3)), benzene (126.00-179.30 microg x m(-3)) and 1,3-butadiene (115.00-177.30 microg x m(-3)) exceeded the Chronic Inhalation Reference Concentrations recommended by USEPA, corresponding to 700, 30 and 2 microg x m(-3), respectively. Concentration of dichloromethane (724.00 microg x m(-3)) in factory B was also higher than the reference concentration (600 microg x m(-3)). Results of health risk assessment indicated that non-carcinogenic risk indexes of VOCs ranged from 1.00E-04 to 1.00E + 00 by inhalation exposure, and 1.00E-09 to 1.00E-05 by dermal exposure. Risk indexes of n-hexane and dichloromethane by inhalation exposure in all factories exceeded 1, and risk index of benzene by inhalation in factory B was also higher than 1. Carcinogenic risk indexes exposed to VOCs ranged from 1.00E-08 to 1.00E-03 by inhalation exposure and 1. oo00E -13 to 1.00E-08 by dermal exposure. Cancer risk of 1,3-butadiene by inhalation exceeded 1.0E-04, which lead to definite risk, and those of benzene by inhalation also exceeded the maximum allowable level recommended by International Commission on Radiological Protection (5.0E-05). The risks of dermal exposure presented the same trend as inhalation exposure, but the level was much lower than that of inhalation exposure. Thus, inhalation exposure of atmospheric VOCs was the

  12. Stellar atmospheric parameter estimation using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  13. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.

    2010-11-01

    studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones - notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties - is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.

  14. Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.

    2011-03-01

    studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones - notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties - is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.

  15. Estimation of atmospheric corrosion of high-strength, low-alloy steels

    DOT National Transportation Integrated Search

    1997-05-01

    This data analysis was undertaken to investigate the weatherability of steels : whose compositions do not fall in the range of ASTM Standard G101, Estimating : the Atmospheric Corrosion Resistance of Low-Alloy Steels.

  16. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  17. ESTIMATION OF GROUNDWATER POLLUTION POTENTIAL BY PESTICIDES IN MID-ATLANTIC COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    A simple GIS-based transport model to estimate the potential for groundwater pollution by pesticides has been developed within the ArcView GIS environment. The pesticide leaching analytical model, which is based on one-dimensional advective-dispersive-reactive (ADR) transport, ha...

  18. Estimation of land use specific runoff and pollutant concentration for Tapi River basin in India.

    PubMed

    Sargaonkar, Aabha

    2006-06-01

    Non-point source (NPS) pollution is the result of various land use practices such as agriculture, sites of construction and waste disposal, urban development and so on. The control of NPS pollution is possible by regular monitoring and assessment on watershed basis to educate people for implementing well-known structural and non-structural measures. Recent trend is to use GIS based modelling tool for assessment of rainfall-runoff and non-point loading. The approach requires generation and analysis of basin wide data on various features of land and estimates of Event Mean Concentrations (EMCs) of pollutants in the runoff. In the present paper, basin wide data in different districts of Tapi basin has been analysed for land use distribution; fertilizer application; low, medium and high-density habitation; and annual rainfall. Coefficients of runoff have been estimated considering pervious and impervious area for different land use types, and compared with the reported values for Indian conditions. The estimated mean annual runoff flow indicated that two districts Jalgaon and Dhule contribute maximum runoff to the Tapi River. Estimates of EMCs for BOD and nutrients (N and P) in the runoff from various districts are useful in GIS-based modelling study for NPS pollution assessment.

  19. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  20. Maxine: A spreadsheet for estimating dose from chronic atmospheric radioactive releases

    SciTech Connect

    Jannik, Tim; Bell, Evaleigh; Dixon, Kenneth

    2017-07-24

    MAXINE is an EXCEL© spreadsheet, which is used to estimate dose to individuals for routine and accidental atmospheric releases of radioactive materials. MAXINE does not contain an atmospheric dispersion model, but rather doses are estimated using air and ground concentrations as input. Minimal input is required to run the program and site specific parameters are used when possible. Complete code description, verification of models, and user’s manual have been included.

  1. Estimating Top-of-Atmosphere Thermal Infrared Radiance Using MERRA-2 Atmospheric Data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania

    Space borne thermal infrared sensors have been extensively used for environmental research as well as cross-calibration of other thermal sensing systems. Thermal infrared data from satellites such as Landsat and Terra/MODIS have limited temporal resolution (with a repeat cycle of 1 to 2 days for Terra/MODIS, and 16 days for Landsat). Thermal instruments with finer temporal resolution on geostationary satellites have limited utility for cross-calibration due to their large view angles. Reanalysis atmospheric data is available on a global spatial grid at three hour intervals making it a potential alternative to existing satellite image data. This research explores using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product to predict top-of-atmosphere (TOA) thermal infrared radiance globally at time scales finer than available satellite data. The MERRA-2 data product provides global atmospheric data every three hours from 1980 to the present. Due to the high temporal resolution of the MERRA-2 data product, opportunities for novel research and applications are presented. While MERRA-2 has been used in renewable energy and hydrological studies, this work seeks to leverage the model to predict TOA thermal radiance. Two approaches have been followed, namely physics-based approach and a supervised learning approach, using Terra/MODIS band 31 thermal infrared data as reference. The first physics-based model uses forward modeling to predict TOA thermal radiance. The second model infers the presence of clouds from the MERRA-2 atmospheric data, before applying an atmospheric radiative transfer model. The last physics-based model parameterized the previous model to minimize computation time. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi

  2. Measurement of Air Pollution from Satellites (MAPS) 1994 Correlative Atmospheric Carbon Monoxide Mixing Ratios (DB-1020)

    DOE Data Explorer

    Novelli, Paul [NOAA Climate Monitoring and Diagnostics Lab (CMDL), Boulder, Colorado; Masarie, Ken [Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado

    1998-01-01

    This database offers select carbon monoxide (CO) mixing ratios from eleven field and aircraft measurement programs around the world. Carbon monoxide mixing ratios in the middle troposphere have been examined for short periods of time by using the Measurement of Air Pollution from Satellites (MAPS) instrument. MAPS measures CO from a space platform, using gas filter correlation radiometry. During the 1981 and 1984 MAPS flights, measurement validation was attempted by comparing space-based measurements of CO to those made in the middle troposphere from aircraft. Before the 1994 MAPS flights aboard the space shuttle Endeavour, a correlative measurement team was assembled to provide the National Aeronautics and Space Administration (NASA) with results of their CO field measurement programs during the April and October shuttle missions. To maximize the usefulness of these correlative data, team members agreed to participate in an intercomparison of CO measurements. The correlative data presented in this database provide an internally consistent, ground-based picture of CO in the lower atmosphere during Spring and Fall 1994. The data show the regional importance of two CO sources: fossil-fuel burning in urbanized areas and biomass burning in regions in the Southern Hemisphere.

  3. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    PubMed

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    PubMed

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  5. Modelling the atmospheric boundary layer for remotely sensed estimates of daily evaporation

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Blyth, K.; Camillo, P. J.

    1984-01-01

    An energy and moisture balance model of the soil surface was used to estimate daily evaporation from wheat and barley fields in West Germany. The model was calibrated using remotely sensed surface temperature estimates. Complete atmospheric boundary layer models are difficult to use because of the number of parameters involved and a simplified model was used here. The resultant evaporation estimates were compared to eddy correlation evaporation estimates and good agreement was found.

  6. Reduced hierarchical models with application to estimating health effects of simultaneous exposure to multiple pollutants

    PubMed Central

    Dominici, Francesca; Peng, Roger D.

    2012-01-01

    Summary Hierarchical models (HM) have been used extensively in multisite time series studies of air pollution and health to estimate health effects of a single pollutant adjusted for other pollutants and other time-varying factors. Recently, Environmental Protection Agency (EPA) has called for research quantifying health effects of simultaneous exposure to many air pollutants. However, straightforward application of HM in this context is challenged by the need to specify a random-effect distribution on a high-dimensional vector of nuisance parameters. Here we introduce reduced HM as a general statistical approach for analyzing correlated data with many nuisance parameters. For reduced HM we first calculate the integrated likelihood of the parameter of interest (e.g. excess number of deaths attributed to simultaneous exposure to high levels of many pollutants), and we then specify a flexible random-effect distribution directly on this parameter. Simulation studies show that the reduced HM performs comparably to the full HM in many scenarios, and even performs better in some cases, particularly when the multivariate random-effect distribution of the full HM is misspecified. Methods are applied to estimate relative risks of cardiovascular hospital admissions associated with simultaneous exposure to elevated levels of particulate matter and ozone in 51 US counties during 1999–2005. PMID:24357883

  7. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    PubMed Central

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  8. Regional earth-atmosphere energy balance estimates based on assimilations with a GCM

    NASA Technical Reports Server (NTRS)

    Alexander, Michael A.; Schubert, Siegfried D.

    1990-01-01

    The Oort and Vonder Haar (1976) column-budget technique is presently used to evaluate the physical consistency and accuracy of regional earth-atmosphere energy balance estimates for (1) atmospheric budget terms, (2) net radiation at the top of the atmosphere, and (3) time tendency and flux divergence of energy, for Special Observing Periods of the FGGE year. It is found that, during winter, the midlatitude oceans supply large quantities of energy to the overlying atmosphere, which then transports the energy to the continental heat-sinks; the energy flows in the opposite direction during summer.

  9. Non-isothermal scavenging of highly soluble gaseous pollutants by rain in the atmosphere with non-uniform vertical concentration and temperature distributions

    NASA Astrophysics Data System (ADS)

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2014-08-01

    We suggest a non-isothermal one-dimensional model of precipitation scavenging of highly soluble gaseous pollutants in inhomogeneous atmosphere. When gradients of soluble trace gases' concentrations and temperature in the atmosphere are small, scavenging of gaseous pollutants is governed by two linear wave equations that describe propagation of a scavenging and temperature waves in one direction. If wash-down front velocity is much larger than the velocity of the temperature front, scavenging is determined by propagating scavenging front in the atmosphere with inhomogeneous temperature distribution. We solved the derived equation by the method of characteristics and determined scavenging coefficient and the rates of precipitation scavenging for wet removal of sulfur dioxide using measured initial distributions of trace gases and temperature in the atmosphere. It is shown that in the case of exponential initial distribution of soluble trace gases and linear temperature distribution in the atmosphere, scavenging coefficient in the region between the ground and the position of a scavenging front is proportional to rainfall rate, solubility parameter in the under-cloud region, adjacent to a bottom of a cloud and to the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. The derived formula yields the same value of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented by McMahon and Denison (Atmos Environ 13:571-585, 1979). It is demonstrated that in the case when the altitude variation of temperature in the atmosphere is determined by the environmental lapse rate, scavenging coefficient increases with height in the region between the scavenging front and the ground. In the case when altitude temperature variation in the atmosphere is determined by temperature inversion, scavenging coefficient decreases with height in a region between the scavenging front and the ground. Theoretical

  10. Establishment of a database of emission factors for atmospheric pollutants from Chinese coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Wang, Shuxiao; Nielsen, Chris P.; Li, Xinghua; Hao, Jiming

    2010-04-01

    Field measurements and data investigations were conducted for developing an emission factor database for inventories of atmospheric pollutants from Chinese coal-fired power plants. Gaseous pollutants and particulate matter (PM) of different size fractions were measured using a gas analyzer and an electric low-pressure impactor (ELPI), respectively, for ten units in eight coal-fired power plants across the country. Combining results of field tests and literature surveys, emission factors with 95% confidence intervals (CIs) were calculated by boiler type, fuel quality, and emission control devices using bootstrap and Monte Carlo simulations. The emission factor of uncontrolled SO 2 from pulverized combustion (PC) boilers burning bituminous or anthracite coal was estimated to be 18.0S kg t -1 (i.e., 18.0 × the percentage sulfur content of coal, S) with a 95% CI of 17.2S-18.5S. NO X emission factors for pulverized-coal boilers ranged from 4.0 to 11.2 kg t -1, with uncertainties of 14-45% for different unit types. The emission factors of uncontrolled PM 2.5, PM 10, and total PM emitted by PC boilers were estimated to be 0.4A (where A is the percentage ash content of coal), 1.5A and 6.9A kg t -1, respectively, with 95% CIs of 0.3A-0.5A, 1.1A-1.9A and 5.8A-7.9A. The analogous PM values for emissions with electrostatic precipitator (ESP) controls were 0.032A (95% CI: 0.021A-0.046A), 0.065A (0.039A-0.092A) and 0.094A (0.0656A-0.132A) kg t -1, and 0.0147A (0.0092-0.0225A), 0.0210A (0.0129A-0.0317A), and 0.0231A (0.0142A-0.0348A) for those with both ESP and wet flue-gas desulfurization (wet-FGD). SO 2 and NO X emission factors for Chinese power plants were smaller than those of U.S. EPA AP-42 database, due mainly to lower heating values of coals in China. PM emission factors for units with ESP, however, were generally larger than AP-42 values, because of poorer removal efficiencies of Chinese dust collectors. For units with advanced emission control technologies, more field

  11. Fast single image haze removal via local atmospheric light veil estimation

    PubMed Central

    Sun, Wei; Wang, Hao; Sun, Changhao; Guo, Baolong; Jia, Wenyan; Sun, Mingui

    2015-01-01

    In this study, a novel single-image based dehazing framework is proposed to remove haze artifacts from images through local atmospheric light estimation. We use a novel strategy based on a physical model where the extreme intensity of each RGB pixel is used to define an initial atmospheric veil (local atmospheric light veil). Across bilateral filter is applied to each veil to achieve both local smoothness and edge preservation. A transmission map and a reflection component of each RGB channel are constructed from the physical atmospheric scattering model. The proposed approach avoids adverse effects caused by the error in estimating the global atmospheric light. Experimental results on outdoor hazy images demonstrate that the proposed method produces image output with satisfactory visual quality and color fidelity. Our comparative study demonstrates a higher performance of our method over several state-of-the-art methods. PMID:26744548

  12. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol.

    PubMed

    Shi, Guoliang; Xu, Jiao; Peng, Xing; Xiao, Zhimei; Chen, Kui; Tian, Yingze; Guan, Xinbei; Feng, Yinchang; Yu, Haofei; Nenes, Athanasios; Russell, Armistead G

    2017-04-18

    Acidity (pH) plays a key role in the physical and chemical behavior of PM2.5. However, understanding of how specific PM sources impact aerosol pH is rarely considered. Performing source apportionment of PM2.5 allows a unique link of sources pH of aerosol from the polluted city. Hourly water-soluble (WS) ions of PM2.5 were measured online from December 25th, 2014 to June 19th, 2015 in a northern city in China. Five sources were resolved including secondary nitrate (41%), secondary sulfate (26%), coal combustion (14%), mineral dust (11%), and vehicle exhaust (9%). The influence of source contributions to pH was estimated by ISORROPIA-II. The lowest aerosol pH levels were found at low WS-ion levels and then increased with increasing total ion levels, until high ion levels occur, at which point the aerosol becomes more acidic as both sulfate and nitrate increase. Ammonium levels increased nearly linearly with sulfate and nitrate until approximately 20 μg m-3, supporting that the ammonium in the aerosol was more limited by thermodynamics than source limitations, and aerosol pH responded more to the contributions of sources such as dust than levels of sulfate. Commonly used pH indicator ratios were not indicative of the pH estimated using the thermodynamic model.

  13. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  14. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    NASA Astrophysics Data System (ADS)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  15. Lead Isotopes and Temporal Records of Atmospheric Aerosol and Pollutants in Lichens

    NASA Astrophysics Data System (ADS)

    Getty, S. R.; Nash, T.; Asmerom, Y.

    2001-05-01

    Lichens are useful receptors of atmospheric particulate matter (PM) and pollutants due to their retention of body parts (unlike plants), slow growth rates, fairly uniform morphologies, lack of a vascular system, and sessile character over decades to centuries. Lichen biomonitoring has been used widely to map patterns of aerosol deposition, yet few studies have tested whether lichens can preserve a temporal record of airborne PM and pollutants. We show with U-Pb data that epilithic lichens (rock as host) can retain in their porous structure an integrated, decadal-scale history of changing aerosol inputs to desert ecosystems. Three lichens resided along an 80-km transect from a copper smelter (Douglas, AZ) closed in early 1987, to the ENE into adjacent New Mexico. For the radially growing lichen (Xanthoparmelia sp.), U-Pb data were obtained along cm-scale transects in the growth direction on a single thallus. Profiles from lichen rim to interior show increasing [Pb] and [U], or net accumulation with thallus age. Total lead contents are highest near the smelter. In contrast, each lead isotope profile (206Pb/207Pb) is flat during smelter operation, showing low ratios near the smelter (1.152) and high ratios (1.175) 80 km away. This suggests comparable mixtures of crust and smelter lead per locality over decades. Since smelter closure, lichens 80 km from the smelter show a sharp upturn in lead ratio in the recently grown lichen rim, indicating that smelter lead is either dispersed by aeolian recycling, or suppressed in desert soils. The amplitude and position of the isotope signal suggests a soil recovery "half-life" of about 13 yrs, a radial growth rate of 0.57+/-0.1 mm/yr, and a total lichen age of 105+/-18 yrs. Lichens near the smelter have no upturn in isotope ratio, indicating continued aeolian recylcing of lead from soils about 11 yrs after closure. Results at a far-removed desert site (c. New Mexico) also argue that isotope profiles reflect aerosol deposition

  16. Plants, Pollution and Public Engagement with Atmospheric Chemistry: Sharing the TEMPO Story Through Ozone Garden Activities

    NASA Astrophysics Data System (ADS)

    Reilly, L. G.; Pippin, M. R.; Malick, E.; Summers, D.; Dussault, M. E.; Wright, E. A.; Skelly, J.

    2016-12-01

    What do a snap-bean plant and a future NASA satellite instrument named TEMPO have in common? They are both indicators of the quality of the air we breathe. Scientists, educators, and museum and student collaborators of the Tropospheric Emissions: Monitoring Pollution (TEMPO) instrument team are developing a program model to engage learners of all ages via public ozone garden exhibits and associated activities. TEMPO, an ultraviolet and visible spectroscopy instrument due for launch on a geostationary host satellite between 2019 and 2021, will scan North America hourly to measure the major elements in the tropospheric ozone chemistry cycle, providing near real-time data with high temporal and spatial resolution. The TEMPO mission provides a unique opportunity to share the story of the effects of air quality on living organisms. A public ozone garden exhibit affords an accessible way to understand atmospheric science through a connection with nature, while providing a visual representation of the impact of ozone pollution on living organisms. A prototype ozone garden exhibit was established at the Virginia Living Museum in partnership with NASA Langley, and has served as a site to formatively evaluate garden planting and exhibit display protocols, hands-on interpretive activities, and citizen science data collection protocols for learners as young as 3 to 10 as well as older adults. The fun and engaging activities, optimized for adult-child interaction in informal or free-choice learning environments, are aimed at developing foundational science skills such as observing, comparing, classifying, and collecting and making sense of data in the context of thinking about air quality - all NGSS-emphasized scientific practices, as well as key capabilities for future contributing members of the citizen science community. As the launch of TEMPO approaches, a major public engagement effort will include disseminating this ozone garden exhibit and program model to a network of

  17. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  18. Model assessment of atmospheric pollution control schemes for critical emission regions

    NASA Astrophysics Data System (ADS)

    Zhai, Shixian; An, Xingqin; Liu, Zhao; Sun, Zhaobin; Hou, Qing

    2016-01-01

    In recent years, the atmospheric environment in portions of China has become significantly degraded and the need for emission controls has become urgent. Because more international events are being planned, it is important to implement air quality assurance targeted at significant events held over specific periods of time. This study sets Yanqihu (YQH), Beijing, the location of the 2014 Beijing APEC (Asia-Pacific Economic Cooperation) summit, as the target region. By using the atmospheric inversion model FLEXPART, we determined the sensitive source zones that had the greatest impact on the air quality of the YQH region in November 2012. We then used the air-quality model Models-3/CMAQ and a high-resolution emissions inventory of the Beijing-Tianjian-Hebei region to establish emission reduction tests for the entire source area and for specific sensitive source zones. This was achieved by initiating emission reduction schemes at different ratios and different times. The results showed that initiating a moderate reduction of emissions days prior to a potential event is more beneficial to the air quality of Beijing than initiating a high-strength reduction campaign on the day of the event. The sensitive source zone of Beijing (BJ-Sens) accounts for 54.2% of the total source area of Beijing (BJ), but its reduction effect reaches 89%-100% of the total area, with a reduction efficiency 1.6-1.9 times greater than that of the entire area. The sensitive source zone of Huabei (HuaB-Sens.) only represents 17.6% of the total area of Huabei (HuaB), but its emission reduction effect reaches 59%-97% of the entire area, with a reduction efficiency 4.2-5.5 times greater than that of the total area. The earlier that emission reduction measures are implemented, the greater the effect they have on preventing the transmission of pollutants. In addition, expanding the controlling areas to sensitive provinces and cities around Beijing (HuaB-sens) can significantly accelerate the reduction

  19. Atmospheric pollutants in fog and rain events at the northwestern mountains of the Iberian Peninsula.

    PubMed

    Fernández-González, Ricardo; Yebra-Pimentel, Iria; Martínez-Carballo, Elena; Simal-Gándara, Jesús; Pontevedra-Pombal, Xabier

    2014-11-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and exist in gas and particle phases, as well as dissolved or suspended in precipitation (fog or rain). While the hydrosphere is the main reservoir for PAHs, the atmosphere serves as the primary route for global transport of PCBs. In this study, fog and rain samples were collected during fourteen events from September 2011 to April 2012 in the Xistral Mountains, a remote range in the NW Iberian Peninsula. PAH compounds [especially of low molecular weight (LMW)] were universally found, but mainly in the fog-water samples. The total PAH concentration in fog-water ranged from non-detected to 216 ng·L(-1) (mean of 45 ng·L(-1)), and was much higher in fall than in winter. Total PAH levels in the rain and fog events varied from non-detected to 1272 and 33 ng·L(-1) for, respectively, LMW and high molecular weight (HMW) PAHs. Diagnostic ratio analysis (LMW PAHs/HMW PAHs) suggested that petroleum combustion was the dominant contributor to PAHs in the area. Total PCB levels in the rain and fog events varied from non-detected to 305 and 91 ng·L(-1) for, respectively, PCBs with 2-3 Cl atoms and 5-10 Cl atoms. PCBs, especially those with 5-10 Cl atoms, were found linked to rain events. The occurrence of the most volatile PCBs, PCBs with 2-3 Cl atoms, is related to wind transport from far away sources, whereas the occurrence of PCBs with 5-10 Cl atoms seems to be related with the increase of its deposition during rainfall at the end of summer and fall. The movement of this fraction of PCBs is facilitated by its binding to air-suspended particles, whose concentrations usually show an increase as the result of a prolonged period of drought in summer. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Polymers in Polluted Atmosphere. Mechanism of Radical Conversions on Exposure to Nitrogen Oxides

    NASA Astrophysics Data System (ADS)

    Zaikov, G.; Pariiskii, G.; Gaponova, I.; Pokholok, T.; Vorotnikov, A.; Davydov, E.

    2008-08-01

    Nitrogen oxides play a significant role in chemical processes taking place in an atmosphere and affect on an environment. The researches of the mechanism of nitrogen oxide reactions with polymers are important for evaluation of stability of these materials in polluted atmosphere. These researches can be also used for development of methods of the polymer modification, for example, for preparation of spin—labelled macromolecules. Most important for reactions with polymers are NO, NO2, NO3 as well as NO2 dimers. The features of the mechanism of reactions of these oxides with a number of polymers are considered. The especial attention is given to the mechanism of primary reactions of initiation and intermediate stages of complex radical processes under the action of nitrogen oxides. Nitric oxide does not react directly, but it recombines with free macroradicals formed in polymers by UV photolysis or γ—radiolysis. The nitro compounds formed in the subsequent reactions are converted into stable nitrogen—containing radicals. By this way, spin labels can be inserted even to chemically inert polyperfluoroalkanes. The NO3 radicals are characterized by high reactivity in reactions of the hydrogen atom abstraction from C—H and addition to double bonds. Along with these reactions, the radicals NO3 are converted in thermal and photochemical processes into NO, NO2 and atomic oxygen. Nitrogen trioxide generated by photolysis of Ce (IV) nitrates is promising in application for spin labels synthesis. Nitrogen dioxide is capable of interacting with least strong C—H and double C = C bonds initiating thus radical reactions. The dimers of NO2 namely planar nitrogen tetroxide and nitrosyl nitrate actively react by mechanism depending on the chemical structure of those. The conversion of planar dimers into nitrosyl nitrate in the presence of amide groups of macromolecules has been revealed. Nitrosyl nitrate initiates radical reactions in oxidative primary process of electron

  1. Complex Physiological Response of Norway Spruce to Atmospheric Pollution – Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment

    PubMed Central

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition (13C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ13C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ13C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ13C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  2. Complex Physiological Response of Norway Spruce to Atmospheric Pollution - Decreased Carbon Isotope Discrimination and Unchanged Tree Biomass Increment.

    PubMed

    Čada, Vojtěch; Šantrůčková, Hana; Šantrůček, Jiří; Kubištová, Lenka; Seedre, Meelis; Svoboda, Miroslav

    2016-01-01

    Atmospheric pollution critically affects forest ecosystems around the world by directly impacting the assimilation apparatus of trees and indirectly by altering soil conditions, which subsequently also leads to changes in carbon cycling. To evaluate the extent of the physiological effect of moderate level sulfate and reactive nitrogen acidic deposition, we performed a retrospective dendrochronological analysis of several physiological parameters derived from periodic measurements of carbon stable isotope composition ((13)C discrimination, intercellular CO2 concentration and intrinsic water use efficiency) and annual diameter increments (tree biomass increment, its inter-annual variability and correlation with temperature, cloud cover, precipitation and Palmer drought severity index). The analysis was performed in two mountain Norway spruce (Picea abies) stands of the Bohemian Forest (Czech Republic, central Europe), where moderate levels of pollution peaked in the 1970s and 1980s and no evident impact on tree growth or link to mortality has been reported. The significant influence of pollution on trees was expressed most sensitively by a 1.88‰ reduction of carbon isotope discrimination (Δ(13)C). The effects of atmospheric pollution interacted with increasing atmospheric CO2 concentration and temperature. As a result, we observed no change in intercellular CO2 concentrations (Ci), an abrupt increase in water use efficiency (iWUE) and no change in biomass increment, which could also partly result from changes in carbon partitioning (e.g., from below- to above-ground). The biomass increment was significantly related to Δ(13)C on an individual tree level, but the relationship was lost during the pollution period. We suggest that this was caused by a shift from the dominant influence of the photosynthetic rate to stomatal conductance on Δ(13)C during the pollution period. Using biomass increment-climate correlation analyses, we did not identify any clear pollution

  3. Estimating the risks of smoking, air pollution, and passive smoke on acute respiratory conditions

    SciTech Connect

    Ostro, B.D.

    1989-06-01

    Five years of the annual Health Interview Survey, conducted by the National Center for Health Statistics, are used to estimate the effects of air pollution, smoking, and environmental tobacco smoke on respiratory restrictions in activity for adults, and bed disability for children. After adjusting for several socioeconomic factors, the multiple regression estimates indicate that an independent and statistically significant association exists between these three forms of air pollution and respiratory morbidity. The comparative risks of these exposures are computed and the plausibility of the relative risks is examined by comparing the equivalent doses with actual measurements of exposure taken inmore » the homes of smokers. The results indicate that: (1) smokers will have a 55-75% excess in days with respiratory conditions severe enough to cause reductions in normal activity; (2) a 1 microgram increase in fine particulate matter air pollution is associated with a 3% excess in acute respiratory disease; and (3) a pack-a-day smoker will increase respiratory restricted days for a nonsmoking spouse by 20% and increase the number of bed disability days for young children living in the household by 20%. The results also indicate that the estimates of the effects of secondhand smoking on children are improved when the mother's work status is known and incorporated into the exposure estimate.« less

  4. Exposure and measurement contributions to estimates of acute air pollution effects.

    PubMed

    Sheppard, Lianne; Slaughter, James C; Schildcrout, Jonathan; Liu, L-J Sally; Lumley, Thomas

    2005-07-01

    Air pollution health effect studies are intended to estimate the effect of a pollutant on a health outcome. The definition of this effect depends upon the study design, disease model parameterization, and the type of analysis. Further limitations are imposed by the nature of exposure and our ability to measure it. We define a plausible exposure model for air pollutants that are relatively nonreactive and discuss how exposure varies. We discuss plausible disease models and show how their parameterizations are affected by different exposure partitions and by different study designs. We then discuss a measurement model conditional on ambient concentrations and incorporate this into the disease model. We use simulation studies to show the impact of a range of exposure model assumptions on estimation of the health effect in the ecologic time series design. This design only uses information from the time-varying ambient source exposure. When ambient and nonambient sources are independent, exposure variation due to nonambient source exposures behaves like Berkson measurement error and does not bias the effect estimates. Variation in the population attenuation of ambient concentrations over time does bias the estimates with the bias being either positive or negative depending upon the association of this parameter with ambient pollution. It is not realistic to substitute measured average personal exposures into time series studies because so much of the variation in personal exposures comes from nonambient sources that do not contribute information in the time series design. We conclude that general statements about the implications of measurement error need to be conditioned on the health effect study design and the health effect parameter to be estimated.

  5. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels.

    PubMed

    Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros

    2017-01-01

    Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from further control efforts. Citation: Schwartz J, Bind MA

  6. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels

    PubMed Central

    Schwartz, Joel; Bind, Marie-Abele; Koutrakis, Petros

    2016-01-01

    Background: Although many time-series studies have established associations of daily pollution variations with daily deaths, there are fewer at low concentrations, or focused on locally generated pollution, which is becoming more important as regulations reduce regional transport. Causal modeling approaches are also lacking. Objective: We used causal modeling to estimate the impact of local air pollution on mortality at low concentrations. Methods: Using an instrumental variable approach, we developed an instrument for variations in local pollution concentrations that is unlikely to be correlated with other causes of death, and examined its association with daily deaths in the Boston, Massachusetts, area. We combined height of the planetary boundary layer and wind speed, which affect concentrations of local emissions, to develop the instrument for particulate matter ≤ 2.5 μm (PM2.5), black carbon (BC), or nitrogen dioxide (NO2) variations that were independent of year, month, and temperature. We also used Granger causality to assess whether omitted variable confounding existed. Results: We estimated that an interquartile range increase in the instrument for local PM2.5 was associated with a 0.90% increase in daily deaths (95% CI: 0.25, 1.56). A similar result was found for BC, and a weaker association with NO2. The Granger test found no evidence of omitted variable confounding for the instrument. A separate test confirmed the instrument was not associated with mortality independent of pollution. Furthermore, the association remained when all days with PM2.5 concentrations > 30 μg/m3 were excluded from the analysis (0.84% increase in daily deaths; 95% CI: 0.19, 1.50). Conclusions: We conclude that there is a causal association of local air pollution with daily deaths at concentrations below U.S. EPA standards. The estimated attributable risk in Boston exceeded 1,800 deaths during the study period, indicating that important public health benefits can follow from

  7. Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers.

    PubMed

    Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira

    2014-12-01

    This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km 2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA 254 and A 285 /COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T 2 , r =0.7560, and peak T 1 , r =0.6949) and tyrosine-like fluorescence peak (peak B, r =0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies.

  8. Effect of cadmium pollution of atmospheric origin on field-grown maize in two consecutive years with diverse weather conditions.

    PubMed

    Anda, Angéla; Illés, Bernadett; Soós, G

    2013-12-01

    The aim of the study was to analyse the effect of atmospheric cadmium (Cd) pollution of atmospheric origin in maize compared to a control without Cd pollution. The plant parameters investigated were the timing of phenological phases, leaf area index (LAI) and yield, while radiation and water regime parameters were represented by albedo (reflection grade) and evapotranspiration, respectively. In treatments with and without irrigation, Cd caused a significant reduction in LAI, accompanied by lower evapotranspiration. The mean annual albedo in the Cd-polluted treatment only rose to a moderate extent in 2011 (in 2010 there was hardly any change), but changes within the year were more pronounced in certain phases of development. Cd led to greater reflection of radiation by plants during the vegetative phase, so the radiation absorption of the canopy was reduced leading to a lower level of evapotranspiration. In the dry, hot year of 2011 maize plants in the non-irrigated treatments showed a substantial reduction in grain dry matter, but maize yield losses could be reduced by irrigation in areas exposed to Cd pollution.

  9. The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China

    NASA Astrophysics Data System (ADS)

    Ma, J. Z.; Wang, W.; Chen, Y.; Liu, H. J.; Yan, P.; Ding, G. A.; Wang, M. L.; Sun, J.; Lelieveld, J.

    2012-05-01

    In the past decades, regional air pollution characterized by photochemical smog and grey haze-fog has become a severe environmental problem in China. To investigate this, a field measurement campaign was performed in the Huabei region, located between 32-42° N latitude in eastern China, during the period 2 April-16 May 2006 as part of the project "Influence of Pollution on Aerosols and Cloud Microphysics in North China" (IPAC-NC). It appeared that strong pollution emissions from urban and industrial centers tend to accumulate in the lower atmosphere over the central area of Huabei. We observed widespread, very high SO2 mixing ratios, about 20-40 ppbv at 0.5-1.5 km altitude and 10-30 ppbv at 1.5-3.0 km altitude. Average CO mixing ratios were 0.65-0.7 ppmv at 0.5-1.5 km altitude, and very high CO around 1 ppmv was observed during some flights, and even higher levels at the surface. We find the high pollution concentrations to be associated with enhanced levels of OH and HO2 radicals, calculated with a chemical box model constrained by the measurements. In the upper part of the boundary layer and in the lower free troposphere, high CO and SO2 compete with relatively less NO2 in reacting with OH, being efficiently recycled through HO2, preventing a net loss of HOx radicals. In addition to reactive hydrocarbons and CO, the oxidation of SO2 causes significant ozone production over Huabei (up to ~13% or 2.0 ppbv h-1 at 0.8 km altitude). Our results indicate that the lower atmosphere over Huabei is not only strongly polluted but also acts as an oxidation pool, with pollutants undergoing very active photochemistry over this part of China.

  10. Estimation of unmeasured particulate air pollution data for an epidemiological study of daily respiratory morbidity.

    PubMed

    Delfino, R J; Becklake, M R; Hanley, J A; Singh, B

    1994-10-01

    The standard approach to government-mandated aerometric monitoring of airborne particulates across North America is to sample every sixth day year round. However, such data are inadequate for epidemiological studies which aim to examine daily time series relationships of particulate air pollution to respiratory health responses. The aim of the present study was to estimate missing daily particulate matter < or = 2.5 and < or = 10 microns in aerometric diameter (PM2.5 and PM10) and sulfate (SO4(2-) to a degree sufficiently accurate and reliable to allow the use of these estimates, along with the measured data, in an investigation of the relationship of air pollution to respiratory hospital admissions in Montreal during the 1980s. Prediction equations were developed for May through October periods using available daily levels of predictor variables which included: relative humidity-corrected light extinction coefficient (bext) derived from airport visual range sightings, coefficient of haze (COH), SO2, NOx, CO, O3, wind speed, wind direction, barometric pressure (BP), temperature, relative humidity, and total precipitation. Three fourths of the available gravimetric particulate data were used to develop prediction models, while the remaining fourth was used to test the reliability of the model (holdout data). All final models explained over 70% of the variability in the particulate air pollutants and were reliable when tested against the holdout data. The strongest (P < 0.001) and most consistent predictors were bext, COH, and O3 measured on the same day as the particulate, and BP lagged 1 day in the past. Other selected variables were same day NOx, BP, and minimum temperature. Although the present approach to the estimation of missing particulate air pollution may increase the level of exposure misclassification, it does allow for the use of existing network databases in epidemiological studies of daily air pollution health effects even though particulate data is

  11. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  12. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  13. A Bayesian localized conditional autoregressive model for estimating the health effects of air pollution.

    PubMed

    Lee, Duncan; Rushworth, Alastair; Sahu, Sujit K

    2014-06-01

    Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models. © 2014, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  14. Long Term Baseline Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Goldman, Mark A.

    1975-01-01

    Describes a program designed to measure the normal concentrations of certain chemical and physical parameters of the atmosphere so that quantitative estimates can be made of local, regional, and global pollution. (GS)

  15. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    PubMed

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  16. [Characteristics of mercury pollution in soil and atmosphere in Songhua River upstream Jia-pi-gou gold mining area].

    PubMed

    Zhang, Gang; Wang, Ning; Wang, Yuan; Liu, Te; Ai, Jian-Chao

    2012-09-01

    In the studied area of Jia-pi-gou at the upstream area of Songhua River, algamation process has been applied as a dominant method to extract gold for more than one hundred and eighty years, resulting in severe mercury environmental pollution. The total mercury contents in the atmosphere and soil have been determined by mercury analyzer (Zeeman RA915+) and cold atomic absorption spectrophotometry (GB/T 17136-1997), respectively. To study the pollution characteristics of mercury in the soil and atmosphere, the mercury flux at the interface between the soil and the atmosphere of 4 sampling sites Lao-jin-chang, Er-dao-gou, Er-dao-cha and community of Jia-pi-gou have been determined with the method of dynamic flux chamber. Furthermore, linear regression analyses on the total mercury contents between soil and atmosphere have been carried out and the correlation coefficient of mercury exchange flux between soil and atmosphere and meteorological factors has been studied. The results are as follows: (1) The mean value of mercury content in the atmosphere is (71.08 +/- 38.22) ng x m(-3). (2) The mean value of mercury content in the soil is (0.913 1 +/- 0.040 8) mg x kg(-1); it shows remarkably positive correlation between the mercury contents in soil and in the atmosphere. (3) The mercury exchange flux between soil and atmosphere in different locations are Lao-jin-chang [(129.13 +/- 496.07) ng (m2 x h)(-1)], Er-dao-gou [(98.64 +/- 43.96) ng x (m2 x h)(-1)], Er-dao-cha [(23.17 +/- 171.23) ng x (m2 x h)(-1)], and community of Jia-pi-gou [(7.12 +/- 46.33) ng x (m2 x h)(-1)]. (4) Solar radiation is the major influential factor in the mercury exchange flux between the soil and atmosphere in Lao-jin-chang, Er-dao-cha and community of Jia-pi-gou. Solar radiation, air temperature and soil temperature jointly influence the process of the mercury exchange flux between the soil and atmosphere in Er-dao-gou. Under the disturbance of terrain, three noticeably distinctive trend features

  17. Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy.

    PubMed

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Russell, Armistead G; Hansen, Craig; Darrow, Lyndsey A

    2017-09-01

    Prenatal air pollution exposure is frequently estimated using maternal residential location at the time of delivery as a proxy for residence during pregnancy. We describe residential mobility during pregnancy among 19,951 children from the Kaiser Air Pollution and Pediatric Asthma Study, quantify measurement error in spatially resolved estimates of prenatal exposure to mobile source fine particulate matter (PM 2.5 ) due to ignoring this mobility, and simulate the impact of this error on estimates of epidemiologic associations. Two exposure estimates were compared, one calculated using complete residential histories during pregnancy (weighted average based on time spent at each address) and the second calculated using only residence at birth. Estimates were computed using annual averages of primary PM 2.5 from traffic emissions modeled using a Research LINE-source dispersion model for near-surface releases (RLINE) at 250 m resolution. In this cohort, 18.6% of children were born to mothers who moved at least once during pregnancy. Mobile source PM 2.5 exposure estimates calculated using complete residential histories during pregnancy and only residence at birth were highly correlated (r S >0.9). Simulations indicated that ignoring residential mobility resulted in modest bias of epidemiologic associations toward the null, but varied by maternal characteristics and prenatal exposure windows of interest (ranging from -2% to -10% bias).

  18. Investigation of Health Risks and Their Prevention in the Rapid Climate Changes and the Rise of Pollution of the Atmosphere in the Mountain Region of the North Caucasus

    NASA Astrophysics Data System (ADS)

    Babyakin, Alexander; Polozkov, Igor; Golitsyn, Georgy; Efimenko, Natalia; Zherlitsina, Liubov; Povolotskaya, Nina; Senik, Irina; Chalaya, Elena; Artamonova, Maria; Pogarski, Fedor

    2010-05-01

    to clarify the criteria for "pathogenicity" of various weather conditions and the factors of air pollution. These criteria were put in a new technology of the Medical Weather Forecast (MWF). In this technology it is proposed to use the integrated Weather Pathogenicity Index (WPI), which is calculated as a weighted average of biotropism indices of various MMM, which include: the dynamics and day to day variability of temperature, pressure and humidity, wind speed, weight content of oxygen and natural air ions in the surface atmosphere, cloudiness, atmospheric phenomena, geomagnetic activity, the ultraviolet index (by UVB solar radiation), the integrated illumination by the sun, the heat conditions of the human. For each of the MMM the five physiological grades of the effects of weather on human adaptation to weather of magnitude and dynamics of WPI are marked out: indifferent, weak, moderate, harsh and overly harsh, according to which the degree of "pathogenicity" of the weather is estimating. Pathogenicity is indicated by quantitative number of medical types of weather (I - a very good weather, II - good weather, III - adverse weather, and IV - a particularly adverse weather). According to the forms of the pressure relief on the sea level, 850 hPa, and 500 hPa, the nature of atmospheric stratification and the presence of atmospheric fronts in the medical types of weather the type of atmospheric circulation is evaluating (anticyclonic - "A", cyclonic - "B", frontal - "C"), which defines a subtype of weather and the possible nature of meteopathia (hypotensive, hypoxic, spastic, etc.). Innovations of the new technology are associated with the introduction of a methodology for the preparation of MWF the modified classifiers to determine the gradation of biotropism degree for various MMM, confirmed by the results of comprehensive empirical medical and climatic studies using dynamic and synoptic weather forecasting making by Hydrometeocenter of Russia and forecast of

  19. Pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in a new urban district of Nanjing, China.

    PubMed

    Wang, Tao; Xia, Zhonghuan; Wu, Minmin; Zhang, Qianqian; Sun, Shiqi; Yin, Jing; Zhou, Yanchi; Yang, Hao

    2017-05-01

    This paper focused on the pollution characteristics, sources and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons (PAHs) in a new urban district of Nanjing, China. Gaseous and aerosol PM 2.5 (particulate matter with aerodynamic diameter smaller than 2.5μm) samples were collected in spring of 2015. Sixteen PAHs were extracted and analyzed after sampling. Firstly, arithmetic mean concentrations of PAHs and BaP eq (benzo[a]pyrene equivalent) were calculated. The mean concentrations of PAHs were 29.26±14.13, 18.14±5.37 and 48.47±16.03ng/m 3 in gas phase, particle phase and both phases, respectively. The mean concentrations of BaP eq were 0.87±0.51, 2.71±2.17 and 4.06±2.31ng/m 3 in gas phase, particle phase and both phases, respectively. Secondly, diagnostic ratios and principal component analysis were adopted to identify the sources of PAHs and the outcomes were the same: traffic exhaust was the predominant source followed by fuel combustion and industrial process. Finally, incremental lung cancer risk (ILCR) induced by whole year inhalation exposure to PAHs for population groups of different age and gender were estimated based on a Monte Carlo simulation. ILCR values caused by particle phase PAHs were greater than those caused by gas phase PAHs. ILCR values for adults were greater than those for other age groups. ILCR values caused by total (gas+particle) PAHs for diverse groups were all greater than the significant level (l0 -6 ), indicating high potential lung cancer risk. Sensitivity analysis results showed that cancer slope factor for BaP inhalation exposure and BaP eq concentration had greater impact than body weight and inhalation rate on the ILCR. Copyright © 2016. Published by Elsevier B.V.

  20. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils.

    PubMed

    Kaufman, Alan J; Xiao, Shuhai

    2003-09-18

    Solar luminosity on the early Earth was significantly lower than today. Therefore, solar luminosity models suggest that, in the atmosphere of the early Earth, the concentration of greenhouse gases such as carbon dioxide and methane must have been much higher. However, empirical estimates of Proterozoic levels of atmospheric carbon dioxide concentrations have not hitherto been available. Here we present ion microprobe analyses of the carbon isotopes in individual organic-walled microfossils extracted from a Proterozoic ( approximately 1.4-gigayear-old) shale in North China. Calculated magnitudes of the carbon isotope fractionation in these large, morphologically complex microfossils suggest elevated levels of carbon dioxide in the ancient atmosphere--between 10 and 200 times the present atmospheric level. Our results indicate that carbon dioxide was an important greenhouse gas during periods of lower solar luminosity, probably dominating over methane after the atmosphere and hydrosphere became pervasively oxygenated between 2 and 2.2 gigayears ago.

  1. Estimated long-term outdoor air pollution concentrations in a cohort study

    NASA Astrophysics Data System (ADS)

    Beelen, Rob; Hoek, Gerard; Fischer, Paul; Brandt, Piet A. van den; Brunekreef, Bert

    Several recent studies associated long-term exposure to air pollution with increased mortality. An ongoing cohort study, the Netherlands Cohort Study on Diet and Cancer (NLCS), was used to study the association between long-term exposure to traffic-related air pollution and mortality. Following on a previous exposure assessment study in the NLCS, we improved the exposure assessment methods. Long-term exposure to nitrogen dioxide (NO 2), nitrogen oxide (NO), black smoke (BS), and sulphur dioxide (SO 2) was estimated. Exposure at each home address ( N=21 868) was considered as a function of a regional, an urban and a local component. The regional component was estimated using inverse distance weighed interpolation of measurement data from regional background sites in a national monitoring network. Regression models with urban concentrations as dependent variables, and number of inhabitants in different buffers and land use variables, derived with a Geographic Information System (GIS), as predictor variables were used to estimate the urban component. The local component was assessed using a GIS and a digital road network with linked traffic intensities. Traffic intensity on the nearest road and on the nearest major road, and the sum of traffic intensity in a buffer of 100 m around each home address were assessed. Further, a quantitative estimate of the local component was estimated. The regression models to estimate the urban component explained 67%, 46%, 49% and 35% of the variances of NO 2, NO, BS, and SO 2 concentrations, respectively. Overall regression models which incorporated the regional, urban and local component explained 84%, 44%, 59% and 56% of the variability in concentrations for NO 2, NO, BS and SO 2, respectively. We were able to develop an exposure assessment model using GIS methods and traffic intensities that explained a large part of the variations in outdoor air pollution concentrations.

  2. The study of pollution of atmospheric particulate matter with coal dust in Nakhodka city

    NASA Astrophysics Data System (ADS)

    Kirichenko, K. Yu.; Savranskiy, V. B.; Drozd, V. A.; Kholodov, A. S.; Golokhvast, K. S.

    2017-09-01

    The paper presents the research of atmospheric particulate matter in Nakhodka city by the study of atmospheric precipitation using particle size analysis. The presence of PM10 fraction of coal dust in the air is revealed.

  3. Decadal Arctic surface atmosphere/ocean heat budgets and mass transport estimates from several atmospheric and oceanic reanalyses

    NASA Astrophysics Data System (ADS)

    Chepurin, gennaday; Carton, James

    2017-04-01

    The Arctic is undergoing dramatic changes associated with the loss of seasonal and permanent ice pack. By exposing the surface ocean to the atmosphere these changes dramatically increase surface exchange processes. In contrast, increases in freshwater and heat input decreases turbulent exchanges within the ocean. In this study we present results from an examination of changing ocean heat flux, storage, and transport during the 36 year period 1980-2015. To identify changes in the surface atmosphere we examine three atmospheric reanalyses: MERRA2, ERA-I, and JRA55. Significant differences in fluxes from these reanalyses arise due to the representation of clouds and water vapor. These differences provide an indication of the uncertainties in the historical record. Next we turn to the Simple Ocean Data Assimilation version 3 (SODA3) global ocean/sea ice reanalysis system to allow us to infer the full ocean circulation from the limited set of historical record of ocean observations. SODA3 has 10 km horizontal resolution in the Arctic and assimilates the full suite of historical marine temperature and salinity observations. To account for the uncertainties in atmospheric forcing, we repeat our analysis with each of the three atmospheric reanalyses. In the first part of the talk we review the climatological seasonal surface fluxes resulting from our reanalysis system, modified for consistency with the ocean observations, and the limits of what we can learn from the historical record. Next we compare the seasonal hydrography, heat, and mass transports with direct estimates from moorings. Finally we examine the impact on the Arctic climate of the changes in sea ice cover and variability and trends of ocean/sea ice heat storage and transport and their contributions to changes in the seasonal stratification of the Arctic Ocean.

  4. Air pollution from gas flaring: new emission factor estimates and detection in a West African aerosol remote-sensing climatology

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Fawole, Olusegun Gabriel; Levine, James; Cai, Xiaoming

    2016-04-01

    Gas flaring, the disposal of gas through stacks in an open-air flame, is a common feature in the processing of crude oil, especially in oil-rich regions of the world. Gas flaring is a prominent source of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAH), CO, CO2, nitrogen oxides (NOx), SO2 (in "sour" gas only), and soot (black carbon), as well as the release of locally significant amounts of heat. The rates of emission of these pollutants from gas flaring depend on a number of factors including, but not limited to, fuel composition and quantity, stack geometry, flame/combustion characteristics, and prevailing meteorological conditions. Here, we derive new estimated emission factors (EFs) for carbon-containing pollutants (excluding PAH). The air pollution dispersion model, ADMS5, is used to simulate the dispersion of the pollutants from flaring stacks in the Niger delta. A seasonal variation of the dispersion pattern of the pollutant within a year is studied in relation to the movements of the West Africa Monsoon (WAM) and other prevailing meteorological factors. Further, we have clustered AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at the Ilorin site in West Africa (4.34 oE, 8.32 oN). A 10-year trajectory-based analysis was undertaken (2005-2015, excluding 2010). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area en-route the AERONET site. 7-day back trajectories were calculated using the UK Universities Global Atmospheric Modelling Programme (UGAMP) trajectory model which is driven by analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF). From the back-trajectory calculations, dominant sources are identified, using literature classifications: desert dust (DD); Biomass burning (BB); and Urban-Industrial (UI). We use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source

  5. Atmospheric pollution due to mobile sources and effects on human health in Japan.

    PubMed Central

    Kagawa, J

    1994-01-01

    Following the rapid economic growth after World War II, diseases associated with environmental pollution frequently occurred due to delayed implementation of countermeasures against environmental pollution. These diseases are exemplified by Minamata disease, Itai-itai disease, chronic arsenic poisoning, and Yokkaichi asthma. After multiple episodes of these pollution-related diseases were experienced, the government and the private sector made joint efforts to reduce environmental pollution. As a result of these efforts and because of changes in the industrial structure, pollution-related diseases have declined. Instead, however, air pollution from automobile exhaust and the health effects of automobile exhaust on people living along roads with heavy traffic began to attract the public's attention after an increase in the use of automobiles. The epidemiological surveys carried out by the Environmental Agency and the Tokyo Metropolitan Government also have suggested unfavorable effects of automobile-caused air pollution on people living in large cities or along major roads. To solve this problem, it seems imperative to promote the reasonable use of automobiles and to work toward more efficient transportation of goods based on analyses of city structure, the life-styles of city dwellers, and the socioeconomic composition of cities. In addition, the discharge of pollutants from automobiles could be controlled. PMID:7529709

  6. Modeling the effects of a solid barrier on pollutant dispersion under various atmospheric stability conditions

    EPA Science Inventory

    There is a growing need for developing mitigation strategies for near-road air pollution. Roadway design is being considered as one of the potential options. Particularly, it has been suggested that sound barriers, erected to reduce noise, may prove effective at decreasing pollut...

  7. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  8. Increased estimates of air-pollution emissions from Brazilian sugar-cane ethanol

    NASA Astrophysics Data System (ADS)

    Tsao, C.-C.; Campbell, J. E.; Mena-Carrasco, M.; Spak, S. N.; Carmichael, G. R.; Chen, Y.

    2012-01-01

    Accelerating biofuel production has been promoted as an opportunity to enhance energy security, offset greenhouse-gas emissions and support rural economies. However, large uncertainties remain in the impacts of biofuels on air quality and climate. Sugar-cane ethanol is one of the most widely used biofuels, and Brazil is its largest producer. Here we use a life-cycle approach to produce spatially and temporally explicit estimates of air-pollutant emissions over the whole life cycle of sugar-cane ethanol in Brazil. We show that even in regions where pre-harvest field burning has been eliminated on half the croplands, regional emissions of air pollutants continue to increase owing to the expansion of sugar-cane growing areas, and burning continues to be the dominant life-cycle stage for emissions. Comparison of our estimates of burning-phase emissions with satellite estimates of burning in São Paulo state suggests that sugar-cane field burning is not fully accounted for in satellite-based inventories, owing to the small spatial scale of individual fires. Accounting for this effect leads to revised regional estimates of burned area that are four times greater than some previous estimates. Our revised emissions maps thus suggest that biofuels may have larger impacts on regional climate forcing and human health than previously thought.

  9. Dependence of Mercurian Atmospheric Column Abundance Estimations on Surface-Reflectance Modeling

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Sprague, Ann L.; Hunten, Donald M.

    1997-01-01

    Column abundance estimates of sodium, and analogously, potassium, in Mercury's exosphere are strongly correlated to the surface reflection model used to calibrate the spectral data and the surface reflection model incorporated into the atmospheric radiative transfer solution. Depending on the surface reflection model parameters used, there can be differences in calibration factors of up to +/- 30% and differences in estimated column abundance of up to +/- 35%. Although the surface reflectance may not be used in the calibration of spacecraft measurements, the interaction between the reflected surface light and the atmospheric brightness remains important.

  10. A rigorous statistical framework for spatio-temporal pollution prediction and estimation of its long-term impact on health.

    PubMed

    Lee, Duncan; Mukhopadhyay, Sabyasachi; Rushworth, Alastair; Sahu, Sujit K

    2017-04-01

    In the United Kingdom, air pollution is linked to around 40000 premature deaths each year, but estimating its health effects is challenging in a spatio-temporal study. The challenges include spatial misalignment between the pollution and disease data; uncertainty in the estimated pollution surface; and complex residual spatio-temporal autocorrelation in the disease data. This article develops a two-stage model that addresses these issues. The first stage is a spatio-temporal fusion model linking modeled and measured pollution data, while the second stage links these predictions to the disease data. The methodology is motivated by a new five-year study investigating the effects of multiple pollutants on respiratory hospitalizations in England between 2007 and 2011, using pollution and disease data relating to local and unitary authorities on a monthly time scale. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. An estimation of the health impact of groundwater pollution caused by dumping of chlorinated solvents.

    PubMed

    Lee, Lukas Jyuhn-Hsiarn; Chen, Chien-Hung; Chang, Yu-Yin; Liou, Saou-Hsing; Wang, Jung-Der

    2010-02-15

    Hazardous waste sites are major environmental concerns, but few studies have quantified their expected utility loss on health. To evaluate the health impact of groundwater pollution by an electronics manufacturing factory, we conducted a health risk assessment based on expected utility loss from liver cancer. Based on measurements of major pollutants, we estimated the likelihood of developing liver cancer after exposure to groundwater contamination. All patients with liver cancer between 1990 and 2005 in the Taiwan Cancer Registry were followed through 2007 using the National Mortality Registry to obtain survival function. Quality of life was assessed with two cross-sectional surveys, one employing the standard gamble method, and the other using the EQ-5D instrument. Quality-adjusted life expectancy (QALE) was estimated by multiplying the utility values with survival function under the unit of quality-adjusted life year (QALY). The difference of QALE between the cancer cohort and the age- and gender-matched reference population was calculated to represent the utility loss due to liver cancer. A total of 94,144 patients with liver cancer were identified. The average utility loss to development of liver cancer was 17.5 QALYs. Based on toxicological approach, we estimated that groundwater pollution caused 1.7 extra cases of liver cancer, with an overall loss of 29.8 QALYs. Based on epidemiological approach, the expected annual excess number of liver cancer would be 3.65, which would have been accumulated through the years, had the pollution not mitigated. We demonstrated a practical approach for comparative health risk assessment using QALY as the common unit. This approach can be used for policy decisions based on possible health risks.

  12. Actual car fleet emissions estimated from urban air quality measurements and street pollution models.

    PubMed

    Palmgren, F; Berkowicz, R; Ziv, A; Hertel, O

    1999-09-01

    A method to determine emissions from the actual car fleet under realistic driving conditions has been developed. The method is based on air quality measurements, traffic counts and inverse application of street air quality models. Many pollutants are of importance for assessing the adverse impact of the air pollution, e.g. NO2, CO, lead, VOCs and particulate matter. Aromatic VOCs are of special great concern due to their adverse health effects. Measurements of benzene, toluene and xylenes were carried out in central Copenhagen since 1994. Significant correlation was observed between VOCs and CO concentrations, indicating that the petrol engine vehicles are the major sources of VOC air pollution in central Copenhagen. Hourly mean concentrations of benezene were observed to reach values of up to 20 ppb, what is critically high according to the WHOs recommendations. Based on inverse model calculation of dispersion of pollutants in street canyons, an average emission factor of benzene for the fleet of petrol fuelled vehicles was estimated to be 0.38 g/km in 1994 and 0.11 in 1997. This decrease was caused by the reduction of benzene content in Danish petrol since summer 1995 and increasing percentage of cars equipped with three-way catalysts. The emission factors for benzene for diesel-fuelled vehicles were low.

  13. [Applying temporally-adjusted land use regression models to estimate ambient air pollution exposure during pregnancy].

    PubMed

    Zhang, Y J; Xue, F X; Bai, Z P

    2017-03-06

    The impact of maternal air pollution exposure on offspring health has received much attention. Precise and feasible exposure estimation is particularly important for clarifying exposure-response relationships and reducing heterogeneity among studies. Temporally-adjusted land use regression (LUR) models are exposure assessment methods developed in recent years that have the advantage of having high spatial-temporal resolution. Studies on the health effects of outdoor air pollution exposure during pregnancy have been increasingly carried out using this model. In China, research applying LUR models was done mostly at the model construction stage, and findings from related epidemiological studies were rarely reported. In this paper, the sources of heterogeneity and research progress of meta-analysis research on the associations between air pollution and adverse pregnancy outcomes were analyzed. The methods of the characteristics of temporally-adjusted LUR models were introduced. The current epidemiological studies on adverse pregnancy outcomes that applied this model were systematically summarized. Recommendations for the development and application of LUR models in China are presented. This will encourage the implementation of more valid exposure predictions during pregnancy in large-scale epidemiological studies on the health effects of air pollution in China.

  14. PM10 concentrations in relationship with other atmospheric pollutants in an urban-industrial area (Province of Trieste, NE-Italy).

    PubMed

    Plossi, Paolo; Busetto, Paola; Barbieri, Pierluigi; Adami, Gianpiero; Reisenhofer, Edoardo

    2003-04-01

    Air quality in Province of Trieste was studied in terms of PM10 trends. Observed correlations between PM10 and atmospheric pollutants produced by combustion are in evidence. Nitrogen oxides and PM10 are critical parameters for air quality in Province of Trieste. Wind speed has a diluting action higher than rain for all pollutants.

  15. Inverse estimation of radon flux distribution for East Asia using measured atmospheric radon concentration.

    PubMed

    Hirao, S; Hayashi, R; Moriizumi, J; Yamazawa, H; Tohjima, Y; Mukai, H

    2015-11-01

    In this study, the (222)Rn flux density distribution at surface was estimated in East Asia with the Bayesian synthesis inversion using measurement data and a long-range atmospheric (222)Rn transport model. Surface atmospheric (222)Rn concentrations measured at Hateruma Island in January 2008 were used. The estimated (222)Rn flux densities were generally higher than the prior ones. The area-weighted mean (222)Rn flux density for East Asia in January 2008 was estimated to be 44.0 mBq m(-2) s(-1). The use of the estimated (222)Rn flux density improved the discrepancy of the model-calculated concentrations with the measurements at Hateruma Island. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Pollution pathways and release estimation of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in central and eastern China.

    PubMed

    Liu, Zhaoyang; Lu, Yonglong; Wang, Pei; Wang, Tieyu; Liu, Shijie; Johnson, Andrew C; Sweetman, Andrew J; Baninla, Yvette

    2017-02-15

    China has gradually become the most important manufacturing and consumption centre for perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in the world, and inadvertently become the world's major contamination hotspots. However, a systematic analysis of pollution pathways for PFOS/PFOA into the different environmental compartments and their quantification in China has yet to be carried out. This study focused on PFOS and PFOA release into the environment in the central and eastern region of China, which accounts for the vast majority of national emission. About 80-90% of PFOS/PFOA contamination in the Chinese environment was estimated to come directly from manufacturing and industrial sites mostly via wastewater discharge from these facilities. The other major contamination sources for PFOS were identified as being linked to aqueous fire-fighting foams (AFFFs), and pesticides including sulfluramid. For PFOA, following some way behind industrial wastewater, were industrial exhaust gas, domestic wastewater and landfill leachate as contamination sources. For surface water contamination, the major pollution contributors after industrial wastewater were AFFF spill runoff for PFOS, and domestic wastewater and precipitation-runoff for PFOA. The majority of PFOS that contaminated soil was considered to be linked with infiltration of AFFF and pesticides, while most PFOA in soil was attributed to atmospheric deposition and landfill leachate. Where groundwater had become contaminated, surface water seepage was estimated to contribute about 50% of PFOS and 40% of PFOA while the remainder was mostly derived from soil leaching. A review of the available monitoring data for PFOS/PFOA in the literature supported the view that industrial wastewater, landfill leachate and AFFF application were the dominant sources. Higher concentrations of PFOA than PFOS found in precipitation also corroborated the prediction of more PFOA release into air. To reduce PFOS

  17. Estimating the Influence of the Stratospheric Processes on the Antarctic Atmospheric Energy Budget

    NASA Astrophysics Data System (ADS)

    Previdi, M.; Smith, K. L.; Polvani, L. M.

    2012-04-01

    We discuss ongoing work to construct an atmospheric energy budget for the Southern Hemisphere polar region based on observations from the post-1979 period. Satellite measurements and atmospheric reanalyses are synthesized in order to describe the long-term means and variability of radiative, latent and sensible heating, as well as the atmospheric transport of moist static energy into the polar region. We compare estimates of the atmospheric transport of energy determined by direct calculation and as a budget residual. The largest difference occurs in the summer season, when the estimates can vary by over 30%. Decadal trends in energy budget components linked to stratospheric ozone depletion and increases in well-mixed greenhouse gases (GHG) are identified. Trends occur primarily in the summer season when changes in the Southern Hemisphere atmospheric circulation associated with ozone depletion are most pronounced. Comparisons are made between observed trends and general circulation model simulations with individually prescribed transient ozone and GHG forcings. Shorter term interannual variations in the energy budget associated with the El Niño-Southern Oscillation and Southern Annular Mode (SAM) are also examined. We find that large magnitude SAM events such as the sudden stratospheric warming (SSW) of 2002 can have a significant effect on the polar atmospheric energy budget. Similarly, robust differences in the Northern Hemisphere polar energy budget are found when winters with and without SSWs are compared.

  18. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    NASA Technical Reports Server (NTRS)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; hide

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  19. Comparison of exposure estimation methods for air pollutants: ambient monitoring data and regional air quality simulation.

    PubMed

    Bravo, Mercedes A; Fuentes, Montserrat; Zhang, Yang; Burr, Michael J; Bell, Michelle L

    2012-07-01

    Air quality modeling could potentially improve exposure estimates for use in epidemiological studies. We investigated this application of air quality modeling by estimating location-specific (point) and spatially-aggregated (county level) exposure concentrations of particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM(2.5)) and ozone (O(3)) for the eastern U.S. in 2002 using the Community Multi-scale Air Quality (CMAQ) modeling system and a traditional approach using ambient monitors. The monitoring approach produced estimates for 370 and 454 counties for PM(2.5) and O(3), respectively. Modeled estimates included 1861 counties, covering 50% more population. The population uncovered by monitors differed from those near monitors (e.g., urbanicity, race, education, age, unemployment, income, modeled pollutant levels). CMAQ overestimated O(3) (annual normalized mean bias=4.30%), while modeled PM(2.5) had an annual normalized mean bias of -2.09%, although bias varied seasonally, from 32% in November to -27% in July. Epidemiology may benefit from air quality modeling, with improved spatial and temporal resolution and the ability to study populations far from monitors that may differ from those near monitors. However, model performance varied by measure of performance, season, and location. Thus, the appropriateness of using such modeled exposures in health studies depends on the pollutant and metric of concern, acceptable level of uncertainty, population of interest, study design, and other factors. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. RNA-based molecular survey of biodiversity of limestone tombstone microbiota in response to atmospheric sulphur pollution.

    PubMed

    Villa, F; Vasanthakumar, A; Mitchell, R; Cappitelli, F

    2015-01-01

    Outdoor stoneworks sustain biofilm formation and are constantly at risk of deterioration by micro-organisms. In this study, the biofilm microflora of historic limestone tombstones located in a highly polluted urban environment (Cambridge, MA) and in a less polluted location (Lexington, MA) were compared using comprehensive RNA-based molecular analyses of 16S rRNA gene sequences as well as sequences of genes for different pathways of sulphur metabolism (soxB, apsA, dsrA). The metabolically active micro-organisms detected by denaturing gradient gel electrophoresis analysis of 16S rRNA fragments were predominantly represented by cyanobacteria (belonging to the family Nostocaceae and to the genus Chroococcidiopsis) in both polluted and unpolluted environments. The investigation of soxB, apsA, dsrA transcripts reflected the abundance and the diversity of sulphur-oxidizing and sulphate-reducing bacteria in the Cambridge samples in comparison with the Lexington samples. The investigation revealed that in addition to phototrophic sulphur bacteria belonging to the genera Thiocapsa, Halochromatium, Allochromatium, Thiococcus and Thermochromatium, other sulphate-oxidizing prokaryotes (e.g. the genus Thiobacillus) as well as sequences of Deltaproteobacteria from the genus Desulfovibrio occurred at the polluted urban site. The interactions between the main functional groups retrieved from the limestone tombstones were discussed. The biofilm microflora inhabiting historic limestones are a multi-component open ecosystem sensitively reacting to all environmental factors including air pollutants. Little is known about specific target groups that are active in the biofilm and their physiological functions. For the first time, transcripts involved in important energy-yielding processes were investigated to reveal the metabolic capabilities of the microflora in response to atmospheric sulphur pollution. This work provides novel and important information about the ecology of limestone

  1. First Order Estimates of Energy Requirements for Pollution Control. Interagency Energy-Environment Research and Development Program Report.

    ERIC Educational Resources Information Center

    Barker, James L.; And Others

    This U.S. Environmental Protection Agency report presents estimates of the energy demand attributable to environmental control of pollution from stationary point sources. This class of pollution source includes powerplants, factories, refineries, municipal waste water treatment plants, etc., but excludes mobile sources such as trucks, and…

  2. [Investigations on Sulfur and Carbon Isotopic Compositions of Potential Polluted Sources in Atmospheric PM₂.₅ in Nanjing Region].

    PubMed

    Shi, Lei; Guo, Zhao-bing; Jiang, Wen-juan; Rui, Mao-ling; Zeng, Gang

    2016-01-15

    Potential pollution sources of atmospheric PM₂.₅ in Nanjing region were collected, and sulfur and carbon isotopic compositions were determined by EA-IRMS synchronously. The results showed that δ³⁴S and δ¹³C values ranged from 1.8‰-3.7‰ and -25.50‰- -23.57‰ in coal soot particles; 4.6‰-9.7‰ and -26.32‰- -23.57‰ in vehicle exhaust; 5.2‰-9.9‰ and -19.30‰- -30.42‰ in straw soot particles, respectively. Besides, the δ¹³C value of dust was -13.45‰. It can be observed that sulfur isotopic compositions in coal soot were lower, while the carbon isotopic composition in dust was higher. Comparing with δ³⁴S and δ¹³C values in domestic and foreign polluted sources, we found that sulfur and carbon isotopes in atmospheric PM₂.₅ in Nanjing region presented an obvious regional characteristics. Therefore, the source spectrum of sulfur and carbon isotopic compositions in Nanjing region might provide an insight into source apportionment of atmospheric PM₂.₅.

  3. Assessment of the variability of atmospheric pollution in National Parks of mainland Spain

    NASA Astrophysics Data System (ADS)

    Escudero, M.; Lozano, A.; Hierro, J.; Tapia, O.; del Valle, J.; Alastuey, A.; Moreno, T.; Anzano, J.; Querol, Xavier

    2016-05-01

    Air quality in nine National Parks in mainland Spain was assessed analysing SO2, NOx, O3, PM10 and PM2.5 data from background stations. As emissions in and around parks are limited, the levels of primary pollutants are low. Concentrations of secondary pollutants are high especially in summer due to photochemical production. The geographical variability of pollutants responds to regional emission patterns and the dominant circulation regimes in different regions resulting in west-east gradients for O3 and PM. Seasonal variability of pollutants was also interpreted in virtue of transport scenarios, changes in photochemical activity and emissions variability. NOx and SO2, maximize in winter due to higher emissions while O3 and PM do it in summer due to photochemical production, lower precipitation and, in the case of PM, the occurrence of African dust outbreaks. The diurnal evolution was interpreted in virtue of variability in emissions and changes in the Planetary Boundar Layer height.

  4. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements.

    PubMed

    Jehle, Michael; Perler, Donat; Small, David; Schubert, Adrian; Meier, Erich

    2008-12-19

    Spaceborne synthetic aperture radar (SAR) measurements of the Earth's surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy. The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX) data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS), placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements.

  5. Estimation of Atmospheric Path Delays in TerraSAR-X Data using Models vs. Measurements

    PubMed Central

    Jehle, Michael; Perler, Donat; Small, David; Schubert, Adrian; Meier, Erich

    2008-01-01

    Spaceborne synthetic aperture radar (SAR) measurements of the Earth's surface depend on electromagnetic waves that are subject to atmospheric path delays, in turn affecting geolocation accuracy The atmosphere influences radar signal propagation by modifying its velocity and direction, effects which can be modeled. We use TerraSAR-X (TSX) data to investigate improvements in the knowledge of the scene geometry. To precisely estimate atmospheric path delays, we analyse the signal return of four corner reflectors with accurately surveyed positions (based on differential GPS), placed at different altitudes yet with nearly identical slant ranges to the sensor. The comparison of multiple measurements with path delay models under these geometric conditions also makes it possible to evaluate the corrections for the atmospheric path delay made by the TerraSAR processor and to propose possible improvements. PMID:27873997

  6. Comparison of Mars Atmospheric Density Estimates from Models to Measurements from Mars Global Surveyor (MGS) Data

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.

    2009-01-01

    A recent study (Desai, 2008) has shown that the actual landing sites of Mars Pathfinder, the Mars Exploration Rovers (Spirit and Opportunity) and the Phoenix Mars Lander have been further downrange than predicted by models prior to landing Desai's reconstruction of their entries into the Martian atmosphere showed that the models consistently predicted higher densities than those found upon entry, descent and landing. Desai's results have raised a question as to whether there is a systemic problem within Mars atmospheric models. Proposal is to compare Mars atmospheric density estimates from Mars atmospheric models to measurements made by Mars Global Surveyor (MGS). Comparison study requires the completion of several tasks that would result in a greater understanding of reasons behind the discrepancy found during recent landings on Mars and possible solutions to this problem.

  7. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China

    NASA Astrophysics Data System (ADS)

    Liu, Baoshuang; Yang, Jiamei; Yuan, Jie; Wang, Jiao; Dai, Qili; Li, Tingkun; Bi, Xiaohui; Feng, Yinchang; Xiao, Zhimei; Zhang, Yufen; Xu, Hong

    2017-03-01

    From 1st June to 31st August 2015, the online datasets (the water soluble inorganic ions (WSIIs), OC and EC in PM2.5, and SO2, NO2, NO) were measured continuously at Tianjin. Source apportionment of atmospheric pollutants was carried out by using PMF and ME2 models based on the online datasets. During summer in Tianjin, the ammonium sulfate/ammonium hydrogen sulfate might be major forms of sulfate in the atmospheric aerosol, while the ammonium nitrate might be major forms of nitrate. The poor correlation between OC and EC might be caused by the changes of emission sources and the production of secondary organic carbon (SOC). Five source-categories that contributed to atmospheric pollutants were extracted by PMF and ME2 models, respectively. The profiles calculated by PMF and ME2 models were consistent, and the source contributions estimated by the two models were also similar. The correlations (R2 = 0.84-0.94) were better on the time series of the contributed concentrations for the same source-category calculated from PMF and ME2 models. The source-categories were identified as secondary sources (the contribution of 25.4-26.1%), vehicle exhaust (23.3-25.4%), coal combustion (16.5-18.2%), crustal dust (13.2-14.0%) and biomass burning (9.1-10.2%). For the same source-category identified from PMF and ME2 models, the differences of profiles might be attributed to the differences of calculated methods from the two models and the uncertainties of the online datasets.

  8. Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements.

    PubMed

    Krommer, Viktoria; Zechmeister, Harald G; Roder, Ingrid; Scharf, Sigrid; Hanus-Illnar, Andrea

    2007-05-01

    In this study a combined approach of bioindication results correlated with an extensive set of data on air pollution and climate was used to assess the pollution status of the Man and Biosphere Reserve Wienerwald (Austria). Bryophytes served as impact indicators (via the Index of Atmospheric Purity-method IAP) at 30 sites as well as accumulation monitors for airborne trace elements (Al, Pb, V, S, Zn, Fe, Cu, Cr, Ni, Co, Mo, Cd, As, Sb and 16 EPA-PAHs) at 10 sites within the reserve. The results of these bioindication methods were subsequently correlated with further pollution (NO(2), SO(2) and dust) and climate data (precipitation, temperature and humidity). The findings obtained clearly indicate the following: Bryophyte distribution is solely influenced by the status of air quality, without interference by climatic or site-related factors, which is in contrast to several previous investigations. IAP-values correlated significantly with NO(2) (0.553; P=0.004), SO(2) winter values (0.511; P=0.013) and PM10 (dust) (0.561; P=0.013). The results obtained via chemical analyses revealed a strong correlation with data derived from the IAP methodology. In terms of the overall air quality within the biosphere reserve Wienerwald, the north-eastern part appears to be the most affected one with a most likely pollution contribution emitted by the capital city Vienna, agriculture and neighbouring countries.

  9. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  10. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  11. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  12. An assessment of prewhitening in estimating power spectra of atmospheric turbulence at long wavelengths

    NASA Technical Reports Server (NTRS)

    Keisler, S. R.; Rhyne, R. H.

    1976-01-01

    Synthetic time histories were generated and used to assess the effects of prewhitening on the long wavelength portion of power spectra of atmospheric turbulence. Prewhitening is not recommended when using the narrow spectral windows required for determining power spectral estimates below the 'knee' frequency, that is, at very long wavelengths.

  13. Channel estimation for OFDM system in atmospheric optical communication based on compressive sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Qingsong; Hao, Shiqi; Geng, Hongjian; Sun, Han

    2015-10-01

    Orthogonal frequency division multiplexing (OFDM) technique applied to the atmospheric optical communication can improve data transmission rate, restrain pulse interference, and reduce effect of multipath caused by atmospheric scattering. Channel estimation, as one of the important modules in OFDM, has been investigated thoroughly and widely with great progress. In atmospheric optical communication system, channel estimation methods based on pilot are common approaches, such as traditional least-squares (LS) algorithm and minimum mean square error (MMSE) algorithm. However, sensitivity of the noise effects and high complexity of computation are shortcomings of LS algorithm and MMSE algorithm, respectively. Here, a new method based on compressive sensing is proposed to estimate the channel state information of atmospheric optical communication OFDM system, especially when the condition is closely associated with turbulence. Firstly, time-varying channel model is established under the condition of turbulence. Then, in consideration of multipath effect, sparse channel model is available for compressive sensing. And, the pilot signal is reconstructed with orthogonal matching tracking (OMP) algorithm, which is used for reconstruction. By contrast, the work of channel estimation is completed by LS algorithm as well. After that, simulations are conducted respectively in two different indexes -signal error rate (SER) and mean square error (MSE). Finally, result shows that compared with LS algorithm, the application of compressive sensing can improve the performance of SER and MSE. Theoretical analysis and simulation results show that the proposed method is reasonable and efficient.

  14. Impacts of Mercury Pollution Controls on Atmospheric Mercury Concentration and Occupational Mercury Exposure in a Hospital.

    PubMed

    Li, Ping; Yang, Yan; Xiong, Wuyan

    2015-12-01

    Mercury (Hg) and Hg-containing products are used in a wide range of settings in hospitals. Hg pollution control measures were carried out in the pediatric ward of a hospital to decrease the possibility of Hg pollution occurring and to decrease occupational Hg exposure. Total gaseous Hg (TGM) concentrations in the pediatric ward and hair and urine Hg concentrations for the pediatric staff were determined before and after the Hg pollution control measures had been implemented. A questionnaire survey performed indicated that the pediatric staff had little understanding of Hg pollution and that appropriate disposal techniques were not always used after Hg leakage. TGM concentrations in the pediatric ward and urine Hg (UHg) concentrations for the pediatric staff were 25.7 and 22.2% lower, respectively, after the Hg pollution control measures had been implemented than before, which indicated that the control measures were effective. However, TGM concentrations in the pediatric ward remained significantly higher than background concentrations and UHg concentrations for the pediatric staff were remained significantly higher than the concentrations in control group, indicating continued existence of certain Hg pollution.

  15. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    SciTech Connect

    Fiore, A M; Dentener, F J; Wild, O

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surfacemore » O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O{sub 3} levels are typically

  16. Multi-model Estimates of Intercontinental Source-Receptor Relationships for Ozone Pollution

    SciTech Connect

    Fiore, A M; Dentener, F J; Wild, O; Cuvelier, C; Schultz, M G; Hess, P; Textor, C; Schulz, M; Doherty, R; Horowitz, L W; MacKenzie, I A; Sanderson, M G; Shindell, D T; Stevenson, D S; Szopa, S; Van Dingenen, R; Zeng, G; Atherton, C; Bergmann, D; Bey, I; Carmichael, G; Collins, W J; Duncan, B N; Faluvegi, G; Folberth, G; Gauss, M; Gong, S; Hauglustaine, D; Holloway, T; Isaksen, I A; Jacob, D J; Jonson, J E; Kaminski, J W; Keating, T J; Lupu, A; Marmer, E; Montanaro, V; Park, R; Pitari, G; Pringle, K J; Pyle, J A; Schroeder, S; Vivanco, M G; Wind, P; Wojcik, G; Wu, S; Zuber, A

    2008-10-16

    Understanding the surface O{sub 3} response over a 'receptor' region to emission changes over a foreign 'source' region is key to evaluating the potential gains from an international approach to abate ozone (O{sub 3}) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O{sub 3} response over East Asia (EA), Europe (EU), North America (NA) and South Asia (SA) to 20% decreases in anthropogenic emissions of the O{sub 3} precursors, NO{sub x}, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O{sub 3} concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern U.S. and Japan. The sum of the O{sub 3} responses to NO{sub x}, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale 'import sensitivity' as the ratio of the O{sub 3} response to the 20% reductions in foreign versus 'domestic' (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the 3 foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O{sub 3} response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the 3 foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O{sub 3} values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O{sub 3} levels are typically highest

  17. Impact Assessment of Atmospheric Dust on Foliage Pigments and Pollution Resistances of Plants Grown Nearby Coal Based Thermal Power Plants.

    PubMed

    Hariram, Manisha; Sahu, Ravi; Elumalai, Suresh Pandian

    2018-01-01

    Plant species grown in the vicinity of thermal power plants (TPP) are one of the immobile substrates to sink most of the pollutants emitted from their stacks. The continuous exposure of toxic pollutants to these plants may affect their resistances and essential biochemical's concentrations. In the present study, we estimated the impact of dust load generated by a TPPs to plant's dust retention capacity and pollution resistances (APTI and API). The observed ambient air quality index (AQI) showed that the surroundings of TPPs are in the severe air pollution category. Observed AQI was greater than 100 in the surrounding area of TPP. The mean dust load on plant foliage was significantly greater in the polluted site compared with the control site: 4.45 ± 1.96 versus 1.38 ± 0.41 mg cm -2 . Nearby, TPP highest and lowest dust load were founded in F. benghalensis (7.58 ± 0.74) and F. religiosa (2.25 ± 0.12 mg cm -2 ) respectively. Analysis revealed the strong negative correlation between dust load and essential pigments of foliage, such as chlorophyll content, carotenoids, pH of foliage extract, and relative water content. Conversely, strong positive correlation was observed with the ascorbic acid content of plant species. Correlation and percentage change analysis in ascorbic acid content for the polluted site against the control site showed the adverse impact on plants due to dust load. Based on their responses to dust pollution, A. scholaris, P. longifolia, and M. indica were observed as most suitable plant species. Estimation of DRC, chlorophyll a/b ratio, APTI and API revealed the A. scholaris, F. benghalensis, P. longifolia, and M. indica as the most suitable plant species for green belt formation. The high gradation was obtained in A. scholaris, F. benghalensis, P. longifolia, and M. indica for opted parameters and showed their most suitability for green belt formation. Salient features of the present study provide useful evidences to estimate the

  18. Spatial Variation of Atmospheric Nitrogen Deposition and Estimated Critical Loads for Aquatic Ecosystems in the Greater Yellowstone Area

    NASA Astrophysics Data System (ADS)

    Nanus, L.; McMurray, J. A.; Clow, D. W.; Saros, J. E.; Blett, T.

    2015-12-01

    Aquatic ecosystems at high-elevations in the Greater Yellowstone Area (GYA) are sensitive to the effects of atmospheric nitrogen (N) deposition. Current and historic N deposition has impacted aquatic ecosystems in the GYA and N deposition is increasing in many areas. Anticipated changes in atmospheric emissions may further affect these sensitive ecosystems. Understanding the spatial variation in atmospheric N deposition is needed to develop estimates of air pollution critical loads for aquatic ecosystems in complex terrain. For the GYA, high resolution (400 meter) maps were developed for 1993-2014 to identify areas of high loading of mean annual Total N deposition (wet + dry) and wet deposition of inorganic N (nitrate and ammonium). Total N deposition estimates in the GYA range from ≤ 1.4 to 7.5 kg N ha-1 yr-1 and show greater variability than inorganic N deposition. Spatially explicit estimates of critical loads of N deposition (CLNdep) for nutrient enrichment in aquatic ecosystems were developed using a geostatistical approach. CLNdep in the GYA ranges from less than 1.5 kg N ha-1 yr-1 to over 10 kg N ha-1 yr-1 and variability is controlled by differences in basin characteristics. The lowest CLNdep estimates occurred in high-elevation basins with steep slopes, sparse vegetation, and exposed bedrock, including areas within GYA Wilderness boundaries. These areas often have high inorganic N deposition (>3 kg N ha-1 yr-1), resulting in CLNdep exceedances greater than 1.5 kg N ha-1 yr-1. The N deposition maps were used to identify CLNdep exceedances for aquatic ecosystems, and to explore scale dependence and boundary issues related to estimating CLNdep. Based on a NO3- threshold of 1.0 μmol L-1, inorganic N deposition exceeds CLNdep in 12% of the GYA, and Total N deposition is in exceedance for 23% of the GYA. These maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess N deposition in the GYA.

  19. The study of atmospheric CO pollution over the center of Moscow in autumn period

    SciTech Connect

    Fokeeva, E.V.; Pekour, M.S.

    1996-12-31

    The results of CO near-ground concentration measurements are presented which were taken by virtue of electrochemical method at the center of Moscow during one autumn month in 1993. Simultaneous measurements were performed of the total column content of CO over Moscow making use of sun radiation absorption detection in the infrared (in the wavelength range of 4.6 mcm). To determine an urban increment of CO content over regional background the data of analogous measurements were used which were collected in the rural suburb 45 km west from Moscow center One-hour averaged near-ground CO concentration were in the limits 0.4 to 5.8 mg/m{sup 3}, and an average total column CO content vary from 0.09 to 0.167 atm*cm. The measurements were accompanied by acoustic sounding of the atmosphere boundary layer with the use of three component Doppler SODAR. The peculiarities of average and concrete diurnal variation of near-ground CO concentrations can well be interpreted by virtue of SODAR data indicating the type of stratification, the mixing height and the wind velocity during a whole day. Comparison and analysis are performed of the average diurnal variations of near-ground CO concentration in autumn and summer periods in account to the occurrence frequency of surface inversion within selected periods. Almost complete coincidence has been found of the shape of CO concentration diurnal variations with those of NO and soot. An estimate of specific CO source power in the city is performed in account to the data on the mixing height and wind velocity mean within a layer of 250 m.

  20. Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry

    Treesearch

    Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer

    2009-01-01

    We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...

  1. Estimation of Release History of Pollutant Source and Dispersion Coefficient of Aquifer Using Trained ANN Model

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ayaz, M.; Jain, A.

    2013-12-01

    Knowledge of the release history of a groundwater pollutant source is critical in the prediction of the future trend of the pollutant movement and in choosing an effective remediation strategy. Moreover, for source sites which have undergone an ownership change, the estimated release history can be utilized for appropriate allocation of the costs of remediation among different parties who may be responsible for the contamination. Estimation of the release history with the help of concentration data is an inverse problem that becomes ill-posed because of the irreversible nature of the dispersion process. Breakthrough curves represent the temporal variation of pollutant concentration at a particular location, and contain significant information about the source and the release history. Several methodologies have been developed to solve the inverse problem of estimating the source and/or porous medium properties using the breakthrough curves as a known input. A common problem in the use of the breakthrough curves for this purpose is that, in most field situations, we have little or no information about the time of measurement of the breakthrough curve with respect to the time when the pollutant source becomes active. We develop an Artificial Neural Network (ANN) model to estimate the release history of a groundwater pollutant source through the use of breakthrough curves. It is assumed that the source location is known but the time dependent contaminant source strength is unknown. This temporal variation of the strength of the pollutant source is the output of the ANN model that is trained using the Levenberg-Marquardt algorithm utilizing synthetically generated breakthrough curves as inputs. A single hidden layer was used in the neural network and, to utilize just sufficient information and reduce the required sampling duration, only the upper half of the curve is used as the input pattern. The second objective of this work was to identify the aquifer parameters. An

  2. Horizontal Advection and Mixing of Pollutants in the Urban Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Magnusson, S. P.; Entekhabi, D.; Britter, R.; Norford, L.; Fernando, H. J.

    2013-12-01

    Although urban air quality and its impacts on the public health have long been studied, the increasing urbanization is raising concerns on how to better control and mitigate these health impacts. A necessary element in predicting exposure levels is fundamental understanding of flow and dispersion in urban canyons. The complex topology of building structures and roads requires the resolution of turbulence phenomena within urban canyons. The use of dense and low porosity construction material can lead to rapid heating in response to direct solar exposure due to large thermal mass. Hence thermal and buoyancy effects may be as important as mechanically-forced or shear-induced flows. In this study, the transport of pollutants within the urban environment, as well as the thermal and advection effects, are investigated. The focus is on the horizontal transport or the advection effects within the urban environment. With increased urbanization and larger and more spread cities, concern about how the upstream air quality situation can affect downstream areas. The study also examines the release and the dispersion of hazardous material. Due to the variety and complexity of urban areas around the world, the urban environment is simplified into adjacent two-dimensional urban street canyons. Pollutants are released inside each canyon. Computational Fluid Dynamics (CFD) simulations are applied to evaluate and quantify the flow rate out of each canyon and also the exchange of pollutants between the canyons. Imagine a row of ten adjacent urban street canyons of aspect ratio 1 with horizontal flow perpendicular to it as shown in the attached figure. C is the concentration of pollutants. The first digit indicates in what canyon the pollutant is released and the second digit indicates the location of that pollutant. For example, C3,4 is the concentration of pollutant released inside canyon 3 measured in canyon 4. The same amount of pollution is released inside the ten street canyons

  3. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  4. Atmospheric pollution problems and control proposals associated with solid waste management in China: a review.

    PubMed

    Tian, Hezhong; Gao, Jiajia; Hao, Jiming; Lu, Long; Zhu, Chuanyong; Qiu, Peipei

    2013-05-15

    Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  6. [Atmospheric pollution in the city of Santiago. A statement from the Chilean Society of Respiratory Diseases].

    PubMed

    1990-08-01

    Air pollution was the subject of the 1990 Fall Meeting of the Chilean Society of Respiratory Diseases. The potential danger of air pollution was considered a serious challenge. Groups at special risk are children under 5 years of age, patients with chronic respiratory diseases (COPD) or cardiovascular disease, the aged and pregnant women. Santiago is located in a valley surrounded by mountains, with a large population and many industries. The anticyclonic conditions determine a dominant semiarid climate and air circulation is prevented by a thermal inversion layer. Unacceptably high levels of total suspension particles (TSP) and carbon monoxide have been measured by the network of air pollution monitoring stations during winter and fall. 70% of TSP comes from diesel engines of the public transportation system. Most of the CO comes from automobiles. High levels of O3 have been detected in the east and north areas of the city. Nitrous oxide interference may account for an underestimation of the O3 level in the downtown area. Errors in the methodology for measurement of SO2 interfere with adequate knowledge about this pollutant. Actions to control the level of pollutants should include modification of industrial processes, changes in the transportation systems and others that should be enforced by law. Cooperation of the population and a well defined political will are urgently needed to implement solutions.

  7. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.

    PubMed

    Yan, Yun; Zhang, Qiang; Wang, G Geoff; Fang, Yan-Ming

    2016-06-01

    We studied atmospheric deposition of heavy metals in Wuxi, China, using moss (Haplocladium microphyllum and H. angustifolium) as a biomonitoring agent. Moss samples were collected from 49 sites determined by a systematic sampling method. The top layer of soil on each site was also sampled. No significant correlation (P < 0.05) was observed between the moss and soil concentrations for any of the six heavy metal elements (Cd, Cr, Cu, Ni, Pb, and Zn), indicating that the soil substrate had little effect on the heavy metal concentrations in the moss materials. The metal enrichment capacity of the moss material, characterized by the concentration ratio between the moss and soil samples for each heavy metal, was topped by Cd and then followed by Zn, Pb, Cu, Cr, and Ni, respectively. Significant (P < 0.05) correlations were found among the six elements in mosses, suggesting potential anthropogenic inputs of these heavy metal pollutants. Based on concentrations of the heavy metals in mosses and the calculated contamination factors, we evaluated the contamination level of each heavy metal on the 49 sampling sites. Spatial distribution maps of heavy metal deposition for each element were interpolated using ArcGIS 9.0. A total pollution coefficient was calculated for each sampling site to identify the seriously polluted areas in the region.

  8. Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun

    2015-05-01

    We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].

  9. Using native epiphytic ferns to estimate the atmospheric mercury levels in a small-scale gold mining area of West Java, Indonesia.

    PubMed

    Kono, Yuriko; Rahajoe, Joeni S; Hidayati, Nuril; Kodamatani, Hitoshi; Tomiyasu, Takashi

    2012-09-01

    Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining. Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009. The A. nidus fronds that were attached to tree trunks 1-3m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS. The highest atmospheric mercury concentration, 1.8 × 10(3) ± 1.6 × 10(3) ngm(-3), was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ngm(-3), was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 10(3) ± 1.6 × 10(3) ngg(-1)) than at the remote site (70 ± 30 ngg(-1)). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r=0.895, P<0.001, n=14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (Hg(A.nidu)/ngg(-1))=0.740 log (Hg(Air)/ngm (-3)) - 1.324. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A sparse reconstruction method for the estimation of multi-resolution emission fields via atmospheric inversion

    DOE PAGES

    Ray, J.; Lee, J.; Yadav, V.; ...

    2015-04-29

    Atmospheric inversions are frequently used to estimate fluxes of atmospheric greenhouse gases (e.g., biospheric CO 2 flux fields) at Earth's surface. These inversions typically assume that flux departures from a prior model are spatially smoothly varying, which are then modeled using a multi-variate Gaussian. When the field being estimated is spatially rough, multi-variate Gaussian models are difficult to construct and a wavelet-based field model may be more suitable. Unfortunately, such models are very high dimensional and are most conveniently used when the estimation method can simultaneously perform data-driven model simplification (removal of model parameters that cannot be reliably estimated) andmore » fitting. Such sparse reconstruction methods are typically not used in atmospheric inversions. In this work, we devise a sparse reconstruction method, and illustrate it in an idealized atmospheric inversion problem for the estimation of fossil fuel CO 2 (ffCO 2) emissions in the lower 48 states of the USA. Our new method is based on stagewise orthogonal matching pursuit (StOMP), a method used to reconstruct compressively sensed images. Our adaptations bestow three properties to the sparse reconstruction procedure which are useful in atmospheric inversions. We have modified StOMP to incorporate prior information on the emission field being estimated and to enforce non-negativity on the estimated field. Finally, though based on wavelets, our method allows for the estimation of fields in non-rectangular geometries, e.g., emission fields inside geographical and political boundaries. Our idealized inversions use a recently developed multi-resolution (i.e., wavelet-based) random field model developed for ffCO 2 emissions and synthetic observations of ffCO 2 concentrations from a limited set of measurement sites. We find that our method for limiting the estimated field within an irregularly shaped region is about a factor of 10 faster than conventional approaches. It

  11. Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

    PubMed

    Friberg, Mariel D; Zhai, Xinxin; Holmes, Heather A; Chang, Howard H; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Tolbert, Paige E; Russell, Armistead G; Mulholland, James A

    2016-04-05

    Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology.

  12. Integrating travel behavior with land use regression to estimate dynamic air pollution exposure in Hong Kong.

    PubMed

    Tang, Robert; Tian, Linwei; Thach, Thuan-Quoc; Tsui, Tsz Him; Brauer, Michael; Lee, Martha; Allen, Ryan; Yuchi, Weiran; Lai, Poh-Chin; Wong, Paulina; Barratt, Benjamin

    2018-01-31

    Epidemiological studies typically use subjects' residential address to estimate individuals' air pollution exposure. However, in reality this exposure is rarely static as people move from home to work/study locations and commute during the day. Integrating mobility and time-activity data may reduce errors and biases, thereby improving estimates of health risks. To incorporate land use regression with movement and building infiltration data to estimate time-weighted air pollution exposures stratified by age, sex, and employment status for population subgroups in Hong Kong. A large population-representative survey (N = 89,385) was used to characterize travel behavior, and derive time-activity pattern for each subject. Infiltration factors calculated from indoor/outdoor monitoring campaigns were used to estimate micro-environmental concentrations. We evaluated dynamic and static (residential location-only) exposures in a staged modeling approach to quantify effects of each component. Higher levels of exposures were found for working adults and students due to increased mobility. Compared to subjects aged 65 or older, exposures to PM2.5, BC, and NO2 were 13%, 39% and 14% higher, respectively for subjects aged below 18, and 3%, 18% and 11% higher, respectively for working adults. Exposures of females were approximately 4% lower than those of males. Dynamic exposures were around 20% lower than ambient exposures at residential addresses. The incorporation of infiltration and mobility increased heterogeneity in population exposure and allowed identification of highly exposed groups. The use of ambient concentrations may lead to exposure misclassification which introduces bias, resulting in lower effect estimates than 'true' exposures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Estimating Pollutant Concentration Maps at Multiple Spatial and Temporal Scales for Exposure Studies

    NASA Astrophysics Data System (ADS)

    Tan, Si

    Chronic exposure to high concentrations of pollutants such as NO2 and ultrafine particles is associated with negative health effects. Studies of exposure to these pollutants require estimates of concentrations at temporal and spatial scales relevant to exposure calculations. We have developed and applied methods to construct these concentration "maps" by using a combination of measurements and modeled results. To estimate concentration patterns at the urban scale of tens of kilometers we have formulated a Lagrangian model to estimate concentrations of NOx, NO2, and O3 over a domain extending over hundreds of kilometers. The model is evaluated with data collected at 21 regional monitoring stations in the San Joaquin Valley Air Basin during 2005. The model provides adequate descriptions of the spatial and temporal variation of concentrations of NO2, and NOx. We then use "residual" Kriging to combine the results from the dispersion model with observed concentrations to produce realistic concentration maps. To estimate concentration patterns at scales of tens of meters in urban areas we developed a dispersion model that accounts for the effects of local building morphology on dispersion. The data used to evaluate the model was collected in field studies conducted in Los Angeles, California. The studies measured ultrafine particle concentrations and associated micrometeorology at several locations with different building morphologies. Surface concentrations in urban areas are primarily controlled by vertical dispersion, which depends on the street aspect ratio, defined as the ratio of the equivalent building height to the street width, and the vertical turbulent velocity sigma w. The presence of buildings increases the concentrations due to local traffic emissions relative to open areas. Since routine measurements of micrometeorological variables are usually not available in urban areas, we have developed models that allow us to estimate urban surface variables using

  14. Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems.

    PubMed

    Meili, Markus; Bishop, Kevin; Bringmark, Lage; Johansson, Kjell; Munthe, John; Sverdrup, Harald; de Vries, Wim

    2003-03-20

    Mercury (Hg) is regarded as a major environmental concern in many regions, traditionally because of high concentrations in freshwater fish, and now also because of potential toxic effects on soil microflora. The predominant source of Hg in most watersheds is atmospheric deposition, which has increased 2- to >20-fold over the past centuries. A promising approach for supporting current European efforts to limit transboundary air pollution is the development of emission-exposure-effect relationships, with the aim of determining the critical level of atmospheric pollution (CLAP, cf. critical load) causing harm or concern in sensitive elements of the environment. This requires a quantification of slow ecosystem dynamics from short-term collections of data. Aiming at an operational tool for assessing the past and future metal contamination of terrestrial and aquatic ecosystems, we present a simple and flexible modelling concept, including ways of minimizing requirements for computation and data collection, focusing on the exposure of biota in forest soils and lakes to Hg. Issues related to the complexity of Hg biogeochemistry are addressed by (1) a model design that allows independent validation of each model unit with readily available data, (2) a process- and scale-independent model formulation based on concentration ratios and transfer factors without requiring loads and mass balance, and (3) an equilibration concept that accounts for relevant dynamics in ecosystems without long-term data collection or advanced calculations. Based on data accumulated in Sweden over the past decades, we present a model to determine the CLAP-Hg from standardized values of region- or site-specific synoptic concentrations in four key matrices of boreal watersheds: precipitation (atmospheric source), large lacustrine fish (aquatic receptor and vector), organic soil layers (terrestrial receptor proxy and temporary reservoir), as well as new and old lake sediments (archives of response

  15. Adjoint-Based Methods for Estimating CO2 Sources and Sinks from Atmospheric Concentration Data

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.

    2003-01-01

    Work to develop adjoint-based methods for estimating CO2 sources and sinks from atmospheric concentration data was initiated in preparation for last year's summer institute on Carbon Data Assimilation (CDAS) at the National Center for Atmospheric Research in Boulder, CO. The workshop exercises used the GSFC Parameterized Chemistry and Transport Model and its adjoint. Since the workshop, a number of simulations have been run to evaluate the performance of the model adjoint. Results from these simulations will be presented, along with an outline of challenges associated with incorporating a variety of disparate data sources, from sparse, but highly precise, surface in situ observations to less accurate, global future satellite observations.

  16. Synoptic weather modeling and estimates of the exposure-response relationship between daily mortality and particulate air pollution.

    PubMed

    Pope, C A; Kalkstein, L S

    1996-04-01

    This study estimated the association between particulate air pollution and daily mortality in Utah Valley using the synoptic climatological approach to control for potential weather effects. This approach was compared with alternative weather modeling approaches. Although seasonality explained a significant amount of variability in mortality, other weather variables explained only a very small amount of additional variability in mortality. The synoptic climatological approach performed as well or slightly better than alternative approaches to controlling for weather. However, the estimated effect of particulate pollution on mortality was mostly unchanged or slightly larger when synoptic categories were used to control for weather. Furthermore, the shape of the estimated dose-response relationship was similar when alternative approaches to controlling for weather were used. The associations between particulate pollution and daily mortality were not significantly different from a linear exposure-response relationship that extends throughout the full observed range of pollution.

  17. Research Review: Walter Orr Roberts on the Atmosphere, Global Pollution and Weather Modification

    ERIC Educational Resources Information Center

    Jacobsen, Sally

    1973-01-01

    Global Atmospheric Research Program is envisaged to study various aspects of the environment for the whole globe. Describes programs undertaken and the international problems involved in implementing results of such research on a global level. (PS)

  18. Allergic disease associations with regional and localized estimates of air pollution.

    PubMed

    Schultz, Amy A; Schauer, Jamie J; Malecki, Kristen Mc

    2017-05-01

    Exposure to multiple types of air pollution may contribute to and exacerbate allergic diseases including asthma and wheezing. However, few studies have examined chronic air pollution exposure and allergic disease outcomes among an adult population. Associations between potential estimates of annual average fine particulate matter (PM2.5), traffic related air pollution, and industrial source air emissions and three allergic disease outcomes (asthma, allergies and wheezing) were examined in a state-wide general population of adults. The study includes a representative sample of 3381 adult Wisconsin residents who participated in the 2008-2013 Survey of the Health of Wisconsin (SHOW) program. Participant data were geographically linked to The United States Environmental Protection Agency (USEPA) Baysian space-time downscaler air pollution model for PM2.5, the United States Census roadway, and USEPA's Toxic Release Inventory data. Self-report and lung function (FEV1) estimates were used to define prevalence of asthma, allergies and wheezing symptoms. Annual mean exposure to fine particulate matter (PM2.5) was between 6.59 and 15.14μg/m3. An increase of 5μg/m3 in the annual mean PM2.5 resulted in a 3.58 (2.36, 5.43) increase in the adjusted odds (95% CI) of having asthma. Exposure to vehicle traffic increased the odds of both current allergies [OR (95% CI)=1.35 (1.07, 1.35)] and current asthma [OR (95% CI)=1.51 (1.14, 2.00)]. Living within 300m of an Interstate roadway was associated with a 3-fold increase in the odds of asthma. Those living within 800m of an industrial site were 47% more likely to have asthma. No significant associations were seen with wheezing. Within this population exposed to overall annual average levels of estimated low level chronic exposure to fine particulate matter (PM2.5) at or near 12μg/m3, the USEPA standard for air quality, significant association between both modeled PM2.5 exposure and proximity to roadways with asthma and allergies but

  19. Multimodel estimates of premature human mortality due to intercontinental transport of air pollution

    NASA Astrophysics Data System (ADS)

    Liang, C.; Silva, R.; West, J. J.; Sudo, K.; Lund, M. T.; Emmons, L. K.; Takemura, T.; Bian, H.

    2015-12-01

    Numerous modeling studies indicate that emissions from one continent influence air quality over others. Reducing air pollutant emissions from one continent can therefore benefit air quality and health on multiple continents. Here, we estimate the impacts of the intercontinental transport of ozone (O3) and fine particulate matter (PM2.5) on premature human mortality by using an ensemble of global chemical transport models coordinated by the Task Force on Hemispheric Transport of Air Pollution (TF HTAP). We use simulations of 20% reductions of all anthropogenic emissions from 13 regions (North America, Central America, South America, Europe, Northern Africa, Sub-Saharan Africa, Former Soviet Union, Middle East, East Asia, South Asia, South East Asia, Central Asia, and Australia) to calculate their impact on premature mortality within each region and elsewhere in the world. To better understand the impact of potential control strategies, we also analyze premature mortality for global 20% perturbations from five sectors individually: power and industry, ground transport, forest and savannah fires, residential, and others (shipping, aviation, and agriculture). Following previous studies, premature human mortality resulting from each perturbation scenario is calculated using a health impact function based on a log-linear model for O3 and an integrated exposure response model for PM2.5 to estimate relative risk. The spatial distribution of the exposed population (adults aged 25 and over) is obtained from the LandScan 2011 Global Population Dataset. Baseline mortality rates for chronic respiratory disease, ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are estimated from the GBD 2010 country-level mortality dataset for the exposed population. Model results are regridded from each model's original grid to a common 0.5°x0.5° grid used to estimate mortality. We perform uncertainty analysis and evaluate the sensitivity

  20. Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radovis, Republic of Macedonia.

    PubMed

    Balabanova, Biljana; Stafilov, Trajce; Baceva, Katerina; Sajn, Robert

    2010-10-01

    This investigation was undertaken to determine the atmospheric pollution with heavy metals due to copper mining Bucim near Radovis, the Republic of Macedonia. Moss samples (Hyloconium splendens and Pleurozium schrebery) were used for biomonitoring the possible atmospheric pollution with heavy metals in mine vicinity. Sixteen elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Na, Ni, Pb, Sr, and Zn) were analysed by application of flame and electrothermal atomic absorption spectrometry (FAAS and ETAAS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). The obtained values were statistically processed using nonparametric and parametric analysis. The median value for copper obtained from moss samples (10 mg kg(-1)) was much lower compared with the same values for the whole territory of the Republic of Macedonia (22 mg kg(-1)). The range of values (2.1-198 mg kg(-1)) shows much higher content of this element in the samples taken from the study area compared to the appropriate values for the whole territory of Macedonia. The association of elements As, Cd, Cu, Fe, Pb, and Zn was singled out by factor analysis as a characteristic anthropogenic group of elements. Maps of area deposition were made for this group of elements, wherefrom correlation of these anthropogenic born elements was confirmed.

  1. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  2. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  3. Estimation of River Pollution Index in a Tidal Stream Using Kriging Analysis

    PubMed Central

    Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang

    2012-01-01

    Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams. PMID:23202672

  4. Estimation of river pollution index in a tidal stream using kriging analysis.

    PubMed

    Chen, Yen-Chang; Yeh, Hui-Chung; Wei, Chiang

    2012-08-29

    Tidal streams are complex watercourses that represent a transitional zone between riverine and marine systems; they occur where fresh and marine waters converge. Because tidal circulation processes cause substantial turbulence in these highly dynamic zones, tidal streams are the most productive of water bodies. Their rich biological diversity, combined with the convenience of land and water transports, provide sites for concentrated populations that evolve into large cities. Domestic wastewater is generally discharged directly into tidal streams in Taiwan, necessitating regular evaluation of the water quality of these streams. Given the complex flow dynamics of tidal streams, only a few models can effectively evaluate and identify pollution levels. This study evaluates the river pollution index (RPI) in tidal streams by using kriging analysis. This is a geostatistical method for interpolating random spatial variation to estimate linear grid points in two or three dimensions. A kriging-based method is developed to evaluate RPI in tidal streams, which is typically considered as 1D in hydraulic engineering. The proposed method efficiently evaluates RPI in tidal streams with the minimum amount of water quality data. Data of the Tanshui River downstream reach available from an estuarine area validate the accuracy and reliability of the proposed method. Results of this study demonstrate that this simple yet reliable method can effectively estimate RPI in tidal streams.

  5. Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009

    NASA Astrophysics Data System (ADS)

    de Meij, A.; Pozzer, A.; Lelieveld, J.

    2012-05-01

    We evaluated global and regional aerosol optical depth (AOD) trends in view of aerosol (precursor) emission changes between 2000 and 2009. We used AOD data products from MODIS, MISR and AERONET and emission estimates from the EMEP, REAS and IPCC inventories. The trends in global monthly AOD of MODIS (L3), MISR (L3) and AERONET (L2) are significantly negative over Europe and North America, whereas over South and East Asia they are mostly positive. The calculated 2000-2009 trends from the monthly L3 products correspond well with the more detailed daily MODIS L2 AODs for three selected regions (Central Mediterranean, North-East America and East Asia). Furthermore, daily and monthly AERONET L2 AOD trends agree well. The trends in AOD are compared to estimated emission changes of SO2, NOx, NH3 and black carbon. We associate the downward trends in AOD over Europe and North America with decreasing emissions of SO2, NOx and other pollutants. Over East Asia the MODIS L2 trends are generally positive, consistent with increasing pollutant emissions by fossil energy use and growing industrial and urban activities. It appears that SO2 emission changes dominate the AOD trends, although especially in Asia NOx emissions may become increasingly important. Our results suggest that solar brightening due to decreasing SO2 emissions and the resulting downward AOD trends over Europe may have weakened in the 2000s compared to the 1990s.

  6. Evaluating near highway air pollutant levels and estimating emission factors: Case study of Tehran, Iran.

    PubMed

    Nayeb Yazdi, Mohammad; Delavarrafiee, Maryam; Arhami, Mohammad

    2015-12-15

    A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A Method to Estimate the Chronic Health Impact of Air Pollutants in U.S. Residences

    PubMed Central

    Price, Phillip N.; Sherman, Max H.; Singer, Brett C.

    2011-01-01

    Background: Indoor air pollutants (IAPs) cause multiple health impacts. Prioritizing mitigation options that differentially affect individual pollutants and comparing IAPs with other environmental health hazards require a common metric of harm. Objectives: Our objective was to demonstrate a methodology to quantify and compare health impacts from IAPs. The methodology is needed to assess population health impacts of large-scale initiatives—including energy efficiency upgrades and ventilation standards—that affect indoor air quality (IAQ). Methods: Available disease incidence and disease impact models for specific pollutant–disease combinations were synthesized with data on measured concentrations to estimate the chronic heath impact, in disability-adjusted life-years (DALYs) lost, due to inhalation of a subset of IAPs in U.S. residences. Model results were compared with independent estimates of DALYs lost due to disease. Results: Particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5), acrolein, and formaldehyde accounted for the vast majority of DALY losses caused by IAPs considered in this analysis, with impacts on par or greater than estimates for secondhand tobacco smoke and radon. Confidence intervals of DALYs lost derived from epidemiology-based response functions are tighter than those derived from toxicology-based, interspecies extrapolations. Statistics on disease incidence in the United States indicate that the upper-bound confidence interval for aggregate IAP harm is implausibly high. Conclusions: The approach demonstrated in this study may be used to assess regional and national initiatives that affect IAQ at the population level. Cumulative health impacts from inhalation in U.S. residences of the IAPs assessed in this study are estimated at 400–1,100 DALYs lost annually per 100,000 persons. PMID:22094717

  8. Resonance Raman imaging as a tool to assess the atmospheric pollution level: carotenoids in Lecanoraceae lichens as bioindicators.

    PubMed

    Ibarrondo, I; Prieto-Taboada, N; Martínez-Arkarazo, I; Madariaga, J M

    2016-04-01

    Raman spectroscopy differentiation of carotenoids has traditionally been based on the ν 1 position (C = C stretching vibrations in the polyene chain) in the 1500-1600 cm(-1) range, using a 785 nm excitation laser. However, when the number of conjugated double bonds is similar, as in the cases of zeaxanthin and β-carotene, this distinction is still ambiguous due to the closeness of the Raman bands. This work shows the Raman results, obtained in resonance conditions using a 514 mm laser, on Lecanora campestris and Lecanora atra species, which can be used to differentiate and consequently characterize carotenoids. The presence of the carotenoid found in Lecanoraceae lichens has been demonstrated to depend on the atmospheric pollution level of the environment they inhabit. Astaxanthin, a superb antioxidant, appears as the principal xanthophyll in highly polluted sites, usually together with the UV screening pigment scytonemin; zeaxanthin is the major carotenoid in medium polluted environments, while β-carotene is the major carotenoid in cleaner environments. Based on these observations, an indirect classification of the stress suffered in a given environment can be assessed by simply analysing the carotenoid content in the Lecanoraceae lichens by using resonance Raman imaging.

  9. The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China

    NASA Astrophysics Data System (ADS)

    Ma, J. Z.; Wang, W.; Chen, Y.; Liu, H. J.; Yan, P.; Ding, G. A.; Wang, M. L.; Lelieveld, J.

    2011-10-01

    In the past decades, regional air pollution characterized by photochemical smog and grey haze-fog has become a severe environmental problem in China. To investigate this, a field measurement campaign was performed in the Huabei region, located between 32°-42° N latitude in Eastern China, during the period 2 April-16 May 2006 as part of the project "Influence of Pollution on Aerosols and Cloud Microphysics in North China" (IPAC-NC). It was found that strong pollution emissions from urban and industrial centers accumulate in the lower atmosphere over the core area of Huabei. We observed widespread, very high SO2 mixing ratios, about 20-40 ppbv at 0.5-1.5 km altitude and 10-30 ppbv at 1.5-3.0 km altitude. Average CO mixing ratios were 0.65-0.7 ppmv at 0.5-1.5 km altitude, and very high CO around 1 ppmv was observed during some flights, and even higher levels at the surface. The high pollution concentrations were associated with enhanced levels of OH and HO2 radicals, calculated with a chemical box model constrained by the measurements. The maximum OH concentration was 6.9 × 106 molecules cm-3 (~0.29 pptv) at an altitude of ~1 km, remarkably higher than 5.4 × 106 molecules cm-3 (~0.22 pptv) at the surface. In the upper part of the boundary layer and in the lower free troposphere, high CO and SO2 competed with relatively less NO2 in reacting with OH, being efficiently recycled through HO2, preventing a net loss of HOx radicals. In addition to reactive hydrocarbons and CO, the oxidation of SO2 caused significant ozone production over Huabei (up to ~13% or 2.0 ppbv h-1 at ~0.8 km). The enhanced OH increased the formation of condensable species by the oxidation of volatile precursor gases, adding to the high loadings of mineral dust particles. Our results indicate that the lower atmosphere over Huabei is not only strongly polluted but also acts as an oxidation pool over Eastern China.

  10. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    PubMed

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.

  11. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    PubMed

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Estimating the parameters of pulsed sources from data on acoustic waves recorded in the atmosphere

    NASA Astrophysics Data System (ADS)

    Mishenin, A. A.; Kosyakov, S. I.; Kulichkov, S. N.

    2016-11-01

    The possibility of estimating the parameters of surface pulsed sources from data on acoustic waves recorded in the atmosphere is studied. Experimental values are given for peak pressure P + of recorded acoustic signals, wave-profile area S + in their positive phase, and length t + of this phase, and the approximations of these parameters are obtained within wide ranges of source energy 10-3 < E < 1010 kg TNT and scaled distances 1 < R/E 1/3 < 4 × 104 m/kg1/3. Conventional methods of estimating the acoustic energy E according to data obtained from acoustic measurements in the atmosphere are analyzed, and ways to improve their accuracy are proposed. The influence of the type of explosions on the parameters P +, S +, and t + of acoustic signals at long distances R/E 1/3 > 500 m/kg1/3 from explosions is shown.

  13. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  14. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis.

    PubMed

    Sesé, Lucile; Nunes, Hilario; Cottin, Vincent; Sanyal, Shreosi; Didier, Morgane; Carton, Zohra; Israel-Biet, Dominique; Crestani, Bruno; Cadranel, Jacques; Wallaert, Benoit; Tazi, Abdellatif; Maître, Bernard; Prévot, Grégoire; Marchand-Adam, Sylvain; Guillot-Dudoret, Stéphanie; Nardi, Annelyse; Dury, Sandra; Giraud, Violaine; Gondouin, Anne; Juvin, Karine; Borie, Raphael; Wislez, Marie; Valeyre, Dominique; Annesi-Maesano, Isabella

    2018-02-01

    Idiopathic pulmonary fibrosis (IPF) has an unpredictable course corresponding to various profiles: stability, physiological disease progression and rapid decline. A minority of patients experience acute exacerbations (AEs). A recent study suggested that ozone and nitrogen dioxide might contribute to the occurrence of AE. We hypothesised that outdoor air pollution might influence the natural history of IPF. Patients were selected from the French cohort COhorte FIbrose (COFI), a national multicentre longitudinal prospective cohort of IPF (n=192). Air pollutant levels were assigned to each patient from the air quality monitoring station closest to the patient's geocoded residence. Cox proportional hazards model was used to evaluate the impact of air pollution on AE, disease progression and death. Onset of AEs was significantly associated with an increased mean level of ozone in the six preceding weeks, with an HR of 1.47 (95% CI 1.13 to 1.92) per 10 µg/m 3 (p=0.005). Cumulative levels of exposure to particulate matter PM 10 and PM 2.5 were above WHO recommendations in 34% and 100% of patients, respectively. Mortality was significantly associated with increased levels of exposure to PM 10 (HR=2.01, 95% CI 1.07 to 3.77) per 10 µg/m 3 (p=0.03), and PM 2.5 (HR=7.93, 95% CI 2.93 to 21.33) per 10 µg/m 3 (p<0.001). This study suggests that air pollution has a negative impact on IPF outcomes, corroborating the role of ozone on AEs and establishing, for the first time, the potential role of long-term exposure to PM 10 and PM 2.5 on overall mortality. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Estimating Dust and Water Ice Content of the Martian Atmosphere From THEMIS Data

    NASA Technical Reports Server (NTRS)

    Bandfield, Joshua

    2007-01-01

    Researchers at JPL and Arizona State University conducted a comparative study of three candidate algorithms for estimating components of the Martian atmosphere, using raw (uncalibrated) data collected by the Thermal Emission Imaging System (THEMIS). THEMIS is an instrument onboard the Mars Odyssey spacecraft that acquires image data in five visible and nine infrared (IR) wavelength bands. The algorithms under study used data collected from eight of the nine IR bands to estimate the dust and water ice content of the atmosphere. Such an algorithm could be used in onboard data processing to trigger other algorithms that search for features of scientific interest and to reduce the volume of data transmitted to Earth. The algorithms studied were based on regression models. In the study, the optical depths estimated by these algorithms were compared with optical depths estimated in ground-based processing using fully calibrated data from both THEMIS and the Thermal Emission Spectrometer (TES). TES is an instrument onboard the Mars Global Surveyor spacecraft that also observes the planet at infrared wavelengths, but at a lower spatial resolution than THEMIS does. Of the algorithms studied, the one that performed best was based on a Gaussian Support Vector Machine regression model. The test results indicated that this algorithm, operating on the raw data, had error rates that were within the uncertainty associated with the estimates obtained by the groundbased analysis of the fully calibrated data. This level of fidelity demonstrates that these algorithms are sufficiently accurate for use in an onboard setting.

  16. Estimation of atmospheric dispersion at nuclear power plants utilizing real time anemometer statistics

    SciTech Connect

    Li, W.W.; Meroney, R.N.

    1985-01-01

    Dispersion and turbulence measurements were conducted in a simulated atmospheric boundary layer. Field experiments and wind tunnel results for the behavior of lateral plume dispersion are compared to three semi-empirical expressions based on Taylor's diffusion theory. Agreement between the field data and laboratory measurements supports using wind tunnel results to simulate atmospheric transport phenomena. Eulerian space-time correlations with streamwise separations were measured for all three velocity components in the simulated boundary layer. Results were compared to previous measurements which were performed under different flow configurations. A universal shape of the Eulerian space-time correlation seems to exist when presented in amore » normalized time coordinate. Turbulence measurements of fixed-point Eulerian velocity statistics were employed to estimate the Lagrangian velocity statistics through the Baldwin and Johnson approach. The approach was modified to account for the uniform shear stress effect in a homogenous turbulent flow field. The estimated Lagrangian integral time scale agrees with estimates inferred from dispersion measurements within only a 20% error. Such agreement supports the methodology of using real time anemometer statistics to predict the atmospheric turbulent dispersion near a nuclear reactor site. 81 references, 78 figures, 14 tables.« less

  17. Developing a smartphone software package for predicting atmospheric pollutant concentrations at mobile locations

    PubMed Central

    Larkin, Andrew; Williams, David E.; Kile, Molly L.; Baird, William M.

    2014-01-01

    Background There is considerable evidence that exposure to air pollution is harmful to health. In the U.S., ambient air quality is monitored by Federal and State agencies for regulatory purposes. There are limited options, however, for people to access this data in real-time which hinders an individual's ability to manage their own risks. This paper describes a new software package that models environmental concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone concentrations for the state of Oregon and calculates personal health risks at the smartphone's current location. Predicted air pollution risk levels can be displayed on mobile devices as interactive maps and graphs color-coded to coincide with EPA air quality index (AQI) categories. Users have the option of setting air quality warning levels via color-coded bars and were notified whenever warning levels were exceeded by predicted levels within 10 km. We validated the software using data from participants as well as from simulations which showed that the application was capable of identifying spatial and temporal air quality trends. This unique application provides a potential low-cost technology for reducing personal exposure to air pollution which can improve quality of life particularly for people with health conditions, such as asthma, that make them more susceptible to these hazards. PMID:26146409

  18. Lidar Monitoring of Mexico City's Atmosphere During High Air Pollution Episodes

    NASA Technical Reports Server (NTRS)

    Quick, C. R., Jr.; Archuleta, F. L.; Hof, D. E.; Karl, R. R., Jr.; Tiee, J. J., Jr.; Eichinger, W. E.; Holtkamp, D. B.; Tellier, L.

    1992-01-01

    Over the last two decades, Mexico City, like many large industrial and populous urban areas, has developed a serious air pollution problem, especially during the winter months when there are frequent temperature inversions and weak winds. The deteriorating air quality is the result of several factors. The basin within which Mexico City lies in Mexico's center of political, administrative and economic activity, generating 34 percent of the gross domestic product and 42 percent of the industrial revenue, and supporting a population which is rapidly approaching the 20 million mark. The basin is surrounded by mountains on three sides which end up preventing rapid dispersal of pollutants. Emissions from the transportation fleet (more than 3 million vehicles) are one of the primary pollution sources, and most are uncontrolled. Catalytic converters are just now working their way into the fleet. The Mexico City Air Quality Research Initiative in an international collaboration project between the Los Alamos National Laboratory and the Mexican Petroleum Institute are dedicated to the investigation of the air quality problem in Mexico City. The main objective of the project is to identify and assess the cost and benefits of major options being proposed to improve the air quality. The project is organized into three main activity areas: (1) modeling and simulation; (2) characterization and measurements; and (3) strategic evaluation.

  19. Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow.

    PubMed

    Hong, Sungmin; Soyol-Erdene, Tseren-Ochir; Hwang, Hee Jin; Hong, Sang Bum; Hur, Soon Do; Motoyama, Hidaeki

    2012-11-06

    We report the first comprehensive and reliable time series for As, Mo, Sb, and Tl in the snowpack from Dome Fuji in the central East Antarctic Plateau. Our results show significant enrichment of these elements due to either anthropogenic activities or large volcanic eruptions during the past 50 years. With respect to the values reported from 1960 to 1964, we observed the maximum increases in crustal enrichment factors (EFs) for As (a factor of ~15), Mo (~4), Sb (~4), and Tl (~2) during the period between the 1970s and 1990s, reflecting the global dispersion of anthropogenic pollutants of these elements, even to the most remote areas on Earth. Such enrichments are likely related to emissions of trace elements from nonferrous metal smelting and fossil fuel combustion processes in South America, especially in Chile. A drastic decrease in the As concentration and its EF values was observed after the year 2000 in response to the introduction of environmental regulations in the 1990s to reduce As emissions from the copper industry, primarily in Chile. The observed decrease suggests that governmental regulations for pollution control are effective in reducing air pollution at both the regional and global level.

  20. Biomonitoring of atmospheric pollution by moss bags: Discriminating urban-rural structure in a fragmented landscape.

    PubMed

    Capozzi, F; Giordano, S; Di Palma, A; Spagnuolo, V; De Nicola, F; Adamo, P

    2016-04-01

    In this paper we investigated the possibility to use moss bags to detect pollution inputs - metals, metalloids and polycyclic aromatic hydrocarbons (PAHs) - in sites chosen for their different land use (agricultural, urban/residential scenarios) and proximity to roads (sub-scenarios), in a fragmented conurbation of Campania (southern Italy). We focused on thirty-nine elements including rare earths. For most of them, moss uptake was higher in agricultural than in urban scenarios and in front road sites. Twenty PAHs were analyzed in a subset of agricultural sites; 4- and 5-ringed PAHs were the most abundant, particularly chrysene, fluoranthene and pyrene. Overall results indicated that investigated pollutants have a similar spatial distribution pattern over the entire study area, with road traffic and agricultural practices as the major diffuse pollution sources. Moss bags proved a very sensitive tool, able to discriminate between different land use scenarios and proximity to roads in a mixed rural-urban landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Atmospheric Polybrominated Diphenyl Ethers in Eight Cities of China: Pollution Characteristics and Human Exposure].

    PubMed

    Lin, Hai-tao; Li, Qi-lu; Zhang, Gan; Li, Jun

    2016-01-15

    The gas and particle samples of eight cities were collected by high flow active air sampler in the Eastern and Western China and eight congeners of polybrominated diphenyl ethers were analyzed. The results showed that the concentration of BDE-28 (tri-BDE) in the gas-phase (three bromide components) was the highest, which was different from previous studies where BDE-99 and-47 were the predominant homologues in the gas-phase while the concentration of BDE-209 [(25.4 ± 124) pg · m⁻³] in particle-phase was the highest. The atmospheric concentrations of PBDEs in Beijing and Guangzhou were relatively higher, especially the BDE-209 concentration in particle phases of Guangzhou was two orders higher than those of other cities. However, the atmospheric concentrations of PBDEs declined significantly when compared with the data from previous studies. Meanwhile, the results indicated that the gas-phase concentrations decreased slowly and the particle-phase concentrations decreased rapidly. Combined with the results of correlation analysis, this phenomenon might be ascribed to the ceased commercial production of penta- and octa-BDE, the light degradation of high bromide components and reduced concentrations of atmospheric particles in urban area. Inhalation exposure for infants was about 2-3 times higher than that of adults. This reflected that the potential health risk of atmospheric PBDEs in city for residents, especially infants and young children, should not be ignored.

  2. Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests

    Treesearch

    M.B. Adams; J.A. Burger; A.B. Jenkins; L. Zelazny

    2000-01-01

    The eastern hardwood forests of the US may be threatened by the changing atmospheric chemistry and by changes in harvesting levels. Many studies have documented accelerated base cation losses with intensive forest harvesting. Acidic deposition can also alter nutrient cycling in these forests. The combination of increased harvesting, shorter rotations, and more...

  3. Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres

    Treesearch

    Vladimir Kovalev; Cyle Wold; Alexander Petkov; Wei Min Hao

    2011-01-01

    We present a modified technique for processing multiangle lidar data that is applicable for relatively clear atmospheres, where the utilization of the conventional Kano-Hamilton method meets significant issues. Our retrieval algorithm allows computing the two-way transmission and the corresponding extinction-coefficient profile in any slope direction searched during...

  4. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    EPA Science Inventory

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  5. The estimation of the pollutant emissions on-board vessels by means of numerical methods

    NASA Astrophysics Data System (ADS)

    Jenaru, A.; Arsenie, P.; Hanzu-Pazara, R.

    2016-08-01

    Protection of the environment, especially within the most recent years, has become a constant problem considered by the states and the governments of the world, which are more and more concerned about the serious problems caused by the continuous deterioration of the environment. The long term effects of pollution on the environment generated by the lack of penalty regulations, have directed the attention of statesmen upon the necessity of the elaboration of normative acts meant to be effective in the continuous fight with it. Maritime transportation generates approximately 4% of the total of the CO2 emissions produced by human activities. This paper is intended to present two methods of estimation of the gases emissions on-board a vessel, methods that are very useful for the crews which are exploiting them. For the determination and the validation of these methods we are going to use the determinations from the tank ship. This ship has as a main propulsion engine Wärtsilä DU Sulzer RT Flex 50 - 6 cylinders that develops a maximal power of 9720 kW and has a permanent monitoring system of the pollutant emissions. The methods we develop here are using the values of the polluting elements from the exhaust gases that are determined at the exit of the vessel from the ship yard, in the framework of the acceptance tests. These values have been introduced within the framework of a matrix in the MATHCAD program. This matrix represents the starting point of the two mentioned methods: the analytical method and the graphical method. During the study we are going to evaluate the development and validation of an analytical tool to be used to determine the standard of emissions aimed at thermal machines on ships. One of the main objectives of this article represents an objective assessment of the expediency of using non-fuels for internal combustion engines in vessels.

  6. Estimating river pollution from diffuse sources in the Viterbo province using the potential non-point pollution index.

    PubMed

    Cecchi, Giuliano; Munafò, Michele; Baiocco, Fabio; Andreani, Paolo; Mancini, Laura

    2007-01-01

    This paper describes the application of the Index of Potential Non-point Pollution (PNPI) to the territory of the Viterbo Province (Central Italy). PNPI is a GIS tool that allows managers to assess the pressure on surface aquatic ecosystems deriving from diffuse sources of pollution. The index aims to assemble the available environmental datasets and specialists' expertise to set up a user-friendly and informative tool that can support decision-making processes and foster a multi-disciplinary approach. The index calculation is described and results are reported in order to give an overview of PNPI possible applications.

  7. [Establishment and application of the estimation model for agricultural non-point source pollution in the field].

    PubMed

    Li, Qiang-kun; Li, Huai-en; Hu, Ya-wei; Chen, Wei-wei; Sun, Juan

    2009-12-01

    The quantitative research on pollution loads is the basis of control, evaluation and management of non-point source pollution. The estimation of agricultural non-point source pollution loads includes two steps: evaluation of water discharge and prediction of pollutant concentration in agricultural drain. Water discharge was calculated by DRAINMOD model based on the principle of water balance on farmland. Meanwhile, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, the pollutant concentration changes in agricultural drain is looked as the response process corresponding to the impulse input, the complex migratory and transforming process of pollutant in soil are expressed implied by Inverse Gaussian Probability Density Function. Based on the above, the estimation model of agricultural non-point source pollution loads at field scale was constructed. Taking the typical experimentation area of Qingtongxia Irrigation District in Ningxia as an example, the loads of nitrate nitrogen and total phosphorus in paddy-field drain was simulated by this model. The results show that the simulated accorded with measured data approximately and Nash-Suttcliffe coefficient is 0.963 and 0.945 respectively.

  8. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area.

    PubMed

    Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja

    2016-07-11

    To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.

  9. A methodology for modeling photocatalytic reactors for indoor pollution control using previously estimated kinetic parameters.

    PubMed

    Passalía, Claudio; Alfano, Orlando M; Brandi, Rodolfo J

    2012-04-15

    A methodology for modeling photocatalytic reactors for their application in indoor air pollution control is carried out. The methodology implies, firstly, the determination of intrinsic reaction kinetics for the removal of formaldehyde. This is achieved by means of a simple geometry, continuous reactor operating under kinetic control regime and steady state. The kinetic parameters were estimated from experimental data by means of a nonlinear optimization algorithm. The second step was the application of the obtained kinetic parameters to a very different photoreactor configuration. In this case, the reactor is a corrugated wall type using nanosize TiO(2) as catalyst irradiated by UV lamps that provided a spatially uniform radiation field. The radiative transfer within the reactor was modeled through a superficial emission model for the lamps, the ray tracing method and the computation of view factors. The velocity and concentration fields were evaluated by means of a commercial CFD tool (Fluent 12) where the radiation model was introduced externally. The results of the model were compared experimentally in a corrugated wall, bench scale reactor constructed in the laboratory. The overall pollutant conversion showed good agreement between model predictions and experiments, with a root mean square error less than 4%. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Estimation of river pollution source using the space-time radial basis collocation method

    NASA Astrophysics Data System (ADS)

    Li, Zi; Mao, Xian-Zhong; Li, Tak Sing; Zhang, Shiyan

    2016-02-01

    River contaminant source identification problems can be formulated as an inverse model to estimate the missing source release history from the observed contaminant plume. In this study, the identification of pollution sources in rivers, where strong advection is dominant, is solved by the global space-time radial basis collocation method (RBCM). To search for the optimal shape parameter and scaling factor which strongly determine the accuracy of the RBCM method, a new cost function based on the residual errors of not only the observed data but also the specified governing equation, the initial and boundary conditions, was constructed for the k-fold cross-validation technique. The performance of three global radial basis functions, Hardy's multiquadric, inverse multiquadric and Gaussian, were also compared in the test cases. The numerical results illustrate that the new cost function is a good indicator to search for near-optimal solutions. Application to a real polluted river shows that the source release history is reasonably recovered, demonstrating that the RBCM with the k-fold cross-validation is a powerful tool for source identification problems in advection-dominated rivers.

  11. Predictive estimation of upward pollutant migration during shale gas production using satellite image processing

    NASA Astrophysics Data System (ADS)

    Lyalko, Vadim; Azimov, Oleksandr; Yakovlev, Yevgen

    2016-07-01

    The report considers the relevance of the application of modern remote aerospace and hydrogeological methods in the problems of the ecological safety for the hydrosphere during shale gas production in Ukraine. Case studies of pilot implementation of these methods are present for the Bilyaivska area adjacent to the Yuzivka licensed site within the Dnieper-Donets Depression. A number of the hydrogeological filtration parameters and the thematic processing for remote sensing data of the Earth enable to obtain the rough estimate of the temporal indices for the upward pollutant migration from the fracturing zone to the groundwater aquifers in the potential process of shale gas production (as an example the 400-Bilyaivska well). It is found that the possible variety of the active permeability in tectonic zone, which may be predicted by using remote sensing of the Earth image interpretation in vicinity of the well, is responsible for the passage time of pollution from the fracturing zone level to the groundwater aquifers one and this time interval spans 50˜5 years.

  12. Multivariate statistics as means of tracking atmospheric pollution trends in Western Poland.

    PubMed

    Astel, Aleksander M; Walna, Barbara; Simeonov, Vasil; Kurzyca, Iwona

    2008-02-15

    This study was carried out over a period of 4 years (2002-2005) at 2 sites located in western Poland differing as regards to human impact by analysis of chemical composition of bulk precipitation. The aim of the study was to determine the sources of pollutions and assess their quantitative contribution to the bulk precipitation composition and to analyse long term-changes in the chemical quality of precipitation. Based on this information the possible transboundary impacts of pollution were also determined. The samples were characterized by determining the values of pH, electrolytic conductivity and concentration levels of Cl(-), F(-), SO(4)(2-), NO(3)(-), Na(+), K(+), Mg(2+), Ca(2+) and NH(4)(+). Analytical measurements were connected with application of principal component regression (PCR) and time series analysis (TS). Based on PCR results three major sources of pollutants in central part of Poland have been identified and quantitatively assessed as follows: "combined" (Poznań - 31%, WNP - 32%), "soil-particulates" (Poznań - 2%, WNP - 26%), "anthropogenic-fossil fuels" (Poznań - 43%, WNP - 23%). Time series analysis enabled discovering 12-month time cycle for NO(3)(-), NH(4)(+), Cl(-), F(-) and SO(4)(2-) in average monthly concentration values in bulk precipitation collected in Wielkopolski National Park. Seasonal variation in the emission of precursors of NO(3)(-) and NH(4)(+) was caused by changes in intensity of fertilizer application in agriculture and automobile exhaust emissions. Decreasing trend was visible for sulphates, nitrates, chlorides and fluorides which is an important indication of the acid rain reduction in the ecologically protected area and in Poznań.

  13. Investigating the evolution of summertime secondary atmospheric pollutants in urban Beijing.

    PubMed

    Ji, Dongsheng; Gao, Wenkang; Zhang, Junke; Morino, Yu; Zhou, Luxi; Yu, Pengfei; Li, Ying; Sun, Jiaren; Ge, Baozhu; Tang, Guiqian; Sun, Yele; Wang, Yuesi

    2016-12-01

    Understanding the formation of tropospheric ozone (O3) and secondary particulates is essential for controlling secondary pollution in megacities. Intensive observations were conducted to investigate the evolution of O3, nitrate (NO3-), sulfate (SO42-) and oxygenated organic aerosols ((OOAs), a proxy for secondary organic aerosols) and the interactions between O3, NOx oxidation products (NOz) and OOA in urban Beijing in August 2012. The O3 concentrations exhibited similar variations at both the urban and urban background sites in Beijing. Regarding the O3 profile, the O3 concentrations increased with increasing altitude. The peaks in O3 on the days exceeding the 1h or 8h O3 standards (polluted days) were substantially wider than those on normal days. Significant increases in the NOz mixing ratio (i.e., NOy - NOx) were observed between the morning and early afternoon, which were consistent with the increasing oxidant level. A discernable NO3- peak was also observed in the morning on the polluted days, and this peak was attributed to vertical mixing and strong photochemical production. In addition, a SO42- peak at 18:00 was likely caused by a combination of local generation and regional transport. The OOA concentration cycle exhibited two peaks at approximately 10:00 and 19:00. The OOA concentrations were correlated well with SO42- ([OOA]=0.55×[SO42-]+2.1, r2=0.69) because they both originated from secondary transformations that were dependent on the ambient oxidization level and relative humidity. However, the slope between OOA and SO42- was only 0.35, which was smaller than the slope observed for all of the OOA and SO42- data, when the RH ranged from 40 to 50%. In addition, a photochemical episode was selected for analysis. The results showed that regional transport played an important role in the evolution of the investigated secondary pollutants. The measured OOA and Ox concentrations were well correlated at the daily scale, whereas the hourly OOA and Ox

  14. How robust are the estimated effects of air pollution on health? Accounting for model uncertainty using Bayesian model averaging.

    PubMed

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H

    2016-08-01

    The long-term impact of air pollution on human health can be estimated from small-area ecological studies in which the health outcome is regressed against air pollution concentrations and other covariates, such as socio-economic deprivation. Socio-economic deprivation is multi-factorial and difficult to measure, and includes aspects of income, education, and housing as well as others. However, these variables are potentially highly correlated, meaning one can either create an overall deprivation index, or use the individual characteristics, which can result in a variety of pollution-health effects. Other aspects of model choice may affect the pollution-health estimate, such as the estimation of pollution, and spatial autocorrelation model. Therefore, we propose a Bayesian model averaging approach to combine the results from multiple statistical models to produce a more robust representation of the overall pollution-health effect. We investigate the relationship between nitrogen dioxide concentrations and cardio-respiratory mortality in West Central Scotland between 2006 and 2012. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality.

    PubMed

    Hoek, G; Fischer, P; Van Den Brandt, P; Goldbohm, S; Brunekreef, B

    2001-01-01

    Recent prospective cohort studies have suggested that long-term exposure to low levels of particulate matter (PM) air pollution is associated with increased mortality due to, especially, cardio-pulmonary disease. Exposure to ambient air pollution was estimated mostly as city average concentrations, assuming homogenous exposure within the city. We used an ongoing cohort study - The Netherlands Cohort Study (NLCS) on diet and cancer - to investigate the relationship between traffic-related air pollution and mortality. The baseline data collection took place in 1986. A study was conducted to develop methods for exposure assessment and evaluate the contrast in exposure to air pollution within the cohort. Assessment of long-term exposure to two traffic-related air pollutants, Black Smoke (BS) and Nitrogen Dioxide (NO(2)), consisted of separate estimation of regional background, urban background, and local traffic contributions at the home address. Interpolation of concentration data from a routine monitoring network was used to estimate the regional background concentration. A regression model relating degree of urbanization to air pollution was used to allow for differences between different towns/neighborhoods of cities. Distance to major roads was calculated to characterize local traffic contributions, using a Geographic Information System (GIS). Interpolation resulted in reasonably precise regional background estimation when distant sites were not used and distance squared was used as the weight. Cross-validation showed that prediction errors were about 15% of the range in regional background concentration. Urban and local scales contributed significantly to the contrast within the cohort. Prediction errors for estimating the urban background were about 25% of the range in background concentrations. When the developed model was applied to the study cohort, there was substantial contrast in estimated exposure to BS and NO(2). About 90% of the study population lived

  16. The forecasting research of early warning systems for atmospheric pollutants: A case in Yangtze River Delta region

    NASA Astrophysics Data System (ADS)

    Song, Yiliao; Qin, Shanshan; Qu, Jiansheng; Liu, Feng

    2015-10-01

    The issue of air quality regarding PM pollution levels in China is a focus of public attention. To address that issue, to date, a series of studies is in progress, including PM monitoring programs, PM source apportionment, and the enactment of new ambient air quality index standards. However, related research concerning computer modeling for PM future trends estimation is rare, despite its significance to forecasting and early warning systems. Thereby, a study regarding deterministic and interval forecasts of PM is performed. In this study, data on hourly and 12 h-averaged air pollutants are applied to forecast PM concentrations within the Yangtze River Delta (YRD) region of China. The characteristics of PM emissions have been primarily examined and analyzed using different distribution functions. To improve the distribution fitting that is crucial for estimating PM levels, an artificial intelligence algorithm is incorporated to select the optimal parameters. Following that step, an ANF model is used to conduct deterministic forecasts of PM. With the identified distributions and deterministic forecasts, different levels of PM intervals are estimated. The results indicate that the lognormal or gamma distributions are highly representative of the recorded PM data with a goodness-of-fit R2 of approximately 0.998. Furthermore, the results of the evaluation metrics (MSE, MAPE and CP, AW) also show high accuracy within the deterministic and interval forecasts of PM, indicating that this method enables the informative and effective quantification of future PM trends.

  17. Oversampling OMI SO2 to characterize large point sources, pollution transport and SO2 lifetimes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Wilkins, J. L.; de Foy, B.

    2012-12-01

    Power plant emissions play a key role in anthropogenic sulfur dioxide (SO2) generated pollution. The emissions of regulated point sources in many cases is well understood and can be monitored in real time. Although, remaining problems include emissions estimations of poorly characterized sources, SO2 mean lifetime and transport of the emissions. With the development of satellite remote sensing, a top-down estimate approach to SO2 emissions can be made world-wide using oversampled SO2 measurements from NASA's Aura Ozone Monitoring Instrument (OMI). Initially this study will focus on large point sources in the United States. OMI retrievals are oversampled to fine rectangular or polar grids with grid spacing between 1 to 5 km. Constrained nonlinear optimization is used to determine the parameters of the scalar decay function of SO2 from a point source. Applying this technique on OMI SO2 measurements over a period of several years coupled with observational and/or modeled wind data improves the estimations of pollution transport, dispersion, decay, and the mean lifetime of SO2 emissions.

  18. Estimating the footprint of pollution on coral reefs with models of species turnover.

    PubMed

    Brown, Christopher J; Hamilton, Richard J

    2018-01-15

    Ecological communities typically change along gradients of human impact, although it is difficult to estimate the footprint of impacts for diffuse threats such as pollution. We developed a joint model (i.e., one that includes multiple species and their interactions with each other and environmental covariates) of benthic habitats on lagoonal coral reefs and used it to infer change in benthic composition along a gradient of distance from logging operations. The model estimated both changes in abundances of benthic groups and their compositional turnover, a type of beta diversity. We used the model to predict the footprint of turbidity impacts from past and recent logging. Benthic communities far from logging were dominated by branching corals, whereas communities close to logging had higher cover of dead coral, massive corals, and soft sediment. Recent impacts were predicted to be small relative to the extensive impacts of past logging because recent logging has occurred far from lagoonal reefs. Our model can be used more generally to estimate the footprint of human impacts on ecosystems and evaluate the benefits of conservation actions for ecosystems. © 2018 Society for Conservation Biology.

  19. Issues and uncertainties in estimating the health benefits of air pollution control.

    PubMed

    Levy, Jonathan I

    The estimation of health benefits from reductions in ambient air pollution requires information both about the relationship between concentrations and health effects and about the ultimate value of health outcomes. In this commentary, I discuss significant issues and uncertainties that must be addressed for both elements. Critical issues for concentration-response estimation include the shape of the concentration-response curve at current and projected ambient levels, the relevant exposure period, the existence of high-risk subpopulations, and the ability to generalize across study settings. Health outcomes can be valued using either health-based measures like quality-adjusted life years or economic measures like value of statistical life; the choice of measure has a significant effect on the magnitude and distribution of health benefits. Analysts estimating health benefits for ultimate benefit-cost applications should provide results using multiple valuation frameworks and multiple assumptions about health evidence to facilitate interpretation and to determine whether policy decisions depend on these assumptions.

  20. An advanced open-path atmospheric pollution monitor for large areas

    SciTech Connect

    Taylor, L.

    1995-10-01

    Large amounts of toxic waste materials, generated in manufacturing fuel for nuclear reactors, are stored in tanks buried over large areas at DOE sites. Flammable and hazardous gases are continually generated by chemical reactions in the waste materials. To prevent explosive concentrations of these gases, the gases are automatically vented to the atmosphere when the pressure exceeds a preset value. Real-time monitoring of the atmosphere above the tanks with automatic alarming is needed to prevent exposing workers to unsafe conditions when venting occurs. This report describes the development of a monitor which can measure concentrations of hazardous gases over ranges as long as 4km. The system consists of a carbon dioxide laser combined with an acousto-optic tunable filter.

  1. Optimization of monitoring points on atmospheric pollution based on RS, GIS, and in-situ data

    NASA Astrophysics Data System (ADS)

    He, Huazhong; Fan, Hong

    2009-09-01

    It is important to locate and optimize the atmospheric environmental monitoring points in mid-scale regions. This paper, taking Hubei province as a case study, analyzed the situations of weather, climate conditions, terrain features and economics status, firstly, and proposed an idea of air environmental impact division, which required land classification. The study area was then classified into three feature types from MODIS data with GIS software, and, the original monitoring points of air environmental quality was optimized by means of fuzzy clustering. The results showed that the optimized points equaled to the present monitoring points that had just been changed. These methods can help other areas where the land surface is rough or complex in locating the atmospheric environmental monitoring points.

  2. Optimization of monitoring points on atmospheric pollution based on RS, GIS, and in-situ data

    NASA Astrophysics Data System (ADS)

    He, Huazhong; Fan, Hong

    2010-11-01

    It is important to locate and optimize the atmospheric environmental monitoring points in mid-scale regions. This paper, taking Hubei province as a case study, analyzed the situations of weather, climate conditions, terrain features and economics status, firstly, and proposed an idea of air environmental impact division, which required land classification. The study area was then classified into three feature types from MODIS data with GIS software, and, the original monitoring points of air environmental quality was optimized by means of fuzzy clustering. The results showed that the optimized points equaled to the present monitoring points that had just been changed. These methods can help other areas where the land surface is rough or complex in locating the atmospheric environmental monitoring points.

  3. Atmospheric deposition of nitrogen over Czech forests: refinement of estimation of dry deposition for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hunova, Iva; Stoklasova, Petra; Kurfurst, Pavel; Vlcek, Ondrej; Schovankova, Jana

    2014-05-01

    The accurate quantification of atmospheric deposition is very important for assessment of ambient air pollution impacts on ecosystems. Our contribution presents an advanced approach to improved quantification of atmospheric deposition of nitrogen over Czech forests, merging available measured data and model results. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe (Moldan and Schnoor, 1992). The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2004, Hůnová et al. 2014). Nevertheless, it appears that the atmospheric deposition of nitrogen, particularly the dry deposition, is likely to be underestimated due to unavailability of data of certain nitrogen species as HNO3(g) and NH3. It is known that HNO3(g) may contribute significantly to the dry deposition of nitrogen even in regions with relatively low concentrations (Flechard et al., 2011). We attempted to substitute unmeasured nitrogen species using an Eulerian photochemical dispersion model CAMx, the Comprehensive Air Quality Model with extensions (ESSS, 2011), coupled with a high resolution regional numeric weather prediction model Aladin (Vlček, Corbet, 2011). Preliminary results for 2008 indicate that dry deposition of nitrogen, so far based on detailed monitoring of ambient NOx levels, is underestimated substantially. The dry deposition of N/NOx in 2008 reported by Ostatnická (2009) was about 0.5 g.m-2.year-1 over 99.5 % of the nation-wide area, while the contribution of unmeasured nitrogen species estimated by CAMx model were much higher. To be specific, the dry deposition of N/HNO3(g) accounted for 1.0 g.m-2.year-1, and N/NH3 for 1.6 g.m-2.year-1. In contrast, the deposition of N/HONO (g) with 0.001 g.m-2.year-1, N/PAN with 0.007 g.m-2.year-1, particulate N/NO3- with 0.002 g.m-2.year-1, and particulate N/NH4

  4. Exploring the interaction between O₃ and NOx pollution patterns in the atmosphere of Barcelona, Spain using the MCR-ALS method.

    PubMed

    Malik, Amrita; Tauler, Roma

    2015-06-01

    This work focuses on understanding the behaviour and patterns of three atmospheric pollutants namely, nitric oxide (NO), nitrogen dioxide (NO2), and ozone (O3) along with their mutual interactions in the atmosphere of Barcelona, North Spain. Hourly samples were collected for NO, NO2 and O3 from the same city location for three consecutive years (2010-2012). The study explores the seasonal, annual and weekday-weekend variations in their diurnal profiles along with the possible identification of their source and mutual interactions in the region. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was applied to the individual datasets of these pollutants, as well as to all of them simultaneously (augmented mode) to resolve the profiles related to their source and variation patterns in the atmosphere. The analysis of the individual datasets confirmed the source pattern variations in the concerned pollutant's profiles; and the resolved profiles for augmented datasets suggested for the mutual interaction of the pollutants along with their patterns variations, simultaneously. The study suggests vehicular pollution as the major source of atmospheric nitrogen oxides and presence of weekend ozone effect in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples

    NASA Astrophysics Data System (ADS)

    Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.

    2014-05-01

    Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer

  6. Using the NO2/NOx Ratio to Understand the Spatial Heterogeneity of Secondary Pollutant Formation Capacity in Urban Atmospheres

    NASA Astrophysics Data System (ADS)

    Rao, M.; George, L. A.

    2014-12-01

    Urban atmospheres are chemically reactive environments in which anthropogenic emissions can react with natural and anthropogenic components, on time scales of seconds to days, to increase the oxidative potential of the urban atmosphere and to create secondary air pollutants. The oxides of nitrogen (NOx = NO + NO2) are generated by combustion activities, including power plants and vehicles. Tailpipe emissions of NOx contain 10-20% NO2, and 90-80% NO. NO can be oxidized to NO2 by O3, HO2 and RO2species. The latter oxidants can be produced through the photo-oxidation of VOCs. It is likely then that oxidative capacity within a city is spatially heterogeneous since the distribution of anthropogenic (NOx, VOCs) and biogenic (VOCs) emissions varies spatially within the city. The spatial heterogeneity in local oxidative capacity of the urban atmosphere has seldom been measured or modeled at the fine spatial scale of ~250m. In summer 2013 we measured NO and NO2 using passive samplers over two weeks at 144 sites in the Portland Metro area. We used the ratio of NO2 to NOx as an indicator of the local atmospheric oxidative potential. We found the measured percentage of NO2 in NOx ranged from a minimum of 20% to a maximum of 76%, with an average value of 54% (std dev = 12%). The measured NO2/NOx ratio was statistically significantly correlated with both freeways and tree canopy within 250m (r = -0.25 and 0.31 respectively), showing a decreasing fraction of NO2 with increasing length of freeway and an increasing fraction of NO2in areas with greater tree cover, as expected. We will use the NO2 measurements to allocate county-level emissions to the spatial scale of ~250m for the Portland Metro area. Using WRF-Chem, we will then model the urban chemistry at this fine spatial scale, and compare the modeled NO to measured NO. Comparing the modeled and measured NO values will serve a dual purpose: it will help validate the fine spatial-scale WRF-Chem model for Portland, and it will

  7. Influence of residence time analyses on estimates of wetland hydraulics and pollutant removal

    NASA Astrophysics Data System (ADS)

    Bodin, Hristina; Persson, Jesper; Englund, Jan-Eric; Milberg, Per

    2013-09-01

    Hydraulic tracer studies are frequently used to estimate wetland residence time distributions (RTDs) and ultimately pollutant removal. However, there is no consensus on how to analyse these data. We set out to (i) review the different methods used and (ii) use simulations to explore how the data analysis method influences the quantification of wetland hydraulics and pollutant removal. The results showed that the method influences the water dispersion (N) most strongly and the removal least strongly. The influence increased with decreasing effective volume ratio (e) and N, indicating a greater effect of the method in wetlands with low effective volume and high dispersion. The method of moments with RTD truncation at 3 times the theoretical residence time (tn) and tracer background concentration produced the most dissimilar parameters. The most similar parameters values were those for gamma modelling and the method of moments with RTD truncation at tracer background concentration. For correct removal estimates, e was more important than N. However, the results from the literature review and simulations indicated that previously published articles may contain overestimated e and underestimated N values as a result of frequent RTD truncations at 3tn when using the method of moments. As a result, the removal rates may also be overestimated by as much as 14% compared to other truncation methods or modelling. Thus, it is recommended that wetland hydraulic tracer studies should use the same method, specifically, RTD truncation. We conclude that the choice of tracer data analysis method can greatly influence the quantifications of wetland hydraulics and removal rate.

  8. Monitoring of atmospheric pollutants by passive sampling for the protection of historic buildings and monuments.

    PubMed

    De Santis, F; Fino, A; Vazzana, C; Allegrini, I

    2001-01-01

    When considering the various possibilities to assess the effects of SO2 and NO2 on historic buildings and monuments, a distinction can be made according to the completeness of the scope of the assessment itself. A first approach can be limited to gathering data as they become available through the official bodies established under air quality legislation. This approach is based on a single point measurement where a "general purpose" monitoring station is located, often quite far from the monument to protect and often without investigating local and temporal variations. A more comprehensive assessment should include a generalisation that covers the territory. This can be made on the basis of the knowledge of the spatial distribution of concentrations and the knowledge of the causes of air pollution. Passive samplers allow the measurement of air quality in numerous sites and to assess the pollutant spatial distribution over a large area with a high resolution. As an application of the method, the spatial distribution of SO2 and NO2 in the city of Siracusa, Sicily, Italy, has been studied to identify areas of high deposition fluxes in relation to the protection of buildings and monuments of the historic centre.

  9. Source apportionment of secondary airborne particulate matter in a polluted atmosphere.

    PubMed

    Mysliwiec, Mitchell J; Kleeman, Michael J

    2002-12-15

    Secondary airborne particulate matter formed from gas-phase pollutants contributes significantly to the most severe particulate air quality events that occur in the United States each year. In this study, a mechanistic air quality model is demonstrated that can predict source contributions to the size distribution of secondary airborne particulate matter. Calculations performed for a typical air quality episode in Southern California show that NOx released from diesel engines and catalyst-equipped gasoline engines account for the majority of the secondary particulate nitrate aerosol measured at inland locations. NH3 released from catalyst-equipped gasoline engines, farm animals, and residential sources account for the majority of the secondary particulate ammonium ion at inland locations in the region. When both tailpipe and road dust emissions are considered, transportation sources dominate the size distribution of total (primary plus secondary) airborne particulate matter in the South Coast Air Basin during the episode studied. These findings suggest that the public health risk associated with air pollution released from transportation sources is significant relative to other public health threats such as traffic accidents.

  10. A GIS-based atmospheric dispersion model for pollutants emitted by complex source areas.

    PubMed

    Teggi, Sergio; Costanzini, Sofia; Ghermandi, Grazia; Malagoli, Carlotta; Vinceti, Marco

    2018-01-01

    Gaussian dispersion models are widely used to simulate the concentrations and deposition fluxes of pollutants emitted by source areas. Very often, the calculation time limits the number of sources and receptors and the geometry of the sources must be simple and without holes. This paper presents CAREA, a new GIS-based Gaussian model for complex source areas. CAREA was coded in the Python language, and is largely based on a simplified formulation of the very popular and recognized AERMOD model. The model allows users to define in a GIS environment thousands of gridded or scattered receptors and thousands of complex sources with hundreds of vertices and holes. CAREA computes ground level, or near ground level, concentrations and dry deposition fluxes of pollutants. The input/output and the runs of the model can be completely managed in GIS environment (e.g. inside a GIS project). The paper presents the CAREA formulation and its applications to very complex test cases. The tests shows that the processing time are satisfactory and that the definition of sources and receptors and the output retrieval are quite easy in a GIS environment. CAREA and AERMOD are compared using simple and reproducible test cases. The comparison shows that CAREA satisfactorily reproduces AERMOD simulations and is considerably faster than AERMOD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion: prediction improved and source estimated.

    PubMed

    Zhang, X L; Su, G F; Yuan, H Y; Chen, J G; Huang, Q Y

    2014-09-15

    Atmospheric dispersion models play an important role in nuclear power plant accident management. A reliable estimation of radioactive material distribution in short range (about 50 km) is in urgent need for population sheltering and evacuation planning. However, the meteorological data and the source term which greatly influence the accuracy of the atmospheric dispersion models are usually poorly known at the early phase of the emergency. In this study, a modified ensemble Kalman filter data assimilation method in conjunction with a Lagrangian puff-model is proposed to simultaneously improve the model prediction and reconstruct the source terms for short range atmospheric dispersion using the off-site environmental monitoring data. Four main uncertainty parameters are considered: source release rate, plume rise height, wind speed and wind direction. Twin experiments show that the method effectively improves the predicted concentration distribution, and the temporal profiles of source release rate and plume rise height are also successfully reconstructed. Moreover, the time lag in the response of ensemble Kalman filter is shortened. The method proposed here can be a useful tool not only in the nuclear power plant accident emergency management but also in other similar situation where hazardous material is released into the atmosphere. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Impact of meteorological inflow uncertainty on tracer transport and source estimation in urban atmospheres

    DOE PAGES

    Lucas, Donald D.; Gowardhan, Akshay; Cameron-Smith, Philip; ...

    2015-08-08

    Here, a computational Bayesian inverse technique is used to quantify the effects of meteorological inflow uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a probability distribution of meteorological inflow by comparing wind observations to Monte Carlo simulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmospheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the impact on tracer transport and the ability to estimate the release location of an unknown source. Ourmore » uncertainty methods are compared against measurements from an intensive observation period during the Joint Urban 2003 tracer release experiment conducted in Oklahoma City.« less

  13. Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: impact of land cover and atmospheric pollutants.

    PubMed

    Pinho, P; Augusto, S; Martins-Loução, M A; Pereira, M J; Soares, A; Máguas, C; Branquinho, C

    2008-08-01

    With the aim of determining the main drivers of changes in nitrophytic and oligotrophic macro-lichen communities in an industrial region with a Mediterranean climate, we considered both land-cover types and atmospheric pollutants. We determined the relation between the abundance of nitrophytic and oligotrophic species with environmental factors considering the distance of influence of land-cover types. The results showed that oligotrophic species decreased in the proximity of artificial areas, barren land and agricultural areas, associated with higher concentrations of NO2 and Zn, and Ti, probably dust of industrial and agricultural origin. Nitrophytic species were positively related to all the mentioned land-cover types, and with higher concentrations of Fe and N. Magnesium, probably from ocean aerosols, was negatively related to oligotrophic species and positively to nitrophytic.

  14. An advanced analysis and modelling the air pollutant concentration temporal dynamics in atmosphere of the industrial cities: Odessa city

    NASA Astrophysics Data System (ADS)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Ternovsky, V. B.; Serga, I. N.; Bykowszczenko, N.

    2017-10-01

    Results of analysis and modelling the air pollutant (dioxide of nitrogen) concentration temporal dynamics in atmosphere of the industrial city Odessa are presented for the first time and based on computing by nonlinear methods of the chaos and dynamical systems theories. A chaotic behaviour is discovered and investigated. To reconstruct the corresponding strange chaotic attractor, the time delay and embedding dimension are computed. The former is determined by the methods of autocorrelation function and average mutual information, and the latter is calculated by means of correlation dimension method and algorithm of false nearest neighbours. It is shown that low-dimensional chaos exists in the nitrogen dioxide concentration time series under investigation. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension and Kolmogorov entropy are computed.

  15. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Zhou, Luyu; Dai, Liang; Shen, Wenchao; Dai, Wei; Zheng, Jun; Ma, Yan; Chen, Mindong

    2016-03-01

    Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014-2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN)-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity - RH) and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH) and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm-3 s-1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56-0.86, excluding a day with significant nocturnal nucleation), but the correlation among all eight events deteriorated (R2 = 0.17) due to temperature or season change. We observed that new particle growth rate (GR) did not increase monotonically with particle size, but had a local maximum up to 25 nm h-1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  16. Assessment of the sequential principal component analysis chemometric tool to identify the soluble atmospheric pollutants in rainwater.

    PubMed

    Montoya-Mayor, Rocío; Fernández-Espinosa, Antonio José; Ternero-Rodríguez, Miguel

    2011-02-01

    In this study a new method of principal component (PC) analysis, sequential PC analysis (SPCA), is proposed and assessed on real samples. The aim was to identify the atmospheric emission sources of soluble compounds in rainwater samples, and the sample collection was performed with an automatic sampler. Anions and cations were separated and quantified by ion chromatography, whereas trace metals and metalloids were determined by inductively coupled plasma mass spectrometry. SPCA results showed eight interfering PCs and ten significant PCs. The interfering cases originated from different atmospheric sources, such as resuspended crustal particles, marine aerosols, urban traffic and a fertilizer factory. The significant PCs explained 84.6% of the total variance; 28.1% accounted for the main contribution, which was resuspended industrial soil from a fertilizer factory containing NO(2)(-), NH(4)(+), NO(3)(-), SO(4)(2-), F(-), Al, K(+), Mn, Sb and Ca(2+) as indicators of the fertilizer factory. Another important source (15.0%) was found for Na(+), Mg(2+), K(+), Cl(-) and SO(4)(2-) , which represents the marine influence from south and southwest directions. Emissions of Ba(2+), Pb, Sr(2+), Sb and Mo, which represent a traffic source deposited in soils, were identified as another abundant contribution (12.1%) to the rainwater composition. Other important contributions to the rainwater samples that were identified through SPCA included the following: different urban emissions (Cu, As, Cd, Zn, Mo and Co, 18.1%), emissions from vegetation (HCOO(-), 7.7%) and emissions from industrial combustion processes (Ni, V 15.6%). The application of SPCA proved to be a useful tool to identify the complete information on rainwater samples as indicators of urban air pollution in a city influenced mainly by vehicle traffic emissions and resuspended polluted soils.

  17. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007.

    PubMed

    Tian, Hezhong; Wang, Yan; Xue, Zhigang; Qu, Yiping; Chai, Fahe; Hao, Jiming

    2011-07-15

    Over half of coal in China is burned directly by power plants, becoming an important source of hazardous trace element emissions, such as mercury (Hg), arsenic (As), and selenium (Se), etc. Based on coal consumption by each power plant, emission factors classified by different boiler patterns and air pollution control devices configuration, atmospheric emissions of Hg, As, and Se from coal-fired power plants in China are evaluated. The national total emissions of Hg, As, and Se from coal-fired power plants in 2007 are calculated at 132 t, 550 t, and 787 t, respectively. Furthermore, according to the percentage of coal consumed by units equipped with different types of PM devices and FGD systems, speciation of mercury is estimated as follows: 80.48 t of Hg, 49.98 t of Hg(2+), and 1.89 t of Hg(P), representing 60.81%, 37.76%, and 1.43% of the totals, respectively. The emissions of Hg, As, and Se in China's eastern and central provinces are much higher than those in the west, except for provinces involved in the program of electricity transmission from west to east China, such as Sichuan, Guizhou, Yunnan, Shaanxi, etc. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region

    PubMed Central

    2013-01-01

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed. PMID:23369629

  19. Development of a passive doas system to retrieve atmospheric pollution columns in the 200 to 355 nm region.

    PubMed

    Mejía, Rubén Galicia; Vázquez, Josémanueldelarosa; Isakina, Suren Stolik; García, Edgard Moreno; Iglesias, Gustavo Sosa

    2013-01-08

    In recent years several techniques have been developed to measure and monitor the pollution of the air. Among these techniques, remote sensing using optical methods stands out due to several advantages for air quality control applications. A Passive Differential Optical Absorption Spectroscopy system that uses the ultraviolet region from 200 to 355 nm of the solar radiation is presented. The developed system is portable; therefore it is practical for real time and in situ measurements. The enhanced wavelength range of the system is intended to detect the ultraviolet light penetration in the Mexican Valley considering the solar zenith angle and the altitude. The system was applied to retrieve atmospheric SO2 columns emitted either by anthropogenic (power plant) or natural sources (volcano), reaching a detection limit of about 1 ppm. The measurement of the penetrating solar radiation on the earth surface at the UVC range is presented and the possibility to measure pollution traces of some contaminants as O3, NO2 and aromatic compounds in real time and in situ in the ultraviolet region is discussed.

  20. Clusia hilariana and Eugenia uniflora as bioindicators of atmospheric pollutants emitted by an iron pelletizing factory in Brazil.

    PubMed

    da Silva, Luzimar Campos; de Araújo, Talita Oliveira; Siqueira-Silva, Advanio Inácio; Pereira, Tiago Augusto Rodrigues; Castro, Letícia Nalon; Silva, Eduardo Chagas; Oliva, Marco Antonio; Azevedo, Aristéa Alves

    2017-12-01

    The objectives of this work were to evaluate if the pollution emitted by the pelletizing factory causes visual symptoms and/or anatomical changes in exposed Eugenia uniflora and Clusia hilariana, in active biomonitoring, at different distances from a pelletizing factory. We characterize the symptomatology, anatomical, and histochemistry alterations induced in the two species. There was no difference in the symptomatology in relation to the different distances of the emitting source. The foliar symptoms found in C. hilariana were chlorosis, necrosis, and foliar abscission and, in E. uniflora, were observed necrosis punctuais, purple spots in the leaves, and increase in the emission of new leaves completely purplish. The two species presented formation of a cicatrization tissue. E. uniflora presented reduction in the thickness of leaf. In C. hilariana, it was visualized hyperplasia of the cells and the adaxial epidermis did not appear collapsed due to thick cuticle and cuticular flanges. Leaves of C. hilariana showed positive staining for iron, protein, starch, and phenolic compounds. E. uniflora showed positive staining for total phenolic compounds and starch. Micromorphologically, there was accumulation of particulate matter on the leaf surface, obstruction of the stomata, and scaling of the epicuticular wax in both species. It was concluded that the visual and anatomical symptoms were efficient in the diagnosis of the stress factor. C. hilariana and E. uniflora showed to be good bioindicators of the atmospheric pollutants emitted by the pelletizing factory.

  1. Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles.

    PubMed

    Xiong, Tiantian; Leveque, Thibault; Shahid, Muhammad; Foucault, Yann; Mombo, Stéphane; Dumat, Camille

    2014-09-01

    When plants are exposed to airborne particles, they can accumulate metals in their edible portions through root or foliar transfer. There is a lack of knowledge on the influence of plant exposure conditions on human bioaccessibility of metals, which is of particular concern with the increase in urban gardening activities. Lettuce, radish, and parsley were exposed to metal-rich ultrafine particles from a recycling factory via field atmospheric fallouts or polluted soil. Total lead (Pb) and cadmium (Cd) concentrations in of the edible plant parts and their human bioaccessibility were measured, and Pb translocation through the plants was studied using Pb isotopic analysis. The Pb and Cd bioaccessibility measured for consumed parts of the different polluted plants was significantly higher for root exposure (70% for Pb and 89% for Cd in lettuce) in comparison to foliar exposure (40% for Pb and 69% for Cd in lettuce). The difference in metal bioaccessibility could be linked to the metal compartmentalization and speciation changes in relation to exposure conditions. Metal nature strongly influences the measured bioaccessibility: Cd presents higher bioaccessibility in comparison to Pb. In the case of foliar exposure, a significant translocation of Pb from leaves toward the roots was observed. To conclude, the type of pollutant and the method of exposure significantly influences the phytoavailability and human bioaccessibility of metals, especially in relation to the contrasting phenomena involved in the rhizosphere and phyllosphere. The conditions of plant exposure must therefore be taken into account for environmental and health risk assessment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Salwa K.; Khoder, Mamdouh I.

    2017-02-01

    Several types of pollution episodes, including dust storm (DSs), haze dust (HDs), straw rice combustions (SRCs) are common phenomena and represent severe environmental hazard in Egypt. This study provides the first comprehensive analysis of the chemical characteristics of aerosol during air pollution episodes at an urban area in Giza, Egypt. PM2.5 samples during various PM episodes during 2013-2014 were collected and analyzed. Results indicate that the highest PM2.5 mass concentrations were found during DSs (250 μg/m3), followed by HDs (130 μg/m3) and SRCs (103 μg/m3). Average PM2.5 mass concentrations were 1.91, 3.68 and 1.68 times higher than on normal days (NDs) during HDs, DSs and SRCs, respectively. The highest total water-soluble ions concentration was 61.1 μg/m3 during HDs, followed by SRCs (41.9 μg/m3) and DSs (35.2 μg/m3). SO42- is the most abundant chemical components on the three PM episodes. Secondary inorganic ions (NO3-, SO42-, and NH4+) were enriched during HDs. The total secondary inorganic ions concentrations were 3.17, 1.39 and 1.75 times higher than NDs during HDs days, DSs days and SRCs days, respectively. PM from SRCs showed high K+ and Cl-. SO42-/K+, NO3-/SO42- and Cl-/K+ ratios proved effective as indicators for different pollution episodes. A Ca2+/Al ratio indicates that soil dust was dominant during DSs. Ion balance calculations indicated that PM2.5 from HDs was acidic, while the DSs and SRCs particles were alkaline and the NDs particle's was nearly neutral. The total crustal and anthropogenic metals concentrations were higher in DSs than other PM episodes and normal days. The enrichment factors values in PM episodes and normal days indicate that Fe and Mn in NDs, HDs, DSs and SRCs as well as Cr and Ni in DSs come mainly from crustal sources, whereas Cr, Ni, Co, Cu, Zn, Pb and Cd in PM episodes and NDs are anthropogenic.

  3. Decadal trends in regional CO2 fluxes estimated from atmospheric inversions

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.

    2016-12-01

    Top-down approach (or atmospheric inversion) using atmospheric transport models and CO2 observations are an effective way to optimize surface fluxes at subcontinental scales and monthly time intervals. We used the CCSR/NIES/FRCGC AGCM-based Chemistry Transport Model (JAMSTEC's ACTM) and atmospheric CO2 concentrations at NOAA, CSIRO, JMA, NIES, NIES-MRI sites from Obspack GLOBALVIEW-CO2 data product (2013) for estimating CO2 fluxes for the period of 1990-2011. Carbon fluxes were estimated for 84 partitions (54 lands + 30 oceans) of the globe by using a Bayesian synthesis inversion framework. A priori fluxes are (1) atmosphere-ocean exchange from Takahashi et al. (2009), (2) 3-hourly terrestrial biosphere fluxes (annually balanced) from CASA model, and (3) fossil fuel fluxes from CDIAC global totals and EDGAR4.2 spatial distributions. Four inversion cases have been tested with 1) 21 sites (sites which have real data fraction of 90 % or more for 1989-2012), 2) 21 sites + CONTRAIL data, 3) 66 sites (over 70 % coverage), and 4) 157 sites. As a result of time-dependent inversions, mean total flux (excluding fossil fuel) for the period 1990-2011 is estimated to be -3.09 ±0.16 PgC/yr (mean and standard deviation of the four cases), where land (incl. biomass burning and land use change) and ocean absorb an average rate of -1.80 ±0.18 and -1.29 ±0.08 PgC/yr, respectively. The average global total sink from 1991-2000 to 2001-2010 increases by about 0.5 PgC/yr, mainly due to the increase in northern and tropical land sinks (Africa, Boreal Eurasia, East Asia and Europe), while ocean sinks show no clear trend. Inversion with CONTRAIL data estimates large positive flux anomalies in late 1997 associated with the 1997/98 El-Nino, while inversion without CONTARIL data between Japan and Australia fails to estimate such large anomalies. Acknowledgements. This work is supported by the Environment Research and Technology Development Fund (2-1401) of the Ministry of the Environment

  4. Can sulfate fluxes in forest canopy throughfall be used to estimate atmospheric sulfur deposition

    SciTech Connect

    Lindberg, S.E.; Garten, C.T. Jr. ); Cape, J.N. ); Ivens, W. )

    1991-01-01

    The flux of sulfate is forest throughfall and stemflow (the sum of which is designated here as TF) may be an indicator of the atmospheric deposition of S, particularly if foliar leaching of internal plant S is small relative to washoff of deposition. Extensive data from 13 forests indicate that annual sulfate fluxes in TF and in atmospheric deposition are very similar, and recent studies with {sup 35}S tracers indicate that leaching is only a few percent of total TF. However, some short-term deposition/TF comparisons show large differences, and there remain questions about interpretation of tracer results. Considering the data, we conclude that TF may be used under some conditions to estimate deposition within acceptable uncertainty limits, but that some assumptions need further testing. If TF does reflect deposition, these data suggest that commonly used methods and models seriously underestimate total S deposition at some sites. 39 refs. ,4 figs., 1 tab.

  5. [Atmospheric pollution and chronic respiratory diseases in the blast-furnace areas of iron-works].

    PubMed

    Zannini, D; Valente, T; Rotunno, R; Giusto, R

    1977-01-01

    An epidemiologic research together with a study on the environmental pollution were carried out in order to evaluate the risk of chronic respiratory diseases of blast furnace workers. The environment study was performed mainly using personal samplers given to workers with different jobs. Observations on 222 work shifts have shown that the total dust concentration to which cast workmen, maintenance men and blast furnace service men were exposed, marginally exceed the TLV values. Furthermore the level of respirable dusts for blast furnace service men was found slightly excessive. The average SO2 concentration was largely below the TLV values. However this gas could be found in excess for very short periods during the work. The epidemiologic study, conducted on a cohort of blast furnace area workers against a control group cohort, indicated a moderate prevalence of pneumoconiosis and chronic bronchitis amongst blast furnaces workers. The clinic and radiological pictures do not seem to go beyond the initial stages.

  6. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  7. Gaseous and aerosol pollutants during fog and clear episodes in South Asian urban atmosphere

    NASA Astrophysics Data System (ADS)

    Biswas, K. F.; Ghauri, Badar M.; Husain, Liaquat

    We report the first measurements of acidic gases and ammonia (NH 3) during fog and clear episodes in Lahore, a highly polluted mega-city of South Asia, along with concentrations of PM 2.5 (particles of <2.5 μm aerodynamic diameter) and ions. An annular denuder system was used to measure acidic gases, NH 3, and PM 2.5 from December 2005 to February 2006 in Lahore, a mega-city in Pakistan. The denuders yielded average concentrations (μg m -3) as follows: ammonia, 50; nitrous acid, 19.6; sulfur dioxide, 19.4; hydrochloric acid, 1.16; nitric acid, 1.00; and oxalic acid, 0.6. The filters yielded average concentrations (μg m -3): PM 2.5, 209; sulfate, 19.2; nitrate, 18.9; chloride, 7.43; oxalate, 0.97; ammonium, 16.1; potassium, 3.49; calcium, 0.89; sodium, 0.76; and magnesium, 0.08. Emissions from local sources, e.g., fossil fuel consumption by motorized transport and power plants, farming, burning of agricultural residues, industrial and construction activities contributed the major proportion of pollutants in Lahore. Concentrations of ionic species, e.g., NO 3-, SO 42-, Na +, NH 4+, Mg 2+, and Ca 2+, and gaseous species, e.g., HCl, HNO 3, SO 2 and (COOH) 2 showed a distinct diurnal variation. Mixing heights and photochemistry played major roles in defining the diurnal pattern. Fog appeared to profoundly enhance the oxidation of sulfur dioxide. High moisture content of fog resulted in uptake of the gases in fog droplets.

  8. Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan

    NASA Astrophysics Data System (ADS)

    Wahid, A.

    The productivity responses of four barley ( Hordeum vulgare L.) cultivars (Haider-93, Haider-91, Jou-87, Jou-85) to air pollution were investigated during 2004-2005 season using open-top chambers with charcoal-filtered air (FA), unfiltered air (UFA) and unchambered field plots (AA) at a semi-urban site in Lahore, Pakistan. The 8 h daily mean O 3, NO 2 and SO 2 in UFA remained 71, 30 and 16 ppb, respectively. In UFA, seed yield was drastically reduced in all the cultivars, 13% for Haider-93, 30% for Haider-91, 34% for Jou-87 and 44% for Jou-85 compared with FA plants. This impact in UFA was due to combined effects of reductions in number of ears per plant, seeds per ear and 1000-seed weight. A mid-season harvest of 9-weeks-old plants has revealed 16-25% and 7-15% reductions in plant fresh and dry weights, respectively, in UFA compared with counterparts grown in FA. Plants grown in UFA also showed significant reductions in stomatal conductance (6-12%), transpiration rate (20-27%), net photosynthetic rate (13-21%) and photosynthetic efficiency (8-9%). Nutritional quality of seeds was, however, not altered with respect to some minerals (Ca, Mg, K, P), and protein in all treatments, except for higher starch contents found in FA than both UFA and AA treatments. The yield losses attributable to the mix of pollutants and experienced in the urban fringe of Lahore are appreciably larger than expected. Their significance more widely in Pakistan needs to be assessed as a matter of priority, as population growth rates and emission levels are both rapidly increasing in the country.

  9. Reconstruction of atmospheric pollutant concentrations from remote sensing data - An application of distributed parameter observer theory

    NASA Technical Reports Server (NTRS)

    Koda, M.; Seinfeld, J. H.

    1982-01-01

    The reconstruction of a concentration distribution from spatially averaged and noise-corrupted data is a central problem in processing atmospheric remote sensing data. Distributed parameter observer theory is used to develop reconstructibility conditions for distributed parameter systems having measurements typical of those in remote sensing. The relation of the reconstructibility condition to the stability of the distributed parameter observer is demonstrated. The theory is applied to a variety of remote sensing situations, and it is found that those in which concentrations are measured as a function of altitude satisfy the conditions of distributed state reconstructibility.

  10. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Rémy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2014-04-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of CO2 emissions from the AirParif inventory of the Paris agglomeration. We use 5 atmospheric monitoring sites including one at the top of the Eiffel tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion tool adjusts the CO2 fluxes (anthropogenic and biogenic) with a temporal resolution of 6 h, assuming temporal correlation of emissions uncertainties within the daily cycle and from day to day, while keeping the a priori spatial distribution from the emission inventory. The inversion significantly improves the agreement between measured and modelled concentrations. However, the amplitude of the atmospheric transport errors is often large compared to the CO2 gradients between the sites that are used to estimate the fluxes, in particular for the Eiffel tower station. In addition, we sometime observe large model-measurement differences upwind from the Paris agglomeration, which confirms the large and poorly constrained contribution from distant sources and sinks included in the prescribed CO2 boundary conditions These results suggest that (i) the Eiffel measurements at 300 m above ground cannot be used with the current system and (ii) the inversion shall rely on the measured upwind-downwind gradients rather than the raw mole fraction measurements. With such setup, realistic emissions are retrieved for two 30 day periods. Similar inversions over longer periods are necessary for a proper evaluation of the results.

  11. Correcting atmospheric effects in thermal ground observations for hyperspectral emissivity estimation

    NASA Astrophysics Data System (ADS)

    Timmermans, Joris; Buitrago, Maria

    2014-05-01

    Knowledge of Land surface temperature is of crucial importance in energy balance studies and environmental modeling. Accurate retrieval of land surface temperature (LST) demands detailed knowledge of the land surface emissivity. Measured radiation by remote sensing sensors to land surface temperature can only be performed using a-priori knowledge of the emissivity. Uncertainties in the retrieval of this emissivity can cause huge errors in LST estimations. The retrieval of emissivity (and LST) is per definition an underdetermined inversion, as only one observation is made while two variables are to be estimated. Several researches have therefore been performed on measuring emissivity, such as the normalized emissivity method, the temperature-emissivity separation (TES) using the minimum and maximum difference of emissivity and the use of vegetation indices. In each of these approaches atmospherically corrected radiance measurements by remote sensing sensors are correlated to ground measurements. Usually these ground measurements are performed with the ground equivalent of the remote sensing sensors; the CIMEL 312-2 has the same spectral bands as ASTER. This way parameterizations acquired this way are only usable for specific sensors and need to be redone for newer sensors. Recently hyperspectral thermal radiometers, such as the MIDAC, have been developed that can solve this problem. By using hyperspectral observations of emissivity, together with sensor simulators, ground measurements of different satellite sensor can be simulated. This facilitates the production of validation data for the different TES algorithms. However before such measurements can be performed extra steps of processing need to be performed. Atmospheric correction becomes more important in hyperspectral observations than for broadband observations, as energy levels measured per band is lower. As such the atmosphere has a relative larger contribution if bandwidths become smaller. The goal of this

  12. Methane fluxes in the high northern latitudes estimated using a Bayesian atmospheric inversion

    NASA Astrophysics Data System (ADS)

    Thompson, Rona; Stohl, Andreas; Myhre, Cathrine Lund; Sasakawa, Motoki; Machida, Toshinobu; Aalto, Tuula; Dlugokencky, Edward; Worthy, Douglas; Skorokhod, Andrey

    2016-04-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas after CO2. Atmospheric CH4 increased from pre-industrial concentrations of around 850 ppb (parts-per-billion) to 1773 ppb in the late 1990s and then remained approximately stable until the mid 2000s. However, since 2006 atmospheric CH4 has begun to increase again. The reasons for the stabilization and subsequent increase are likely to be a combination of changes in anthropogenic emissions such as from fossil fuels, as well as natural wetland sources. While global atmospheric inversions indicate that natural wetland sources in the tropics and subtropics have contributed to the recent increase, land surface and ecosystem models generally indicate no increase in these sources. Another potential source for the change in CH4 concentration could be wetlands in the high northern latitudes, which comprise about 44% of global wetland area. These latitudes are also undergoing rapid warming, which will impact wetland emissions of CH4. We present CH4 fluxes for the high northern latitudes (>50°N) from 2005 to 2012 estimated from a Bayesian atmospheric inversion. The inversion incorporates observations from 17 in-situ and 6 discrete-sample sites across North America and Northern Eurasia. Atmospheric transport is based on the Lagrangian particle dispersion model, FLEXPART, run with ECMWF meteorological analyses. Emissions were optimized monthly and on a spatial grid of variable resolution (from 1°×1° to 4°×4°). Background concentrations were estimated by coupling FLEXPART to monthly global 2-D fields of CH4 concentration from a bivariate interpolation of smoothed data from the NOAA ESRL network. We estimate the total mean North American flux (>50°N) to be 18 -- 27 Tg y-1, and the total mean Northern Eurasian flux (>50°N) to be 55 -- 66 Tg y-1, both substantially higher than the prior (based on LPX-Bern for wetland and EDGAR-4.2FT2010 for anthropogenic fluxes). We also find a small trend in the

  13. New Model Provides Estimates for Global Disease Burdens from Air Pollution

    EPA Pesticide Factsheets

    Air pollution has become a part of modern living. Fine PM2.5 air pollution, caused by things like automobiles, power plants, wood burning and industrial processes has been linked to cardiovascular disease, lung cancer and other diseases.

  14. The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2013-01-01

    To examine the effects of China's national policies of energy conservation and emission control during 2005-2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 87% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 47% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from poorly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM components most responsible for damages to public health and effects on radiative forcing. A much faster decrease of alkaline base

  15. The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, J.; Nielsen, C. P.

    2012-09-01

    To examine the effects of China's national policies of energy conservation and emission control during 2005-2010, inter-annual emission trends of gaseous pollutants, primary aerosols, and CO2 are estimated with a bottom-up framework. The control measures led to improved energy efficiency and/or increased penetration of emission control devices at power plants and other important industrial sources, yielding reduced emission factors for all evaluated species except NOx. The national emissions of anthropogenic SO2, CO, and total primary PM (particulate matter) in 2010 are estimated to have been 89%, 108%, and 86% of those in 2005, respectively, suggesting successful emission control of those species despite fast growth of the economy and energy consumption during the period. The emissions of NOx and CO2, however, are estimated to have increased by 48% and 43%, respectively, indicating that they remain largely determined by the growth of energy use, industrial production, and vehicle populations. Based on application of a Monte-Carlo framework, estimated uncertainties of SO2 and PM emissions increased from 2005 to 2010, resulting mainly from weakly understood average SO2 removal efficiency in flue gas desulfurization (FGD) systems in the power sector, and unclear changes in the penetration levels of dust collectors at industrial sources, respectively. While emission trends determined by bottom-up methods can be generally verified by observations from both ground stations and satellites, clear discrepancies exist for given regions and seasons, indicating a need for more accurate spatial and time distributions of emissions. Limitations of current emission control polices are analyzed based on the estimated emission trends. Compared with control of total PM, there are fewer gains in control of fine particles and carbonaceous aerosols, the PM forms most responsible for damages to public health and effects on radiative forcing. A decrease of alkaline base cations as

  16. Nitrous oxide emission estimates using atmospheric observations of vertical profiles in a polluted agricultural region

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Diskin, G. S.; Pusede, S.

    2016-12-01

    Nitrous oxide (N2O) is a long-lived and highly potent greenhouse gas that also destroys stratospheric ozone. Largely attributed to changes in agricultural sources, N2O concentrations are increasing at a steady rate of 0.8 ppb y-1 globally. Emission rates of N2O remain poorly constrained, with N2O sources arguably among the most uncertain of the long-lived greenhouse gases. This study quantifies N2O emissions at the kilometer-spatial scale in the wintertime in a region with both agricultural and urban sources, the San Joaquin Valley of California. To do this, we use the large number vertical profiles of N2O and other relevant trace gases measured by the P3 aircraft during the NASA DISCOVER-AQ campaign that took place throughout the San Joaquin Valley in January-February 2013. We exploit the observed variability in profile shape by time of day, day to day, and location (over urban versus agricultural sources), along with chemical and physical constraints on mixing and the timing of decoupling between the surface boundary layer and residual layers aloft.

  17. Atmosphere-Truth Z-R Rainfall Estimates: A Fresh Approach to an Old Problem

    NASA Astrophysics Data System (ADS)

    Henz, J. F.

    2010-12-01

    Common modeling practice for basin calibration uses rainfall fields developed by the statistical use of surface rain gauge observed data or the direct application of NEXRAD National Weather Service WSR-88D Doppler radar Storm Total Rainfall or 1-hr rainfall estimations. Each of these approaches has significant limitations. Rain gages often lack sufficient spatial coverage to measure true storm intensity or the distribution of rainfall in a basin. The NWS WSR-88D Doppler radar algorithms are constantly being improved but still fail to deliver consistent rainfall estimates. Significant problems are caused by an under-estimation of warm coalescence rains and an over-estimation of rainfall in both dry environments and storms with hail contamination. Finally, storm updraft areas are frequently counted as raining portions of the storm producing immediate errors. The statistical techniques often under-estimate rainfall when the heavy rain core of the storm misses the rain gauges or if high winds cause an under-catchment of rainfall. Gauge-adjusted rainfall estimates are also dependant on the core of the storm being observed by a gauge. Statistical approaches often under-estimate rainfall producing insufficient runoff to drive the observed flooding runoffs. The Atmosphere-Truth ZR (ATZR) technique uses an atmosphere-truthed algorithm to produce highly accurate estimates of surface rainfall from Doppler radar data. This approach relies on using a cloud physics approach to determine the atmosphere’s ability to produce 15-min to hourly rain rates. The atmsopheric rainfall is utilizes surface, boundary layer and cloud layer observations of temperature and moisture from conventional National Weather Service observations. The depth of the thunderstorm updraft region that exceeds 0C is used with the precipitable water index and updraft speeds to provide estimates of 15-min to hourly rainfall rates from radar reflectivity areas in the storm greather than 50 dBZ. Rainfall rates

  18. Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad

    2016-01-01

    Bio-monitoring method using mosses have been widely done around the world and the effectiveness has been approved. Mosses can be used to assess the levels of atmospheric pollution as mosses pick up nutrients from the atmosphere and deposition retaining many trace elements. In this study, the deposition of two radionuclides; uranium (U) and thorium (Th) around Manjung districts have been evaluated using Leucobryum aduncum as bio-monitoring medium. The samples were collected from 24 sampling sites covering up to 40 km radius to the North, North-East and South-East directions from Teluk Rubiah. The concentrations of U and Th in moss samples were analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The concentrations of Th are in the range of 0.07-2.09 mg/kg. Meanwhile, the concentrations of U in the moss are in the range of 0.03-0.18 mg/kg. The Enrichment Factor (EF) was calculated to determine the origin of the radionuclides distributions. Other than that, the distribution maps were developed to observe the distribution of the radionuclides around the study area.

  19. Assessment of radionuclides (uranium and thorium) atmospheric pollution around Manjung district, Perak using moss as bio-indicator

    SciTech Connect

    Arshad, Nursyairah, E-mail: nursyairah1990@gmail.com; Hamzah, Zaini; Wood, Ab. Khalik

    2016-01-22

    Bio-monitoring method using mosses have been widely done around the world and the effectiveness has been approved. Mosses can be used to assess the levels of atmospheric pollution as mosses pick up nutrients from the atmosphere and deposition retaining many trace elements. In this study, the deposition of two radionuclides; uranium (U) and thorium (Th) around Manjung districts have been evaluated using Leucobryum aduncum as bio-monitoring medium. The samples were collected from 24 sampling sites covering up to 40 km radius to the North, North-East and South-East directions from Teluk Rubiah. The concentrations of U and Th in moss samples weremore » analysed using Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The concentrations of Th are in the range of 0.07-2.09 mg/kg. Meanwhile, the concentrations of U in the moss are in the range of 0.03-0.18 mg/kg. The Enrichment Factor (EF) was calculated to determine the origin of the radionuclides distributions. Other than that, the distribution maps were developed to observe the distribution of the radionuclides around the study area.« less

  20. Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China.

    PubMed

    Huang, Kan; Fu, Joshua S; Gao, Yang; Dong, Xinyi; Zhuang, Guoshun; Lin, Yanfen

    2014-01-01

    The Community Multi-scale Air Quality modeling system is used to investigate the response of atmospheric visibility to the emission reduction from different sectors (i.e. industries, traffic and power plants) in the Yangtze River Delta, China. Visibility improvement from exclusive reduction of NOx or VOC emission was most inefficient. Sulfate and organic aerosol would rebound if NOx emission was exclusively reduced from any emission sector. The most efficient way to improve the atmospheric visibility was proven to be the multi-pollutant control strategies. Simultaneous emission reductions (20-50%) on NOx, VOC and PM from the industrial and mobile sectors could result in 0.3-1.0 km visibility improvement. And the emission controls on both NOx (85%) and SO2 (90%) from power plants gained the largest visibility improvement of up to 4.0 km among all the scenarios. The seasonal visibility improvement subject to emission controls was higher in summer while lower in the other seasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Spheroidal carbonaceous particles (SCPs) as indicators of atmospherically deposited pollutants in North African wetlands of conservation importance

    NASA Astrophysics Data System (ADS)

    Rose, N. L.; Flower, R. J.; Appleby, P. G.

    Wetlands and lowland lakes in the coastal region of North Africa are being lost at an alarming rate as a result of increasing human demands for water and land. Those remaining wetlands, which have not been severely degraded, support high value ecosystems that not only contribute to regional biodiversity but also provide important resources for local human populations. However, information on the current status of these sites and the rates and directions of trends in environmental change over recent decades is generally lacking. In particular, regional data on the inputs of atmospheric pollutants to these important sites are absent. As part of the EU (INCO-MED) funded CASSARINA project, sediment cores were taken from eight coastal lakes in Morocco, Tunisia and Egypt. Chronologies for these cores were produced primarily using radionuclides and all were analysed for spheroidal carbonaceous particles (SCPs). SCPs are produced only from high temperature fossil-fuel combustion and are thus unambiguous indicators of atmospheric deposition from industrial sources. SCP contamination trends appear to show a combination of influences from European and, more recently (post-1980), local North African sources. Contemporary data indicate contamination equivalent to that found in heavily impacted European mountain lakes or moderately impacted lowland lakes in the UK. Such levels of impact raise particular concerns over the future of Moroccan wetland lakes downwind of a recently expanded major coal-fired power station at Jorf Lasar.

  2. Fractionation of stable isotope-labeled organic pollutants as a potential tracer of atmospheric transport processes.

    PubMed

    Dickhut, Rebecca M; Padma, Tirupponithura V; Cincinelli, Alessandra

    2004-07-15

    To test the potential for using stable isotope fractionation to examine the atmospheric transport of semivolatile organic compounds (SOCs), we conducted simplified distillation experiments in the laboratory and a tracer-release experiment using mixtures of stable isotope-labeled (D and 13C) and unlabeled SOCs. Perdeuterated phenanthrene and alpha-hexachlorocyclohexane were transported more slowly via air-water gas exchange in our laboratory experiments, resulting in significant isotope fractionation of perdeuterated/unlabeled compound mixtures. In contrast, isotope fractionation of 13C6-labeled SOCs was much lower. A field tracer-release study was then conducted by spiking a seawater retention pond with a mixture of D10-labeled, 13C2-labeled, and unlabeled phenanthrene and examining isotope fractionation of the mixture after air-water gas exchange. No preferential fractionation of D10-vs 13C2-labeled phenanthrene was observed in the pond water; however, greater fractionation of D10-vs 13C2-labeled phenanthrene was observed in air samples collected within a 1-100 m radius of the pond. Thus, stable isotope tracers may provide a means of examining the atmospheric transport and air-earth exchange rates of POPs in an environmental realistic setting.

  3. The application of magnetic measurements for the characterization of atmospheric particulate pollution within the airport environment.

    PubMed

    Jones, S; Richardson, N; Bennett, M; Hoon, S R

    2015-01-01

    The significant increase in global air travel which has occurred during the last fifty years has generated growing concern regarding the potential impacts associated with increasing emissions of atmospheric particulate matter (PM) on health and the environment. PM within the airport environment may be derived from a range of sources. To date, however, the identification of individual sources of airport derived PM has remained elusive but constitutes a research priority for the aviation industry.The aim of this research was to identify distinctive and characteristic fingerprints of atmospheric PM derived from various sources in an airport environment through the use of environmental magnetic measurements. PM samples from aircraft engine emissions, brake wear and tire wear residues have been obtained from a range of different aircraft and engine types. Samples have been analyzed utilizing a range of magnetic mineral properties indicative of magnetic mineralogy and grain size. Results indicate that the dusts from the three 'aircraft' sources, (i.e. engines, brakes and tires) display distinctive magnetic mineral characteristics which may serve as 'magnetic fingerprints' for these sources. Magnetic measurements of runway dusts collected at different locations on the runway surface also show contrasting magnetic characteristics which, when compared with those of the aircraft-derived samples, suggest that they may relate to different sources characteristic of aircraft emissions at various stages of the take-off/landing cycle. The findings suggest that magnetic measurements could have wider applicability for the differentiation and identification of PM within the airport environment.

  4. Prognostic Modeling of Long-Range Atmospheric Pollutant Transport for ETEX

    SciTech Connect

    Griggs, D.P.

    1995-09-14

    The ability to forecast the transport and diffusion of airborne contaminants over long distances is vital when responding to nuclear emergencies. Atmospheric models used in such emergency response applications must be able to include the effects of the evolving synoptic weather systems in a timely manner. The European Tracer EXperiment (ETEX), conducted in October and November 1994, is designed to evaluate the performance of such models. In addition to the tracer experiments, concurrent real-time modeling exercises were conducted by some 24 organizations world-wide, including the Savannah River Technology Center (SRTC) of the U.S. Department of Energy`s Savannah River Site. This paper describes the forecast results obtained by atmospheric modelers at SRTC in applying an advanced three-dimensional modeling system to forecast tracer transport and diffusion during ETEX. Forecast results from the first of two tracer experiments are presented in this preprint paper. Data for the tracer gas concentrations is not yet available; however, surface and sounding data are available from the time periods of the releases. This paper will focus on the evaluation of the forecasts in light of the surface wind data, and relate the forecast evaluations to the differences in the tracer gas dispersion predicted using these forecasts. Plume transport and diffusion results were reported previously.

  5. Estimating the pollution risk of cadmium in soil using a composite soil environmental quality standard.

    PubMed

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km(2) area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs.

  6. Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard

    PubMed Central

    Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364

  7. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies' Functions.

    PubMed

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-22

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies' functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident's origin and other indirect losses. In the valuation of damage to people's life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water's recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole.

  8. Economic Estimation of the Losses Caused by Surface Water Pollution Accidents in China From the Perspective of Water Bodies’ Functions

    PubMed Central

    Yao, Hong; You, Zhen; Liu, Bo

    2016-01-01

    The number of surface water pollution accidents (abbreviated as SWPAs) has increased substantially in China in recent years. Estimation of economic losses due to SWPAs has been one of the focuses in China and is mentioned many times in the Environmental Protection Law of China promulgated in 2014. From the perspective of water bodies’ functions, pollution accident damages can be divided into eight types: damage to human health, water supply suspension, fishery, recreational functions, biological diversity, environmental property loss, the accident’s origin and other indirect losses. In the valuation of damage to people’s life, the procedure for compensation of traffic accidents in China was used. The functional replacement cost method was used in economic estimation of the losses due to water supply suspension and loss of water’s recreational functions. Damage to biological diversity was estimated by recovery cost analysis and damage to environmental property losses were calculated using pollutant removal costs. As a case study, using the proposed calculation procedure the economic losses caused by the major Songhuajiang River pollution accident that happened in China in 2005 have been estimated at 2263 billion CNY. The estimated economic losses for real accidents can sometimes be influenced by social and political factors, such as data authenticity and accuracy. Besides, one or more aspects in the method might be overestimated, underrated or even ignored. The proposed procedure may be used by decision makers for the economic estimation of losses in SWPAs. Estimates of the economic losses of pollution accidents could help quantify potential costs associated with increased risk sources along lakes/rivers but more importantly, highlight the value of clean water to society as a whole. PMID:26805869

  9. A simple algorithm to estimate the effective regional atmospheric parameters for thermal-inertia mapping

    USGS Publications Warehouse

    Watson, K.; Hummer-Miller, S.

    1981-01-01

    A method based solely on remote sensing data has been developed to estimate those meteorological effects which are required for thermal-inertia mapping. It assumes that the atmospheric fluxes are spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows the type of agreement which can be achieved. An analysis of the limitations of the method is also provided. ?? 1981.

  10. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  11. Levels and Seasonal Variability of Persistent Organic Pollutants in Rural and Urban Atmosphere of Southern Ghana

    NASA Astrophysics Data System (ADS)

    Adu-Kumi, Sam; Klanova, Jana; Holoubek, Ivan

    2010-05-01

    Concentrations of persistent organic pollutants (POPs) in air are reported from the first full year of the RECETOX-Africa Air Monitoring (MONET_AFRICA) Project. Passive air samplers composed of polyurethane foam disks (PUF-disk samplers) were deployed for sampling background air concentrations from January-December 2008 at two urban sites in Ghana, namely, Ghana Atomic Energy Commission (Biotechnology and Nuclear Agricultural Research Institute, Kwabenya); and Ghana Meteorological Agency (East Legon). Another set of PUF-disk samplers were deployed at a rural/agricultural location (Lake Bosumtwi) from July-November 2008. For the purposes of this study, 28 days was the sampling period for polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs); and 3 months for OCPs (Drins) and dioxins/furans (PCDD/Fs) respectively. MONET_AFRICA constituted part of the activities under the Global Monitoring Plan (GMP) for the effectiveness evaluation (Article 16) of the Stockholm Convention on POPs and the air sampling survey was conducted at 26 sites across the African continent with the aim to establish baseline information on contamination of ambient air with persistent organic pollutants (POPs) as a reference for future monitoring programmes in the region. For the pesticides, endosulfans constituted the highest contaminants measured followed by HCHs and DDTs in that order. The large temporal variability in the pesticide concentrations suggested seasonal application of endosulfans and γ-HCH. Levels of endosulfans were initially found to be below detection limit during the first sampling period (January - March 2008) but recorded the highest concentration than any other pesticide from all 16 sites in the African region during the second sampling period (April - June 2008). Concentrations of DDTs and HCHs were generally low throughout the sampling periods. p,p'-DDE/p,p'-DDT ratio in ambient air showed that the metabolite DDE was the

  12. Urban atmospheric pollution in the Eastern Mediterranean : lessons from the TRANSEMED initiative

    NASA Astrophysics Data System (ADS)

    Borbon, Agnes; Salameh, Therese; Gaimoz, Cecile; Sauvage, Stephane; Locoge, Nadine; Oztürk, Fatma; Cetin, Banu; Keles, Melek; Afif, Charbel

    2016-04-01

    The East Mediterranean Basin (EMB) is a highly sensitive environment under considerable pressures. Future decadal projections point to the EMB as a possible hot spot of poor air quality and predict a continual and gradual warming in the region, much stronger than other regions. The increase and accumulation of anthropogenic emissions of gaseous and particulate pollutants from surrounding urban areas, are suspected as one of the key compounding factors of those environmental impacts. The quantification of emission distribution is a challenge, and even more in cities of the EMB where local emission data are sparse. While some highly resolved inventories have been developed at the regional scale in the EMB area for Beirut and Istanbul, their uncertainties are unknown. The paucity of observations in this region, especially for VOCs and PM composition, is a strong limitation to the achievement of evaluated and accurate emission inventories. As part of the TRANSEMED initiative (https://charmex.lsce.ipsl.fr/index.php/sister-projects/transemed.html), one of our objectives is to develop a systematic source-receptor methodology for emission inventory evaluation. We combine existing and newly collected observations and complementary source-receptor approaches (ie., urban enhancement emission ratios, multivariate models like PMF) in representative areas of the EMB: Beirut (Lebanon), Istanbul (Turkey), Cairo (Egypt) and, more recently, Athens (Greece). Over the past five years a very detailed database of ambient and near-source observations has been built-up especially regarding the composition of gaseous organic carbon. Results show (i) the extremely high levels of pollution for organics, (ii) the dominance of traffic emissions on VOC concentration levels, (iii) the relative poor spatial variability of speciated hydrocarbon traffic emissions regardless of the region, and (iv) the high uncertainty on global emission inventories when compared to observations. For the latter, and

  13. Summer atmospheric composition over the Mediterranean basin: investigation on transport processes and pollutant export to the free troposphere by observations at the WMO/GAW Mt. Cimone global station (Italy, 2165 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, Paolo; Cristian Landi, Tony; Rinaldi, Matteo; Calzolari, Francesopiero; Duchi, Rocco; Marinoni, Angela; Roccato, Fabrizio; Bonasoni, Paolo

    2017-04-01

    In this work, we analysed reactive gases (O3, CO, NOx) and aerosol properties (eqBC, s and particle number concentration) collected at the WMO/GAW Mt. Cimone station (2165 m a.s.l., Italy) during the summer of 2012 in the framework of PEGASOS project. The major aim of this experiment is providing a characterization of the variability of summer atmospheric composition over the central Mediterranean basin, which is considered as a global "hot-spot" for atmospheric pollution and climate change. The atmospheric tracers have been analysed as a function of (i) meteorological parameters, (ii) synoptic-scale circulation and (iii) anthropogenic emission source proximity as estimated by O3/NOx ratio variability. In particular, we identified three O3/NOx regimes which tagged the distance of anthropogenic sources: near outflow (23% of hourly data), far-outflow (38% of data) and background (39% of data). The highest levels of anthropogenic pollutants (e.g. O3, CO, eqBC, accumulation particles) were concomitant with fresh emissions from northern Italy under near-outflow conditions: once injected to the free troposphere, these air-masses, rich in pollutants and climate-forcers (i.e. O3, eqBC) and soil dust, can be spread over a large region, thus significantly affecting regional climate. Moreover, based on the anthropogenic source proximity, atmospheric tracer variability and synoptic-scale atmospheric circulation, we categorized and characterised four types of atmospheric regimes associated with (1) air-mass transport from the free troposphere, (2) transport of fresh emitted pollutants from the PBL, (3) transport at regional/continental scale of aged anthropogenic (4) transport of air-mass rich in mineral dust from northern Africa (i.e. coming from more than 1000 km). Lastly, by analysing the probability density functions (PDFs) of trace gases and aerosol properties, "fingerprints" of the mentioned atmospheric regimes were pointed out. Such information is useful for the

  14. Summer atmospheric composition over the Mediterranean basin: Investigation on transport processes and pollutant export to the free troposphere by observations at the WMO/GAW Mt. Cimone global station (Italy, 2165 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, P.; Landi, T. C.; Calzolari, F.; Duchi, R.; Marinoni, A.; Rinaldi, M.; Bonasoni, P.

    2016-09-01

    In this work, we analysed reactive gases (O3, CO, NOx) and aerosol properties (eqBC, σs and particle number concentration) collected at the WMO/GAW Mt. Cimone station (2165 m a.s.l., Italy) during the summer of 2012 in the framework of PEGASOS project. The major aim of this experiment is providing a characterization of the variability of summer atmospheric composition over the central Mediterranean basin, which is considered as a global ;hot-spot; for atmospheric pollution and climate change. The atmospheric tracers have been analysed as a function of (i) meteorological parameters, (ii) synoptic-scale circulation and (iii) anthropogenic emission source proximity as estimated by O3/NOx ratio variability. In particular, we identified three O3/NOx regimes which tagged the distance of anthropogenic sources: near outflow (23% of hourly data), far-outflow (38% of data) and background (39% of data). The highest levels of anthropogenic pollutants (e.g. O3, CO, eqBC, accumulation particles) were concomitant with fresh emissions from northern Italy under near-outflow conditions: once injected to the free troposphere, these air-masses, rich in pollutants and climate-forcers (i.e. O3, eqBC) and soil dust, can be spread over a large region, thus significantly affecting regional climate. Moreover, based on the anthropogenic source proximity, atmospheric tracer variability and synoptic-scale atmospheric circulation, we categorized and characterised four types of atmospheric regimes associated with (1) air-mass transport from the free troposphere, (2) transport of fresh emitted pollutants from the PBL, (3) transport at regional/continental scale of aged anthropogenic (4) transport of air-mass rich in mineral dust from northern Africa (i.e. coming from more than 1000 km). Lastly, by analysing the probability density functions (PDFs) of trace gases and aerosol properties, ;fingerprints; of the mentioned atmospheric regimes were pointed out. Such information is useful for the

  15. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006.

    PubMed

    Hung, Hayley; Kallenborn, Roland; Breivik, Knut; Su, Yushan; Brorström-Lundén, Eva; Olafsdottir, Kristin; Thorlacius, Johanna M; Leppänen, Sirkka; Bossi, Rossana; Skov, Henrik; Manø, Stein; Patton, Gregory W; Stern, Gary; Sverko, Ed; Fellin, Phil

    2010-07-01

    Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result in an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future

  16. Estimating trends in atmospheric water vapor and temperature time series over Germany

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Balidakis, Kyriakos; Dick, Galina; Heise, Stefan; Wickert, Jens

    2017-08-01

    Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. Th