Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.
2012-01-01
Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.
Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification
Pham, Tuan D.
2014-01-01
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744
Occupancy estimation and modeling with multiple states and state uncertainty
Nichols, J.D.; Hines, J.E.; MacKenzie, D.I.; Seamans, M.E.; Gutierrez, R.J.
2007-01-01
The distribution of a species over space is of central interest in ecology, but species occurrence does not provide all of the information needed to characterize either the well-being of a population or the suitability of occupied habitat. Recent methodological development has focused on drawing inferences about species occurrence in the face of imperfect detection. Here we extend those methods by characterizing occupied locations by some additional state variable ( e. g., as producing young or not). Our modeling approach deals with both detection probabilities,1 and uncertainty in state classification. We then use the approach with occupancy and reproductive rate data from California Spotted Owls (Strix occidentalis occidentalis) collected in the central Sierra Nevada during the breeding season of 2004 to illustrate the utility of the modeling approach. Estimates of owl reproductive rate were larger than naive estimates, indicating the importance of appropriately accounting for uncertainty in detection and state classification.
Classification criteria and probability risk maps: limitations and perspectives.
Saisana, Michaela; Dubois, Gregoire; Chaloulakou, Archontoula; Spyrellis, Nikolas
2004-03-01
Delineation of polluted zones with respect to regulatory standards, accounting at the same time for the uncertainty of the estimated concentrations, relies on classification criteria that can lead to significantly different pollution risk maps, which, in turn, can depend on the regulatory standard itself. This paper reviews four popular classification criteria related to the violation of a probability threshold or a physical threshold, using annual (1996-2000) nitrogen dioxide concentrations from 40 air monitoring stations in Milan. The relative advantages and practical limitations of each criterion are discussed, and it is shown that some of the criteria are more appropriate for the problem at hand and that the choice of the criterion can be supported by the statistical distribution of the data and/or the regulatory standard. Finally, the polluted area is estimated over the different years and concentration thresholds using the appropriate risk maps as an additional source of uncertainty.
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.
2010-11-01
The uncertainties of a national, bottom-up inventory of Chinese emissions of anthropogenic SO2, NOx, and particulate matter (PM) of different size classes and carbonaceous species are comprehensively quantified, for the first time, using Monte Carlo simulation. The inventory is structured by seven dominant sectors: coal-fired electric power, cement, iron and steel, other industry (boiler combustion), other industry (non-combustion processes), transportation, and residential. For each parameter related to emission factors or activity-level calculations, the uncertainties, represented as probability distributions, are either statistically fitted using results of domestic field tests or, when these are lacking, estimated based on foreign or other domestic data. The uncertainties (i.e., 95% confidence intervals around the central estimates) of Chinese emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC), and organic carbon (OC) in 2005 are estimated to be -14%~12%, -10%~36%, -10%~36%, -12%~42% -16%~52%, -23%~130%, and -37%~117%, respectively. Variations at activity levels (e.g., energy consumption or industrial production) are not the main source of emission uncertainties. Due to narrow classification of source types, large sample sizes, and relatively high data quality, the coal-fired power sector is estimated to have the smallest emission uncertainties for all species except BC and OC. Due to poorer source classifications and a wider range of estimated emission factors, considerable uncertainties of NOx and PM emissions from cement production and boiler combustion in other industries are found. The probability distributions of emission factors for biomass burning, the largest source of BC and OC, are fitted based on very limited domestic field measurements, and special caution should thus be taken interpreting these emission uncertainties. Although Monte Carlo simulation yields narrowed estimates of uncertainties compared to previous bottom-up emission studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones - notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties - is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Nielsen, C. P.; Lei, Y.; McElroy, M. B.; Hao, J.
2011-03-01
The uncertainties of a national, bottom-up inventory of Chinese emissions of anthropogenic SO2, NOx, and particulate matter (PM) of different size classes and carbonaceous species are comprehensively quantified, for the first time, using Monte Carlo simulation. The inventory is structured by seven dominant sectors: coal-fired electric power, cement, iron and steel, other industry (boiler combustion), other industry (non-combustion processes), transportation, and residential. For each parameter related to emission factors or activity-level calculations, the uncertainties, represented as probability distributions, are either statistically fitted using results of domestic field tests or, when these are lacking, estimated based on foreign or other domestic data. The uncertainties (i.e., 95% confidence intervals around the central estimates) of Chinese emissions of SO2, NOx, total PM, PM10, PM2.5, black carbon (BC), and organic carbon (OC) in 2005 are estimated to be -14%~13%, -13%~37%, -11%~38%, -14%~45%, -17%~54%, -25%~136%, and -40%~121%, respectively. Variations at activity levels (e.g., energy consumption or industrial production) are not the main source of emission uncertainties. Due to narrow classification of source types, large sample sizes, and relatively high data quality, the coal-fired power sector is estimated to have the smallest emission uncertainties for all species except BC and OC. Due to poorer source classifications and a wider range of estimated emission factors, considerable uncertainties of NOx and PM emissions from cement production and boiler combustion in other industries are found. The probability distributions of emission factors for biomass burning, the largest source of BC and OC, are fitted based on very limited domestic field measurements, and special caution should thus be taken interpreting these emission uncertainties. Although Monte Carlo simulation yields narrowed estimates of uncertainties compared to previous bottom-up emission studies, the results are not always consistent with those derived from satellite observations. The results thus represent an incremental research advance; while the analysis provides current estimates of uncertainty to researchers investigating Chinese and global atmospheric transport and chemistry, it also identifies specific needs in data collection and analysis to improve on them. Strengthened quantification of emissions of the included species and other, closely associated ones - notably CO2, generated largely by the same processes and thus subject to many of the same parameter uncertainties - is essential not only for science but for the design of policies to redress critical atmospheric environmental hazards at local, regional, and global scales.
NASA Astrophysics Data System (ADS)
Knoefel, Patrick; Loew, Fabian; Conrad, Christopher
2015-04-01
Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.
NASA Astrophysics Data System (ADS)
Dou, P.
2017-12-01
Guangzhou has experienced a rapid urbanization period called "small change in three years and big change in five years" since the reform of China, resulting in significant land use/cover changes(LUC). To overcome the disadvantages of single classifier for remote sensing image classification accuracy, a multiple classifier system (MCS) is proposed to improve the quality of remote sensing image classification. The new method combines advantages of different learning algorithms, and achieves higher accuracy (88.12%) than any single classifier did. With the proposed MCS, land use/cover (LUC) on Landsat images from 1987 to 2015 was obtained, and the LUCs were used on three watersheds (Shijing river, Chebei stream, and Shahe stream) to estimate the impact of urbanization on water flood. The results show that with the high accuracy LUC, the uncertainty in flood simulations are reduced effectively (for Shijing river, Chebei stream, and Shahe stream, the uncertainty reduced 15.5%, 17.3% and 19.8% respectively).
Friedmann, H; Baumgartner, A; Gruber, V; Kaineder, H; Maringer, F J; Ringer, W; Seidel, C
2017-07-01
The administration in many countries demands a classification of areas concerning their radon risk taking into account the requirements of the EU Basic Safety Standards. The wide variation of indoor radon concentrations in an area which is caused by different house construction, different living style and different geological situations introduces large uncertainties for any classification scheme. Therefore, it is of importance to estimate the size of the experimental coefficient of variation (relative standard deviation) of the parameter which is used to classify an area. Besides the time period of measurement it is the number of measurements which strongly influences this uncertainty and it is important to find a compromise between the economic possibilities and the needed confidence level. Some countries do not use pure measurement results for the classification of areas but use derived quantities, usually called radon potential, which should reduce the influence of house construction, living style etc. and should rather represent the geological situation of an area. Here, radon indoor measurements in nearly all homes in three municipalities and its conversion into a radon potential were used to determine the uncertainty of the mean radon potential of an area as a function of the number of investigated homes. It could be shown that the coefficient of variation scales like 1/√n with n the number of measured dwellings. The question how to deal with uncertainties when using a classification scheme for the radon risk is discussed and a general procedure is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jones, D. O.; Scolnic, D. M.; Riess, A. G.; Kessler, R.; Rest, A.; Kirshner, R. P.; Berger, E.; Ortega, C. A.; Foley, R. J.; Chornock, R.; Challis, P. J.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Metcalfe, N.; Wainscoat, R. J.; Waters, C.
2017-07-01
The Pan-STARRS (PS1) Medium Deep Survey discovered over 5000 likely supernovae (SNe) but obtained spectral classifications for just 10% of its SN candidates. We measured spectroscopic host galaxy redshifts for 3147 of these likely SNe and estimate that ˜1000 are Type Ia SNe (SNe Ia) with light-curve quality sufficient for a cosmological analysis. We use these data with simulations to determine the impact of core-collapse SN (CC SN) contamination on measurements of the dark energy equation of state parameter, w. Using the method of Bayesian Estimation Applied to Multiple Species (BEAMS), distances to SNe Ia and the contaminating CC SN distribution are simultaneously determined. We test light-curve-based SN classification priors for BEAMS as well as a new classification method that relies upon host galaxy spectra and the association of SN type with host type. By testing several SN classification methods and CC SN parameterizations on large SN simulations, we estimate that CC SN contamination gives a systematic error on w ({σ }w{CC}) of 0.014, 29% of the statistical uncertainty. Our best method gives {σ }w{CC}=0.004, just 8% of the statistical uncertainty, but could be affected by incomplete knowledge of the CC SN distribution. This method determines the SALT2 color and shape coefficients, α and β, with ˜3% bias. However, we find that some variants require α and β to be fixed to known values for BEAMS to yield accurate measurements of w. Finally, the inferred abundance of bright CC SNe in our sample is greater than expected based on measured CC SN rates and luminosity functions.
Carbon storage in Chinese grassland ecosystems: Influence of different integrative methods.
Ma, Anna; He, Nianpeng; Yu, Guirui; Wen, Ding; Peng, Shunlei
2016-02-17
The accurate estimate of grassland carbon (C) is affected by many factors at the large scale. Here, we used six methods (three spatial interpolation methods and three grassland classification methods) to estimate C storage of Chinese grasslands based on published data from 2004 to 2014, and assessed the uncertainty resulting from different integrative methods. The uncertainty (coefficient of variation, CV, %) of grassland C storage was approximately 4.8% for the six methods tested, which was mainly determined by soil C storage. C density and C storage to the soil layer depth of 100 cm were estimated to be 8.46 ± 0.41 kg C m(-2) and 30.98 ± 1.25 Pg C, respectively. Ecosystem C storage was composed of 0.23 ± 0.01 (0.7%) above-ground biomass, 1.38 ± 0.14 (4.5%) below-ground biomass, and 29.37 ± 1.2 (94.8%) Pg C in the 0-100 cm soil layer. Carbon storage calculated by the grassland classification methods (18 grassland types) was closer to the mean value than those calculated by the spatial interpolation methods. Differences in integrative methods may partially explain the high uncertainty in C storage estimates in different studies. This first evaluation demonstrates the importance of multi-methodological approaches to accurately estimate C storage in large-scale terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Cockx, K.; Van de Voorde, T.; Canters, F.; Poelmans, L.; Uljee, I.; Engelen, G.; de Jong, K.; Karssenberg, D.; van der Kwast, J.
2013-05-01
Building urban growth models typically involves a process of historic calibration based on historic time series of land-use maps, usually obtained from satellite imagery. Both the remote sensing data analysis to infer land use and the subsequent modelling of land-use change are subject to uncertainties, which may have an impact on the accuracy of future land-use predictions. Our research aims to quantify and reduce these uncertainties by means of a particle filter data assimilation approach that incorporates uncertainty in land-use mapping and land-use model parameter assessment into the calibration process. This paper focuses on part of this work, more in particular the modelling of uncertainties associated with the impervious surface cover estimation and urban land-use classification adopted in the land-use mapping approach. Both stages are submitted to a Monte Carlo simulation to assess their relative contribution to and their combined impact on the uncertainty in the derived land-use maps. The approach was applied on the central part of the Flanders region (Belgium), using a time-series of Landsat/SPOT-HRV data covering the years 1987, 1996, 2005 and 2012. Although the most likely land-use map obtained from the simulation is very similar to the original classification, it is shown that the errors related to the impervious surface sub-pixel fraction estimation have a strong impact on the land-use map's uncertainty. Hence, incorporating uncertainty in the land-use change model calibration through particle filter data assimilation is proposed to address the uncertainty observed in the derived land-use maps and to reduce uncertainty in future land-use predictions.
Effects of uncertainty and variability on population declines and IUCN Red List classifications.
Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M
2018-01-22
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.
Classification of Tree Species in Overstorey Canopy of Subtropical Forest Using QuickBird Images.
Lin, Chinsu; Popescu, Sorin C; Thomson, Gavin; Tsogt, Khongor; Chang, Chein-I
2015-01-01
This paper proposes a supervised classification scheme to identify 40 tree species (2 coniferous, 38 broadleaf) belonging to 22 families and 36 genera in high spatial resolution QuickBird multispectral images (HMS). Overall kappa coefficient (OKC) and species conditional kappa coefficients (SCKC) were used to evaluate classification performance in training samples and estimate accuracy and uncertainty in test samples. Baseline classification performance using HMS images and vegetation index (VI) images were evaluated with an OKC value of 0.58 and 0.48 respectively, but performance improved significantly (up to 0.99) when used in combination with an HMS spectral-spatial texture image (SpecTex). One of the 40 species had very high conditional kappa coefficient performance (SCKC ≥ 0.95) using 4-band HMS and 5-band VIs images, but, only five species had lower performance (0.68 ≤ SCKC ≤ 0.94) using the SpecTex images. When SpecTex images were combined with a Visible Atmospherically Resistant Index (VARI), there was a significant improvement in performance in the training samples. The same level of improvement could not be replicated in the test samples indicating that a high degree of uncertainty exists in species classification accuracy which may be due to individual tree crown density, leaf greenness (inter-canopy gaps), and noise in the background environment (intra-canopy gaps). These factors increase uncertainty in the spectral texture features and therefore represent potential problems when using pixel-based classification techniques for multi-species classification.
Source Data Applicability Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven D.; Ring, Robert W.
2016-01-01
Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system where it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for assigning uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide a case study example by translating Ground Benign (GB) and Ground Mobile (GM) to the Airborne Uninhabited Fighter (AUF) environment for three electronic components often found in space launch vehicle control systems. The classification method will be followed by uncertainty-importance routines to assess the need to for more applicable data to reduce uncertainty.
NASA Astrophysics Data System (ADS)
Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher
2012-10-01
Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.
NASA Astrophysics Data System (ADS)
Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.
2013-12-01
An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.
2008-10-31
of the Apalachicola River drainage. Although this proposed division in classification appears to be generally accepted by the herpetological community...breeding in small forest ponds. Herpetological Review 33(4):275-280. Carle, F. L. and M. R. Strub. 1978. A new method for estimating population size...gopher frogs (Rana capito) and southern leopard frogs (Rana sphenocephala). Journal of Herpetology 42: 97-103. Grevstad, F.S. 2005. Simulating
NASA Technical Reports Server (NTRS)
Kimball, John; Kang, Sinkyu
2003-01-01
The original objectives of this proposed 3-year project were to: 1) quantify the respective contributions of land cover and disturbance (i.e., wild fire) to uncertainty associated with regional carbon source/sink estimates produced by a variety of boreal ecosystem models; 2) identify the model processes responsible for differences in simulated carbon source/sink patterns for the boreal forest; 3) validate model outputs using tower and field- based estimates of NEP and NPP; and 4) recommend/prioritize improvements to boreal ecosystem carbon models, which will better constrain regional source/sink estimates for atmospheric C02. These original objectives were subsequently distilled to fit within the constraints of a 1 -year study. This revised study involved a regional model intercomparison over the BOREAS study region involving Biome-BGC, and TEM (A.D. McGuire, UAF) ecosystem models. The major focus of these revised activities involved quantifying the sensitivity of regional model predictions associated with land cover classification uncertainties. We also evaluated the individual and combined effects of historical fire activity, historical atmospheric CO2 concentrations, and climate change on carbon and water flux simulations within the BOREAS study region.
NASA Astrophysics Data System (ADS)
Schwabe, O.; Shehab, E.; Erkoyuncu, J.
2015-08-01
The lack of defensible methods for quantifying cost estimate uncertainty over the whole product life cycle of aerospace innovations such as propulsion systems or airframes poses a significant challenge to the creation of accurate and defensible cost estimates. Based on the axiomatic definition of uncertainty as the actual prediction error of the cost estimate, this paper provides a comprehensive overview of metrics used for the uncertainty quantification of cost estimates based on a literature review, an evaluation of publicly funded projects such as part of the CORDIS or Horizon 2020 programs, and an analysis of established approaches used by organizations such NASA, the U.S. Department of Defence, the ESA, and various commercial companies. The metrics are categorized based on their foundational character (foundations), their use in practice (state-of-practice), their availability for practice (state-of-art) and those suggested for future exploration (state-of-future). Insights gained were that a variety of uncertainty quantification metrics exist whose suitability depends on the volatility of available relevant information, as defined by technical and cost readiness level, and the number of whole product life cycle phases the estimate is intended to be valid for. Information volatility and number of whole product life cycle phases can hereby be considered as defining multi-dimensional probability fields admitting various uncertainty quantification metric families with identifiable thresholds for transitioning between them. The key research gaps identified were the lacking guidance grounded in theory for the selection of uncertainty quantification metrics and lacking practical alternatives to metrics based on the Central Limit Theorem. An innovative uncertainty quantification framework consisting of; a set-theory based typology, a data library, a classification system, and a corresponding input-output model are put forward to address this research gap as the basis for future work in this field.
Atlas of the spectrum of a platinum/neon hollow-cathode reference lamp in the region 1130-4330 A
NASA Technical Reports Server (NTRS)
Sansonetti, Jean E.; Reader, Joseph; Sansonetti, Craig J.; Acquista, Nicolo
1992-01-01
The spectrum of a platinum hollow-cathode lamp containing neon carrier gas was recorded photographically and photoelectrically with a 10.7 m normal-incidence vacuum spectrograph. Wavelengths and intensities were determined for about 5600 lines in the region 1130-4330 A. An atlas of the spectrum is given, with the spectral lines marked and their intensities, wavelengths, and classifications listed. Lines of impurity species are also identified. The uncertainty of the photographically measured wavelengths is estimated to be +/- 0.0020 A. The uncertainty of lines measured in the photoelectric scans is 0.01 A for wavelengths shorter than 2030 A and 0.02 A for longer wavelengths. Ritz-type wavelengths are given for many of the classified lines of Pt II with uncertainties varying from +/- 0.0004 to +/- 0.0025 A. The uncertainty of the relative intensities is estimated to be about 20 percent.
Padoan, Andrea; Antonelli, Giorgia; Aita, Ada; Sciacovelli, Laura; Plebani, Mario
2017-10-26
The present study was prompted by the ISO 15189 requirements that medical laboratories should estimate measurement uncertainty (MU). The method used to estimate MU included the: a) identification of quantitative tests, b) classification of tests in relation to their clinical purpose, and c) identification of criteria to estimate the different MU components. Imprecision was estimated using long-term internal quality control (IQC) results of the year 2016, while external quality assessment schemes (EQAs) results obtained in the period 2015-2016 were used to estimate bias and bias uncertainty. A total of 263 measurement procedures (MPs) were analyzed. On the basis of test purpose, in 51 MPs imprecision only was used to estimate MU; in the remaining MPs, the bias component was not estimable for 22 MPs because EQAs results did not provide reliable statistics. For a total of 28 MPs, two or more MU values were calculated on the basis of analyte concentration levels. Overall, results showed that uncertainty of bias is a minor factor contributing to MU, the bias component being the most relevant contributor to all the studied sample matrices. The model chosen for MU estimation allowed us to derive a standardized approach for bias calculation, with respect to the fitness-for-purpose of test results. Measurement uncertainty estimation could readily be implemented in medical laboratories as a useful tool in monitoring the analytical quality of test results since they are calculated using a combination of both the long-term imprecision IQC results and bias, on the basis of EQAs results.
Data Applicability of Heritage and New Hardware for Launch Vehicle System Reliability Models
NASA Technical Reports Server (NTRS)
Al Hassan Mohammad; Novack, Steven
2015-01-01
Many launch vehicle systems are designed and developed using heritage and new hardware. In most cases, the heritage hardware undergoes modifications to fit new functional system requirements, impacting the failure rates and, ultimately, the reliability data. New hardware, which lacks historical data, is often compared to like systems when estimating failure rates. Some qualification of applicability for the data source to the current system should be made. Accurately characterizing the reliability data applicability and quality under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This presentation will demonstrate a data-source classification method that ranks reliability data according to applicability and quality criteria to a new launch vehicle. This method accounts for similarities/dissimilarities in source and applicability, as well as operating environments like vibrations, acoustic regime, and shock. This classification approach will be followed by uncertainty-importance routines to assess the need for additional data to reduce uncertainty.
Early Validation of Sentinel-2 L2A Processor and Products
NASA Astrophysics Data System (ADS)
Pflug, Bringfried; Main-Knorn, Magdalena; Bieniarz, Jakub; Debaecker, Vincent; Louis, Jerome
2016-08-01
Sentinel-2 is a constellation of two polar orbiting satellite units each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23, 2015 and Sentinel-2B will follow in 2017.The Level-2A (L2A) processor Sen2Cor implemented for Sentinel-2 data provides a scene classification image, aerosol optical thickness (AOT) and water vapour (WV) maps and the Bottom-Of-Atmosphere (BOA) corrected reflectance product. First validation results of Sen2Cor scene classification showed an overall accuracy of 81%. AOT at 550 nm is estimated by Sen2Cor with uncertainty of 0.035 for cloudless images and locations with dense dark vegetation (DDV) pixels present in the image. Aerosol estimation fails if the image contains no DDV-pixels. Mean difference between Sen2Cor WV and ground-truth is 0.29 cm. Uncertainty of up to 0.04 was found for the BOA- reflectance product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chanyoung; Kim, Nam H.
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, H; Chen, Z; Nath, R
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less
Beekhuizen, Johan; Heuvelink, Gerard B M; Huss, Anke; Bürgi, Alfred; Kromhout, Hans; Vermeulen, Roel
2014-11-01
With the increased availability of spatial data and computing power, spatial prediction approaches have become a standard tool for exposure assessment in environmental epidemiology. However, such models are largely dependent on accurate input data. Uncertainties in the input data can therefore have a large effect on model predictions, but are rarely quantified. With Monte Carlo simulation we assessed the effect of input uncertainty on the prediction of radio-frequency electromagnetic fields (RF-EMF) from mobile phone base stations at 252 receptor sites in Amsterdam, The Netherlands. The impact on ranking and classification was determined by computing the Spearman correlations and weighted Cohen's Kappas (based on tertiles of the RF-EMF exposure distribution) between modelled values and RF-EMF measurements performed at the receptor sites. The uncertainty in modelled RF-EMF levels was large with a median coefficient of variation of 1.5. Uncertainty in receptor site height, building damping and building height contributed most to model output uncertainty. For exposure ranking and classification, the heights of buildings and receptor sites were the most important sources of uncertainty, followed by building damping, antenna- and site location. Uncertainty in antenna power, tilt, height and direction had a smaller impact on model performance. We quantified the effect of input data uncertainty on the prediction accuracy of an RF-EMF environmental exposure model, thereby identifying the most important sources of uncertainty and estimating the total uncertainty stemming from potential errors in the input data. This approach can be used to optimize the model and better interpret model output. Copyright © 2014 Elsevier Inc. All rights reserved.
Safety envelope for load tolerance of structural element design based on multi-stage testing
Park, Chanyoung; Kim, Nam H.
2016-09-06
Structural elements, such as stiffened panels and lap joints, are basic components of aircraft structures. For aircraft structural design, designers select predesigned elements satisfying the design load requirement based on their load-carrying capabilities. Therefore, estimation of safety envelope of structural elements for load tolerances would be a good investment for design purpose. In this article, a method of estimating safety envelope is presented using probabilistic classification, which can estimate a specific level of failure probability under both aleatory and epistemic uncertainties. An important contribution of this article is that the calculation uncertainty is reflected in building a safety envelope usingmore » Gaussian process, and the effect of element test data on reducing the calculation uncertainty is incorporated by updating the Gaussian process model with the element test data. It is shown that even one element test can significantly reduce the calculation uncertainty due to lacking knowledge of actual physics, so that conservativeness in a safety envelope is significantly reduced. The proposed approach was demonstrated with a cantilever beam example, which represents a structural element. The example shows that calculation uncertainty provides about 93% conservativeness against the uncertainty due to a few element tests. As a result, it is shown that even a single element test can increase the load tolerance modeled with the safety envelope by 20%.« less
Stage classification and prognosis: an intersection of medicine, quantum physics and religion?
Detterbeck, Frank C
2011-11-01
Estimating prognosis is an important part of caring for patients with cancer. However, predicting prognosis is complicated and depends on many factors. Simply amassing more data alone is not the answer; we have to learn to intellectually manage the inherent complexity and uncertainty if we are to make progress.
Modeling habitat dynamics accounting for possible misclassification
Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.
2012-01-01
Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.
Viorica, Daniela; Jemna, Danut; Pintilescu, Carmen; Asandului, Mircea
2014-01-01
The objective of this paper is to verify the hypotheses presented in the literature on the causal relationship between inflation and its uncertainty, for the newest EU countries. To ensure the robustness of the results, in the study four models for inflation uncertainty are estimated in parallel: ARCH (1), GARCH (1,1), EGARCH (1,1,1) and PARCH (1,1,1). The Granger method is used to test the causality between two variables. The working hypothesis is that groups of countries with a similar political and economic background in 1990 and are likely to be characterized by the same causal relationship between inflation and inflation uncertainty. Empirical results partially confirm this hypothesis. Jel Classification C22, E31, E37. PMID:24633073
NASA Astrophysics Data System (ADS)
Jang, C. S.; Liu, C. W.
2014-12-01
The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK (Xiayoukeng), and MC (Macao) with low discharge rates, and low or moderate temperatures, particularly in riverbeds or valleys.Keywords: Spring; Temperature; Discharge rate; Indicator kriging; Uncertainty
Source Data Impacts on Epistemic Uncertainty for Launch Vehicle Fault Tree Models
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Novack, Steven; Ring, Robert
2016-01-01
Launch vehicle systems are designed and developed using both heritage and new hardware. Design modifications to the heritage hardware to fit new functional system requirements can impact the applicability of heritage reliability data. Risk estimates for newly designed systems must be developed from generic data sources such as commercially available reliability databases using reliability prediction methodologies, such as those addressed in MIL-HDBK-217F. Failure estimates must be converted from the generic environment to the specific operating environment of the system in which it is used. In addition, some qualification of applicability for the data source to the current system should be made. Characterizing data applicability under these circumstances is crucial to developing model estimations that support confident decisions on design changes and trade studies. This paper will demonstrate a data-source applicability classification method for suggesting epistemic component uncertainty to a target vehicle based on the source and operating environment of the originating data. The source applicability is determined using heuristic guidelines while translation of operating environments is accomplished by applying statistical methods to MIL-HDK-217F tables. The paper will provide one example for assigning environmental factors uncertainty when translating between operating environments for the microelectronic part-type components. The heuristic guidelines will be followed by uncertainty-importance routines to assess the need for more applicable data to reduce model uncertainty.
Uncertainty Management for Diagnostics and Prognostics of Batteries using Bayesian Techniques
NASA Technical Reports Server (NTRS)
Saha, Bhaskar; Goebel, kai
2007-01-01
Uncertainty management has always been the key hurdle faced by diagnostics and prognostics algorithms. A Bayesian treatment of this problem provides an elegant and theoretically sound approach to the modern Condition- Based Maintenance (CBM)/Prognostic Health Management (PHM) paradigm. The application of the Bayesian techniques to regression and classification in the form of Relevance Vector Machine (RVM), and to state estimation as in Particle Filters (PF), provides a powerful tool to integrate the diagnosis and prognosis of battery health. The RVM, which is a Bayesian treatment of the Support Vector Machine (SVM), is used for model identification, while the PF framework uses the learnt model, statistical estimates of noise and anticipated operational conditions to provide estimates of remaining useful life (RUL) in the form of a probability density function (PDF). This type of prognostics generates a significant value addition to the management of any operation involving electrical systems.
NASA Astrophysics Data System (ADS)
Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; Zhang, Guodong; Yan, Wei; Li, Jiaxuan; Li, Bo; Dan, Li; Fisher, Joshua B.; Gao, Zhiqiang; He, Yong; Huntzinger, Deborah; Jain, Atul K.; Mao, Jiafu; Meng, Jihua; Michalak, Anna M.; Parazoo, Nicholas C.; Peng, Changhui; Poulter, Benjamin; Schwalm, Christopher R.; Shi, Xiaoying; Sun, Rui; Tao, Fulu; Tian, Hanqin; Wei, Yaxing; Zeng, Ning; Zhu, Qiuan; Zhu, Wenquan
2016-05-01
Despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr-1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36% and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr-1 during 1981-2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.
Carbon storage in China's forest ecosystems: estimation by different integrative methods.
Peng, Shunlei; Wen, Ding; He, Nianpeng; Yu, Guirui; Ma, Anna; Wang, Qiufeng
2016-05-01
Carbon (C) storage for all the components, especially dead mass and soil organic carbon, was rarely reported and remained uncertainty in China's forest ecosystems. This study used field-measured data published between 2004 and 2014 to estimate C storage by three forest type classifications and three spatial interpolations and assessed the uncertainty in C storage resulting from different integrative methods in China's forest ecosystems. The results showed that C storage in China's forest ecosystems ranged from 30.99 to 34.96 Pg C by the six integrative methods. We detected 5.0% variation (coefficient of variation, CV, %) among the six methods, which was influenced mainly by soil C estimates. Soil C density and storage in the 0-100 cm soil layer were estimated to be 136.11-153.16 Mg C·ha(-1) and 20.63-23.21 Pg C, respectively. Dead mass C density and storage were estimated to be 3.66-5.41 Mg C·ha(-1) and 0.68-0.82 Pg C, respectively. Mean C storage in China's forest ecosystems estimated by the six integrative methods was 8.557 Pg C (25.8%) for aboveground biomass, 1.950 Pg C (5.9%) for belowground biomass, 0.697 Pg C (2.1%) for dead mass, and 21.958 Pg C (66.2%) for soil organic C in the 0-100 cm soil layer. The R:S ratio was 0.23, and C storage in the soil was 2.1 times greater than in the vegetation. Carbon storage estimates with respect to forest type classification (38 forest subtypes) were closer to the average value than those calculated using the spatial interpolation methods. Variance among different methods and data sources may partially explain the high uncertainty of C storage detected by different studies. This study demonstrates the importance of using multimethodological approaches to estimate C storage accurately in the large-scale forest ecosystems.
NASA Astrophysics Data System (ADS)
Connor, C.; Connor, L.; White, J.
2015-12-01
Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.
Barazzetti Barbieri, Cristina; de Souza Sarkis, Jorge Eduardo
2018-07-01
The forensic interpretation of environmental analytical data is usually challenging due to the high geospatial variability of these data. The measurements' uncertainty includes contributions from the sampling and from the sample handling and preparation processes. These contributions are often disregarded in analytical techniques results' quality assurance. A pollution crime investigation case was used to carry out a methodology able to address these uncertainties in two different environmental compartments, freshwater sediments and landfill leachate. The methodology used to estimate the uncertainty was the duplicate method (that replicates predefined steps of the measurement procedure in order to assess its precision) and the parameters used to investigate the pollution were metals (Cr, Cu, Ni, and Zn) in the leachate, the suspect source, and in the sediment, the possible sink. The metal analysis results were compared to statutory limits and it was demonstrated that Cr and Ni concentrations in sediment samples exceeded the threshold levels at all sites downstream the pollution sources, considering the expanded uncertainty U of the measurements and a probability of contamination >0.975, at most sites. Cu and Zn concentrations were above the statutory limits at two sites, but the classification was inconclusive considering the uncertainties of the measurements. Metal analyses in leachate revealed that Cr concentrations were above the statutory limits with a probability of contamination >0.975 in all leachate ponds while the Cu, Ni and Zn probability of contamination was below 0.025. The results demonstrated that the estimation of the sampling uncertainty, which was the dominant component of the combined uncertainty, is required for a comprehensive interpretation of the environmental analyses results, particularly in forensic cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Different methodologies to quantify uncertainties of air emissions.
Romano, Daniela; Bernetti, Antonella; De Lauretis, Riccardo
2004-10-01
Characterization of the uncertainty associated with air emission estimates is of critical importance especially in the compilation of air emission inventories. In this paper, two different theories are discussed and applied to evaluate air emissions uncertainty. In addition to numerical analysis, which is also recommended in the framework of the United Nation Convention on Climate Change guidelines with reference to Monte Carlo and Bootstrap simulation models, fuzzy analysis is also proposed. The methodologies are discussed and applied to an Italian example case study. Air concentration values are measured from two electric power plants: a coal plant, consisting of two boilers and a fuel oil plant, of four boilers; the pollutants considered are sulphur dioxide (SO(2)), nitrogen oxides (NO(X)), carbon monoxide (CO) and particulate matter (PM). Monte Carlo, Bootstrap and fuzzy methods have been applied to estimate uncertainty of these data. Regarding Monte Carlo, the most accurate results apply to Gaussian distributions; a good approximation is also observed for other distributions with almost regular features either positive asymmetrical or negative asymmetrical. Bootstrap, on the other hand, gives a good uncertainty estimation for irregular and asymmetrical distributions. The logic of fuzzy analysis, where data are represented as vague and indefinite in opposition to the traditional conception of neatness, certain classification and exactness of the data, follows a different description. In addition to randomness (stochastic variability) only, fuzzy theory deals with imprecision (vagueness) of data. Fuzzy variance of the data set was calculated; the results cannot be directly compared with empirical data but the overall performance of the theory is analysed. Fuzzy theory may appear more suitable for qualitative reasoning than for a quantitative estimation of uncertainty, but it suits well when little information and few measurements are available and when distributions of data are not properly known.
Estimates of emergency operating capacity in US manufacturing and nonmanufacturing industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.B.; Serot, D.E.; Kellogg, M.A.
1991-03-01
Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner that allows evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study, conducted by Pacific Northwest Laboratory (PNL), developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key non-manufacturing sectors. This volume presents tabular and graphical results of the historical analysis and projections for each SIC industry. (JF)
Breen, Michael S.; Long, Thomas C.; Schultz, Bradley D.; Crooks, James; Breen, Miyuki; Langstaff, John E.; Isaacs, Kristin K.; Tan, Yu-Mei; Williams, Ronald W.; Cao, Ye; Geller, Andrew M.; Devlin, Robert B.; Batterman, Stuart A.; Buckley, Timothy J.
2014-01-01
A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time–location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. PMID:24619294
Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi; ...
2016-04-28
Here, despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr –1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36%more » and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr –1 during 1981–2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Junjiong; Zhou, Xuhui; Luo, Yiqi
Here, despite the importance of net primary productivity (NPP) and net biome productivity (NBP), estimates of NPP and NBP for China are highly uncertain. To investigate the main sources of uncertainty, we synthesized model estimates of NPP and NBP for China from published literature and the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP). The literature-based results showed that total NPP and NBP in China were 3.35 ± 1.25 and 0.14 ± 0.094 Pg C yr –1, respectively. Classification and regression tree analysis based on literature data showed that model type was the primary source of the uncertainty, explaining 36%more » and 64% of the variance in NPP and NBP, respectively. Spatiotemporal scales, land cover conditions, inclusion of the N cycle, and effects of N addition also contributed to the overall uncertainty. Results based on the MsTMIP data suggested that model structures were overwhelmingly important (>90%) for the overall uncertainty compared to simulations with different combinations of time-varying global change factors. The interannual pattern of NPP was similar among diverse studies and increased by 0.012 Pg C yr –1 during 1981–2000. In addition, high uncertainty in China's NPP occurred in areas with high productivity, whereas NBP showed the opposite pattern. Our results suggest that to significantly reduce uncertainty in estimated NPP and NBP, model structures should be substantially tested on the basis of empirical results. To this end, coordinated distributed experiments with multiple global change factors might be a practical approach that can validate specific structures of different models.« less
Accounting for control mislabeling in case-control biomarker studies.
Rantalainen, Mattias; Holmes, Chris C
2011-12-02
In biomarker discovery studies, uncertainty associated with case and control labels is often overlooked. By omitting to take into account label uncertainty, model parameters and the predictive risk can become biased, sometimes severely. The most common situation is when the control set contains an unknown number of undiagnosed, or future, cases. This has a marked impact in situations where the model needs to be well-calibrated, e.g., when the prediction performance of a biomarker panel is evaluated. Failing to account for class label uncertainty may lead to underestimation of classification performance and bias in parameter estimates. This can further impact on meta-analysis for combining evidence from multiple studies. Using a simulation study, we outline how conventional statistical models can be modified to address class label uncertainty leading to well-calibrated prediction performance estimates and reduced bias in meta-analysis. We focus on the problem of mislabeled control subjects in case-control studies, i.e., when some of the control subjects are undiagnosed cases, although the procedures we report are generic. The uncertainty in control status is a particular situation common in biomarker discovery studies in the context of genomic and molecular epidemiology, where control subjects are commonly sampled from the general population with an established expected disease incidence rate.
Quantifying uncertainty in carbon and nutrient pools of coarse woody debris
NASA Astrophysics Data System (ADS)
See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.
2016-12-01
Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.
NASA Astrophysics Data System (ADS)
Chen, C.; Box, J. E.; Hock, R. M.; Cogley, J. G.
2011-12-01
Current estimates of global Mountain Glacier and Ice Caps (MG&IC) mass changes are subject to large uncertainties due to incomplete inventories and uncertainties in land surface classification. This presentation features mitigative efforts through the creation of a MODIS dependent land ice classification system and its application for glacier inventory. Estimates of total area of mountain glaciers [IPCC, 2007] and ice caps (including those in Greenland and Antarctica) vary 15%, that is, 680 - 785 10e3 sq. km. To date only an estimated 40% of glaciers (by area) is inventoried in the World Glacier Inventory (WGI) and made available through the World Glacier Monitoring System (WGMS) and the National Snow and Ice Data Center [NSIDC, 1999]. Cogley [2009] recently compiled a more complete version of WGI, called WGI-XF, containing records for just over 131,000 glaciers, covering approximately half of the estimated global MG&IC area. The glaciers isolated from the conterminous Antarctic and Greenland ice sheets remain incompletely inventoried in WGI-XF but have been estimated to contribute 35% to the MG&IC sea-level equivalent during 1961-2004 [Hock et al., 2009]. Together with Arctic Canada and Alaska these regions alone make up almost 90% of the area that is missing in the global WGI-XF inventory. Global mass balance projections tend to exclude ice masses in Greenland and Antarctica due to the paucity of data with respect to basic inventory base data such as area, number of glaciers or size distributions. We address the need for an accurate Greenland and Antarctic peninsula land surface classification with a novel glacier surface classification and inventory based on NASA Moderate Resolution Imaging Spectroradiometer (MODIS) data gridded at 250 m pixel resolution. The presentation includes a sensitivity analysis for surface mass balance as it depends on the land surface classification. Works Cited +Cogley, J. G. (2009), A more complete version of the World Glacier Inventory, Ann. Glaciol. 50(53). +Hock, R., M. de Woul, V. Radi and M. Dyurgerov, 2009. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501, doi:10.1029/2008GL037020. +IPCC, Climate Change 2007 The Physical Science Basis, 2007. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S. et al.) Cambridge University Press, Cambridge, UK.
Classification framework for partially observed dynamical systems
NASA Astrophysics Data System (ADS)
Shen, Yuan; Tino, Peter; Tsaneva-Atanasova, Krasimira
2017-04-01
We present a general framework for classifying partially observed dynamical systems based on the idea of learning in the model space. In contrast to the existing approaches using point estimates of model parameters to represent individual data items, we employ posterior distributions over model parameters, thus taking into account in a principled manner the uncertainty due to both the generative (observational and/or dynamic noise) and observation (sampling in time) processes. We evaluate the framework on two test beds: a biological pathway model and a stochastic double-well system. Crucially, we show that the classification performance is not impaired when the model structure used for inferring posterior distributions is much more simple than the observation-generating model structure, provided the reduced-complexity inferential model structure captures the essential characteristics needed for the given classification task.
Estimation of the diagnostic threshold accounting for decision costs and sampling uncertainty.
Skaltsa, Konstantina; Jover, Lluís; Carrasco, Josep Lluís
2010-10-01
Medical diagnostic tests are used to classify subjects as non-diseased or diseased. The classification rule usually consists of classifying subjects using the values of a continuous marker that is dichotomised by means of a threshold. Here, the optimum threshold estimate is found by minimising a cost function that accounts for both decision costs and sampling uncertainty. The cost function is optimised either analytically in a normal distribution setting or empirically in a free-distribution setting when the underlying probability distributions of diseased and non-diseased subjects are unknown. Inference of the threshold estimates is based on approximate analytically standard errors and bootstrap-based approaches. The performance of the proposed methodology is assessed by means of a simulation study, and the sample size required for a given confidence interval precision and sample size ratio is also calculated. Finally, a case example based on previously published data concerning the diagnosis of Alzheimer's patients is provided in order to illustrate the procedure.
NASA Astrophysics Data System (ADS)
Ribera, Javier; Tahboub, Khalid; Delp, Edward J.
2015-03-01
Video surveillance systems are widely deployed for public safety. Real-time monitoring and alerting are some of the key requirements for building an intelligent video surveillance system. Real-life settings introduce many challenges that can impact the performance of real-time video analytics. Video analytics are desired to be resilient to adverse and changing scenarios. In this paper we present various approaches to characterize the uncertainty of a classifier and incorporate crowdsourcing at the times when the method is uncertain about making a particular decision. Incorporating crowdsourcing when a real-time video analytic method is uncertain about making a particular decision is known as online active learning from crowds. We evaluate our proposed approach by testing a method we developed previously for crowd flow estimation. We present three different approaches to characterize the uncertainty of the classifier in the automatic crowd flow estimation method and test them by introducing video quality degradations. Criteria to aggregate crowdsourcing results are also proposed and evaluated. An experimental evaluation is conducted using a publicly available dataset.
Classification images reveal decision variables and strategies in forced choice tasks
Pritchett, Lisa M.; Murray, Richard F.
2015-01-01
Despite decades of research, there is still uncertainty about how people make simple decisions about perceptual stimuli. Most theories assume that perceptual decisions are based on decision variables, which are internal variables that encode task-relevant information. However, decision variables are usually considered to be theoretical constructs that cannot be measured directly, and this often makes it difficult to test theories of perceptual decision making. Here we show how to measure decision variables on individual trials, and we use these measurements to test theories of perceptual decision making more directly than has previously been possible. We measure classification images, which are estimates of templates that observers use to extract information from stimuli. We then calculate the dot product of these classification images with the stimuli to estimate observers' decision variables. Finally, we reconstruct each observer's “decision space,” a map that shows the probability of the observer’s responses for all values of the decision variables. We use this method to examine decision strategies in two-alternative forced choice (2AFC) tasks, for which there are several competing models. In one experiment, the resulting decision spaces support the difference model, a classic theory of 2AFC decisions. In a second experiment, we find unexpected decision spaces that are not predicted by standard models of 2AFC decisions, and that suggest intrinsic uncertainty or soft thresholding. These experiments give new evidence regarding observers’ strategies in 2AFC tasks, and they show how measuring decision variables can answer long-standing questions about perceptual decision making. PMID:26015584
Optimal threshold estimation for binary classifiers using game theory.
Sanchez, Ignacio Enrique
2016-01-01
Many bioinformatics algorithms can be understood as binary classifiers. They are usually compared using the area under the receiver operating characteristic ( ROC ) curve. On the other hand, choosing the best threshold for practical use is a complex task, due to uncertain and context-dependent skews in the abundance of positives in nature and in the yields/costs for correct/incorrect classification. We argue that considering a classifier as a player in a zero-sum game allows us to use the minimax principle from game theory to determine the optimal operating point. The proposed classifier threshold corresponds to the intersection between the ROC curve and the descending diagonal in ROC space and yields a minimax accuracy of 1-FPR. Our proposal can be readily implemented in practice, and reveals that the empirical condition for threshold estimation of "specificity equals sensitivity" maximizes robustness against uncertainties in the abundance of positives in nature and classification costs.
Probabilistic Space Weather Forecasting: a Bayesian Perspective
NASA Astrophysics Data System (ADS)
Camporeale, E.; Chandorkar, M.; Borovsky, J.; Care', A.
2017-12-01
Most of the Space Weather forecasts, both at operational and research level, are not probabilistic in nature. Unfortunately, a prediction that does not provide a confidence level is not very useful in a decision-making scenario. Nowadays, forecast models range from purely data-driven, machine learning algorithms, to physics-based approximation of first-principle equations (and everything that sits in between). Uncertainties pervade all such models, at every level: from the raw data to finite-precision implementation of numerical methods. The most rigorous way of quantifying the propagation of uncertainties is by embracing a Bayesian probabilistic approach. One of the simplest and most robust machine learning technique in the Bayesian framework is Gaussian Process regression and classification. Here, we present the application of Gaussian Processes to the problems of the DST geomagnetic index forecast, the solar wind type classification, and the estimation of diffusion parameters in radiation belt modeling. In each of these very diverse problems, the GP approach rigorously provide forecasts in the form of predictive distributions. In turn, these distributions can be used as input for ensemble simulations in order to quantify the amplification of uncertainties. We show that we have achieved excellent results in all of the standard metrics to evaluate our models, with very modest computational cost.
NASA Astrophysics Data System (ADS)
Fytilis, N.; Rizzo, D. M.
2012-12-01
Environmental managers are increasingly required to forecast the long-term effects and the resilience or vulnerability of biophysical systems to human-generated stresses. Mitigation strategies for hydrological and environmental systems need to be assessed in the presence of uncertainty. An important aspect of such complex systems is the assessment of variable uncertainty on the model response outputs. We develop a new classification tool that couples a Naïve Bayesian Classifier with a modified Kohonen Self-Organizing Map to tackle this challenge. For proof-of-concept, we use rapid geomorphic and reach-scale habitat assessments data from over 2500 Vermont stream reaches (~1371 stream miles) assessed by the Vermont Agency of Natural Resources (VTANR). In addition, the Vermont Department of Environmental Conservation (VTDEC) estimates stream habitat biodiversity indices (macro-invertebrates and fish) and a variety of water quality data. Our approach fully utilizes the existing VTANR and VTDEC data sets to improve classification of stream-reach habitat and biological integrity. The combined SOM-Naïve Bayesian architecture is sufficiently flexible to allow for continual updates and increased accuracy associated with acquiring new data. The Kohonen Self-Organizing Map (SOM) is an unsupervised artificial neural network that autonomously analyzes properties inherent in a given a set of data. It is typically used to cluster data vectors into similar categories when a priori classes do not exist. The ability of the SOM to convert nonlinear, high dimensional data to some user-defined lower dimension and mine large amounts of data types (i.e., discrete or continuous, biological or geomorphic data) makes it ideal for characterizing the sensitivity of river networks in a variety of contexts. The procedure is data-driven, and therefore does not require the development of site-specific, process-based classification stream models, or sets of if-then-else rules associated with expert systems. This has the potential to save time and resources, while enabling a truly adaptive management approach using existing knowledge (expressed as prior probabilities) and new information (expressed as likelihood functions) to update estimates (i.e., in this case, improved stream classifications expressed as posterior probabilities). The distribution parameters of these posterior probabilities are used to quantify uncertainty associated with environmental data. Since classification plays a leading role in the future development of data-enabled science and engineering, such a computational tool is applicable to a variety of engineering applications. The ability of the new classification neural network to characterize streams with high environmental risk is essential for a proactive adaptive watershed management approach.
Cost-effectiveness of a classification-based system for sub-acute and chronic low back pain.
Apeldoorn, Adri T; Bosmans, Judith E; Ostelo, Raymond W; de Vet, Henrica C W; van Tulder, Maurits W
2012-07-01
Identifying relevant subgroups in patients with low back pain (LBP) is considered important to guide physical therapy practice and to improve outcomes. The aim of the present study was to assess the cost-effectiveness of a modified version of Delitto's classification-based treatment approach compared with usual physical therapy care in patients with sub-acute and chronic LBP with 1 year follow-up. All patients were classified using the modified version of Delitto's classification-based system and then randomly assigned to receive either classification-based treatment or usual physical therapy care. The main clinical outcomes measured were; global perceived effect, intensity of pain, functional disability and quality of life. Costs were measured from a societal perspective. Multiple imputations were used for missing data. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios was estimated using bootstrapping. Cost-effectiveness planes and cost-effectiveness acceptability curves were estimated. In total, 156 patients were included. The outcome analyses showed a significantly better outcome on global perceived effect favoring the classification-based approach, and no differences between the groups on pain, disability and quality-adjusted life-years. Mean total societal costs for the classification-based group were
Classification of CO2 Geologic Storage: Resource and Capacity
Frailey, S.M.; Finley, R.J.
2009-01-01
The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of these terms and how storage classification changes as new data become available. ?? 2009 Elsevier Ltd. All rights reserved.
Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunyuan; Stevens, Andrew J.; Chen, Changyou
2016-08-10
Learning the representation of shape cues in 2D & 3D objects for recognition is a fundamental task in computer vision. Deep neural networks (DNNs) have shown promising performance on this task. Due to the large variability of shapes, accurate recognition relies on good estimates of model uncertainty, ignored in traditional training of DNNs, typically learned via stochastic optimization. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (SG-MCMC) to learn weight uncertainty in DNNs. It yields principled Bayesian interpretations for the commonly used Dropout/DropConnect techniques and incorporates them into the SG-MCMC framework. Extensive experiments on 2D &more » 3D shape datasets and various DNN models demonstrate the superiority of the proposed approach over stochastic optimization. Our approach yields higher recognition accuracy when used in conjunction with Dropout and Batch-Normalization.« less
Wan, Neng; Lin, Ge
2016-12-01
Smartphones have emerged as a promising type of equipment for monitoring human activities in environmental health studies. However, degraded location accuracy and inconsistency of smartphone-measured GPS data have limited its effectiveness for classifying human activity patterns. This study proposes a fuzzy classification scheme for differentiating human activity patterns from smartphone-collected GPS data. Specifically, a fuzzy logic reasoning was adopted to overcome the influence of location uncertainty by estimating the probability of different activity types for single GPS points. Based on that approach, a segment aggregation method was developed to infer activity patterns, while adjusting for uncertainties of point attributes. Validations of the proposed methods were carried out based on a convenient sample of three subjects with different types of smartphones. The results indicate desirable accuracy (e.g., up to 96% in activity identification) with use of this method. Two examples were provided in the appendix to illustrate how the proposed methods could be applied in environmental health studies. Researchers could tailor this scheme to fit a variety of research topics.
Tracking an Exodus: Lost Children of the Dwarf Planet Haumea
NASA Astrophysics Data System (ADS)
Maggard, Steven; Ragozzine, Darin
2017-10-01
The orbital properties of Kuiper Belt Objects (KBOs) refine our understanding of the formation of the solar system. One object of particular interest is the dwarf planet Haumea which experienced a collision in the early stages of our solar system that ejected shards form its surface and spread them over a localized part of the Kuiper Belt. Detailed orbital integrations are required to determine the dynamical distances between family members, in the form of "Delta v" as measured from conserved proper orbital elements (Ragozzine & Brown 2007). In the past 10 years, the number of known KBOs has tripled; here, we perform dynamical integrations to triple the number of candidate Haumea family members. The resulting improved understanding of Haumea's family will bring us closer to understanding its formation. In order to place more secure estimates on the dynamical classification of Haumea family members (and KBOs generally), we use OpenOrb to perform rigorous Bayesian uncertainty propagation from observational uncertainty into orbital elements and then into dynamical classifications. We will discuss our methodology, the new Haumea family members, and some implications for the Haumea family.
Aquifer Hydrogeologic Layer Zonation at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savelieva-Trofimova, Elena A.; Kanevski, Mikhail; timonin, v.
2003-09-10
Sedimentary aquifer layers are characterized by spatial variability of hydraulic properties. Nevertheless, zones with similar values of hydraulic parameters (parameter zones) can be distinguished. This parameter zonation approach is an alternative to the analysis of spatial variation of the continuous hydraulic parameters. The parameter zonation approach is primarily motivated by the lack of measurements that would be needed for direct spatial modeling of the hydraulic properties. The current work is devoted to the problem of zonation of the Hanford formation, the uppermost sedimentary aquifer unit (U1) included in hydrogeologic models at the Hanford site. U1 is characterized by 5 zonesmore » with different hydraulic properties. Each sampled location is ascribed to a parameter zone by an expert. This initial classification is accompanied by a measure of quality (also indicated by an expert) that addresses the level of classification confidence. In the current study, the coneptual zonation map developed by an expert geologist was used as an a priori model. The parameter zonation problem was formulated as a multiclass classification task. Different geostatistical and machine learning algorithms were adapted and applied to solve this problem, including: indicator kriging, conditional simulations, neural networks of different architectures, and support vector machines. All methods were trained using additional soft information based on expert estimates. Regularization methods were used to overcome possible overfitting. The zonation problem was complicated because there were few samples for some zones (classes) and by the spatial non-stationarity of the data. Special approaches were developed to overcome these complications. The comparison of different methods was performed using qualitative and quantitative statistical methods and image analysis. We examined the correspondence of the results with the geologically based interpretation, including the reproduction of the spatial orientation of the different classes and the spatial correlation structure of the classes. The uncertainty of the classification task was examined using both probabilistic interpretation of the estimators and by examining the results of a set of stochastic realizations. Characterization of the classification uncertainty is the main advantage of the proposed methods.« less
Developing a probability-based model of aquifer vulnerability in an agricultural region
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei
2013-04-01
SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.
Alexander, Paul E; Bero, Lisa; Montori, Victor M; Brito, Juan Pablo; Stoltzfus, Rebecca; Djulbegovic, Benjamin; Neumann, Ignacio; Rave, Supriya; Guyatt, Gordon
2014-06-01
Expert guideline panelists are sometimes reluctant to offer weak/conditional/contingent recommendations. Grading of Recommendations Assessment, Development and Evaluation (GRADE) guidance warns against strong recommendations when confidence in effect estimates is low or very low, suggesting that such recommendations may seldom be justified. We aim to characterize the classification of strength of recommendations and confidence in estimates in World Health Organization (WHO) guidelines that used the GRADE approach and graded both strength and confidence (GRADEd). We reviewed all WHO guidelines (January 2007 to December 2012), identified those that were GRADEd, and, in these, examined the classifications of strong and weak and associated confidence in estimates (high, moderate, low, and very low). We identified 116 WHO guidelines in which 43 (37%) were GRADEd and had 456 recommendations, of which 289 (63.4%) were strong and 167 (36.6%) were conditional/weak. Of the 289 strong recommendations, 95 (33.0%) were based on evidence warranting low confidence in estimates and 65 (22.5%) on evidence warranting very low confidence in estimates (55.5% strong recommendations overall based on low or very low confidence in estimates). Strong recommendations based on low or very low confidence estimates are very frequently made in WHO guidelines. Further study to determine the reasons for such high uncertainty recommendations is warranted. Copyright © 2014 Elsevier Inc. All rights reserved.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Van Leemput, Koen
2013-10-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer's disease classification task. As an additional benefit, the technique also allows one to compute informative "error bars" on the volume estimates of individual structures. Copyright © 2013 Elsevier B.V. All rights reserved.
Iglesias, Juan Eugenio; Sabuncu, Mert Rory; Leemput, Koen Van
2013-01-01
Many segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take. Here we propose to incorporate this uncertainty into Bayesian segmentation methods in order to improve the inference process. In particular, we approximate the required marginalization over model parameters using computationally efficient Markov chain Monte Carlo techniques. We illustrate the proposed approach using a recently developed Bayesian method for the segmentation of hippocampal subfields in brain MRI scans, showing a significant improvement in an Alzheimer’s disease classification task. As an additional benefit, the technique also allows one to compute informative “error bars” on the volume estimates of individual structures. PMID:23773521
REDD+ emissions estimation and reporting: dealing with uncertainty
NASA Astrophysics Data System (ADS)
Pelletier, Johanne; Martin, Davy; Potvin, Catherine
2013-09-01
The United Nations Framework Convention on Climate Change (UNFCCC) defined the technical and financial modalities of policy approaches and incentives to reduce emissions from deforestation and forest degradation in developing countries (REDD+). Substantial technical challenges hinder precise and accurate estimation of forest-related emissions and removals, as well as the setting and assessment of reference levels. These challenges could limit country participation in REDD+, especially if REDD+ emission reductions were to meet quality standards required to serve as compliance grade offsets for developed countries’ emissions. Using Panama as a case study, we tested the matrix approach proposed by Bucki et al (2012 Environ. Res. Lett. 7 024005) to perform sensitivity and uncertainty analysis distinguishing between ‘modelling sources’ of uncertainty, which refers to model-specific parameters and assumptions, and ‘recurring sources’ of uncertainty, which refers to random and systematic errors in emission factors and activity data. The sensitivity analysis estimated differences in the resulting fluxes ranging from 4.2% to 262.2% of the reference emission level. The classification of fallows and the carbon stock increment or carbon accumulation of intact forest lands were the two key parameters showing the largest sensitivity. The highest error propagated using Monte Carlo simulations was caused by modelling sources of uncertainty, which calls for special attention to ensure consistency in REDD+ reporting which is essential for securing environmental integrity. Due to the role of these modelling sources of uncertainty, the adoption of strict rules for estimation and reporting would favour comparability of emission reductions between countries. We believe that a reduction of the bias in emission factors will arise, among other things, from a globally concerted effort to improve allometric equations for tropical forests. Public access to datasets and methodology used to evaluate reference level and emission reductions would strengthen the credibility of the system by promoting accountability and transparency. To secure conservativeness and deal with uncertainty, we consider the need for further research using real data available to developing countries to test the applicability of conservative discounts including the trend uncertainty and other possible options that would allow real incentives and stimulate improvements over time. Finally, we argue that REDD+ result-based actions assessed on the basis of a dashboard of performance indicators, not only in ‘tonnes CO2 equ. per year’ might provide a more holistic approach, at least until better accuracy and certainty of forest carbon stocks emission and removal estimates to support a REDD+ policy can be reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer; Clifton, Andrew; Bonin, Timothy
As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing considermore » uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict errors in lidar-measured wind speed. The results show how uncertainty varies over time and can be used to help select data with different levels of uncertainty for different applications, for example, low uncertainty data for power performance testing versus all data for plant performance monitoring.« less
Performance of resonant radar target identification algorithms using intra-class weighting functions
NASA Astrophysics Data System (ADS)
Mustafa, A.
The use of calibrated resonant-region radar cross section (RCS) measurements of targets for the classification of large aircraft is discussed. Errors in the RCS estimate of full scale aircraft flying over an ocean, introduced by the ionospheric variability and the sea conditions were studied. The Weighted Target Representative (WTR) classification algorithm was developed, implemented, tested and compared with the nearest neighbor (NN) algorithm. The WTR-algorithm has a low sensitivity to the uncertainty in the aspect angle of the unknown target returns. In addition, this algorithm was based on the development of a new catalog of representative data which reduces the storage requirements and increases the computational efficiency of the classification system compared to the NN-algorithm. Experiments were designed to study and evaluate the characteristics of the WTR- and the NN-algorithms, investigate the classifiability of targets and study the relative behavior of the number of misclassifications as a function of the target backscatter features. The classification results and statistics were shown in the form of performance curves, performance tables and confusion tables.
Yoshizawa, Kazunori; Johnson, Kevin P
2008-02-01
We evaluated the higher level classification within the family Psocidae (Insecta: Psocodea: 'Psocoptera') based on combined analyses of nuclear 18S, Histone 3, wingless and mitochondrial 12S, 16S and COI gene sequences. Various analyses (inclusion/exclusion of incomplete taxa and/or rapidly evolving genes, data partitioning, and analytical method selection) all provided similar results, which were generally concordant with relationships inferred using morphological observations. Based on the phylogenetic trees estimated for Psocidae, we propose a revised higher level classification of this family, although uncertainty still exists regarding some aspects of this classification. This classification includes a basal division into two subfamilies, 'Amphigerontiinae' (possibly paraphyletic) and Psocinae. The Amphigerontiinae is divided into the tribes Kaindipsocini (new tribe), Blastini, Amphigerontini, and Stylatopsocini. Psocinae is divided into the tribes 'Ptyctini' (probably paraphyletic), Psocini, Atrichadenotecnini (new tribe), Sigmatoneurini, Metylophorini, and Thyrsophorini (the latter includes the taxon previously recognized as Cerastipsocini). We examined the evolution of symmetric/asymmetric male genitalia over this tree and found this character to be quite homoplasious.
NASA Astrophysics Data System (ADS)
Ruhoff, Anderson; Santini Adamatti, Daniela
2017-04-01
MODIS evapotranspiration (MOD16) is currently available with 1 km of spatial resolution over 109.03 Million km2 of vegetated land surface areas and this information is widely used to evaluate the linkages between hydrological, energy and carbon cycles. The algorithm is driven by meteorological reanalysis data and MODIS remotely-sensed data, which include land use and land cover classification (MCD12Q1), leaf area index (LAI) and fraction of absorbed photosynthetically active radiation (FPAR) (MOD15A2) and albedo (MOD43b3). For calibration and parameterization, the algorithm uses a Biome Property Look-up Table (BPLUT) based on MCD12Q1 land cover classification. Several studies evaluated MOD16 accuracy using evapotranspiration measurements and water balance analysis, showing that this product can reproduce global evapotranspiration effectively under a variety climate condition, from local to wide-basin scale, with uncertainties up to 25%. In this study, we evaluated the sensitivity of MOD16 algorithm to land use and land cover parameterization and to meteorological data. Considering that MCD12Q1 has an accuracy between 70 and 85% at continental scale, we changed land cover parametererization to understand the influence of land use and land cover classification on MOD16 evapotranspiration estimations. Knowing that meteorological reanalysis data also have uncertainties (mostly related to the coarse spatial resolution), we compared MOD16 evapotranspiration driven by observed meteorological data to those driven by the reanalysis data. Our analysis were carried in South America, with evapotranspiration and meteorological measurements from the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) at 8 different sites, including tropical rainforest, tropical dry forest, selective logged forest, seasonal flooded forest and pasture/agriculture. Our results indicate that land use and land cover classification has a strong influence on MOD16 algorithm. The use of incorrect parametererization due to land use and land cover misclassification can introduce large erros in estimates of evapotranspiration. We also found that the biases in meteorological reanalysis data can introduce considerable errors into the estimations. Overall, there is a significant potential for mapping and monitoring global evapotranspiration using MODIS remotely-sensed images combined to meteorological reanalysis data.
Uncovering state-dependent relationships in shallow lakes using Bayesian latent variable regression.
Vitense, Kelsey; Hanson, Mark A; Herwig, Brian R; Zimmer, Kyle D; Fieberg, John
2018-03-01
Ecosystems sometimes undergo dramatic shifts between contrasting regimes. Shallow lakes, for instance, can transition between two alternative stable states: a clear state dominated by submerged aquatic vegetation and a turbid state dominated by phytoplankton. Theoretical models suggest that critical nutrient thresholds differentiate three lake types: highly resilient clear lakes, lakes that may switch between clear and turbid states following perturbations, and highly resilient turbid lakes. For effective and efficient management of shallow lakes and other systems, managers need tools to identify critical thresholds and state-dependent relationships between driving variables and key system features. Using shallow lakes as a model system for which alternative stable states have been demonstrated, we developed an integrated framework using Bayesian latent variable regression (BLR) to classify lake states, identify critical total phosphorus (TP) thresholds, and estimate steady state relationships between TP and chlorophyll a (chl a) using cross-sectional data. We evaluated the method using data simulated from a stochastic differential equation model and compared its performance to k-means clustering with regression (KMR). We also applied the framework to data comprising 130 shallow lakes. For simulated data sets, BLR had high state classification rates (median/mean accuracy >97%) and accurately estimated TP thresholds and state-dependent TP-chl a relationships. Classification and estimation improved with increasing sample size and decreasing noise levels. Compared to KMR, BLR had higher classification rates and better approximated the TP-chl a steady state relationships and TP thresholds. We fit the BLR model to three different years of empirical shallow lake data, and managers can use the estimated bifurcation diagrams to prioritize lakes for management according to their proximity to thresholds and chance of successful rehabilitation. Our model improves upon previous methods for shallow lakes because it allows classification and regression to occur simultaneously and inform one another, directly estimates TP thresholds and the uncertainty associated with thresholds and state classifications, and enables meaningful constraints to be built into models. The BLR framework is broadly applicable to other ecosystems known to exhibit alternative stable states in which regression can be used to establish relationships between driving variables and state variables. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belzer, D.B.; Serot, D.E.; Kellogg, M.A.
1991-03-01
Development of integrated mobilization preparedness policies requires planning estimates of available productive capacity during national emergency conditions. Such estimates must be developed in a manner to allow evaluation of current trends in capacity and the consideration of uncertainties in various data inputs and in engineering assumptions. This study developed estimates of emergency operating capacity (EOC) for 446 manufacturing industries at the 4-digit Standard Industrial Classification (SIC) level of aggregation and for 24 key nonmanufacturing sectors. This volume lays out the general concepts and methods used to develop the emergency operating estimates. The historical analysis of capacity extends from 1974 throughmore » 1986. Some nonmanufacturing industries are included. In addition to mining and utilities, key industries in transportation, communication, and services were analyzed. Physical capacity and efficiency of production were measured. 3 refs., 2 figs., 12 tabs. (JF)« less
Lutz, James A.; Matchett, John R.; Tarnay, Leland W.; Smith, Douglas F.; Becker, Kendall M.L.; Furniss, Tucker J.; Brooks, Matthew L.
2017-01-01
Fire is one of the principal agents changing forest carbon stocks and landscape level distributions of carbon, but few studies have addressed how accurate carbon accounting of fire-killed trees is or can be. We used a large number of forested plots (1646), detailed selection of species-specific and location-specific allometric equations, vegetation type maps with high levels of accuracy, and Monte Carlo simulation to model the amount and uncertainty of aboveground tree carbon present in tree species (hereafter, carbon) within Yosemite and Sequoia & Kings Canyon National Parks. We estimated aboveground carbon in trees within Yosemite National Park to be 25 Tg of carbon (C) (confidence interval (CI): 23–27 Tg C), and in Sequoia & Kings Canyon National Park to be 20 Tg C (CI: 18–21 Tg C). Low-severity and moderate-severity fire had little or no effect on the amount of carbon sequestered in trees at the landscape scale, and high-severity fire did not immediately consume much carbon. Although many of our data inputs were more accurate than those used in similar studies in other locations, the total uncertainty of carbon estimates was still greater than ±10%, mostly due to potential uncertainties in landscape-scale vegetation type mismatches and trees larger than the ranges of existing allometric equations. If carbon inventories are to be meaningfully used in policy, there is an urgent need for more accurate landscape classification methods, improvement in allometric equations for tree species, and better understanding of the uncertainties inherent in existing carbon accounting methods.
Assessing the inherent uncertainty of one-dimensional diffusions
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Cohen, Morrel H.
2013-01-01
In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.
Uncertainty in Land Cover observations and its impact on near surface climate
NASA Astrophysics Data System (ADS)
Georgievski, Goran; Hagemann, Stefan
2017-04-01
Land Cover (LC) and its bio-geo-physical feedbacks are important for the understanding of climate and its vulnerability to changes on the surface of the Earth. Recently ESA has published a new LC map derived by combining remotely sensed surface reflectance and ground-truth observations. For each grid-box at 300m resolution, an estimate of confidence is provided. This LC data set can be used in climate modelling to derive land surface boundary parameters for the respective Land Surface Model (LSM). However, the ESA LC classes are not directly suitable for LSMs, therefore they need to be converted into the model specific surface presentations. Due to different design and processes implemented in various climate models they might differ in the treatment of artificial, water bodies, ice, bare or vegetated surfaces. Nevertheless, usually vegetation distribution in models is presented by means of plant functional types (PFT), which is a classification system used to simplify vegetation representation and group different vegetation types according to their biophysical characteristics. The method of LC conversion into PFT is also called "cross-walking" (CW) procedure. The CW procedure is another source of uncertainty, since it depends on model design and processes implemented and resolved by LSMs. These two sources of uncertainty, (i) due to surface reflectance conversion into LC classes, (ii) due to CW procedure, have been studied by Hartley et al (2016) to investigate their impact on LSM state variables (albedo, evapotranspiration (ET) and primary productivity) by using three standalone LSMs. The present study is a follow up to that work and aims at quantifying the impact of these two uncertainties on climate simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) using prescribed sea surface temperature and sea ice. The main focus is on the terrestrial water cycle, but the impacts on surface albedo, wind patterns, 2m temperatures, as well as plant productivity are also examined. The analysis of vegetation covered area indicates that the range of uncertainty might be about the same order of magnitude as the estimated historical anthropogenic LC change. For example, the area covered with managed grasses (crops and pasture in MPI-ESM PFT classification) varies from 17 to 26 million km2, and area covered with trees ranges from 15 million km2 up to 51 million km2. These uncertainties in vegetation distribution lead to noticeable variations in atmospheric temperature, humidity, cloud cover, circulation, and precipitation as well as local, regional and global climate forcing. For example, the amount of terrestrial ET ranges from 73 to 77 × 103 km3yr-1in MPI-ESM simulations and this range has about the same order of magnitude as the current estimate of the reduction of annual ET due to recent anthropogenic LC change. This and more impacts of LC uncertainty on the near surface climate will be presented and discussed in the context of LC change. Hartley, A.J., MacBean, N., Georgievski, G., Bontemps, S.: Uncertainty in plant functional type distributions and its impact on land surface models (in review with Remote Sensing of Environment Special Issue)
Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
NASA Astrophysics Data System (ADS)
Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.
2007-01-01
Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.
Certain and possible rules for decision making using rough set theory extended to fuzzy sets
NASA Technical Reports Server (NTRS)
Dekorvin, Andre; Shipley, Margaret F.
1993-01-01
Uncertainty may be caused by the ambiguity in the terms used to describe a specific situation. It may also be caused by skepticism of rules used to describe a course of action or by missing and/or erroneous data. To deal with uncertainty, techniques other than classical logic need to be developed. Although, statistics may be the best tool available for handling likelihood, it is not always adequate for dealing with knowledge acquisition under uncertainty. Inadequacies caused by estimating probabilities in statistical processes can be alleviated through use of the Dempster-Shafer theory of evidence. Fuzzy set theory is another tool used to deal with uncertainty where ambiguous terms are present. Other methods include rough sets, the theory of endorsements and nonmonotonic logic. J. Grzymala-Busse has defined the concept of lower and upper approximation of a (crisp) set and has used that concept to extract rules from a set of examples. We will define the fuzzy analogs of lower and upper approximations and use these to obtain certain and possible rules from a set of examples where the data is fuzzy. Central to these concepts will be the idea of the degree to which a fuzzy set A is contained in another fuzzy set B, and the degree of intersection of a set A with set B. These concepts will also give meaning to the statement; A implies B. The two meanings will be: (1) if x is certainly in A then it is certainly in B, and (2) if x is possibly in A then it is possibly in B. Next, classification will be looked at and it will be shown that if a classification will be looked at and it will be shown that if a classification is well externally definable then it is well internally definable, and if it is poorly externally definable then it is poorly internally definable, thus generalizing a result of Grzymala-Busse. Finally, some ideas of how to define consensus and group options to form clusters of rules will be given.
Global land cover mapping: a review and uncertainty analysis
Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu
2014-01-01
Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.
NASA Astrophysics Data System (ADS)
Crabit, Armand; Colin, François
2016-04-01
Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also provides significant insight into the hydrological processes operating in small ephemeral stream systems and highlights similarities/dissimilarities between catchments.
NASA Astrophysics Data System (ADS)
Maiti, Saumen; Tiwari, Ram Krishna
2010-10-01
A new probabilistic approach based on the concept of Bayesian neural network (BNN) learning theory is proposed for decoding litho-facies boundaries from well-log data. We show that how a multi-layer-perceptron neural network model can be employed in Bayesian framework to classify changes in litho-log successions. The method is then applied to the German Continental Deep Drilling Program (KTB) well-log data for classification and uncertainty estimation in the litho-facies boundaries. In this framework, a posteriori distribution of network parameter is estimated via the principle of Bayesian probabilistic theory, and an objective function is minimized following the scaled conjugate gradient optimization scheme. For the model development, we inflict a suitable criterion, which provides probabilistic information by emulating different combinations of synthetic data. Uncertainty in the relationship between the data and the model space is appropriately taken care by assuming a Gaussian a priori distribution of networks parameters (e.g., synaptic weights and biases). Prior to applying the new method to the real KTB data, we tested the proposed method on synthetic examples to examine the sensitivity of neural network hyperparameters in prediction. Within this framework, we examine stability and efficiency of this new probabilistic approach using different kinds of synthetic data assorted with different level of correlated noise. Our data analysis suggests that the designed network topology based on the Bayesian paradigm is steady up to nearly 40% correlated noise; however, adding more noise (˜50% or more) degrades the results. We perform uncertainty analyses on training, validation, and test data sets with and devoid of intrinsic noise by making the Gaussian approximation of the a posteriori distribution about the peak model. We present a standard deviation error-map at the network output corresponding to the three types of the litho-facies present over the entire litho-section of the KTB. The comparisons of maximum a posteriori geological sections constructed here, based on the maximum a posteriori probability distribution, with the available geological information and the existing geophysical findings suggest that the BNN results reveal some additional finer details in the KTB borehole data at certain depths, which appears to be of some geological significance. We also demonstrate that the proposed BNN approach is superior to the conventional artificial neural network in terms of both avoiding "over-fitting" and aiding uncertainty estimation, which are vital for meaningful interpretation of geophysical records. Our analyses demonstrate that the BNN-based approach renders a robust means for the classification of complex changes in the litho-facies successions and thus could provide a useful guide for understanding the crustal inhomogeneity and the structural discontinuity in many other tectonically complex regions.
2010-01-01
Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223
Human-Centered Planning for Effective Task Autonomy
2012-05-01
observation o 6= onull:∑ o 6=onull p(o|s, aask) = αs (3.1) When the occupant is not available, we say it results in observation onull: p(onull|s, aask...they are paying attention to what it says . Uncertainty Many classification and inference algorithms give a measure of uncertainty - the probability...provide corrective feedback for handwriting recognition, email classification, and other domains (e.g., Mankoff, Abowd, and Hudson (2000); Scaffidi (2009
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Track classification within wireless sensor network
NASA Astrophysics Data System (ADS)
Doumerc, Robin; Pannetier, Benjamin; Moras, Julien; Dezert, Jean; Canevet, Loic
2017-05-01
In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
NASA Astrophysics Data System (ADS)
Dolan, B.; Rutledge, S. A.; Barnum, J. I.; Matsui, T.; Tao, W. K.; Iguchi, T.
2017-12-01
POLarimetric Radar Retrieval and Instrument Simulator (POLARRIS) is a framework that has been developed to simulate radar observations from cloud resolving model (CRM) output and subject model data and observations to the same retrievals, analysis and visualization. This framework not only enables validation of bulk microphysical model simulated properties, but also offers an opportunity to study the uncertainties associated with retrievals such as hydrometeor classification (HID). For the CSU HID, membership beta functions (MBFs) are built using a set of simulations with realistic microphysical assumptions about axis ratio, density, canting angles, size distributions for each of ten hydrometeor species. These assumptions are tested using POLARRIS to understand their influence on the resulting simulated polarimetric data and final HID classification. Several of these parameters (density, size distributions) are set by the model microphysics, and therefore the specific assumptions of axis ratio and canting angle are carefully studied. Through these sensitivity studies, we hope to be able to provide uncertainties in retrieved polarimetric variables and HID as applied to CRM output. HID retrievals assign a classification to each point by determining the highest score, thereby identifying the dominant hydrometeor type within a volume. However, in nature, there is rarely just one a single hydrometeor type at a particular point. Models allow for mixing ratios of different hydrometeors within a grid point. We use the mixing ratios from CRM output in concert with the HID scores and classifications to understand how the HID algorithm can provide information about mixtures within a volume, as well as calculate a confidence in the classifications. We leverage the POLARRIS framework to additionally probe radar wavelength differences toward the possibility of a multi-wavelength HID which could utilize the strengths of different wavelengths to improve HID classifications. With these uncertainties and algorithm improvements, cases of convection are studied in a continental (Oklahoma) and maritime (Darwin, Australia) regime. Observations from C-band polarimetric data in both locations are compared to CRM simulations from NU-WRF using the POLARRIS framework.
GPS-based Microenvironment Tracker (MicroTrac) Model to ...
A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared to 24 h diary data from 7 participants on workdays and 2 participants on nonworkdays, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize
The Hubble Constant from Supernovae
NASA Astrophysics Data System (ADS)
Saha, Abhijit; Macri, Lucas M.
The decades-long quest to obtain a precise and accurate measurement of the local expansion rate of the universe (the Hubble Constant or H0) has greatly benefited from the use of supernovae (SNe). Starting from humble beginnings (dispersions of ˜ 0.5 mag in the Hubble flow in the late 1960s/early 1970s), the increasingly more sophisticated understanding, classification, and analysis of these events turned type Ia SNe into the premiere choice for a secondary distance indicator by the early 1990s. While some systematic uncertainties specific to SNe and to Cepheid-based distances to the calibrating host galaxies still contribute to the H0 error budget, the major emphasis over the past two decades has been on reducing the statistical uncertainty by obtaining ever-larger samples of distances to SN hosts. Building on early efforts with the first-generation instruments on the Hubble Space Telescope, recent observations with the latest instruments on this facility have reduced the estimated total uncertainty on H0 to 2.4 % and shown a path to reach a 1 % measurement by the end of the decade, aided by Gaia and the James Webb Space Telescope.
Metrological aspects of enzyme production
NASA Astrophysics Data System (ADS)
Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.
2010-05-01
Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.
Weighted statistical parameters for irregularly sampled time series
NASA Astrophysics Data System (ADS)
Rimoldini, Lorenzo
2014-01-01
Unevenly spaced time series are common in astronomy because of the day-night cycle, weather conditions, dependence on the source position in the sky, allocated telescope time and corrupt measurements, for example, or inherent to the scanning law of satellites like Hipparcos and the forthcoming Gaia. Irregular sampling often causes clumps of measurements and gaps with no data which can severely disrupt the values of estimators. This paper aims at improving the accuracy of common statistical parameters when linear interpolation (in time or phase) can be considered an acceptable approximation of a deterministic signal. A pragmatic solution is formulated in terms of a simple weighting scheme, adapting to the sampling density and noise level, applicable to large data volumes at minimal computational cost. Tests on time series from the Hipparcos periodic catalogue led to significant improvements in the overall accuracy and precision of the estimators with respect to the unweighted counterparts and those weighted by inverse-squared uncertainties. Automated classification procedures employing statistical parameters weighted by the suggested scheme confirmed the benefits of the improved input attributes. The classification of eclipsing binaries, Mira, RR Lyrae, Delta Cephei and Alpha2 Canum Venaticorum stars employing exclusively weighted descriptive statistics achieved an overall accuracy of 92 per cent, about 6 per cent higher than with unweighted estimators.
Olea, R.A.; Luppens, J.A.; Tewalt, S.J.
2011-01-01
A common practice for characterizing uncertainty in coal resource assessments has been the itemization of tonnage at the mining unit level and the classification of such units according to distance to drilling holes. Distance criteria, such as those used in U.S. Geological Survey Circular 891, are still widely used for public disclosure. A major deficiency of distance methods is that they do not provide a quantitative measure of uncertainty. Additionally, relying on distance between data points alone does not take into consideration other factors known to have an influence on uncertainty, such as spatial correlation, type of probability distribution followed by the data, geological discontinuities, and boundary of the deposit. Several geostatistical methods have been combined to formulate a quantitative characterization for appraising uncertainty. Drill hole datasets ranging from widespread exploration drilling to detailed development drilling from a lignite deposit in Texas were used to illustrate the modeling. The results show that distance to the nearest drill hole is almost completely unrelated to uncertainty, which confirms the inadequacy of characterizing uncertainty based solely on a simple classification of resources by distance classes. The more complex statistical methods used in this study quantify uncertainty and show good agreement between confidence intervals in the uncertainty predictions and data from additional drilling. ?? 2010.
Mandava, Pitchaiah; Krumpelman, Chase S; Shah, Jharna N; White, Donna L; Kent, Thomas A
2013-01-01
Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores ("Shift") is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall p<0.001). Taking errors into account, SAINT I would have required 24% more subjects than were randomized. We show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.
Utilizing a suite of satellite missions to address poorly constrained hydrological fluxes
NASA Astrophysics Data System (ADS)
Singh, A.; Behrangi, A.; Fisher, J.; Reager, J. T., II; Gardner, A. S.
2017-12-01
The amount of water stored in a given region (total water storage) changes in response to changes in the hydrologic balance (inputs minus outputs). Closing this balance is exceedingly difficult due to the sparsity of field observation, large uncertainties in satellite derived estimates and model limitation. Different regions have distinct reliability on different hydrological parameters. For example, at a higher latitude precipitation is more uncertain than evapotranspiration (ET) while at lower/middle latitude the opposite is true. This study explores alternative estimates of regional hydrological fluxes by integrating the total water storage estimated by the GRACE gravity fields, and improved estimates lake storage variation by Landsat based land-water classification and satellite altimetry based water height measurements. In particular, an alternative ET estimate is generated for the Aral Sea region by integrating multi-sensor remote sensing data. In an endorheic lake like the Aral Sea, its volumetric variations are predominately governed by changes in inflow, evaporation from the water body and precipitation on the lake. The Aral Sea water volume is estimated at a monthly time step by the combination of Landsat land-water classification and ocean radar altimetry (Jason 1 and Jason 2) observations using truncated pyramid method. Considering gauge based river runoff as a true observation and given the fact that there is less variability between multiple precipitation datasets (TRMM, GPCP, GPCC, and ERA), ET can be considered as a most uncertain parameter in this region. The estimated lake volume acts as a controlling factor to estimate ET as the residual of the changes in TWS minus inflow plus precipitation. The estimated ET is compared with the MODIS-based evaporation observations.
Utilizing a suite of satellite missions to address poorly constrained hydrological fluxes
NASA Astrophysics Data System (ADS)
Shukla, S.; Hobbins, M.; McEvoy, D.; Husak, G. J.; Dewes, C.; McNally, A.; Huntington, J. L.; Funk, C. C.; Verdin, J. P.
2016-12-01
The amount of water stored in a given region (total water storage) changes in response to changes in the hydrologic balance (inputs minus outputs). Closing this balance is exceedingly difficult due to the sparsity of field observation, large uncertainties in satellite derived estimates and model limitation. Different regions have distinct reliability on different hydrological parameters. For example, at a higher latitude precipitation is more uncertain than evapotranspiration (ET) while at lower/middle latitude the opposite is true. This study explores alternative estimates of regional hydrological fluxes by integrating the total water storage estimated by the GRACE gravity fields, and improved estimates lake storage variation by Landsat based land-water classification and satellite altimetry based water height measurements. In particular, an alternative ET estimate is generated for the Aral Sea region by integrating multi-sensor remote sensing data. In an endorheic lake like the Aral Sea, its volumetric variations are predominately governed by changes in inflow, evaporation from the water body and precipitation on the lake. The Aral Sea water volume is estimated at a monthly time step by the combination of Landsat land-water classification and ocean radar altimetry (Jason 1 and Jason 2) observations using truncated pyramid method. Considering gauge based river runoff as a true observation and given the fact that there is less variability between multiple precipitation datasets (TRMM, GPCP, GPCC, and ERA), ET can be considered as a most uncertain parameter in this region. The estimated lake volume acts as a controlling factor to estimate ET as the residual of the changes in TWS minus inflow plus precipitation. The estimated ET is compared with the MODIS-based evaporation observations.
Sironi, Emanuele; Pinchi, Vilma; Pradella, Francesco; Focardi, Martina; Bozza, Silvia; Taroni, Franco
2018-04-01
Not only does the Bayesian approach offer a rational and logical environment for evidence evaluation in a forensic framework, but it also allows scientists to coherently deal with uncertainty related to a collection of multiple items of evidence, due to its flexible nature. Such flexibility might come at the expense of elevated computational complexity, which can be handled by using specific probabilistic graphical tools, namely Bayesian networks. In the current work, such probabilistic tools are used for evaluating dental evidence related to the development of third molars. A set of relevant properties characterizing the graphical models are discussed and Bayesian networks are implemented to deal with the inferential process laying beyond the estimation procedure, as well as to provide age estimates. Such properties include operationality, flexibility, coherence, transparence and sensitivity. A data sample composed of Italian subjects was employed for the analysis; results were in agreement with previous studies in terms of point estimate and age classification. The influence of the prior probability elicitation in terms of Bayesian estimate and classifies was also analyzed. Findings also supported the opportunity to take into consideration multiple teeth in the evaluative procedure, since it can be shown this results in an increased robustness towards the prior probability elicitation process, as well as in more favorable outcomes from a forensic perspective. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-01-01
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency. PMID:27999261
Mapping influenza transmission in the ferret model to transmission in humans
Buhnerkempe, Michael G; Gostic, Katelyn; Park, Miran; Ahsan, Prianna; Belser, Jessica A; Lloyd-Smith, James O
2015-01-01
The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research. DOI: http://dx.doi.org/10.7554/eLife.07969.001 PMID:26329460
Performance of Trajectory Models with Wind Uncertainty
NASA Technical Reports Server (NTRS)
Lee, Alan G.; Weygandt, Stephen S.; Schwartz, Barry; Murphy, James R.
2009-01-01
Typical aircraft trajectory predictors use wind forecasts but do not account for the forecast uncertainty. A method for generating estimates of wind prediction uncertainty is described and its effect on aircraft trajectory prediction uncertainty is investigated. The procedure for estimating the wind prediction uncertainty relies uses a time-lagged ensemble of weather model forecasts from the hourly updated Rapid Update Cycle (RUC) weather prediction system. Forecast uncertainty is estimated using measures of the spread amongst various RUC time-lagged ensemble forecasts. This proof of concept study illustrates the estimated uncertainty and the actual wind errors, and documents the validity of the assumed ensemble-forecast accuracy relationship. Aircraft trajectory predictions are made using RUC winds with provision for the estimated uncertainty. Results for a set of simulated flights indicate this simple approach effectively translates the wind uncertainty estimate into an aircraft trajectory uncertainty. A key strength of the method is the ability to relate uncertainty to specific weather phenomena (contained in the various ensemble members) allowing identification of regional variations in uncertainty.
NASA Astrophysics Data System (ADS)
Englander, J. G.; Brodrick, P. G.; Brandt, A. R.
2015-12-01
Fugitive emissions from oil and gas extraction have become a greater concern with the recent increases in development of shale hydrocarbon resources. There are significant gaps in the tools and research used to estimate fugitive emissions from oil and gas extraction. Two approaches exist for quantifying these emissions: atmospheric (or 'top down') studies, which measure methane fluxes remotely, or inventory-based ('bottom up') studies, which aggregate leakage rates on an equipment-specific basis. Bottom-up studies require counting or estimating how many devices might be leaking (called an 'activity count'), as well as how much each device might leak on average (an 'emissions factor'). In a real-world inventory, there is uncertainty in both activity counts and emissions factors. Even at the well level there are significant disagreements in data reporting. For example, some prior studies noted a ~5x difference in the number of reported well completions in the United States between EPA and private data sources. The purpose of this work is to address activity count uncertainty by using machine learning algorithms to classify oilfield surface facilities using high-resolution spatial imagery. This method can help estimate venting and fugitive emissions sources from regions where reporting of oilfield equipment is incomplete or non-existent. This work will utilize high resolution satellite imagery to count well pads in the Bakken oil field of North Dakota. This initial study examines an area of ~2,000 km2 with ~1000 well pads. We compare different machine learning classification techniques, and explore the impact of training set size, input variables, and image segmentation settings to develop efficient and robust techniques identifying well pads. We discuss the tradeoffs inherent to different classification algorithms, and determine the optimal algorithms for oilfield feature detection. In the future, the results of this work will be leveraged to be provide activity counts of oilfield surface equipment including tanks, pumpjacks, and holding ponds.
The Uncertainties on the GIS Based Land Suitability Assessment for Urban and Rural Planning
NASA Astrophysics Data System (ADS)
Liu, H.; Zhan, Q.; Zhan, M.
2017-09-01
The majority of the research on the uncertainties of spatial data and spatial analysis focuses on some specific data feature or analysis tool. Few have accomplished the uncertainties of the whole process of an application like planning, making the research of uncertainties detached from practical applications. The paper discusses the uncertainties of the geographical information systems (GIS) based land suitability assessment in planning on the basis of literature review. The uncertainties considered range from index system establishment to the classification of the final result. Methods to reduce the uncertainties arise from the discretization of continuous raster data and the index weight determination are summarized. The paper analyzes the merits and demerits of the "Nature Breaks" method which is broadly used by planners. It also explores the other factors which impact the accuracy of the final classification like the selection of class numbers, intervals and the autocorrelation of the spatial data. In the conclusion part, the paper indicates that the adoption of machine learning methods should be modified to integrate the complexity of land suitability assessment. The work contributes to the application of spatial data and spatial analysis uncertainty research on land suitability assessment, and promotes the scientific level of the later planning and decision-making.
Uncertainty and Anticipation in Anxiety
Grupe, Dan W.; Nitschke, Jack B.
2014-01-01
Uncertainty about a possible future threat disrupts our ability to avoid it or to mitigate its negative impact, and thus results in anxiety. Here, we focus the broad literature on the neurobiology of anxiety through the lens of uncertainty. We identify five processes essential for adaptive anticipatory responses to future threat uncertainty, and propose that alterations to the neural instantiation of these processes results in maladaptive responses to uncertainty in pathological anxiety. This framework has the potential to advance the classification, diagnosis, and treatment of clinical anxiety. PMID:23783199
Zhang, Jian-Hua; Peng, Xiao-Di; Liu, Hua; Raisch, Jörg; Wang, Ru-Bin
2013-12-01
The human operator's ability to perform their tasks can fluctuate over time. Because the cognitive demands of the task can also vary it is possible that the capabilities of the operator are not sufficient to satisfy the job demands. This can lead to serious errors when the operator is overwhelmed by the task demands. Psychophysiological measures, such as heart rate and brain activity, can be used to monitor operator cognitive workload. In this paper, the most influential psychophysiological measures are extracted to characterize Operator Functional State (OFS) in automated tasks under a complex form of human-automation interaction. The fuzzy c-mean (FCM) algorithm is used and tested for its OFS classification performance. The results obtained have shown the feasibility and effectiveness of the FCM algorithm as well as the utility of the selected input features for OFS classification. Besides being able to cope with nonlinearity and fuzzy uncertainty in the psychophysiological data it can provide information about the relative importance of the input features as well as the confidence estimate of the classification results. The OFS pattern classification method developed can be incorporated into an adaptive aiding system in order to enhance the overall performance of a large class of safety-critical human-machine cooperative systems.
NASA Astrophysics Data System (ADS)
Li, B.; Lee, H. C.; Duan, X.; Shen, C.; Zhou, L.; Jia, X.; Yang, M.
2017-09-01
The dual-energy CT-based (DECT) approach holds promise in reducing the overall uncertainty in proton stopping-power-ratio (SPR) estimation as compared to the conventional stoichiometric calibration approach. The objective of this study was to analyze the factors contributing to uncertainty in SPR estimation using the DECT-based approach and to derive a comprehensive estimate of the range uncertainty associated with SPR estimation in treatment planning. Two state-of-the-art DECT-based methods were selected and implemented on a Siemens SOMATOM Force DECT scanner. The uncertainties were first divided into five independent categories. The uncertainty associated with each category was estimated for lung, soft and bone tissues separately. A single composite uncertainty estimate was eventually determined for three tumor sites (lung, prostate and head-and-neck) by weighting the relative proportion of each tissue group for that specific site. The uncertainties associated with the two selected DECT methods were found to be similar, therefore the following results applied to both methods. The overall uncertainty (1σ) in SPR estimation with the DECT-based approach was estimated to be 3.8%, 1.2% and 2.0% for lung, soft and bone tissues, respectively. The dominant factor contributing to uncertainty in the DECT approach was the imaging uncertainties, followed by the DECT modeling uncertainties. Our study showed that the DECT approach can reduce the overall range uncertainty to approximately 2.2% (2σ) in clinical scenarios, in contrast to the previously reported 1%.
Estimating discharge measurement uncertainty using the interpolated variance estimator
Cohn, T.; Kiang, J.; Mason, R.
2012-01-01
Methods for quantifying the uncertainty in discharge measurements typically identify various sources of uncertainty and then estimate the uncertainty from each of these sources by applying the results of empirical or laboratory studies. If actual measurement conditions are not consistent with those encountered in the empirical or laboratory studies, these methods may give poor estimates of discharge uncertainty. This paper presents an alternative method for estimating discharge measurement uncertainty that uses statistical techniques and at-site observations. This Interpolated Variance Estimator (IVE) estimates uncertainty based on the data collected during the streamflow measurement and therefore reflects the conditions encountered at the site. The IVE has the additional advantage of capturing all sources of random uncertainty in the velocity and depth measurements. It can be applied to velocity-area discharge measurements that use a velocity meter to measure point velocities at multiple vertical sections in a channel cross section.
Middleton, John; Vaks, Jeffrey E
2007-04-01
Errors of calibrator-assigned values lead to errors in the testing of patient samples. The ability to estimate the uncertainties of calibrator-assigned values and other variables minimizes errors in testing processes. International Organization of Standardization guidelines provide simple equations for the estimation of calibrator uncertainty with simple value-assignment processes, but other methods are needed to estimate uncertainty in complex processes. We estimated the assigned-value uncertainty with a Monte Carlo computer simulation of a complex value-assignment process, based on a formalized description of the process, with measurement parameters estimated experimentally. This method was applied to study uncertainty of a multilevel calibrator value assignment for a prealbumin immunoassay. The simulation results showed that the component of the uncertainty added by the process of value transfer from the reference material CRM470 to the calibrator is smaller than that of the reference material itself (<0.8% vs 3.7%). Varying the process parameters in the simulation model allowed for optimizing the process, while keeping the added uncertainty small. The patient result uncertainty caused by the calibrator uncertainty was also found to be small. This method of estimating uncertainty is a powerful tool that allows for estimation of calibrator uncertainty for optimization of various value assignment processes, with a reduced number of measurements and reagent costs, while satisfying the requirements to uncertainty. The new method expands and augments existing methods to allow estimation of uncertainty in complex processes.
Is my bottom-up uncertainty estimation on metal measurement adequate?
NASA Astrophysics Data System (ADS)
Marques, J. R.; Faustino, M. G.; Monteiro, L. R.; Ulrich, J. C.; Pires, M. A. F.; Cotrim, M. E. B.
2018-03-01
Is the estimated uncertainty under GUM recommendation associated with metal measurement adequately estimated? How to evaluate if the measurement uncertainty really covers all uncertainty that is associated with the analytical procedure? Considering that, many laboratories frequently underestimate or less frequently overestimate uncertainties on its results; this paper presents the evaluation of estimated uncertainties on two ICP-OES procedures of seven metal measurements according to GUM approach. Horwitz function and proficiency tests scaled standard uncertainties were used in this evaluation. Our data shows that most elements expanded uncertainties were from two to four times underestimated. Possible causes and corrections are discussed herein.
BAYESIAN METHODS FOR REGIONAL-SCALE EUTROPHICATION MODELS. (R830887)
We demonstrate a Bayesian classification and regression tree (CART) approach to link multiple environmental stressors to biological responses and quantify uncertainty in model predictions. Such an approach can: (1) report prediction uncertainty, (2) be consistent with the amou...
Distributed multimodal data fusion for large scale wireless sensor networks
NASA Astrophysics Data System (ADS)
Ertin, Emre
2006-05-01
Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.
te Beest, Dennis E.; Birrell, Paul J; Wallinga, Jacco; De Angelis, Daniela; van Boven, Michiel
2015-01-01
Obtaining a quantitative understanding of the transmission dynamics of influenza A is important for predicting healthcare demand and assessing the likely impact of intervention measures. The pandemic of 2009 provides an ideal platform for developing integrative analyses as it has been studied intensively, and a wealth of data sources is available. Here, we analyse two complementary datasets in a disease transmission framework: cross-sectional serological surveys providing data on infection attack rates, and hospitalization data that convey information on the timing and duration of the pandemic. We estimate key epidemic determinants such as infection and hospitalization rates, and the impact of a school holiday. In contrast to previous approaches, our novel modelling of serological data with mixture distributions provides a probabilistic classification of individual samples (susceptible, immune and infected), propagating classification uncertainties to the transmission model and enabling serological classifications to be informed by hospitalization data. The analyses show that high levels of immunity among persons 20 years and older provide a consistent explanation of the skewed attack rates observed during the pandemic and yield precise estimates of the probability of hospitalization per infection (1–4 years: 0.00096 (95%CrI: 0.00078–0.0012); 5–19 years: 0.00036 (0.00031–0.0044); 20–64 years: 0.0015 (0.00091–0.0020); 65+ years: 0.0084 (0.0028–0.016)). The analyses suggest that in The Netherlands, the school holiday period reduced the number of infectious contacts between 5- and 9-year-old children substantially (estimated reduction: 54%; 95%CrI: 29–82%), thereby delaying the unfolding of the pandemic in The Netherlands by approximately a week. PMID:25540241
Random Forest Application for NEXRAD Radar Data Quality Control
NASA Astrophysics Data System (ADS)
Keem, M.; Seo, B. C.; Krajewski, W. F.
2017-12-01
Identification and elimination of non-meteorological radar echoes (e.g., returns from ground, wind turbines, and biological targets) are the basic data quality control steps before radar data use in quantitative applications (e.g., precipitation estimation). Although WSR-88Ds' recent upgrade to dual-polarization has enhanced this quality control and echo classification, there are still challenges to detect some non-meteorological echoes that show precipitation-like characteristics (e.g., wind turbine or anomalous propagation clutter embedded in rain). With this in mind, a new quality control method using Random Forest is proposed in this study. This classification algorithm is known to produce reliable results with less uncertainty. The method introduces randomness into sampling and feature selections and integrates consequent multiple decision trees. The multidimensional structure of the trees can characterize the statistical interactions of involved multiple features in complex situations. The authors explore the performance of Random Forest method for NEXRAD radar data quality control. Training datasets are selected using several clear cases of precipitation and non-precipitation (but with some non-meteorological echoes). The model is structured using available candidate features (from the NEXRAD data) such as horizontal reflectivity, differential reflectivity, differential phase shift, copolar correlation coefficient, and their horizontal textures (e.g., local standard deviation). The influence of each feature on classification results are quantified by variable importance measures that are automatically estimated by the Random Forest algorithm. Therefore, the number and types of features in the final forest can be examined based on the classification accuracy. The authors demonstrate the capability of the proposed approach using several cases ranging from distinct to complex rain/no-rain events and compare the performance with the existing algorithms (e.g., MRMS). They also discuss operational feasibility based on the observed strength and weakness of the method.
NASA Astrophysics Data System (ADS)
Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2018-01-01
Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.
NASA Astrophysics Data System (ADS)
Ilyas, Maryam; Brierley, Christopher M.; Guillas, Serge
2017-09-01
Instrumental records showing increases in surface temperature are some of the robust and iconic evidence of climate change. But how much should we trust regional temperature estimates interpolated from sparse observations? Here we quantify the uncertainty in the instrumental record by applying multiresolution lattice kriging, a recently developed interpolation technique that leverages the multiple spatial scales of temperature anomalies. The probability of monthly anomalies across the globe is represented by an ensemble, based on HadCRUT4 and accounting for observational and coverage uncertainties. To demonstrate the potential of these new data, we investigate the area-averaged temperature anomalies over the Niño 3.4 region in the equatorial Pacific. Having developed a definition of the El Niño-Southern Oscillation (ENSO) able to cope with probability distribution functions, we classify the ENSO state for each year since 1851. We find that for many years it is ambiguous as to whether there was an El Niño or not from the Niño 3.4 region alone. These years are mainly before 1920, but also just after World War II.
Using PS1 and Type Ia Supernovae To Make Most Precise Measurement of Dark Energy To Date
NASA Astrophysics Data System (ADS)
Scolnic, Daniel; Pan-STARRS
2018-01-01
I will review recent results that present optical light curves, redshifts, and classifications for 361 spectroscopically confirmed Type Ia supernovae (SNeIa) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. I will go over improvements to the PS1 SN photometry, astrometry and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combined distances of PS1 SNe with distance estimates of SNIa from SDSS, SNLS, various low-z and HST samples to form the largest combined sample of SN Ia consisting of a total of ~1050 SN Ia ranging from 0.01 < z < 2.3, which we call the ‘Pantheon Sample’. Photometric calibration uncertainties have long dominated the systematic error budget of every major analysis of cosmological parameters with SNIa. Using the PS1 relative calibration, we have reduced these calibration systematics to the point where they are similar in magnitude to the other major sources of known systematic uncertainties: the nature of the intrinsic scatter of SNIa and modeling of selection effects. I will present measurements of dark energy which are now the most precise measurements of dark energy to date.
NASA Astrophysics Data System (ADS)
Arevalo, P. A.; Olofsson, P.; Woodcock, C. E.
2017-12-01
Unbiased estimation of the areas of conversion between land categories ("activity data") and their uncertainty is crucial for providing more robust calculations of carbon emissions to the atmosphere, as well as their removals. This is particularly important for the REDD+ mechanism of UNFCCC where an economic compensation is tied to the magnitude and direction of such fluxes. Dense time series of Landsat data and statistical protocols are becoming an integral part of forest monitoring efforts, but there are relatively few studies in the tropics focused on using these methods to advance operational MRV systems (Monitoring, Reporting and Verification). We present the results of a prototype methodology for continuous monitoring and unbiased estimation of activity data that is compliant with the IPCC Approach 3 for representation of land. We used a break detection algorithm (Continuous Change Detection and Classification, CCDC) to fit pixel-level temporal segments to time series of Landsat data in the Colombian Amazon. The segments were classified using a Random Forest classifier to obtain annual maps of land categories between 2001 and 2016. Using these maps, a biannual stratified sampling approach was implemented and unbiased stratified estimators constructed to calculate area estimates with confidence intervals for each of the stable and change classes. Our results provide evidence of a decrease in primary forest as a result of conversion to pastures, as well as increase in secondary forest as pastures are abandoned and the forest allowed to regenerate. Estimating areas of other land transitions proved challenging because of their very small mapped areas compared to stable classes like forest, which corresponds to almost 90% of the study area. Implications on remote sensing data processing, sample allocation and uncertainty reduction are also discussed.
NASA Astrophysics Data System (ADS)
Raje, Deepashree; Mujumdar, P. P.
2010-09-01
Representation and quantification of uncertainty in climate change impact studies are a difficult task. Several sources of uncertainty arise in studies of hydrologic impacts of climate change, such as those due to choice of general circulation models (GCMs), scenarios and downscaling methods. Recently, much work has focused on uncertainty quantification and modeling in regional climate change impacts. In this paper, an uncertainty modeling framework is evaluated, which uses a generalized uncertainty measure to combine GCM, scenario and downscaling uncertainties. The Dempster-Shafer (D-S) evidence theory is used for representing and combining uncertainty from various sources. A significant advantage of the D-S framework over the traditional probabilistic approach is that it allows for the allocation of a probability mass to sets or intervals, and can hence handle both aleatory or stochastic uncertainty, and epistemic or subjective uncertainty. This paper shows how the D-S theory can be used to represent beliefs in some hypotheses such as hydrologic drought or wet conditions, describe uncertainty and ignorance in the system, and give a quantitative measurement of belief and plausibility in results. The D-S approach has been used in this work for information synthesis using various evidence combination rules having different conflict modeling approaches. A case study is presented for hydrologic drought prediction using downscaled streamflow in the Mahanadi River at Hirakud in Orissa, India. Projections of n most likely monsoon streamflow sequences are obtained from a conditional random field (CRF) downscaling model, using an ensemble of three GCMs for three scenarios, which are converted to monsoon standardized streamflow index (SSFI-4) series. This range is used to specify the basic probability assignment (bpa) for a Dempster-Shafer structure, which represents uncertainty associated with each of the SSFI-4 classifications. These uncertainties are then combined across GCMs and scenarios using various evidence combination rules given by the D-S theory. A Bayesian approach is also presented for this case study, which models the uncertainty in projected frequencies of SSFI-4 classifications by deriving a posterior distribution for the frequency of each classification, using an ensemble of GCMs and scenarios. Results from the D-S and Bayesian approaches are compared, and relative merits of each approach are discussed. Both approaches show an increasing probability of extreme, severe and moderate droughts and decreasing probability of normal and wet conditions in Orissa as a result of climate change.
A Bayesian state-space approach for damage detection and classification
NASA Astrophysics Data System (ADS)
Dzunic, Zoran; Chen, Justin G.; Mobahi, Hossein; Büyüköztürk, Oral; Fisher, John W.
2017-11-01
The problem of automatic damage detection in civil structures is complex and requires a system that can interpret collected sensor data into meaningful information. We apply our recently developed switching Bayesian model for dependency analysis to the problems of damage detection and classification. The model relies on a state-space approach that accounts for noisy measurement processes and missing data, which also infers the statistical temporal dependency between measurement locations signifying the potential flow of information within the structure. A Gibbs sampling algorithm is used to simultaneously infer the latent states, parameters of the state dynamics, the dependence graph, and any changes in behavior. By employing a fully Bayesian approach, we are able to characterize uncertainty in these variables via their posterior distribution and provide probabilistic estimates of the occurrence of damage or a specific damage scenario. We also implement a single class classification method which is more realistic for most real world situations where training data for a damaged structure is not available. We demonstrate the methodology with experimental test data from a laboratory model structure and accelerometer data from a real world structure during different environmental and excitation conditions.
NASA Astrophysics Data System (ADS)
Wani, Omar; Beckers, Joost V. L.; Weerts, Albrecht H.; Solomatine, Dimitri P.
2017-08-01
A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts as a post-processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-based learning, it uses a k nearest-neighbour search for similar historical hydrometeorological conditions to determine uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: the Severn and Brue. Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative uncertainty estimators: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability coverage. Analysis also shows that the performance of this technique depends on the choice of search space. Nevertheless, the accuracy and reliability of uncertainty intervals generated using kNN resampling are at least comparable to those produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post-processors, like QR and UNEEC, for estimating forecast uncertainty. Apart from its concept being simple and well understood, an advantage of this method is that it is relatively easy to implement.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Metz, P. A.
2014-12-01
Most watershed studies include observation-based water budget analyses to develop first-order estimates of significant flow terms. Surface-water/groundwater (SWGW) exchange is typically assumed to be equal to the residual of the sum of inflows and outflows in a watershed. These estimates of SWGW exchange, however, are highly uncertain as a result of the propagation of uncertainty inherent in the calculation or processing of the other terms of the water budget, such as stage-area-volume relations, and uncertainties associated with land-cover based evapotranspiration (ET) rate estimates. Furthermore, the uncertainty of estimated SWGW exchanges can be magnified in large wetland systems that transition from dry to wet during wet periods. Although it is well understood that observation-based estimates of SWGW exchange are uncertain it is uncommon for the uncertainty of these estimates to be directly quantified. High-level programming languages like Python can greatly reduce the effort required to (1) quantify the uncertainty of estimated SWGW exchange in large wetland systems and (2) evaluate how different approaches for partitioning land-cover data in a watershed may affect the water-budget uncertainty. We have used Python with the Numpy, Scipy.stats, and pyDOE packages to implement an unconstrained Monte Carlo approach with Latin Hypercube sampling to quantify the uncertainty of monthly estimates of SWGW exchange in the Floral City watershed of the Tsala Apopka wetland system in west-central Florida, USA. Possible sources of uncertainty in the water budget analysis include rainfall, ET, canal discharge, and land/bathymetric surface elevations. Each of these input variables was assigned a probability distribution based on observation error or spanning the range of probable values. The Monte Carlo integration process exposes the uncertainties in land-cover based ET rate estimates as the dominant contributor to the uncertainty in SWGW exchange estimates. We will discuss the uncertainty of SWGW exchange estimates using an ET model that partitions the watershed into open water and wetland land-cover types. We will also discuss the uncertainty of SWGW exchange estimates calculated using ET models partitioned into additional land-cover types.
Bias and robustness of uncertainty components estimates in transient climate projections
NASA Astrophysics Data System (ADS)
Hingray, Benoit; Blanchet, Juliette; Jean-Philippe, Vidal
2016-04-01
A critical issue in climate change studies is the estimation of uncertainties in projections along with the contribution of the different uncertainty sources, including scenario uncertainty, the different components of model uncertainty and internal variability. Quantifying the different uncertainty sources faces actually different problems. For instance and for the sake of simplicity, an estimate of model uncertainty is classically obtained from the empirical variance of the climate responses obtained for the different modeling chains. These estimates are however biased. Another difficulty arises from the limited number of members that are classically available for most modeling chains. In this case, the climate response of one given chain and the effect of its internal variability may be actually difficult if not impossible to separate. The estimate of scenario uncertainty, model uncertainty and internal variability components are thus likely to be not really robust. We explore the importance of the bias and the robustness of the estimates for two classical Analysis of Variance (ANOVA) approaches: a Single Time approach (STANOVA), based on the only data available for the considered projection lead time and a time series based approach (QEANOVA), which assumes quasi-ergodicity of climate outputs over the whole available climate simulation period (Hingray and Saïd, 2014). We explore both issues for a simple but classical configuration where uncertainties in projections are composed of two single sources: model uncertainty and internal climate variability. The bias in model uncertainty estimates is explored from theoretical expressions of unbiased estimators developed for both ANOVA approaches. The robustness of uncertainty estimates is explored for multiple synthetic ensembles of time series projections generated with MonteCarlo simulations. For both ANOVA approaches, when the empirical variance of climate responses is used to estimate model uncertainty, the bias is always positive. It can be especially high with STANOVA. In the most critical configurations, when the number of members available for each modeling chain is small (< 3) and when internal variability explains most of total uncertainty variance (75% or more), the overestimation is higher than 100% of the true model uncertainty variance. The bias can be considerably reduced with a time series ANOVA approach, owing to the multiple time steps accounted for. The longer the transient time period used for the analysis, the larger the reduction. When a quasi-ergodic ANOVA approach is applied to decadal data for the whole 1980-2100 period, the bias is reduced by a factor 2.5 to 20 depending on the projection lead time. In all cases, the bias is likely to be not negligible for a large number of climate impact studies resulting in a likely large overestimation of the contribution of model uncertainty to total variance. For both approaches, the robustness of all uncertainty estimates is higher when more members are available, when internal variability is smaller and/or the response-to-uncertainty ratio is higher. QEANOVA estimates are much more robust than STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to 5 times smaller than STANOVA ones. Excepted for STANOVA when less than 3 members is available, the robustness is rather high for total uncertainty and moderate for internal variability estimates. For model uncertainty or response-to-uncertainty ratio estimates, the robustness is conversely low for QEANOVA to very low for STANOVA. In the most critical configurations (small number of member, large internal variability), large over- or underestimation of uncertainty components is very thus likely. To propose relevant uncertainty analyses and avoid misleading interpretations, estimates of uncertainty components should be therefore bias corrected and ideally come with estimates of their robustness. This work is part of the COMPLEX Project (European Collaborative Project FP7-ENV-2012 number: 308601; http://www.complex.ac.uk/). Hingray, B., Saïd, M., 2014. Partitioning internal variability and model uncertainty components in a multimodel multireplicate ensemble of climate projections. J.Climate. doi:10.1175/JCLI-D-13-00629.1 Hingray, B., Blanchet, J. (revision) Unbiased estimators for uncertainty components in transient climate projections. J. Climate Hingray, B., Blanchet, J., Vidal, J.P. (revision) Robustness of uncertainty components estimates in climate projections. J.Climate
Impact of inherent meteorology uncertainty on air quality model predictions
It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...
Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.
2017-03-23
Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.
Estimating Soil Organic Carbon Stocks and Spatial Patterns with Statistical and GIS-Based Methods
Zhi, Junjun; Jing, Changwei; Lin, Shengpan; Zhang, Cao; Liu, Qiankun; DeGloria, Stephen D.; Wu, Jiaping
2014-01-01
Accurately quantifying soil organic carbon (SOC) is considered fundamental to studying soil quality, modeling the global carbon cycle, and assessing global climate change. This study evaluated the uncertainties caused by up-scaling of soil properties from the county scale to the provincial scale and from lower-level classification of Soil Species to Soil Group, using four methods: the mean, median, Soil Profile Statistics (SPS), and pedological professional knowledge based (PKB) methods. For the SPS method, SOC stock is calculated at the county scale by multiplying the mean SOC density value of each soil type in a county by its corresponding area. For the mean or median method, SOC density value of each soil type is calculated using provincial arithmetic mean or median. For the PKB method, SOC density value of each soil type is calculated at the county scale considering soil parent materials and spatial locations of all soil profiles. A newly constructed 1∶50,000 soil survey geographic database of Zhejiang Province, China, was used for evaluation. Results indicated that with soil classification levels up-scaling from Soil Species to Soil Group, the variation of estimated SOC stocks among different soil classification levels was obviously lower than that among different methods. The difference in the estimated SOC stocks among the four methods was lowest at the Soil Species level. The differences in SOC stocks among the mean, median, and PKB methods for different Soil Groups resulted from the differences in the procedure of aggregating soil profile properties to represent the attributes of one soil type. Compared with the other three estimation methods (i.e., the SPS, mean and median methods), the PKB method holds significant promise for characterizing spatial differences in SOC distribution because spatial locations of all soil profiles are considered during the aggregation procedure. PMID:24840890
NASA Astrophysics Data System (ADS)
Liu, Yansong; Monteiro, Sildomar T.; Saber, Eli
2015-10-01
Changes in vegetation cover, building construction, road network and traffic conditions caused by urban expansion affect the human habitat as well as the natural environment in rapidly developing cities. It is crucial to assess these changes and respond accordingly by identifying man-made and natural structures with accurate classification algorithms. With the increase in use of multi-sensor remote sensing systems, researchers are able to obtain a more complete description of the scene of interest. By utilizing multi-sensor data, the accuracy of classification algorithms can be improved. In this paper, we propose a method for combining 3D LiDAR point clouds and high-resolution color images to classify urban areas using Gaussian processes (GP). GP classification is a powerful non-parametric classification method that yields probabilistic classification results. It makes predictions in a way that addresses the uncertainty of real world. In this paper, we attempt to identify man-made and natural objects in urban areas including buildings, roads, trees, grass, water and vehicles. LiDAR features are derived from the 3D point clouds and the spatial and color features are extracted from RGB images. For classification, we use the Laplacian approximation for GP binary classification on the new combined feature space. The multiclass classification has been implemented by using one-vs-all binary classification strategy. The result of applying support vector machines (SVMs) and logistic regression (LR) classifier is also provided for comparison. Our experiments show a clear improvement of classification results by using the two sensors combined instead of each sensor separately. Also we found the advantage of applying GP approach to handle the uncertainty in classification result without compromising accuracy compared to SVM, which is considered as the state-of-the-art classification method.
Consequences of land-cover misclassification in models of impervious surface
McMahon, G.
2007-01-01
Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.
Estimation of uncertainty for contour method residual stress measurements
Olson, Mitchell D.; DeWald, Adrian T.; Prime, Michael B.; ...
2014-12-03
This paper describes a methodology for the estimation of measurement uncertainty for the contour method, where the contour method is an experimental technique for measuring a two-dimensional map of residual stress over a plane. Random error sources including the error arising from noise in displacement measurements and the smoothing of the displacement surfaces are accounted for in the uncertainty analysis. The output is a two-dimensional, spatially varying uncertainty estimate such that every point on the cross-section where residual stress is determined has a corresponding uncertainty value. Both numerical and physical experiments are reported, which are used to support the usefulnessmore » of the proposed uncertainty estimator. The uncertainty estimator shows the contour method to have larger uncertainty near the perimeter of the measurement plane. For the experiments, which were performed on a quenched aluminum bar with a cross section of 51 × 76 mm, the estimated uncertainty was approximately 5 MPa (σ/E = 7 · 10⁻⁵) over the majority of the cross-section, with localized areas of higher uncertainty, up to 10 MPa (σ/E = 14 · 10⁻⁵).« less
VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)
NASA Astrophysics Data System (ADS)
Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.
2018-03-01
We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).
Hanley, O; Gutiérrez-Villanueva, J L; Currivan, L; Pollard, D
2008-10-01
The RPII radon (Rn) laboratory holds accreditation for the International Standard ISO/IEC 17025. A requirement of this standard is an estimate of the uncertainty of measurement. This work shows two approaches to estimate the uncertainty. The bottom-up approach involved identifying the components that were found to contribute to the uncertainty. Estimates were made for each of these components, which were combined to give a combined uncertainty of 13.5% at a Rn concentration of approximately 2500 Bq m(-3) at the 68% confidence level. By applying a coverage factor of k=2, the expanded uncertainty is +/-27% at the 95% confidence level. The top-down approach used information previously gathered from intercomparison exercises to estimate the uncertainty. This investigation found an expanded uncertainty of +/-22% at approximately 95% confidence level. This is good agreement for such independent estimates.
Kin Tekce, Buket; Tekce, Hikmet; Aktas, Gulali; Uyeturk, Ugur
2016-01-01
Uncertainty of measurement is the numeric expression of the errors associated with all measurements taken in clinical laboratories. Serum creatinine concentration is the most common diagnostic marker for acute kidney injury. The goal of this study was to determine the effect of the uncertainty of measurement of serum creatinine concentrations on the diagnosis of acute kidney injury. We calculated the uncertainty of measurement of serum creatinine according to the Nordtest Guide. Retrospectively, we identified 289 patients who were evaluated for acute kidney injury. Of the total patient pool, 233 were diagnosed with acute kidney injury using the AKIN classification scheme and then were compared using statistical analysis. We determined nine probabilities of the uncertainty of measurement of serum creatinine concentrations. There was a statistically significant difference in the number of patients diagnosed with acute kidney injury when uncertainty of measurement was taken into consideration (first probability compared to the fifth p = 0.023 and first probability compared to the ninth p = 0.012). We found that the uncertainty of measurement for serum creatinine concentrations was an important factor for correctly diagnosing acute kidney injury. In addition, based on the AKIN classification scheme, minimizing the total allowable error levels for serum creatinine concentrations is necessary for the accurate diagnosis of acute kidney injury by clinicians.
Neighbourhood-Scale Urban Forest Ecosystem Classification
James W.N. Steenberg; Andrew A. Millward; Peter N. Duinker; David J. Nowak; Pamela J. Robinson
2015-01-01
Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape...
NASA Astrophysics Data System (ADS)
Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.
2014-11-01
Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial Basis Function classification technique was employed to carry out binary (forest-non forest) classification using ALOSPALSAR HH and HV backscatter coefficient images and field inventory data. The textural Haralick's Grey Level Cooccurrence Matrix (GLCM) texture measures are determined on HV backscatter image for Odisha, for the year 2010. PALSAR HH, HV backscatter coefficient images, their difference (HHHV) and HV backscatter coefficient based eight textural parameters (Mean, Variance, Dissimilarity, Contrast, Angular second moment, Homogeneity, Correlation and Contrast) are used as input parameters for Support Vector Machines (SVM) tool. Ground based inputs for forest / non-forest were taken from field inventory data and high resolution Google maps. Results suggested significant relationship between HV backscatter coefficient and field based biomass (R2 = 0.508, p = 0.55) compared to HH with biomass values ranging from 5 to 365 t/ha. The spatial variability of biomass with reference to different forest types is in good agreement. The forest / nonforest classified map suggested a total forest cover of 50214 km2 with an overall accuracy of 92.54 %. The forest / non-forest information derived from the present study showed a good spatial agreement with the standard forest cover map of Forest Survey of India (FSI) and corresponding published area of 50575 km2. Results are discussed in the paper.
NASA Astrophysics Data System (ADS)
Bruschewski, Martin; Freudenhammer, Daniel; Buchenberg, Waltraud B.; Schiffer, Heinz-Peter; Grundmann, Sven
2016-05-01
Velocity measurements with magnetic resonance velocimetry offer outstanding possibilities for experimental fluid mechanics. The purpose of this study was to provide practical guidelines for the estimation of the measurement uncertainty in such experiments. Based on various test cases, it is shown that the uncertainty estimate can vary substantially depending on how the uncertainty is obtained. The conventional approach to estimate the uncertainty from the noise in the artifact-free background can lead to wrong results. A deviation of up to -75 % is observed with the presented experiments. In addition, a similarly high deviation is demonstrated with the data from other studies. As a more accurate approach, the uncertainty is estimated directly from the image region with the flow sample. Two possible estimation methods are presented.
Estimation of different data compositions for early-season crop type classification.
Hao, Pengyu; Wu, Mingquan; Niu, Zheng; Wang, Li; Zhan, Yulin
2018-01-01
Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer's accuracies (PAs) and user's accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.
Estimation of different data compositions for early-season crop type classification
Wu, Mingquan; Wang, Li; Zhan, Yulin
2018-01-01
Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study. PMID:29868265
NASA Astrophysics Data System (ADS)
Reichstein, M.; Dinh, N.; Running, S.; Seufert, G.; Tenhunen, J.; Valentini, R.
2003-04-01
Here we present spatially distributed bottom-up estimates of European carbon balance components for the year 2001, that stem from a newly built modeling system that integrates CARBOEUROPE eddy covariance CO_2 exchange data, remotely sensed vegetation properties via the MODIS-Terra sensor, European-wide soils data, and a suite of carbon balance models of different complexity. These estimates are able to better constrain top-down atmospheric-inversion carbon balance estimates within the dual-constraint approach for estimating continental carbon balances. The models that are used to calculate gross primary production (GPP) include a detailed layered canopy model with Farquhar-type photosynthesis (PROXELNEE), sun-shade big-leaf formulations operating at a daily time-step and a simple radiation-use efficiency model. These models are parameterized from eddy covariance data through inverse estimation techniques. Also for the estimation of soil and ecosystem respiration (Rsoil, Reco) we profit from a large data set of eddy covariance and soil chamber measurements, that enables us to the parameterize and validate a recently developed semi-empirical model, that includes a variable temperature sensitivity of respiration. As the outcome of the modeling system we present the most likely daily to annual numbers of carbon balance components (GPP, Reco, Rsoil), but we also issue a thorough analysis of biases and uncertainties in carbon balance estimates that are introduced through errors in the meteorological and remote sensing input data and through uncertainties in the model parameterization. In particular, we analyze 1) the effect of cloud contamination of the MODIS data, 2) the sensitivity to the land-use classification (Corine versus MODIS), 3) the effect of different soil parameterizations as derived from new continental-scale soil maps, and 4) the necessity to include soil drought effects into models of GPP and respiration. While the models describe the eddy covariance data quite well with r^2 values always greater than 0.7, there are still uncertainties in the European carbon balance estimate that exceed 0.3 PgC/yr. In northern (boreal) regions the carbon balance estimate is very much contingent on a high-quality filling of cloud contaminated remote sensing data, while in the southern (Mediterranean) regions a correct description of the soil water holding capacity is crucial. A major source of uncertainty also still is the estimation of heterotrophic respiration at continental scales. Consequently more spatial surveys on soil carbon stocks, turnover and history are needed. The study demonstrates that both, the inclusion of considerable geo-biological variability into a carbon balance modeling system, a high-quality cloud screening and gap-filling of the MODIS remote sensing data, and a correct description of soil drought effects are mandatory for realistic bottom-up estimates of European carbon balance components.
Resolving dust emission responses to land cover change using an ecological land classification
USDA-ARS?s Scientific Manuscript database
Despite efforts to quantify the impacts of land cover change on wind erosion, assessment uncertainty remains large. We address this uncertainty by evaluating the application of ecological site concepts and state-and-transition models (STMs) for detecting and quantitatively describing the impacts of ...
Esfahani, Mohammad Shahrokh; Dougherty, Edward R
2015-01-01
Phenotype classification via genomic data is hampered by small sample sizes that negatively impact classifier design. Utilization of prior biological knowledge in conjunction with training data can improve both classifier design and error estimation via the construction of the optimal Bayesian classifier. In the genomic setting, gene/protein signaling pathways provide a key source of biological knowledge. Although these pathways are neither complete, nor regulatory, with no timing associated with them, they are capable of constraining the set of possible models representing the underlying interaction between molecules. The aim of this paper is to provide a framework and the mathematical tools to transform signaling pathways to prior probabilities governing uncertainty classes of feature-label distributions used in classifier design. Structural motifs extracted from the signaling pathways are mapped to a set of constraints on a prior probability on a Multinomial distribution. Being the conjugate prior for the Multinomial distribution, we propose optimization paradigms to estimate the parameters of a Dirichlet distribution in the Bayesian setting. The performance of the proposed methods is tested on two widely studied pathways: mammalian cell cycle and a p53 pathway model.
Estimating uncertainties in complex joint inverse problems
NASA Astrophysics Data System (ADS)
Afonso, Juan Carlos
2016-04-01
Sources of uncertainty affecting geophysical inversions can be classified either as reflective (i.e. the practitioner is aware of her/his ignorance) or non-reflective (i.e. the practitioner does not know that she/he does not know!). Although we should be always conscious of the latter, the former are the ones that, in principle, can be estimated either empirically (by making measurements or collecting data) or subjectively (based on the experience of the researchers). For complex parameter estimation problems in geophysics, subjective estimation of uncertainty is the most common type. In this context, probabilistic (aka Bayesian) methods are commonly claimed to offer a natural and realistic platform from which to estimate model uncertainties. This is because in the Bayesian approach, errors (whatever their nature) can be naturally included as part of the global statistical model, the solution of which represents the actual solution to the inverse problem. However, although we agree that probabilistic inversion methods are the most powerful tool for uncertainty estimation, the common claim that they produce "realistic" or "representative" uncertainties is not always justified. Typically, ALL UNCERTAINTY ESTIMATES ARE MODEL DEPENDENT, and therefore, besides a thorough characterization of experimental uncertainties, particular care must be paid to the uncertainty arising from model errors and input uncertainties. We recall here two quotes by G. Box and M. Gunzburger, respectively, of special significance for inversion practitioners and for this session: "…all models are wrong, but some are useful" and "computational results are believed by no one, except the person who wrote the code". In this presentation I will discuss and present examples of some problems associated with the estimation and quantification of uncertainties in complex multi-observable probabilistic inversions, and how to address them. Although the emphasis will be on sources of uncertainty related to the forward and statistical models, I will also address other uncertainties associated with data and uncertainty propagation.
Assessing concentration uncertainty estimates from passive microwave sea ice products
NASA Astrophysics Data System (ADS)
Meier, W.; Brucker, L.; Miller, J. A.
2017-12-01
Sea ice concentration is an essential climate variable and passive microwave derived estimates of concentration are one of the longest satellite-derived climate records. However, until recently uncertainty estimates were not provided. Numerous validation studies provided insight into general error characteristics, but the studies have found that concentration error varied greatly depending on sea ice conditions. Thus, an uncertainty estimate from each observation is desired, particularly for initialization, assimilation, and validation of models. Here we investigate three sea ice products that include an uncertainty for each concentration estimate: the NASA Team 2 algorithm product, the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) product, and the NOAA/NSIDC Climate Data Record (CDR) product. Each product estimates uncertainty with a completely different approach. The NASA Team 2 product derives uncertainty internally from the algorithm method itself. The OSI-SAF uses atmospheric reanalysis fields and a radiative transfer model. The CDR uses spatial variability from two algorithms. Each approach has merits and limitations. Here we evaluate the uncertainty estimates by comparing the passive microwave concentration products with fields derived from the NOAA VIIRS sensor. The results show that the relationship between the product uncertainty estimates and the concentration error (relative to VIIRS) is complex. This may be due to the sea ice conditions, the uncertainty methods, as well as the spatial and temporal variability of the passive microwave and VIIRS products.
Learning accurate very fast decision trees from uncertain data streams
NASA Astrophysics Data System (ADS)
Liang, Chunquan; Zhang, Yang; Shi, Peng; Hu, Zhengguo
2015-12-01
Most existing works on data stream classification assume the streaming data is precise and definite. Such assumption, however, does not always hold in practice, since data uncertainty is ubiquitous in data stream applications due to imprecise measurement, missing values, privacy protection, etc. The goal of this paper is to learn accurate decision tree models from uncertain data streams for classification analysis. On the basis of very fast decision tree (VFDT) algorithms, we proposed an algorithm for constructing an uncertain VFDT tree with classifiers at tree leaves (uVFDTc). The uVFDTc algorithm can exploit uncertain information effectively and efficiently in both the learning and the classification phases. In the learning phase, it uses Hoeffding bound theory to learn from uncertain data streams and yield fast and reasonable decision trees. In the classification phase, at tree leaves it uses uncertain naive Bayes (UNB) classifiers to improve the classification performance. Experimental results on both synthetic and real-life datasets demonstrate the strong ability of uVFDTc to classify uncertain data streams. The use of UNB at tree leaves has improved the performance of uVFDTc, especially the any-time property, the benefit of exploiting uncertain information, and the robustness against uncertainty.
NASA Astrophysics Data System (ADS)
Manteiga, M.; Carricajo, I.; Rodríguez, A.; Dafonte, C.; Arcay, B.
2009-02-01
Astrophysics is evolving toward a more rational use of costly observational data by intelligently exploiting the large terrestrial and spatial astronomical databases. In this paper, we present a study showing the suitability of an expert system to perform the classification of stellar spectra in the Morgan and Keenan (MK) system. Using the formalism of artificial intelligence for the development of such a system, we propose a rules' base that contains classification criteria and confidence grades, all integrated in an inference engine that emulates human reasoning by means of a hierarchical decision rules tree that also considers the uncertainty factors associated with rules. Our main objective is to illustrate the formulation and development of such a system for an astrophysical classification problem. An extensive spectral database of MK standard spectra has been collected and used as a reference to determine the spectral indexes that are suitable for classification in the MK system. It is shown that by considering 30 spectral indexes and associating them with uncertainty factors, we can find an accurate diagnose in MK types of a particular spectrum. The system was evaluated against the NOAO-INDO-US spectral catalog.
Aeroservoelastic Uncertainty Model Identification from Flight Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2001-01-01
Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.
Sources of uncertainty in annual forest inventory estimates
Ronald E. McRoberts
2000-01-01
Although design and estimation aspects of annual forest inventories have begun to receive considerable attention within the forestry and natural resources communities, little attention has been devoted to identifying the sources of uncertainty inherent in these systems or to assessing the impact of those uncertainties on the total uncertainties of inventory estimates....
Wickenberg-Bolin, Ulrika; Göransson, Hanna; Fryknäs, Mårten; Gustafsson, Mats G; Isaksson, Anders
2006-03-13
Supervised learning for classification of cancer employs a set of design examples to learn how to discriminate between tumors. In practice it is crucial to confirm that the classifier is robust with good generalization performance to new examples, or at least that it performs better than random guessing. A suggested alternative is to obtain a confidence interval of the error rate using repeated design and test sets selected from available examples. However, it is known that even in the ideal situation of repeated designs and tests with completely novel samples in each cycle, a small test set size leads to a large bias in the estimate of the true variance between design sets. Therefore different methods for small sample performance estimation such as a recently proposed procedure called Repeated Random Sampling (RSS) is also expected to result in heavily biased estimates, which in turn translates into biased confidence intervals. Here we explore such biases and develop a refined algorithm called Repeated Independent Design and Test (RIDT). Our simulations reveal that repeated designs and tests based on resampling in a fixed bag of samples yield a biased variance estimate. We also demonstrate that it is possible to obtain an improved variance estimate by means of a procedure that explicitly models how this bias depends on the number of samples used for testing. For the special case of repeated designs and tests using new samples for each design and test, we present an exact analytical expression for how the expected value of the bias decreases with the size of the test set. We show that via modeling and subsequent reduction of the small sample bias, it is possible to obtain an improved estimate of the variance of classifier performance between design sets. However, the uncertainty of the variance estimate is large in the simulations performed indicating that the method in its present form cannot be directly applied to small data sets.
Data fusion and classification using a hybrid intrinsic cellular inference network
NASA Astrophysics Data System (ADS)
Woodley, Robert; Walenz, Brett; Seiffertt, John; Robinette, Paul; Wunsch, Donald
2010-04-01
Hybrid Intrinsic Cellular Inference Network (HICIN) is designed for battlespace decision support applications. We developed an automatic method of generating hypotheses for an entity-attribute classifier. The capability and effectiveness of a domain specific ontology was used to generate automatic categories for data classification. Heterogeneous data is clustered using an Adaptive Resonance Theory (ART) inference engine on a sample (unclassified) data set. The data set is the Lahman baseball database. The actual data is immaterial to the architecture, however, parallels in the data can be easily drawn (i.e., "Team" maps to organization, "Runs scored/allowed" to Measure of organization performance (positive/negative), "Payroll" to organization resources, etc.). Results show that HICIN classifiers create known inferences from the heterogonous data. These inferences are not explicitly stated in the ontological description of the domain and are strictly data driven. HICIN uses data uncertainty handling to reduce errors in the classification. The uncertainty handling is based on subjective logic. The belief mass allows evidence from multiple sources to be mathematically combined to increase or discount an assertion. In military operations the ability to reduce uncertainty will be vital in the data fusion operation.
Uncertainty of fast biological radiation dose assessment for emergency response scenarios.
Ainsbury, Elizabeth A; Higueras, Manuel; Puig, Pedro; Einbeck, Jochen; Samaga, Daniel; Barquinero, Joan Francesc; Barrios, Lleonard; Brzozowska, Beata; Fattibene, Paola; Gregoire, Eric; Jaworska, Alicja; Lloyd, David; Oestreicher, Ursula; Romm, Horst; Rothkamm, Kai; Roy, Laurence; Sommer, Sylwester; Terzoudi, Georgia; Thierens, Hubert; Trompier, Francois; Vral, Anne; Woda, Clemens
2017-01-01
Reliable dose estimation is an important factor in appropriate dosimetric triage categorization of exposed individuals to support radiation emergency response. Following work done under the EU FP7 MULTIBIODOSE and RENEB projects, formal methods for defining uncertainties on biological dose estimates are compared using simulated and real data from recent exercises. The results demonstrate that a Bayesian method of uncertainty assessment is the most appropriate, even in the absence of detailed prior information. The relative accuracy and relevance of techniques for calculating uncertainty and combining assay results to produce single dose and uncertainty estimates is further discussed. Finally, it is demonstrated that whatever uncertainty estimation method is employed, ignoring the uncertainty on fast dose assessments can have an important impact on rapid biodosimetric categorization.
NASA Astrophysics Data System (ADS)
Duffy, P.; Keller, M.; Longo, M.; Morton, D. C.; dos-Santos, M. N.; Pinagé, E. R.
2017-12-01
There is an urgent need to quantify the effects of land use and land cover change on carbon stocks in tropical forests to support REDD+ policies and improve characterization of global carbon budgets. This need is underscored by the fact that the variability in forest biomass estimates from global forest carbon maps is artificially low relative to estimates generated from forest inventory and high-resolution airborne lidar data. Both deforestation and degradation processes (e.g. logging, fire, and fragmentation) affect carbon fluxes at varying spatial and temporal scales. While the spatial extent and impact of deforestation has been relatively well characterized, the quantification of degradation processes is still poorly constrained. In the Brazilian Amazon, the largest source of uncertainty in CO2 emissions estimates is data on changes in tropical forest carbon stocks through time, followed closely by incomplete information on the carbon losses from forest degradation. In this work, we present a method for classifying the degradation status of tropical forests using higher order moments (skewness and kurtosis) of lidar return distributions aggregated at grids with resolution ranging from 50 m to 250 m. Across multiple spatial resolutions, we quantify the strength of the functional relationship between the lidar returns and the classification based on historical time series of Landsat imagery. Our results show that the higher order moments of the lidar return distributions provide sufficient information to build multinomial models that accurately classify the landscape into intact, logged, and burned forests. Model fit improved with coarser spatial resolution with Kappa statistics of 0.70 at 50 m, and 0.77 at 250 m. In addition, multi-class AUC was estimated as 0.87 at 50 m, and 0.95 at 250 m. This classification provides important information regarding the applicability of the use of lidar data for regional monitoring of recent logging, as well as the trajectory of the carbon budget. Differentiating between the biomass changes associated with deforestation and degradation processes is critical for accurate accounting of disturbance impacts on carbon cycling within the Brazilian Amazon and global tropical forests.
Quantitative body DW-MRI biomarkers uncertainty estimation using unscented wild-bootstrap.
Freiman, M; Voss, S D; Mulkern, R V; Perez-Rossello, J M; Warfield, S K
2011-01-01
We present a new method for the uncertainty estimation of diffusion parameters for quantitative body DW-MRI assessment. Diffusion parameters uncertainty estimation from DW-MRI is necessary for clinical applications that use these parameters to assess pathology. However, uncertainty estimation using traditional techniques requires repeated acquisitions, which is undesirable in routine clinical use. Model-based bootstrap techniques, for example, assume an underlying linear model for residuals rescaling and cannot be utilized directly for body diffusion parameters uncertainty estimation due to the non-linearity of the body diffusion model. To offset this limitation, our method uses the Unscented transform to compute the residuals rescaling parameters from the non-linear body diffusion model, and then applies the wild-bootstrap method to infer the body diffusion parameters uncertainty. Validation through phantom and human subject experiments shows that our method identify the regions with higher uncertainty in body DWI-MRI model parameters correctly with realtive error of -36% in the uncertainty values.
Uncertainty in flood damage estimates and its potential effect on investment decisions
NASA Astrophysics Data System (ADS)
Wagenaar, Dennis; de Bruijn, Karin; Bouwer, Laurens; de Moel, Hans
2015-04-01
This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. This Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. This uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
Uncertainty in flood damage estimates and its potential effect on investment decisions
NASA Astrophysics Data System (ADS)
Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; De Moel, H.
2015-01-01
This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage models can lead to large uncertainties in flood damage estimates. This explanation is used to quantify this uncertainty with a Monte Carlo Analysis. As input the Monte Carlo analysis uses a damage function library with 272 functions from 7 different flood damage models. This results in uncertainties in the order of magnitude of a factor 2 to 5. The resulting uncertainty is typically larger for small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
Interval Estimation of Seismic Hazard Parameters
NASA Astrophysics Data System (ADS)
Orlecka-Sikora, Beata; Lasocki, Stanislaw
2017-03-01
The paper considers Poisson temporal occurrence of earthquakes and presents a way to integrate uncertainties of the estimates of mean activity rate and magnitude cumulative distribution function in the interval estimation of the most widely used seismic hazard functions, such as the exceedance probability and the mean return period. The proposed algorithm can be used either when the Gutenberg-Richter model of magnitude distribution is accepted or when the nonparametric estimation is in use. When the Gutenberg-Richter model of magnitude distribution is used the interval estimation of its parameters is based on the asymptotic normality of the maximum likelihood estimator. When the nonparametric kernel estimation of magnitude distribution is used, we propose the iterated bias corrected and accelerated method for interval estimation based on the smoothed bootstrap and second-order bootstrap samples. The changes resulted from the integrated approach in the interval estimation of the seismic hazard functions with respect to the approach, which neglects the uncertainty of the mean activity rate estimates have been studied using Monte Carlo simulations and two real dataset examples. The results indicate that the uncertainty of mean activity rate affects significantly the interval estimates of hazard functions only when the product of activity rate and the time period, for which the hazard is estimated, is no more than 5.0. When this product becomes greater than 5.0, the impact of the uncertainty of cumulative distribution function of magnitude dominates the impact of the uncertainty of mean activity rate in the aggregated uncertainty of the hazard functions. Following, the interval estimates with and without inclusion of the uncertainty of mean activity rate converge. The presented algorithm is generic and can be applied also to capture the propagation of uncertainty of estimates, which are parameters of a multiparameter function, onto this function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less
Expanded uncertainty estimation methodology in determining the sandy soils filtration coefficient
NASA Astrophysics Data System (ADS)
Rusanova, A. D.; Malaja, L. D.; Ivanov, R. N.; Gruzin, A. V.; Shalaj, V. V.
2018-04-01
The combined standard uncertainty estimation methodology in determining the sandy soils filtration coefficient has been developed. The laboratory researches were carried out which resulted in filtration coefficient determination and combined uncertainty estimation obtaining.
Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2016-01-01
A real-time method was demonstrated for determining accurate uncertainty levels of stability and control derivatives estimated using recursive least squares and time-domain data. The method uses a recursive formulation of the residual autocorrelation to account for colored residuals, which are routinely encountered in aircraft parameter estimation and change the predicted uncertainties. Simulation data and flight test data for a subscale jet transport aircraft were used to demonstrate the approach. Results showed that the corrected uncertainties matched the observed scatter in the parameter estimates, and did so more accurately than conventional uncertainty estimates that assume white residuals. Only small differences were observed between batch estimates and recursive estimates at the end of the maneuver. It was also demonstrated that the autocorrelation could be reduced to a small number of lags to minimize computation and memory storage requirements without significantly degrading the accuracy of predicted uncertainty levels.
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Barthel, Roland
2016-04-01
When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes corresponding to geological descriptors. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria.
Rigo-Bonnin, Raül; Blanco-Font, Aurora; Canalias, Francesca
2018-05-08
Values of mass concentration of tacrolimus in whole blood are commonly used by the clinicians for monitoring the status of a transplant patient and for checking whether the administered dose of tacrolimus is effective. So, clinical laboratories must provide results as accurately as possible. Measurement uncertainty can allow ensuring reliability of these results. The aim of this study was to estimate measurement uncertainty of whole blood mass concentration tacrolimus values obtained by UHPLC-MS/MS using two top-down approaches: the single laboratory validation approach and the proficiency testing approach. For the single laboratory validation approach, we estimated the uncertainties associated to the intermediate imprecision (using long-term internal quality control data) and the bias (utilizing a certified reference material). Next, we combined them together with the uncertainties related to the calibrators-assigned values to obtain a combined uncertainty for, finally, to calculate the expanded uncertainty. For the proficiency testing approach, the uncertainty was estimated in a similar way that the single laboratory validation approach but considering data from internal and external quality control schemes to estimate the uncertainty related to the bias. The estimated expanded uncertainty for single laboratory validation, proficiency testing using internal and external quality control schemes were 11.8%, 13.2%, and 13.0%, respectively. After performing the two top-down approaches, we observed that their uncertainty results were quite similar. This fact would confirm that either two approaches could be used to estimate the measurement uncertainty of whole blood mass concentration tacrolimus values in clinical laboratories. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Sengupta, M.; Reda, I.
Radiometric data with known and traceable uncertainty is essential for climate change studies to better understand cloud radiation interactions and the earth radiation budget. Further, adopting a known and traceable method of estimating uncertainty with respect to SI ensures that the uncertainty quoted for radiometric measurements can be compared based on documented methods of derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expressionmore » of Uncertainty in Measurement (GUM). derivation.Therefore, statements about the overall measurement uncertainty can only be made on an individual basis, taking all relevant factors into account. This poster provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements from radiometers. The approach follows the Guide to the Expression of Uncertainty in Measurement (GUM).« less
Uncertainty in flood damage estimates and its potential effect on investment decisions
NASA Astrophysics Data System (ADS)
Wagenaar, D. J.; de Bruijn, K. M.; Bouwer, L. M.; de Moel, H.
2016-01-01
This paper addresses the large differences that are found between damage estimates of different flood damage models. It explains how implicit assumptions in flood damage functions and maximum damages can have large effects on flood damage estimates. This explanation is then used to quantify the uncertainty in the damage estimates with a Monte Carlo analysis. The Monte Carlo analysis uses a damage function library with 272 functions from seven different flood damage models. The paper shows that the resulting uncertainties in estimated damages are in the order of magnitude of a factor of 2 to 5. The uncertainty is typically larger for flood events with small water depths and for smaller flood events. The implications of the uncertainty in damage estimates for flood risk management are illustrated by a case study in which the economic optimal investment strategy for a dike segment in the Netherlands is determined. The case study shows that the uncertainty in flood damage estimates can lead to significant over- or under-investments.
Wallace, Jack
2010-05-01
While forensic laboratories will soon be required to estimate uncertainties of measurement for those quantitations reported to the end users of the information, the procedures for estimating this have been little discussed in the forensic literature. This article illustrates how proficiency test results provide the basis for estimating uncertainties in three instances: (i) For breath alcohol analyzers the interlaboratory precision is taken as a direct measure of uncertainty. This approach applies when the number of proficiency tests is small. (ii) For blood alcohol, the uncertainty is calculated from the differences between the laboratory's proficiency testing results and the mean quantitations determined by the participants; this approach applies when the laboratory has participated in a large number of tests. (iii) For toxicology, either of these approaches is useful for estimating comparability between laboratories, but not for estimating absolute accuracy. It is seen that data from proficiency tests enable estimates of uncertainty that are empirical, simple, thorough, and applicable to a wide range of concentrations.
Application of Dynamic naïve Bayesian classifier to comprehensive drought assessment
NASA Astrophysics Data System (ADS)
Park, D. H.; Lee, J. Y.; Lee, J. H.; KIm, T. W.
2017-12-01
Drought monitoring has already been extensively studied due to the widespread impacts and complex causes of drought. The most important component of drought monitoring is to estimate the characteristics and extent of drought by quantitatively measuring the characteristics of drought. Drought assessment considering different aspects of the complicated drought condition and uncertainty of drought index is great significance in accurate drought monitoring. This study used the dynamic Naïve Bayesian Classifier (DNBC) which is an extension of the Hidden Markov Model (HMM), to model and classify drought by using various drought indices for integrated drought assessment. To provide a stable model for combined use of multiple drought indices, this study employed the DNBC to perform multi-index drought assessment by aggregating the effect of different type of drought and considering the inherent uncertainty. Drought classification was performed by the DNBC using several drought indices: Standardized Precipitation Index (SPI), Streamflow Drought Index (SDI), and Normalized Vegetation Supply Water Index (NVSWI)) that reflect meteorological, hydrological, and agricultural drought characteristics. Overall results showed that in comparison unidirectional (SPI, SDI, and NVSWI) or multivariate (Composite Drought Index, CDI) drought assessment, the proposed DNBC was able to synthetically classify of drought considering uncertainty. Model provided method for comprehensive drought assessment with combined use of different drought indices.
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process
Haines, Aaron M.; Zak, Matthew; Hammond, Katie; Scott, J. Michael; Goble, Dale D.; Rachlow, Janet L.
2013-01-01
Simple Summary The objective of our study was to evaluate the mention of uncertainty (i.e., variance) associated with population size estimates within U.S. recovery plans for endangered animals. To do this we reviewed all finalized recovery plans for listed terrestrial vertebrate species. We found that more recent recovery plans reported more estimates of population size and uncertainty. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty. We recommend that updated recovery plans combine uncertainty of population size estimates with a minimum detectable difference to aid in successful recovery. Abstract United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data. PMID:26479531
NASA Astrophysics Data System (ADS)
Rhodes, C. R.; Sinha, P.; Amanda, N.
2013-12-01
In recent years the gap between what scientists know and what policymakers should appreciate in environmental decision making has received more attention, as the costs of the disconnect have become more apparent to both groups. Particularly for water-related policies, the EPA's Office of Water has struggled with benefit estimates held low by the inability to quantify ecological and economic effects that theory, modeling, and anecdotal or isolated case evidence suggest may prove to be larger. Better coordination with ecologists and hydrologists is being explored as a solution. The ecosystem services (ES) concept now nearly two decades old links ecosystem functions and processes to the human value system. But there remains no clear mapping of which ecosystem goods and services affect which individual or economic values. The National Ecosystem Services Classification System (NESCS, 'nexus') project brings together ecologists, hydrologists, and social scientists to do this mapping for aquatic and other ecosystem service-generating systems. The objective is to greatly reduce the uncertainty in water-related policy making by mapping and ultimately quantifying the various functions and products of aquatic systems, as well as how changes to aquatic systems impact the human economy and individual levels of non-monetary appreciation for those functions and products. Primary challenges to fostering interaction between scientists, social scientists, and policymakers are lack of a common vocabulary, and the need for a cohesive comprehensive framework that organizes concepts across disciplines and accommodates scientific data from a range of sources. NESCS builds the vocabulary and the framework so both may inform a scalable transdisciplinary policy-making application. This talk presents for discussion the process and progress in developing both this vocabulary and a classifying framework capable of bridging the gap between a newer but existing ecosystem services classification system, and a standardized industrial classification system. Our goal is to model then predict the effects of a policy choice on the environment, from impacts on ecological components and processes all the way through to endpoints in the human value chain.
ERIC Educational Resources Information Center
Yang, Xiangdong; Poggio, John C.; Glasnapp, Douglas R.
2006-01-01
The effects of five ability estimators, that is, maximum likelihood estimator, weighted likelihood estimator, maximum a posteriori, expected a posteriori, and Owen's sequential estimator, on the performances of the item response theory-based adaptive classification procedure on multiple categories were studied via simulations. The following…
Estimating Uncertainty in Annual Forest Inventory Estimates
Ronald E. McRoberts; Veronica C. Lessard
1999-01-01
The precision of annual forest inventory estimates may be negatively affected by uncertainty from a variety of sources including: (1) sampling error; (2) procedures for updating plots not measured in the current year; and (3) measurement errors. The impact of these sources of uncertainty on final inventory estimates is investigated using Monte Carlo simulation...
Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty.
Lee, Jun Hyung; Choi, Jee-Hye; Youn, Jae Saeng; Cha, Young Joo; Song, Woonheung; Park, Ae Ja
2015-06-01
Measurement uncertainty is a metrological concept to quantify the variability of measurement results. There are two approaches to estimate measurement uncertainty. In this study, we sought to provide practical and detailed examples of the two approaches and compare the bottom-up and top-down approaches to estimating measurement uncertainty. We estimated measurement uncertainty of the concentration of glucose according to CLSI EP29-A guideline. Two different approaches were used. First, we performed a bottom-up approach. We identified the sources of uncertainty and made an uncertainty budget and assessed the measurement functions. We determined the uncertainties of each element and combined them. Second, we performed a top-down approach using internal quality control (IQC) data for 6 months. Then, we estimated and corrected systematic bias using certified reference material of glucose (NIST SRM 965b). The expanded uncertainties at the low glucose concentration (5.57 mmol/L) by the bottom-up approach and top-down approaches were ±0.18 mmol/L and ±0.17 mmol/L, respectively (all k=2). Those at the high glucose concentration (12.77 mmol/L) by the bottom-up and top-down approaches were ±0.34 mmol/L and ±0.36 mmol/L, respectively (all k=2). We presented practical and detailed examples for estimating measurement uncertainty by the two approaches. The uncertainties by the bottom-up approach were quite similar to those by the top-down approach. Thus, we demonstrated that the two approaches were approximately equivalent and interchangeable and concluded that clinical laboratories could determine measurement uncertainty by the simpler top-down approach.
A Nonparametric Approach to Estimate Classification Accuracy and Consistency
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2014-01-01
When cut scores for classifications occur on the total score scale, popular methods for estimating classification accuracy (CA) and classification consistency (CC) require assumptions about a parametric form of the test scores or about a parametric response model, such as item response theory (IRT). This article develops an approach to estimate CA…
Optical Variability and Classification of High Redshift (3.5 < z < 5.5) Quasars on SDSS Stripe 82
NASA Astrophysics Data System (ADS)
AlSayyad, Yusra; McGreer, Ian D.; Fan, Xiaohui; Connolly, Andrew J.; Ivezic, Zeljko; Becker, Andrew C.
2015-01-01
Recent studies have shown promise in combining optical colors with variability to efficiently select and estimate the redshifts of low- to mid-redshift quasars in upcoming ground-based time-domain surveys. We extend these studies to fainter and less abundant high-redshift quasars using light curves from 235 sq. deg. and 10 years of Stripe 82 imaging reprocessed with the prototype LSST data management stack. Sources are detected on the i-band co-adds (5σ: i ~ 24) but measured on the single-epoch (ugriz) images, generating complete and unbiased lightcurves for sources fainter than the single-epoch detection threshold. Using these forced photometry lightcurves, we explore optical variability characteristics of high redshift quasars and validate classification methods with particular attention to the low signal limit. In this low SNR limit, we quantify the degradation of the uncertainties and biases on variability parameters using simulated light curves. Completeness/efficiency and redshift accuracy are verified with new spectroscopic observations on the MMT and APO 3.5m. These preliminary results are part of a survey to measure the z~4 luminosity function for quasars (i < 23) on Stripe 82 and to validate purely photometric classification techniques for high redshift quasars in LSST.
Classification of air quality using fuzzy synthetic multiplication.
Abdullah, Lazim; Khalid, Noor Dalina
2012-11-01
Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.
Pulley, Simon; Foster, Ian; Collins, Adrian L
2017-06-01
The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Conclusions on measurement uncertainty in microbiology.
Forster, Lynne I
2009-01-01
Since its first issue in 1999, testing laboratories wishing to comply with all the requirements of ISO/IEC 17025 have been collecting data for estimating uncertainty of measurement for quantitative determinations. In the microbiological field of testing, some debate has arisen as to whether uncertainty needs to be estimated for each method performed in the laboratory for each type of sample matrix tested. Queries also arise concerning the estimation of uncertainty when plate/membrane filter colony counts are below recommended method counting range limits. A selection of water samples (with low to high contamination) was tested in replicate with the associated uncertainty of measurement being estimated from the analytical results obtained. The analyses performed on the water samples included total coliforms, fecal coliforms, fecal streptococci by membrane filtration, and heterotrophic plate counts by the pour plate technique. For those samples where plate/membrane filter colony counts were > or =20, uncertainty estimates at a 95% confidence level were very similar for the methods, being estimated as 0.13, 0.14, 0.14, and 0.12, respectively. For those samples where plate/membrane filter colony counts were <20, estimated uncertainty values for each sample showed close agreement with published confidence limits established using a Poisson distribution approach.
Devenish Nelson, Eleanor S.; Harris, Stephen; Soulsbury, Carl D.; Richards, Shane A.; Stephens, Philip A.
2010-01-01
Background Demographic models are widely used in conservation and management, and their parameterisation often relies on data collected for other purposes. When underlying data lack clear indications of associated uncertainty, modellers often fail to account for that uncertainty in model outputs, such as estimates of population growth. Methodology/Principal Findings We applied a likelihood approach to infer uncertainty retrospectively from point estimates of vital rates. Combining this with resampling techniques and projection modelling, we show that confidence intervals for population growth estimates are easy to derive. We used similar techniques to examine the effects of sample size on uncertainty. Our approach is illustrated using data on the red fox, Vulpes vulpes, a predator of ecological and cultural importance, and the most widespread extant terrestrial mammal. We show that uncertainty surrounding estimated population growth rates can be high, even for relatively well-studied populations. Halving that uncertainty typically requires a quadrupling of sampling effort. Conclusions/Significance Our results compel caution when comparing demographic trends between populations without accounting for uncertainty. Our methods will be widely applicable to demographic studies of many species. PMID:21049049
Quantifying uncertainty in discharge measurements: A new approach
Kiang, J.E.; Cohn, T.A.; Mason, R.R.
2009-01-01
The accuracy of discharge measurements using velocity meters and the velocity-area method is typically assessed based on empirical studies that may not correspond to conditions encountered in practice. In this paper, a statistical approach for assessing uncertainty based on interpolated variance estimation (IVE) is introduced. The IVE method quantifies all sources of random uncertainty in the measured data. This paper presents results employing data from sites where substantial over-sampling allowed for the comparison of IVE-estimated uncertainty and observed variability among repeated measurements. These results suggest that the IVE approach can provide approximate estimates of measurement uncertainty. The use of IVE to estimate the uncertainty of a discharge measurement would provide the hydrographer an immediate determination of uncertainty and help determine whether there is a need for additional sampling in problematic river cross sections. ?? 2009 ASCE.
Yang, M; Zhu, X R; Park, PC; Titt, Uwe; Mohan, R; Virshup, G; Clayton, J; Dong, L
2012-01-01
The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0–3.4%, primarily because soft tissue is the dominant tissue type in human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield Numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction. PMID:22678123
SUB-PIXEL RAINFALL VARIABILITY AND THE IMPLICATIONS FOR UNCERTAINTIES IN RADAR RAINFALL ESTIMATES
Radar estimates of rainfall are subject to significant measurement uncertainty. Typically, uncertainties are measured by the discrepancies between real rainfall estimates based on radar reflectivity and point rainfall records of rain gauges. This study investigates how the disc...
Rodomonte, Andrea Luca; Montinaro, Annalisa; Bartolomei, Monica
2006-09-11
A measurement result cannot be properly interpreted if not accompanied by its uncertainty. Several methods to estimate uncertainty have been developed. From those methods three in particular were chosen in this work to estimate the uncertainty of the Eu. Ph. chloroquine phosphate assay, a potentiometric titration commonly used in medicinal control laboratories. The famous error-budget approach (also called bottom-up or step-by-step) described by the ISO Guide to the expression of Uncertainty in Measurement (GUM) was the first method chosen. It is based on the combination of uncertainty contributions that have to be directly derived from the measurement process. The second method employed was the Analytical Method Committee top-down which estimates uncertainty through reproducibility obtained during inter-laboratory studies. Data for its application were collected in a proficiency testing study carried out by over 50 laboratories throughout Europe. The last method chosen was the one proposed by Barwick and Ellison. It uses a combination of precision, trueness and ruggedness data to estimate uncertainty. These data were collected from a validation process specifically designed for uncertainty estimation. All the three approaches presented a distinctive set of advantages and drawbacks in their implementation. An expanded uncertainty of about 1% was assessed for the assay investigated.
NASA Astrophysics Data System (ADS)
Dittes, Beatrice; Špačková, Olga; Ebrahimian, Negin; Kaiser, Maria; Rieger, Wolfgang; Disse, Markus; Straub, Daniel
2017-04-01
Flood risk estimates are subject to significant uncertainties, e.g. due to limited records of historic flood events, uncertainty in flood modeling, uncertain impact of climate change or uncertainty in the exposure and loss estimates. In traditional design of flood protection systems, these uncertainties are typically just accounted for implicitly, based on engineering judgment. In the AdaptRisk project, we develop a fully quantitative framework for planning of flood protection systems under current and future uncertainties using quantitative pre-posterior Bayesian decision analysis. In this contribution, we focus on the quantification of the uncertainties and study their relative influence on the flood risk estimate and on the planning of flood protection systems. The following uncertainty components are included using a Bayesian approach: 1) inherent and statistical (i.e. limited record length) uncertainty; 2) climate uncertainty that can be learned from an ensemble of GCM-RCM models; 3) estimates of climate uncertainty components not covered in 2), such as bias correction, incomplete ensemble, local specifics not captured by the GCM-RCM models; 4) uncertainty in the inundation modelling; 5) uncertainty in damage estimation. We also investigate how these uncertainties are possibly reduced in the future when new evidence - such as new climate models, observed extreme events, and socio-economic data - becomes available. Finally, we look into how this new evidence influences the risk assessment and effectivity of flood protection systems. We demonstrate our methodology for a pre-alpine catchment in southern Germany: the Mangfall catchment in Bavaria that includes the city of Rosenheim, which suffered significant losses during the 2013 flood event.
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Swain, P. H. (Principal Investigator); Vardeman, S. B.
1981-01-01
A key input to a statistical classification algorithm, which exploits the tendency of certain ground cover classes to occur more frequently in some spatial context than in others, is a statistical characterization of the context: the context distribution. An unbiased estimator of the context distribution is discussed which, besides having the advantage of statistical unbiasedness, has the additional advantage over other estimation techniques of being amenable to an adaptive implementation in which the context distribution estimate varies according to local contextual information. Results from applying the unbiased estimator to the contextual classification of three real LANDSAT data sets are presented and contrasted with results from non-contextual classifications and from contextual classifications utilizing other context distribution estimation techniques.
The impact of land use on estimates of pesticide leaching potential: Assessments and uncertainties
NASA Astrophysics Data System (ADS)
Loague, Keith
1991-11-01
This paper illustrates the magnitude of uncertainty which can exist for pesticide leaching assessments, due to data uncertainties, both between soil orders and within a single soil order. The current work differs from previous efforts because the impact of uncertainty in recharge estimates is considered. The examples are for diuron leaching in the Pearl Harbor Basin. The results clearly indicate that land use has a significant impact on both estimates of pesticide leaching potential and the uncertainties associated with those estimates. It appears that the regulation of agricultural chemicals in the future should include consideration for changing land use.
Multiple-rule bias in the comparison of classification rules
Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.
2011-01-01
Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390
NASA Astrophysics Data System (ADS)
Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.
2014-01-01
The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.
Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps
NASA Astrophysics Data System (ADS)
Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.
2017-07-01
Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed on randomized training sets. Results: We obtain excellent results (about 5% global error rate) with classification into light curve morphology classes on the Hipparcos data. The classification into system morphology classes using the Catalog and Atlas of Eclipsing binaries (CALEB) has a higher error rate (about 10.5%), most importantly due to the (sometimes strong) similarity of the photometric light curves originating from physically different systems. When trained on CALEB and then applied to Kepler-detected eclipsing binaries subsampled according to Gaia observing times, LDA and SOM provide tractable, easy-to-visualize subspaces of the full (functional) space of light curves that summarize the most important phenomenological elements of the individual light curves. The sequence of light curves ordered by their first linear discriminant coefficient is compared to results obtained using local linear embedding. The SOM method proves able to find a 2-dimensional embedded surface in the space of the light curves which separates the system morphology classes in its different regions, and also identifies a few other phenomena, such as the asymmetry of the light curves due to spots, eccentric systems, and systems with a single eclipse. Furthermore, when data from other surveys are projected to the same SOM surface, the resulting map yields a good overview of the general biases and distortions due to differences in time sampling or population.
2009-01-01
Background Large discrepancies in signature composition and outcome concordance have been observed between different microarray breast cancer expression profiling studies. This is often ascribed to differences in array platform as well as biological variability. We conjecture that other reasons for the observed discrepancies are the measurement error associated with each feature and the choice of preprocessing method. Microarray data are known to be subject to technical variation and the confidence intervals around individual point estimates of expression levels can be wide. Furthermore, the estimated expression values also vary depending on the selected preprocessing scheme. In microarray breast cancer classification studies, however, these two forms of feature variability are almost always ignored and hence their exact role is unclear. Results We have performed a comprehensive sensitivity analysis of microarray breast cancer classification under the two types of feature variability mentioned above. We used data from six state of the art preprocessing methods, using a compendium consisting of eight diferent datasets, involving 1131 hybridizations, containing data from both one and two-color array technology. For a wide range of classifiers, we performed a joint study on performance, concordance and stability. In the stability analysis we explicitly tested classifiers for their noise tolerance by using perturbed expression profiles that are based on uncertainty information directly related to the preprocessing methods. Our results indicate that signature composition is strongly influenced by feature variability, even if the array platform and the stratification of patient samples are identical. In addition, we show that there is often a high level of discordance between individual class assignments for signatures constructed on data coming from different preprocessing schemes, even if the actual signature composition is identical. Conclusion Feature variability can have a strong impact on breast cancer signature composition, as well as the classification of individual patient samples. We therefore strongly recommend that feature variability is considered in analyzing data from microarray breast cancer expression profiling experiments. PMID:19941644
NASA Astrophysics Data System (ADS)
Mel, Riccardo; Viero, Daniele Pietro; Carniello, Luca; Defina, Andrea; D'Alpaos, Luigi
2014-09-01
Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.
A classification scheme for edge-localized modes based on their probability distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabbir, A., E-mail: aqsa.shabbir@ugent.be; Max Planck Institute for Plasma Physics, D-85748 Garching; Hornung, G.
We present here an automated classification scheme which is particularly well suited to scenarios where the parameters have significant uncertainties or are stochastic quantities. To this end, the parameters are modeled with probability distributions in a metric space and classification is conducted using the notion of nearest neighbors. The presented framework is then applied to the classification of type I and type III edge-localized modes (ELMs) from a set of carbon-wall plasmas at JET. This provides a fast, standardized classification of ELM types which is expected to significantly reduce the effort of ELM experts in identifying ELM types. Further, themore » classification scheme is general and can be applied to various other plasma phenomena as well.« less
ERIC Educational Resources Information Center
Zytowski, Donald G.
1972-01-01
Owing to the uncertainty concerning the concurrent validity of the SVIB and the KOIS, a test of accuracy of classification of men in the occupations common to both inventories was undertaken. The results suggest that neither show any less validity than had been shown in separate studies previously. (Author)
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.;
2012-01-01
The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy -ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the Instrument Response Functions (IRFs), the description of the instrument performance provided for data analysis. In this paper we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, T.E.; Enoch, K.G.
2002-08-01
CalTOX has been developed as a set of spreadsheet models and spreadsheet data sets to assist in assessing human exposures from continuous releases to multiple environmental media, i.e. air, soil, and water. It has also been used for waste classification and for setting soil clean-up levels at uncontrolled hazardous wastes sites. The modeling components of CalTOX include a multimedia transport and transformation model, multi-pathway exposure scenario models, and add-ins to quantify and evaluate uncertainty and variability. All parameter values used as inputs to CalTOX are distributions, described in terms of mean values and a coefficient of variation, rather than asmore » point estimates or plausible upper values such as most other models employ. This probabilistic approach allows both sensitivity and uncertainty analyses to be directly incorporated into the model operation. This manual provides CalTOX users with a brief overview of the CalTOX spreadsheet model and provides instructions for using the spreadsheet to make deterministic and probabilistic calculations of source-dose-risk relationships.« less
A hydroclimatological approach to predicting regional landslide probability using Landlab
NASA Astrophysics Data System (ADS)
Strauch, Ronda; Istanbulluoglu, Erkan; Nudurupati, Sai Siddhartha; Bandaragoda, Christina; Gasparini, Nicole M.; Tucker, Gregory E.
2018-02-01
We develop a hydroclimatological approach to the modeling of regional shallow landslide initiation that integrates spatial and temporal dimensions of parameter uncertainty to estimate an annual probability of landslide initiation based on Monte Carlo simulations. The physically based model couples the infinite-slope stability model with a steady-state subsurface flow representation and operates in a digital elevation model. Spatially distributed gridded data for soil properties and vegetation classification are used for parameter estimation of probability distributions that characterize model input uncertainty. Hydrologic forcing to the model is through annual maximum daily recharge to subsurface flow obtained from a macroscale hydrologic model. We demonstrate the model in a steep mountainous region in northern Washington, USA, over 2700 km2. The influence of soil depth on the probability of landslide initiation is investigated through comparisons among model output produced using three different soil depth scenarios reflecting the uncertainty of soil depth and its potential long-term variability. We found elevation-dependent patterns in probability of landslide initiation that showed the stabilizing effects of forests at low elevations, an increased landslide probability with forest decline at mid-elevations (1400 to 2400 m), and soil limitation and steep topographic controls at high alpine elevations and in post-glacial landscapes. These dominant controls manifest themselves in a bimodal distribution of spatial annual landslide probability. Model testing with limited observations revealed similarly moderate model confidence for the three hazard maps, suggesting suitable use as relative hazard products. The model is available as a component in Landlab, an open-source, Python-based landscape earth systems modeling environment, and is designed to be easily reproduced utilizing HydroShare cyberinfrastructure.
Process for estimating likelihood and confidence in post detonation nuclear forensics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darby, John L.; Craft, Charles M.
2014-07-01
Technical nuclear forensics (TNF) must provide answers to questions of concern to the broader community, including an estimate of uncertainty. There is significant uncertainty associated with post-detonation TNF. The uncertainty consists of a great deal of epistemic (state of knowledge) as well as aleatory (random) uncertainty, and many of the variables of interest are linguistic (words) and not numeric. We provide a process by which TNF experts can structure their process for answering questions and provide an estimate of uncertainty. The process uses belief and plausibility, fuzzy sets, and approximate reasoning.
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.
2017-12-01
Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability of the streamflow forecasts produced with ensemble meteorological forcings.
Can we reliably estimate managed forest carbon dynamics using remotely sensed data?
NASA Astrophysics Data System (ADS)
Smallman, Thomas Luke; Exbrayat, Jean-Francois; Bloom, A. Anthony; Williams, Mathew
2015-04-01
Forests are an important part of the global carbon cycle, serving as both a large store of carbon and currently as a net sink of CO2. Forest biomass varies significantly in time and space, linked to climate, soils, natural disturbance and human impacts. This variation means that the global distribution of forest biomass and their dynamics are poorly quantified. Terrestrial ecosystem models (TEMs) are rarely evaluated for their predictions of forest carbon stocks and dynamics, due to a lack of knowledge on site specific factors such as disturbance dates and / or managed interventions. In this regard, managed forests present a valuable opportunity for model calibration and improvement. Spatially explicit datasets of planting dates, species and yield classification, in combination with remote sensing data and an appropriate data assimilation (DA) framework can reduce prediction uncertainty and error. We use a Baysian approach to calibrate the data assimilation linked ecosystem carbon (DALEC) model using a Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC) framework. Forest management information is incorporated into the data assimilation framework as part of ecological and dynamic constraints (EDCs). The key advantage here is that DALEC simulates a full carbon balance, not just the living biomass, and that both parameter and prediction uncertainties are estimated as part of the DA analysis. DALEC has been calibrated at two managed forests, in the USA (Pinus taeda; Duke Forest) and UK (Picea sitchensis; Griffin Forest). At each site DALEC is calibrated twice (exp1 & exp2). Both calibrations (exp1 & exp2) assimilated MODIS LAI and HWSD estimates of soil carbon stored in soil organic matter, in addition to common management information and prior knowledge included in parameter priors and the EDCs. Calibration exp1 also utilises multiple site level estimates of carbon storage in multiple pools. By comparing simulations we determine the impact of site-level observations on uncertainty and error on predictions, and which observations are key to constraining ecosystem processes. Preliminary simulations indicate that DALEC calibration exp1 accurately simulated the assimilated observations for forest and soil carbon stock estimates including, critically for forestry, standing wood stocks (R2 = 0.92, bias = -4.46 MgC ha-1, RMSE = 5.80 MgC ha-1). The results from exp1 indicate the model is able to find parameters that are both consistent with EDC and observations. In the absence of site-level stock observations (exp2) DALEC accurately estimates foliage and fine root pools, while the median estimate of above ground litter and wood stocks (R2 = 0.92, bias = -48.30 MgC ha-1, RMSE = 50.30 MgC ha-1) are over- and underestimated respectively, site-level observations are within model uncertainty. These results indicate that we can estimate managed forests dynamics using remotely sensed data, particularly as remotely sensed above ground biomass maps become available to provide constraint to correct biases in woody accumulation.
Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.
Rideout, Brendan P; Dosso, Stan E; Hannay, David E
2013-09-01
This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.
Transfer of uncertainty of space-borne high resolution rainfall products at ungauged regions
NASA Astrophysics Data System (ADS)
Tang, Ling
Hydrologically relevant characteristics of high resolution (˜ 0.25 degree, 3 hourly) satellite rainfall uncertainty were derived as a function of season and location using a six year (2002-2007) archive of National Aeronautics and Space Administration (NASA)'s Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) precipitation data. The Next Generation Radar (NEXRAD) Stage IV rainfall data over the continental United States was used as ground validation (GV) data. A geostatistical mapping scheme was developed and tested for transfer (i.e., spatial interpolation) of uncertainty information from GV regions to the vast non-GV regions by leveraging the error characterization work carried out in the earlier step. The open question explored here was, "If 'error' is defined on the basis of independent ground validation (GV) data, how are error metrics estimated for a satellite rainfall data product without the need for much extensive GV data?" After a quantitative analysis of the spatial and temporal structure of the satellite rainfall uncertainty, a proof-of-concept geostatistical mapping scheme (based on the kriging method) was evaluated. The idea was to understand how realistic the idea of 'transfer' is for the GPM era. It was found that it was indeed technically possible to transfer error metrics from a gauged to an ungauged location for certain error metrics and that a regionalized error metric scheme for GPM may be possible. The uncertainty transfer scheme based on a commonly used kriging method (ordinary kriging) was then assessed further at various timescales (climatologic, seasonal, monthly and weekly), and as a function of the density of GV coverage. The results indicated that if a transfer scheme for estimating uncertainty metrics was finer than seasonal scale (ranging from 3-6 hourly to weekly-monthly), the effectiveness for uncertainty transfer worsened significantly. Next, a comprehensive assessment of different kriging methods for spatial transfer (interpolation) of error metrics was performed. Three kriging methods for spatial interpolation are compared, which are: ordinary kriging (OK), indicator kriging (IK) and disjunctive kriging (DK). Additional comparison with the simple inverse distance weighting (IDW) method was also performed to quantify the added benefit (if any) of using geostatistical methods. The overall performance ranking of the kriging methods was found to be as follows: OK=DK > IDW > IK. Lastly, various metrics of satellite rainfall uncertainty were identified for two large continental landmasses that share many similar Koppen climate zones, United States and Australia. The dependence of uncertainty as a function of gauge density was then investigated. The investigation revealed that only the first and second ordered moments of error are most amenable to a Koppen-type climate type classification in different continental landmasses.
Alderman, Phillip D.; Stanfill, Bryan
2016-10-06
Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less
NASA Astrophysics Data System (ADS)
Park, M.; Stenstrom, M. K.
2004-12-01
Recognizing urban information from the satellite imagery is problematic due to the diverse features and dynamic changes of urban landuse. The use of Landsat imagery for urban land use classification involves inherent uncertainty due to its spatial resolution and the low separability among land uses. To resolve the uncertainty problem, we investigated the performance of Bayesian networks to classify urban land use since Bayesian networks provide a quantitative way of handling uncertainty and have been successfully used in many areas. In this study, we developed the optimized networks for urban land use classification from Landsat ETM+ images of Marina del Rey area based on USGS land cover/use classification level III. The networks started from a tree structure based on mutual information between variables and added the links to improve accuracy. This methodology offers several advantages: (1) The network structure shows the dependency relationships between variables. The class node value can be predicted even with particular band information missing due to sensor system error. The missing information can be inferred from other dependent bands. (2) The network structure provides information of variables that are important for the classification, which is not available from conventional classification methods such as neural networks and maximum likelihood classification. In our case, for example, bands 1, 5 and 6 are the most important inputs in determining the land use of each pixel. (3) The networks can be reduced with those input variables important for classification. This minimizes the problem without considering all possible variables. We also examined the effect of incorporating ancillary data: geospatial information such as X and Y coordinate values of each pixel and DEM data, and vegetation indices such as NDVI and Tasseled Cap transformation. The results showed that the locational information improved overall accuracy (81%) and kappa coefficient (76%), and lowered the omission and commission errors compared with using only spectral data (accuracy 71%, kappa coefficient 62%). Incorporating DEM data did not significantly improve overall accuracy (74%) and kappa coefficient (66%) but lowered the omission and commission errors. Incorporating NDVI did not much improve the overall accuracy (72%) and k coefficient (65%). Including Tasseled Cap transformation reduced the accuracy (accuracy 70%, kappa 61%). Therefore, additional information from the DEM and vegetation indices was not useful as locational ancillary data.
Dudaniec, Rachael Y; Worthington Wilmer, Jessica; Hanson, Jeffrey O; Warren, Matthew; Bell, Sarah; Rhodes, Jonathan R
2016-01-01
Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model-based inference. We illustrate the approach empirically using co-occurring, woodland-preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground-dwelling antechinus (Antechinus flavipes). First, we use maximum-likelihood and a bootstrap procedure to identify the best-supported isolation-by-resistance model out of 56 models defined by linear and non-linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision-making, where dealing with uncertainty is critical. © 2015 John Wiley & Sons Ltd.
Assessing uncertainties in surface water security: An empirical multimodel approach
NASA Astrophysics Data System (ADS)
Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.; Oliveira, Paulo Tarso S.
2015-11-01
Various uncertainties are involved in the representation of processes that characterize interactions among societal needs, ecosystem functioning, and hydrological conditions. Here we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multimodel and resampling framework. We consider several uncertainty sources including those related to (i) observed streamflow data; (ii) hydrological model structure; (iii) residual analysis; (iv) the method for defining Environmental Flow Requirement; (v) the definition of critical conditions for water provision; and (vi) the critical demand imposed by human activities. We estimate the overall hydrological model uncertainty by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km2 agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multimodel framework and the uncertainty estimates provided by each model uncertainty estimation approach. The range of values obtained for the water security indicators suggests that the models/methods are robust and performs well in a range of plausible situations. The method is general and can be easily extended, thereby forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision-making process.
On the usefulness of optical maturity for relative age classification of fresh craters
NASA Astrophysics Data System (ADS)
Ravi, S.; Meyer, H. M.; Mahanti, P.; Robinson, M. S.
2016-12-01
Copernican and Eratosthenian craters represent the two most recent geologic periods in the lunar timescale, and their characterization is essential for understanding impact crater flux over the last 3 Gy. Craters from both periods exhibit crisp morphologies, but Copernican craters are 'rayed craters' per Wilhelms (1) classification scheme. Distinguishing compositional from maturity rays is possible using compositional estimates and the optical maturity parameter (OMAT; 2). From OMAT estimates, Grier et al. (3) classified 50 fresh craters (diameter (D) > 20 km) into young (OMAT > 0.22), intermediate, and old (OMAT < 0.16) classes. In this work we analyze morphology and optical maturity for a population of 12,000 craters (D> 10 km; 60 to investigate the applicability of OMAT for relative age classification among Copernican craters. Craters obtained from (4,5) were initially classified based on crispness of morphology (LROC WAC observations (6)) and then were then analyzed based on OMAT values averaged from rim out to one crater radius (n=2000). We found that typically craters larger than Copernicus (D = 95 km) were had lower OMAT values than Copernicus (OMAT = 0.17) except for Vavilov, Pythagorus, Fizeau and Moretus which had OMAT > 0.17. These large craters are clearly affected by rays from small, nearby craters. We estimate that at least 250 craters (D > 10 km; OMAT > 0.22) on the Moon are Copernican (> 2% of all craters analyzed) and of these at least 100 are as optically immature (or more so) than Tycho crater (OMAT >= 0.24). A calibration curve (OMAT vs Absolute Model Age) obtained for craters with known ages showed that OMAT <=0.15 displays little change with AMA and are thus unsuitable for estimating relative ages. Normalization by crater size was found to reduce the uncertainty associated with the relation between AMA and OMAT. 1) Wilhelms (1987), The Geologic History of the Moon, USGS, pp. 1348. 2) Lucey et al (2000), JGR, 105, 20377-20386. 3) Grier et al. (2001), JGR, 106, 847-862. 4) Povilaitis et al. (2013), NLSI, Session 5B. 5) Head et al. (2010), Science, 239, 1504-1506. 6) Boyd et al. (2013), AGU, P13B-1744.
Uncertainty quantification in volumetric Particle Image Velocimetry
NASA Astrophysics Data System (ADS)
Bhattacharya, Sayantan; Charonko, John; Vlachos, Pavlos
2016-11-01
Particle Image Velocimetry (PIV) uncertainty quantification is challenging due to coupled sources of elemental uncertainty and complex data reduction procedures in the measurement chain. Recent developments in this field have led to uncertainty estimation methods for planar PIV. However, no framework exists for three-dimensional volumetric PIV. In volumetric PIV the measurement uncertainty is a function of reconstructed three-dimensional particle location that in turn is very sensitive to the accuracy of the calibration mapping function. Furthermore, the iterative correction to the camera mapping function using triangulated particle locations in space (volumetric self-calibration) has its own associated uncertainty due to image noise and ghost particle reconstructions. Here we first quantify the uncertainty in the triangulated particle position which is a function of particle detection and mapping function uncertainty. The location uncertainty is then combined with the three-dimensional cross-correlation uncertainty that is estimated as an extension of the 2D PIV uncertainty framework. Finally the overall measurement uncertainty is quantified using an uncertainty propagation equation. The framework is tested with both simulated and experimental cases. For the simulated cases the variation of estimated uncertainty with the elemental volumetric PIV error sources are also evaluated. The results show reasonable prediction of standard uncertainty with good coverage.
Active learning for clinical text classification: is it better than random sampling?
Figueroa, Rosa L; Zeng-Treitler, Qing; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P
2012-01-01
This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty.
Active learning for clinical text classification: is it better than random sampling?
Figueroa, Rosa L; Ngo, Long H; Goryachev, Sergey; Wiechmann, Eduardo P
2012-01-01
Objective This study explores active learning algorithms as a way to reduce the requirements for large training sets in medical text classification tasks. Design Three existing active learning algorithms (distance-based (DIST), diversity-based (DIV), and a combination of both (CMB)) were used to classify text from five datasets. The performance of these algorithms was compared to that of passive learning on the five datasets. We then conducted a novel investigation of the interaction between dataset characteristics and the performance results. Measurements Classification accuracy and area under receiver operating characteristics (ROC) curves for each algorithm at different sample sizes were generated. The performance of active learning algorithms was compared with that of passive learning using a weighted mean of paired differences. To determine why the performance varies on different datasets, we measured the diversity and uncertainty of each dataset using relative entropy and correlated the results with the performance differences. Results The DIST and CMB algorithms performed better than passive learning. With a statistical significance level set at 0.05, DIST outperformed passive learning in all five datasets, while CMB was found to be better than passive learning in four datasets. We found strong correlations between the dataset diversity and the DIV performance, as well as the dataset uncertainty and the performance of the DIST algorithm. Conclusion For medical text classification, appropriate active learning algorithms can yield performance comparable to that of passive learning with considerably smaller training sets. In particular, our results suggest that DIV performs better on data with higher diversity and DIST on data with lower uncertainty. PMID:22707743
NASA Astrophysics Data System (ADS)
Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.
2016-12-01
Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, V.; Kim, D. S.; Vienna, J. D.
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints, and uncertainty descriptions on projected Hanford glass mass. The maximum allowable waste oxide loading (WOL) was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of immobilized high-level waste (IHLW) glass when no uncertainties were taken into account. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increasemore » in estimated glass mass of 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). The immobilized low-activity waste (ILAW) mass was predicted to be 282,350 MT without uncertainty and with waste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MT. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
Hydrological Classification, a Practical Tool for Mangrove Restoration
Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel
2016-01-01
Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations are given to improve the effectiveness of mangrove restoration projects. PMID:27008277
Hydrological Classification, a Practical Tool for Mangrove Restoration.
Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel
2016-01-01
Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations are given to improve the effectiveness of mangrove restoration projects.
The neural representation of unexpected uncertainty during value-based decision making.
Payzan-LeNestour, Elise; Dunne, Simon; Bossaerts, Peter; O'Doherty, John P
2013-07-10
Uncertainty is an inherent property of the environment and a central feature of models of decision-making and learning. Theoretical propositions suggest that one form, unexpected uncertainty, may be used to rapidly adapt to changes in the environment, while being influenced by two other forms: risk and estimation uncertainty. While previous studies have reported neural representations of estimation uncertainty and risk, relatively little is known about unexpected uncertainty. Here, participants performed a decision-making task while undergoing functional magnetic resonance imaging (fMRI), which, in combination with a Bayesian model-based analysis, enabled us to separately examine each form of uncertainty examined. We found representations of unexpected uncertainty in multiple cortical areas, as well as the noradrenergic brainstem nucleus locus coeruleus. Other unique cortical regions were found to encode risk, estimation uncertainty, and learning rate. Collectively, these findings support theoretical models in which several formally separable uncertainty computations determine the speed of learning. Copyright © 2013 Elsevier Inc. All rights reserved.
Using cost-benefit concepts in design floods improves communication of uncertainty
NASA Astrophysics Data System (ADS)
Ganora, Daniele; Botto, Anna; Laio, Francesco; Claps, Pierluigi
2017-04-01
Flood frequency analysis, i.e. the study of the relationships between the magnitude and the rarity of high flows in a river, is the usual procedure adopted to assess flood hazard, preliminary to the plan/design of flood protection measures. It grounds on the fit of a probability distribution to the peak discharge values recorded in gauging stations and the final estimates over a region are thus affected by uncertainty, due to the limited sample availability and of the possible alternatives in terms of the probabilistic model and the parameter estimation methods used. In the last decade, the scientific community dealt with this issue by developing a number of methods to quantify such uncertainty components. Usually, uncertainty is visually represented through confidence bands, which are easy to understand, but are not yet demonstrated to be useful for design purposes: they usually disorient decision makers, as the design flood is no longer univocally defined, making the decision process undetermined. These considerations motivated the development of the uncertainty-compliant design flood estimator (UNCODE) procedure (Botto et al., 2014) that allows one to select meaningful flood design values accounting for the associated uncertainty by considering additional constraints based on cost-benefit criteria. This method suggests an explicit multiplication factor that corrects the traditional (without uncertainty) design flood estimates to incorporate the effects of uncertainty in the estimate at the same safety level. Even though the UNCODE method was developed for design purposes, it can represent a powerful and robust tool to help clarifying the effects of the uncertainty in statistical estimation. As the process produces increased design flood estimates, this outcome demonstrates how uncertainty leads to more expensive flood protection measures, or insufficiency of current defenses. Moreover, the UNCODE approach can be used to assess the "value" of data, as the costs of flood prevention can get down by reducing uncertainty with longer observed flood records. As the multiplication factor is dimensionless, some examples of application provided show how this approach allows simple comparisons of the effects of uncertainty in different catchments, helping to build ranking procedures for planning purposes. REFERENCES Botto, A., Ganora, D., Laio, F., and Claps, P.: Uncertainty compliant design flood estimation, Water Resources Research, 50, doi:10.1002/2013WR014981, 2014.
Mapping ecological states in a complex environment
NASA Astrophysics Data System (ADS)
Steele, C. M.; Bestelmeyer, B.; Burkett, L. M.; Ayers, E.; Romig, K.; Slaughter, A.
2013-12-01
The vegetation of northern Chihuahuan Desert rangelands is sparse, heterogeneous and for most of the year, consists of a large proportion of non-photosynthetic material. The soils in this area are spectrally bright and variable in their reflectance properties. Both factors provide challenges to the application of remote sensing for estimating canopy variables (e.g., leaf area index, biomass, percentage canopy cover, primary production). Additionally, with reference to current paradigms of rangeland health assessment, remotely-sensed estimates of canopy variables have limited practical use to the rangeland manager if they are not placed in the context of ecological site and ecological state. To address these challenges, we created a multifactor classification system based on the USDA-NRCS ecological site schema and associated state-and-transition models to map ecological states on desert rangelands in southern New Mexico. Applying this system using per-pixel image processing techniques and multispectral, remotely sensed imagery raised other challenges. Per-pixel image classification relies upon the spectral information in each pixel alone, there is no reference to the spatial context of the pixel and its relationship with its neighbors. Ecological state classes may have direct relevance to managers but the non-unique spectral properties of different ecological state classes in our study area means that per-pixel classification of multispectral data performs poorly in discriminating between different ecological states. We found that image interpreters who are familiar with the landscape and its associated ecological site descriptions perform better than per-pixel classification techniques in assigning ecological states. However, two important issues affect manual classification methods: subjectivity of interpretation and reproducibility of results. An alternative to per-pixel classification and manual interpretation is object-based image analysis. Object-based image analysis provides a platform for classification that more closely resembles human recognition of objects within a remotely sensed image. The analysis presented here compares multiple thematic maps created for test locations on the USDA-ARS Jornada Experimental Range ranch. Three study sites in different pastures, each 300 ha in size, were selected for comparison on the basis of their ecological site type (';Clayey', ';Sandy' and a combination of both) and the degree of complexity of vegetation cover. Thematic maps were produced for each study site using (i) manual interpretation of digital aerial photography (by five independent interpreters); (ii) object-oriented, decision-tree classification of fine and moderate spatial resolution imagery (Quickbird; Landsat Thematic Mapper) and (iii) ground survey. To identify areas of uncertainty, we compared agreement in location, areal extent and class assignation between 5 independently produced, manually-digitized ecological state maps and with the map created from ground survey. Location, areal extent and class assignation of the map produced by object-oriented classification was also assessed with reference to the ground survey map.
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; Moradkhani, H.; Marshall, L. A.; Sharma, A.; Geenens, G.
2016-12-01
Effective combination of model simulations and observations through Data Assimilation (DA) depends heavily on uncertainty characterisation. Many traditional methods for quantifying model uncertainty in DA require some level of subjectivity (by way of tuning parameters or by assuming Gaussian statistics). Furthermore, the focus is typically on only estimating the first and second moments. We propose a data-driven methodology to estimate the full distributional form of model uncertainty, i.e. the transition density p(xt|xt-1). All sources of uncertainty associated with the model simulations are considered collectively, without needing to devise stochastic perturbations for individual components (such as model input, parameter and structural uncertainty). A training period is used to derive the distribution of errors in observed variables conditioned on hidden states. Errors in hidden states are estimated from the conditional distribution of observed variables using non-linear optimization. The theory behind the framework and case study applications are discussed in detail. Results demonstrate improved predictions and more realistic uncertainty bounds compared to a standard perturbation approach.
NASA Technical Reports Server (NTRS)
Wilson, John W.; Nealy, John E.; Schimmerling, Walter; Cucinotta, Francis A.; Wood, James S.
1993-01-01
Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray (GCR) exposure are analyzed for their effect on engineering designs for the first lunar outpost and a mission to explore Mars. This report presents the plausible effect of biological uncertainties, the design changes necessary to reduce the uncertainties to acceptable levels for a safe mission, and an evaluation of the mission redesign cost. Estimates of the amount of shield mass required to compensate for radiobiological uncertainty are given for a simplified vehicle and habitat. The additional amount of shield mass required to provide a safety factor for uncertainty compensation is calculated from the expected response to GCR exposure. The amount of shield mass greatly increases in the estimated range of biological uncertainty, thus, escalating the estimated cost of the mission. The estimates are used as a quantitative example for the cost-effectiveness of research in radiation biophysics and radiation physics.
NASA Astrophysics Data System (ADS)
Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.
2012-04-01
Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from the parametric uncertainty. To quantify the conceptual uncertainty from a given site, we combine the outputs from the different conceptual models using Bayesian model averaging. The weight for each model is obtained by integrating available data and expert knowledge using Bayesian belief networks. The multi-model approach is applied to a contaminated site. At the site a DNAPL (dense non aqueous phase liquid) spill consisting of PCE (perchloroethylene) has contaminated a fractured clay till aquitard overlaying a limestone aquifer. The exact shape and nature of the source is unknown and so is the importance of transport in the fractures. The result of the multi-model approach is a visual representation of the uncertainty of the mass discharge estimates for the site which can be used to support the management options.
Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Verónica M; Savitz, David A; Bartell, Scott M
2016-01-01
Uncertainty in exposure estimates from models can result in exposure measurement error and can potentially affect the validity of epidemiological studies. We recently used a suite of environmental models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations and assess the association with preeclampsia from 1990 through 2006 for the C8 Health Project participants. The aims of the current study are to evaluate impact of uncertainty in estimated PFOA drinking-water concentrations on estimated serum concentrations and their reported epidemiological association with preeclampsia. For each individual public water district, we used Monte Carlo simulations to vary the year-by-year PFOA drinking-water concentration by randomly sampling from lognormal distributions for random error in the yearly public water district PFOA concentrations, systematic error specific to each water district, and global systematic error in the release assessment (using the estimated concentrations from the original fate and transport model as medians and a range of 2-, 5-, and 10-fold uncertainty). Uncertainty in PFOA water concentrations could cause major changes in estimated serum PFOA concentrations among participants. However, there is relatively little impact on the resulting epidemiological association in our simulations. The contribution of exposure uncertainty to the total uncertainty (including regression parameter variance) ranged from 5% to 31%, and bias was negligible. We found that correlated exposure uncertainty can substantially change estimated PFOA serum concentrations, but results in only minor impacts on the epidemiological association between PFOA and preeclampsia. Avanasi R, Shin HM, Vieira VM, Savitz DA, Bartell SM. 2016. Impact of exposure uncertainty on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population. Environ Health Perspect 124:126-132; http://dx.doi.org/10.1289/ehp.1409044.
NASA Astrophysics Data System (ADS)
Touhidul Mustafa, Syed Md.; Nossent, Jiri; Ghysels, Gert; Huysmans, Marijke
2017-04-01
Transient numerical groundwater flow models have been used to understand and forecast groundwater flow systems under anthropogenic and climatic effects, but the reliability of the predictions is strongly influenced by different sources of uncertainty. Hence, researchers in hydrological sciences are developing and applying methods for uncertainty quantification. Nevertheless, spatially distributed flow models pose significant challenges for parameter and spatially distributed input estimation and uncertainty quantification. In this study, we present a general and flexible approach for input and parameter estimation and uncertainty analysis of groundwater models. The proposed approach combines a fully distributed groundwater flow model (MODFLOW) with the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. To avoid over-parameterization, the uncertainty of the spatially distributed model input has been represented by multipliers. The posterior distributions of these multipliers and the regular model parameters were estimated using DREAM. The proposed methodology has been applied in an overexploited aquifer in Bangladesh where groundwater pumping and recharge data are highly uncertain. The results confirm that input uncertainty does have a considerable effect on the model predictions and parameter distributions. Additionally, our approach also provides a new way to optimize the spatially distributed recharge and pumping data along with the parameter values under uncertain input conditions. It can be concluded from our approach that considering model input uncertainty along with parameter uncertainty is important for obtaining realistic model predictions and a correct estimation of the uncertainty bounds.
NASA Astrophysics Data System (ADS)
Camacho Suarez, V. V.; Shucksmith, J.; Schellart, A.
2016-12-01
Analytical and numerical models can be used to represent the advection-dispersion processes governing the transport of pollutants in rivers (Fan et al., 2015; Van Genuchten et al., 2013). Simplifications, assumptions and parameter estimations in these models result in various uncertainties within the modelling process and estimations of pollutant concentrations. In this study, we explore both: 1) the structural uncertainty due to the one dimensional simplification of the Advection Dispersion Equation (ADE) and 2) the parameter uncertainty due to the semi empirical estimation of the longitudinal dispersion coefficient. The relative significance of these uncertainties has not previously been examined. By analysing both the relative structural uncertainty of analytical solutions of the ADE, and the parameter uncertainty due to the longitudinal dispersion coefficient via a Monte Carlo analysis, an evaluation of the dominant uncertainties for a case study in the river Chillan, Chile is presented over a range of spatial scales.
Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics
NASA Technical Reports Server (NTRS)
Karassiov, V. P.
1994-01-01
The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.
NASA Technical Reports Server (NTRS)
Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.;
2012-01-01
Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, C.; Hanany, S.; Baccigalupi, C.
We extend a general maximum likelihood foreground estimation for cosmic microwave background (CMB) polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the B-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMBmore » B-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10% polarized dust, a tensor to scalar ratio of r = 0.05, and the instrumental configuration of the E and B experiment balloon payload, the estimated CMB B-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4°.« less
A three-parameter asteroid taxonomy
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.; Williams, James G.; Matson, Dennis L.; Veeder, Glenn J.; Gradie, Jonathan C.
1989-01-01
Broadband U, V, and x photometry together with IRAS asteroid albedos have been used to construct an asteroid classification system. The system is based on three parameters (U-V and v-x color indices and visual geometric albedo), and it is able to place 96 percent of the present sample of 357 asteroids into 11 taxonomic classes. It is noted that all but one of these classes are analogous to those previously found using other classification schemes. The algorithm is shown to account for the observational uncertainties in each of the classification parameters.
Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling
NASA Astrophysics Data System (ADS)
King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.
2017-12-01
Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2, while interannual variation is related to variations in global land-surface temperature with weaker sinks in warmer years. We examine whether these relationships are reproduced in models. Their absence might explain weaknesses in model simulations or in the reconstruction of historical climate used as drivers in model intercomparison projects (MIPs).
Uncertainty and inference in the world of paleoecological data
NASA Astrophysics Data System (ADS)
McLachlan, J. S.; Dawson, A.; Dietze, M.; Finley, M.; Hooten, M.; Itter, M.; Jackson, S. T.; Marlon, J. R.; Raiho, A.; Tipton, J.; Williams, J.
2017-12-01
Proxy data in paleoecology and paleoclimatology share a common set of biases and uncertainties: spatiotemporal error associated with the taphonomic processes of deposition, preservation, and dating; calibration error between proxy data and the ecosystem states of interest; and error in the interpolation of calibrated estimates across space and time. Researchers often account for this daunting suite of challenges by applying qualitave expert judgment: inferring the past states of ecosystems and assessing the level of uncertainty in those states subjectively. The effectiveness of this approach can be seen by the extent to which future observations confirm previous assertions. Hierarchical Bayesian (HB) statistical approaches allow an alternative approach to accounting for multiple uncertainties in paleo data. HB estimates of ecosystem state formally account for each of the common uncertainties listed above. HB approaches can readily incorporate additional data, and data of different types into estimates of ecosystem state. And HB estimates of ecosystem state, with associated uncertainty, can be used to constrain forecasts of ecosystem dynamics based on mechanistic ecosystem models using data assimilation. Decisions about how to structure an HB model are also subjective, which creates a parallel framework for deciding how to interpret data from the deep past.Our group, the Paleoecological Observatory Network (PalEON), has applied hierarchical Bayesian statistics to formally account for uncertainties in proxy based estimates of past climate, fire, primary productivity, biomass, and vegetation composition. Our estimates often reveal new patterns of past ecosystem change, which is an unambiguously good thing, but we also often estimate a level of uncertainty that is uncomfortably high for many researchers. High levels of uncertainty are due to several features of the HB approach: spatiotemporal smoothing, the formal aggregation of multiple types of uncertainty, and a coarseness in statistical models of taphonomic process. Each of these features provides useful opportunities for statisticians and data-generating researchers to assess what we know about the signal and the noise in paleo data and to improve inference about past changes in ecosystem state.
Reducing uncertainty on satellite image classification through spatiotemporal reasoning
NASA Astrophysics Data System (ADS)
Partsinevelos, Panagiotis; Nikolakaki, Natassa; Psillakis, Periklis; Miliaresis, George; Xanthakis, Michail
2014-05-01
The natural habitat constantly endures both inherent natural and human-induced influences. Remote sensing has been providing monitoring oriented solutions regarding the natural Earth surface, by offering a series of tools and methodologies which contribute to prudent environmental management. Processing and analysis of multi-temporal satellite images for the observation of the land changes include often classification and change-detection techniques. These error prone procedures are influenced mainly by the distinctive characteristics of the study areas, the remote sensing systems limitations and the image analysis processes. The present study takes advantage of the temporal continuity of multi-temporal classified images, in order to reduce classification uncertainty, based on reasoning rules. More specifically, pixel groups that temporally oscillate between classes are liable to misclassification or indicate problematic areas. On the other hand, constant pixel group growth indicates a pressure prone area. Computational tools are developed in order to disclose the alterations in land use dynamics and offer a spatial reference to the pressures that land use classes endure and impose between them. Moreover, by revealing areas that are susceptible to misclassification, we propose specific target site selection for training during the process of supervised classification. The underlying objective is to contribute to the understanding and analysis of anthropogenic and environmental factors that influence land use changes. The developed algorithms have been tested upon Landsat satellite image time series, depicting the National Park of Ainos in Kefallinia, Greece, where the unique in the world Abies cephalonica grows. Along with the minor changes and pressures indicated in the test area due to harvesting and other human interventions, the developed algorithms successfully captured fire incidents that have been historically confirmed. Overall, the results have shown that the use of the suggested procedures can contribute to the reduction of the classification uncertainty and support the existing knowledge regarding the pressure among land-use changes.
Conifer health classification for Colorado, 2008
Cole, Christopher J.; Noble, Suzanne M.; Blauer, Steven L.; Friesen, Beverly A.; Curry, Stacy E.; Bauer, Mark A.
2010-01-01
Colorado has undergone substantial changes in forests due to urbanization, wildfires, insect-caused tree mortality, and other human and environmental factors. The U.S. Geological Survey Rocky Mountain Geographic Science Center evaluated and developed a methodology for applying remotely-sensed imagery for assessing conifer health in Colorado. Two classes were identified for the purposes of this study: healthy and unhealthy (for example, an area the size of a 30- x 30-m pixel with 20 percent or greater visibly dead trees was defined as ?unhealthy?). Medium-resolution Landsat 5 Thematic Mapper imagery were collected. The normalized, reflectance-converted, cloud-filled Landsat scenes were merged to form a statewide image mosaic, and a Normalized Difference Vegetation Index (NDVI) and Renormalized Difference Infrared Index (RDII) were derived. A supervised maximum likelihood classification was done using the Landsat multispectral bands, the NDVI, the RDII, and 30-m U.S. Geological Survey National Elevation Dataset (NED). The classification was constrained to pixels identified in the updated landcover dataset as coniferous or mixed coniferous/deciduous vegetation. The statewide results were merged with a separate health assessment of Grand County, Colo., produced in late 2008. Sampling and validation was done by collecting field data and high-resolution imagery. The 86 percent overall classification accuracy attained in this study suggests that the data and methods used successfully characterized conifer conditions within Colorado. Although forest conditions for Lodgepole Pine (Pinus contorta) are easily characterized, classification uncertainty exists between healthy/unhealthy Ponderosa Pine (Pinus ponderosa), Pi?on (Pinus edulis), and Juniper (Juniperus sp.) vegetation. Some underestimation of conifer mortality in Summit County is likely, where recent (2008) cloud-free imagery was unavailable. These classification uncertainties are primarily due to the spatial and temporal resolution of Landsat, and of the NLCD derived from this sensor. It is believed that high- to moderate-resolution multispectral imagery, coupled with field data, could significantly reduce the uncertainty rates. The USGS produced a four-county follow-up conifer health assessment using high-resolution RapidEye remotely sensed imagery and field data collected in 2009.
ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)
Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally
2014-06-12
This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.
Quantifying Uncertainty in Instantaneous Orbital Data Products of TRMM over Indian Subcontinent
NASA Astrophysics Data System (ADS)
Jayaluxmi, I.; Nagesh, D.
2013-12-01
In the last 20 years, microwave radiometers have taken satellite images of earth's weather proving to be a valuable tool for quantitative estimation of precipitation from space. However, along with the widespread acceptance of microwave based precipitation products, it has also been recognized that they contain large uncertainties. While most of the uncertainty evaluation studies focus on the accuracy of rainfall accumulated over time (e.g., season/year), evaluation of instantaneous rainfall intensities from satellite orbital data products are relatively rare. These instantaneous products are known to potentially cause large uncertainties during real time flood forecasting studies at the watershed scale. Especially over land regions, where the highly varying land surface emissivity offer a myriad of complications hindering accurate rainfall estimation. The error components of orbital data products also tend to interact nonlinearly with hydrologic modeling uncertainty. Keeping these in mind, the present study fosters the development of uncertainty analysis using instantaneous satellite orbital data products (version 7 of 1B11, 2A25, 2A23) derived from the passive and active sensors onboard Tropical Rainfall Measuring Mission (TRMM) satellite, namely TRMM microwave imager (TMI) and Precipitation Radar (PR). The study utilizes 11 years of orbital data from 2002 to 2012 over the Indian subcontinent and examines the influence of various error sources on the convective and stratiform precipitation types. Analysis conducted over the land regions of India investigates three sources of uncertainty in detail. These include 1) Errors due to improper delineation of rainfall signature within microwave footprint (rain/no rain classification), 2) Uncertainty offered by the transfer function linking rainfall with TMI low frequency channels and 3) Sampling errors owing to the narrow swath and infrequent visits of TRMM sensors. Case study results obtained during the Indian summer monsoon months of June-September are presented using contingency table statistics, performance diagram, scatter plots and probability density functions. Our study demonstrates that theory of copula can be efficiently used to represent the highly non linear dependency structure of rainfall with respect to TMI low frequency channels of 19, 21, 37 GHz. This questions the exclusive usage of high frequency 85 GHz channel for TMI overland rainfall retrieval algorithms. Further, the PR sampling errors revealed using a statistical bootstrap technique was found to incur relative sampling errors <30% (for 2 degree grids) over India whose magnitudes were biased towards stratiform rainfall type and sampling technique employed. These findings clearly document that proper characterization of error structure offered by TMI and PR has wider implications for decision making prior to incorporating the resulting orbital products for basin scale hydrologic modeling.
The uncertainty of nitrous oxide emissions from grazed grasslands: A New Zealand case study
NASA Astrophysics Data System (ADS)
Kelliher, Francis M.; Henderson, Harold V.; Cox, Neil R.
2017-01-01
Agricultural soils emit nitrous oxide (N2O), a greenhouse gas and the primary source of nitrogen oxides which deplete stratospheric ozone. Agriculture has been estimated to be the largest anthropogenic N2O source. In New Zealand (NZ), pastoral agriculture uses half the land area. To estimate the annual N2O emissions from NZ's agricultural soils, the nitrogen (N) inputs have been determined and multiplied by an emission factor (EF), the mass fraction of N inputs emitted as N2Osbnd N. To estimate the associated uncertainty, we developed an analytical method. For comparison, another estimate was determined by Monte Carlo numerical simulation. For both methods, expert judgement was used to estimate the N input uncertainty. The EF uncertainty was estimated by meta-analysis of the results from 185 NZ field trials. For the analytical method, assuming a normal distribution and independence of the terms used to calculate the emissions (correlation = 0), the estimated 95% confidence limit was ±57%. When there was a normal distribution and an estimated correlation of 0.4 between N input and EF, the latter inferred from experimental data involving six NZ soils, the analytical method estimated a 95% confidence limit of ±61%. The EF data from 185 NZ field trials had a logarithmic normal distribution. For the Monte Carlo method, assuming a logarithmic normal distribution for EF, a normal distribution for the other terms and independence of all terms, the estimated 95% confidence limits were -32% and +88% or ±60% on average. When there were the same distribution assumptions and a correlation of 0.4 between N input and EF, the Monte Carlo method estimated 95% confidence limits were -34% and +94% or ±64% on average. For the analytical and Monte Carlo methods, EF uncertainty accounted for 95% and 83% of the emissions uncertainty when the correlation between N input and EF was 0 and 0.4, respectively. As the first uncertainty analysis of an agricultural soils N2O emissions inventory using "country-specific" field trials to estimate EF uncertainty, this can be a potentially informative case study for the international scientific community.
Rivera-Rodriguez, Claudia L; Resch, Stephen; Haneuse, Sebastien
2018-01-01
In many low- and middle-income countries, the costs of delivering public health programs such as for HIV/AIDS, nutrition, and immunization are not routinely tracked. A number of recent studies have sought to estimate program costs on the basis of detailed information collected on a subsample of facilities. While unbiased estimates can be obtained via accurate measurement and appropriate analyses, they are subject to statistical uncertainty. Quantification of this uncertainty, for example, via standard errors and/or 95% confidence intervals, provides important contextual information for decision-makers and for the design of future costing studies. While other forms of uncertainty, such as that due to model misspecification, are considered and can be investigated through sensitivity analyses, statistical uncertainty is often not reported in studies estimating the total program costs. This may be due to a lack of awareness/understanding of (1) the technical details regarding uncertainty estimation and (2) the availability of software with which to calculate uncertainty for estimators resulting from complex surveys. We provide an overview of statistical uncertainty in the context of complex costing surveys, emphasizing the various potential specific sources that contribute to overall uncertainty. We describe how analysts can compute measures of uncertainty, either via appropriately derived formulae or through resampling techniques such as the bootstrap. We also provide an overview of calibration as a means of using additional auxiliary information that is readily available for the entire program, such as the total number of doses administered, to decrease uncertainty and thereby improve decision-making and the planning of future studies. A recent study of the national program for routine immunization in Honduras shows that uncertainty can be reduced by using information available prior to the study. This method can not only be used when estimating the total cost of delivering established health programs but also to decrease uncertainty when the interest lies in assessing the incremental effect of an intervention. Measures of statistical uncertainty associated with survey-based estimates of program costs, such as standard errors and 95% confidence intervals, provide important contextual information for health policy decision-making and key inputs for the design of future costing studies. Such measures are often not reported, possibly because of technical challenges associated with their calculation and a lack of awareness of appropriate software. Modern statistical analysis methods for survey data, such as calibration, provide a means to exploit additional information that is readily available but was not used in the design of the study to significantly improve the estimation of total cost through the reduction of statistical uncertainty.
Resch, Stephen
2018-01-01
Objectives: In many low- and middle-income countries, the costs of delivering public health programs such as for HIV/AIDS, nutrition, and immunization are not routinely tracked. A number of recent studies have sought to estimate program costs on the basis of detailed information collected on a subsample of facilities. While unbiased estimates can be obtained via accurate measurement and appropriate analyses, they are subject to statistical uncertainty. Quantification of this uncertainty, for example, via standard errors and/or 95% confidence intervals, provides important contextual information for decision-makers and for the design of future costing studies. While other forms of uncertainty, such as that due to model misspecification, are considered and can be investigated through sensitivity analyses, statistical uncertainty is often not reported in studies estimating the total program costs. This may be due to a lack of awareness/understanding of (1) the technical details regarding uncertainty estimation and (2) the availability of software with which to calculate uncertainty for estimators resulting from complex surveys. We provide an overview of statistical uncertainty in the context of complex costing surveys, emphasizing the various potential specific sources that contribute to overall uncertainty. Methods: We describe how analysts can compute measures of uncertainty, either via appropriately derived formulae or through resampling techniques such as the bootstrap. We also provide an overview of calibration as a means of using additional auxiliary information that is readily available for the entire program, such as the total number of doses administered, to decrease uncertainty and thereby improve decision-making and the planning of future studies. Results: A recent study of the national program for routine immunization in Honduras shows that uncertainty can be reduced by using information available prior to the study. This method can not only be used when estimating the total cost of delivering established health programs but also to decrease uncertainty when the interest lies in assessing the incremental effect of an intervention. Conclusion: Measures of statistical uncertainty associated with survey-based estimates of program costs, such as standard errors and 95% confidence intervals, provide important contextual information for health policy decision-making and key inputs for the design of future costing studies. Such measures are often not reported, possibly because of technical challenges associated with their calculation and a lack of awareness of appropriate software. Modern statistical analysis methods for survey data, such as calibration, provide a means to exploit additional information that is readily available but was not used in the design of the study to significantly improve the estimation of total cost through the reduction of statistical uncertainty. PMID:29636964
Investigating the Impact of Uncertainty about Item Parameters on Ability Estimation
ERIC Educational Resources Information Center
Zhang, Jinming; Xie, Minge; Song, Xiaolan; Lu, Ting
2011-01-01
Asymptotic expansions of the maximum likelihood estimator (MLE) and weighted likelihood estimator (WLE) of an examinee's ability are derived while item parameter estimators are treated as covariates measured with error. The asymptotic formulae present the amount of bias of the ability estimators due to the uncertainty of item parameter estimators.…
Impacts of Process and Prediction Uncertainties on Projected Hanford Waste Glass Amount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gervasio, Vivianaluxa; Vienna, John D.; Kim, Dong-Sang
Analyses were performed to evaluate the impacts of using the advanced glass models, constraints (Vienna et al. 2016), and uncertainty descriptions on projected Hanford glass mass. The maximum allowable WOL was estimated for waste compositions while simultaneously satisfying all applicable glass property and composition constraints with sufficient confidence. Different components of prediction and composition/process uncertainties were systematically included in the calculations to evaluate their impacts on glass mass. The analyses estimated the production of 23,360 MT of IHLW glass when no uncertainties were taken into accound. Accounting for prediction and composition/process uncertainties resulted in 5.01 relative percent increase in estimatedmore » glass mass 24,531 MT. Roughly equal impacts were found for prediction uncertainties (2.58 RPD) and composition/process uncertainties (2.43 RPD). ILAW mass was predicted to be 282,350 MT without uncertainty and with weaste loading “line” rules in place. Accounting for prediction and composition/process uncertainties resulted in only 0.08 relative percent increase in estimated glass mass of 282,562 MTG. Without application of line rules the glass mass decreases by 10.6 relative percent (252,490 MT) for the case with no uncertainties. Addition of prediction uncertainties increases glass mass by 1.32 relative percent and the addition of composition/process uncertainties increase glass mass by an additional 7.73 relative percent (9.06 relative percent increase combined). The glass mass estimate without line rules (275,359 MT) was 2.55 relative percent lower than that with the line rules (282,562 MT), after accounting for all applicable uncertainties.« less
NASA Astrophysics Data System (ADS)
Kumar, V.; Nayagum, D.; Thornton, S.; Banwart, S.; Schuhmacher2, M.; Lerner, D.
2006-12-01
Characterization of uncertainty associated with groundwater quality models is often of critical importance, as for example in cases where environmental models are employed in risk assessment. Insufficient data, inherent variability and estimation errors of environmental model parameters introduce uncertainty into model predictions. However, uncertainty analysis using conventional methods such as standard Monte Carlo sampling (MCS) may not be efficient, or even suitable, for complex, computationally demanding models and involving different nature of parametric variability and uncertainty. General MCS or variant of MCS such as Latin Hypercube Sampling (LHS) assumes variability and uncertainty as a single random entity and the generated samples are treated as crisp assuming vagueness as randomness. Also when the models are used as purely predictive tools, uncertainty and variability lead to the need for assessment of the plausible range of model outputs. An improved systematic variability and uncertainty analysis can provide insight into the level of confidence in model estimates, and can aid in assessing how various possible model estimates should be weighed. The present study aims to introduce, Fuzzy Latin Hypercube Sampling (FLHS), a hybrid approach of incorporating cognitive and noncognitive uncertainties. The noncognitive uncertainty such as physical randomness, statistical uncertainty due to limited information, etc can be described by its own probability density function (PDF); whereas the cognitive uncertainty such estimation error etc can be described by the membership function for its fuzziness and confidence interval by ?-cuts. An important property of this theory is its ability to merge inexact generated data of LHS approach to increase the quality of information. The FLHS technique ensures that the entire range of each variable is sampled with proper incorporation of uncertainty and variability. A fuzzified statistical summary of the model results will produce indices of sensitivity and uncertainty that relate the effects of heterogeneity and uncertainty of input variables to model predictions. The feasibility of the method is validated to assess uncertainty propagation of parameter values for estimation of the contamination level of a drinking water supply well due to transport of dissolved phenolics from a contaminated site in the UK.
Automated reliability assessment for spectroscopic redshift measurements
NASA Astrophysics Data System (ADS)
Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.
2018-03-01
Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for spectroscopic redshift measurements. This newly-defined method is very promising for next-generation large spectroscopic surveys from the ground and in space, such as Euclid and WFIRST. A table of the reclassified VVDS redshifts and reliability is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A53
Uncertainty in temperature response of current consumption-based emissions estimates
NASA Astrophysics Data System (ADS)
Karstensen, J.; Peters, G. P.; Andrew, R. M.
2014-09-01
Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties in the end results. We estimate uncertainties in economic data, multi-pollutant emission statistics and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. The economic data have a relatively small impact on uncertainty at the global and national level, while much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production based emissions, since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±9-±27% using the global temperature potential with a 50 year time horizon, with metric uncertainties dominating. National level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9-±25%, with metric and emissions uncertainties contributing similarly. The Absolute global temperature potential with a 50 year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.
Zollanvari, Amin; Dougherty, Edward R
2014-06-01
The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.
Cloud, Aerosol, and Volcanic Ash Retrievals Using ASTR and SLSTR with ORAC
NASA Astrophysics Data System (ADS)
McGarragh, Gregory; Poulsen, Caroline; Povey, Adam; Thomas, Gareth; Christensen, Matt; Sus, Oliver; Schlundt, Cornelia; Stapelberg, Stefan; Stengel, Martin; Grainger, Don
2015-12-01
The Optimal Retrieval of Aerosol and Cloud (ORAC) is a generalized optimal estimation system that retrieves cloud, aerosol and volcanic ash parameters using satellite imager measurements in the visible to infrared. Use of the same algorithm for different sensors and parameters leads to consistency that facilitates inter-comparison and interaction studies. ORAC currently supports ATSR, AVHRR, MODIS and SEVIRI. In this proceeding we discuss the ORAC retrieval algorithm applied to ATSR data including the retrieval methodology, the forward model, uncertainty characterization and discrimination/classification techniques. Application of ORAC to SLSTR data is discussed including the additional features that SLSTR provides relative to the ATSR heritage. The ORAC level 2 and level 3 results are discussed and an application of level 3 results to the study of cloud/aerosol interactions is presented.
Ronald E. McRoberts
2005-01-01
Uncertainty in model-based predictions of individual tree diameter growth is attributed to three sources: measurement error for predictor variables, residual variability around model predictions, and uncertainty in model parameter estimates. Monte Carlo simulations are used to propagate the uncertainty from the three sources through a set of diameter growth models to...
Uncertainty estimation in the determination of metals in superficial water by ICP-OES
NASA Astrophysics Data System (ADS)
Faustino, Mainara G.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Soares, Sabrina M. V.; Silva, Tatiane B. S. C.; da Silva, Douglas B.; Pires, Maria Aparecida F.; Cotrim, Marycel E. B.
2016-07-01
From validation studies, it was possible to estimate a measurement uncertainty of several elements such as Al, Ba, Ca, Cu, Cr, Cd, Fe, Mg, Mn, Ni and K in water samples from Guarapiranga Dam. These elements were analyzed by optical emission spectrometry with inductively coupled plasma (ICP-OES). The value of relative estimated uncertainties were between 3% and 15%. The greatest uncertainty contributions were analytical curve, and the recovery method, which were related with elements concentrations and the equipment response. Water samples analyzed were compared with CONAMA Resolution #357/2005.
Estimating model predictive uncertainty is imperative to informed environmental decision making and management of water resources. This paper applies the Generalized Sensitivity Analysis (GSA) to examine parameter sensitivity and the Generalized Likelihood Uncertainty Estimation...
Assessing Uncertainties in Surface Water Security: A Probabilistic Multi-model Resampling approach
NASA Astrophysics Data System (ADS)
Rodrigues, D. B. B.
2015-12-01
Various uncertainties are involved in the representation of processes that characterize interactions between societal needs, ecosystem functioning, and hydrological conditions. Here, we develop an empirical uncertainty assessment of water security indicators that characterize scarcity and vulnerability, based on a multi-model and resampling framework. We consider several uncertainty sources including those related to: i) observed streamflow data; ii) hydrological model structure; iii) residual analysis; iv) the definition of Environmental Flow Requirement method; v) the definition of critical conditions for water provision; and vi) the critical demand imposed by human activities. We estimate the overall uncertainty coming from the hydrological model by means of a residual bootstrap resampling approach, and by uncertainty propagation through different methodological arrangements applied to a 291 km² agricultural basin within the Cantareira water supply system in Brazil. Together, the two-component hydrograph residual analysis and the block bootstrap resampling approach result in a more accurate and precise estimate of the uncertainty (95% confidence intervals) in the simulated time series. We then compare the uncertainty estimates associated with water security indicators using a multi-model framework and provided by each model uncertainty estimation approach. The method is general and can be easily extended forming the basis for meaningful support to end-users facing water resource challenges by enabling them to incorporate a viable uncertainty analysis into a robust decision making process.
Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images
NASA Astrophysics Data System (ADS)
Ely, G.; Malcolm, A. E.; Poliannikov, O. V.
2017-12-01
Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.
Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio
2018-03-01
To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Han, Paul K J; Klein, William M P; Lehman, Tom; Killam, Bill; Massett, Holly; Freedman, Andrew N
2011-01-01
To examine the effects of communicating uncertainty regarding individualized colorectal cancer risk estimates and to identify factors that influence these effects. Two Web-based experiments were conducted, in which adults aged 40 years and older were provided with hypothetical individualized colorectal cancer risk estimates differing in the extent and representation of expressed uncertainty. The uncertainty consisted of imprecision (otherwise known as "ambiguity") of the risk estimates and was communicated using different representations of confidence intervals. Experiment 1 (n = 240) tested the effects of ambiguity (confidence interval v. point estimate) and representational format (textual v. visual) on cancer risk perceptions and worry. Potential effect modifiers, including personality type (optimism), numeracy, and the information's perceived credibility, were examined, along with the influence of communicating uncertainty on responses to comparative risk information. Experiment 2 (n = 135) tested enhanced representations of ambiguity that incorporated supplemental textual and visual depictions. Communicating uncertainty led to heightened cancer-related worry in participants, exemplifying the phenomenon of "ambiguity aversion." This effect was moderated by representational format and dispositional optimism; textual (v. visual) format and low (v. high) optimism were associated with greater ambiguity aversion. However, when enhanced representations were used to communicate uncertainty, textual and visual formats showed similar effects. Both the communication of uncertainty and use of the visual format diminished the influence of comparative risk information on risk perceptions. The communication of uncertainty regarding cancer risk estimates has complex effects, which include heightening cancer-related worry-consistent with ambiguity aversion-and diminishing the influence of comparative risk information on risk perceptions. These responses are influenced by representational format and personality type, and the influence of format appears to be modifiable and content dependent.
Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.
Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller
2015-01-01
An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement.
Estimation of Uncertainties in Stage-Discharge Curve for an Experimental Himalayan Watershed
NASA Astrophysics Data System (ADS)
Kumar, V.; Sen, S.
2016-12-01
Various water resource projects developed on rivers originating from the Himalayan region, the "Water Tower of Asia", plays an important role on downstream development. Flow measurements at the desired river site are very critical for river engineers and hydrologists for water resources planning and management, flood forecasting, reservoir operation and flood inundation studies. However, an accurate discharge assessment of these mountainous rivers is costly, tedious and frequently dangerous to operators during flood events. Currently, in India, discharge estimation is linked to stage-discharge relationship known as rating curve. This relationship would be affected by a high degree of uncertainty. Estimating the uncertainty of rating curve remains a relevant challenge because it is not easy to parameterize. Main source of rating curve uncertainty are errors because of incorrect discharge measurement, variation in hydraulic conditions and depth measurement. In this study our objective is to obtain best parameters of rating curve that fit the limited record of observations and to estimate uncertainties at different depth obtained from rating curve. The rating curve parameters of standard power law are estimated for three different streams of Aglar watershed located in lesser Himalayas by maximum-likelihood estimator. Quantification of uncertainties in the developed rating curves is obtained from the estimate of variances and covariances of the rating curve parameters. Results showed that the uncertainties varied with catchment behavior with error varies between 0.006-1.831 m3/s. Discharge uncertainty in the Aglar watershed streams significantly depend on the extent of extrapolation outside the range of observed water levels. Extrapolation analysis confirmed that more than 15% for maximum discharges and 5% for minimum discharges are not strongly recommended for these mountainous gauging sites.
NASA Astrophysics Data System (ADS)
Fijani, E.; Chitsazan, N.; Nadiri, A.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
Artificial Neural Networks (ANNs) have been widely used to estimate concentration of chemicals in groundwater systems. However, estimation uncertainty is rarely discussed in the literature. Uncertainty in ANN output stems from three sources: ANN inputs, ANN parameters (weights and biases), and ANN structures. Uncertainty in ANN inputs may come from input data selection and/or input data error. ANN parameters are naturally uncertain because they are maximum-likelihood estimated. ANN structure is also uncertain because there is no unique ANN model given a specific case. Therefore, multiple plausible AI models are generally resulted for a study. One might ask why good models have to be ignored in favor of the best model in traditional estimation. What is the ANN estimation variance? How do the variances from different ANN models accumulate to the total estimation variance? To answer these questions we propose a Hierarchical Bayesian Model Averaging (HBMA) framework. Instead of choosing one ANN model (the best ANN model) for estimation, HBMA averages outputs of all plausible ANN models. The model weights are based on the evidence of data. Therefore, the HBMA avoids overconfidence on the single best ANN model. In addition, HBMA is able to analyze uncertainty propagation through aggregation of ANN models in a hierarchy framework. This method is applied for estimation of fluoride concentration in the Poldasht plain and the Bazargan plain in Iran. Unusually high fluoride concentration in the Poldasht and Bazargan plains has caused negative effects on the public health. Management of this anomaly requires estimation of fluoride concentration distribution in the area. The results show that the HBMA provides a knowledge-decision-based framework that facilitates analyzing and quantifying ANN estimation uncertainties from different sources. In addition HBMA allows comparative evaluation of the realizations for each source of uncertainty by segregating the uncertainty sources in a hierarchical framework. Fluoride concentration estimation using the HBMA method shows better agreement to the observation data in the test step because they are not based on a single model with a non-dominate weights.
NASA Astrophysics Data System (ADS)
Kang, S.; Kim, K.
2013-12-01
Regionally varying seismic hazards can be estimated using an earthquake loss estimation system (e.g. HAZUS-MH). The estimations for actual earthquakes help federal and local authorities develop rapid, effective recovery measures. Estimates for scenario earthquakes help in designing a comprehensive earthquake hazard mitigation plan. Local site characteristics influence the ground motion. Although direct measurements are desirable to construct a site-amplification map, such data are expensive and time consuming to collect. Thus we derived a site classification map of the southern Korean Peninsula using geologic and geomorphologic data, which are readily available for the entire southern Korean Peninsula. Class B sites (mainly rock) are predominant in the area, although localized areas of softer soils are found along major rivers and seashores. The site classification map is compared with independent site classification studies to confirm our site classification map effectively represents the local behavior of site amplification during an earthquake. We then estimated the losses due to a magnitude 6.7 scenario earthquake in Gyeongju, southeastern Korea, with and without the site classification map. Significant differences in loss estimates were observed. The loss without the site classification map decreased without variation with increasing epicentral distance, while the loss with the site classification map varied from region to region, due to both the epicentral distance and local site effects. The major cause of the large loss expected in Gyeongju is the short epicentral distance. Pohang Nam-Gu is located farther from the earthquake source region. Nonetheless, the loss estimates in the remote city are as large as those in Gyeongju and are attributed to the site effect of soft soil found widely in the area.
NASA Astrophysics Data System (ADS)
Wang, Hongrui; Wang, Cheng; Wang, Ying; Gao, Xiong; Yu, Chen
2017-06-01
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLE confidence interval and thus more precise estimation by using the related information from regional gage stations. The Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.
Multinomial mixture model with heterogeneous classification probabilities
Holland, M.D.; Gray, B.R.
2011-01-01
Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.
Remaining Useful Life Estimation in Prognosis: An Uncertainty Propagation Problem
NASA Technical Reports Server (NTRS)
Sankararaman, Shankar; Goebel, Kai
2013-01-01
The estimation of remaining useful life is significant in the context of prognostics and health monitoring, and the prediction of remaining useful life is essential for online operations and decision-making. However, it is challenging to accurately predict the remaining useful life in practical aerospace applications due to the presence of various uncertainties that affect prognostic calculations, and in turn, render the remaining useful life prediction uncertain. It is challenging to identify and characterize the various sources of uncertainty in prognosis, understand how each of these sources of uncertainty affect the uncertainty in the remaining useful life prediction, and thereby compute the overall uncertainty in the remaining useful life prediction. In order to achieve these goals, this paper proposes that the task of estimating the remaining useful life must be approached as an uncertainty propagation problem. In this context, uncertainty propagation methods which are available in the literature are reviewed, and their applicability to prognostics and health monitoring are discussed.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
NASA Astrophysics Data System (ADS)
Kennedy, J. J.; Rayner, N. A.; Smith, R. O.; Parker, D. E.; Saunby, M.
2011-07-01
Changes in instrumentation and data availability have caused time-varying biases in estimates of global and regional average sea surface temperature. The size of the biases arising from these changes are estimated and their uncertainties evaluated. The estimated biases and their associated uncertainties are largest during the period immediately following the Second World War, reflecting the rapid and incompletely documented changes in shipping and data availability at the time. Adjustments have been applied to reduce these effects in gridded data sets of sea surface temperature and the results are presented as a set of interchangeable realizations. Uncertainties of estimated trends in global and regional average sea surface temperature due to bias adjustments since the Second World War are found to be larger than uncertainties arising from the choice of analysis technique, indicating that this is an important source of uncertainty in analyses of historical sea surface temperatures. Despite this, trends over the twentieth century remain qualitatively consistent.
Uncertainty in estimates of the number of extraterrestrial civilizations
NASA Technical Reports Server (NTRS)
Sturrock, P. A.
1980-01-01
An estimation of the number N of communicative civilizations is made by means of Drake's formula which involves the combination of several quantities, each of which is to some extent uncertain. It is shown that the uncertainty in any quantity may be represented by a probability distribution function, even if that quantity is itself a probability. The uncertainty of current estimates of N is derived principally from uncertainty in estimates of the lifetime of advanced civilizations. It is argued that this is due primarily to uncertainty concerning the existence of a Galactic Federation which is in turn contingent upon uncertainty about whether the limitations of present-day physics are absolute or (in the event that there exists a yet undiscovered hyperphysics) transient. It is further argued that it is advantageous to consider explicitly these underlying assumptions in order to compare the probable numbers of civilizations operating radio beacons, permitting radio leakage, dispatching probes for radio surveillance for dispatching vehicles for manned surveillance.
Uncertainty of exploitation estimates made from tag returns
Miranda, L.E.; Brock, R.E.; Dorr, B.S.
2002-01-01
Over 6,000 crappies Pomoxis spp. were tagged in five water bodies to estimate exploitation rates by anglers. Exploitation rates were computed as the percentage of tags returned after adjustment for three sources of uncertainty: postrelease mortality due to the tagging process, tag loss, and the reporting rate of tagged fish. Confidence intervals around exploitation rates were estimated by resampling from the probability distributions of tagging mortality, tag loss, and reporting rate. Estimates of exploitation rates ranged from 17% to 54% among the five study systems. Uncertainty around estimates of tagging mortality, tag loss, and reporting resulted in 90% confidence intervals around the median exploitation rate as narrow as 15 percentage points and as broad as 46 percentage points. The greatest source of estimation error was uncertainty about tag reporting. Because the large investments required by tagging and reward operations produce imprecise estimates of the exploitation rate, it may be worth considering other approaches to estimating it or simply circumventing the exploitation question altogether.
NASA Technical Reports Server (NTRS)
Owens, Andrew; De Weck, Olivier L.; Stromgren, Chel; Goodliff, Kandyce; Cirillo, William
2017-01-01
Future crewed missions to Mars present a maintenance logistics challenge that is unprecedented in human spaceflight. Mission endurance – defined as the time between resupply opportunities – will be significantly longer than previous missions, and therefore logistics planning horizons are longer and the impact of uncertainty is magnified. Maintenance logistics forecasting typically assumes that component failure rates are deterministically known and uses them to represent aleatory uncertainty, or uncertainty that is inherent to the process being examined. However, failure rates cannot be directly measured; rather, they are estimated based on similarity to other components or statistical analysis of observed failures. As a result, epistemic uncertainty – that is, uncertainty in knowledge of the process – exists in failure rate estimates that must be accounted for. Analyses that neglect epistemic uncertainty tend to significantly underestimate risk. Epistemic uncertainty can be reduced via operational experience; for example, the International Space Station (ISS) failure rate estimates are refined using a Bayesian update process. However, design changes may re-introduce epistemic uncertainty. Thus, there is a tradeoff between changing a design to reduce failure rates and operating a fixed design to reduce uncertainty. This paper examines the impact of epistemic uncertainty on maintenance logistics requirements for future Mars missions, using data from the ISS Environmental Control and Life Support System (ECLS) as a baseline for a case study. Sensitivity analyses are performed to investigate the impact of variations in failure rate estimates and epistemic uncertainty on spares mass. The results of these analyses and their implications for future system design and mission planning are discussed.
Estimation of the uncertainty of analyte concentration from the measurement uncertainty.
Brown, Simon; Cooke, Delwyn G; Blackwell, Leonard F
2015-09-01
Ligand-binding assays, such as immunoassays, are usually analysed using standard curves based on the four-parameter and five-parameter logistic models. An estimate of the uncertainty of an analyte concentration obtained from such curves is needed for confidence intervals or precision profiles. Using a numerical simulation approach, it is shown that the uncertainty of the analyte concentration estimate becomes significant at the extremes of the concentration range and that this is affected significantly by the steepness of the standard curve. We also provide expressions for the coefficient of variation of the analyte concentration estimate from which confidence intervals and the precision profile can be obtained. Using three examples, we show that the expressions perform well.
Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer
2018-01-01
This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.
On different types of uncertainties in the context of the precautionary principle.
Aven, Terje
2011-10-01
Few policies for risk management have created more controversy than the precautionary principle. A main problem is the extreme number of different definitions and interpretations. Almost all definitions of the precautionary principle identify "scientific uncertainties" as the trigger or criterion for its invocation; however, the meaning of this concept is not clear. For applying the precautionary principle it is not sufficient that the threats or hazards are uncertain. A stronger requirement is needed. This article provides an in-depth analysis of this issue. We question how the scientific uncertainties are linked to the interpretation of the probability concept, expected values, the results from probabilistic risk assessments, the common distinction between aleatory uncertainties and epistemic uncertainties, and the problem of establishing an accurate prediction model (cause-effect relationship). A new classification structure is suggested to define what scientific uncertainties mean. © 2011 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Pirotton, Michel; Stilmant, Frédéric; Erpicum, Sébastien; Dewals, Benjamin; Archambeau, Pierre
2016-04-01
Flood risk modelling has been conducted for the whole course of the river Meuse in Belgium. Major cities, such as Liege (200,000 inh.) and Namur (110,000 inh.), are located in the floodplains of river Meuse. Particular attention has been paid to uncertainty analysis and its implications for decision-making. The modelling chain contains flood frequency analysis, detailed 2D hydraulic computations, damage modelling and risk calculation. The relative importance of each source of uncertainty to the overall results uncertainty has been estimated by considering several alternate options for each step of the analysis: different distributions were considered in the flood frequency analysis; the influence of modelling assumptions and boundary conditions (e.g., steady vs. unsteady) were taken into account for the hydraulic computation; two different landuse classifications and two sets of damage functions were used; the number of exceedance probabilities involved in the risk calculation (by integration of the risk-curves) was varied. In addition, the sensitivity of the results with respect to increases in flood discharges was assessed. The considered increases are consistent with a "wet" climate change scenario for the time horizons 2021-2050 and 2071-2100 (Detrembleur et al., 2015). The results of hazard computation differ significantly between the upper and lower parts of the course of river Meuse in Belgium. In the former, inundation extents grow gradually as the considered flood discharge is increased (i.e. the exceedance probability is reduced), while in the downstream part, protection structures (mainly concrete walls) prevent inundation for flood discharges corresponding to exceedance probabilities of 0.01 and above (in the present climate). For higher discharges, large inundation extents are obtained in the floodplains. The highest values of risk (mean annual damage) are obtained in the municipalities which undergo relatively frequent flooding (upper part of the river), as well as in those of the downstream part of the Meuse in which flow depths in the urbanized floodplains are particularly high when inundation occurs. This is the case of the city of Liege, as a result of a subsidence process following former mining activities. For a given climate scenario, the uncertainty ranges affecting flood risk estimates are significant; but not so much that the results for the different municipalities would overlap substantially. Therefore, these uncertainties do not hamper prioritization in terms of allocation of risk reduction measures at the municipality level. In the present climate, the uncertainties arising from flood frequency analysis have a negligible influence in the upper part of the river, while they have a considerable impact on risk modelling in the lower part, where a threshold effect was observed due to the flood protection structures (sudden transition from no inundation to massive flooding when a threshold discharge is exceeded). Varying the number of exceedance probabilities in the integration of the risk curve has different effects for different municipalities; but it does not change the ranking of the municipalities in terms of flood risk. For the other scenarios, damage estimation contributes most to the overall uncertainties. As shown by this study, the magnitude of the uncertainty and its main origin vary in space and in time. This emphasizes the paramount importance of conducting distributed uncertainty analyses. In the considered study area, prioritization of risk reduction means can be reliably performed despite the modelling uncertainties. Reference Detrembleur, S., Stilmant, F., Dewals, B., Erpicum, S., Archambeau, P., & Pirotton, M. (2015). Impacts of climate change on future flood damage on the river Meuse, with a distributed uncertainty analysis. Natural Hazards, 77(3), 1533-1549. Acknowledgement Part of this research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. It was also supported by the NWE Interreg IVB Program.
NASA Astrophysics Data System (ADS)
Delottier, H.; Pryet, A.; Lemieux, J. M.; Dupuy, A.
2018-05-01
Specific yield and groundwater recharge of unconfined aquifers are both essential parameters for groundwater modeling and sustainable groundwater development, yet the collection of reliable estimates of these parameters remains challenging. Here, a joint approach combining an aquifer test with application of the water-table fluctuation (WTF) method is presented to estimate these parameters and quantify their uncertainty. The approach requires two wells: an observation well instrumented with a pressure probe for long-term monitoring and a pumping well, located in the vicinity, for the aquifer test. The derivative of observed drawdown levels highlights the necessity to represent delayed drainage from the unsaturated zone when interpreting the aquifer test results. Groundwater recharge is estimated with an event-based WTF method in order to minimize the transient effects of flow dynamics in the unsaturated zone. The uncertainty on groundwater recharge is obtained by the propagation of the uncertainties on specific yield (Bayesian inference) and groundwater recession dynamics (regression analysis) through the WTF equation. A major portion of the uncertainty on groundwater recharge originates from the uncertainty on the specific yield. The approach was applied to a site in Bordeaux (France). Groundwater recharge was estimated to be 335 mm with an associated uncertainty of 86.6 mm at 2σ. By the use of cost-effective instrumentation and parsimonious methods of interpretation, the replication of such a joint approach should be encouraged to provide reliable estimates of specific yield and groundwater recharge over a region of interest. This is necessary to reduce the predictive uncertainty of groundwater management models.
Uncertainty Estimation Cheat Sheet for Probabilistic Risk Assessment
NASA Technical Reports Server (NTRS)
Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.
2017-01-01
"Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This paper will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.
Lognormal Uncertainty Estimation for Failure Rates
NASA Technical Reports Server (NTRS)
Britton, Paul T.; Al Hassan, Mohammad; Ring, Robert W.
2017-01-01
"Uncertainty analysis itself is uncertain, therefore, you cannot evaluate it exactly," Source Uncertain. Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This presentation will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.
William Salas; Steve Hagen
2013-01-01
This presentation will provide an overview of an approach for quantifying uncertainty in spatial estimates of carbon emission from land use change. We generate uncertainty bounds around our final emissions estimate using a randomized, Monte Carlo (MC)-style sampling technique. This approach allows us to combine uncertainty from different sources without making...
NASA Astrophysics Data System (ADS)
Meinke, I.
2003-04-01
A new method is presented to validate cloud parametrization schemes in numerical atmospheric models with satellite data of scanning radiometers. This method is applied to the regional atmospheric model HRM (High Resolution Regional Model) using satellite data from ISCCP (International Satellite Cloud Climatology Project). Due to the limited reliability of former validations there has been a need for developing a new validation method: Up to now differences between simulated and measured cloud properties are mostly declared as deficiencies of the cloud parametrization scheme without further investigation. Other uncertainties connected with the model or with the measurements have not been taken into account. Therefore changes in the cloud parametrization scheme based on such kind of validations might not be realistic. The new method estimates uncertainties of the model and the measurements. Criteria for comparisons of simulated and measured data are derived to localize deficiencies in the model. For a better specification of these deficiencies simulated clouds are classified regarding their parametrization. With this classification the localized model deficiencies are allocated to a certain parametrization scheme. Applying this method to the regional model HRM the quality of forecasting cloud properties is estimated in detail. The overestimation of simulated clouds in low emissivity heights especially during the night is localized as model deficiency. This is caused by subscale cloudiness. As the simulation of subscale clouds in the regional model HRM is described by a relative humidity parametrization these deficiencies are connected with this parameterization.
NASA Technical Reports Server (NTRS)
Abbey, Craig K.; Eckstein, Miguel P.
2002-01-01
We consider estimation and statistical hypothesis testing on classification images obtained from the two-alternative forced-choice experimental paradigm. We begin with a probabilistic model of task performance for simple forced-choice detection and discrimination tasks. Particular attention is paid to general linear filter models because these models lead to a direct interpretation of the classification image as an estimate of the filter weights. We then describe an estimation procedure for obtaining classification images from observer data. A number of statistical tests are presented for testing various hypotheses from classification images based on some more compact set of features derived from them. As an example of how the methods we describe can be used, we present a case study investigating detection of a Gaussian bump profile.
Zollanvari, Amin; Dougherty, Edward R
2016-12-01
In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.
NASA Astrophysics Data System (ADS)
Marra, Francesco; Morin, Efrat
2015-12-01
Intensity-Duration-Frequency (IDF) curves are widely used in flood risk management because they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. Weather radars provide distributed rainfall estimates with high spatial and temporal resolutions and overcome the scarce representativeness of point-based rainfall for regions characterized by large gradients in rainfall climatology. This work explores the use of radar quantitative precipitation estimation (QPE) for the identification of IDF curves over a region with steep climatic transitions (Israel) using a unique radar data record (23 yr) and combined physical and empirical adjustment of the radar data. IDF relationships were derived by fitting a generalized extreme value distribution to the annual maximum series for durations of 20 min, 1 h and 4 h. Arid, semi-arid and Mediterranean climates were explored using 14 study cases. IDF curves derived from the study rain gauges were compared to those derived from radar and from nearby rain gauges characterized by similar climatology, taking into account the uncertainty linked with the fitting technique. Radar annual maxima and IDF curves were generally overestimated but in 70% of the cases (60% for a 100 yr return period), they lay within the rain gauge IDF confidence intervals. Overestimation tended to increase with return period, and this effect was enhanced in arid climates. This was mainly associated with radar estimation uncertainty, even if other effects, such as rain gauge temporal resolution, cannot be neglected. Climatological classification remained meaningful for the analysis of rainfall extremes and radar was able to discern climatology from rainfall frequency analysis.
Uncertainty in temperature response of current consumption-based emissions estimates
NASA Astrophysics Data System (ADS)
Karstensen, J.; Peters, G. P.; Andrew, R. M.
2015-05-01
Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties along the entire causal chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty in the economic data appears to have a relatively small impact on uncertainty at the national level in comparison to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production-based emissions since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9 to ±25 %, with metric and emission uncertainties contributing similarly. The absolute global temperature potential (AGTP) with a 50-year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.
NASA Technical Reports Server (NTRS)
Genovese, Christopher R.; Stark, Philip B.; Thompson, Michael J.
1995-01-01
Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.
NASA Astrophysics Data System (ADS)
Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki
2017-08-01
Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.
Li, Zhengpeng; Liu, Shuguang; Zhang, Xuesong; West, Tristram O.; Ogle, Stephen M.; Zhou, Naijun
2016-01-01
Quantifying spatial and temporal patterns of carbon sources and sinks and their uncertainties across agriculture-dominated areas remains challenging for understanding regional carbon cycles. Characteristics of local land cover inputs could impact the regional carbon estimates but the effect has not been fully evaluated in the past. Within the North American Carbon Program Mid-Continent Intensive (MCI) Campaign, three models were developed to estimate carbon fluxes on croplands: an inventory-based model, the Environmental Policy Integrated Climate (EPIC) model, and the General Ensemble biogeochemical Modeling System (GEMS) model. They all provided estimates of three major carbon fluxes on cropland: net primary production (NPP), net ecosystem production (NEP), and soil organic carbon (SOC) change. Using data mining and spatial statistics, we studied the spatial distribution of the carbon fluxes uncertainties and the relationships between the uncertainties and the land cover characteristics. Results indicated that uncertainties for all three carbon fluxes were not randomly distributed, but instead formed multiple clusters within the MCI region. We investigated the impacts of three land cover characteristics on the fluxes uncertainties: cropland percentage, cropland richness and cropland diversity. The results indicated that cropland percentage significantly influenced the uncertainties of NPP and NEP, but not on the uncertainties of SOC change. Greater uncertainties of NPP and NEP were found in counties with small cropland percentage than the counties with large cropland percentage. Cropland species richness and diversity also showed negative correlations with the model uncertainties. Our study demonstrated that the land cover characteristics contributed to the uncertainties of regional carbon fluxes estimates. The approaches we used in this study can be applied to other ecosystem models to identify the areas with high uncertainties and where models can be improved to reduce overall uncertainties for regional carbon flux estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, J.; Moteabbed, M.; Paganetti, H., E-mail: hpaganetti@mgh.harvard.edu
2015-01-15
Purpose: Theoretical dose–response models offer the possibility to assess second cancer induction risks after external beam therapy. The parameters used in these models are determined with limited data from epidemiological studies. Risk estimations are thus associated with considerable uncertainties. This study aims at illustrating uncertainties when predicting the risk for organ-specific second cancers in the primary radiation field illustrated by choosing selected treatment plans for brain cancer patients. Methods: A widely used risk model was considered in this study. The uncertainties of the model parameters were estimated with reported data of second cancer incidences for various organs. Standard error propagationmore » was then subsequently applied to assess the uncertainty in the risk model. Next, second cancer risks of five pediatric patients treated for cancer in the head and neck regions were calculated. For each case, treatment plans for proton and photon therapy were designed to estimate the uncertainties (a) in the lifetime attributable risk (LAR) for a given treatment modality and (b) when comparing risks of two different treatment modalities. Results: Uncertainties in excess of 100% of the risk were found for almost all organs considered. When applied to treatment plans, the calculated LAR values have uncertainties of the same magnitude. A comparison between cancer risks of different treatment modalities, however, does allow statistically significant conclusions. In the studied cases, the patient averaged LAR ratio of proton and photon treatments was 0.35, 0.56, and 0.59 for brain carcinoma, brain sarcoma, and bone sarcoma, respectively. Their corresponding uncertainties were estimated to be potentially below 5%, depending on uncertainties in dosimetry. Conclusions: The uncertainty in the dose–response curve in cancer risk models makes it currently impractical to predict the risk for an individual external beam treatment. On the other hand, the ratio of absolute risks between two modalities is less sensitive to the uncertainties in the risk model and can provide statistically significant estimates.« less
NASA Astrophysics Data System (ADS)
Poppeliers, C.; Preston, L. A.
2017-12-01
Measurements of seismic surface wave dispersion can be used to infer the structure of the Earth's subsurface. Typically, to identify group- and phase-velocity, a series of narrow-band filters are applied to surface wave seismograms. Frequency dependent arrival times of surface waves can then be identified from the resulting suite of narrow band seismograms. The frequency-dependent velocity estimates are then inverted for subsurface velocity structure. However, this technique has no method to estimate the uncertainty of the measured surface wave velocities, and subsequently there is no estimate of uncertainty on, for example, tomographic results. For the work here, we explore using the multiwavelet transform (MWT) as an alternate method to estimate surface wave speeds. The MWT decomposes a signal similarly to the conventional filter bank technique, but with two primary advantages: 1) the time-frequency localization is optimized in regard to the time-frequency tradeoff, and 2) we can use the MWT to estimate the uncertainty of the resulting surface wave group- and phase-velocities. The uncertainties of the surface wave speed measurements can then be propagated into tomographic inversions to provide uncertainties of resolved Earth structure. As proof-of-concept, we apply our technique to four seismic ambient noise correlograms that were collected from the University of Nevada Reno seismic network near the Nevada National Security Site. We invert the estimated group- and phase-velocities, as well the uncertainties, for 1-D Earth structure for each station pair. These preliminary results generally agree with 1-D velocities that are obtained from inverting dispersion curves estimated from a conventional Gaussian filter bank.
Tissue resistivity estimation in the presence of positional and geometrical uncertainties.
Baysal, U; Eyüboğlu, B M
2000-08-01
Geometrical uncertainties (organ boundary variation and electrode position uncertainties) are the biggest sources of error in estimating electrical resistivity of tissues from body surface measurements. In this study, in order to decrease estimation errors, the statistically constrained minimum mean squared error estimation algorithm (MiMSEE) is constrained with a priori knowledge of the geometrical uncertainties in addition to the constraints based on geometry, resistivity range, linearization and instrumentation errors. The MiMSEE calculates an optimum inverse matrix, which maps the surface measurements to the unknown resistivity distribution. The required data are obtained from four-electrode impedance measurements, similar to injected-current electrical impedance tomography (EIT). In this study, the surface measurements are simulated by using a numerical thorax model. The data are perturbed with additive instrumentation noise. Simulated surface measurements are then used to estimate the tissue resistivities by using the proposed algorithm. The results are compared with the results of conventional least squares error estimator (LSEE). Depending on the region, the MiMSEE yields an estimation error between 0.42% and 31.3% compared with 7.12% to 2010% for the LSEE. It is shown that the MiMSEE is quite robust even in the case of geometrical uncertainties.
Considerations of temperature in the context of the persistence classification in the EU.
Matthies, Michael; Beulke, Sabine
2017-01-01
Simulation degradation studies for industrial chemicals, biocidal products and plant protection products are required in the EU to estimate half-lives in soil, water and sediment for the comparison to persistence criteria for hazard (P/vP) assessment, and for use in exposure assessments. There is a discrepancy between European regulatory approaches regarding the temperature at which degradation half-lives should be (1) measured in simulation degradation testing of environmental compartments, and (2) compared to the P/vP criteria. In this paper, an opinion is provided on the options for the experimental temperature and extrapolation to other conditions. A review of the historical development of persistence criteria did not give conclusive evidence of the temperature at which the half-lives that underpin the P-criteria were measured, but room temperature is likely. Half-lives measured at 20 °C are in line with the intentions of some international agreements, but in the EU there is a continued political debate regarding the relevant temperature for comparison with persistence criteria. Measuring degradation at 20 °C has the advantage that metabolites/transformation products can be identified with greater accuracy, and that kinetic fits to determine half-lives for parent compounds and metabolites carry less uncertainty. Extrapolation of half-lives to lower temperatures is possible for assessing environmental exposure, but the uncertainty of the persistence classification is smaller when measured half-lives are used for direct comparison with P/vP criteria, without extrapolation. Model simulations demonstrate the pattern of concentrations that can be expected for realistic worst case climate scenarios in the EU based on the half-life of 120 days in soil at 20 °C and of 40 days in water at 20 °C, and their temporal and spatial variability.
Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha
2007-01-01
Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results. PMID:17714598
Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha
2007-08-23
The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results.
Ackermann, M.; Ajello, M.; Albert, A.; ...
2012-10-12
The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this study, we describe the effects thatmore » motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. In conclusion, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.« less
Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu
2012-01-01
The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20–549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. PMID:22487046
Uncertainty Estimation Cheat Sheet for Probabilistic Risk Assessment
NASA Technical Reports Server (NTRS)
Britton, Paul; Al Hassan, Mohammad; Ring, Robert
2017-01-01
Quantitative results for aerospace engineering problems are influenced by many sources of uncertainty. Uncertainty analysis aims to make a technical contribution to decision-making through the quantification of uncertainties in the relevant variables as well as through the propagation of these uncertainties up to the result. Uncertainty can be thought of as a measure of the 'goodness' of a result and is typically represented as statistical dispersion. This paper will explain common measures of centrality and dispersion; and-with examples-will provide guidelines for how they may be estimated to ensure effective technical contributions to decision-making.
Li, Zhao-Liang
2018-01-01
Few studies have examined hyperspectral remote-sensing image classification with type-II fuzzy sets. This paper addresses image classification based on a hyperspectral remote-sensing technique using an improved interval type-II fuzzy c-means (IT2FCM*) approach. In this study, in contrast to other traditional fuzzy c-means-based approaches, the IT2FCM* algorithm considers the ranking of interval numbers and the spectral uncertainty. The classification results based on a hyperspectral dataset using the FCM, IT2FCM, and the proposed improved IT2FCM* algorithms show that the IT2FCM* method plays the best performance according to the clustering accuracy. In this paper, in order to validate and demonstrate the separability of the IT2FCM*, four type-I fuzzy validity indexes are employed, and a comparative analysis of these fuzzy validity indexes also applied in FCM and IT2FCM methods are made. These four indexes are also applied into different spatial and spectral resolution datasets to analyze the effects of spectral and spatial scaling factors on the separability of FCM, IT2FCM, and IT2FCM* methods. The results of these validity indexes from the hyperspectral datasets show that the improved IT2FCM* algorithm have the best values among these three algorithms in general. The results demonstrate that the IT2FCM* exhibits good performance in hyperspectral remote-sensing image classification because of its ability to handle hyperspectral uncertainty. PMID:29373548
NASA Astrophysics Data System (ADS)
Aulenbach, B. T.; Burns, D. A.; Shanley, J. B.; Yanai, R. D.; Bae, K.; Wild, A.; Yang, Y.; Dong, Y.
2013-12-01
There are many sources of uncertainty in estimates of streamwater solute flux. Flux is the product of discharge and concentration (summed over time), each of which has measurement uncertainty of its own. Discharge can be measured almost continuously, but concentrations are usually determined from discrete samples, which increases uncertainty dependent on sampling frequency and how concentrations are assigned for the periods between samples. Gaps between samples can be estimated by linear interpolation or by models that that use the relations between concentration and continuously measured or known variables such as discharge, season, temperature, and time. For this project, developed in cooperation with QUEST (Quantifying Uncertainty in Ecosystem Studies), we evaluated uncertainty for three flux estimation methods and three different sampling frequencies (monthly, weekly, and weekly plus event). The constituents investigated were dissolved NO3, Si, SO4, and dissolved organic carbon (DOC), solutes whose concentration dynamics exhibit strongly contrasting behavior. The evaluation was completed for a 10-year period at five small, forested watersheds in Georgia, New Hampshire, New York, Puerto Rico, and Vermont. Concentration regression models were developed for each solute at each of the three sampling frequencies for all five watersheds. Fluxes were then calculated using (1) a linear interpolation approach, (2) a regression-model method, and (3) the composite method - which combines the regression-model method for estimating concentrations and the linear interpolation method for correcting model residuals to the observed sample concentrations. We considered the best estimates of flux to be derived using the composite method at the highest sampling frequencies. We also evaluated the importance of sampling frequency and estimation method on flux estimate uncertainty; flux uncertainty was dependent on the variability characteristics of each solute and varied for different reporting periods (e.g. 10-year, study period vs. annually vs. monthly). The usefulness of the two regression model based flux estimation approaches was dependent upon the amount of variance in concentrations the regression models could explain. Our results can guide the development of optimal sampling strategies by weighing sampling frequency with improvements in uncertainty in stream flux estimates for solutes with particular characteristics of variability. The appropriate flux estimation method is dependent on a combination of sampling frequency and the strength of concentration regression models. Sites: Biscuit Brook (Frost Valley, NY), Hubbard Brook Experimental Forest and LTER (West Thornton, NH), Luquillo Experimental Forest and LTER (Luquillo, Puerto Rico), Panola Mountain (Stockbridge, GA), Sleepers River Research Watershed (Danville, VT)
Xiang, G.; Ferson, S.; Ginzburg, L.; Longpré, L.; Mayorga, E.; Kosheleva, O.
2013-01-01
To preserve privacy, the original data points (with exact values) are replaced by boxes containing each (inaccessible) data point. This privacy-motivated uncertainty leads to uncertainty in the statistical characteristics computed based on this data. In a previous paper, we described how to minimize this uncertainty under the assumption that we use the same standard statistical estimates for the desired characteristics. In this paper, we show that we can further decrease the resulting uncertainty if we allow fuzzy-motivated weighted estimates, and we explain how to optimally select the corresponding weights. PMID:25187183
Wang, Hongrui; Wang, Cheng; Wang, Ying; ...
2017-04-05
This paper presents a Bayesian approach using Metropolis-Hastings Markov Chain Monte Carlo algorithm and applies this method for daily river flow rate forecast and uncertainty quantification for Zhujiachuan River using data collected from Qiaotoubao Gage Station and other 13 gage stations in Zhujiachuan watershed in China. The proposed method is also compared with the conventional maximum likelihood estimation (MLE) for parameter estimation and quantification of associated uncertainties. While the Bayesian method performs similarly in estimating the mean value of daily flow rate, it performs over the conventional MLE method on uncertainty quantification, providing relatively narrower reliable interval than the MLEmore » confidence interval and thus more precise estimation by using the related information from regional gage stations. As a result, the Bayesian MCMC method might be more favorable in the uncertainty analysis and risk management.« less
Climate Projections and Uncertainty Communication.
Joslyn, Susan L; LeClerc, Jared E
2016-01-01
Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.
Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
2017-11-15
In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perreault Levasseur, Laurence; Hezaveh, Yashar D.; Wechsler, Risa H.
In Hezaveh et al. (2017) we showed that deep learning can be used for model parameter estimation and trained convolutional neural networks to determine the parameters of strong gravitational lensing systems. Here we demonstrate a method for obtaining the uncertainties of these parameters. We review the framework of variational inference to obtain approximate posteriors of Bayesian neural networks and apply it to a network trained to estimate the parameters of the Singular Isothermal Ellipsoid plus external shear and total flux magnification. We show that the method can capture the uncertainties due to different levels of noise in the input data,more » as well as training and architecture-related errors made by the network. To evaluate the accuracy of the resulting uncertainties, we calculate the coverage probabilities of marginalized distributions for each lensing parameter. By tuning a single hyperparameter, the dropout rate, we obtain coverage probabilities approximately equal to the confidence levels for which they were calculated, resulting in accurate and precise uncertainty estimates. Our results suggest that neural networks can be a fast alternative to Monte Carlo Markov Chains for parameter uncertainty estimation in many practical applications, allowing more than seven orders of magnitude improvement in speed.« less
NASA Technical Reports Server (NTRS)
Lau, William K. M. (Technical Monitor); Bell, Thomas L.; Steiner, Matthias; Zhang, Yu; Wood, Eric F.
2002-01-01
The uncertainty of rainfall estimated from averages of discrete samples collected by a satellite is assessed using a multi-year radar data set covering a large portion of the United States. The sampling-related uncertainty of rainfall estimates is evaluated for all combinations of 100 km, 200 km, and 500 km space domains, 1 day, 5 day, and 30 day rainfall accumulations, and regular sampling time intervals of 1 h, 3 h, 6 h, 8 h, and 12 h. These extensive analyses are combined to characterize the sampling uncertainty as a function of space and time domain, sampling frequency, and rainfall characteristics by means of a simple scaling law. Moreover, it is shown that both parametric and non-parametric statistical techniques of estimating the sampling uncertainty produce comparable results. Sampling uncertainty estimates, however, do depend on the choice of technique for obtaining them. They can also vary considerably from case to case, reflecting the great variability of natural rainfall, and should therefore be expressed in probabilistic terms. Rainfall calibration errors are shown to affect comparison of results obtained by studies based on data from different climate regions and/or observation platforms.
Section summary: Uncertainty and design considerations
Stephen Hagen
2013-01-01
Well planned sampling designs and robust approaches to estimating uncertainty are critical components of forest monitoring. The importance of uncertainty estimation increases as deforestation and degradation issues become more closely tied to financing incentives for reducing greenhouse gas emissions in the forest sector. Investors like to know risk and risk is tightly...
The Application Programming Interface (API) for Uncertainty Analysis, Sensitivity Analysis, and
Parameter Estimation (UA/SA/PE API) (also known as Calibration, Optimization and Sensitivity and Uncertainty (CUSO)) was developed in a joint effort between several members of both ...
Uncertainties in estimating heart doses from 2D-tangential breast cancer radiotherapy.
Lorenzen, Ebbe L; Brink, Carsten; Taylor, Carolyn W; Darby, Sarah C; Ewertz, Marianne
2016-04-01
We evaluated the accuracy of three methods of estimating radiation dose to the heart from two-dimensional tangential radiotherapy for breast cancer, as used in Denmark during 1982-2002. Three tangential radiotherapy regimens were reconstructed using CT-based planning scans for 40 patients with left-sided and 10 with right-sided breast cancer. Setup errors and organ motion were simulated using estimated uncertainties. For left-sided patients, mean heart dose was related to maximum heart distance in the medial field. For left-sided breast cancer, mean heart dose estimated from individual CT-scans varied from <1Gy to >8Gy, and maximum dose from 5 to 50Gy for all three regimens, so that estimates based only on regimen had substantial uncertainty. When maximum heart distance was taken into account, the uncertainty was reduced and was comparable to the uncertainty of estimates based on individual CT-scans. For right-sided breast cancer patients, mean heart dose based on individual CT-scans was always <1Gy and maximum dose always <5Gy for all three regimens. The use of stored individual simulator films provides a method for estimating heart doses in left-tangential radiotherapy for breast cancer that is almost as accurate as estimates based on individual CT-scans. Copyright © 2016. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Munoz-Jaramillo, Andres
2017-08-01
Data products in heliospheric physics are very often provided without clear estimates of uncertainty. From helioseismology in the solar interior, all the way to in situ solar wind measurements beyond 1AU, uncertainty estimates are typically hard for users to find (buried inside long documents that are separate from the data products), or simply non-existent.There are two main reasons why uncertainty measurements are hard to find:1. Understanding instrumental systematic errors is given a much higher priority inside instrumental teams.2. The desire to perfectly understand all sources of uncertainty postpones indefinitely the actual quantification of uncertainty in our measurements.Using the cross calibration of 200 years of sunspot area measurements as a case study, in this presentation we will discuss the negative impact that inadequate measurements of uncertainty have on users, through the appearance of toxic and unnecessary controversies, and data providers, through the creation of unrealistic expectations regarding the information that can be extracted from their data. We will discuss how empirical estimates of uncertainty represent a very good alternative to not providing any estimates at all, and finalize by discussing the bare essentials that should become our standard practice for future instruments and surveys.
NASA Astrophysics Data System (ADS)
Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.
2017-12-01
NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.
Bounding the error on bottom estimation for multi-angle swath bathymetry sonar
NASA Astrophysics Data System (ADS)
Mullins, Geoff K.; Bird, John S.
2005-04-01
With the recent introduction of multi-angle swath bathymetry (MASB) sonar to the commercial marketplace (e.g., Benthos Inc., C3D sonar, 2004), additions must be made to the current sonar lexicon. The correct interpretation of measurements made with MASB sonar, which uses filled transducer arrays to compute angle-of-arrival information (AOA) from backscattered signal, is essential not only for mapping, but for applications such as statistical bottom classification. In this paper it is shown that aside from uncorrelated channel to channel noise, there exists a tradeoff between effects that govern the error bounds on bottom estimation for surfaces having shallow grazing angle and surfaces distributed along a radial arc centered at the transducer. In the first case, as the bottom aligns with the radial direction to the receiver, footprint shift and shallow grazing angle effects dominate the uncertainty in physical bottom position (surface aligns along a single AOA). Alternatively, if signal from a radial arc arrives, a single AOA is usually estimated (not necessarily at the average location of the surface). Through theoretical treatment, simulation, and field measurements, the aforementioned factors affecting MASB bottom mapping are examined. [Work supported by NSERC.
Pappachan, Bobby K; Caesarendra, Wahyu; Tjahjowidodo, Tegoeh; Wijaya, Tomi
2017-01-01
Process monitoring using indirect methods relies on the usage of sensors. Using sensors to acquire vital process related information also presents itself with the problem of big data management and analysis. Due to uncertainty in the frequency of events occurring, a higher sampling rate is often used in real-time monitoring applications to increase the chances of capturing and understanding all possible events related to the process. Advanced signal processing methods are used to further decipher meaningful information from the acquired data. In this research work, power spectrum density (PSD) of sensor data acquired at sampling rates between 40–51.2 kHz was calculated and the corelation between PSD and completed number of cycles/passes is presented. Here, the progress in number of cycles/passes is the event this research work intends to classify and the algorithm used to compute PSD is Welch’s estimate method. A comparison between Welch’s estimate method and statistical methods is also discussed. A clear co-relation was observed using Welch’s estimate to classify the number of cycles/passes. The paper also succeeds in classifying vibration signal generated by the spindle from the vibration signal acquired during finishing process. PMID:28556809
Multivariate Probabilistic Analysis of an Hydrological Model
NASA Astrophysics Data System (ADS)
Franceschini, Samuela; Marani, Marco
2010-05-01
Model predictions derived based on rainfall measurements and hydrological model results are often limited by the systematic error of measuring instruments, by the intrinsic variability of the natural processes and by the uncertainty of the mathematical representation. We propose a means to identify such sources of uncertainty and to quantify their effects based on point-estimate approaches, as a valid alternative to cumbersome Montecarlo methods. We present uncertainty analyses on the hydrologic response to selected meteorological events, in the mountain streamflow-generating portion of the Brenta basin at Bassano del Grappa, Italy. The Brenta river catchment has a relatively uniform morphology and quite a heterogeneous rainfall-pattern. In the present work, we evaluate two sources of uncertainty: data uncertainty (the uncertainty due to data handling and analysis) and model uncertainty (the uncertainty related to the formulation of the model). We thus evaluate the effects of the measurement error of tipping-bucket rain gauges, the uncertainty in estimating spatially-distributed rainfall through block kriging, and the uncertainty associated with estimated model parameters. To this end, we coupled a deterministic model based on the geomorphological theory of the hydrologic response to probabilistic methods. In particular we compare the results of Monte Carlo Simulations (MCS) to the results obtained, in the same conditions, using Li's Point Estimate Method (LiM). The LiM is a probabilistic technique that approximates the continuous probability distribution function of the considered stochastic variables by means of discrete points and associated weights. This allows to satisfactorily reproduce results with only few evaluations of the model function. The comparison between the LiM and MCS results highlights the pros and cons of using an approximating method. LiM is less computationally demanding than MCS, but has limited applicability especially when the model response is highly nonlinear. Higher-order approximations can provide more accurate estimations, but reduce the numerical advantage of the LiM. The results of the uncertainty analysis identify the main sources of uncertainty in the computation of river discharge. In this particular case the spatial variability of rainfall and the model parameters uncertainty are shown to have the greatest impact on discharge evaluation. This, in turn, highlights the need to support any estimated hydrological response with probability information and risk analysis results in order to provide a robust, systematic framework for decision making.
Autonomous frequency domain identification: Theory and experiment
NASA Technical Reports Server (NTRS)
Yam, Yeung; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.; Scheid, R. E.
1989-01-01
The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability.
Griscom, Bronson W; Ellis, Peter W; Baccini, Alessandro; Marthinus, Delon; Evans, Jeffrey S; Ruslandi
2016-01-01
Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale. We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000-2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau's original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate-which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values.
Impact of uncertainty in soil, climatic, and chemical information in a pesticide leaching assessment
NASA Astrophysics Data System (ADS)
Loague, Keith; Green, Richard E.; Giambelluca, Thomas W.; Liang, Tony C.; Yost, Russell S.
1990-01-01
A simple mobility index, when combined with a geographic information system, can be used to generate rating maps which indicate qualitatively the potential for various organic chemicals to leach to groundwater. In this paper we investigate the magnitude of uncertainty associated with pesticide mobility estimates as a result of data uncertainties. Our example is for the Pearl Harbor Basin, Oahu, Hawaii. The two pesticides included in our analysis are atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and diuron [3-(3,4-dichlorophenyul)-1,1-dimethylarea]. The mobility index used here is known as the Attenuation Factor ( AF); it requires soil, hydrogeologic, climatic and chemical information as input data. We employ first-order uncertainty analysis to characterize the uncertainty in estimates of AF resulting from uncertainties in the various input data. Soils in the Pearl Harbor Basin are delineated at the order taxonomic category for this study. Our results show that there can be a significant amount of uncertainty in estimates of pesticide mobility for the Pearl Harbor Basin. This information needs to be considered if future decisions concerning chemical regulation are to be based on estimates of pesticide mobility determined from simple indices.
NASA Astrophysics Data System (ADS)
Loague, Keith; Green, Richard E.; Giambelluca, Thomas W.; Liang, Tony C.; Yost, Russell S.
2016-11-01
A simple mobility index, when combined with a geographic information system, can be used to generate rating maps which indicate qualitatively the potential for various organic chemicals to leach to groundwater. In this paper we investigate the magnitude of uncertainty associated with pesticide mobility estimates as a result of data uncertainties. Our example is for the Pearl Harbor Basin, Oahu, Hawaii. The two pesticides included in our analysis are atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylarea]. The mobility index used here is known as the Attenuation Factor (AF); it requires soil, hydrogeologic, climatic, and chemical information as input data. We employ first-order uncertainty analysis to characterize the uncertainty in estimates of AF resulting from uncertainties in the various input data. Soils in the Pearl Harbor Basin are delineated at the order taxonomic category for this study. Our results show that there can be a significant amount of uncertainty in estimates of pesticide mobility for the Pearl Harbor Basin. This information needs to be considered if future decisions concerning chemical regulation are to be based on estimates of pesticide mobility determined from simple indices.
NASA Astrophysics Data System (ADS)
Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine; Jalbert, Jonathan
2014-09-01
A rating curve is used to indirectly estimate the discharge in rivers based on water level measurements. The discharge values obtained from a rating curve include uncertainties related to the direct stage-discharge measurements (gaugings) used to build the curves, the quality of fit of the curve to these measurements and the constant changes in the river bed morphology. Moreover, the uncertainty of discharges estimated from a rating curve increases with the “age” of the rating curve. The level of uncertainty at a given point in time is therefore particularly difficult to assess. A “dynamic” method has been developed to compute rating curves while calculating associated uncertainties, thus making it possible to regenerate streamflow data with uncertainty estimates. The method is based on historical gaugings at hydrometric stations. A rating curve is computed for each gauging and a model of the uncertainty is fitted for each of them. The model of uncertainty takes into account the uncertainties in the measurement of the water level, the quality of fit of the curve, the uncertainty of gaugings and the increase of the uncertainty of discharge estimates with the age of the rating curve computed with a variographic analysis (Jalbert et al., 2011). The presented dynamic method can answer important questions in the field of hydrometry such as “How many gaugings a year are required to produce streamflow data with an average uncertainty of X%?” and “When and in what range of water flow rates should these gaugings be carried out?”. The Rocherousse hydrometric station (France, Haute-Durance watershed, 946 [km2]) is used as an example throughout the paper. Others stations are used to illustrate certain points.
Determination of Uncertainties for the New SSME Model
NASA Technical Reports Server (NTRS)
Coleman, Hugh W.; Hawk, Clark W.
1996-01-01
This report discusses the uncertainty analysis performed in support of a new test analysis and performance prediction model for the Space Shuttle Main Engine. The new model utilizes uncertainty estimates for experimental data and for the analytical model to obtain the most plausible operating condition for the engine system. This report discusses the development of the data sets and uncertainty estimates to be used in the development of the new model. It also presents the application of uncertainty analysis to analytical models and the uncertainty analysis for the conservation of mass and energy balance relations is presented. A new methodology for the assessment of the uncertainty associated with linear regressions is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez Almeida, J.; Allende Prieto, C., E-mail: jos@iac.es, E-mail: callende@iac.es
2013-01-20
Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines,more » and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd spectra whose nature we have not deciphered. The template spectra representative of the classes are publicly available in the online journal.« less
Puncher, M; Zhang, W; Harrison, J D; Wakeford, R
2017-06-26
Assessments of risk to a specific population group resulting from internal exposure to a particular radionuclide can be used to assess the reliability of the appropriate International Commission on Radiological Protection (ICRP) dose coefficients used as a radiation protection device for the specified exposure pathway. An estimate of the uncertainty on the associated risk is important for informing judgments on reliability; a derived uncertainty factor, UF, is an estimate of the 95% probable geometric difference between the best risk estimate and the nominal risk and is a useful tool for making this assessment. This paper describes the application of parameter uncertainty analysis to quantify uncertainties resulting from internal exposures to radioiodine by members of the public, specifically 1, 10 and 20-year old females from the population of England and Wales. Best estimates of thyroid cancer incidence risk (lifetime attributable risk) are calculated for ingestion or inhalation of 129 I and 131 I, accounting for uncertainties in biokinetic model and cancer risk model parameter values. These estimates are compared with the equivalent ICRP derived nominal age-, sex- and population-averaged estimates of excess thyroid cancer incidence to obtain UFs. Derived UF values for ingestion or inhalation of 131 I for 1 year, 10-year and 20-year olds are around 28, 12 and 6, respectively, when compared with ICRP Publication 103 nominal values, and 9, 7 and 14, respectively, when compared with ICRP Publication 60 values. Broadly similar results were obtained for 129 I. The uncertainties on risk estimates are largely determined by uncertainties on risk model parameters rather than uncertainties on biokinetic model parameters. An examination of the sensitivity of the results to the risk models and populations used in the calculations show variations in the central estimates of risk of a factor of around 2-3. It is assumed that the direct proportionality of excess thyroid cancer risk and dose observed at low to moderate acute doses and incorporated in the risk models also applies to very small doses received at very low dose rates; the uncertainty in this assumption is considerable, but largely unquantifiable. The UF values illustrate the need for an informed approach to the use of ICRP dose and risk coefficients.
Uncertainty information in climate data records from Earth observation
NASA Astrophysics Data System (ADS)
Merchant, C. J.
2017-12-01
How to derive and present uncertainty in climate data records (CDRs) has been debated within the European Space Agency Climate Change Initiative, in search of common principles applicable across a range of essential climate variables. Various points of consensus have been reached, including the importance of improving provision of uncertainty information and the benefit of adopting international norms of metrology for language around the distinct concepts of uncertainty and error. Providing an estimate of standard uncertainty per datum (or the means to readily calculate it) emerged as baseline good practice, and should be highly relevant to users of CDRs when the uncertainty in data is variable (the usual case). Given this baseline, the role of quality flags is clarified as being complementary to and not repetitive of uncertainty information. Data with high uncertainty are not poor quality if a valid estimate of the uncertainty is available. For CDRs and their applications, the error correlation properties across spatio-temporal scales present important challenges that are not fully solved. Error effects that are negligible in the uncertainty of a single pixel may dominate uncertainty in the large-scale and long-term. A further principle is that uncertainty estimates should themselves be validated. The concepts of estimating and propagating uncertainty are generally acknowledged in geophysical sciences, but less widely practised in Earth observation and development of CDRs. Uncertainty in a CDR depends in part (and usually significantly) on the error covariance of the radiances and auxiliary data used in the retrieval. Typically, error covariance information is not available in the fundamental CDR (FCDR) (i.e., with the level-1 radiances), since provision of adequate level-1 uncertainty information is not yet standard practice. Those deriving CDRs thus cannot propagate the radiance uncertainty to their geophysical products. The FIDUCEO project (www.fiduceo.eu) is demonstrating metrologically sound methodologies addressing this problem for four key historical CDRs. FIDUCEO methods of uncertainty analysis (which also tend to lead to improved FCDRs and CDRs) could support coherent treatment of uncertainty across FCDRs to CDRs and higher level products for a wide range of essential climate variables.
Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2007-02-01
SummarySeveral hydrological applications require the characterisation of the soil hydraulic properties at large spatial scales. Pedotransfer functions (PTFs) are being developed as simplified methods to estimate soil hydraulic properties as an alternative to direct measurements, which are unfeasible for most practical circumstances. The objective of this study is to quantify the uncertainty in PTFs spatial predictions at the hillslope scale as related to the sampling density, due to: (i) the error in estimated soil physico-chemical properties and (ii) PTF model error. The analysis is carried out on a 2-km-long experimental hillslope in South Italy. The method adopted is based on a stochastic generation of patterns of soil variables using sequential Gaussian simulation, conditioned to the observed sample data. The following PTFs are applied: Vereecken's PTF [Vereecken, H., Diels, J., van Orshoven, J., Feyen, J., Bouma, J., 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56, 1371-1378] and HYPRES PTF [Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185]. The two PTFs estimate reliably the soil water retention characteristic even for a relatively coarse sampling resolution, with prediction uncertainties comparable to the uncertainties in direct laboratory or field measurements. The uncertainty of soil water retention prediction due to the model error is as much as or more significant than the uncertainty associated with the estimated input, even for a relatively coarse sampling resolution. Prediction uncertainties are much more important when PTF are applied to estimate the saturated hydraulic conductivity. In this case model error dominates the overall prediction uncertainties, making negligible the effect of the input error.
Mukhopadhyay, Nitai D; Sampson, Andrew J; Deniz, Daniel; Alm Carlsson, Gudrun; Williamson, Jeffrey; Malusek, Alexandr
2012-01-01
Correlated sampling Monte Carlo methods can shorten computing times in brachytherapy treatment planning. Monte Carlo efficiency is typically estimated via efficiency gain, defined as the reduction in computing time by correlated sampling relative to conventional Monte Carlo methods when equal statistical uncertainties have been achieved. The determination of the efficiency gain uncertainty arising from random effects, however, is not a straightforward task specially when the error distribution is non-normal. The purpose of this study is to evaluate the applicability of the F distribution and standardized uncertainty propagation methods (widely used in metrology to estimate uncertainty of physical measurements) for predicting confidence intervals about efficiency gain estimates derived from single Monte Carlo runs using fixed-collision correlated sampling in a simplified brachytherapy geometry. A bootstrap based algorithm was used to simulate the probability distribution of the efficiency gain estimates and the shortest 95% confidence interval was estimated from this distribution. It was found that the corresponding relative uncertainty was as large as 37% for this particular problem. The uncertainty propagation framework predicted confidence intervals reasonably well; however its main disadvantage was that uncertainties of input quantities had to be calculated in a separate run via a Monte Carlo method. The F distribution noticeably underestimated the confidence interval. These discrepancies were influenced by several photons with large statistical weights which made extremely large contributions to the scored absorbed dose difference. The mechanism of acquiring high statistical weights in the fixed-collision correlated sampling method was explained and a mitigation strategy was proposed. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2017-11-01
Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with the use of a statistical law with two parameters (here generalised extreme value Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due to the rainfall generator because of the progressive saturation of the hydrological model.
Characterizing Epistemic Uncertainty for Launch Vehicle Designs
NASA Technical Reports Server (NTRS)
Novack, Steven D.; Rogers, Jim; Al Hassan, Mohammad; Hark, Frank
2016-01-01
NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk, and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results, and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods, such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty, are rendered obsolete, since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods. This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper describes how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.
Characterizing Epistemic Uncertainty for Launch Vehicle Designs
NASA Technical Reports Server (NTRS)
Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad
2016-01-01
NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.
NASA Technical Reports Server (NTRS)
May, G. A.; Holko, M. L.; Anderson, J. E.
1983-01-01
Ground-gathered data and LANDSAT multispectral scanner (MSS) digital data from 1981 were analyzed to produce a classification of Kansas land areas into specific types called land covers. The land covers included rangeland, forest, residential, commercial/industrial, and various types of water. The analysis produced two outputs: acreage estimates with measures of precision, and map-type or photo products of the classification which can be overlaid on maps at specific scales. State-level acreage estimates were obtained and substate-level land cover classification overlays and estimates were generated for selected geographical areas. These products were found to be of potential use in managing land and water resources.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Jensen, K.; Alvarez, J.; Azarderakhsh, M.; Schroeder, R.; Podest, E.; Chapman, B. D.; Zimmermann, R.
2015-12-01
We have been assembling a global-scale Earth System Data Record (ESDR) of natural Inundated Wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR comprises (1) Fine-resolution (100 meter) maps, delineating wetland extent, vegetation type, and seasonal inundation dynamics for regional to continental-scale areas, and (2) global coarse-resolution (~25 km), multi-temporal mappings of inundated area fraction (Fw) across multiple years. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We collected UAVSAR datasets over regions of the Amazon basin during that time to support systematic analyses of error sources related to the Inundated Wetlands ESDR. UAVSAR datasets were collected over Pacaya Samiria, Peru, Madre de Dios, Peru, and the Napo River in Ecuador. We derive landcover classifications from the UAVSAR datasets emphasizing wetlands regions, identifying regions of open water and inundated vegetation. We compare the UAVSAR-based datasets with those comprising the ESDR to assess uncertainty associated with the high resolution and the coarse resolution ESDR components. Our goal is to create an enhanced ESDR of inundated wetlands with statistically robust uncertainty estimates. The ESDR documentation will include a detailed breakdown of error sources and associated uncertainties within the data record. This work was carried out in part within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility. Portions of this work were conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration.
Study of the uncertainty in estimation of the exposure of non-human biota to ionising radiation.
Avila, R; Beresford, N A; Agüero, A; Broed, R; Brown, J; Iospje, M; Robles, B; Suañez, A
2004-12-01
Uncertainty in estimations of the exposure of non-human biota to ionising radiation may arise from a number of sources including values of the model parameters, empirical data, measurement errors and biases in the sampling. The significance of the overall uncertainty of an exposure assessment will depend on how the estimated dose compares with reference doses used for risk characterisation. In this paper, we present the results of a study of the uncertainty in estimation of the exposure of non-human biota using some of the models and parameters recommended in the FASSET methodology. The study was carried out for semi-natural terrestrial, agricultural and marine ecosystems, and for four radionuclides (137Cs, 239Pu, 129I and 237Np). The parameters of the radionuclide transfer models showed the highest sensitivity and contributed the most to the uncertainty in the predictions of doses to biota. The most important ones were related to the bioavailability and mobility of radionuclides in the environment, for example soil-to-plant transfer factors, the bioaccumulation factors for marine biota and the gut uptake fraction for terrestrial mammals. In contrast, the dose conversion coefficients showed low sensitivity and contributed little to the overall uncertainty. Radiobiological effectiveness contributed to the overall uncertainty of the dose estimations for alpha emitters although to a lesser degree than a number of transfer model parameters.
NASA Astrophysics Data System (ADS)
Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.
2018-01-01
Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.
Di Vittorio, A. V.; Mao, J.; Shi, X.; ...
2018-01-03
Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Vittorio, A. V.; Mao, J.; Shi, X.
Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less
Agriculture-driven deforestation in the tropics from 1990-2015: emissions, trends and uncertainties
NASA Astrophysics Data System (ADS)
Carter, Sarah; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; De Sy, Veronique; Kooistra, Lammert; Rufino, Mariana C.
2018-01-01
Limited data exists on emissions from agriculture-driven deforestation, and available data are typically uncertain. In this paper, we provide comparable estimates of emissions from both all deforestation and agriculture-driven deforestation, with uncertainties for 91 countries across the tropics between 1990 and 2015. Uncertainties associated with input datasets (activity data and emissions factors) were used to combine the datasets, where most certain datasets contribute the most. This method utilizes all the input data, while minimizing the uncertainty of the emissions estimate. The uncertainty of input datasets was influenced by the quality of the data, the sample size (for sample-based datasets), and the extent to which the timeframe of the data matches the period of interest. Area of deforestation, and the agriculture-driver factor (extent to which agriculture drives deforestation), were the most uncertain components of the emissions estimates, thus improvement in the uncertainties related to these estimates will provide the greatest reductions in uncertainties of emissions estimates. Over the period of the study, Latin America had the highest proportion of deforestation driven by agriculture (78%), and Africa had the lowest (62%). Latin America had the highest emissions from agriculture-driven deforestation, and these peaked at 974 ± 148 Mt CO2 yr-1 in 2000-2005. Africa saw a continuous increase in emissions between 1990 and 2015 (from 154 ± 21-412 ± 75 Mt CO2 yr-1), so mitigation initiatives could be prioritized there. Uncertainties for emissions from agriculture-driven deforestation are ± 62.4% (average over 1990-2015), and uncertainties were highest in Asia and lowest in Latin America. Uncertainty information is crucial for transparency when reporting, and gives credibility to related mitigation initiatives. We demonstrate that uncertainty data can also be useful when combining multiple open datasets, so we recommend new data providers to include this information.
Capacity withholding in wholesale electricity markets: The experience in England and Wales
NASA Astrophysics Data System (ADS)
Quinn, James Arnold
This thesis examines the incentives wholesale electricity generators face to withhold generating capacity from centralized electricity spot markets. The first chapter includes a brief history of electricity industry regulation in England and Wales and in the United States, including a description of key institutional features of England and Wales' restructured electricity market. The first chapter also includes a review of the literature on both bid price manipulation and capacity bid manipulation in centralized electricity markets. The second chapter details a theoretical model of wholesale generator behavior in a single price electricity market. A duopoly model is specified under the assumption that demand is non-stochastic. This model assumes that duopoly generators offer to sell electricity at their marginal cost, but can withhold a continuous segment of their capacity from the market. The Nash equilibrium withholding strategy of this model involves each duopoly generator withholding so that it produces the Cournot equilibrium output. A monopoly model along the lines of the duopoly model is specified and simulated under the assumption that demand is stochastic. The optimal strategy depends on the degree of demand uncertainty. When there is a moderate degree of demand uncertainty, the optimal withholding strategy involves production inefficiencies. When there is a high degree of demand uncertainty, the optimal monopoly quantity is greater than the optimal output level when demand is non-stochastic. The third chapter contains an empirical examination of the behavior of generators in the wholesale electricity market in England and Wales in the early 1990's. The wholesale market in England and Wales is analyzed because the industry structure in the early 1990's created a natural experiment, which is described in this chapter, whereby one of the two dominant generators had no incentive to behave non-competitively. This chapter develops a classification methodology consistent with the equilibrium identified in the second chapter. The availability of generating units owned by the two dominant generators is analyzed based on this classification system. This analysis includes the use of sample statistics as well as estimates from a dynamic random effects probit model. The analysis suggests a minimal degree of capacity withholding.
Simon, Steven L; Hoffman, F Owen; Hofer, Eduard
2015-01-01
Retrospective dose estimation, particularly dose reconstruction that supports epidemiological investigations of health risk, relies on various strategies that include models of physical processes and exposure conditions with detail ranging from simple to complex. Quantification of dose uncertainty is an essential component of assessments for health risk studies since, as is well understood, it is impossible to retrospectively determine the true dose for each person. To address uncertainty in dose estimation, numerical simulation tools have become commonplace and there is now an increased understanding about the needs and what is required for models used to estimate cohort doses (in the absence of direct measurement) to evaluate dose response. It now appears that for dose-response algorithms to derive the best, unbiased estimate of health risk, we need to understand the type, magnitude and interrelationships of the uncertainties of model assumptions, parameters and input data used in the associated dose estimation models. Heretofore, uncertainty analysis of dose estimates did not always properly distinguish between categories of errors, e.g., uncertainty that is specific to each subject (i.e., unshared error), and uncertainty of doses from a lack of understanding and knowledge about parameter values that are shared to varying degrees by numbers of subsets of the cohort. While mathematical propagation of errors by Monte Carlo simulation methods has been used for years to estimate the uncertainty of an individual subject's dose, it was almost always conducted without consideration of dependencies between subjects. In retrospect, these types of simple analyses are not suitable for studies with complex dose models, particularly when important input data are missing or otherwise not available. The dose estimation strategy presented here is a simulation method that corrects the previous deficiencies of analytical or simple Monte Carlo error propagation methods and is termed, due to its capability to maintain separation between shared and unshared errors, the two-dimensional Monte Carlo (2DMC) procedure. Simply put, the 2DMC method simulates alternative, possibly true, sets (or vectors) of doses for an entire cohort rather than a single set that emerges when each individual's dose is estimated independently from other subjects. Moreover, estimated doses within each simulated vector maintain proper inter-relationships such that the estimated doses for members of a cohort subgroup that share common lifestyle attributes and sources of uncertainty are properly correlated. The 2DMC procedure simulates inter-individual variability of possibly true doses within each dose vector and captures the influence of uncertainty in the values of dosimetric parameters across multiple realizations of possibly true vectors of cohort doses. The primary characteristic of the 2DMC approach, as well as its strength, are defined by the proper separation between uncertainties shared by members of the entire cohort or members of defined cohort subsets, and uncertainties that are individual-specific and therefore unshared.
Henry, Suzanne Bakken; Warren, Judith J.; Lange, Linda; Button, Patricia
1998-01-01
Building on the work of previous authors, the Computer-based Patient Record Institute (CPRI) Work Group on Codes and Structures has described features of a classification scheme for implementation within a computer-based patient record. The authors of the current study reviewed the evaluation literature related to six major nursing vocabularies (the North American Nursing Diagnosis Association Taxonomy 1, the Nursing Interventions Classification, the Nursing Outcomes Classification, the Home Health Care Classification, the Omaha System, and the International Classification for Nursing Practice) to determine the extent to which the vocabularies include the CPRI features. None of the vocabularies met all criteria. The Omaha System, Home Health Care Classification, and International Classification for Nursing Practice each included five features. Criteria not fully met by any systems were clear and non-redundant representation of concepts, administrative cross-references, syntax and grammar, synonyms, uncertainty, context-free identifiers, and language independence. PMID:9670127
NASA Astrophysics Data System (ADS)
Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv
2018-04-01
High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.
Park, Eun Sug; Hopke, Philip K; Oh, Man-Suk; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford H
2014-07-01
There has been increasing interest in assessing health effects associated with multiple air pollutants emitted by specific sources. A major difficulty with achieving this goal is that the pollution source profiles are unknown and source-specific exposures cannot be measured directly; rather, they need to be estimated by decomposing ambient measurements of multiple air pollutants. This estimation process, called multivariate receptor modeling, is challenging because of the unknown number of sources and unknown identifiability conditions (model uncertainty). The uncertainty in source-specific exposures (source contributions) as well as uncertainty in the number of major pollution sources and identifiability conditions have been largely ignored in previous studies. A multipollutant approach that can deal with model uncertainty in multivariate receptor models while simultaneously accounting for parameter uncertainty in estimated source-specific exposures in assessment of source-specific health effects is presented in this paper. The methods are applied to daily ambient air measurements of the chemical composition of fine particulate matter ([Formula: see text]), weather data, and counts of cardiovascular deaths from 1995 to 1997 for Phoenix, AZ, USA. Our approach for evaluating source-specific health effects yields not only estimates of source contributions along with their uncertainties and associated health effects estimates but also estimates of model uncertainty (posterior model probabilities) that have been ignored in previous studies. The results from our methods agreed in general with those from the previously conducted workshop/studies on the source apportionment of PM health effects in terms of number of major contributing sources, estimated source profiles, and contributions. However, some of the adverse source-specific health effects identified in the previous studies were not statistically significant in our analysis, which probably resulted because we incorporated parameter uncertainty in estimated source contributions that has been ignored in the previous studies into the estimation of health effects parameters. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures
NASA Astrophysics Data System (ADS)
Emory, Michael; Larsson, Johan; Iaccarino, Gianluca
2013-11-01
Estimation of the uncertainty in numerical predictions by Reynolds-averaged Navier-Stokes closures is a vital step in building confidence in such predictions. An approach to model-form uncertainty quantification that does not assume the eddy-viscosity hypothesis to be exact is proposed. The methodology for estimation of uncertainty is demonstrated for plane channel flow, for a duct with secondary flows, and for the shock/boundary-layer interaction over a transonic bump.
Stretchy binary classification.
Toh, Kar-Ann; Lin, Zhiping; Sun, Lei; Li, Zhengguo
2018-01-01
In this article, we introduce an analytic formulation for compressive binary classification. The formulation seeks to solve the least ℓ p -norm of the parameter vector subject to a classification error constraint. An analytic and stretchable estimation is conjectured where the estimation can be viewed as an extension of the pseudoinverse with left and right constructions. Our variance analysis indicates that the estimation based on the left pseudoinverse is unbiased and the estimation based on the right pseudoinverse is biased. Sparseness can be obtained for the biased estimation under certain mild conditions. The proposed estimation is investigated numerically using both synthetic and real-world data. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chapter 8: Uncertainty assessment for quantifying greenhouse gas sources and sinks
Jay Breidt; Stephen M. Ogle; Wendy Powers; Coeli Hoover
2014-01-01
Quantifying the uncertainty of greenhouse gas (GHG) emissions and reductions from agriculture and forestry practices is an important aspect of decision�]making for farmers, ranchers and forest landowners as the uncertainty range for each GHG estimate communicates our level of confidence that the estimate reflects the actual balance of GHG exchange between...
Estimating Uncertainty in N2O Emissions from US Cropland Soils
USDA-ARS?s Scientific Manuscript database
A Monte Carlo analysis was combined with an empirically-based approach to quantify uncertainties in soil N2O emissions from US croplands estimated with the DAYCENT simulation model. Only a subset of croplands was simulated in the Monte Carlo analysis which was used to infer uncertainties across the ...
NASA Astrophysics Data System (ADS)
Wang, Yilong; Broquet, Grégoire; Ciais, Philippe; Chevallier, Frédéric; Vogel, Felix; Wu, Lin; Yin, Yi; Wang, Rong; Tao, Shu
2018-03-01
Combining measurements of atmospheric CO2 and its radiocarbon (14CO2) fraction and transport modeling in atmospheric inversions offers a way to derive improved estimates of CO2 emitted from fossil fuel (FFCO2). In this study, we solve for the monthly FFCO2 emission budgets at regional scale (i.e., the size of a medium-sized country in Europe) and investigate the performance of different observation networks and sampling strategies across Europe. The inversion system is built on the LMDZv4 global transport model at 3.75° × 2.5° resolution. We conduct Observing System Simulation Experiments (OSSEs) and use two types of diagnostics to assess the potential of the observation and inverse modeling frameworks. The first one relies on the theoretical computation of the uncertainty in the estimate of emissions from the inversion, known as posterior uncertainty
, and on the uncertainty reduction compared to the uncertainty in the inventories of these emissions, which are used as a prior knowledge by the inversion (called prior uncertainty
). The second one is based on comparisons of prior and posterior estimates of the emission to synthetic true
emissions when these true emissions are used beforehand to generate the synthetic fossil fuel CO2 mixing ratio measurements that are assimilated in the inversion. With 17 stations currently measuring 14CO2 across Europe using 2-week integrated sampling, the uncertainty reduction for monthly FFCO2 emissions in a country where the network is rather dense like Germany, is larger than 30 %. With the 43 14CO2 measurement stations planned in Europe, the uncertainty reduction for monthly FFCO2 emissions is increased for the UK, France, Italy, eastern Europe and the Balkans, depending on the configuration of prior uncertainty. Further increasing the number of stations or the sampling frequency improves the uncertainty reduction (up to 40 to 70 %) in high emitting regions, but the performance of the inversion remains limited over low-emitting regions, even assuming a dense observation network covering the whole of Europe. This study also shows that both the theoretical uncertainty reduction (and resulting posterior uncertainty) from the inversion and the posterior estimate of emissions itself, for a given prior and true
estimate of the emissions, are highly sensitive to the choice between two configurations of the prior uncertainty derived from the general estimate by inventory compilers or computations on existing inventories. In particular, when the configuration of the prior uncertainty statistics in the inversion system does not match the difference between these prior and true estimates, the posterior estimate of emissions deviates significantly from the truth. This highlights the difficulty of filtering the targeted signal in the model-data misfit for this specific inversion framework, the need to strongly rely on the prior uncertainty characterization for this and, consequently, the need for improved estimates of the uncertainties in current emission inventories for real applications with actual data. We apply the posterior uncertainty in annual emissions to the problem of detecting a trend of FFCO2, showing that increasing the monitoring period (e.g., more than 20 years) is more efficient than reducing uncertainty in annual emissions by adding stations. The coarse spatial resolution of the atmospheric transport model used in this OSSE (typical of models used for global inversions of natural CO2 fluxes) leads to large representation errors (related to the inability of the transport model to capture the spatial variability of the actual fluxes and mixing ratios at subgrid scales), which is a key limitation of our OSSE setup to improve the accuracy of the monitoring of FFCO2 emissions in European regions. Using a high-resolution transport model should improve the potential to retrieve FFCO2 emissions, and this needs to be investigated.
Large-area settlement pattern recognition from Landsat-8 data
NASA Astrophysics Data System (ADS)
Wieland, Marc; Pittore, Massimiliano
2016-09-01
The study presents an image processing and analysis pipeline that combines object-based image analysis with a Support Vector Machine to derive a multi-layered settlement product from Landsat-8 data over large areas. 43 image scenes are processed over large parts of Central Asia (Southern Kazakhstan, Kyrgyzstan, Tajikistan and Eastern Uzbekistan). The main tasks tackled by this work include built-up area identification, settlement type classification and urban structure types pattern recognition. Besides commonly used accuracy assessments of the resulting map products, thorough performance evaluations are carried out under varying conditions to tune algorithm parameters and assess their applicability for the given tasks. As part of this, several research questions are being addressed. In particular the influence of the improved spatial and spectral resolution of Landsat-8 on the SVM performance to identify built-up areas and urban structure types are evaluated. Also the influence of an extended feature space including digital elevation model features is tested for mountainous regions. Moreover, the spatial distribution of classification uncertainties is analyzed and compared to the heterogeneity of the building stock within the computational unit of the segments. The study concludes that the information content of Landsat-8 images is sufficient for the tested classification tasks and even detailed urban structures could be extracted with satisfying accuracy. Freely available ancillary settlement point location data could further improve the built-up area classification. Digital elevation features and pan-sharpening could, however, not significantly improve the classification results. The study highlights the importance of dynamically tuned classifier parameters, and underlines the use of Shannon entropy computed from the soft answers of the SVM as a valid measure of the spatial distribution of classification uncertainties.
Funamizu, Akihiro; Ito, Makoto; Doya, Kenji; Kanzaki, Ryohei; Takahashi, Hirokazu
2012-04-01
The estimation of reward outcomes for action candidates is essential for decision making. In this study, we examined whether and how the uncertainty in reward outcome estimation affects the action choice and learning rate. We designed a choice task in which rats selected either the left-poking or right-poking hole and received a reward of a food pellet stochastically. The reward probabilities of the left and right holes were chosen from six settings (high, 100% vs. 66%; mid, 66% vs. 33%; low, 33% vs. 0% for the left vs. right holes, and the opposites) in every 20-549 trials. We used Bayesian Q-learning models to estimate the time course of the probability distribution of action values and tested if they better explain the behaviors of rats than standard Q-learning models that estimate only the mean of action values. Model comparison by cross-validation revealed that a Bayesian Q-learning model with an asymmetric update for reward and non-reward outcomes fit the choice time course of the rats best. In the action-choice equation of the Bayesian Q-learning model, the estimated coefficient for the variance of action value was positive, meaning that rats were uncertainty seeking. Further analysis of the Bayesian Q-learning model suggested that the uncertainty facilitated the effective learning rate. These results suggest that the rats consider uncertainty in action-value estimation and that they have an uncertainty-seeking action policy and uncertainty-dependent modulation of the effective learning rate. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Strain Gauge Balance Uncertainty Analysis at NASA Langley: A Technical Review
NASA Technical Reports Server (NTRS)
Tripp, John S.
1999-01-01
This paper describes a method to determine the uncertainties of measured forces and moments from multi-component force balances used in wind tunnel tests. A multivariate regression technique is first employed to estimate the uncertainties of the six balance sensitivities and 156 interaction coefficients derived from established balance calibration procedures. These uncertainties are then employed to calculate the uncertainties of force-moment values computed from observed balance output readings obtained during tests. Confidence and prediction intervals are obtained for each computed force and moment as functions of the actual measurands. Techniques are discussed for separate estimation of balance bias and precision uncertainties.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)
DOE Office of Scientific and Technical Information (OSTI.GOV)
BABA,T.; ISHIGURO,K.; ISHIHARA,Y.
1999-08-30
Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs weremore » defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.« less
Estimation and classification by sigmoids based on mutual information
NASA Technical Reports Server (NTRS)
Baram, Yoram
1994-01-01
An estimate of the probability density function of a random vector is obtained by maximizing the mutual information between the input and the output of a feedforward network of sigmoidal units with respect to the input weights. Classification problems can be solved by selecting the class associated with the maximal estimated density. Newton's s method, applied to an estimated density, yields a recursive maximum likelihood estimator, consisting of a single internal layer of sigmoids, for a random variable or a random sequence. Applications to the diamond classification and to the prediction of a sun-spot process are demonstrated.
NASA Astrophysics Data System (ADS)
Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.
2014-11-01
In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.
Uncertainty in Population Estimates for Endangered Animals and Improving the Recovery Process.
Haines, Aaron M; Zak, Matthew; Hammond, Katie; Scott, J Michael; Goble, Dale D; Rachlow, Janet L
2013-08-13
United States recovery plans contain biological information for a species listed under the Endangered Species Act and specify recovery criteria to provide basis for species recovery. The objective of our study was to evaluate whether recovery plans provide uncertainty (e.g., variance) with estimates of population size. We reviewed all finalized recovery plans for listed terrestrial vertebrate species to record the following data: (1) if a current population size was given, (2) if a measure of uncertainty or variance was associated with current estimates of population size and (3) if population size was stipulated for recovery. We found that 59% of completed recovery plans specified a current population size, 14.5% specified a variance for the current population size estimate and 43% specified population size as a recovery criterion. More recent recovery plans reported more estimates of current population size, uncertainty and population size as a recovery criterion. Also, bird and mammal recovery plans reported more estimates of population size and uncertainty compared to reptiles and amphibians. We suggest the use of calculating minimum detectable differences to improve confidence when delisting endangered animals and we identified incentives for individuals to get involved in recovery planning to improve access to quantitative data.
Model and parametric uncertainty in source-based kinematic models of earthquake ground motion
Hartzell, Stephen; Frankel, Arthur; Liu, Pengcheng; Zeng, Yuehua; Rahman, Shariftur
2011-01-01
Four independent ground-motion simulation codes are used to model the strong ground motion for three earthquakes: 1994 Mw 6.7 Northridge, 1989 Mw 6.9 Loma Prieta, and 1999 Mw 7.5 Izmit. These 12 sets of synthetics are used to make estimates of the variability in ground-motion predictions. In addition, ground-motion predictions over a grid of sites are used to estimate parametric uncertainty for changes in rupture velocity. We find that the combined model uncertainty and random variability of the simulations is in the same range as the variability of regional empirical ground-motion data sets. The majority of the standard deviations lie between 0.5 and 0.7 natural-log units for response spectra and 0.5 and 0.8 for Fourier spectra. The estimate of model epistemic uncertainty, based on the different model predictions, lies between 0.2 and 0.4, which is about one-half of the estimates for the standard deviation of the combined model uncertainty and random variability. Parametric uncertainty, based on variation of just the average rupture velocity, is shown to be consistent in amplitude with previous estimates, showing percentage changes in ground motion from 50% to 300% when rupture velocity changes from 2.5 to 2.9 km/s. In addition, there is some evidence that mean biases can be reduced by averaging ground-motion estimates from different methods.
NASA Astrophysics Data System (ADS)
Pachon, Jorge E.; Balachandran, Sivaraman; Hu, Yongtao; Weber, Rodney J.; Mulholland, James A.; Russell, Armistead G.
2010-10-01
In the Southeastern US, organic carbon (OC) comprises about 30% of the PM 2.5 mass. A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM 2.5 chemical composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the regression methods, which rely on the use of tracer species of primary and secondary OC formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary and secondary fractions based on source profiles and statistically-derived common factors, respectively. CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method having the lowest uncertainty among the four methods. We compared the estimates with the water soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is negligible, and found a similar trend with SOC estimates from the regression method. The regression method also showed the strongest correlation with daily SOC estimates from CMB using molecular markers. The regression method shows advantages over the other methods in the calculation of a long-term series of SOC estimates.
Zhang, X.; McGuire, A.D.; Ruess, Roger W.
2006-01-01
A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes R m at 0??C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar Rm at regional scales depend on uncertainties in representing needle-level respiration and on uncertainties in representing the spatial variability of canopy foliar N across a region. The development of spatial data sets of canopy foliar N represents a major challenge in estimating canopy foliar maintenance respiration at regional scales. ?? Springer 2006.
A subagging regression method for estimating the qualitative and quantitative state of groundwater
NASA Astrophysics Data System (ADS)
Jeong, J.; Park, E.; Choi, J.; Han, W. S.; Yun, S. T.
2016-12-01
A subagging regression (SBR) method for the analysis of groundwater data pertaining to the estimation of trend and the associated uncertainty is proposed. The SBR method is validated against synthetic data competitively with other conventional robust and non-robust methods. From the results, it is verified that the estimation accuracies of the SBR method are consistent and superior to those of the other methods and the uncertainties are reasonably estimated where the others have no uncertainty analysis option. To validate further, real quantitative and qualitative data are employed and analyzed comparatively with Gaussian process regression (GPR). For all cases, the trend and the associated uncertainties are reasonably estimated by SBR, whereas the GPR has limitations in representing the variability of non-Gaussian skewed data. From the implementations, it is determined that the SBR method has potential to be further developed as an effective tool of anomaly detection or outlier identification in groundwater state data.
NASA Astrophysics Data System (ADS)
Gorbunov, Michael E.; Kirchengast, Gottfried
2018-01-01
A new reference occultation processing system (rOPS) will include a Global Navigation Satellite System (GNSS) radio occultation (RO) retrieval chain with integrated uncertainty propagation. In this paper, we focus on wave-optics bending angle (BA) retrieval in the lower troposphere and introduce (1) an empirically estimated boundary layer bias (BLB) model then employed to reduce the systematic uncertainty of excess phases and bending angles in about the lowest 2 km of the troposphere and (2) the estimation of (residual) systematic uncertainties and their propagation together with random uncertainties from excess phase to bending angle profiles. Our BLB model describes the estimated bias of the excess phase transferred from the estimated bias of the bending angle, for which the model is built, informed by analyzing refractivity fluctuation statistics shown to induce such biases. The model is derived from regression analysis using a large ensemble of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) RO observations and concurrent European Centre for Medium-Range Weather Forecasts (ECMWF) analysis fields. It is formulated in terms of predictors and adaptive functions (powers and cross products of predictors), where we use six main predictors derived from observations: impact altitude, latitude, bending angle and its standard deviation, canonical transform (CT) amplitude, and its fluctuation index. Based on an ensemble of test days, independent of the days of data used for the regression analysis to establish the BLB model, we find the model very effective for bias reduction and capable of reducing bending angle and corresponding refractivity biases by about a factor of 5. The estimated residual systematic uncertainty, after the BLB profile subtraction, is lower bounded by the uncertainty from the (indirect) use of ECMWF analysis fields but is significantly lower than the systematic uncertainty without BLB correction. The systematic and random uncertainties are propagated from excess phase to bending angle profiles, using a perturbation approach and the wave-optical method recently introduced by Gorbunov and Kirchengast (2015), starting with estimated excess phase uncertainties. The results are encouraging and this uncertainty propagation approach combined with BLB correction enables a robust reduction and quantification of the uncertainties of excess phases and bending angles in the lower troposphere.
Modality-Driven Classification and Visualization of Ensemble Variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bensema, Kevin; Gosink, Luke; Obermaier, Harald
Paper for the IEEE Visualization Conference Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space.
Uncertainty Estimation using Bootstrapped Kriging Predictions for Precipitation Isoscapes
NASA Astrophysics Data System (ADS)
Ma, C.; Bowen, G. J.; Vander Zanden, H.; Wunder, M.
2017-12-01
Isoscapes are spatial models representing the distribution of stable isotope values across landscapes. Isoscapes of hydrogen and oxygen in precipitation are now widely used in a diversity of fields, including geology, biology, hydrology, and atmospheric science. To generate isoscapes, geostatistical methods are typically applied to extend predictions from limited data measurements. Kriging is a popular method in isoscape modeling, but quantifying the uncertainty associated with the resulting isoscapes is challenging. Applications that use precipitation isoscapes to determine sample origin require estimation of uncertainty. Here we present a simple bootstrap method (SBM) to estimate the mean and uncertainty of the krigged isoscape and compare these results with a generalized bootstrap method (GBM) applied in previous studies. We used hydrogen isotopic data from IsoMAP to explore these two approaches for estimating uncertainty. We conducted 10 simulations for each bootstrap method and found that SBM results in more kriging predictions (9/10) compared to GBM (4/10). Prediction from SBM was closer to the original prediction generated without bootstrapping and had less variance than GBM. SBM was tested on different datasets from IsoMAP with different numbers of observation sites. We determined that predictions from the datasets with fewer than 40 observation sites using SBM were more variable than the original prediction. The approaches we used for estimating uncertainty will be compiled in an R package that is under development. We expect that these robust estimates of precipitation isoscape uncertainty can be applied in diagnosing the origin of samples ranging from various type of waters to migratory animals, food products, and humans.
Application of data fusion modeling (DFM) to site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, D.W.; Gibbs, B.P.; Jones, W.F.
1996-01-01
Subsurface characterization is faced with substantial uncertainties because the earth is very heterogeneous, and typical data sets are fragmented and disparate. DFM removes many of the data limitations of current methods to quantify and reduce uncertainty for a variety of data types and models. DFM is a methodology to compute hydrogeological state estimates and their uncertainties from three sources of information: measured data, physical laws, and statistical models for spatial heterogeneities. The benefits of DFM are savings in time and cost through the following: the ability to update models in real time to help guide site assessment, improved quantification ofmore » uncertainty for risk assessment, and improved remedial design by quantifying the uncertainty in safety margins. A Bayesian inverse modeling approach is implemented with a Gauss Newton method where spatial heterogeneities are viewed as Markov random fields. Information from data, physical laws, and Markov models is combined in a Square Root Information Smoother (SRIS). Estimates and uncertainties can be computed for heterogeneous hydraulic conductivity fields in multiple geological layers from the usually sparse hydraulic conductivity data and the often more plentiful head data. An application of DFM to the Old Burial Ground at the DOE Savannah River Site will be presented. DFM estimates and quantifies uncertainty in hydrogeological parameters using variably saturated flow numerical modeling to constrain the estimation. Then uncertainties are propagated through the transport modeling to quantify the uncertainty in tritium breakthrough curves at compliance points.« less
Application of data fusion modeling (DFM) to site characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, D.W.; Gibbs, B.P.; Jones, W.F.
1996-12-31
Subsurface characterization is faced with substantial uncertainties because the earth is very heterogeneous, and typical data sets are fragmented and disparate. DFM removes many of the data limitations of current methods to quantify and reduce uncertainty for a variety of data types and models. DFM is a methodology to compute hydrogeological state estimates and their uncertainties from three sources of information: measured data, physical laws, and statistical models for spatial heterogeneities. The benefits of DFM are savings in time and cost through the following: the ability to update models in real time to help guide site assessment, improved quantification ofmore » uncertainty for risk assessment, and improved remedial design by quantifying the uncertainty in safety margins. A Bayesian inverse modeling approach is implemented with a Gauss Newton method where spatial heterogeneities are viewed as Markov random fields. Information from data, physical laws, and Markov models is combined in a Square Root Information Smoother (SRIS). Estimates and uncertainties can be computed for heterogeneous hydraulic conductivity fields in multiple geological layers from the usually sparse hydraulic conductivity data and the often more plentiful head data. An application of DFM to the Old Burial Ground at the DOE Savannah River Site will be presented. DFM estimates and quantifies uncertainty in hydrogeological parameters using variably saturated flow numerical modeling to constrain the estimation. Then uncertainties are propagated through the transport modeling to quantify the uncertainty in tritium breakthrough curves at compliance points.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toba, Y.; Matsuhara, H.; Oyabu, S.
2014-06-10
In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Followingmore » that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Donald D.; Gowardhan, Akshay; Cameron-Smith, Philip
2015-08-08
Here, a computational Bayesian inverse technique is used to quantify the effects of meteorological inflow uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a probability distribution of meteorological inflow by comparing wind observations to Monte Carlo simulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmospheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the impact on tracer transport and the ability to estimate the release location of an unknown source. Ourmore » uncertainty methods are compared against measurements from an intensive observation period during the Joint Urban 2003 tracer release experiment conducted in Oklahoma City.« less
Evaluating Variability and Uncertainty of Geological Strength Index at a Specific Site
NASA Astrophysics Data System (ADS)
Wang, Yu; Aladejare, Adeyemi Emman
2016-09-01
Geological Strength Index (GSI) is an important parameter for estimating rock mass properties. GSI can be estimated from quantitative GSI chart, as an alternative to the direct observational method which requires vast geological experience of rock. GSI chart was developed from past observations and engineering experience, with either empiricism or some theoretical simplifications. The GSI chart thereby contains model uncertainty which arises from its development. The presence of such model uncertainty affects the GSI estimated from GSI chart at a specific site; it is, therefore, imperative to quantify and incorporate the model uncertainty during GSI estimation from the GSI chart. A major challenge for quantifying the GSI chart model uncertainty is a lack of the original datasets that have been used to develop the GSI chart, since the GSI chart was developed from past experience without referring to specific datasets. This paper intends to tackle this problem by developing a Bayesian approach for quantifying the model uncertainty in GSI chart when using it to estimate GSI at a specific site. The model uncertainty in the GSI chart and the inherent spatial variability in GSI are modeled explicitly in the Bayesian approach. The Bayesian approach generates equivalent samples of GSI from the integrated knowledge of GSI chart, prior knowledge and observation data available from site investigation. Equations are derived for the Bayesian approach, and the proposed approach is illustrated using data from a drill and blast tunnel project. The proposed approach effectively tackles the problem of how to quantify the model uncertainty that arises from using GSI chart for characterization of site-specific GSI in a transparent manner.
NASA Astrophysics Data System (ADS)
Lach, Zbigniew T.
2017-08-01
A possibility is shown of a non-disruptive estimation of chromatic dispersion in a fiber of an intensity modulation communication line under work conditions. Uncertainty of the chromatic dispersion estimates is analyzed and quantified with the use of confidence intervals.
Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence.
Hadwin, Paul J; Sipkens, Timothy A; Thomson, Kevin A; Liu, Fengshan; Daun, Kyle J
2018-03-01
Time-resolved laser-induced incandescence (TiRe-LII) data can be used to infer spatially and temporally resolved volume fractions and primary particle size distributions of soot-laden aerosols, but these estimates are corrupted by measurement noise as well as uncertainties in the spectroscopic and heat transfer submodels used to interpret the data. Estimates of the temperature, concentration, and size distribution of soot primary particles within a sample aerosol are typically made by nonlinear regression of modeled spectral incandescence decay, or effective temperature decay, to experimental data. In this work, we employ nonstationary Bayesian estimation techniques to infer aerosol properties from simulated and experimental LII signals, specifically the extended Kalman filter and Schmidt-Kalman filter. These techniques exploit the time-varying nature of both the measurements and the models, and they reveal how uncertainty in the estimates computed from TiRe-LII data evolves over time. Both techniques perform better when compared with standard deterministic estimates; however, we demonstrate that the Schmidt-Kalman filter produces more realistic uncertainty estimates.
Ronald E. McRoberts; Veronica C. Lessard
2001-01-01
Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...
Sources of uncertainty in estimating stream solute export from headwater catchments at three sites
Ruth D. Yanai; Naoko Tokuchi; John L. Campbell; Mark B. Green; Eiji Matsuzaki; Stephanie N. Laseter; Cindi L. Brown; Amey S. Bailey; Pilar Lyons; Carrie R. Levine; Donald C. Buso; Gene E. Likens; Jennifer D. Knoepp; Keitaro Fukushima
2015-01-01
Uncertainty in the estimation of hydrologic export of solutes has never been fully evaluated at the scale of a small-watershed ecosystem. We used data from the Gomadansan Experimental Forest, Japan, Hubbard Brook Experimental Forest, USA, and Coweeta Hydrologic Laboratory, USA, to evaluate many sources of uncertainty, including the precision and accuracy of...
An assessment of uncertainty in forest carbon budget projections
Linda S. Heath; James E. Smith
2000-01-01
Estimates of uncertainty are presented for projections of forest carbon inventory and average annual net carbon flux on private timberland in the US using the model FORCARB. Uncertainty in carbon inventory was approximately ±9% (2000 million metric tons) of the estimated median in the year 2000, rising to 11% (2800 million metric tons) in projection year 2040...
Leaf area index uncertainty estimates for model-data fusion applications
Andrew D. Richardson; D. Bryan Dail; D.Y. Hollinger
2011-01-01
Estimates of data uncertainties are required to integrate different observational data streams as model constraints using model-data fusion. We describe an approach with which random and systematic uncertainties in optical measurements of leaf area index [LAI] can be quantified. We use data from a measurement campaign at the spruce-dominated Howland Forest AmeriFlux...
Classification of weld defect based on information fusion technology for radiographic testing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hongquan; Liang, Zeming, E-mail: heavenlzm@126.com; Gao, Jianmin
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster–Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defectmore » feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.« less
Jiang, Hongquan; Liang, Zeming; Gao, Jianmin; Dang, Changying
2016-03-01
Improving the efficiency and accuracy of weld defect classification is an important technical problem in developing the radiographic testing system. This paper proposes a novel weld defect classification method based on information fusion technology, Dempster-Shafer evidence theory. First, to characterize weld defects and improve the accuracy of their classification, 11 weld defect features were defined based on the sub-pixel level edges of radiographic images, four of which are presented for the first time in this paper. Second, we applied information fusion technology to combine different features for weld defect classification, including a mass function defined based on the weld defect feature information and the quartile-method-based calculation of standard weld defect class which is to solve a sample problem involving a limited number of training samples. A steam turbine weld defect classification case study is also presented herein to illustrate our technique. The results show that the proposed method can increase the correct classification rate with limited training samples and address the uncertainties associated with weld defect classification.
Mueller, David S.
2017-01-01
This paper presents a method using Monte Carlo simulations for assessing uncertainty of moving-boat acoustic Doppler current profiler (ADCP) discharge measurements using a software tool known as QUant, which was developed for this purpose. Analysis was performed on 10 data sets from four Water Survey of Canada gauging stations in order to evaluate the relative contribution of a range of error sources to the total estimated uncertainty. The factors that differed among data sets included the fraction of unmeasured discharge relative to the total discharge, flow nonuniformity, and operator decisions about instrument programming and measurement cross section. As anticipated, it was found that the estimated uncertainty is dominated by uncertainty of the discharge in the unmeasured areas, highlighting the importance of appropriate selection of the site, the instrument, and the user inputs required to estimate the unmeasured discharge. The main contributor to uncertainty was invalid data, but spatial inhomogeneity in water velocity and bottom-track velocity also contributed, as did variation in the edge velocity, uncertainty in the edge distances, edge coefficients, and the top and bottom extrapolation methods. To a lesser extent, spatial inhomogeneity in the bottom depth also contributed to the total uncertainty, as did uncertainty in the ADCP draft at shallow sites. The estimated uncertainties from QUant can be used to assess the adequacy of standard operating procedures. They also provide quantitative feedback to the ADCP operators about the quality of their measurements, indicating which parameters are contributing most to uncertainty, and perhaps even highlighting ways in which uncertainty can be reduced. Additionally, QUant can be used to account for self-dependent error sources such as heading errors, which are a function of heading. The results demonstrate the importance of a Monte Carlo method tool such as QUant for quantifying random and bias errors when evaluating the uncertainty of moving-boat ADCP measurements.
NASA Astrophysics Data System (ADS)
Giambelluca, Thomas W.; Loague, Keith; Green, Richard E.; Nullet, Michael A.
1996-06-01
In this paper, uncertainty in recharge estimates is investigated relative to its impact on assessments of groundwater contamination vulnerability using a relatively simple pesticide mobility index, attenuation factor (AF). We employ a combination of first-order uncertainty analysis (FOUA) and sensitivity analysis to investigate recharge uncertainties for agricultural land on the island of O'ahu, Hawai'i, that is currently, or has been in the past, under sugarcane or pineapple cultivation. Uncertainty in recharge due to recharge component uncertainties is 49% of the mean for sugarcane and 58% of the mean for pineapple. The components contributing the largest amounts of uncertainty to the recharge estimate are irrigation in the case of sugarcane and precipitation in the case of pineapple. For a suite of pesticides formerly or currently used in the region, the contribution to AF uncertainty of recharge uncertainty was compared with the contributions of other AF components: retardation factor (RF), a measure of the effects of sorption; soil-water content at field capacity (ΘFC); and pesticide half-life (t1/2). Depending upon the pesticide, the contribution of recharge to uncertainty ranks second or third among the four AF components tested. The natural temporal variability of recharge is another source of uncertainty in AF, because the index is calculated using the time-averaged recharge rate. Relative to the mean, recharge variability is 10%, 44%, and 176% for the annual, monthly, and daily time scales, respectively, under sugarcane, and 31%, 112%, and 344%, respectively, under pineapple. In general, uncertainty in AF associated with temporal variability in recharge at all time scales exceeds AF. For chemicals such as atrazine or diuron under sugarcane, and atrazine or bromacil under pineapple, the range of AF uncertainty due to temporal variability in recharge encompasses significantly higher levels of leaching potential at some locations than that indicated by the AF estimate.
Building confidence and credibility into CAD with belief decision trees
NASA Astrophysics Data System (ADS)
Affenit, Rachael N.; Barns, Erik R.; Furst, Jacob D.; Rasin, Alexander; Raicu, Daniela S.
2017-03-01
Creating classifiers for computer-aided diagnosis in the absence of ground truth is a challenging problem. Using experts' opinions as reference truth is difficult because the variability in the experts' interpretations introduces uncertainty in the labeled diagnostic data. This uncertainty translates into noise, which can significantly affect the performance of any classifier on test data. To address this problem, we propose a new label set weighting approach to combine the experts' interpretations and their variability, as well as a selective iterative classification (SIC) approach that is based on conformal prediction. Using the NIH/NCI Lung Image Database Consortium (LIDC) dataset in which four radiologists interpreted the lung nodule characteristics, including the degree of malignancy, we illustrate the benefits of the proposed approach. Our results show that the proposed 2-label-weighted approach significantly outperforms the accuracy of the original 5- label and 2-label-unweighted classification approaches by 39.9% and 7.6%, respectively. We also found that the weighted 2-label models produce higher skewness values by 1.05 and 0.61 for non-SIC and SIC respectively on root mean square error (RMSE) distributions. When each approach was combined with selective iterative classification, this further improved the accuracy of classification for the 2-weighted-label by 7.5% over the original, and improved the skewness of the 5-label and 2-unweighted-label by 0.22 and 0.44 respectively.
Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane
2017-07-12
The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less
Uncertainty in cloud optical depth estimates made from satellite radiance measurements
NASA Technical Reports Server (NTRS)
Pincus, Robert; Szczodrak, Malgorzata; Gu, Jiujing; Austin, Philip
1995-01-01
The uncertainty in optical depths retrieved from satellite measurements of visible wavelength radiance at the top of the atmosphere is quantified. Techniques are briefly reviewed for the estimation of optical depth from measurements of radiance, and it is noted that these estimates are always more uncertain at greater optical depths and larger solar zenith angles. The lack of radiometric calibration for visible wavelength imagers on operational satellites dominates the uncertainty retrievals of optical depth. This is true for both single-pixel retrievals and for statistics calculated from a population of individual retrievals. For individual estimates or small samples, sensor discretization can also be significant, but the sensitivity of the retrieval to the specification of the model atmosphere is less important. The relative uncertainty in calibration affects the accuracy with which optical depth distributions measured by different sensors may be quantitatively compared, while the absolute calibration uncertainty, acting through the nonlinear mapping of radiance to optical depth, limits the degree to which distributions measured by the same sensor may be distinguished.
NASA Astrophysics Data System (ADS)
Odman, M. T.; Hu, Y.; Russell, A. G.
2016-12-01
Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if spatial and temporal patterns in the differences reveal the sources of the uncertainty in the prescribed burn emission estimates.
Loague, Keith; Green, Richard E; Giambelluca, Thomas W; Liang, Tony C; Yost, Russell S
2016-11-01
A simple mobility index, when combined with a geographic information system, can be used to generate rating maps which indicate qualitatively the potential for various organic chemicals to leach to groundwater. In this paper we investigate the magnitude of uncertainty associated with pesticide mobility estimates as a result of data uncertainties. Our example is for the Pearl Harbor Basin, Oahu, Hawaii. The two pesticides included in our analysis are atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylarea]. The mobility index used here is known as the Attenuation Factor (AF); it requires soil, hydrogeologic, climatic, and chemical information as input data. We employ first-order uncertainty analysis to characterize the uncertainty in estimates of AF resulting from uncertainties in the various input data. Soils in the Pearl Harbor Basin are delineated at the order taxonomic category for this study. Our results show that there can be a significant amount of uncertainty in estimates of pesticide mobility for the Pearl Harbor Basin. This information needs to be considered if future decisions concerning chemical regulation are to be based on estimates of pesticide mobility determined from simple indices. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wübbeler, Gerd; Bodnar, Olha; Elster, Clemens
2018-02-01
Weighted least-squares estimation is commonly applied in metrology to fit models to measurements that are accompanied with quoted uncertainties. The weights are chosen in dependence on the quoted uncertainties. However, when data and model are inconsistent in view of the quoted uncertainties, this procedure does not yield adequate results. When it can be assumed that all uncertainties ought to be rescaled by a common factor, weighted least-squares estimation may still be used, provided that a simple correction of the uncertainty obtained for the estimated model is applied. We show that these uncertainties and credible intervals are robust, as they do not rely on the assumption of a Gaussian distribution of the data. Hence, common software for weighted least-squares estimation may still safely be employed in such a case, followed by a simple modification of the uncertainties obtained by that software. We also provide means of checking the assumptions of such an approach. The Bayesian regression procedure is applied to analyze the CODATA values for the Planck constant published over the past decades in terms of three different models: a constant model, a straight line model and a spline model. Our results indicate that the CODATA values may not have yet stabilized.
Estimating Uncertainties in the Multi-Instrument SBUV Profile Ozone Merged Data Set
NASA Technical Reports Server (NTRS)
Frith, Stacey; Stolarski, Richard
2015-01-01
The MOD data set is uniquely qualified for use in long-term ozone analysis because of its long record, high spatial coverage, and consistent instrument design and algorithm. The estimated MOD uncertainty term significantly increases the uncertainty over the statistical error alone. Trends in the post-2000 period are generally positive in the upper stratosphere, but only significant at 1-1.6 hPa. Remaining uncertainties not yet included in the Monte Carlo model are Smoothing Error ( 1 from 10 to 1 hPa) Relative calibration uncertainty between N11 and N17Seasonal cycle differences between SBUV records.
NASA Astrophysics Data System (ADS)
Solari, Sebastián.; Egüen, Marta; Polo, María. José; Losada, Miguel A.
2017-04-01
Threshold estimation in the Peaks Over Threshold (POT) method and the impact of the estimation method on the calculation of high return period quantiles and their uncertainty (or confidence intervals) are issues that are still unresolved. In the past, methods based on goodness of fit tests and EDF-statistics have yielded satisfactory results, but their use has not yet been systematized. This paper proposes a methodology for automatic threshold estimation, based on the Anderson-Darling EDF-statistic and goodness of fit test. When combined with bootstrapping techniques, this methodology can be used to quantify both the uncertainty of threshold estimation and its impact on the uncertainty of high return period quantiles. This methodology was applied to several simulated series and to four precipitation/river flow data series. The results obtained confirmed its robustness. For the measured series, the estimated thresholds corresponded to those obtained by nonautomatic methods. Moreover, even though the uncertainty of the threshold estimation was high, this did not have a significant effect on the width of the confidence intervals of high return period quantiles.
The elemental abundances (with uncertainties) of the most Earth-like planet
NASA Astrophysics Data System (ADS)
Wang, Haiyang S.; Lineweaver, Charles H.; Ireland, Trevor R.
2018-01-01
To first order, the Earth as well as other rocky planets in the Solar System and rocky exoplanets orbiting other stars, are refractory pieces of the stellar nebula out of which they formed. To estimate the chemical composition of rocky exoplanets based on their stellar hosts' elemental abundances, we need a better understanding of the devolatilization that produced the Earth. To quantify the chemical relationships between the Earth, the Sun and other bodies in the Solar System, the elemental abundances of the bulk Earth are required. The key to comparing Earth's composition with those of other objects is to have a determination of the bulk composition with an appropriate estimate of uncertainties. Here we present concordance estimates (with uncertainties) of the elemental abundances of the bulk Earth, which can be used in such studies. First we compile, combine and renormalize a large set of heterogeneous literature values of the primitive mantle (PM) and of the core. We then integrate standard radial density profiles of the Earth and renormalize them to the current best estimate for the mass of the Earth. Using estimates of the uncertainties in i) the density profiles, ii) the core-mantle boundary and iii) the inner core boundary, we employ standard error propagation to obtain a core mass fraction of 32.5 ± 0.3 wt%. Our bulk Earth abundances are the weighted sum of our concordance core abundances and concordance PM abundances. Unlike previous efforts, the uncertainty on the core mass fraction is propagated to the uncertainties on the bulk Earth elemental abundances. Our concordance estimates for the abundances of Mg, Sn, Br, B, Cd and Be are significantly lower than previous estimates of the bulk Earth. Our concordance estimates for the abundances of Na, K, Cl, Zn, Sr, F, Ga, Rb, Nb, Gd, Ta, He, Ar, and Kr are significantly higher. The uncertainties on our elemental abundances usefully calibrate the unresolved discrepancies between standard Earth models under various geochemical and geophysical assumptions.
Characterisation of the Permafrost Carbon Pool
Kuhry, P.; Grosse, G.; Harden, J.W.; Hugelius, G.; Koven, C.D.; Ping, C.-L.; Schirrmeister, L.; Tarnocai, C.
2013-01-01
The current estimate of the soil organic carbon (SOC) pool in the northern permafrost region of 1672 Petagrams (Pg) C is much larger than previously reported and needs to be incorporated in global soil carbon (C) inventories. The Northern Circumpolar Soil Carbon Database (NCSCD), extended to include the range 0–300 cm, is now available online for wider use by the scientific community. An important future aim is to provide quantitative uncertainty ranges for C pool estimates. Recent studies have greatly improved understanding of the regional patterns, landscape distribution and vertical (soil horizon) partitioning of the permafrost C pool in the upper 3 m of soils. However, the deeper C pools in unconsolidated Quaternary deposits need to be better constrained. A general lability classification of the permafrost C pool should be developed to address potential C release upon thaw. The permafrost C pool and its dynamics are beginning to be incorporated into Earth System models, although key periglacial processes such as thermokarst still need to be properly represented to obtain a better quantification of the full permafrost C feedback on global climate change.
A Novel Uncertainty Framework for Improving Discharge Data Quality Using Hydraulic Modelling.
NASA Astrophysics Data System (ADS)
Mansanarez, V.; Westerberg, I.; Lyon, S. W.; Lam, N.
2017-12-01
Flood risk assessments rely on accurate discharge data records. Establishing a reliable stage-discharge (SD) rating curve for calculating discharge from stage at a gauging station normally takes years of data collection efforts. Estimation of high flows is particularly difficult as high flows occur rarely and are often practically difficult to gauge. Hydraulically-modelled rating curves can be derived based on as few as two concurrent stage-discharge and water-surface slope measurements at different flow conditions. This means that a reliable rating curve can, potentially, be derived much faster than a traditional rating curve based on numerous stage-discharge gaugings. We introduce an uncertainty framework using hydraulic modelling for developing SD rating curves and estimating their uncertainties. The proposed framework incorporates information from both the hydraulic configuration (bed slope, roughness, vegetation) and the information available in the stage-discharge observation data (gaugings). This method provides a direct estimation of the hydraulic configuration (slope, bed roughness and vegetation roughness). Discharge time series are estimated propagating stage records through posterior rating curve results.We applied this novel method to two Swedish hydrometric stations, accounting for uncertainties in the gaugings for the hydraulic model. Results from these applications were compared to discharge measurements and official discharge estimations.Sensitivity analysis was performed. We focused analyses on high-flow uncertainty and the factors that could reduce this uncertainty. In particular, we investigated which data uncertainties were most important, and at what flow conditions the gaugings should preferably be taken.
Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul
2012-11-26
The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.
Uncertainty Budget Analysis for Dimensional Inspection Processes (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdez, Lucas M.
2012-07-26
This paper is intended to provide guidance and describe how to prepare an uncertainty analysis of a dimensional inspection process through the utilization of an uncertainty budget analysis. The uncertainty analysis is stated in the same methodology as that of the ISO GUM standard for calibration and testing. There is a specific distinction between how Type A and Type B uncertainty analysis is used in a general and specific process. All theory and applications are utilized to represent both a generalized approach to estimating measurement uncertainty and how to report and present these estimations for dimensional measurements in a dimensionalmore » inspection process. The analysis of this uncertainty budget shows that a well-controlled dimensional inspection process produces a conservative process uncertainty, which can be attributed to the necessary assumptions in place for best possible results.« less
Andres, J.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-01-01
The monthly, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.
Modeling uncertainty in computerized guidelines using fuzzy logic.
Jaulent, M. C.; Joyaux, C.; Colombet, I.; Gillois, P.; Degoulet, P.; Chatellier, G.
2001-01-01
Computerized Clinical Practice Guidelines (CPGs) improve quality of care by assisting physicians in their decision making. A number of problems emerges since patients with close characteristics are given contradictory recommendations. In this article, we propose to use fuzzy logic to model uncertainty due to the use of thresholds in CPGs. A fuzzy classification procedure has been developed that provides for each message of the CPG, a strength of recommendation that rates the appropriateness of the recommendation for the patient under consideration. This work is done in the context of a CPG for the diagnosis and the management of hypertension, published in 1997 by the French agency ANAES. A population of 82 patients with mild to moderate hypertension was selected and the results of the classification system were compared to whose given by a classical decision tree. Observed agreement is 86.6% and the variability of recommendations for patients with close characteristics is reduced. PMID:11825196
Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT
ERIC Educational Resources Information Center
Lathrop, Quinn N.
2015-01-01
There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…
Perceptual and Acoustic Reliability Estimates for the Speech Disorders Classification System (SDCS)
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.
2010-01-01
A companion paper describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). The SDCS uses perceptual and acoustic data reduction methods to obtain information on a speaker's speech, prosody, and voice. The present paper provides reliability estimates for…
Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.
2016-10-07
Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less
2011-01-01
Background Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from credited mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results Deforestation estimates showed good agreement for multi-year periods of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by > 20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C ha-1, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions Estimates of source data uncertainties are essential for REDD+. Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions. PMID:22208947
Kim, Young-Min; Zhou, Ying; Gao, Yang; ...
2014-11-16
We report that the spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O 3) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O 3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5)more » and a fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O 3. Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O 3-related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and ₋2118 deaths/year under RCP4.5 (95 % CI: ₋3021 to ₋1216), when allowing for climate change and emissions reduction. The uncertainty of O 3-related excess mortality estimates was mainly caused by RCP emissions pathways. Finally, excess mortality estimates attributable to the combined effect of climate and emission changes on O 3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.
Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (S w-amb) and maximum areal uptake rates (U max) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCCmore » experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate S w-amb and U max, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of S w-amb and U max violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Min; Zhou, Ying; Gao, Yang
We report that the spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O 3) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O 3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5)more » and a fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O 3. Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O 3-related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and ₋2118 deaths/year under RCP4.5 (95 % CI: ₋3021 to ₋1216), when allowing for climate change and emissions reduction. The uncertainty of O 3-related excess mortality estimates was mainly caused by RCP emissions pathways. Finally, excess mortality estimates attributable to the combined effect of climate and emission changes on O 3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy.« less
What might we learn from climate forecasts?
Smith, Leonard A.
2002-01-01
Most climate models are large dynamical systems involving a million (or more) variables on big computers. Given that they are nonlinear and not perfect, what can we expect to learn from them about the earth's climate? How can we determine which aspects of their output might be useful and which are noise? And how should we distribute resources between making them “better,” estimating variables of true social and economic interest, and quantifying how good they are at the moment? Just as “chaos” prevents accurate weather forecasts, so model error precludes accurate forecasts of the distributions that define climate, yielding uncertainty of the second kind. Can we estimate the uncertainty in our uncertainty estimates? These questions are discussed. Ultimately, all uncertainty is quantified within a given modeling paradigm; our forecasts need never reflect the uncertainty in a physical system. PMID:11875200
Census-independent population mapping in northern Nigeria
Weber, Eric M.; Seaman, Vincent Y.; Stewart, Robert N.; ...
2017-10-21
Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areasmore » within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. As a result, used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.« less
Census-independent population mapping in northern Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Eric M.; Seaman, Vincent Y.; Stewart, Robert N.
Although remote sensing has long been used to aid in the estimation of population, it has usually been in the context of spatial disaggregation of national census data, with the census counts serving both as observational data for specifying models and as constraints on model outputs. Here we present a framework for estimating populations from the bottom up, entirely independently of national census data, a critical need in areas without recent and reliable census data. To make observations of population density, we replace national census data with a microcensus, in which we enumerate population for a sample of small areasmore » within the states of Kano and Kaduna in northern Nigeria. Using supervised texture-based classifiers with very high resolution satellite imagery, we produce a binary map of human settlement at 8-meter resolution across the two states and then a more refined classification consisting of 7 residential types and 1 non-residential type. Using the residential types and a model linking them to the population density observations, we produce population estimates across the two states in a gridded raster format, at approximately 90-meter resolution. We also demonstrate a simulation framework for capturing uncertainty and presenting estimates as prediction intervals for any region of interest of any size and composition within the study region. As a result, used in concert with previously published demographic estimates, our population estimates allowed for predictions of the population under 5 in ten administrative wards that fit strongly with reference data collected during polio vaccination campaigns.« less
NASA Astrophysics Data System (ADS)
Malekmohammadi, Bahram; Ramezani Mehrian, Majid; Jafari, Hamid Reza
2012-11-01
One of the most important water-resources management strategies for arid lands is managed aquifer recharge (MAR). In establishing a MAR scheme, site selection is the prime prerequisite that can be assisted by geographic information system (GIS) tools. One of the most important uncertainties in the site-selection process using GIS is finite ranges or intervals resulting from data classification. In order to reduce these uncertainties, a novel method has been developed involving the integration of multi-criteria decision making (MCDM), GIS, and a fuzzy inference system (FIS). The Shemil-Ashkara plain in the Hormozgan Province of Iran was selected as the case study; slope, geology, groundwater depth, potential for runoff, land use, and groundwater electrical conductivity have been considered as site-selection factors. By defining fuzzy membership functions for the input layers and the output layer, and by constructing fuzzy rules, a FIS has been developed. Comparison of the results produced by the proposed method and the traditional simple additive weighted (SAW) method shows that the proposed method yields more precise results. In conclusion, fuzzy-set theory can be an effective method to overcome associated uncertainties in classification of geographic information data.
Uncertainties of Mayak urine data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Guthrie; Vostrotin, Vadim; Vvdensky, Vladimir
2008-01-01
For internal dose calculations for the Mayak worker epidemiological study, quantitative estimates of uncertainty of the urine measurements are necessary. Some of the data consist of measurements of 24h urine excretion on successive days (e.g. 3 or 4 days). In a recent publication, dose calculations were done where the uncertainty of the urine measurements was estimated starting from the statistical standard deviation of these replicate mesurements. This approach is straightforward and accurate when the number of replicate measurements is large, however, a Monte Carlo study showed it to be problematic for the actual number of replicate measurements (median from 3more » to 4). Also, it is sometimes important to characterize the uncertainty of a single urine measurement. Therefore this alternate method has been developed. A method of parameterizing the uncertainty of Mayak urine bioassay measmements is described. The Poisson lognormal model is assumed and data from 63 cases (1099 urine measurements in all) are used to empirically determine the lognormal normalization uncertainty, given the measurement uncertainties obtained from count quantities. The natural logarithm of the geometric standard deviation of the normalization uncertainty is found to be in the range 0.31 to 0.35 including a measurement component estimated to be 0.2.« less
In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...
Active Learning of Classification Models with Likert-Scale Feedback.
Xue, Yanbing; Hauskrecht, Milos
2017-01-01
Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.
Active Learning of Classification Models with Likert-Scale Feedback
Xue, Yanbing; Hauskrecht, Milos
2017-01-01
Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone. PMID:28979827
Gaussian Process Model for Antarctic Surface Mass Balance and Ice Core Site Selection
NASA Astrophysics Data System (ADS)
White, P. A.; Reese, S.; Christensen, W. F.; Rupper, S.
2017-12-01
Surface mass balance (SMB) is an important factor in the estimation of sea level change, and data are collected to estimate models for prediction of SMB on the Antarctic ice sheet. Using Favier et al.'s (2013) quality-controlled aggregate data set of SMB field measurements, a fully Bayesian spatial model is posed to estimate Antarctic SMB and propose new field measurement locations. Utilizing Nearest-Neighbor Gaussian process (NNGP) models, SMB is estimated over the Antarctic ice sheet. An Antarctic SMB map is rendered using this model and is compared with previous estimates. A prediction uncertainty map is created to identify regions of high SMB uncertainty. The model estimates net SMB to be 2173 Gton yr-1 with 95% credible interval (2021,2331) Gton yr-1. On average, these results suggest lower Antarctic SMB and higher uncertainty than previously purported [Vaughan et al. (1999); Van de Berg et al. (2006); Arthern, Winebrenner and Vaughan (2006); Bromwich et al. (2004); Lenaerts et al. (2012)], even though this model utilizes significantly more observations than previous models. Using the Gaussian process' uncertainty and model parameters, we propose 15 new measurement locations for field study utilizing a maximin space-filling, error-minimizing design; these potential measurements are identied to minimize future estimation uncertainty. Using currently accepted Antarctic mass balance estimates and our SMB estimate, we estimate net mass loss [Shepherd et al. (2012); Jacob et al. (2012)]. Furthermore, we discuss modeling details for both space-time data and combining field measurement data with output from mathematical models using the NNGP framework.
Tigges, Jan; Lakes, Tobia
2017-10-04
Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.
NASA Astrophysics Data System (ADS)
Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.
2017-04-01
The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.
NASA Technical Reports Server (NTRS)
Helder, Dennis; Thome, Kurtis John; Aaron, Dave; Leigh, Larry; Czapla-Myers, Jeff; Leisso, Nathan; Biggar, Stuart; Anderson, Nik
2012-01-01
A significant problem facing the optical satellite calibration community is limited knowledge of the uncertainties associated with fundamental measurements, such as surface reflectance, used to derive satellite radiometric calibration estimates. In addition, it is difficult to compare the capabilities of calibration teams around the globe, which leads to differences in the estimated calibration of optical satellite sensors. This paper reports on two recent field campaigns that were designed to isolate common uncertainties within and across calibration groups, particularly with respect to ground-based surface reflectance measurements. Initial results from these efforts suggest the uncertainties can be as low as 1.5% to 2.5%. In addition, methods for improving the cross-comparison of calibration teams are suggested that can potentially reduce the differences in the calibration estimates of optical satellite sensors.
Bayesian characterization of uncertainty in species interaction strengths.
Wolf, Christopher; Novak, Mark; Gitelman, Alix I
2017-06-01
Considerable effort has been devoted to the estimation of species interaction strengths. This effort has focused primarily on statistical significance testing and obtaining point estimates of parameters that contribute to interaction strength magnitudes, leaving the characterization of uncertainty associated with those estimates unconsidered. We consider a means of characterizing the uncertainty of a generalist predator's interaction strengths by formulating an observational method for estimating a predator's prey-specific per capita attack rates as a Bayesian statistical model. This formulation permits the explicit incorporation of multiple sources of uncertainty. A key insight is the informative nature of several so-called non-informative priors that have been used in modeling the sparse data typical of predator feeding surveys. We introduce to ecology a new neutral prior and provide evidence for its superior performance. We use a case study to consider the attack rates in a New Zealand intertidal whelk predator, and we illustrate not only that Bayesian point estimates can be made to correspond with those obtained by frequentist approaches, but also that estimation uncertainty as described by 95% intervals is more useful and biologically realistic using the Bayesian method. In particular, unlike in bootstrap confidence intervals, the lower bounds of the Bayesian posterior intervals for attack rates do not include zero when a predator-prey interaction is in fact observed. We conclude that the Bayesian framework provides a straightforward, probabilistic characterization of interaction strength uncertainty, enabling future considerations of both the deterministic and stochastic drivers of interaction strength and their impact on food webs.
Shope, Christopher L.; Angeroth, Cory E.
2015-01-01
Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.
Latin hypercube approach to estimate uncertainty in ground water vulnerability
Gurdak, J.J.; McCray, J.E.; Thyne, G.; Qi, S.L.
2007-01-01
A methodology is proposed to quantify prediction uncertainty associated with ground water vulnerability models that were developed through an approach that coupled multivariate logistic regression with a geographic information system (GIS). This method uses Latin hypercube sampling (LHS) to illustrate the propagation of input error and estimate uncertainty associated with the logistic regression predictions of ground water vulnerability. Central to the proposed method is the assumption that prediction uncertainty in ground water vulnerability models is a function of input error propagation from uncertainty in the estimated logistic regression model coefficients (model error) and the values of explanatory variables represented in the GIS (data error). Input probability distributions that represent both model and data error sources of uncertainty were simultaneously sampled using a Latin hypercube approach with logistic regression calculations of probability of elevated nonpoint source contaminants in ground water. The resulting probability distribution represents the prediction intervals and associated uncertainty of the ground water vulnerability predictions. The method is illustrated through a ground water vulnerability assessment of the High Plains regional aquifer. Results of the LHS simulations reveal significant prediction uncertainties that vary spatially across the regional aquifer. Additionally, the proposed method enables a spatial deconstruction of the prediction uncertainty that can lead to improved prediction of ground water vulnerability. ?? 2007 National Ground Water Association.
NASA Technical Reports Server (NTRS)
Chittineni, C. B.
1979-01-01
The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.
Hattis, Dale; Goble, Robert; Chu, Margaret
2005-01-01
In an earlier report we developed a quantitative likelihood-based analysis of the differences in sensitivity of rodents to mutagenic carcinogens across three life stages (fetal, birth to weaning, and weaning to 60 days) relative to exposures in adult life. Here we draw implications for assessing human risks for full lifetime exposures, taking into account three types of uncertainties in making projections from the rodent data: uncertainty in the central estimates of the life-stage–specific sensitivity factors estimated earlier, uncertainty from chemical-to-chemical differences in life-stage–specific sensitivities for carcinogenesis, and uncertainty in the mapping of rodent life stages to human ages/exposure periods. Among the uncertainties analyzed, the mapping of rodent life stages to human ages/exposure periods is most important quantitatively (a range of several-fold in estimates of the duration of the human equivalent of the highest sensitivity “birth to weaning” period in rodents). The combined effects of these uncertainties are estimated with Monte Carlo analyses. Overall, the estimated population arithmetic mean risk from lifetime exposures at a constant milligrams per kilogram body weight level to a generic mutagenic carcinogen is about 2.8-fold larger than expected from adult-only exposure with 5–95% confidence limits of 1.5-to 6-fold. The mean estimates for the 0- to 2-year and 2- to 15-year periods are about 35–55% larger than the 10- and 3-fold sensitivity factor adjustments recently proposed by the U.S. Environmental Protection Agency. The present results are based on data for only nine chemicals, including five mutagens. Risk inferences will be altered as data become available for other chemicals. PMID:15811844
Public Perceptions of Regulatory Costs, Their Uncertainty and Interindividual Distribution.
Johnson, Branden B; Finkel, Adam M
2016-06-01
Public perceptions of both risks and regulatory costs shape rational regulatory choices. Despite decades of risk perception studies, this article is the first on regulatory cost perceptions. A survey of 744 U.S. residents probed: (1) How knowledgeable are laypeople about regulatory costs incurred to reduce risks? (2) Do laypeople see official estimates of cost and benefit (lives saved) as accurate? (3) (How) do preferences for hypothetical regulations change when mean-preserving spreads of uncertainty replace certain cost or benefit? and (4) (How) do preferences change when unequal interindividual distributions of hypothetical regulatory costs replace equal distributions? Respondents overestimated costs of regulatory compliance, while assuming agencies underestimate costs. Most assumed agency estimates of benefits are accurate; a third believed both cost and benefit estimates are accurate. Cost and benefit estimates presented without uncertainty were slightly preferred to those surrounded by "narrow uncertainty" (a range of costs or lives entirely within a personally-calibrated zone without clear acceptance or rejection of tradeoffs). Certain estimates were more preferred than "wide uncertainty" (a range of agency estimates extending beyond these personal bounds, thus posing a gamble between favored and unacceptable tradeoffs), particularly for costs as opposed to benefits (but even for costs a quarter of respondents preferred wide uncertainty to certainty). Agency-acknowledged uncertainty in general elicited mixed judgments of honesty and trustworthiness. People preferred egalitarian distributions of regulatory costs, despite skewed actual cost distributions, and preferred progressive cost distributions (the rich pay a greater than proportional share) to regressive ones. Efficient and socially responsive regulations require disclosure of much more information about regulatory costs and risks. © 2016 Society for Risk Analysis.
Farrance, Ian; Frenkel, Robert
2014-01-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional relationship and contribute to the combined standard uncertainty of the measurand. PMID:24659835
Farrance, Ian; Frenkel, Robert
2014-02-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship and contribute to the combined standard uncertainty of the measurand.
NASA Astrophysics Data System (ADS)
Brannan, K. M.; Somor, A.
2016-12-01
A variety of statistics are used to assess watershed model performance but these statistics do not directly answer the question: what is the uncertainty of my prediction. Understanding predictive uncertainty is important when using a watershed model to develop a Total Maximum Daily Load (TMDL). TMDLs are a key component of the US Clean Water Act and specify the amount of a pollutant that can enter a waterbody when the waterbody meets water quality criteria. TMDL developers use watershed models to estimate pollutant loads from nonpoint sources of pollution. We are developing a TMDL for bacteria impairments in a watershed in the Coastal Range of Oregon. We setup an HSPF model of the watershed and used the calibration software PEST to estimate HSPF hydrologic parameters and then perform predictive uncertainty analysis of stream flow. We used Monte-Carlo simulation to run the model with 1,000 different parameter sets and assess predictive uncertainty. In order to reduce the chance of specious parameter sets, we accounted for the relationships among parameter values by using mathematically-based regularization techniques and an estimate of the parameter covariance when generating random parameter sets. We used a novel approach to select flow data for predictive uncertainty analysis. We set aside flow data that occurred on days that bacteria samples were collected. We did not use these flows in the estimation of the model parameters. We calculated a percent uncertainty for each flow observation based 1,000 model runs. We also used several methods to visualize results with an emphasis on making the data accessible to both technical and general audiences. We will use the predictive uncertainty estimates in the next phase of our work, simulating bacteria fate and transport in the watershed.
Characterizing Uncertainties in Atmospheric Inversions of Fossil Fuel CO2 Emissions in California
NASA Astrophysics Data System (ADS)
Brophy, K. J.; Graven, H. D.; Manning, A.; Arnold, T.; Fischer, M. L.; Jeong, S.; Cui, X.; Parazoo, N.
2016-12-01
In 2006 California passed a law requiring greenhouse gas emissions be reduced to 1990 levels by 2020, equivalent to a 20% reduction over 2006-2020. Assessing compliance with greenhouse gas mitigation policies requires accurate determination of emissions, particularly for CO2 emitted by fossil fuel combustion (ffCO2). We found differences in inventory-based ffCO2 flux estimates for California total emissions of 11% (standard deviation relative to the mean), and even larger differences on some smaller sub-state levels. Top-down studies may be useful for validating ffCO2 flux estimates, but top-down studies of CO2 typically focus on biospheric CO2 fluxes and they are not yet well-developed for ffCO2. Implementing top-down studies of ffCO2 requires observations of a fossil fuel combustion tracer such as 14C to distinguish ffCO2 from biospheric CO2. However, even if a large number of 14C observations are available, multiple other sources of uncertainty will contribute to the uncertainty in posterior ffCO2 flux estimates. With a Bayesian inverse modelling approach, we use simulated atmospheric observations of ffCO2 at a network of 11 tower sites across California in an observing system simulation experiment to investigate uncertainties. We use four different prior ffCO2 flux estimates, two different atmospheric transport models, different types of spatial aggregation, and different assumptions for observational and model transport uncertainties to investigate contributions to posterior ffCO2 emission uncertainties. We show how various sources of uncertainty compare and which uncertainties are likely to limit top-down estimation of ffCO2 fluxes in California.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.
In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less
Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.
2017-03-28
In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less
Toward an endovascular internal carotid artery classification system.
Shapiro, M; Becske, T; Riina, H A; Raz, E; Zumofen, D; Jafar, J J; Huang, P P; Nelson, P K
2014-02-01
Does the world need another ICA classification scheme? We believe so. The purpose of proposed angiography-driven classification is to optimize description of the carotid artery from the endovascular perspective. A review of existing, predominantly surgically-driven classifications is performed, and a new scheme, based on the study of NYU aneurysm angiographic and cross-sectional databases is proposed. Seven segments - cervical, petrous, cavernous, paraophthlamic, posterior communicating, choroidal, and terminus - are named. This nomenclature recognizes intrinsic uncertainty in precise angiographic and cross-sectional localization of aneurysms adjacent to the dural rings, regarding all lesions distal to the cavernous segment as potentially intradural. Rather than subdividing various transitional, ophthalmic, and hypophyseal aneurysm subtypes, as necessitated by their varied surgical approaches and risks, the proposed classification emphasizes their common endovascular treatment features, while recognizing that many complex, trans-segmental, and fusiform aneurysms not readily classifiable into presently available, saccular aneurysm-driven schemes, are being increasingly addressed by endovascular means. We believe this classification may find utility in standardizing nomenclature for outcome tracking, treatment trials and physician communication.
Natsch, Andreas; Emter, Roger; Haupt, Tina; Ellis, Graham
2018-06-01
Cosmetic regulations prohibit animal testing for the purpose of safety assessment and recent REACH guidance states that the local lymph node assay (LLNA) in mice shall only be conducted if in vitro data cannot give sufficient information for classification and labelling. However, Quantitative Risk Assessment (QRA) for fragrance ingredients requires a NESIL, a dose not expected to cause induction of skin sensitization in humans. In absence of human data, this is derived from the LLNA and it remains a key challenge for risk assessors to derive this value from non-animal data. Here we present a workflow using structural information, reactivity data and KeratinoSens results to predict a LLNA result as a point of departure. Specific additional tests (metabolic activation, complementary reactivity tests) are applied in selected cases depending on the chemical domain of a molecule. Finally, in vitro and in vivo data on close analogues are used to estimate uncertainty of the prediction in the specific chemical domain. This approach was applied to three molecules which were subsequently tested in the LLNA and 22 molecules with available and sometimes discordant human and LLNA data. Four additional case studies illustrate how this approach is being applied to recently developed molecules in the absence of animal data. Estimation of uncertainty and how this can be applied to determine a final NESIL for risk assessment is discussed. We conclude that, in the data-rich domain of fragrance ingredients, sensitization risk assessment without animal testing is possible in most cases by this integrated approach.
Cramer, C.H.
2006-01-01
The Mississippi embayment, located in the central United States, and its thick deposits of sediments (over 1 km in places) have a large effect on earthquake ground motions. Several previous studies have addressed how these thick sediments might modify probabilistic seismic-hazard maps. The high seismic hazard associated with the New Madrid seismic zone makes it particularly important to quantify the uncertainty in modeling site amplification to better represent earthquake hazard in seismic-hazard maps. The methodology of the Memphis urban seismic-hazard-mapping project (Cramer et al., 2004) is combined with the reference profile approach of Toro and Silva (2001) to better estimate seismic hazard in the Mississippi embayment. Improvements over previous approaches include using the 2002 national seismic-hazard model, fully probabilistic hazard calculations, calibration of site amplification with improved nonlinear soil-response estimates, and estimates of uncertainty. Comparisons are made with the results of several previous studies, and estimates of uncertainty inherent in site-amplification modeling for the upper Mississippi embayment are developed. I present new seismic-hazard maps for the upper Mississippi embayment with the effects of site geology incorporating these uncertainties.
Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation
NASA Astrophysics Data System (ADS)
Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.
2012-12-01
This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.
Prioritizing Chemicals and Data Requirements for Screening-Level Exposure and Risk Assessment
Brown, Trevor N.; Wania, Frank; Breivik, Knut; McLachlan, Michael S.
2012-01-01
Background: Scientists and regulatory agencies strive to identify chemicals that may cause harmful effects to humans and the environment; however, prioritization is challenging because of the large number of chemicals requiring evaluation and limited data and resources. Objectives: We aimed to prioritize chemicals for exposure and exposure potential and obtain a quantitative perspective on research needs to better address uncertainty in screening assessments. Methods: We used a multimedia mass balance model to prioritize > 12,000 organic chemicals using four far-field human exposure metrics. The propagation of variance (uncertainty) in key chemical information used as model input for calculating exposure metrics was quantified. Results: Modeled human concentrations and intake rates span approximately 17 and 15 orders of magnitude, respectively. Estimates of exposure potential using human concentrations and a unit emission rate span approximately 13 orders of magnitude, and intake fractions span 7 orders of magnitude. The actual chemical emission rate contributes the greatest variance (uncertainty) in exposure estimates. The human biotransformation half-life is the second greatest source of uncertainty in estimated concentrations. In general, biotransformation and biodegradation half-lives are greater sources of uncertainty in modeled exposure and exposure potential than chemical partition coefficients. Conclusions: Mechanistic exposure modeling is suitable for screening and prioritizing large numbers of chemicals. By including uncertainty analysis and uncertainty in chemical information in the exposure estimates, these methods can help identify and address the important sources of uncertainty in human exposure and risk assessment in a systematic manner. PMID:23008278
NASA Astrophysics Data System (ADS)
Dumedah, Gift; Walker, Jeffrey P.
2017-03-01
The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forcing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are strongly tied to the overall makeup of the model, but the input forcing data set is independent with its accuracy usually defined by the monitoring or the observation system. The impact of input forcing data on model estimation accuracy has been collectively acknowledged to be significant, yet its quantification and the level of uncertainty that is acceptable in the context of the land surface model to obtain a competitive estimation remain mostly unknown. A better understanding is needed about how models respond to input forcing data and what changes in these forcing variables can be accommodated without deteriorating optimal estimation of the model. As a result, this study determines the level of forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to competitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro genomic mapping to examine the temporal evolution of model decision variables from an archive of values obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the significance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil moisture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land surface and hydrological model estimation.
Combining uncertainty factors in deriving human exposure levels of noncarcinogenic toxicants.
Kodell, R L; Gaylor, D W
1999-01-01
Acceptable levels of human exposure to noncarcinogenic toxicants in environmental and occupational settings generally are derived by reducing experimental no-observed-adverse-effect levels (NOAELs) or benchmark doses (BDs) by a product of uncertainty factors (Barnes and Dourson, Ref. 1). These factors are presumed to ensure safety by accounting for uncertainty in dose extrapolation, uncertainty in duration extrapolation, differential sensitivity between humans and animals, and differential sensitivity among humans. The common default value for each uncertainty factor is 10. This paper shows how estimates of means and standard deviations of the approximately log-normal distributions of individual uncertainty factors can be used to estimate percentiles of the distribution of the product of uncertainty factors. An appropriately selected upper percentile, for example, 95th or 99th, of the distribution of the product can be used as a combined uncertainty factor to replace the conventional product of default factors.
Uncertainty in modeled upper ocean heat content change
NASA Astrophysics Data System (ADS)
Tokmakian, Robin; Challenor, Peter
2014-02-01
This paper examines the uncertainty in the change in the heat content in the ocean component of a general circulation model. We describe the design and implementation of our statistical methodology. Using an ensemble of model runs and an emulator, we produce an estimate of the full probability distribution function (PDF) for the change in upper ocean heat in an Atmosphere/Ocean General Circulation Model, the Community Climate System Model v. 3, across a multi-dimensional input space. We show how the emulator of the GCM's heat content change and hence, the PDF, can be validated and how implausible outcomes from the emulator can be identified when compared to observational estimates of the metric. In addition, the paper describes how the emulator outcomes and related uncertainty information might inform estimates of the same metric from a multi-model Coupled Model Intercomparison Project phase 3 ensemble. We illustrate how to (1) construct an ensemble based on experiment design methods, (2) construct and evaluate an emulator for a particular metric of a complex model, (3) validate the emulator using observational estimates and explore the input space with respect to implausible outcomes and (4) contribute to the understanding of uncertainties within a multi-model ensemble. Finally, we estimate the most likely value for heat content change and its uncertainty for the model, with respect to both observations and the uncertainty in the value for the input parameters.
Calculating weighted estimates of peak streamflow statistics
Cohn, Timothy A.; Berenbrock, Charles; Kiang, Julie E.; Mason, Jr., Robert R.
2012-01-01
According to the Federal guidelines for flood-frequency estimation, the uncertainty of peak streamflow statistics, such as the 1-percent annual exceedance probability (AEP) flow at a streamgage, can be reduced by combining the at-site estimate with the regional regression estimate to obtain a weighted estimate of the flow statistic. The procedure assumes the estimates are independent, which is reasonable in most practical situations. The purpose of this publication is to describe and make available a method for calculating a weighted estimate from the uncertainty or variance of the two independent estimates.
Entropy of hydrological systems under small samples: Uncertainty and variability
NASA Astrophysics Data System (ADS)
Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua
2016-01-01
Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.
Covariance propagation in spectral indices
Griffin, P. J.
2015-01-09
In this study, the dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This study identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, andmore » provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.« less
Classification of wheat: Badhwar profile similarity technique
NASA Technical Reports Server (NTRS)
Austin, W. W.
1980-01-01
The Badwar profile similarity classification technique used successfully for classification of corn was applied to spring wheat classifications. The software programs and the procedures used to generate full-scene classifications are presented, and numerical results of the acreage estimations are given.
Incorporating structure from motion uncertainty into image-based pose estimation
NASA Astrophysics Data System (ADS)
Ludington, Ben T.; Brown, Andrew P.; Sheffler, Michael J.; Taylor, Clark N.; Berardi, Stephen
2015-05-01
A method for generating and utilizing structure from motion (SfM) uncertainty estimates within image-based pose estimation is presented. The method is applied to a class of problems in which SfM algorithms are utilized to form a geo-registered reference model of a particular ground area using imagery gathered during flight by a small unmanned aircraft. The model is then used to form camera pose estimates in near real-time from imagery gathered later. The resulting pose estimates can be utilized by any of the other onboard systems (e.g. as a replacement for GPS data) or downstream exploitation systems, e.g., image-based object trackers. However, many of the consumers of pose estimates require an assessment of the pose accuracy. The method for generating the accuracy assessment is presented. First, the uncertainty in the reference model is estimated. Bundle Adjustment (BA) is utilized for model generation. While the high-level approach for generating a covariance matrix of the BA parameters is straightforward, typical computing hardware is not able to support the required operations due to the scale of the optimization problem within BA. Therefore, a series of sparse matrix operations is utilized to form an exact covariance matrix for only the parameters that are needed at a particular moment. Once the uncertainty in the model has been determined, it is used to augment Perspective-n-Point pose estimation algorithms to improve the pose accuracy and to estimate the resulting pose uncertainty. The implementation of the described method is presented along with results including results gathered from flight test data.
Uncertainty Assessment of Synthetic Design Hydrographs for Gauged and Ungauged Catchments
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Sikorska, Anna E.; Furrer, Reinhard; Favre, Anne-Catherine
2018-03-01
Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape are essential for engineering tasks involving storage. Such design hydrographs are inherently uncertain as are classical flood estimates focusing on peak discharge only. Various sources of uncertainty contribute to the total uncertainty of synthetic design hydrographs for gauged and ungauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty due to the choice of a regionalization method. A quantification of the uncertainties associated with flood estimates is essential for reliable decision making and allows for the identification of important uncertainty sources. We therefore propose an uncertainty assessment framework for the quantification of the uncertainty associated with synthetic design hydrographs. The framework is based on bootstrap simulations and consists of three levels of complexity. On the first level, we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of regionalizing them to ungauged catchments but independently from the construction uncertainty. On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged catchments, jointly considering construction and regionalization uncertainty. We find that the most important sources of uncertainty in design hydrograph construction are the record length and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in ungauged catchments depends on the catchment properties and is not negligible in our case.
A Tool for Estimating Variability in Wood Preservative Treatment Retention
Patricia K. Lebow; Adam M. Taylor; Timothy M. Young
2015-01-01
Composite sampling is standard practice for evaluation of preservative retention levels in preservative-treated wood. Current protocols provide an average retention value but no estimate of uncertainty. Here we describe a statistical method for calculating uncertainty estimates using the standard sampling regime with minimal additional chemical analysis. This tool can...
Estimating species-specific suvival and movement when species identification is uncertain
Runge, J.P.; Hines, J.E.; Nichols, J.D.
2007-01-01
Incorporating uncertainty in the investigation of ecological studies has been the topic of an increasing body of research. In particular, mark?recapture methodology has shown that incorporating uncertainty in the probability of detecting individuals in populations enables accurate estimation of population-level processes such as survival, reproduction, and dispersal. Recent advances in mark?recapture methodology have included estimating population-level processes for biologically important groups despite the misassignment of individuals to those groups. Examples include estimating rates of apparent survival despite less than perfect accuracy when identifying individuals to gender or breeding state. Here we introduce a method for estimating apparent survival and dispersal in species that co-occur but that are difficult to distinguish. We use data from co-occurring populations of meadow voles (Microtus pennsylvanicus) and montane voles (M. montanus) in addition to simulated data to show that ignoring species uncertainty can lead to biased estimates of population processes. The incorporation of species uncertainty in mark?recapture studies should aid future research investigating ecological concepts such as interspecific competition, niche differentiation, and spatial population dynamics in sibling species.
Estimating the Properties of Hard X-Ray Solar Flares by Constraining Model Parameters
NASA Technical Reports Server (NTRS)
Ireland, J.; Tolbert, A. K.; Schwartz, R. A.; Holman, G. D.; Dennis, B. R.
2013-01-01
We wish to better constrain the properties of solar flares by exploring how parameterized models of solar flares interact with uncertainty estimation methods. We compare four different methods of calculating uncertainty estimates in fitting parameterized models to Ramaty High Energy Solar Spectroscopic Imager X-ray spectra, considering only statistical sources of error. Three of the four methods are based on estimating the scale-size of the minimum in a hypersurface formed by the weighted sum of the squares of the differences between the model fit and the data as a function of the fit parameters, and are implemented as commonly practiced. The fourth method is also based on the difference between the data and the model, but instead uses Bayesian data analysis and Markov chain Monte Carlo (MCMC) techniques to calculate an uncertainty estimate. Two flare spectra are modeled: one from the Geostationary Operational Environmental Satellite X1.3 class flare of 2005 January 19, and the other from the X4.8 flare of 2002 July 23.We find that the four methods give approximately the same uncertainty estimates for the 2005 January 19 spectral fit parameters, but lead to very different uncertainty estimates for the 2002 July 23 spectral fit. This is because each method implements different analyses of the hypersurface, yielding method-dependent results that can differ greatly depending on the shape of the hypersurface. The hypersurface arising from the 2005 January 19 analysis is consistent with a normal distribution; therefore, the assumptions behind the three non- Bayesian uncertainty estimation methods are satisfied and similar estimates are found. The 2002 July 23 analysis shows that the hypersurface is not consistent with a normal distribution, indicating that the assumptions behind the three non-Bayesian uncertainty estimation methods are not satisfied, leading to differing estimates of the uncertainty. We find that the shape of the hypersurface is crucial in understanding the output from each uncertainty estimation technique, and that a crucial factor determining the shape of hypersurface is the location of the low-energy cutoff relative to energies where the thermal emission dominates. The Bayesian/MCMC approach also allows us to provide detailed information on probable values of the low-energy cutoff, Ec, a crucial parameter in defining the energy content of the flare-accelerated electrons. We show that for the 2002 July 23 flare data, there is a 95% probability that Ec lies below approximately 40 keV, and a 68% probability that it lies in the range 7-36 keV. Further, the low-energy cutoff is more likely to be in the range 25-35 keV than in any other 10 keV wide energy range. The low-energy cutoff for the 2005 January 19 flare is more tightly constrained to 107 +/- 4 keV with 68% probability.
The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.
2015-12-01
Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less
Michael Köhl; Charles Scott; Daniel Plugge
2013-01-01
Uncertainties are a composite of errors arising from observations and the appropriateness of models. An error budget approach can be used to identify and accumulate the sources of errors to estimate change in emissions between two points in time. Various forest monitoring approaches can be used to estimate the changes in emissions due to deforestation and forest...
Freni, G; La Loggia, G; Notaro, V
2010-01-01
Due to the increased occurrence of flooding events in urban areas, many procedures for flood damage quantification have been defined in recent decades. The lack of large databases in most cases is overcome by combining the output of urban drainage models and damage curves linking flooding to expected damage. The application of advanced hydraulic models as diagnostic, design and decision-making support tools has become a standard practice in hydraulic research and application. Flooding damage functions are usually evaluated by a priori estimation of potential damage (based on the value of exposed goods) or by interpolating real damage data (recorded during historical flooding events). Hydraulic models have undergone continuous advancements, pushed forward by increasing computer capacity. The details of the flooding propagation process on the surface and the details of the interconnections between underground and surface drainage systems have been studied extensively in recent years, resulting in progressively more reliable models. The same level of was advancement has not been reached with regard to damage curves, for which improvements are highly connected to data availability; this remains the main bottleneck in the expected flooding damage estimation. Such functions are usually affected by significant uncertainty intrinsically related to the collected data and to the simplified structure of the adopted functional relationships. The present paper aimed to evaluate this uncertainty by comparing the intrinsic uncertainty connected to the construction of the damage-depth function to the hydraulic model uncertainty. In this way, the paper sought to evaluate the role of hydraulic model detail level in the wider context of flood damage estimation. This paper demonstrated that the use of detailed hydraulic models might not be justified because of the higher computational cost and the significant uncertainty in damage estimation curves. This uncertainty occurs mainly because a large part of the total uncertainty is dependent on depth-damage curves. Improving the estimation of these curves may provide better results in term of uncertainty reduction than the adoption of detailed hydraulic models.
Quantifying Uncertainty of Wind Power Production Through an Analog Ensemble
NASA Astrophysics Data System (ADS)
Shahriari, M.; Cervone, G.
2016-12-01
The Analog Ensemble (AnEn) method is used to generate probabilistic weather forecasts that quantify the uncertainty in power estimates at hypothetical wind farm locations. The data are from the NREL Eastern Wind Dataset that includes more than 1,300 modeled wind farms. The AnEn model uses a two-dimensional grid to estimate the probability distribution of wind speed (the predictand) given the values of predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind. The meteorological data is taken from the NCEP GFS which is available on a 0.25 degree grid resolution. The methodology first divides the data into two classes: training period and verification period. The AnEn selects a point in the verification period and searches for the best matching estimates (analogs) in the training period. The predictand value at those analogs are the ensemble prediction for the point in the verification period. The model provides a grid of wind speed values and the uncertainty (probability index) associated with each estimate. Each wind farm is associated with a probability index which quantifies the degree of difficulty to estimate wind power. Further, the uncertainty in estimation is related to other factors such as topography, land cover and wind resources. This is achieved by using a GIS system to compute the correlation between the probability index and geographical characteristics. This study has significant applications for investors in renewable energy sector especially wind farm developers. Lower level of uncertainty facilitates the process of submitting bids into day ahead and real time electricity markets. Thus, building wind farms in regions with lower levels of uncertainty will reduce the real-time operational risks and create a hedge against volatile real-time prices. Further, the links between wind estimate uncertainty and factors such as topography and wind resources, provide wind farm developers with valuable information regarding wind farm siting.
Uncertainty Analysis of Instrument Calibration and Application
NASA Technical Reports Server (NTRS)
Tripp, John S.; Tcheng, Ping
1999-01-01
Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.
Scott, Finlay; Jardim, Ernesto; Millar, Colin P; Cerviño, Santiago
2016-01-01
Estimating fish stock status is very challenging given the many sources and high levels of uncertainty surrounding the biological processes (e.g. natural variability in the demographic rates), model selection (e.g. choosing growth or stock assessment models) and parameter estimation. Incorporating multiple sources of uncertainty in a stock assessment allows advice to better account for the risks associated with proposed management options, promoting decisions that are more robust to such uncertainty. However, a typical assessment only reports the model fit and variance of estimated parameters, thereby underreporting the overall uncertainty. Additionally, although multiple candidate models may be considered, only one is selected as the 'best' result, effectively rejecting the plausible assumptions behind the other models. We present an applied framework to integrate multiple sources of uncertainty in the stock assessment process. The first step is the generation and conditioning of a suite of stock assessment models that contain different assumptions about the stock and the fishery. The second step is the estimation of parameters, including fitting of the stock assessment models. The final step integrates across all of the results to reconcile the multi-model outcome. The framework is flexible enough to be tailored to particular stocks and fisheries and can draw on information from multiple sources to implement a broad variety of assumptions, making it applicable to stocks with varying levels of data availability The Iberian hake stock in International Council for the Exploration of the Sea (ICES) Divisions VIIIc and IXa is used to demonstrate the framework, starting from length-based stock and indices data. Process and model uncertainty are considered through the growth, natural mortality, fishing mortality, survey catchability and stock-recruitment relationship. Estimation uncertainty is included as part of the fitting process. Simple model averaging is used to integrate across the results and produce a single assessment that considers the multiple sources of uncertainty.
Estimates of Single Sensor Error Statistics for the MODIS Matchup Database Using Machine Learning
NASA Astrophysics Data System (ADS)
Kumar, C.; Podesta, G. P.; Minnett, P. J.; Kilpatrick, K. A.
2017-12-01
Sea surface temperature (SST) is a fundamental quantity for understanding weather and climate dynamics. Although sensors aboard satellites provide global and repeated SST coverage, a characterization of SST precision and bias is necessary for determining the suitability of SST retrievals in various applications. Guidance on how to derive meaningful error estimates is still being developed. Previous methods estimated retrieval uncertainty based on geophysical factors, e.g. season or "wet" and "dry" atmospheres, but the discrete nature of these bins led to spatial discontinuities in SST maps. Recently, a new approach clustered retrievals based on the terms (excluding offset) in the statistical algorithm used to estimate SST. This approach resulted in over 600 clusters - too many to understand the geophysical conditions that influence retrieval error. Using MODIS and buoy SST matchups (2002 - 2016), we use machine learning algorithms (recursive and conditional trees, random forests) to gain insight into geophysical conditions leading to the different signs and magnitudes of MODIS SST residuals (satellite SSTs minus buoy SSTs). MODIS retrievals were first split into three categories: < -0.4 C, -0.4 C ≤ residual ≤ 0.4 C, and > 0.4 C. These categories are heavily unbalanced, with residuals > 0.4 C being much less frequent. Performance of classification algorithms is affected by imbalance, thus we tested various rebalancing algorithms (oversampling, undersampling, combinations of the two). We consider multiple features for the decision tree algorithms: regressors from the MODIS SST algorithm, proxies for temperature deficit, and spatial homogeneity of brightness temperatures (BTs), e.g., the range of 11 μm BTs inside a 25 km2 area centered on the buoy location. These features and a rebalancing of classes led to an 81.9% accuracy when classifying SST retrievals into the < -0.4 C and -0.4 C ≤ residual ≤ 0.4 C categories. Spatial homogeneity in BTs consistently appears as a very important variable for classification, suggesting that unidentified cloud contamination still is one of the causes leading to negative SST residuals. Precision and accuracy of error estimates from our decision tree classifier are enhanced using this knowledge.
Software Development Cost Estimation Executive Summary
NASA Technical Reports Server (NTRS)
Hihn, Jairus M.; Menzies, Tim
2006-01-01
Identify simple fully validated cost models that provide estimation uncertainty with cost estimate. Based on COCOMO variable set. Use machine learning techniques to determine: a) Minimum number of cost drivers required for NASA domain based cost models; b) Minimum number of data records required and c) Estimation Uncertainty. Build a repository of software cost estimation information. Coordinating tool development and data collection with: a) Tasks funded by PA&E Cost Analysis; b) IV&V Effort Estimation Task and c) NASA SEPG activities.
Andres, R. J. [CDIAC; Boden, T. A. [CDIAC
2016-01-01
The annual, gridded fossil-fuel CO2 emissions uncertainty estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016). Andres et al. (2016) describes the basic methodology in estimating the uncertainty in the (gridded fossil fuel data product ). This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty.
Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Sengupta, M.; Reda, I.
2014-11-01
Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.
Griscom, Bronson W.; Ellis, Peter W.; Baccini, Alessandro; Marthinus, Delon; Evans, Jeffrey S.; Ruslandi
2016-01-01
Background Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale. Principal Findings and Significance We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000–2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau’s original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate–which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values. PMID:26752298
Aksungur, N; Korkut, E
2018-05-24
We read Atamanalp classification, treatment algorithm and prognosis-estimating systems for sigmoid volvulus (SV) and ileosigmoid knotting (ISK) in Colorectal Disease [1,2]. Our comments relate to necessity and utility of these new classification systems. Classification or staging systems are generally used in malignant or premalignant pathologies such as colorectal cancers [3] or polyps [4]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Estimation of vulnerability functions based on a global earthquake damage database
NASA Astrophysics Data System (ADS)
Spence, R. J. S.; Coburn, A. W.; Ruffle, S. J.
2009-04-01
Developing a better approach to the estimation of future earthquake losses, and in particular to the understanding of the inherent uncertainties in loss models, is vital to confidence in modelling potential losses in insurance or for mitigation. For most areas of the world there is currently insufficient knowledge of the current building stock for vulnerability estimates to be based on calculations of structural performance. In such areas, the most reliable basis for estimating vulnerability is performance of the building stock in past earthquakes, using damage databases, and comparison with consistent estimates of ground motion. This paper will present a new approach to the estimation of vulnerabilities using the recently launched Cambridge University Damage Database (CUEDD). CUEDD is based on data assembled by the Martin Centre at Cambridge University since 1980, complemented by other more-recently published and some unpublished data. The database assembles in a single, organised, expandable and web-accessible database, summary information on worldwide post-earthquake building damage surveys which have been carried out since the 1960's. Currently it contains data on the performance of more than 750,000 individual buildings, in 200 surveys following 40 separate earthquakes. The database includes building typologies, damage levels, location of each survey. It is mounted on a GIS mapping system and links to the USGS Shakemaps of each earthquake which enables the macroseismic intensity and other ground motion parameters to be defined for each survey and location. Fields of data for each building damage survey include: · Basic earthquake data and its sources · Details of the survey location and intensity and other ground motion observations or assignments at that location · Building and damage level classification, and tabulated damage survey results · Photos showing typical examples of damage. In future planned extensions of the database information on human casualties will also be assembled. The database also contains analytical tools enabling data from similar locations, building classes or ground motion levels to be assembled and thus vulnerability relationships derived for any chosen ground motion parameter, for a given class of building, and for particular countries or regions. The paper presents examples of vulnerability relationships for particular classes of buildings and regions of the world, together with the estimated uncertainty ranges. It will discuss the applicability of such vulnerability functions in earthquake loss assessment for insurance purposes or for earthquake risk mitigation.
Detailed Uncertainty Analysis of the ZEM-3 Measurement System
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
The measurement of Seebeck coefficient and electrical resistivity are critical to the investigation of all thermoelectric systems. Therefore, it stands that the measurement uncertainty must be well understood to report ZT values which are accurate and trustworthy. A detailed uncertainty analysis of the ZEM-3 measurement system has been performed. The uncertainty analysis calculates error in the electrical resistivity measurement as a result of sample geometry tolerance, probe geometry tolerance, statistical error, and multi-meter uncertainty. The uncertainty on Seebeck coefficient includes probe wire correction factors, statistical error, multi-meter uncertainty, and most importantly the cold-finger effect. The cold-finger effect plagues all potentiometric (four-probe) Seebeck measurement systems, as heat parasitically transfers through thermocouple probes. The effect leads to an asymmetric over-estimation of the Seebeck coefficient. A thermal finite element analysis allows for quantification of the phenomenon, and provides an estimate on the uncertainty of the Seebeck coefficient. The thermoelectric power factor has been found to have an uncertainty of +9-14 at high temperature and 9 near room temperature.
Dealing with uncertainties in environmental burden of disease assessment
2009-01-01
Disability Adjusted Life Years (DALYs) combine the number of people affected by disease or mortality in a population and the duration and severity of their condition into one number. The environmental burden of disease is the number of DALYs that can be attributed to environmental factors. Environmental burden of disease estimates enable policy makers to evaluate, compare and prioritize dissimilar environmental health problems or interventions. These estimates often have various uncertainties and assumptions which are not always made explicit. Besides statistical uncertainty in input data and parameters – which is commonly addressed – a variety of other types of uncertainties may substantially influence the results of the assessment. We have reviewed how different types of uncertainties affect environmental burden of disease assessments, and we give suggestions as to how researchers could address these uncertainties. We propose the use of an uncertainty typology to identify and characterize uncertainties. Finally, we argue that uncertainties need to be identified, assessed, reported and interpreted in order for assessment results to adequately support decision making. PMID:19400963
Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data.
Mao, Liang; Yin, Ling; Song, Xiaoqing; Mei, Shujiang
2016-10-01
Cellphone tracking has been recently integrated into risk assessment of disease transmission, because travel behavior of disease carriers can be depicted in unprecedented details. Still in its infancy, such an integration has been limited to: 1) risk assessment only at national and provincial scales, where intra-urban human movements are neglected, and 2) using irregularly logged cellphone data that miss numerous user movements. Furthermore, few risk assessments have considered positional uncertainty of cellphone data. This study proposed a new framework for mapping intra-urban disease risk with regularly logged cellphone tracking data, taking the dengue fever in Shenzhen city as an example. Hourly tracking records of 5.85 million cellphone users, combined with the random forest classification and mosquito activities, were utilized to estimate the local transmission risk of dengue fever and the importation risk through travels. Stochastic simulations were further employed to quantify the uncertainty of risk. The resultant maps suggest targeted interventions to maximally reduce dengue cases exported to other places, as well as appropriate interventions to contain risk in places that import them. Given the popularity of cellphone use in urbanized areas, this framework can be adopted by other cities to design spatio-temporally resolved programs for disease control. Copyright © 2016 Elsevier B.V. All rights reserved.
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
NASA Astrophysics Data System (ADS)
Iaccarino, Gianluca; Mishra, Aashwin Ananda; Ghili, Saman
2017-02-01
Reynolds-averaged Navier-Stokes (RANS) models represent the workhorse for predicting turbulent flows in complex industrial applications. However, RANS closures introduce a significant degree of epistemic uncertainty in predictions due to the potential lack of validity of the assumptions utilized in model formulation. Estimating this uncertainty is a fundamental requirement for building confidence in such predictions. We outline a methodology to estimate this structural uncertainty, incorporating perturbations to the eigenvalues and the eigenvectors of the modeled Reynolds stress tensor. The mathematical foundations of this framework are derived and explicated. Thence, this framework is applied to a set of separated turbulent flows, while compared to numerical and experimental data and contrasted against the predictions of the eigenvalue-only perturbation methodology. It is exhibited that for separated flows, this framework is able to yield significant enhancement over the established eigenvalue perturbation methodology in explaining the discrepancy against experimental observations and high-fidelity simulations. Furthermore, uncertainty bounds of potential engineering utility can be estimated by performing five specific RANS simulations, reducing the computational expenditure on such an exercise.
NASA Astrophysics Data System (ADS)
Khademian, Amir; Abdollahipour, Hamed; Bagherpour, Raheb; Faramarzi, Lohrasb
2017-10-01
In addition to the numerous planning and executive challenges, underground excavation in urban areas is always followed by certain destructive effects especially on the ground surface; ground settlement is the most important of these effects for which estimation there exist different empirical, analytical and numerical methods. Since geotechnical models are associated with considerable model uncertainty, this study characterized the model uncertainty of settlement estimation models through a systematic comparison between model predictions and past performance data derived from instrumentation. To do so, the amount of surface settlement induced by excavation of the Qom subway tunnel was estimated via empirical (Peck), analytical (Loganathan and Poulos) and numerical (FDM) methods; the resulting maximum settlement value of each model were 1.86, 2.02 and 1.52 cm, respectively. The comparison of these predicted amounts with the actual data from instrumentation was employed to specify the uncertainty of each model. The numerical model outcomes, with a relative error of 3.8%, best matched the reality and the analytical method, with a relative error of 27.8%, yielded the highest level of model uncertainty.
Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.
2016-01-01
Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354
Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B
2016-04-01
Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.
Hisano, Mizue; Connolly, Sean R; Robbins, William D
2011-01-01
Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing.
Hisano, Mizue; Connolly, Sean R.; Robbins, William D.
2011-01-01
Overfishing of sharks is a global concern, with increasing numbers of species threatened by overfishing. For many sharks, both catch rates and underwater visual surveys have been criticized as indices of abundance. In this context, estimation of population trends using individual demographic rates provides an important alternative means of assessing population status. However, such estimates involve uncertainties that must be appropriately characterized to credibly and effectively inform conservation efforts and management. Incorporating uncertainties into population assessment is especially important when key demographic rates are obtained via indirect methods, as is often the case for mortality rates of marine organisms subject to fishing. Here, focusing on two reef shark species on the Great Barrier Reef, Australia, we estimated natural and total mortality rates using several indirect methods, and determined the population growth rates resulting from each. We used bootstrapping to quantify the uncertainty associated with each estimate, and to evaluate the extent of agreement between estimates. Multiple models produced highly concordant natural and total mortality rates, and associated population growth rates, once the uncertainties associated with the individual estimates were taken into account. Consensus estimates of natural and total population growth across multiple models support the hypothesis that these species are declining rapidly due to fishing, in contrast to conclusions previously drawn from catch rate trends. Moreover, quantitative projections of abundance differences on fished versus unfished reefs, based on the population growth rate estimates, are comparable to those found in previous studies using underwater visual surveys. These findings appear to justify management actions to substantially reduce the fishing mortality of reef sharks. They also highlight the potential utility of rigorously characterizing uncertainty, and applying multiple assessment methods, to obtain robust estimates of population trends in species threatened by overfishing. PMID:21966402
NASA Astrophysics Data System (ADS)
Le Coz, Jérôme; Renard, Benjamin; Bonnifait, Laurent; Branger, Flora; Le Boursicaud, Raphaël; Horner, Ivan; Mansanarez, Valentin; Lang, Michel; Vigneau, Sylvain
2015-04-01
River discharge is a crucial variable for Hydrology: as the output variable of most hydrologic models, it is used for sensitivity analyses, model structure identification, parameter estimation, data assimilation, prediction, etc. A major difficulty stems from the fact that river discharge is not measured continuously. Instead, discharge time series used by hydrologists are usually based on simple stage-discharge relations (rating curves) calibrated using a set of direct stage-discharge measurements (gaugings). In this presentation, we present a Bayesian approach (cf. Le Coz et al., 2014) to build such hydrometric rating curves, to estimate the associated uncertainty and to propagate this uncertainty to discharge time series. The three main steps of this approach are described: (1) Hydraulic analysis: identification of the hydraulic controls that govern the stage-discharge relation, identification of the rating curve equation and specification of prior distributions for the rating curve parameters; (2) Rating curve estimation: Bayesian inference of the rating curve parameters, accounting for the individual uncertainties of available gaugings, which often differ according to the discharge measurement procedure and the flow conditions; (3) Uncertainty propagation: quantification of the uncertainty in discharge time series, accounting for both the rating curve uncertainties and the uncertainty of recorded stage values. The rating curve uncertainties combine the parametric uncertainties and the remnant uncertainties that reflect the limited accuracy of the mathematical model used to simulate the physical stage-discharge relation. In addition, we also discuss current research activities, including the treatment of non-univocal stage-discharge relationships (e.g. due to hydraulic hysteresis, vegetation growth, sudden change of the geometry of the section, etc.). An operational version of the BaRatin software and its graphical interface are made available free of charge on request to the authors. J. Le Coz, B. Renard, L. Bonnifait, F. Branger, R. Le Boursicaud (2014). Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: a Bayesian approach, Journal of Hydrology, 509, 573-587.
A screening-level modeling approach to estimate nitrogen ...
This paper presents a screening-level modeling approach that can be used to rapidly estimate nutrient loading and assess numerical nutrient standard exceedance risk of surface waters leading to potential classification as impaired for designated use. It can also be used to explore best management practice (BMP) implementation to reduce loading. The modeling framework uses a hybrid statistical and process based approach to estimate source of pollutants, their transport and decay in the terrestrial and aquatic parts of watersheds. The framework is developed in the ArcGIS environment and is based on the total maximum daily load (TMDL) balance model. Nitrogen (N) is currently addressed in the framework, referred to as WQM-TMDL-N. Loading for each catchment includes non-point sources (NPS) and point sources (PS). NPS loading is estimated using export coefficient or event mean concentration methods depending on the temporal scales, i.e., annual or daily. Loading from atmospheric deposition is also included. The probability of a nutrient load to exceed a target load is evaluated using probabilistic risk assessment, by including the uncertainty associated with export coefficients of various land uses. The computed risk data can be visualized as spatial maps which show the load exceedance probability for all stream segments. In an application of this modeling approach to the Tippecanoe River watershed in Indiana, USA, total nitrogen (TN) loading and risk of standard exce
Two Approaches to Estimation of Classification Accuracy Rate under Item Response Theory
ERIC Educational Resources Information Center
Lathrop, Quinn N.; Cheng, Ying
2013-01-01
Within the framework of item response theory (IRT), there are two recent lines of work on the estimation of classification accuracy (CA) rate. One approach estimates CA when decisions are made based on total sum scores, the other based on latent trait estimates. The former is referred to as the Lee approach, and the latter, the Rudner approach,…
NASA Astrophysics Data System (ADS)
Ward, E. J.; Bell, D. M.; Clark, J. S.; Kim, H.; Oren, R.
2009-12-01
Thermal dissipation probes (TDPs) are a common method for estimating forest transpiration and canopy conductance from sap flux rates in trees, but their implementation is plagued by uncertainties arising from missing data and variability in the diameter and canopy position of trees, as well as sapwood conductivity within individual trees. Uncertainties in estimates of canopy conductance also translate into uncertainties in carbon assimilation in models such as the Canopy Conductance Constrained Carbon Assimilation (4CA) model that combine physiological and environmental data to estimate photosynthetic rates. We developed a method to propagate these uncertainties in the scaling and imputation of TDP data to estimates of canopy transpiration and conductance using a state-space Jarvis-type conductance model in a hierarchical Bayesian framework. This presentation will focus on the impact of these uncertainties on estimates of water and carbon fluxes using 4CA and data from the Duke Free Air Carbon Enrichment (FACE) project, which incorporates both elevated carbon dioxide and soil nitrogen treatments. We will also address the response of canopy conductance to vapor pressure deficit, incident radiation and soil moisture, as well as the effect of treatment-related stand structure differences in scaling TDP measurements. Preliminary results indicate that in 2006, a year of normal precipitation (1127 mm), canopy transpiration increased in elevated carbon dioxide ~8% on a ground area basis. In 2007, a year with a pronounced drought (800 mm precipitation), this increase was only present in the combined carbon dioxide and fertilization treatment. The seasonal dynamics of water and carbon fluxes will be discussed in detail.
Statistical evaluation of the influence of the uncertainty budget on B-spline curve approximation
NASA Astrophysics Data System (ADS)
Zhao, Xin; Alkhatib, Hamza; Kargoll, Boris; Neumann, Ingo
2017-12-01
In the field of engineering geodesy, terrestrial laser scanning (TLS) has become a popular method for detecting deformations. This paper analyzes the influence of the uncertainty budget on free-form curves modeled by B-splines. Usually, free-form estimation is based on scanning points assumed to have equal accuracies, which is not realistic. Previous findings demonstrate that the residuals still contain random and systematic uncertainties caused by instrumental, object-related and atmospheric influences. In order to guarantee the quality of derived estimates, it is essential to be aware of all uncertainties and their impact on the estimation. In this paper, a more detailed uncertainty budget is considered, in the context of the "Guide to the Expression of Uncertainty in Measurement" (GUM), which leads to a refined, heteroskedastic variance covariance matrix (VCM) of TLS measurements. Furthermore, the control points of B-spline curves approximating a measured bridge are estimated. Comparisons are made between the estimated B-spline curves using on the one hand a homoskedastic VCM and on the other hand the refined VCM. To assess the statistical significance of the differences displayed by the estimates for the two stochastic models, a nested model misspecification test and a non-nested model selection test are described and applied. The test decisions indicate that the homoskedastic VCM should be replaced by a heteroskedastic VCM in the direction of the suggested VCM. However, the tests also indicate that the considered VCM is still inadequate in light of the given data set and should therefore be improved.
NASA Astrophysics Data System (ADS)
Bieroza, Magdalena
2017-04-01
High-frequency nutrient (phosphorus and nitrogen) monitoring using wet-chemistry analysers and optical sensors has revolutionised the collection of biogeochemical data from streams, rivers and lakes. Matching the nutrient measurement time with timescales of hydrological responses has revealed biogeochemical patterns and nutrient hydrological responses not observed previously. Capturing a wider range of nutrient concentrations compared to traditional coarse resolution sampling enables more accurate estimation of mean concentrations and loads and thus improved water body classification. However, to date the scientific insights from the high-frequency nutrient monitoring studies have not been translated into policy and operational responses. The pertinent question is where and how often to measure nutrients to satisfy statutory monitoring requirements for the Water Framework Directive and the Nitrates Directive. Therefore this paper discusses how the reduced data uncertainty and improved process understanding obtained with the high-frequency measurements can improve statutory nutrient monitoring, using case studies from England and Sweden.
The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues.
Wedekind, Claus; von Siebenthal, Beat; Gingold, Ruth
2007-07-01
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Stoeger, Angela S.; Zeppelzauer, Matthias; Baotic, Anton
2015-01-01
Animal vocal signals are increasingly used to monitor wildlife populations and to obtain estimates of species occurrence and abundance. In the future, acoustic monitoring should function not only to detect animals, but also to extract detailed information about populations by discriminating sexes, age groups, social or kin groups, and potentially individuals. Here we show that it is possible to estimate age groups of African elephants (Loxodonta africana) based on acoustic parameters extracted from rumbles recorded under field conditions in a National Park in South Africa. Statistical models reached up to 70 % correct classification to four age groups (infants, calves, juveniles, adults) and 95 % correct classification when categorising into two groups (infants/calves lumped into one group versus adults). The models revealed that parameters representing absolute frequency values have the most discriminative power. Comparable classification results were obtained by fully automated classification of rumbles by high-dimensional features that represent the entire spectral envelope, such as MFCC (75 % correct classification) and GFCC (74 % correct classification). The reported results and methods provide the scientific foundation for a future system that could potentially automatically estimate the demography of an acoustically monitored elephant group or population. PMID:25821348
NASA Astrophysics Data System (ADS)
Ciurean, R. L.; Glade, T.
2012-04-01
Decision under uncertainty is a constant of everyday life and an important component of risk management and governance. Recently, experts have emphasized the importance of quantifying uncertainty in all phases of landslide risk analysis. Due to its multi-dimensional and dynamic nature, (physical) vulnerability is inherently complex and the "degree of loss" estimates imprecise and to some extent even subjective. Uncertainty analysis introduces quantitative modeling approaches that allow for a more explicitly objective output, improving the risk management process as well as enhancing communication between various stakeholders for better risk governance. This study presents a review of concepts for uncertainty analysis in vulnerability of elements at risk to landslides. Different semi-quantitative and quantitative methods are compared based on their feasibility in real-world situations, hazard dependency, process stage in vulnerability assessment (i.e. input data, model, output), and applicability within an integrated landslide hazard and risk framework. The resulted observations will help to identify current gaps and future needs in vulnerability assessment, including estimation of uncertainty propagation, transferability of the methods, development of visualization tools, but also address basic questions like what is uncertainty and how uncertainty can be quantified or treated in a reliable and reproducible way.
Development of a Digital Aquifer Permeability Map for the ...
Researchers at the U.S. Environmental Protection Agency’s Western Ecology Division have been developing hydrologic landscape maps for selected U.S. states in an effort to create a method to identify the intrinsic watershed attributes of landscapes in regions with little data. Each hydrologic landscape unit is assigned a categorical value from five key indices of macro-scale hydrologic behavior, including annual climate, climate seasonality, aquifer permeability, terrain, and soil permeability. The aquifer permeability index requires creation of a from-scratch dataset for each state. The permeability index for the Pacific Southwest (California, Nevada, and Arizona) expands and modifies the permeability index for the Pacific Northwest (Oregon, Washington, and Idaho), which preceded it. The permeability index was created by assigning geologic map units to one of 18 categories with presumed similar values of permeability to create a hydrolithologic map. The hydrolithologies were then further categorized into permeability index classifications of high, low, unknown and surface water. Unconsolidated, carbonate, volcanic, and undifferentiated units are classified more conservatively to better address uncertainty in source data. High vs. low permeability classifications are assigned qualitatively but follow a threshold guideline of 8.5x10-2 m/day hydraulic conductivity. Estimates of permeability from surface lithology is the current best practice for broad-sca
Assessment of uncertainties of the models used in thermal-hydraulic computer codes
NASA Astrophysics Data System (ADS)
Gricay, A. S.; Migrov, Yu. A.
2015-09-01
The article deals with matters concerned with the problem of determining the statistical characteristics of variable parameters (the variation range and distribution law) in analyzing the uncertainty and sensitivity of calculation results to uncertainty in input data. A comparative analysis of modern approaches to uncertainty in input data is presented. The need to develop an alternative method for estimating the uncertainty of model parameters used in thermal-hydraulic computer codes, in particular, in the closing correlations of the loop thermal hydraulics block, is shown. Such a method shall feature the minimal degree of subjectivism and must be based on objective quantitative assessment criteria. The method includes three sequential stages: selecting experimental data satisfying the specified criteria, identifying the key closing correlation using a sensitivity analysis, and carrying out case calculations followed by statistical processing of the results. By using the method, one can estimate the uncertainty range of a variable parameter and establish its distribution law in the above-mentioned range provided that the experimental information is sufficiently representative. Practical application of the method is demonstrated taking as an example the problem of estimating the uncertainty of a parameter appearing in the model describing transition to post-burnout heat transfer that is used in the thermal-hydraulic computer code KORSAR. The performed study revealed the need to narrow the previously established uncertainty range of this parameter and to replace the uniform distribution law in the above-mentioned range by the Gaussian distribution law. The proposed method can be applied to different thermal-hydraulic computer codes. In some cases, application of the method can make it possible to achieve a smaller degree of conservatism in the expert estimates of uncertainties pertinent to the model parameters used in computer codes.
Uncertainty analysis for absorbed dose from a brain receptor imaging agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, B.; Miller, L.F.; Sparks, R.B.
Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation wasmore » considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.« less
Rasch, Elizabeth K; Hirsch, Rosemarie; Paulose-Ram, Ryne; Hochberg, Marc C
2003-04-01
To determine prevalence estimates for rheumatoid arthritis (RA) in noninstitutionalized older adults in the US. Prevalence estimates were compared using 3 different classification methods based on current classification criteria for RA. Data from the Third National Health and Nutrition Examination Survey (NHANES-III) were used to generate prevalence estimates by 3 classification methods in persons 60 years of age and older (n = 5,302). Method 1 applied the "n of k" rule, such that subjects who met 3 of 6 of the American College of Rheumatology (ACR) 1987 criteria were classified as having RA (data from hand radiographs were not available). In method 2, the ACR classification tree algorithm was applied. For method 3, medication data were used to augment case identification via method 2. Population prevalence estimates and 95% confidence intervals (95% CIs) were determined using the 3 methods on data stratified by sex, race/ethnicity, age, and education. Overall prevalence estimates using the 3 classification methods were 2.03% (95% CI 1.30-2.76), 2.15% (95% CI 1.43-2.87), and 2.34% (95% CI 1.66-3.02), respectively. The prevalence of RA was generally greater in the following groups: women, Mexican Americans, respondents with less education, and respondents who were 70 years of age and older. The prevalence of RA in persons 60 years of age and older is approximately 2%, representing the proportion of the US elderly population who will most likely require medical intervention because of disease activity. Different classification methods yielded similar prevalence estimates, although detection of RA was enhanced by incorporation of data on use of prescription medications, an important consideration in large population surveys.
Methods for Estimating Uncertainty in Factor Analytic Solutions
The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...
Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds
We developed Interspecies Correlation Estimation (ICE) models for aromatic compounds containing 1 to 4 benzene rings to assess uncertainty in toxicity extrapolation in two data compilation approaches. ICE models are mathematical relationships between surrogate and predicted test ...
Framework for Uncertainty Assessment - Hanford Site-Wide Groundwater Flow and Transport Modeling
NASA Astrophysics Data System (ADS)
Bergeron, M. P.; Cole, C. R.; Murray, C. J.; Thorne, P. D.; Wurstner, S. K.
2002-05-01
Pacific Northwest National Laboratory is in the process of development and implementation of an uncertainty estimation methodology for use in future site assessments that addresses parameter uncertainty as well as uncertainties related to the groundwater conceptual model. The long-term goals of the effort are development and implementation of an uncertainty estimation methodology for use in future assessments and analyses being made with the Hanford site-wide groundwater model. The basic approach in the framework developed for uncertainty assessment consists of: 1) Alternate conceptual model (ACM) identification to identify and document the major features and assumptions of each conceptual model. The process must also include a periodic review of the existing and proposed new conceptual models as data or understanding become available. 2) ACM development of each identified conceptual model through inverse modeling with historical site data. 3) ACM evaluation to identify which of conceptual models are plausible and should be included in any subsequent uncertainty assessments. 4) ACM uncertainty assessments will only be carried out for those ACMs determined to be plausible through comparison with historical observations and model structure identification measures. The parameter uncertainty assessment process generally involves: a) Model Complexity Optimization - to identify the important or relevant parameters for the uncertainty analysis; b) Characterization of Parameter Uncertainty - to develop the pdfs for the important uncertain parameters including identification of any correlations among parameters; c) Propagation of Uncertainty - to propagate parameter uncertainties (e.g., by first order second moment methods if applicable or by a Monte Carlo approach) through the model to determine the uncertainty in the model predictions of interest. 5)Estimation of combined ACM and scenario uncertainty by a double sum with each component of the inner sum (an individual CCDF) representing parameter uncertainty associated with a particular scenario and ACM and the outer sum enumerating the various plausible ACM and scenario combinations in order to represent the combined estimate of uncertainty (a family of CCDFs). A final important part of the framework includes identification, enumeration, and documentation of all the assumptions, which include those made during conceptual model development, required by the mathematical model, required by the numerical model, made during the spatial and temporal descretization process, needed to assign the statistical model and associated parameters that describe the uncertainty in the relevant input parameters, and finally those assumptions required by the propagation method. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy under Contract DE-AC06-76RL01830.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less
Ihssane, B; Bouchafra, H; El Karbane, M; Azougagh, M; Saffaj, T
2016-05-01
We propose in this work an efficient way to evaluate the measurement of uncertainty at the end of the development step of an analytical method, since this assessment provides an indication of the performance of the optimization process. The estimation of the uncertainty is done through a robustness test by applying a Placquett-Burman design, investigating six parameters influencing the simultaneous chromatographic assay of five water-soluble vitamins. The estimated effects of the variation of each parameter are translated into standard uncertainty value at each concentration level. The values obtained of the relative uncertainty do not exceed the acceptance limit of 5%, showing that the procedure development was well done. In addition, a statistical comparison conducted to compare standard uncertainty after the development stage and those of the validation step indicates that the estimated uncertainty are equivalent. The results obtained show clearly the performance and capacity of the chromatographic method to simultaneously assay the five vitamins and suitability for use in routine application. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
Uncertainty in Estimates of Net Seasonal Snow Accumulation on Glaciers from In Situ Measurements
NASA Astrophysics Data System (ADS)
Pulwicki, A.; Flowers, G. E.; Radic, V.
2017-12-01
Accurately estimating the net seasonal snow accumulation (or "winter balance") on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modeling snow distribution is inherently difficult in mountainous terrain, resulting in high uncertainties in estimates of winter balance. Our work focuses on uncertainty attribution within the process of converting direct measurements of snow depth and density to estimates of winter balance. We collected more than 9000 direct measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada in May 2016. Linear regression (LR) and simple kriging (SK), combined with cross correlation and Bayesian model averaging, are used to interpolate estimates of snow water equivalent (SWE) from snow depth and density measurements. Snow distribution patterns are found to differ considerably between glaciers, highlighting strong inter- and intra-basin variability. Elevation is found to be the dominant control of the spatial distribution of SWE, but the relationship varies considerably between glaciers. A simple parameterization of wind redistribution is also a small but statistically significant predictor of SWE. The SWE estimated for one study glacier has a short range parameter (90 m) and both LR and SK estimate a winter balance of 0.6 m w.e. but are poor predictors of SWE at measurement locations. The other two glaciers have longer SWE range parameters ( 450 m) and due to differences in extrapolation, SK estimates are more than 0.1 m w.e. (up to 40%) lower than LR estimates. By using a Monte Carlo method to quantify the effects of various sources of uncertainty, we find that the interpolation of estimated values of SWE is a larger source of uncertainty than the assignment of snow density or than the representation of the SWE value within a terrain model grid cell. For our study glaciers, the total winter balance uncertainty ranges from 0.03 (8%) to 0.15 (54%) m w.e. depending primarily on the interpolation method. Despite the challenges associated with accurately and precisely estimating winter balance, our results are consistent with the previously reported regional accumulation gradient.
Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates
NASA Astrophysics Data System (ADS)
Grassi, Giacomo; Monni, Suvi; Federici, Sandro; Achard, Frederic; Mollicone, Danilo
2008-07-01
A common paradigm when the reduction of emissions from deforestations is estimated for the purpose of promoting it as a mitigation option in the context of the United Nations Framework Convention on Climate Change (UNFCCC) is that high uncertainties in input data—i.e., area change and C stock change/area—may seriously undermine the credibility of the estimates and therefore of reduced deforestation as a mitigation option. In this paper, we show how a series of concepts and methodological tools—already existing in UNFCCC decisions and IPCC guidance documents—may greatly help to deal with the uncertainties of the estimates of reduced emissions from deforestation.
NASA Astrophysics Data System (ADS)
Siddique, Sami; Jaffray, David
2007-03-01
A central purpose of image-guidance is to assist the interventionalist with feedback of geometric performance in the direction of therapy delivery. Tradeoffs exist between accuracy, precision and the constraints imposed by parameters used in the generation of images. A framework that uses geometric performance as feedback to control these parameters can balance such tradeoffs in order to maintain the requisite localization precision for a given clinical procedure. We refer to this principle as Active Image-Guidance (AIG). This framework requires estimates of the uncertainty in the estimated location of the object of interest. In this study, a simple fiducial marker detected under X-ray fluoroscopy is considered and it is shown that a relation exists between the applied imaging dose and the uncertainty in localization for a given observer. A robust estimator of the location of a fiducial in the thorax during respiration under X-ray fluoroscopy is demonstrated using a particle filter based approach that outputs estimates of the location and the associated spatial uncertainty. This approach gives an rmse of 1.3mm and the uncertainty estimates are found to be correlated with the error in the estimates. Furthermore, the particle filtering approach is employed to output location estimates and the associated uncertainty not only at instances of pulsed exposure but also between exposures. Such a system has applications in image-guided interventions (surgery, radiotherapy, interventional radiology) where there are latencies between the moment of imaging and the act of intervention.
NASA Astrophysics Data System (ADS)
Freni, Gabriele; Mannina, Giorgio
In urban drainage modelling, uncertainty analysis is of undoubted necessity. However, uncertainty analysis in urban water-quality modelling is still in its infancy and only few studies have been carried out. Therefore, several methodological aspects still need to be experienced and clarified especially regarding water quality modelling. The use of the Bayesian approach for uncertainty analysis has been stimulated by its rigorous theoretical framework and by the possibility of evaluating the impact of new knowledge on the modelling predictions. Nevertheless, the Bayesian approach relies on some restrictive hypotheses that are not present in less formal methods like the Generalised Likelihood Uncertainty Estimation (GLUE). One crucial point in the application of Bayesian method is the formulation of a likelihood function that is conditioned by the hypotheses made regarding model residuals. Statistical transformations, such as the use of Box-Cox equation, are generally used to ensure the homoscedasticity of residuals. However, this practice may affect the reliability of the analysis leading to a wrong uncertainty estimation. The present paper aims to explore the influence of the Box-Cox equation for environmental water quality models. To this end, five cases were considered one of which was the “real” residuals distributions (i.e. drawn from available data). The analysis was applied to the Nocella experimental catchment (Italy) which is an agricultural and semi-urbanised basin where two sewer systems, two wastewater treatment plants and a river reach were monitored during both dry and wet weather periods. The results show that the uncertainty estimation is greatly affected by residual transformation and a wrong assumption may also affect the evaluation of model uncertainty. The use of less formal methods always provide an overestimation of modelling uncertainty with respect to Bayesian method but such effect is reduced if a wrong assumption is made regarding the residuals distribution. If residuals are not normally distributed, the uncertainty is over-estimated if Box-Cox transformation is not applied or non-calibrated parameter is used.
NASA Astrophysics Data System (ADS)
Zhao, Yu; Zhou, Yaduan; Qiu, Liping; Zhang, Jie
2017-09-01
A comprehensive uncertainty analysis was conducted on emission inventories for industrial sources at national (China), provincial (Jiangsu), and city (Nanjing) scales for 2012. Based on various methods and data sources, Monte-Carlo simulation was applied at sector level for national inventory, and at plant level (whenever possible) for provincial and city inventories. The uncertainties of national inventory were estimated at -17-37% (expressed as 95% confidence intervals, CIs), -21-35%, -19-34%, -29-40%, -22-47%, -21-54%, -33-84%, and -32-92% for SO2, NOX, CO, TSP (total suspended particles), PM10, PM2.5, black carbon (BC), and organic carbon (OC) emissions respectively for the whole country. At provincial and city levels, the uncertainties of corresponding pollutant emissions were estimated at -15-18%, -18-33%, -16-37%, -20-30%, -23-45%, -26-50%, -33-79%, and -33-71% for Jiangsu, and -17-22%, -10-33%, -23-75%, -19-36%, -23-41%, -28-48%, -45-82%, and -34-96% for Nanjing, respectively. Emission factors (or associated parameters) were identified as the biggest contributors to the uncertainties of emissions for most source categories except iron & steel production in the national inventory. Compared to national one, uncertainties of total emissions in the provincial and city-scale inventories were not significantly reduced for most species with an exception of SO2. For power and other industrial boilers, the uncertainties were reduced, and the plant-specific parameters played more important roles to the uncertainties. Much larger PM10 and PM2.5 emissions for Jiangsu were estimated in this provincial inventory than other studies, implying the big discrepancies on data sources of emission factors and activity data between local and national inventories. Although the uncertainty analysis of bottom-up emission inventories at national and local scales partly supported the ;top-down; estimates using observation and/or chemistry transport models, detailed investigations and field measurements were recommended for further improving the emission estimates and reducing the uncertainty of inventories at local and regional scales, for both industrial and other sectors.
A general model for attitude determination error analysis
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Seidewitz, ED; Nicholson, Mark
1988-01-01
An overview is given of a comprehensive approach to filter and dynamics modeling for attitude determination error analysis. The models presented include both batch least-squares and sequential attitude estimation processes for both spin-stabilized and three-axis stabilized spacecraft. The discussion includes a brief description of a dynamics model of strapdown gyros, but it does not cover other sensor models. Model parameters can be chosen to be solve-for parameters, which are assumed to be estimated as part of the determination process, or consider parameters, which are assumed to have errors but not to be estimated. The only restriction on this choice is that the time evolution of the consider parameters must not depend on any of the solve-for parameters. The result of an error analysis is an indication of the contributions of the various error sources to the uncertainties in the determination of the spacecraft solve-for parameters. The model presented gives the uncertainty due to errors in the a priori estimates of the solve-for parameters, the uncertainty due to measurement noise, the uncertainty due to dynamic noise (also known as process noise or measurement noise), the uncertainty due to the consider parameters, and the overall uncertainty due to all these sources of error.
Fatigue Level Estimation of Bill Based on Acoustic Signal Feature by Supervised SOM
NASA Astrophysics Data System (ADS)
Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa
Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.
Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly
ERIC Educational Resources Information Center
Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.
2013-01-01
Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…
Langbein, John O.
2012-01-01
Recent studies have documented that global positioning system (GPS) time series of position estimates have temporal correlations which have been modeled as a combination of power-law and white noise processes. When estimating quantities such as a constant rate from GPS time series data, the estimated uncertainties on these quantities are more realistic when using a noise model that includes temporal correlations than simply assuming temporally uncorrelated noise. However, the choice of the specific representation of correlated noise can affect the estimate of uncertainty. For many GPS time series, the background noise can be represented by either: (1) a sum of flicker and random-walk noise or, (2) as a power-law noise model that represents an average of the flicker and random-walk noise. For instance, if the underlying noise model is a combination of flicker and random-walk noise, then incorrectly choosing the power-law model could underestimate the rate uncertainty by a factor of two. Distinguishing between the two alternate noise models is difficult since the flicker component can dominate the assessment of the noise properties because it is spread over a significant portion of the measurable frequency band. But, although not necessarily detectable, the random-walk component can be a major constituent of the estimated rate uncertainty. None the less, it is possible to determine the upper bound on the random-walk noise.
Robust gaze-steering of an active vision system against errors in the estimated parameters
NASA Astrophysics Data System (ADS)
Han, Youngmo
2015-01-01
Gaze-steering is often used to broaden the viewing range of an active vision system. Gaze-steering procedures are usually based on estimated parameters such as image position, image velocity, depth and camera calibration parameters. However, there may be uncertainties in these estimated parameters because of measurement noise and estimation errors. In this case, robust gaze-steering cannot be guaranteed. To compensate for such problems, this paper proposes a gaze-steering method based on a linear matrix inequality (LMI). In this method, we first propose a proportional derivative (PD) control scheme on the unit sphere that does not use depth parameters. This proposed PD control scheme can avoid uncertainties in the estimated depth and camera calibration parameters, as well as inconveniences in their estimation process, including the use of auxiliary feature points and highly non-linear computation. Furthermore, the control gain of the proposed PD control scheme on the unit sphere is designed using LMI such that the designed control is robust in the presence of uncertainties in the other estimated parameters, such as image position and velocity. Simulation results demonstrate that the proposed method provides a better compensation for uncertainties in the estimated parameters than the contemporary linear method and steers the gaze of the camera more steadily over time than the contemporary non-linear method.
REGIONAL-SCALE WIND FIELD CLASSIFICATION EMPLOYING CLUSTER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glascoe, L G; Glaser, R E; Chin, H S
2004-06-17
The classification of time-varying multivariate regional-scale wind fields at a specific location can assist event planning as well as consequence and risk analysis. Further, wind field classification involves data transformation and inference techniques that effectively characterize stochastic wind field variation. Such a classification scheme is potentially useful for addressing overall atmospheric transport uncertainty and meteorological parameter sensitivity issues. Different methods to classify wind fields over a location include the principal component analysis of wind data (e.g., Hardy and Walton, 1978) and the use of cluster analysis for wind data (e.g., Green et al., 1992; Kaufmann and Weber, 1996). The goalmore » of this study is to use a clustering method to classify the winds of a gridded data set, i.e, from meteorological simulations generated by a forecast model.« less
Defining the measurand in radius of curvature measurements
NASA Astrophysics Data System (ADS)
Davies, Angela; Schmitz, Tony L.
2003-11-01
Traceable radius of curvature measurements are critical for precision optics manufacture. An optical bench measurement of radius is very repeatable and is the preferred method for low-uncertainty applications. On an optical bench, the displacement of the optic is measured as it is moved between the cat's eye and confocal positions, each identified using a figure measuring interferometer. Traceability requires connection to a basic unit (the meter, here) in addition to a defensible uncertainty analysis, and the identification and proper propagation of all uncertainty sources in this measurement is challenging. Recent work has focused on identifying all uncertainty contributions; measurement biases have been approximately taken into account and uncertainties combined in an RSS sense for a final measurement estimate and uncertainty. In this paper we report on a new mathematical definition of the radius measurand, which is a single function that depends on all uncertainty sources, such as error motions, alignment uncertainty, displacement gauge uncertainty, etc. The method is based on a homogeneous transformation matrix (HTM) formalism, and intrinsically defines an unbiased estimate for radius, providing a single mathematical expression for uncertainty propagation through a Taylor-series expansion.
Uncertainties in estimates of the risks of late effects from space radiation
NASA Astrophysics Data System (ADS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P. B.; Dicello, J. F.
2004-01-01
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.
1988-01-01
The effects of actual variations, also called uncertainties, in geometry and material properties on the structural response of a space shuttle main engine turbopump blade are evaluated. A normal distribution was assumed to represent the uncertainties statistically. Uncertainties were assumed to be totally random, partially correlated, and fully correlated. The magnitude of these uncertainties were represented in terms of mean and variance. Blade responses, recorded in terms of displacements, natural frequencies, and maximum stress, was evaluated and plotted in the form of probabilistic distributions under combined uncertainties. These distributions provide an estimate of the range of magnitudes of the response and probability of occurrence of a given response. Most importantly, these distributions provide the information needed to estimate quantitatively the risk in a structural design.
Uncertainty in gridded CO 2 emissions estimates
Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...
2016-05-19
We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.
2015-11-01
Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.
Assessing Hospital Performance After Percutaneous Coronary Intervention Using Big Data.
Spertus, Jacob V; T Normand, Sharon-Lise; Wolf, Robert; Cioffi, Matt; Lovett, Ann; Rose, Sherri
2016-11-01
Although risk adjustment remains a cornerstone for comparing outcomes across hospitals, optimal strategies continue to evolve in the presence of many confounders. We compared conventional regression-based model to approaches particularly suited to leveraging big data. We assessed hospital all-cause 30-day excess mortality risk among 8952 adults undergoing percutaneous coronary intervention between October 1, 2011, and September 30, 2012, in 24 Massachusetts hospitals using clinical registry data linked with billing data. We compared conventional logistic regression models with augmented inverse probability weighted estimators and targeted maximum likelihood estimators to generate more efficient and unbiased estimates of hospital effects. We also compared a clinically informed and a machine-learning approach to confounder selection, using elastic net penalized regression in the latter case. Hospital excess risk estimates range from -1.4% to 2.0% across methods and confounder sets. Some hospitals were consistently classified as low or as high excess mortality outliers; others changed classification depending on the method and confounder set used. Switching from the clinically selected list of 11 confounders to a full set of 225 confounders increased the estimation uncertainty by an average of 62% across methods as measured by confidence interval length. Agreement among methods ranged from fair, with a κ statistic of 0.39 (SE: 0.16), to perfect, with a κ of 1 (SE: 0.0). Modern causal inference techniques should be more frequently adopted to leverage big data while minimizing bias in hospital performance assessments. © 2016 American Heart Association, Inc.
Estimation of Lithological Classification in Taipei Basin: A Bayesian Maximum Entropy Method
NASA Astrophysics Data System (ADS)
Wu, Meng-Ting; Lin, Yuan-Chien; Yu, Hwa-Lung
2015-04-01
In environmental or other scientific applications, we must have a certain understanding of geological lithological composition. Because of restrictions of real conditions, only limited amount of data can be acquired. To find out the lithological distribution in the study area, many spatial statistical methods used to estimate the lithological composition on unsampled points or grids. This study applied the Bayesian Maximum Entropy (BME method), which is an emerging method of the geological spatiotemporal statistics field. The BME method can identify the spatiotemporal correlation of the data, and combine not only the hard data but the soft data to improve estimation. The data of lithological classification is discrete categorical data. Therefore, this research applied Categorical BME to establish a complete three-dimensional Lithological estimation model. Apply the limited hard data from the cores and the soft data generated from the geological dating data and the virtual wells to estimate the three-dimensional lithological classification in Taipei Basin. Keywords: Categorical Bayesian Maximum Entropy method, Lithological Classification, Hydrogeological Setting
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
NASA Technical Reports Server (NTRS)
Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong
2016-01-01
Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions
Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong
2018-01-01
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706
Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.
Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong
2016-03-01
Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.
A tool for efficient, model-independent management optimization under uncertainty
White, Jeremy; Fienen, Michael N.; Barlow, Paul M.; Welter, Dave E.
2018-01-01
To fill a need for risk-based environmental management optimization, we have developed PESTPP-OPT, a model-independent tool for resource management optimization under uncertainty. PESTPP-OPT solves a sequential linear programming (SLP) problem and also implements (optional) efficient, “on-the-fly” (without user intervention) first-order, second-moment (FOSM) uncertainty techniques to estimate model-derived constraint uncertainty. Combined with a user-specified risk value, the constraint uncertainty estimates are used to form chance-constraints for the SLP solution process, so that any optimal solution includes contributions from model input and observation uncertainty. In this way, a “single answer” that includes uncertainty is yielded from the modeling analysis. PESTPP-OPT uses the familiar PEST/PEST++ model interface protocols, which makes it widely applicable to many modeling analyses. The use of PESTPP-OPT is demonstrated with a synthetic, integrated surface-water/groundwater model. The function and implications of chance constraints for this synthetic model are discussed.
Optimal Groundwater Extraction under Uncertainty and a Spatial Stock Externality
We introduce a model that incorporates two important elements to estimating welfare gains from groundwater management: stochasticity and a spatial stock externality. We estimate welfare gains resulting from optimal management under uncertainty as well as a gradual stock externali...
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2016-01-01
This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.
Van Uffelen, Lora J; Nosal, Eva-Marie; Howe, Bruce M; Carter, Glenn S; Worcester, Peter F; Dzieciuch, Matthew A; Heaney, Kevin D; Campbell, Richard L; Cross, Patrick S
2013-10-01
Four acoustic Seagliders were deployed in the Philippine Sea November 2010 to April 2011 in the vicinity of an acoustic tomography array. The gliders recorded over 2000 broadband transmissions at ranges up to 700 km from moored acoustic sources as they transited between mooring sites. The precision of glider positioning at the time of acoustic reception is important to resolve the fundamental ambiguity between position and sound speed. The Seagliders utilized GPS at the surface and a kinematic model below for positioning. The gliders were typically underwater for about 6.4 h, diving to depths of 1000 m and traveling on average 3.6 km during a dive. Measured acoustic arrival peaks were unambiguously associated with predicted ray arrivals. Statistics of travel-time offsets between received arrivals and acoustic predictions were used to estimate range uncertainty. Range (travel time) uncertainty between the source and the glider position from the kinematic model is estimated to be 639 m (426 ms) rms. Least-squares solutions for glider position estimated from acoustically derived ranges from 5 sources differed by 914 m rms from modeled positions, with estimated uncertainty of 106 m rms in horizontal position. Error analysis included 70 ms rms of uncertainty due to oceanic sound-speed variability.
ERIC Educational Resources Information Center
Md Desa, Zairul Nor Deana
2012-01-01
In recent years, there has been increasing interest in estimating and improving subscore reliability. In this study, the multidimensional item response theory (MIRT) and the bi-factor model were combined to estimate subscores, to obtain subscores reliability, and subscores classification. Both the compensatory and partially compensatory MIRT…
Statistical inference for remote sensing-based estimates of net deforestation
Ronald E. McRoberts; Brian F. Walters
2012-01-01
Statistical inference requires expression of an estimate in probabilistic terms, usually in the form of a confidence interval. An approach to constructing confidence intervals for remote sensing-based estimates of net deforestation is illustrated. The approach is based on post-classification methods using two independent forest/non-forest classifications because...
NASA Technical Reports Server (NTRS)
Carnes, J. G.; Baird, J. E. (Principal Investigator)
1980-01-01
The classification procedure utilized in making crop proportion estimates for corn and soybeans using remotely sensed data was evaluated. The procedure was derived during the transition year of the Large Area Crop Inventory Experiment. Analysis of variance techniques were applied to classifications performed by 3 groups of analysts who processed 25 segments selected from 4 agrophysical units (APU's). Group and APU effects were assessed to determine factors which affected the quality of the classifications. The classification results were studied to determine the effectiveness of the procedure in producing corn and soybeans proportion estimates.
Minimum Expected Risk Estimation for Near-neighbor Classification
2006-04-01
We consider the problems of class probability estimation and classification when using near-neighbor classifiers, such as k-nearest neighbors ( kNN ...estimate for weighted kNN classifiers with different prior information, for a broad class of risk functions. Theory and simulations show how significant...the difference is compared to the standard maximum likelihood weighted kNN estimates. Comparisons are made with uniform weights, symmetric weights
Robust control of the DC-DC boost converter based on the uncertainty and disturbance estimator
NASA Astrophysics Data System (ADS)
Oucheriah, Said
2017-11-01
In this paper, a robust non-linear controller based on the uncertainty and disturbance estimator (UDE) scheme is successfully developed and implemented for the output voltage regulation of the DC-DC boost converter. System uncertainties, external disturbances and unknown non-linear dynamics are lumped as a signal that is accurately estimated using a low-pass filter and their effects are cancelled by the controller. This methodology forms the basis of the UDE-based controller. A simple procedure is also developed that systematically determines the parameters of the controller to meet certain specifications. Using simulation, the effectiveness of the proposed controller is compared against the sliding-mode control (SMC). Experimental tests also show that the proposed controller is robust to system uncertainties, large input and load perturbations.
Sampling in freshwater environments: suspended particle traps and variability in the final data.
Barbizzi, Sabrina; Pati, Alessandra
2008-11-01
This paper reports one practical method to estimate the measurement uncertainty including sampling, derived by the approach implemented by Ramsey for soil investigations. The methodology has been applied to estimate the measurements uncertainty (sampling and analyses) of (137)Cs activity concentration (Bq kg(-1)) and total carbon content (%) in suspended particle sampling in a freshwater ecosystem. Uncertainty estimates for between locations, sampling and analysis components have been evaluated. For the considered measurands, the relative expanded measurement uncertainties are 12.3% for (137)Cs and 4.5% for total carbon. For (137)Cs, the measurement (sampling+analysis) variance gives the major contribution to the total variance, while for total carbon the spatial variance is the dominant contributor to the total variance. The limitations and advantages of this basic method are discussed.
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Chandrasekaran, V.; Mendoza, D. L.; Geethakumar, S.
2010-12-01
The Vulcan Project has estimated United States fossil fuel CO2 emissions at the hourly time scale and at spatial scales below the county level for the year 2002. Vulcan is built from a wide variety of observational data streams including regulated air pollutant emissions reporting, traffic monitoring, energy statistics, and US census data. In addition to these data sets, Vulcan relies on a series of modeling assumptions and constructs to interpolate in space, time and transform non-CO2 reporting into an estimate of CO2 combustion emissions. The recent version 2.0 of the Vulcan inventory has produced advances in a number of categories with particular emphasis on improved temporal structure. Onroad transportation emissions now avail of roughly 5000 automated traffic count monitors allowing for much improved diurnal and weekly time structure in our onroad transportation emissions. Though the inventory shows excellent agreement with independent national-level CO2 emissions estimates, uncertainty quantification has been a challenging task given the large number of data sources and numerous modeling assumptions. However, we have now accomplished a complete uncertainty estimate across all the Vulcan economic sectors and will present uncertainty estimates as a function of space, time, sector and fuel. We find that, like the underlying distribution of CO2 emissions themselves, the uncertainty is also strongly lognormal with high uncertainty associated with a relatively small number of locations. These locations typically are locations reliant upon coal combustion as the dominant CO2 source. We will also compare and contrast Vulcan fossil fuel CO2 emissions estimates against estimates built from DOE fuel-based surveys at the state level. We conclude that much of the difference between the Vulcan inventory and DOE statistics are not due to biased estimation but mechanistic differences in supply versus demand and combustion in space/time.
Experiment and simulation for CSI: What are the missing links?
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Park, K. C.
1989-01-01
Viewgraphs on experiment and simulation for control structure interaction (CSI) are presented. Topics covered include: control structure interaction; typical control/structure interaction system; CSI problem classification; actuator/sensor models; modeling uncertainty; noise models; real-time computations; and discrete versus continuous.
Constraining uncertainties in water supply reliability in a tropical data scarce basin
NASA Astrophysics Data System (ADS)
Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte
2015-04-01
Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.
Chang, Xiaofeng; Wang, Shiping; Cui, Shujuan; Zhu, Xiaoxue; Luo, Caiyun; Zhang, Zhenhua; Wilkes, Andreas
2014-01-01
Alpine grassland of the Tibetan Plateau is an important component of global soil organic carbon (SOC) stocks, but insufficient field observations and large spatial heterogeneity leads to great uncertainty in their estimation. In the Three Rivers Source Region (TRSR), alpine grasslands account for more than 75% of the total area. However, the regional carbon (C) stock estimate and their uncertainty have seldom been tested. Here we quantified the regional SOC stock and its uncertainty using 298 soil profiles surveyed from 35 sites across the TRSR during 2006–2008. We showed that the upper soil (0–30 cm depth) in alpine grasslands of the TRSR stores 2.03 Pg C, with a 95% confidence interval ranging from 1.25 to 2.81 Pg C. Alpine meadow soils comprised 73% (i.e. 1.48 Pg C) of the regional SOC estimate, but had the greatest uncertainty at 51%. The statistical power to detect a deviation of 10% uncertainty in grassland C stock was less than 0.50. The required sample size to detect this deviation at a power of 90% was about 6–7 times more than the number of sample sites surveyed. Comparison of our observed SOC density with the corresponding values from the dataset of Yang et al. indicates that these two datasets are comparable. The combined dataset did not reduce the uncertainty in the estimate of the regional grassland soil C stock. This result could be mainly explained by the underrepresentation of sampling sites in large areas with poor accessibility. Further research to improve the regional SOC stock estimate should optimize sampling strategy by considering the number of samples and their spatial distribution. PMID:24819054
The use of multiwavelets for uncertainty estimation in seismic surface wave dispersion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppeliers, Christian
This report describes a new single-station analysis method to estimate the dispersion and uncer- tainty of seismic surface waves using the multiwavelet transform. Typically, when estimating the dispersion of a surface wave using only a single seismic station, the seismogram is decomposed into a series of narrow-band realizations using a bank of narrow-band filters. By then enveloping and normalizing the filtered seismograms and identifying the maximum power as a function of frequency, the group velocity can be estimated if the source-receiver distance is known. However, using the filter bank method, there is no robust way to estimate uncertainty. In thismore » report, I in- troduce a new method of estimating the group velocity that includes an estimate of uncertainty. The method is similar to the conventional filter bank method, but uses a class of functions, called Slepian wavelets, to compute a series of wavelet transforms of the data. Each wavelet transform is mathematically similar to a filter bank, however, the time-frequency tradeoff is optimized. By taking multiple wavelet transforms, I form a population of dispersion estimates from which stan- dard statistical methods can be used to estimate uncertainty. I demonstrate the utility of this new method by applying it to synthetic data as well as ambient-noise surface-wave cross-correlelograms recorded by the University of Nevada Seismic Network.« less
Uncertainty Estimation Improves Energy Measurement and Verification Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Travis; Price, Phillip N.; Sohn, Michael D.
2014-05-14
Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits.more » Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.« less
Climate data induced uncertainty in model based estimations of terrestrial primary productivity
NASA Astrophysics Data System (ADS)
Wu, Z.; Ahlström, A.; Smith, B.; Ardö, J.; Eklundh, L.; Fensholt, R.; Lehsten, V.
2016-12-01
Models used to project global vegetation and carbon cycle differ in their estimates of historical fluxes and pools. These differences arise not only from differences between models but also from differences in the environmental and climatic data that forces the models. Here we investigate the role of uncertainties in historical climate data, encapsulated by a set of six historical climate datasets. We focus on terrestrial gross primary productivity (GPP) and analyze the results from a dynamic process-based vegetation model (LPJ-GUESS) forced by six different climate datasets and two empirical datasets of GPP (derived from flux towers and remote sensing). We find that the climate induced uncertainty, defined as the difference among historical simulations in GPP when forcing the model with the different climate datasets, can be as high as 33 Pg C yr-1 globally (19% of mean GPP). The uncertainty is partitioned into the three main climatic drivers, temperature, precipitation, and shortwave radiation. Additionally, we illustrate how the uncertainty due to a given climate driver depends both on the magnitude of the forcing data uncertainty (the data range) and the sensitivity of the modeled GPP to the driver (the ecosystem sensitivity). The analysis is performed globally and stratified into five land cover classes. We find that the dynamic vegetation model overestimates GPP, compared to empirically based GPP data over most areas, except for the tropical region. Both the simulations and empirical estimates agree that the tropical region is a disproportionate source of uncertainty in GPP estimation. This is mainly caused by uncertainties in shortwave radiation forcing, of which climate data range contributes slightly higher uncertainty than ecosystem sensitivity to shortwave radiation. We also find that precipitation dominated the climate induced uncertainty over nearly half of terrestrial vegetated surfaces, which is mainly due to large ecosystem sensitivity to precipitation. Overall, climate data ranges are found to contribute more to the climate induced uncertainty than ecosystem sensitivity. Our study highlights the need to better constrain tropical climate and demonstrate that uncertainty caused by climatic forcing data must be considered when comparing and evaluating model results and empirical datasets.
NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro
2014-01-01
Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than +/-3%. We also examined the daily IC variability, which is dominated by sea ice drift and ice formation/melt. Daily IC variability is the highest, year round, in the MIZ (often up to 20%, locally 30%). The temporal and spatial distributions of the retrieval uncertainties and the daily IC variability is expected to be useful for algorithm intercomparisons, climate trend assessments, and possibly IC assimilation in models.
C.W. Woodall; G.M. Domke; J. Coulston; M.B. Russell; J.A. Smith; C.H. Perry; S.M. Ogle; S. Healey; A. Gray
2015-01-01
The FIA program does not directly measure forest C stocks. Instead, a combination of empirically derived C estimates (e.g., standing live and dead trees) and models (e.g., understory C stocks related to stand age and forest type) are used to estimate forest C stocks. A series of recent refinements in FIA estimation procedures have sought to reduce the uncertainty...
NASA Astrophysics Data System (ADS)
Schwarz, Jakob; Kirchengast, Gottfried; Schwaerz, Marc
2018-05-01
Global Navigation Satellite System (GNSS) radio occultation (RO) observations are highly accurate, long-term stable data sets and are globally available as a continuous record from 2001. Essential climate variables for the thermodynamic state of the free atmosphere - such as pressure, temperature, and tropospheric water vapor profiles (involving background information) - can be derived from these records, which therefore have the potential to serve as climate benchmark data. However, to exploit this potential, atmospheric profile retrievals need to be very accurate and the remaining uncertainties quantified and traced throughout the retrieval chain from raw observations to essential climate variables. The new Reference Occultation Processing System (rOPS) at the Wegener Center aims to deliver such an accurate RO retrieval chain with integrated uncertainty propagation. Here we introduce and demonstrate the algorithms implemented in the rOPS for uncertainty propagation from excess phase to atmospheric bending angle profiles, for estimated systematic and random uncertainties, including vertical error correlations and resolution estimates. We estimated systematic uncertainty profiles with the same operators as used for the basic state profiles retrieval. The random uncertainty is traced through covariance propagation and validated using Monte Carlo ensemble methods. The algorithm performance is demonstrated using test day ensembles of simulated data as well as real RO event data from the satellite missions CHAllenging Minisatellite Payload (CHAMP); Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC); and Meteorological Operational Satellite A (MetOp). The results of the Monte Carlo validation show that our covariance propagation delivers correct uncertainty quantification from excess phase to bending angle profiles. The results from the real RO event ensembles demonstrate that the new uncertainty estimation chain performs robustly. Together with the other parts of the rOPS processing chain this part is thus ready to provide integrated uncertainty propagation through the whole RO retrieval chain for the benefit of climate monitoring and other applications.
Stochastic Residual-Error Analysis For Estimating Hydrologic Model Predictive Uncertainty
A hybrid time series-nonparametric sampling approach, referred to herein as semiparametric, is presented for the estimation of model predictive uncertainty. The methodology is a two-step procedure whereby a distributed hydrologic model is first calibrated, then followed by brute ...
UNCERTAINTY ANALYSIS OF TCE USING THE DOSE EXPOSURE ESTIMATING MODEL (DEEM) IN ACSL
The ACSL-based Dose Exposure Estimating Model(DEEM) under development by EPA is used to perform art uncertainty analysis of a physiologically based pharmacokinetic (PSPK) model of trichloroethylene (TCE). This model involves several circulating metabolites such as trichloroacet...