Weather adjustment using seemingly unrelated regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noll, T.A.
1995-05-01
Seemingly unrelated regression (SUR) is a system estimation technique that accounts for time-contemporaneous correlation between individual equations within a system of equations. SUR is suited to weather adjustment estimations when the estimation is: (1) composed of a system of equations and (2) the system of equations represents either different weather stations, different sales sectors or a combination of different weather stations and different sales sectors. SUR utilizes the cross-equation error values to develop more accurate estimates of the system coefficients than are obtained using ordinary least-squares (OLS) estimation. SUR estimates can be generated using a variety of statistical software packagesmore » including MicroTSP and SAS.« less
Adjustment of regional regression equations for urban storm-runoff quality using at-site data
Barks, C.S.
1996-01-01
Regional regression equations have been developed to estimate urban storm-runoff loads and mean concentrations using a national data base. Four statistical methods using at-site data to adjust the regional equation predictions were developed to provide better local estimates. The four adjustment procedures are a single-factor adjustment, a regression of the observed data against the predicted values, a regression of the observed values against the predicted values and additional local independent variables, and a weighted combination of a local regression with the regional prediction. Data collected at five representative storm-runoff sites during 22 storms in Little Rock, Arkansas, were used to verify, and, when appropriate, adjust the regional regression equation predictions. Comparison of observed values of stormrunoff loads and mean concentrations to the predicted values from the regional regression equations for nine constituents (chemical oxygen demand, suspended solids, total nitrogen as N, total ammonia plus organic nitrogen as N, total phosphorus as P, dissolved phosphorus as P, total recoverable copper, total recoverable lead, and total recoverable zinc) showed large prediction errors ranging from 63 percent to more than several thousand percent. Prediction errors for 6 of the 18 regional regression equations were less than 100 percent and could be considered reasonable for water-quality prediction equations. The regression adjustment procedure was used to adjust five of the regional equation predictions to improve the predictive accuracy. For seven of the regional equations the observed and the predicted values are not significantly correlated. Thus neither the unadjusted regional equations nor any of the adjustments were appropriate. The mean of the observed values was used as a simple estimator when the regional equation predictions and adjusted predictions were not appropriate.
Gaba, Ann; Zhang, Kuan; Moskowitz, Carol B; Boozer, Carol N; Marder, Karen
2008-10-01
Weight loss and energy metabolism are important clinical research areas in understanding the disease mechanisms in Huntington's disease. Having an accurate method to estimate expected total energy expenditure would likely facilitate the development of studies about these features of the disease. The Harris-Benedict equation is a formula commonly used to estimate basal energy expenditure of individuals, adjusted for height, weight, age and gender. This estimate is then multiplied by a physical activity factor to estimate total daily energy needs to maintain the given weight. Data from 24-h indirect calorimetry was utilized to derive an adjustment formula for the physical activity factor of the Harris-Benedict equation for 13 early to mid-stage Huntington's disease patients. The adjusted activity factor provided the most accurate estimate of energy needs. This adjusted formula can be used in clinical assessments of Huntington's disease patients, as well as in research studies when indirect calorimetry has not been performed.
Kennedy, Jeffrey R.; Paretti, Nicholas V.
2014-01-01
Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.
Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.
2016-06-28
This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.
Galloway, Joel M.
2014-01-01
The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time component also was a statistically significant explanatory variable for estimating chloride. The regression equations for chloride at the Red River at Fargo provided a fair relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.66 and the equation for the Red River at Grand Forks provided a relatively good relation between chloride concentrations and the explanatory variables, with an adjusted coefficient of determination of 0.77. Turbidity and streamflow were statistically significant explanatory variables for estimating nitrate plus nitrite concentrations at the Red River at Fargo and turbidity was the only statistically significant explanatory variable for estimating nitrate plus nitrite concentrations at Grand Forks. The regression equation for the Red River at Fargo provided a relatively poor relation between nitrate plus nitrite concentrations, turbidity, and streamflow, with an adjusted coefficient of determination of 0.46. The regression equation for the Red River at Grand Forks provided a fair relation between nitrate plus nitrite concentrations and turbidity, with an adjusted coefficient of determination of 0.73. Some of the variability that was not explained by the equations might be attributed to different sources contributing nitrates to the stream at different times. Turbidity, streamflow, and a seasonal component were statistically significant explanatory variables for estimating total phosphorus at the Red River at Fargo and Grand Forks. The regression equation for the Red River at Fargo provided a relatively fair relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.74. The regression equation for the Red River at Grand Forks provided a good relation between total phosphorus concentrations, turbidity, streamflow, and season, with an adjusted coefficient of determination of 0.87. For the Red River at Fargo, turbidity and streamflow were statistically significant explanatory variables for estimating suspended-sediment concentrations. For the Red River at Grand Forks, turbidity was the only statistically significant explanatory variable for estimating suspended-sediment concentration. The regression equation at the Red River at Fargo provided a good relation between suspended-sediment concentration, turbidity, and streamflow, with an adjusted coefficient of determination of 0.95. The regression equation for the Red River at Grand Forks provided a good relation between suspended-sediment concentration and turbidity, with an adjusted coefficient of determination of 0.96.
Tortorelli, Robert L.
1997-01-01
Statewide regression equations for Oklahoma were determined for estimating peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years for ungaged sites on natural unregulated streams. The most significant independent variables required to estimate peak-streamflow frequency for natural unregulated streams in Oklahoma are contributing drainage area, main-channel slope, and mean-annual precipitation. The regression equations are applicable for watersheds with drainage areas less than 2,510 square miles that are not affected by regulation from manmade works. Limitations on the use of the regression relations and the reliability of regression estimates for natural unregulated streams are discussed. Log-Pearson Type III analysis information, basin and climatic characteristics, and the peak-stream-flow frequency estimates for 251 gaging stations in Oklahoma and adjacent states are listed. Techniques are presented to make a peak-streamflow frequency estimate for gaged sites on natural unregulated streams and to use this result to estimate a nearby ungaged site on the same stream. For ungaged sites on urban streams, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. For ungaged sites on streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow frequency. The statewide regression equations are adjusted by substituting the drainage area below the floodwater retarding structures, or drainage area that represents the percentage of the unregulated basin, in the contributing drainage area parameter to obtain peak-streamflow frequency estimates.
Estimation of health effects of prenatal methylmercury exposure using structural equation models.
Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe; Weihe, Pal
2002-10-14
Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.
Equations for estimating selected streamflow statistics in Rhode Island
Bent, Gardner C.; Steeves, Peter A.; Waite, Andrew M.
2014-01-01
The equations, which are based on data from streams with little to no flow alterations, will provide an estimate of the natural flows for a selected site. They will not estimate flows for altered sites with dams, surface-water withdrawals, groundwater withdrawals (pumping wells), diversions, and wastewater discharges. If the equations are used to estimate streamflow statistics for altered sites, the user should adjust the flow estimates for the alterations. The regression equations should be used only for ungaged sites with drainage areas between 0.52 and 294 square miles and stream densities between 0.94 and 3.49 miles per square mile; these are the ranges of the explanatory variables in the equations.
Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.
2001-01-01
Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.
[Comparison of three stand-level biomass estimation methods].
Dong, Li Hu; Li, Feng Ri
2016-12-01
At present, the forest biomass methods of regional scale attract most of attention of the researchers, and developing the stand-level biomass model is popular. Based on the forestry inventory data of larch plantation (Larix olgensis) in Jilin Province, we used non-linear seemly unrelated regression (NSUR) to estimate the parameters in two additive system of stand-level biomass equations, i.e., stand-level biomass equations including the stand variables and stand biomass equations including the biomass expansion factor (i.e., Model system 1 and Model system 2), listed the constant biomass expansion factor for larch plantation and compared the prediction accuracy of three stand-level biomass estimation methods. The results indicated that for two additive system of biomass equations, the adjusted coefficient of determination (R a 2 ) of the total and stem equations was more than 0.95, the root mean squared error (RMSE), the mean prediction error (MPE) and the mean absolute error (MAE) were smaller. The branch and foliage biomass equations were worse than total and stem biomass equations, and the adjusted coefficient of determination (R a 2 ) was less than 0.95. The prediction accuracy of a constant biomass expansion factor was relatively lower than the prediction accuracy of Model system 1 and Model system 2. Overall, although stand-level biomass equation including the biomass expansion factor belonged to the volume-derived biomass estimation method, and was different from the stand biomass equations including stand variables in essence, but the obtained prediction accuracy of the two methods was similar. The constant biomass expansion factor had the lower prediction accuracy, and was inappropriate. In addition, in order to make the model parameter estimation more effective, the established stand-level biomass equations should consider the additivity in a system of all tree component biomass and total biomass equations.
Estimation of Flood Discharges at Selected Recurrence Intervals for Streams in New Hampshire
Olson, Scott A.
2009-01-01
This report provides estimates of flood discharges at selected recurrence intervals for streamgages in and adjacent to New Hampshire and equations for estimating flood discharges at recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, and 500-years for ungaged, unregulated, rural streams in New Hampshire. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 117 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, mean April precipitation, percentage of wetland area, and main channel slope. The average standard error of prediction for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence interval flood discharges with these equations are 30.0, 30.8, 32.0, 34.2, 36.0, 38.1, and 43.4 percent, respectively. Flood discharges at selected recurrence intervals for selected streamgages were computed following the guidelines in Bulletin 17B of the U.S. Interagency Advisory Committee on Water Data. To determine the flood-discharge exceedence probabilities at streamgages in New Hampshire, a new generalized skew coefficient map covering the State was developed. The standard error of the data on new map is 0.298. To improve estimates of flood discharges at selected recurrence intervals for 20 streamgages with short-term records (10 to 15 years), record extension using the two-station comparison technique was applied. The two-station comparison method uses data from a streamgage with long-term record to adjust the frequency characteristics at a streamgage with a short-term record. A technique for adjusting a flood-discharge frequency curve computed from a streamgage record with results from the regression equations is described in this report. Also, a technique is described for estimating flood discharge at a selected recurrence interval for an ungaged site upstream or downstream from a streamgage using a drainage-area adjustment. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.
ERIC Educational Resources Information Center
Enders, Craig K.; Peugh, James L.
2004-01-01
Two methods, direct maximum likelihood (ML) and the expectation maximization (EM) algorithm, can be used to obtain ML parameter estimates for structural equation models with missing data (MD). Although the 2 methods frequently produce identical parameter estimates, it may be easier to satisfy missing at random assumptions using EM. However, no…
Arlet, Jean-Benoît; Ribeil, Jean-Antoine; Chatellier, Gilles; Eladari, Dominique; De Seigneux, Sophie; Souberbielle, Jean-Claude; Friedlander, Gérard; de Montalembert, Marianne; Pouchot, Jacques; Prié, Dominique; Courbebaisse, Marie
2012-08-06
Sickle cell disease (SCD) leads to tissue hypoxia resulting in chronic organ dysfunction including SCD associated nephropathy. The goal of our study was to determine the best equation to estimate glomerular filtration rate (GFR) in SCD adult patients. We conducted a prospective observational cohort study. Since 2007, all adult SCD patients in steady state, followed in two medical departments, have had their GFR measured using iohexol plasma clearance (gold standard). The Cockcroft-Gault, MDRD-v4, CKP-EPI and finally, MDRD and CKD-EPI equations without adjustment for ethnicity were tested to estimate GFR from serum creatinine. Estimated GFRs were compared to measured GFRs according to the graphical Bland and Altman method. Sixty-four SCD patients (16 men, median age 27.5 years [range 18.0-67.5], 41 with SS-genotype were studied. They were Sub-Saharan Africa and French West Indies natives and predominantly lean (median body mass index: 22 kg/m2 [16-33]). Hyperfiltration (defined as measured GFR >110 mL/min/1.73 m2) was detected in 53.1% of patients. Urinary albumin/creatinine ratio was higher in patients with hyperfiltration than in patients with normal GFR (4.05 mg/mmol [0.14-60] versus 0.4 mg/mmol [0.7-81], p = 0.01). The CKD-EPI equation without adjustment for ethnicity had both the lowest bias and the greatest precision. Differences between estimated GFRs using the CKP-EPI equation and measured GFRs decreased with increasing GFR values, whereas it increased with the Cockcroft-Gault and MDRD-v4 equations. We confirm that SCD patients have a high rate of glomerular hyperfiltration, which is frequently associated with microalbuminuria or macroalbuminuria. In non-Afro-American SCD patients, the best method for estimating GFR from serum creatinine is the CKD-EPI equation without adjustment for ethnicity. This equation is particularly accurate to estimate high GFR values, including glomerular hyperfiltration, and thus should be recommended to screen SCD adult patients at high risk for SCD nephropathy.
Inman, Ernest J.
1997-01-01
Flood-frequency relations were computed for 28 urban stations, for 2-, 25-, and 100-year recurrence interval floods and the computations were compared to corresponding recurrence interval floods computed from the estimating equations from a 1995 investigation. Two stations were excluded from further comparisons or analyses because neither station had a significant flood during the period of observed record. The comparisons, based on the student's t-test statistics at the 0.05 level of significance, indicate that the mean residuals of the 25- and 100-year floods were negatively biased by 26.2 percent and 31.6 percent, respectively, at the 26 stations. However, the mean residuals of the 2-year floods were 2.5 percent lower than the mean of the 2-year floods computed from the equations, and were not significantly biased. The reason for this negative bias is that the period of observed record at the 26 stations was a relatively dry period. At 25 of the 26 stations, the two highest simulated peaks used to develop the estimating equations occurred many years before the observed record began. However, no attempt was made to adjust the estimating equations because higher peaks could occur after the period of observed record and an adjustment to the equations would cause an underestimation of design floods.
Mandelli, Sara; Riva, Emma; Tettamanti, Mauro; Detoma, Paolo; Giacomin, Adriano; Lucca, Ugo
2015-01-01
Background Kidney function declines considerably with age, but little is known about its clinical significance in the oldest-old. Objectives To study the association between reduced glomerular filtration rate (GFR) estimated according to five equations with mortality in the oldest-old. Design Prospective population-based study. Setting Municipality of Biella, Piedmont, Italy. Participants 700 subjects aged 85 and older participating in the “Health and Anemia” Study in 2007–2008. Measurements GFR was estimated using five creatinine-based equations: the Cockcroft-Gault (C-G), Modification of Diet in Renal Disease (MDRD), MAYO Clinic, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and Berlin Initiative Study-1 (BIS-1). Survival analysis was used to study mortality in subjects with reduced eGFR (<60 mL/min/1.73m2) compared to subjects with eGFR ≥60 mL/min/1.73m2. Results Prevalence of reduced GFR was 90.7% with the C-G, 48.1% with MDRD, 23.3% with MAYO, 53.6% with CKD-EPI and 84.4% with BIS-1. After adjustment for confounders, two-year mortality was significantly increased in subjects with reduced eGFR using BIS-1 and C-G equations (adjusted HRs: 2.88 and 3.30, respectively). Five-year mortality was significantly increased in subjects with eGFR <60 mL/min/1.73m2 using MAYO, CKD-EPI and, in a graduated fashion in reduced eGFR categories, MDRD. After 5 years, oldest old with an eGFR <30 mL/min/1.73m2 showed a significantly higher risk of death whichever equation was used (adjusted HRs between 2.04 and 2.70). Conclusion In the oldest old, prevalence of reduced eGFR varies noticeably depending on the equation used. In this population, risk of mortality was significantly higher for reduced GFR estimated with the BIS-1 and C-G equations over the short term. Though after five years the MDRD appeared on the whole a more consistent predictor, differences in mortality prediction among equations over the long term were less apparent. Noteworthy, subjects with a severely reduced GFR were consistently at higher risk of death regardless of the equation used to estimate GFR. PMID:26317988
Mandelli, Sara; Riva, Emma; Tettamanti, Mauro; Detoma, Paolo; Giacomin, Adriano; Lucca, Ugo
2015-01-01
Kidney function declines considerably with age, but little is known about its clinical significance in the oldest-old. To study the association between reduced glomerular filtration rate (GFR) estimated according to five equations with mortality in the oldest-old. Prospective population-based study. Municipality of Biella, Piedmont, Italy. 700 subjects aged 85 and older participating in the "Health and Anemia" Study in 2007-2008. GFR was estimated using five creatinine-based equations: the Cockcroft-Gault (C-G), Modification of Diet in Renal Disease (MDRD), MAYO Clinic, Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and Berlin Initiative Study-1 (BIS-1). Survival analysis was used to study mortality in subjects with reduced eGFR (<60 mL/min/1.73 m(2)) compared to subjects with eGFR ≥ 60 mL/min/1.73 m(2). Prevalence of reduced GFR was 90.7% with the C-G, 48.1% with MDRD, 23.3% with MAYO, 53.6% with CKD-EPI and 84.4% with BIS-1. After adjustment for confounders, two-year mortality was significantly increased in subjects with reduced eGFR using BIS-1 and C-G equations (adjusted HRs: 2.88 and 3.30, respectively). Five-year mortality was significantly increased in subjects with eGFR <60 mL/min/1.73 m(2) using MAYO, CKD-EPI and, in a graduated fashion in reduced eGFR categories, MDRD. After 5 years, oldest old with an eGFR <30 mL/min/1.73 m(2) showed a significantly higher risk of death whichever equation was used (adjusted HRs between 2.04 and 2.70). In the oldest old, prevalence of reduced eGFR varies noticeably depending on the equation used. In this population, risk of mortality was significantly higher for reduced GFR estimated with the BIS-1 and C-G equations over the short term. Though after five years the MDRD appeared on the whole a more consistent predictor, differences in mortality prediction among equations over the long term were less apparent. Noteworthy, subjects with a severely reduced GFR were consistently at higher risk of death regardless of the equation used to estimate GFR.
Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C
2017-01-01
Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.
Olson, Scott A.; with a section by Veilleux, Andrea G.
2014-01-01
This report provides estimates of flood discharges at selected annual exceedance probabilities (AEPs) for streamgages in and adjacent to Vermont and equations for estimating flood discharges at AEPs of 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent (recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-years, respectively) for ungaged, unregulated, rural streams in Vermont. The equations were developed using generalized least-squares regression. Flood-frequency and drainage-basin characteristics from 145 streamgages were used in developing the equations. The drainage-basin characteristics used as explanatory variables in the regression equations include drainage area, percentage of wetland area, and the basin-wide mean of the average annual precipitation. The average standard errors of prediction for estimating the flood discharges at the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEP with these equations are 34.9, 36.0, 38.7, 42.4, 44.9, 47.3, 50.7, and 55.1 percent, respectively. Flood discharges at selected AEPs for streamgages were computed by using the Expected Moments Algorithm. To improve estimates of the flood discharges for given exceedance probabilities at streamgages in Vermont, a new generalized skew coefficient was developed. The new generalized skew for the region is a constant, 0.44. The mean square error of the generalized skew coefficient is 0.078. This report describes a technique for using results from the regression equations to adjust an AEP discharge computed from a streamgage record. This report also describes a technique for using a drainage-area adjustment to estimate flood discharge at a selected AEP for an ungaged site upstream or downstream from a streamgage. The final regression equations and the flood-discharge frequency data used in this study will be available in StreamStats. StreamStats is a World Wide Web application providing automated regression-equation solutions for user-selected sites on streams.
2009-01-01
used ADE FE (SAfemale/ SAmale ), [4] where ADE is the adjusted dermal exposure (mg/lb [AI]), FE is the ßagger exposure, SAfemale is the sur- face...area of an adult woman as estimated by equation 3, and SAmale is the surface area of an adult man as estimated by equation 3. We assumed a triangular
Skouroliakou, Maria; Giannopoulou, Ifigenia; Kostara, Christina; Vasilopoulou, Melanie
2009-02-01
The prediction of resting metabolic rate (RMR) is important to determine the energy expenditure of obese patients with severe mental illnesses (SMIs). However, there is lack of research concerning the most accurate RMR predictive equations. The purpose of this study was to compare the validity of four RMR equations on patients with SMIs taking olanzapine. One hundred twenty-eight obese (body mass index >30 kg/m(2)) patients with SMIs (41 men and 87 women) treated with olanzapine were tested from 2005 to 2008. Measurements of anthropometric parameters (height, weight, body mass index, waist circumference) and body composition (using the BodPod) were performed at the beginning of the study. RMR was measured using indirect calorimetry. Comparisons between measured and estimated RMRs from four equations (Harris-Benedict adjusted and current body weights, Schofield, and Mifflin-St. Jeor) were performed using Pearson's correlation coefficient and Bland-Altman analysis. Significant correlations were found between the measured and predicted RMRs with all four equations (P < 0.001), with the Mifflin-St. Jeor equation demonstrating the strongest correlation in men and women (r = 0.712, P < 0.001). In men and women, the Bland-Altman analysis revealed no significant bias in the RMR prediction using the Harris-Benedict adjusted body weight and the Mifflin equations (P > 0.05). However, in men and women, the Harris-Benedict current body weight and the Schofield equations showed significant overestimation error in the RMR prediction (P < 0.001). When estimating RMR in men and women with SMIs taking olanzapine, the Mifflin-St. Jeor and Harris-Benedict adjusted body weight equations appear to be the most appropriate for clinical use.
Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.
2003-01-01
Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.
Estimation of peak-discharge frequency of urban streams in Jefferson County, Kentucky
Martin, Gary R.; Ruhl, Kevin J.; Moore, Brian L.; Rose, Martin F.
1997-01-01
An investigation of flood-hydrograph characteristics for streams in urban Jefferson County, Kentucky, was made to obtain hydrologic information needed for waterresources management. Equations for estimating peak-discharge frequencies for ungaged streams in the county were developed by combining (1) long-term annual peakdischarge data and rainfall-runoff data collected from 1991 to 1995 in 13 urban basins and (2) long-term annual peak-discharge data in four rural basins located in hydrologically similar areas of neighboring counties. The basins ranged in size from 1.36 to 64.0 square miles. The U.S. Geological Survey Rainfall- Runoff Model (RRM) was calibrated for each of the urban basins. The calibrated models were used with long-term, historical rainfall and pan-evaporation data to simulate 79 years of annual peak-discharge data. Peak-discharge frequencies were estimated by fitting the logarithms of the annual peak discharges to a Pearson-Type III frequency distribution. The simulated peak-discharge frequencies were adjusted for improved reliability by application of bias-correction factors derived from peakdischarge frequencies based on local, observed annual peak discharges. The three-parameter and the preferred seven-parameter nationwide urban-peak-discharge regression equations previously developed by USGS investigators provided biased (high) estimates for the urban basins studied. Generalized-least-square regression procedures were used to relate peakdischarge frequency to selected basin characteristics. Regression equations were developed to estimate peak-discharge frequency by adjusting peak-dischargefrequency estimates made by use of the threeparameter nationwide urban regression equations. The regression equations are presented in equivalent forms as functions of contributing drainage area, main-channel slope, and basin development factor, which is an index for measuring the efficiency of the basin drainage system. Estimates of peak discharges for streams in the county can be made for the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals by use of the regression equations. The average standard errors of prediction of the regression equations ranges from ? 34 to ? 45 percent. The regression equations are applicable to ungaged streams in the county having a specific range of basin characteristics.
Panel Estimates of Male-Female Earnings Functions.
ERIC Educational Resources Information Center
Kim, Moon-Kak; Polachek, Solomon W.
1994-01-01
Application of single and simultaneous equation fixed-effects and random-effects shows that earnings appreciation with experience and depreciation with labor market interruptions are comparable for men and women. Adjusting for heterogeneity reduces the wage gap to 20%; adjusting for endogeneity reduces it nearly to zero. (SK)
Creatinine-based equations for the adjustment of drug dosage in an obese population.
Bouquegneau, Antoine; Vidal-Petiot, Emmanuelle; Moranne, Olivier; Mariat, Christophe; Boffa, Jean-Jacques; Vrtovsnik, François; Scheen, André-Jean; Krzesinski, Jean-Marie; Flamant, Martin; Delanaye, Pierre
2016-02-01
For drug dosing adaptation, the Kidney Disease: Improving Global Outcomes (KDIGO) guidelines recommend using estimated glomerular filtration rate (eGFR) by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, after 'de-indexation' by body surface area (BSA). In pharmacology, the Cockcroft-Gault (CG) equation is still recommended to adapt drug dosage. In the context of obesity, adjusted ideal body weight (AIBW) is sometimes preferred to actual body weight (ABW) for the CG equation. The aim of the present study was to compare the performance of the different GFR-estimating equations, non-indexed or de-indexed by BSA for the purpose of drug-dosage adaptation in obese patients. We analysed data from patients with a body mass index (BMI) higher than 30 kg m(-2) who underwent a GFR measurement. eGFR was calculated using the CKD-EPI and Modification of Diet in Renal Disease (MDRD) equations, de-indexed by BSA, and the CG equation, using either ABW, AIBW or lean body weight (LBW) for the weight variable and compared with measured GFR, expressed in ml min(-1). In our population of obese patients, use of the AIBW instead of the ABW in the CG equation, markedly improved the overall accuracy of this equation [57% for CGABW and 79% for CGAIBW (P < 0.05)]. For high BMI (over 40 kg m(-2)), the accuracy of the CG equations is no different when using LBW than when using AIBW. The MDRD and CKD-EPI equations de-indexed by the BSA also performed well, with an overall higher accuracy for the MDRD de-indexed equation [(80% and 76%, respectively (P < 0.05)]. The de-indexed MDRD equation appeared to be the most suitable for estimating the non-indexed GFR for the purpose of drug dosage adaptation in obese patients. © 2015 The British Pharmacological Society.
Zhang, Qiu-Li; Brenner, Hermann; Koenig, Wolfgang; Rothenbacher, Dietrich
2010-07-01
Chronic kidney disease (CKD) increases risk of coronary heart disease (CHD), but the impact of using different equations for estimating kidney function on CHD is not clear yet. This study described the prognostic value of CKD as defined by various creatinine- (Cr-eGFR) and cystatin C-based estimating (Cys-eGFR) equations and their combinations on subsequent cardiovascular disease (CVD) events in patients with CHD. Cohort study. Patients with coronary heart disease in in-patient rehabilitation and long-term follow-up (mean 63.4 months). 1050 patients with coronary heart disease aged 30-70 years at baseline. CKD was defined as eGFR<60 mL/min/1.73 m2 (CKD stages 3-5) estimated by three Cr-eGFR equations (Cockroft-Gault equation adjusted for body surface area (CG/BSA), Modification of Diet in Renal Disease Study (MDRD) equation, CKD-EPIcrea) and by two Cys-eGFR equations (Arnal-Dade equation, CKD-EPIcys) and a combination. The primary endpoint of our study was subsequent CVD events. During follow-up 118 patients (11.2%) experienced the outcome of our study. CKD assessed by the CG/BSA, MDRD, and CKD-EPIcrea equations showed no statistically significant association with subsequent CVD events after adjustment for multiple covariates (hazard ratio (HR) 1.45 [95% CI, 0.81-2.59], HR 1.47 [95% CI, 0.84-2.60], and HR 1.31 [95% CI, 0.72-2.83], respectively). By contrast, the Cys-eGFR equations were much stronger associated with subsequent CVD endpoints (Arnal-Dade: HR, 2.01 [95% CI, 1.34-3.04]; CKD-EPIcys HR, 2.22 [95% CI, 1.46-3.37]). The CKD-EPIcys also provided the highest area under the curve value. Our study shows that prevalent CKD is an independent risk factor for subsequent CVD in patients with prevalent CHD and implies that Cys-eGFR equations show a better clinical utility compared to the Cr-eGFR equations. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Demura, S; Sato, S; Kitabayashi, T
2006-06-01
This study examined a method of predicting body density based on hydrostatic weighing without head submersion (HWwithoutHS). Donnelly and Sintek (1984) developed a method to predict body density based on hydrostatic weight without head submersion. This method predicts the difference (D) between HWwithoutHS and hydrostatic weight with head submersion (HWwithHS) from anthropometric variables (head length and head width), and then calculates body density using D as a correction factor. We developed several prediction equations to estimate D based on head anthropometry and differences between the sexes, and compared their prediction accuracy with Donnelly and Sintek's equation. Thirty-two males and 32 females aged 17-26 years participated in the study. Multiple linear regression analysis was performed to obtain the prediction equations, and the systematic errors of their predictions were assessed by Bland-Altman plots. The best prediction equations obtained were: Males: D(g) = -164.12X1 - 125.81X2 - 111.03X3 + 100.66X4 + 6488.63, where X1 = head length (cm), X2 = head circumference (cm), X3 = head breadth (cm), X4 = head thickness (cm) (R = 0.858, R2 = 0.737, adjusted R2 = 0.687, standard error of the estimate = 224.1); Females: D(g) = -156.03X1 - 14.03X2 - 38.45X3 - 8.87X4 + 7852.45, where X1 = head circumference (cm), X2 = body mass (g), X3 = head length (cm), X4 = height (cm) (R = 0.913, R2 = 0.833, adjusted R2 = 0.808, standard error of the estimate = 137.7). The effective predictors in these prediction equations differed from those of Donnelly and Sintek's equation, and head circumference and head length were included in both equations. The prediction accuracy was improved by statistically selecting effective predictors. Since we did not assess cross-validity, the equations cannot be used to generalize to other populations, and further investigation is required.
Fernandez-Prado, Raul; Castillo-Rodriguez, Esmeralda; Velez-Arribas, Fernando Javier; Gracia-Iguacel, Carolina; Ortiz, Alberto
2016-12-01
Direct oral anticoagulants (DOACs) may require dose reduction or avoidance when glomerular filtration rate is low. However, glomerular filtration rate is not usually measured in routine clinical practice. Rather, equations that incorporate different variables use serum creatinine to estimate either creatinine clearance in mL/min or glomerular filtration rate in mL/min/1.73 m 2 . The Cockcroft-Gault equation estimates creatinine clearance and incorporates weight into the equation. By contrast, the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations estimate glomerular filtration rate and incorporate ethnicity but not weight. As a result, an individual patient may have very different renal function estimates, depending on the equation used. We now highlight these differences and discuss the impact on routine clinical care for anticoagulation to prevent embolization in atrial fibrillation. Pivotal DOAC clinical trials used creatinine clearance as a criterion for patient enrollment, and dose adjustment and Federal Drug Administration recommendations are based on creatinine clearance. However, clinical biochemistry laboratories provide CKD-EPI glomerular filtration rate estimations, resulting in discrepancies between clinical trial and routine use of the drugs. Copyright © 2016 Elsevier Inc. All rights reserved.
Asquith, William H.; Roussel, Meghan C.
2009-01-01
Annual peak-streamflow frequency estimates are needed for flood-plain management; for objective assessment of flood risk; for cost-effective design of dams, levees, and other flood-control structures; and for design of roads, bridges, and culverts. Annual peak-streamflow frequency represents the peak streamflow for nine recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common methods for estimation of peak-streamflow frequency for ungaged or unmonitored watersheds are regression equations for each recurrence interval developed for one or more regions; such regional equations are the subject of this report. The method is based on analysis of annual peak-streamflow data from U.S. Geological Survey streamflow-gaging stations (stations). Beginning in 2007, the U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, began a 3-year investigation concerning the development of regional equations to estimate annual peak-streamflow frequency for undeveloped watersheds in Texas. The investigation focuses primarily on 638 stations with 8 or more years of data from undeveloped watersheds and other criteria. The general approach is explicitly limited to the use of L-moment statistics, which are used in conjunction with a technique of multi-linear regression referred to as PRESS minimization. The approach used to develop the regional equations, which was refined during the investigation, is referred to as the 'L-moment-based, PRESS-minimized, residual-adjusted approach'. For the approach, seven unique distributions are fit to the sample L-moments of the data for each of 638 stations and trimmed means of the seven results of the distributions for each recurrence interval are used to define the station specific, peak-streamflow frequency. As a first iteration of regression, nine weighted-least-squares, PRESS-minimized, multi-linear regression equations are computed using the watershed characteristics of drainage area, dimensionless main-channel slope, and mean annual precipitation. The residuals of the nine equations are spatially mapped, and residuals for the 10-year recurrence interval are selected for generalization to 1-degree latitude and longitude quadrangles. The generalized residual is referred to as the OmegaEM parameter and represents a generalized terrain and climate index that expresses peak-streamflow potential not otherwise represented in the three watershed characteristics. The OmegaEM parameter was assigned to each station, and using OmegaEM, nine additional regression equations are computed. Because of favorable diagnostics, the OmegaEM equations are expected to be generally reliable estimators of peak-streamflow frequency for undeveloped and ungaged stream locations in Texas. The mean residual standard error, adjusted R-squared, and percentage reduction of PRESS by use of OmegaEM are 0.30log10, 0.86, and -21 percent, respectively. Inclusion of the OmegaEM parameter provides a substantial reduction in the PRESS statistic of the regression equations and removes considerable spatial dependency in regression residuals. Although the OmegaEM parameter requires interpretation on the part of analysts and the potential exists that different analysts could estimate different values for a given watershed, the authors suggest that typical uncertainty in the OmegaEM estimate might be about +or-0.1010. Finally, given the two ensembles of equations reported herein and those in previous reports, hydrologic design engineers and other analysts have several different methods, which represent different analytical tracks, to make comparisons of peak-streamflow frequency estimates for ungaged watersheds in the study area.
Soneja, Sutyajeet; Chen, Chen; Tielsch, James M.; Katz, Joanne; Zeger, Scott L.; Checkley, William; Curriero, Frank C.; Breysse, Patrick N.
2014-01-01
Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward. PMID:24950062
Soneja, Sutyajeet; Chen, Chen; Tielsch, James M; Katz, Joanne; Zeger, Scott L; Checkley, William; Curriero, Frank C; Breysse, Patrick N
2014-06-19
Great uncertainty exists around indoor biomass burning exposure-disease relationships due to lack of detailed exposure data in large health outcome studies. Passive nephelometers can be used to estimate high particulate matter (PM) concentrations during cooking in low resource environments. Since passive nephelometers do not have a collection filter they are not subject to sampler overload. Nephelometric concentration readings can be biased due to particle growth in high humid environments and differences in compositional and size dependent aerosol characteristics. This paper explores relative humidity (RH) and gravimetric equivalency adjustment approaches to be used for the pDR-1000 used to assess indoor PM concentrations for a cookstove intervention trial in Nepal. Three approaches to humidity adjustment performed equivalently (similar root mean squared error). For gravimetric conversion, the new linear regression equation with log-transformed variables performed better than the traditional linear equation. In addition, gravimetric conversion equations utilizing a spline or quadratic term were examined. We propose a humidity adjustment equation encompassing the entire RH range instead of adjusting for RH above an arbitrary 60% threshold. Furthermore, we propose new integrated RH and gravimetric conversion methods because they have one response variable (gravimetric PM2.5 concentration), do not contain an RH threshold, and is straightforward.
Improved Estimates of Thermodynamic Parameters
NASA Technical Reports Server (NTRS)
Lawson, D. D.
1982-01-01
Techniques refined for estimating heat of vaporization and other parameters from molecular structure. Using parabolic equation with three adjustable parameters, heat of vaporization can be used to estimate boiling point, and vice versa. Boiling points and vapor pressures for some nonpolar liquids were estimated by improved method and compared with previously reported values. Technique for estimating thermodynamic parameters should make it easier for engineers to choose among candidate heat-exchange fluids for thermochemical cycles.
Low-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Low-flow annual non-exceedance probabilities (ANEP), called probability-percent chance (P-percent chance) flow estimates, regional regression equations, and transfer methods are provided describing the low-flow characteristics of Virginia streams. Statistical methods are used to evaluate streamflow data. Analysis of Virginia streamflow data collected from 1895 through 2007 is summarized. Methods are provided for estimating low-flow characteristics of gaged and ungaged streams. The 1-, 4-, 7-, and 30-day average streamgaging station low-flow characteristics for 290 long-term, continuous-record, streamgaging stations are determined, adjusted for instances of zero flow using a conditional probability adjustment method, and presented for non-exceedance probabilities of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.02, 0.01, and 0.005. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression equations to estimate annual non-exceedance probabilities at gaged and ungaged sites and are summarized for 290 long-term, continuous-record streamgaging stations, 136 short-term, continuous-record streamgaging stations, and 613 partial-record streamgaging stations. Regional regression equations for six physiographic regions use basin characteristics to estimate 1-, 4-, 7-, and 30-day average low-flow annual non-exceedance probabilities at gaged and ungaged sites. Weighted low-flow values that combine computed streamgaging station low-flow characteristics and annual non-exceedance probabilities from regional regression equations provide improved low-flow estimates. Regression equations developed using the Maintenance of Variance with Extension (MOVE.1) method describe the line of organic correlation (LOC) with an appropriate index site for low-flow characteristics at 136 short-term, continuous-record streamgaging stations and 613 partial-record streamgaging stations. Monthly streamflow statistics computed on the individual daily mean streamflows of selected continuous-record streamgaging stations and curves describing flow-duration are presented. Text, figures, and lists are provided summarizing low-flow estimates, selected low-flow sites, delineated physiographic regions, basin characteristics, regression equations, error estimates, definitions, and data sources. This study supersedes previous studies of low flows in Virginia.
Lewis, Jason M.
2010-01-01
Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.
Alternative evaluation metrics for risk adjustment methods.
Park, Sungchul; Basu, Anirban
2018-06-01
Risk adjustment is instituted to counter risk selection by accurately equating payments with expected expenditures. Traditional risk-adjustment methods are designed to estimate accurate payments at the group level. However, this generates residual risks at the individual level, especially for high-expenditure individuals, thereby inducing health plans to avoid those with high residual risks. To identify an optimal risk-adjustment method, we perform a comprehensive comparison of prediction accuracies at the group level, at the tail distributions, and at the individual level across 19 estimators: 9 parametric regression, 7 machine learning, and 3 distributional estimators. Using the 2013-2014 MarketScan database, we find that no one estimator performs best in all prediction accuracies. Generally, machine learning and distribution-based estimators achieve higher group-level prediction accuracy than parametric regression estimators. However, parametric regression estimators show higher tail distribution prediction accuracy and individual-level prediction accuracy, especially at the tails of the distribution. This suggests that there is a trade-off in selecting an appropriate risk-adjustment method between estimating accurate payments at the group level and lower residual risks at the individual level. Our results indicate that an optimal method cannot be determined solely on the basis of statistical metrics but rather needs to account for simulating plans' risk selective behaviors. Copyright © 2018 John Wiley & Sons, Ltd.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.
2003-01-01
Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to the simple equations and therefore are recommended for use.
ERIC Educational Resources Information Center
Mozumdar, Arupendra; Liguori, Gary
2011-01-01
The purposes of this study were to generate correction equations for self-reported height and weight quartiles and to test the accuracy of the body mass index (BMI) classification based on corrected self-reported height and weight among 739 male and 434 female college students. The BMIqc (from height and weight quartile-specific, corrected…
Measuring Child Work and Residence Adjustments to Parents' Long-Term Care Needs.
ERIC Educational Resources Information Center
Stern, Steven
1996-01-01
Estimates the effects of various parent and child characteristics on the choice of care arrangement of the parent, taking into account the potential endogeneity of some of the child characteristics. Three equations are estimated: care choice, child location, and child work. Results suggest a hierarchy of family decision making; child locations…
Predictors of Success in Bariatric Surgery: the Role of BMI and Pre-operative Comorbidities.
da Cruz, Magda Rosa Ramos; Branco-Filho, Alcides José; Zaparolli, Marília Rizzon; Wagner, Nathalia Farinha; de Paula Pinto, José Simão; Campos, Antônio Carlos Ligocki; Taconeli, Cesar Augusto
2018-05-01
This is a retrospective review of 204 patients who underwent bariatric surgery. The impact of weight regain (WR), pre-operative comorbidities and BMI values on the recurrence of comorbidities was evaluated, and an equation was elaborated to estimate BMI at 5 years of bariatric surgery. Pre-operative data, after 1 year and after 5 years, was collected from the medical records. Descriptive analyses and bivariate hypothesis tests were performed first, and then, a generalised linear regression model with Tweedie distribution was adjusted. The hit rate and the Kendall coefficient of concordance (Kendall's W) of the equation were calculated. At the end, the Mann-Whitney test was performed between the BMI, WR and the presence of comorbidities, after a post-operative period of 5 years. The adjustment of the model resulted in an equation that estimates the mean value of BMI 5 years after surgery. The hit rate was 82.35% and the value of Kendall's W was 0.85 for the equation. It was found that patients with comorbidities presented a higher median WR (10.13%) and a higher mean BMI (30.09 kg/m 2 ) 5 years after the surgery. It is concluded that the equation is useful for estimating the mean BMI at 5 years of surgery and that patients with low pre-operative HDL and folic acid levels, with depression and/or anxiety and a higher BMI, have a higher BMI at 5 years of surgery and higher incidence of comorbid return and dissatisfaction with post-operative results.
Estimating the magnitude and frequency of floods in urban basins in Missouri
Southard, Rodney E.
2010-01-01
Streamgage flood-frequency analyses were done for 35 streamgages on urban streams in and adjacent to Missouri for estimation of the magnitude and frequency of floods in urban areas of Missouri. A log-Pearson Type-III distribution was fitted to the annual series of peak flow data retrieved from the U.S. Geological Survey National Water Information System. For this report, the flood frequency estimates are expressed in terms of percent annual exceedance probabilities of 50, 20, 10, 4, 2, 1, and 0.2. Of the 35 streamgages, 30 are located in Missouri. The remaining five non-Missouri streamgages were added to the dataset to improve the range and applicability of the regression analyses from the streamgage frequency analyses. Ordinary least-squares was used to determine the best set of independent variables for the regression equations. Basin characteristics selected for independent variables into the ordinary least-squares regression analyses were based on theoretical relation to flood flows, literature review of possible basin characteristics, and the ability to measure the basin characteristics using digital datasets and geographic information system technology. Results of the ordinary least-squares were evaluated on the basis of Mallow's Cp statistic, the adjusted coefficient of determination, and the statistical significance of the independent variables. The independent variables of drainage area and percent impervious area were determined to be statistically significant and readily determined from existing digital datasets. The drainage area variable was computed using the best elevation data available, either from a statewide 10-meter grid or high-resolution elevation data from urban areas. The impervious area variable was computed from the National Land Cover Dataset 2001 impervious area dataset. The National Land Cover Dataset 2001 impervious area data for each basin was compared to historical imagery and 7.5-minute topographic maps to verify the national dataset represented the urbanization of the basin at the time streamgage data were collected. Eight streamgages had less urbanization during the period of time streamflow data were collected than was shown on the 2001 dataset. The impervious area values for these eight urban basins were adjusted downward as much as 23 percent to account for the additional urbanization since the streamflow data were collected. Weighted least-squares regression techniques were used to determine the final regression equations for the statewide urban flood-frequency equations. Weighted least-squares techniques improve regression equations by adjusting for different and varying lengths in streamflow records. The final flood-frequency equations for the 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent annual exceedance probability floods for Missouri provide a technique for estimating peak flows on urban streams at gaged and ungaged sites. The applicability of the equations is limited by the range in basin characteristics used to develop the regression equations. The range in drainage area is 0.28 to 189 square miles; range in impervious area is 2.3 to 46.0 percent. Seven of the 35 selected streamgages were used to compare the results of the existing rural and urban equations to the urban equations presented in this report for the 1-percent annual exceedance probability. Results of the comparison indicate that the estimated peak flows for the urban equation in this report ranged from 3 to 52 percent higher than the results from the rural equations. Comparing the estimated urban peak flows from this report to the existing urban equation developed in 1986 indicated the range was 255 percent lower to 10 percent higher. The overall comparison between the current (2010) and 1986 urban equations indicates a reduction in estimated peak flow values for the 1-percent annual exceedance probability flood.
Flood characteristics of urban watersheds in the United States
Sauer, Vernon B.; Thomas, W.O.; Stricker, V.A.; Wilson, K.V.
1983-01-01
A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization, is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets. The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become more saturated during large storms. Other parameters in the seven-parameter equations include drainage area size, channel slope, rainfall intensity, lake and reservoir storage, and basin lag time. These factors are all statistically significant and provide logical indices of basin conditions. The three-parameter equations include only the three most significant parameters: rural discharge, basin-development factor, and drainage area size. All three sets of regression equations provide unbiased estimates of urban flood frequency. The seven-parameter regression equations without basin lag time have average standard errors of regression varying from ? 37 percent for the 5-year flood to ? 44 percent for the 100-year flood and ? 49 percent for the 500-year flood. The other two sets of regression equations have similar accuracy. Several tests for bias, sensitivity, and hydrologic consistency are included which support the conclusion that the equations are useful throughout the United States. All estimating equations were developed from data collected on drainage basins where temporary in-channel storage, due to highway embankments, was not significant. Consequently, estimates made with these equations do not account for the reducing effect of this temporary detention storage.
Tosteson, Tor D.; Morden, Nancy E.; Stukel, Therese A.; O'Malley, A. James
2014-01-01
The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival. PMID:25506259
MacKenzie, Todd A; Tosteson, Tor D; Morden, Nancy E; Stukel, Therese A; O'Malley, A James
2014-06-01
The estimation of treatment effects is one of the primary goals of statistics in medicine. Estimation based on observational studies is subject to confounding. Statistical methods for controlling bias due to confounding include regression adjustment, propensity scores and inverse probability weighted estimators. These methods require that all confounders are recorded in the data. The method of instrumental variables (IVs) can eliminate bias in observational studies even in the absence of information on confounders. We propose a method for integrating IVs within the framework of Cox's proportional hazards model and demonstrate the conditions under which it recovers the causal effect of treatment. The methodology is based on the approximate orthogonality of an instrument with unobserved confounders among those at risk. We derive an estimator as the solution to an estimating equation that resembles the score equation of the partial likelihood in much the same way as the traditional IV estimator resembles the normal equations. To justify this IV estimator for a Cox model we perform simulations to evaluate its operating characteristics. Finally, we apply the estimator to an observational study of the effect of coronary catheterization on survival.
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja
2015-12-01
To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.
de la Torre, Judith; Ramos, Natalia; Quiroz, Augusto; Garjau, Maria; Torres, Irina; Azancot, M. Antonia; López, Montserrat; Sobrado, Ana
2011-01-01
Summary Background and objectives A specific method is required for estimating glomerular filtration rate GFR in hospitalized patients. Our objective was to validate the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation and four cystatin C (CysC)–based equations in this setting. Design, setting, participants, & measurements This was an epidemiologic, cross-sectional study in a random sample of hospitalized patients (n = 3114). We studied the accuracy of the CKD-EPI and four CysC-based equations—based on (1) CysC alone or (2) adjusted by gender; (3) age, gender, and race; and (4) age, gender, race, and creatinine, respectively—compared with GFR measured by iohexol clearance (mGFR). Clinical, biochemical, and nutritional data were also collected. Results The CysC equation 3 significantly overestimated the GFR (bias of 7.4 ml/min per 1.73 m2). Most of the error in creatinine-based equations was attributable to calculated muscle mass, which depended on patient's nutritional status. In patients without malnutrition or reduced body surface area, the CKD-EPI equation adequately estimated GFR. Equations based on CysC gave more precise mGFR estimates when malnutrition, extensive reduction of body surface area, or loss of muscle mass were present (biases of 1 and 1.3 ml/min per 1.73 m2 for equations 2 and 4, respectively, versus 5.9 ml/min per 1.73 m2 for CKD-EPI). Conclusions These results suggest that the use of equations based on CysC and gender, or CysC, age, gender, and race, is more appropriate in hospitalized patients to estimate GFR, since these equations are much less dependent on patient's nutritional status or muscle mass than the CKD-EPI equation. PMID:21852668
Khan, I.; Hawlader, Sophie Mohammad Delwer Hossain; Arifeen, Shams El; Moore, Sophie; Hills, Andrew P.; Wells, Jonathan C.; Persson, Lars-Åke; Kabir, Iqbal
2012-01-01
The aim of this study was to investigate the validity of the Tanita TBF 300A leg-to-leg bioimpedance analyzer for estimating fat-free mass (FFM) in Bangladeshi children aged 4-10 years and to develop novel prediction equations for use in this population, using deuterium dilution as the reference method. Two hundred Bangladeshi children were enrolled. The isotope dilution technique with deuterium oxide was used for estimation of total body water (TBW). FFM estimated by Tanita was compared with results of deuterium oxide dilution technique. Novel prediction equations were created for estimating FFM, using linear regression models, fitting child's height and impedance as predictors. There was a significant difference in FFM and percentage of body fat (BF%) between methods (p<0.01), Tanita underestimating TBW in boys (p=0.001) and underestimating BF% in girls (p<0.001). A basic linear regression model with height and impedance explained 83% of the variance in FFM estimated by deuterium oxide dilution technique. The best-fit equation to predict FFM from linear regression modelling was achieved by adding weight, sex, and age to the basic model, bringing the adjusted R2 to 89% (standard error=0.90, p<0.001). These data suggest Tanita analyzer may be a valid field-assessment technique in Bangladeshi children when using population-specific prediction equations, such as the ones developed here. PMID:23082630
Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja
2015-01-01
Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759
Ahearn, Elizabeth A.
2010-01-01
Multiple linear regression equations for determining flow-duration statistics were developed to estimate select flow exceedances ranging from 25- to 99-percent for six 'bioperiods'-Salmonid Spawning (November), Overwinter (December-February), Habitat Forming (March-April), Clupeid Spawning (May), Resident Spawning (June), and Rearing and Growth (July-October)-in Connecticut. Regression equations also were developed to estimate the 25- and 99-percent flow exceedances without reference to a bioperiod. In total, 32 equations were developed. The predictive equations were based on regression analyses relating flow statistics from streamgages to GIS-determined basin and climatic characteristics for the drainage areas of those streamgages. Thirty-nine streamgages (and an additional 6 short-term streamgages and 28 partial-record sites for the non-bioperiod 99-percent exceedance) in Connecticut and adjacent areas of neighboring States were used in the regression analysis. Weighted least squares regression analysis was used to determine the predictive equations; weights were assigned based on record length. The basin characteristics-drainage area, percentage of area with coarse-grained stratified deposits, percentage of area with wetlands, mean monthly precipitation (November), mean seasonal precipitation (December, January, and February), and mean basin elevation-are used as explanatory variables in the equations. Standard errors of estimate of the 32 equations ranged from 10.7 to 156 percent with medians of 19.2 and 55.4 percent to predict the 25- and 99-percent exceedances, respectively. Regression equations to estimate high and median flows (25- to 75-percent exceedances) are better predictors (smaller variability of the residual values around the regression line) than the equations to estimate low flows (less than 75-percent exceedance). The Habitat Forming (March-April) bioperiod had the smallest standard errors of estimate, ranging from 10.7 to 20.9 percent. In contrast, the Rearing and Growth (July-October) bioperiod had the largest standard errors, ranging from 30.9 to 156 percent. The adjusted coefficient of determination of the equations ranged from 77.5 to 99.4 percent with medians of 98.5 and 90.6 percent to predict the 25- and 99-percent exceedances, respectively. Descriptive information on the streamgages used in the regression, measured basin and climatic characteristics, and estimated flow-duration statistics are provided in this report. Flow-duration statistics and the 32 regression equations for estimating flow-duration statistics in Connecticut are stored on the U.S. Geological Survey World Wide Web application ?StreamStats? (http://water.usgs.gov/osw/streamstats/index.html). The regression equations developed in this report can be used to produce unbiased estimates of select flow exceedances statewide.
Estimation of true height: a study in population-specific methods among young South African adults.
Lahner, Christen Renée; Kassier, Susanna Maria; Veldman, Frederick Johannes
2017-02-01
To investigate the accuracy of arm-associated height estimation methods in the calculation of true height compared with stretch stature in a sample of young South African adults. A cross-sectional descriptive design was employed. Pietermaritzburg, Westville and Durban, KwaZulu-Natal, South Africa, 2015. Convenience sample (N 900) aged 18-24 years, which included an equal number of participants from both genders (150 per gender) stratified across race (Caucasian, Black African and Indian). Continuous variables that were investigated included: (i) stretch stature; (ii) total armspan; (iii) half-armspan; (iv) half-armspan ×2; (v) demi-span; (vi) demi-span gender-specific equation; (vii) WHO equation; and (viii) WHO-adjusted equations; as well as categorization according to gender and race. Statistical analysis was conducted using IBM SPSS Statistics Version 21.0. Significant correlations were identified between gender and height estimation measurements, with males being anatomically larger than females (P<0·001). Significant differences were documented when study participants were stratified according to race and gender (P<0·001). Anatomical similarities were noted between Indians and Black Africans, whereas Caucasians were anatomically different from the other race groups. Arm-associated height estimation methods were able to estimate true height; however, each method was specific to each gender and race group. Height can be calculated by using arm-associated measurements. Although universal equations for estimating true height exist, for the enhancement of accuracy, the use of equations that are race-, gender- and population-specific should be considered.
Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei
2013-01-01
In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.
Agoons, D D; Balti, E V; Kaze, F F; Azabji-Kenfack, M; Ashuntantang, G; Kengne, A P; Sobngwi, E; Mbanya, J C
2016-09-01
We evaluated the performance of the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and Cockcroft-Gault (CG) equations against creatinine clearance (CrCl) to estimate glomerular filtration rate (GFR) in 51 patients with Type 2 diabetes. The CrCl value was obtained from the average of two consecutive 24-h urine samples. Results were adjusted for body surface area using the Dubois formula. Serum creatinine was measured using the kinetic Jaffe method and was calibrated to standardized levels. Bland-Altman analysis and kappa statistic were used to examine agreement between measured and estimated GFR. Estimates of GFR from the CrCl, MDRD, CKD-EPI and CG equations were similar (overall P = 0.298), and MDRD (r = 0.58; 95% CI: 0.36-0.74), CKD-EPI (r = 0.55; 95% CI: 0.33-0.72) and CG (r = 0.61; 95% CI: 0.39-0.75) showed modest correlation with CrCl (all P < 0.001). Bias was -0.3 for MDRD, 1.7 for CKD-EPI and -5.4 for CG. All three equations showed fair-to-moderate agreement with CrCl (kappa: 0.38-0.51). The c-statistic for all three equations ranged between 0.75 and 0.77 with no significant difference (P = 0.639 for c-statistic comparison). The MDRD equation seems to have a modest advantage over CKD-EPI and CG in estimating GFR and detecting impaired renal function in sub-Saharan African patients with Type 2 diabetes. The overall relatively modest correlation with CrCl, however, suggests the need for context-specific estimators of GFR or context adaptation of existing estimators. © 2015 Diabetes UK.
Miller, M.R.; Eadie, J. McA
2006-01-01
We examined the allometric relationship between resting metabolic rate (RMR; kJ day-1) and body mass (kg) in wild waterfowl (Anatidae) by regressing RMR on body mass using species means from data obtained from published literature (18 sources, 54 measurements, 24 species; all data from captive birds). There was no significant difference among measurements from the rest (night; n = 37), active (day; n = 14), and unspecified (n = 3) phases of the daily cycle (P > 0.10), and we pooled these measurements for analysis. The resulting power function (aMassb) for all waterfowl (swans, geese, and ducks) had an exponent (b; slope of the regression) of 0.74, indistinguishable from that determined with commonly used general equations for nonpasserine birds (0.72-0.73). In contrast, the mass proportionality coefficient (b; y-intercept at mass = 1 kg) of 422 exceeded that obtained from the nonpasserine equations by 29%-37%. Analyses using independent contrasts correcting for phylogeny did not substantially alter the equation. Our results suggest the waterfowl equation provides a more appropriate estimate of RMR for bioenergetics analyses of waterfowl than do the general nonpasserine equations. When adjusted with a multiple to account for energy costs of free living, the waterfowl equation better estimates daily energy expenditure. Using this equation, we estimated that the extent of wetland habitat required to support wintering waterfowl populations could be 37%-50% higher than previously predicted using general nonpasserine equations. ?? The Cooper Ornithological Society 2006.
BMP COST ANALYSIS FOR SOURCE WATER PROTECTION
Cost equations are developed to estimate capital and operations and maintenance (O&M) for commonly used best management practices (BMPS). Total BMP volume and/or surface area is used to predict these costs. ENR construction cost index was used to adjust cost data to December 2000...
Momtaz, Hossein-Emad; Dehghan, Arash; Karimian, Mohammad
2016-01-01
The use of a simple and accurate glomerular filtration rate (GFR) estimating method aiming minute assessment of renal function can be of great clinical importance. This study aimed to determine the association of a GFR estimating by equation that includes only cystatin C (Gentian equation) to equation that include only creatinine (Schwartz equation) among children. A total of 31 children aged from 1 day to 5 years with the final diagnosis of unilateral or bilateral hydronephrosis referred to Besat hospital in Hamadan, between March 2010 and February 2011 were consecutively enrolled. Schwartz and Gentian equations were employed to determine GFR based on plasma creatinine and cystatin C levels, respectively. The proportion of GFR based on Schwartz equation was 70.19± 24.86 ml/min/1.73 m(2), while the level of this parameter based on Gentian method and using cystatin C was 86.97 ± 21.57 ml/min/1.73 m(2). The Pearson correlation coefficient analysis showed a strong direct association between the two levels of GFR measured by Schwartz equation based on serum creatinine level and Gentian method and using cystatin C (r = 0.594, P < 0.001). The linear association between GFR values measured with the two methods included cystatin C based GFR = 50.8+ 0.515 × Schwartz GFR. The correlation between GFR values measured by using serum creatinine and serum cystatin C measurements remained meaningful even after adjustment for patients' gender and age (r = 0.724, P < 0.001). The equation developed based on cystatin C level is comparable with another equation, based on serum creatinine (Schwartz formula) to estimate GFR in children.
Stevens, Lesley A; Coresh, Josef; Schmid, Christopher H; Feldman, Harold I.; Froissart, Marc; Kusek, John; Rossert, Jerome; Van Lente, Frederick; Bruce, Robert D.; Zhang, Yaping (Lucy); Greene, Tom; Levey, Andrew S
2008-01-01
Background Serum cystatin C (Scys) has been proposed as a potential replacement for serum creatinine (Scr) in glomerular filtration rate (GFR) estimation. We report development and evaluation of GFR estimating equations using Scys alone and Scys, Scr or both with demographic variables. Study Design Test of diagnostic accuracy. Setting and Participants Participants screened for three chronic kidney disease (CKD) studies in the US (n=2980) and a clinical population in Paris, France (n=438) Reference Test Measured GFR (mGFR). Index Test Estimated GFR using the four new equations based on Scys alone, Scys, Scr or both with age, sex and race. New equations were developed using regression with log GFR as the outcome in 2/3 data from US studies. Internal validation was performed in remaining 1/3 of data from US CKD studies; external validation was performed in the Paris study. Measurements GFR was measured using urinary clearance of 125I-iothalamate in the US studies and chromium-ethylenediaminetetraacetate (51Cr-EDTA) in the Paris study. Scys was measured by Dade Behring assay, standardized Scr. Results Mean mGFR, Scr and Scys were 48 (5th–95th percentile 15–95) ml/min/1.73m2 2.1 mg/dL and 1.8 mg/L respectively. For the new equations, the coefficients for age, sex and race were significant in the equation with Scys but 2 to 4 fold smaller than in the equation with Scr. Measures of performance among new equations were consistent across development, internal and external validation datasets. Percent of eGFR within 30% of mGFR for equations based on Scys alone, Scys, Scr or both with age, sex and race were 81, 83, 85, and 89%, respectively. The equation using Scys alone yields estimates with small biases in age, sex and race subgroups, which are improved in equations including these variables. Limitations Study population composed mainly of patients with CKD. Conclusions Scys alone provides GFR estimates that are nearly as accurate as Scr adjusted for age, sex and race thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including Scys in combination with Scr, age, sex and race provide most accurate estimates. PMID:18295055
Breslow, Norman E.; Lumley, Thomas; Ballantyne, Christie M; Chambless, Lloyd E.; Kulich, Michal
2009-01-01
The case-cohort study involves two-phase sampling: simple random sampling from an infinite super-population at phase one and stratified random sampling from a finite cohort at phase two. Standard analyses of case-cohort data involve solution of inverse probability weighted (IPW) estimating equations, with weights determined by the known phase two sampling fractions. The variance of parameter estimates in (semi)parametric models, including the Cox model, is the sum of two terms: (i) the model based variance of the usual estimates that would be calculated if full data were available for the entire cohort; and (ii) the design based variance from IPW estimation of the unknown cohort total of the efficient influence function (IF) contributions. This second variance component may be reduced by adjusting the sampling weights, either by calibration to known cohort totals of auxiliary variables correlated with the IF contributions or by their estimation using these same auxiliary variables. Both adjustment methods are implemented in the R survey package. We derive the limit laws of coefficients estimated using adjusted weights. The asymptotic results suggest practical methods for construction of auxiliary variables that are evaluated by simulation of case-cohort samples from the National Wilms Tumor Study and by log-linear modeling of case-cohort data from the Atherosclerosis Risk in Communities Study. Although not semiparametric efficient, estimators based on adjusted weights may come close to achieving full efficiency within the class of augmented IPW estimators. PMID:20174455
Double-exponential decay of orientational correlations in semiflexible polyelectrolytes.
Bačová, P; Košovan, P; Uhlík, F; Kuldová, J; Limpouchová, Z; Procházka, K
2012-06-01
In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.
Keogh, Ruth H; Daniel, Rhian M; VanderWeele, Tyler J; Vansteelandt, Stijn
2018-05-01
Estimation of causal effects of time-varying exposures using longitudinal data is a common problem in epidemiology. When there are time-varying confounders, which may include past outcomes, affected by prior exposure, standard regression methods can lead to bias. Methods such as inverse probability weighted estimation of marginal structural models have been developed to address this problem. However, in this paper we show how standard regression methods can be used, even in the presence of time-dependent confounding, to estimate the total effect of an exposure on a subsequent outcome by controlling appropriately for prior exposures, outcomes, and time-varying covariates. We refer to the resulting estimation approach as sequential conditional mean models (SCMMs), which can be fitted using generalized estimating equations. We outline this approach and describe how including propensity score adjustment is advantageous. We compare the causal effects being estimated using SCMMs and marginal structural models, and we compare the two approaches using simulations. SCMMs enable more precise inferences, with greater robustness against model misspecification via propensity score adjustment, and easily accommodate continuous exposures and interactions. A new test for direct effects of past exposures on a subsequent outcome is described.
Using Grain-Size Distribution Methods for Estimation of Air Permeability.
Wang, Tiejun; Huang, Yuanyang; Chen, Xunhong; Chen, Xi
2016-01-01
Knowledge of air permeability (ka ) at dry conditions is critical for the use of air flow models in porous media; however, it is usually difficult and time consuming to measure ka at dry conditions. It is thus desirable to estimate ka at dry conditions from other readily obtainable properties. In this study, the feasibility of using information derived from grain-size distributions (GSDs) for estimating ka at dry conditions was examined. Fourteen GSD-based equations originally developed for estimating saturated hydraulic conductivity were tested using ka measured at dry conditions in both undisturbed and disturbed river sediment samples. On average, the estimated ka from all the equations, except for the method of Slichter, differed by less than ± 4 times from the measured ka for both undisturbed and disturbed groups. In particular, for the two sediment groups, the results given by the methods of Terzaghi and Hazen-modified were comparable to the measured ka . In addition, two methods (e.g., Barr and Beyer) for the undisturbed samples and one method (e.g., Hazen-original) for the undisturbed samples were also able to produce comparable ka estimates. Moreover, after adjusting the values of the coefficient C in the GSD-based equations, the estimation of ka was significantly improved with the differences between the measured and estimated ka less than ±4% on average (except for the method of Barr). As demonstrated by this study, GSD-based equations may provide a promising and efficient way to estimate ka at dry conditions. © 2015, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Zhong, Chongquan; Lin, Yaoyao
2017-11-01
In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.
40 CFR 98.346 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... landfills, enter the estimated year of landfill closure), the capacity (in metric tons) of the landfill, an... reporting year (metric tons CH4) calculated using Equation HH-1 of this subpart. (h) For landfills without gas collection systems, the annual methane emissions (i.e., the methane generation, adjusted for...
Runkel, Robert L.
1998-01-01
OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.
GOES dynamic propagation of attitude
NASA Astrophysics Data System (ADS)
Markley, F. Landis; Seidewitz, Ed; Chu, Don; Rowe, John N.
1988-09-01
The spacecraft in the next series of Geostationary Operational Environmental Satellites (GOES-Next) are Earth pointing and have 5-year mission lifetimes. Because gyros can be depended on only for a few years of continuous use, they will be turned off during routine operations. This means attitude must, at times, be determined without benefit of gyros and, often, using only Earth sensor data. To minimize the interruption caused by dumping angular momentum, these spacecraft have been designed to reduce the environmental torque acting on them and incorporate an adjustable solar trim tab for fine adjustment. A new support requirement for GOES-Next is that of setting the solar trim tab. Optimizing its setting requires an estimate of the unbalanced torque on the spacecraft. These two requirements, determining attitude without gyros and estimating the external torque, are addressed by replacing or supplementing the gyro propagation with a dynamic one, that is, one that integrates the rigid body equations of motion. By processing quarter-orbit or longer batches, this approach takes advantage of roll-yaw coupling to observe attitude completely without Sun sensor data. Telemetered momentum wheel speeds are used as observations of the unbalanced external torques. GOES-Next provides a unique opportunity to study dynamic attitude propagation. The geosynchronous altitude and adjustable trim tab minimize the external torque and its uncertainty, making long-term dynamic propagation feasible. This paper presents the equations for dynamic propagation, an analysis of the environmental torques, and an estimate of the accuracies obtainable with the proposed method.
Lucas, G M; Cozzi-Lepri, A; Wyatt, C M; Post, F A; Bormann, A M; Crum-Cianflone, N F; Ross, M J
2014-02-01
The accuracy and precision of glomerular filtration rate (GFR) estimating equations based on plasma creatinine (GFR(cr)), cystatin C (GFR(cys)) and the combination of these markers (GFR(cr-cys)) have recently been assessed in HIV-infected individuals. We assessed the associations of GFR, estimated by these three equations, with clinical events in HIV-infected individuals. We compared the associations of baseline GFR(cr), GFR(cys) and GFR(cr-cys) [using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations] with mortality, cardiovascular events (CVEs) and opportunistic diseases (ODs) in the Strategies for the Management of Antiretroviral Therapy (SMART) study. We used Cox proportional hazards models to estimate unadjusted and adjusted hazard ratios per standard deviation (SD) change in GFR. A total of 4614 subjects from the SMART trial with available baseline creatinine and cystatin C data were included in this analysis. Of these, 99 died, 111 had a CVE and 121 had an OD. GFR(cys) was weakly to moderately correlated with HIV RNA, CD4 cell count, high-sensitivity C-reactive protein, interleukin-6, and D-dimer, while GFR(cr) had little or no correlation with these factors. GFR(cys) had the strongest associations with the three clinical outcomes, followed closely by GFR(cr-cys), with GFR(cr) having the weakest associations with clinical outcomes. In a model adjusting for demographics, cardiovascular risk factors, HIV-related factors and inflammation markers, a 1-SD lower GFR(cys) was associated with a 55% [95% confidence interval (CI) 27-90%] increased risk of mortality, a 21% (95% CI 0-47%) increased risk of CVE, and a 22% (95% CI 0-48%) increased risk of OD. Of the three CKD-EPI GFR equations, GFR(cys) had the strongest associations with mortality, CVE and OD. © 2013 British HIV Association.
Szummer, Karolina; Evans, Marie; Carrero, Juan Jesus; Alehagen, Urban; Dahlström, Ulf; Benson, Lina; Lund, Lars H
2017-01-01
It is unknown how the creatinine-based renal function estimations differ for dose adjustment cut-offs and risk prediction in patients with heart failure. The renal function was similar with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (median 59 mL/min/1.73 m 2 , IQR 42 to 77) and Modification of Diet in Renal Disease Study (MDRD) (59 mL/min/1.73 m 2 , IQR 43 to 75) and slightly lower with the Cockcroft-Gault (CG) equation (57 mL/min, IQR 39 to 82). Across the commonly used renal function stages, the CKD-EPI and the MDRD classified patients into the same stage in 87.2% (kappa coefficient 0.83, p<0.001); the CKD-EPI and the CG equation agreed in 52.3% (kappa coefficient 0.39, p<0.001). Hence, a differing number of patients will receive dose adjustment depending on which formula is used as cut-off. The CG equation predicted worse prognosis better (c-statistics 0.740, 95% CI 0.734 to 0.746) than CKD-EPI (0.697, 95% CI 0.690 to 0.703, p<0.001) and MDRD (0.680, 95% CI 0.734 to 0.746). Using net reclassification improvement (NRI), the CG identified 12.8% more patients at higher risk of death as compared with the CKD-EPI equation. Patients registered in the Swedish Heart Failure Registry (n= 40 736) with standardised creatinine values between 2000 and 2012 had their renal function estimated with the CKD-EPI, the MDRD and the CG. Agreement between the formulas was compared for categories. Prediction of death was assessed with c-statistics and with NRI. The choice of renal function estimation formula has clinical implications and differing results at various cut-off levels. For prognosis, the CG predicts mortality better than the CKD-EPI and MDRD.
Szummer, Karolina; Evans, Marie; Carrero, Juan Jesus; Alehagen, Urban; Dahlström, Ulf; Benson, Lina; Lund, Lars H
2017-01-01
Background It is unknown how the creatinine-based renal function estimations differ for dose adjustment cut-offs and risk prediction in patients with heart failure. Method and results The renal function was similar with the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (median 59 mL/min/1.73 m2, IQR 42 to 77) and Modification of Diet in Renal Disease Study (MDRD) (59 mL/min/1.73 m2, IQR 43 to 75) and slightly lower with the Cockcroft-Gault (CG) equation (57 mL/min, IQR 39 to 82). Across the commonly used renal function stages, the CKD-EPI and the MDRD classified patients into the same stage in 87.2% (kappa coefficient 0.83, p<0.001); the CKD-EPI and the CG equation agreed in 52.3% (kappa coefficient 0.39, p<0.001). Hence, a differing number of patients will receive dose adjustment depending on which formula is used as cut-off. The CG equation predicted worse prognosis better (c-statistics 0.740, 95% CI 0.734 to 0.746) than CKD-EPI (0.697, 95% CI 0.690 to 0.703, p<0.001) and MDRD (0.680, 95% CI 0.734 to 0.746). Using net reclassification improvement (NRI), the CG identified 12.8% more patients at higher risk of death as compared with the CKD-EPI equation. Patients registered in the Swedish Heart Failure Registry (n= 40 736) with standardised creatinine values between 2000 and 2012 had their renal function estimated with the CKD-EPI, the MDRD and the CG. Agreement between the formulas was compared for categories. Prediction of death was assessed with c-statistics and with NRI. Conclusion The choice of renal function estimation formula has clinical implications and differing results at various cut-off levels. For prognosis, the CG predicts mortality better than the CKD-EPI and MDRD. PMID:28761677
NASA Technical Reports Server (NTRS)
Kustas, William P.; Choudhury, Bhaskar J.; Kunkel, Kenneth E.
1989-01-01
Surface-air temperature differences are commonly used in a bulk resistance equation for estimating sensible heat flux (H), which is inserted in the one-dimensional energy balance equation to solve for the latent heat flux (LE) as a residual. Serious discrepancies between estimated and measured LE have been observed for partial-canopy-cover conditions, which are mainly attributed to inappropriate estimates of H. To improve the estimates of H over sparse canopies, one- and two-layer resistance models that account for some of the factors causing poor agreement are developed. The utility of the two models is tested with remotely sensed and micrometeorological data for a furrowed cotton field with 20 percent cover and a dry soil surface. It is found that the one-layer model performs better than the two-layer model when a theoretical bluff-body correction for heat transfer is used instead of an empirical adjustment; otherwise, the two-layer model is better.
2012-01-01
Background The Chronic Kidney Disease Epidemiology Collaboration equation for estimation of glomerular filtration rate (eGFRCKD-EPI) improves GFR estimation compared with the Modification of Diet in Renal Disease Study equation (eGFRMDRD) but its association with mortality in a nationally representative population sample in the US has not been studied. Methods We examined the association between eGFR and mortality among 16,010 participants of the Third National Health and Nutrition Examination Survey (NHANES III). Primary predictors were eGFRCKD-EPI and eGFRMDRD. Outcomes of interest were all-cause and cardiovascular disease (CVD) mortality. Improvement in risk categorization with eGFRCKD-EPI was evaluated using adjusted relative hazard (HR) and Net Reclassification Improvement (NRI). Results Overall, 26.9% of the population was reclassified to higher eGFR categories and 2.2% to lower eGFR categories by eGFRCKD-EPI, reducing the proportion of prevalent CKD classified as stage 3–5 from 45.6% to 28.8%. There were 3,620 deaths (1,540 from CVD) during 215,082 person-years of follow-up (median, 14.3 years). Among those with eGFRMDRD 30–59 ml/min/1.73 m2, 19.4% were reclassified to eGFRCKD-EPI 60–89 ml/min/1.73 m2 and these individuals had a lower risk of all-cause mortality (adjusted HR, 0.53; 95% CI, 0.34-0.84) and CVD mortality (adjusted HR, 0.51; 95% CI, 0.27-0.96) compared with those not reclassified. Among those with eGFRMDRD >60 ml/min/1.73 m2, 0.5% were reclassified to lower eGFRCKD-EPI and these individuals had a higher risk of all-cause (adjusted HR, 1.31; 95% CI, 1.01-1.69) and CVD (adjusted HR, 1.42; 95% CI, 1.01-1.99) mortality compared with those not reclassified. Risk prediction improved with eGFRCKD-EPI; NRI was 0.21 for all-cause mortality (p < 0.001) and 0.22 for CVD mortality (p < 0.001). Conclusions eGFRCKD-EPI categories improve mortality risk stratification of individuals in the US population. If eGFRCKD-EPI replaces eGFRMDRD in the US, it will likely improve risk stratification. PMID:22702805
Child Labour and Child Schooling in Rural Ethiopia: Nature and Trade-Off
ERIC Educational Resources Information Center
Haile, Getinet; Haile, Beliyou
2012-01-01
We examine work participation and schooling for children aged 7-15 using survey data from rural Ethiopia. Bivariate probit and age-adjusted educational attainment equations have been estimated. Male children are found to be more likely to attend school than their female counterparts. "Specialization" in child labour is also found, with…
NASA Astrophysics Data System (ADS)
Paredes, P.; Fontes, J. C.; Azevedo, E. B.; Pereira, L. S.
2017-11-01
Reference crop evapotranspiration (ETo) estimations using the FAO Penman-Monteith equation (PM-ETo) require several weather variables that are often not available. Then, ETo may be computed with procedures proposed in FAO56, either using the PM-ETo equation with temperature estimates of actual vapor pressure (e a) and solar radiation (R s), and default wind speed values (u 2), the PMT method, or using the Hargreaves-Samani equation (HS). The accuracy of estimates of daily e a, R s, and u 2 is provided in a companion paper (Paredes et al. 2017) applied to data of 20 locations distributed through eight islands of Azores, thus focusing on humid environments. Both estimation procedures using the PMT method (ETo PMT) and the HS equation (ETo HS) were assessed by statistically comparing their results with those obtained for the PM-ETo with data of the same 20 locations. Results show that both approaches provide for accurate ETo estimations, with RMSE for PMT ranging 0.48-0.73 mm day-1 and for HS varying 0.47-0.86 mm day-1. It was observed that ETo PMT is linearly related with PM-ETo, while non-linearity was observed for ETo HS in weather stations located at high elevation. Impacts of wind were not important for HS but required proper adjustments in the case of PMT. Results show that the PMT approach is more accurate than HS. Moreover, PMT allows the use of observed variables together with estimators of the missing ones, which improves the accuracy of the PMT approach. The preference for the PMT method, fully based upon the PM-ETo equation, is therefore obvious.
Terrestrial gravity data analysis for interim gravity model improvement
NASA Technical Reports Server (NTRS)
1987-01-01
This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.
Freedman, Laurence S; Commins, John M; Willett, Walter; Tinker, Lesley F; Spiegelman, Donna; Rhodes, Donna; Potischman, Nancy; Neuhouser, Marian L; Moshfegh, Alanna J; Kipnis, Victor; Baer, David J; Arab, Lenore; Prentice, Ross L; Subar, Amy F
2017-07-01
Calibrating dietary self-report instruments is recommended as a way to adjust for measurement error when estimating diet-disease associations. Because biomarkers available for calibration are limited, most investigators use self-reports (e.g., 24-hour recalls (24HRs)) as the reference instrument. We evaluated the performance of 24HRs as reference instruments for calibrating food frequency questionnaires (FFQs), using data from the Validation Studies Pooling Project, comprising 5 large validation studies using recovery biomarkers. Using 24HRs as reference instruments, we estimated attenuation factors, correlations with truth, and calibration equations for FFQ-reported intakes of energy and for protein, potassium, and sodium and their densities, and we compared them with values derived using biomarkers. Based on 24HRs, FFQ attenuation factors were substantially overestimated for energy and sodium intakes, less for protein and potassium, and minimally for nutrient densities. FFQ correlations with truth, based on 24HRs, were substantially overestimated for all dietary components. Calibration equations did not capture dependencies on body mass index. We also compared predicted bias in estimated relative risks adjusted using 24HRs as reference instruments with bias when making no adjustment. In disease models with energy and 1 or more nutrient intakes, predicted bias in estimated nutrient relative risks was reduced on average, but bias in the energy risk coefficient was unchanged. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
Parrett, Charles; Johnson, D.R.; Hull, J.A.
1989-01-01
Estimates of streamflow characteristics (monthly mean flow that is exceeded 90, 80, 50, and 20 percent of the time for all years of record and mean monthly flow) were made and are presented in tabular form for 312 sites in the Missouri River basin in Montana. Short-term gaged records were extended to the base period of water years 1937-86, and were used to estimate monthly streamflow characteristics at 100 sites. Data from 47 gaged sites were used in regression analysis relating the streamflow characteristics to basin characteristics and to active-channel width. The basin-characteristics equations, with standard errors of 35% to 97%, were used to estimate streamflow characteristics at 179 ungaged sites. The channel-width equations, with standard errors of 36% to 103%, were used to estimate characteristics at 138 ungaged sites. Streamflow measurements were correlated with concurrent streamflows at nearby gaged sites to estimate streamflow characteristics at 139 ungaged sites. In a test using 20 pairs of gages, the standard errors ranged from 31% to 111%. At 139 ungaged sites, the estimates from two or more of the methods were weighted and combined in accordance with the variance of individual methods. When estimates from three methods were combined the standard errors ranged from 24% to 63 %. A drainage-area-ratio adjustment method was used to estimate monthly streamflow characteristics at seven ungaged sites. The reliability of the drainage-area-ratio adjustment method was estimated to be about equal to that of the basin-characteristics method. The estimate were checked for reliability. Estimates of monthly streamflow characteristics from gaged records were considered to be most reliable, and estimates at sites with actual flow record from 1937-86 were considered to be completely reliable (zero error). Weighted-average estimates were considered to be the most reliable estimates made at ungaged sites. (USGS)
Melching, Charles S.; Oberg, Kevin A.
1993-01-01
The acoustic velocity meter (AVM) on the Chicago Sanitary and Ship Canal (the Canal) at Romeoville, Ill., provides vital information for the accounting of the diversion of water from Lake Michigan. A detailed analysis of the discharge record on the Canal at Romeoville was done by the U.S. Geological Survey to establish the most accurate estimates of discharge for water years 1986-91. The analysis involved (1) checking the consistency of the discharges estimated by two different AVM's installed at Romeoville for consecutive time periods by statistical and regression analyses, (2) adjusting the discharge record to account for corrections to the width and depth of the Canal determined by field measurements, and (3) development of equations for estimating discharge on days when the AVM was inoperative using discharge estimates made by the Metropolitan Water Reclamation District of Greater Chicago at the lock, powerhouse, and controlling works at Lockport, Ill. No signi- ficant difference in the discharge estimates made by the two AVM's could be documented. The estimation equations combined regression analysis with physical principles of the outlet-works operation. The estimation equations simulated the verification period of October 1, 1991, to May 31, 1992, within 0.22, 5.15, and 0.66 percent for the mean, standard deviation, and skewness coefficient, respectively. Discharges were recalculated for the corrected width and depth, estimated for the periods of AVM inoperation, and entered into the discharge record for the station.
Linear models for calculating digestibile energy for sheep diets.
Fonnesbeck, P V; Christiansen, M L; Harris, L E
1981-05-01
Equations for estimating the digestible energy (DE) content of sheep diets were generated from the chemical contents and a factorial description of diets fed to lambs in digestion trials. The diet factors were two forages (alfalfa and grass hay), harvested at three stages of maturity (late vegetative, early bloom and full bloom), fed in two ingredient combinations (all hay or a 50:50 hay and corn grain mixture) and prepared by two forage texture processes (coarsely chopped or finely chopped and pelleted). The 2 x 3 x 2 x 2 factorial arrangement produced 24 diet treatments. These were replicated twice, for a total of 48 lamb digestion trials. In model 1 regression equations, DE was calculated directly from chemical composition of the diet. In model 2, regression equations predicted the percentage of digested nutrient from the chemical contents of the diet and then DE of the diet was calculated as the sum of the gross energy of the digested organic components. Expanded forms of model 1 and model 2 were also developed that included diet factors as qualitative indicator variables to adjust the regression constant and regression coefficients for the diet description. The expanded forms of the equations accounted for significantly more variation in DE than did the simple models and more accurately estimated DE of the diet. Information provided by the diet description proved as useful as chemical analyses for the prediction of digestibility of nutrients. The statistics indicate that, with model 1, neutral detergent fiber and plant cell wall analyses provided as much information for the estimation of DE as did model 2 with the combined information from crude protein, available carbohydrate, total lipid, cellulose and hemicellulose. Regression equations are presented for estimating DE with the most currently analyzed organic components, including linear and curvilinear variables and diet factors that significantly reduce the standard error of the estimate. To estimate De of a diet, the user utilizes the equation that uses the chemical analysis information and diet description most effectively.
Matsushita, Kunihiro; Mahmoodi, Bakhtawar K; Woodward, Mark; Emberson, Jonathan R; Jafar, Tazeen H; Jee, Sun Ha; Polkinghorne, Kevan R; Shankar, Anoop; Smith, David H; Tonelli, Marcello; Warnock, David G; Wen, Chi-Pang; Coresh, Josef; Gansevoort, Ron T; Hemmelgarn, Brenda R; Levey, Andrew S
2012-05-09
The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation more accurately estimates glomerular filtration rate (GFR) than the Modification of Diet in Renal Disease (MDRD) Study equation using the same variables, especially at higher GFR, but definitive evidence of its risk implications in diverse settings is lacking. To evaluate risk implications of estimated GFR using the CKD-EPI equation compared with the MDRD Study equation in populations with a broad range of demographic and clinical characteristics. A meta-analysis of data from 1.1 million adults (aged ≥ 18 years) from 25 general population cohorts, 7 high-risk cohorts (of vascular disease), and 13 CKD cohorts. Data transfer and analyses were conducted between March 2011 and March 2012. All-cause mortality (84,482 deaths from 40 cohorts), cardiovascular mortality (22,176 events from 28 cohorts), and end-stage renal disease (ESRD) (7644 events from 21 cohorts) during 9.4 million person-years of follow-up; the median of mean follow-up time across cohorts was 7.4 years (interquartile range, 4.2-10.5 years). Estimated GFR was classified into 6 categories (≥90, 60-89, 45-59, 30-44, 15-29, and <15 mL/min/1.73 m(2)) by both equations. Compared with the MDRD Study equation, 24.4% and 0.6% of participants from general population cohorts were reclassified to a higher and lower estimated GFR category, respectively, by the CKD-EPI equation, and the prevalence of CKD stages 3 to 5 (estimated GFR <60 mL/min/1.73 m(2)) was reduced from 8.7% to 6.3%. In estimated GFR of 45 to 59 mL/min/1.73 m(2) by the MDRD Study equation, 34.7% of participants were reclassified to estimated GFR of 60 to 89 mL/min/1.73 m(2) by the CKD-EPI equation and had lower incidence rates (per 1000 person-years) for the outcomes of interest (9.9 vs 34.5 for all-cause mortality, 2.7 vs 13.0 for cardiovascular mortality, and 0.5 vs 0.8 for ESRD) compared with those not reclassified. The corresponding adjusted hazard ratios were 0.80 (95% CI, 0.74-0.86) for all-cause mortality, 0.73 (95% CI, 0.65-0.82) for cardiovascular mortality, and 0.49 (95% CI, 0.27-0.88) for ESRD. Similar findings were observed in other estimated GFR categories by the MDRD Study equation. Net reclassification improvement based on estimated GFR categories was significantly positive for all outcomes (range, 0.06-0.13; all P < .001). Net reclassification improvement was similarly positive in most subgroups defined by age (<65 years and ≥65 years), sex, race/ethnicity (white, Asian, and black), and presence or absence of diabetes and hypertension. The results in the high-risk and CKD cohorts were largely consistent with the general population cohorts. The CKD-EPI equation classified fewer individuals as having CKD and more accurately categorized the risk for mortality and ESRD than did the MDRD Study equation across a broad range of populations.
Ansary, Nadia S; McMahon, Thomas J; Luthar, Suniya S
2017-02-01
This longitudinal study of affluent suburban youth (N = 319) tracked from 6th to 12th grade is parsed into two segments examining prospective associations concerning emotional-behavioral difficulties and academic achievement. In Part 1 of the investigation, markers of emotional-behavioral difficulty were used to cluster participants during 6th grade. Generalized estimating equations were then used to document between-cluster differences in academic competence from 6th to 12th grade. In Part 2 of the study, indicators of academic competence were used to cluster the same students during 6th grade, and generalized estimating equations were used to document between-cluster differences in emotional-behavioral difficulty from 6th to 12th grade. The results from Part 1 indicated that patterns of emotional-behavioral difficulty during 6th grade were concurrently associated with poorer grades and classroom adjustment with some group differences in the rate of change in classroom adjustment over time. In Part 2, patterns of academic competence during 6th grade were concurrently associated with less emotional-behavioral difficulty and some group differences in the rate of change in specific forms of emotional-behavioral difficulty over time. These results suggest that the youth sampled appeared relatively well adjusted and any emotional-behavioral-achievement difficulty that was evident at the start of middle school was sustained through the end of high school.
Kulkarni, Bharati; Kuper, Hannah; Taylor, Amy; Wells, Jonathan C; Radhakrishna, K V; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Byrne, Nuala M; Hills, Andrew P
2013-10-15
Lean body mass (LBM) and muscle mass remain difficult to quantify in large epidemiological studies due to the unavailability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual-energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n = 2,220; 36% women; age 18-79 yr), representing a wide range of body mass index (14-44 kg/m(2)), participated in this study. Their LBM, including ALST, was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA-measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height, and weight explained >90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of skinfold thicknesses) increased the explained variation by 5-8% in the fully adjusted models predicting LBM and ALST. More complex equations using all of the above anthropometric variables could predict the DXA-measured LBM and ALST accurately, as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively), as well as good agreement by Bland-Altman analyses (Bland JM, Altman D. Lancet 1: 307-310, 1986). These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition.
Kuper, Hannah; Taylor, Amy; Wells, Jonathan C.; Radhakrishna, K. V.; Kinra, Sanjay; Ben-Shlomo, Yoav; Smith, George Davey; Ebrahim, Shah; Byrne, Nuala M.; Hills, Andrew P.
2013-01-01
Lean body mass (LBM) and muscle mass remain difficult to quantify in large epidemiological studies due to the unavailability of inexpensive methods. We therefore developed anthropometric prediction equations to estimate the LBM and appendicular lean soft tissue (ALST) using dual-energy X-ray absorptiometry (DXA) as a reference method. Healthy volunteers (n = 2,220; 36% women; age 18-79 yr), representing a wide range of body mass index (14–44 kg/m2), participated in this study. Their LBM, including ALST, was assessed by DXA along with anthropometric measurements. The sample was divided into prediction (60%) and validation (40%) sets. In the prediction set, a number of prediction models were constructed using DXA-measured LBM and ALST estimates as dependent variables and a combination of anthropometric indices as independent variables. These equations were cross-validated in the validation set. Simple equations using age, height, and weight explained >90% variation in the LBM and ALST in both men and women. Additional variables (hip and limb circumferences and sum of skinfold thicknesses) increased the explained variation by 5–8% in the fully adjusted models predicting LBM and ALST. More complex equations using all of the above anthropometric variables could predict the DXA-measured LBM and ALST accurately, as indicated by low standard error of the estimate (LBM: 1.47 kg and 1.63 kg for men and women, respectively), as well as good agreement by Bland-Altman analyses (Bland JM, Altman D. Lancet 1: 307–310, 1986). These equations could be a valuable tool in large epidemiological studies assessing these body compartments in Indians and other population groups with similar body composition. PMID:23950165
Manzano-Fernández, Sergio; Andreu-Cayuelas, José M; Marín, Francisco; Orenes-Piñero, Esteban; Gallego, Pilar; Valdés, Mariano; Vicente, Vicente; Lip, Gregory Y H; Roldán, Vanessa
2015-06-01
New oral anticoagulants require dosing adjustment according to renal function. We aimed to determine discordance in hypothetical recommended dosing of these drugs using different estimated glomerular filtration rate equations in patients with atrial fibrillation. Cross-sectional analysis of 910 patients with atrial fibrillation and an indication for oral anticoagulation. The glomerular filtration rate was estimated using the Cockcroft-Gault, Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations. For dabigatran, rivaroxaban, and apixaban we identified dose discordance when there was disagreement in the recommended dose based on different equations. Among the overall population, relative to Cockcroft-Gault, discordance in dabigatran dosage was 11.4% for Modification of Diet in Renal Disease and 10% for Chronic Kidney Disease Epidemiology Collaboration, discordance in rivaroxaban dosage was 10% for Modification of Diet in Renal Disease and 8.5% for the Chronic Kidney Disease Epidemiology Collaboration. The lowest discordance was observed for apixaban: 1.4% for Modification of Diet in Renal Disease and 1.5% for the Chronic Kidney Disease Epidemiology Collaboration. In patients with Cockcroft-Gault<60mL/min or elderly patients, discordances in dabigatran and rivaroxaban dosages were higher, ranging from 13.2% to 30.4%. Discordance in apixaban dosage remained<5% in these patients. Discordance in new oral anticoagulation dosages using different equations is frequent, especially among elderly patients with renal impairment. This discordance was higher in dabigatran and rivaroxaban dosages than in apixaban dosages. Further studies are needed to clarify the clinical importance of these discordances and the optimal anticoagulant dosages depending on the use of different equations to estimate renal function. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Fifty-year flood-inundation maps for Comayagua, Hondura
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of the 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Comayagua that would be inundated by 50-year floods on Rio Humuya and Rio Majada. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Comayagua as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Humuya and Rio Majada at Comayagua were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The 50-year-flood discharge for Rio Humuya at Comayagua, 1,400 cubic meters per second, was estimated using a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The reasonableness of the regression discharge was evaluated by comparing it with drainage-area-adjusted 50-year-flood discharges estimated for three long-term Rio Humuya stream-gaging stations. The drainage-area-adjusted 50-year-flood discharges estimated from the gage records ranged from 946 to 1,365 cubic meters per second. Because the regression equation discharge agrees closely with the high end of the range of discharges estimated from the gaging-station records, it was used for the hydraulic modeling to ensure that the resulting 50-year-flood water-surface elevations would not be underestimated. The 50-year-flood discharge for Rio Majada at Comayagua (230 cubic meters per second) was estimated using the regression equation because there are no long-term gaging-stations on this river from which to estimate the discharge.
Healy, Richard W.; Scanlon, Bridget R.
2010-01-01
Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.
Shara, Nawar M; Wang, Hong; Mete, Mihriye; Al-Balha, Yaman Rai; Azalddin, Nameer; Lee, Elisa T; Franceschini, Nora; Jolly, Stacey E; Howard, Barbara V; Umans, Jason G
2012-11-01
In populations with high prevalences of diabetes and obesity, estimating glomerular filtration rate (GFR) by using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation may predict cardiovascular disease (CVD) risk better than by using the Modification of Diet in Renal Disease (MDRD) Study equation. Longitudinal cohort study comparing the association of GFR estimated using either the CKD-EPI or MDRD Study equation with incident CVD outcomes. American Indians participating in the Strong Heart Study, a longitudinal population-based cohort with high prevalences of diabetes, CVD, and CKD. Estimated GFR (eGFR) predicted using the CKD-EPI and MDRD Study equations. Fatal and nonfatal cardiovascular events, consisting of coronary heart disease, stroke, and heart failure. The association between eGFR and outcomes was explored in Cox proportional hazards models adjusted for traditional risk factors and albuminuria; the net reclassification index and integrated discrimination improvement were determined for the CKD-EPI versus MDRD Study equations. In 4,549 participants, diabetes was present in 45%; CVD, in 7%; and stages 3-5 CKD, in 10%. During a median of 15 years, there were 1,280 cases of incident CVD, 929 cases of incident coronary heart disease, 305 cases of incident stroke, and 381 cases of incident heart failure. Reduced eGFR (<90 mL/min/1.73 m2) was associated with adverse events in most models. Compared with the MDRD Study equation, the CKD-EPI equation correctly reclassified 17.0% of 2,151 participants without incident CVD to a lower risk (higher eGFR) category and 1.3% (n=28) were reclassified incorrectly to a higher risk (lower eGFR) category. Single measurements of eGFR and albuminuria at study visits. Although eGFR based on either equation had similar associations with incident CVD, coronary heart disease, stroke, and heart failure events, in those not having events, reclassification of participants to eGFR categories was superior using the CKD-EPI equation compared with the MDRD Study equation. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Langer, Raquel D; Matias, Catarina N; Borges, Juliano H; Cirolini, Vagner X; Páscoa, Mauro A; Guerra-Júnior, Gil; Gonçalves, Ezequiel M
2018-03-26
Bioelectrical impedance analysis (BIA) is a practical and rapid method for making a longitudinal analysis of changes in body composition. However, most BIA validation studies have been performed in a clinical population and only at one moment, or point in time (cross-sectional study). The aim of this study is to investigate the accuracy of predictive equations based on BIA with regard to the changes in fat-free mass (FFM) in Brazilian male army cadets after 7 mo of military training. The values used were determined using dual-energy X-ray absorptiometry (DXA) as a reference method. The study included 310 male Brazilian Army cadets (aged 17-24 yr). FFM was measured using eight general predictive BIA equations, with one equation specifically applied to this population sample, and the values were compared with results obtained using DXA. The student's t-test, adjusted coefficient of determination (R2), standard error of estimation (SEE), Lin's approach, and the Bland-Altman test were used to determine the accuracy of the predictive BIA equations used to estimate FFM in this population and between the two moments (pre- and post-moment). The FFM measured using the nine predictive BIA equations, and determined using DXA at the post-moment, showed a significant increase when compared with the pre-moment (p < 0.05). All nine predictive BIA equations were able to detect FFM changes in the army cadets between the two moments in a very similar way to the reference method (DXA). However, only the one BIA equation specific to this population showed no significant differences in the FFM estimation between DXA at pre- and post-moment of military routine. All predictive BIA equations showed large limits of agreement using the Bland-Altman approach. The eight general predictive BIA equations used in this study were not found to be valid for analyzing the FFM changes in the Brazilian male army cadets, after a period of approximately 7 mo of military training. Although the BIA equation specific to this population is dependent on the amount of FFM, it appears to be a good alternative to DXA for assessing FFM in Brazilian male army cadets.
Investigating the utility of a GPA institutional adjustment index.
Didier, Thomas; Kreiter, Clarence D; Buri, Russell; Solow, Catherine
2006-05-01
Grading standards vary widely across undergraduate institutions. If, during the medical school admissions process, GPA is considered without reference to the institution attended, it will disadvantage applicants from undergraduate institutions employing rigorous grading standards. A regression-based GPA institutional equating method using historical MCAT and GPA information is described. Classes selected from eight applicant pools demonstrate the impact of the GPA adjustment. The validity of the adjustment is examined by comparing adjusted and unadjusted GPAs' correlation with USMLE and medical college grades. The adjusted GPA demonstrated significantly improved congruence with MCAT estimates of applicant preparedness. The adjustment changed selection decisions for 21% of those admitted. The adjusted GPA enhanced prediction of USMLE and medical school grades only for students from institutions which required large adjustments. Unlike other indices, the adjustment described uses the same metric as GPA and is based only on an institution's history of preparing medical school applicants. The institutional adjustment is consequential in selection, significantly enhances congruence with a standardized measure of academic preparedness and may enhance the validity of the GPA.
Combined natural gamma ray spectral/litho-density measurements applied to complex lithologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quirein, J.A.; Gardner, J.S.; Watson, J.T.
1982-09-01
Well log data has long been used to provide lithological descriptions of complex formations. Historically, most of the approaches used have been restrictive because they assumed fixed, known, and distinct lithologies for specified zones. The approach described in this paper attempts to alleviate this restriction by estimating the ''probability of a model'' for the models suggested as most likely by the reservoir geology. Lithological variables are simultaneously estimated from response equations for each model and combined in accordance with the probability of each respective model. The initial application of this approach has been the estimation of calcite, quartz, and dolomitemore » in the presence of clays, feldspars, anhydrite, or salt. Estimations were made by using natural gamma ray spectra, photoelectric effect, bulk density, and neutron porosity information. For each model, response equations and parameter selections are obtained from the thorium vs potassium crossplot and the apparent matrix density vs apparent volumetric photoelectric cross section crossplot. The thorium and potassium response equations are used to estimate the volumes of clay and feldspar. The apparent matrix density and volumetric cross section response equations can then be corrected for the presence of clay and feldspar. A test ensures that the clay correction lies within the limits for the assumed lithology model. Results are presented for varying lithologies. For one test well, 6,000 feet were processed in a single pass, without zoning and without adjusting more than one parameter pick. The program recognized sand, limestone, dolomite, clay, feldspar, anhydrite, and salt without analyst intervention.« less
Zhu, Hong; Xu, Xiaohan; Ahn, Chul
2017-01-01
Paired experimental design is widely used in clinical and health behavioral studies, where each study unit contributes a pair of observations. Investigators often encounter incomplete observations of paired outcomes in the data collected. Some study units contribute complete pairs of observations, while the others contribute either pre- or post-intervention observations. Statistical inference for paired experimental design with incomplete observations of continuous outcomes has been extensively studied in literature. However, sample size method for such study design is sparsely available. We derive a closed-form sample size formula based on the generalized estimating equation approach by treating the incomplete observations as missing data in a linear model. The proposed method properly accounts for the impact of mixed structure of observed data: a combination of paired and unpaired outcomes. The sample size formula is flexible to accommodate different missing patterns, magnitude of missingness, and correlation parameter values. We demonstrate that under complete observations, the proposed generalized estimating equation sample size estimate is the same as that based on the paired t-test. In the presence of missing data, the proposed method would lead to a more accurate sample size estimate comparing with the crude adjustment. Simulation studies are conducted to evaluate the finite-sample performance of the generalized estimating equation sample size formula. A real application example is presented for illustration.
Freedman, David S; Ogden, Cynthia L; Kit, Brian K
2015-11-18
Although the estimation of body fatness by Slaughter skinfold thickness equations (PBF(Slaughter)) has been widely used, the accuracy of this method is uncertain. We have previously examined the interrelationships among the body mass index (BMI), PBF(Slaughter), percent body fat from dual energy X-ray absorptiometry (PBF(DXA)) and CVD risk factor levels among children who were examined in the Bogalusa Heart Study and in the Pediatric Rosetta Body Composition Project. The current analyses examine these associations among 7599 8- to 19-year-olds who participated in the (U.S.) National Health and Nutrition Examination Survey from 1999 to 2004. We analyzed (1) the agreement between (1) estimates of percent body fat calculated from the Slaughter skinfold thickness equations and from DXA, and (2) the relation of lipid, lipoprotein, and blood pressure levels to BMI, PBF(Slaughter) and PBF(DXA). PBF(Slaughter) was highly correlated (r ~ 0.85) with PBF(DXA). However, among children with a relatively low skinfold thicknesses sum (triceps + subscapular), PBF(Slaughter) underestimated PBF(DXA) by 8 to 9 percentage points. In contrast, PBF(Slaughter) overestimated PBF(DXA) by 10 points among boys with a skinfold thickness sum ≥ 50 mm. After adjustment for sex and age, lipid levels were related similarly to the body mass index, PBF(DXA) and PBF(Slaughter). There were, however, small differences in associations with blood pressure levels: systolic blood pressure was more strongly associated with body mass index, but diastolic blood pressure was more strongly associated with percent body fat. The Slaughter equations yield biased estimates of body fatness. In general, lipid and blood pressure levels are related similarly to levels of BMI (following adjustment for sex and age), PBF(Slaughter,) and PBF(DXA).
White, Sarah L; Polkinghorne, Kevan R; Atkins, Robert C; Chadban, Steven J
2010-04-01
The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) is more accurate than the Modification of Diet in Renal Disease (MDRD) Study equation. We applied both equations in a cohort representative of the Australian adult population. Population-based cohort study. 11,247 randomly selected noninstitutionalized Australians aged >or= 25 years who attended a physical examination during the baseline AusDiab (Australian Diabetes, Obesity and Lifestyle) Study survey. Glomerular filtration rate (GFR) was estimated using the MDRD Study and CKD-EPI equations. Kidney damage was defined as urine albumin-creatinine ratio >or= 2.5 mg/mmol in men and >or= 3.5 mg/mmol in women or urine protein-creatinine ratio >or= 0.20 mg/mg. Chronic kidney disease (CKD) was defined as estimated GFR (eGFR) >or= 60 mL/min/1.73 m(2) or kidney damage. Participants were classified into 3 mutually exclusive subgroups: CKD according to both equations; CKD according to the MDRD Study equation, but no CKD according to the CKD-EPI equation; and no CKD according to both equations. All-cause mortality was examined in subgroups with and without CKD. Serum creatinine and urinary albumin, protein, and creatinine measured on a random spot morning urine sample. 266 participants identified as having CKD according to the MDRD Study equation were reclassified to no CKD according to the CKD-EPI equation (estimated prevalence, 1.9%; 95% CI, 1.4-2.6). All had an eGFR >or= 45 mL/min/1.73 m(2) using the MDRD Study equation. Reclassified individuals were predominantly women with a favorable cardiovascular risk profile. The proportion of reclassified individuals with a Framingham-predicted 10-year cardiovascular risk >or= 30% was 7.2% compared with 7.9% of the group with no CKD according to both equations and 45.3% of individuals retained in stage 3a using both equations. There was no evidence of increased all-cause mortality in the reclassified group (age- and sex-adjusted hazard ratio vs no CKD, 1.01; 95% CI, 0.62-1.97). Using the MDRD Study equation, the prevalence of CKD in the Australian population aged >or= 25 years was 13.4% (95% CI, 11.1-16.1). Using the CKD-EPI equation, the prevalence was 11.5% (95% CI, 9.42-14.1). Single measurements of serum creatinine and urinary markers. The lower estimated prevalence of CKD using the CKD-EPI equation is caused by reclassification of low-risk individuals. Copyright 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Connection equation and shaly-sand correction for electrical resistivity
Lee, Myung W.
2011-01-01
Estimating the amount of conductive and nonconductive constituents in the pore space of sediments by using electrical resistivity logs generally loses accuracy where clays are present in the reservoir. Many different methods and clay models have been proposed to account for the conductivity of clay (termed the shaly-sand correction). In this study, the connectivity equation (CE), which is a new approach to model non-Archie rocks, is used to correct for the clay effect and is compared with results using the Waxman and Smits method. The CE presented here requires no parameters other than an adjustable constant, which can be derived from the resistivity of water-saturated sediments. The new approach was applied to estimate water saturation of laboratory data and to estimate gas hydrate saturations at the Mount Elbert well on the Alaska North Slope. Although not as accurate as the Waxman and Smits method to estimate water saturations for the laboratory measurements, gas hydrate saturations estimated at the Mount Elbert well using the proposed CE are comparable to estimates from the Waxman and Smits method. Considering its simplicity, it has high potential to be used to account for the clay effect on electrical resistivity measurement in other systems.
You, Li; Zhu, Xiangzhu; Shrubsole, Martha J.; Fan, Hong; Chen, Jing; Dong, Jie; Hao, Chuan-Ming; Dai, Qi
2011-01-01
Background Urinary excretion of bisphenol A (BPA) and alkylphenols (APs) was used as a biomarker in most previous studies, but no study has investigated whether urinary excretion of these environmental phenols differed by renal function. Objective We estimated the association between renal function and urinary excretion of BPA and APs. Methods Analyses were conducted using data from the National Health and Nutrition Examination Survey (NHANES) 2003–2006. Renal function was measured as estimated glomerular filtration rate (eGFR) calculated by the Modification of Diet in Renal Disease (MDRD) Study equation and by the newly developed Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. Regression models were used to calculate geometric means of urinary BPA and APs excretion by eGFR category (≥ 90, 60–90, < 60 mL/min/m2) after adjusting for potential confounding factors. Results When we used the MDRD Study equation, participants without known renal disease (n = 2,573), 58.2% (n = 1,499) had mildly decreased renal function or undiagnosed chronic kidney disease. The adjusted geometric means for urinary BPA excretion decreased with decreasing levels of eGFR (p for trend = 0.04). The associations appeared primarily in females (p for trend = 0.03). Urinary triclosan excretion decreased with decreasing levels of eGFR (p for trend < 0.01) for both males and females, and the association primarily appeared in participants < 65 years of age. The association between BPA and eGFR was nonsignificant when we used the CKD-EPI equation. Conclusions Urinary excretion of triclosan, and possibly BPA, decreased with decreasing renal function. The associations might differ by age or sex. Further studies are necessary to replicate our results and understand the mechanism. PMID:21147601
Evaluation of AUC(0-4) predictive methods for cyclosporine in kidney transplant patients.
Aoyama, Takahiko; Matsumoto, Yoshiaki; Shimizu, Makiko; Fukuoka, Masamichi; Kimura, Toshimi; Kokubun, Hideya; Yoshida, Kazunari; Yago, Kazuo
2005-05-01
Cyclosporine (CyA) is the most commonly used immunosuppressive agent in patients who undergo kidney transplantation. Dosage adjustment of CyA is usually based on trough levels. Recently, trough levels have been replacing the area under the concentration-time curve during the first 4 h after CyA administration (AUC(0-4)). The aim of this study was to compare the predictive values obtained using three different methods of AUC(0-4) monitoring. AUC(0-4) was calculated from 0 to 4 h in early and stable renal transplant patients using the trapezoidal rule. The predicted AUC(0-4) was calculated using three different methods: the multiple regression equation reported by Uchida et al.; Bayesian estimation for modified population pharmacokinetic parameters reported by Yoshida et al.; and modified population pharmacokinetic parameters reported by Cremers et al. The predicted AUC(0-4) was assessed on the basis of predictive bias, precision, and correlation coefficient. The predicted AUC(0-4) values obtained using three methods through measurement of three blood samples showed small differences in predictive bias, precision, and correlation coefficient. In the prediction of AUC(0-4) measurement of one blood sample from stable renal transplant patients, the performance of the regression equation reported by Uchida depended on sampling time. On the other hand, the performance of Bayesian estimation with modified pharmacokinetic parameters reported by Yoshida through measurement of one blood sample, which is not dependent on sampling time, showed a small difference in the correlation coefficient. The prediction of AUC(0-4) using a regression equation required accurate sampling time. In this study, the prediction of AUC(0-4) using Bayesian estimation did not require accurate sampling time in the AUC(0-4) monitoring of CyA. Thus Bayesian estimation is assumed to be clinically useful in the dosage adjustment of CyA.
Model verification of large structural systems
NASA Technical Reports Server (NTRS)
Lee, L. T.; Hasselman, T. K.
1977-01-01
A methodology was formulated, and a general computer code implemented for processing sinusoidal vibration test data to simultaneously make adjustments to a prior mathematical model of a large structural system, and resolve measured response data to obtain a set of orthogonal modes representative of the test model. The derivation of estimator equations is shown along with example problems. A method for improving the prior analytic model is included.
Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M
2017-09-05
Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.
Weighted triangulation adjustment
Anderson, Walter L.
1969-01-01
The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.
Couillard, Annabelle; Tremey, Emilie; Prefaut, Christian; Varray, Alain; Heraud, Nelly
2016-12-01
To determine and/or adjust exercise training intensity for patients when the cardiopulmonary exercise test is not accessible, the determination of dyspnoea threshold (defined as the onset of self-perceived breathing discomfort) during the 6-min walk test (6MWT) could be a good alternative. The aim of this study was to evaluate the feasibility and reproducibility of self-perceived dyspnoea threshold and to determine whether a useful equation to estimate ventilatory threshold from self-perceived dyspnoea threshold could be derived. A total of 82 patients were included and performed two 6MWTs, during which they raised a hand to signal self-perceived dyspnoea threshold. The reproducibility in terms of heart rate (HR) was analysed. On a subsample of patients (n=27), a stepwise regression analysis was carried out to obtain a predictive equation of HR at ventilatory threshold measured during a cardiopulmonary exercise test estimated from HR at self-perceived dyspnoea threshold, age and forced expiratory volume in 1 s. Overall, 80% of patients could identify self-perceived dyspnoea threshold during the 6MWT. Self-perceived dyspnoea threshold was reproducibly expressed in HR (coefficient of variation=2.8%). A stepwise regression analysis enabled estimation of HR at ventilatory threshold from HR at self-perceived dyspnoea threshold, age and forced expiratory volume in 1 s (adjusted r=0.79, r=0.63, and relative standard deviation=9.8 bpm). This study shows that a majority of patients with chronic obstructive pulmonary disease can identify a self-perceived dyspnoea threshold during the 6MWT. This HR at the dyspnoea threshold is highly reproducible and enable estimation of the HR at the ventilatory threshold.
Gingerich, Stephen B.
2005-01-01
Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.
Bisese, James A.
1995-01-01
Methods are presented for estimating the peak discharges of rural, unregulated streams in Virginia. A Pearson Type III distribution is fitted to the logarithms of the unregulated annual peak-discharge records from 363 stream-gaging stations in Virginia to estimate the peak discharge at these stations for recurrence intervals of 2 to 500 years. Peak-discharge characteristics for 284 unregulated stations are divided into eight regions based on physiographic province, and regressed on basin characteristics, including drainage area, main channel length, main channel slope, mean basin elevation, percentage of forest cover, mean annual precipitation, and maximum rainfall intensity. Regression equations for each region are computed by use of the generalized least-squares method, which accounts for spatial and temporal correlation between nearby gaging stations. This regression technique weights the significance of each station to the regional equation based on the length of records collected at each cation, the correlation between annual peak discharges among the stations, and the standard deviation of the annual peak discharge for each station.Drainage area proved to be the only significant explanatory variable in four regions, while other regions have as many as three significant variables. Standard errors of the regression equations range from 30 to 80 percent. Alternate equations using drainage area only are provided for the five regions with more than one significant explanatory variable.Methods and sample computations are provided to estimate peak discharges at gaged and engaged sites in Virginia for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, and to adjust the regression estimates for sites on gaged streams where nearby gaging-station records are available.
Bernard, Thomas E; Iheanacho, Ivory
2015-01-01
Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.
Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab
2014-01-01
Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.
Briggs, Andrew H; Baker, Timothy; Risebrough, Nancy A; Chambers, Mike; Gonzalez-McQuire, Sebastian; Ismaila, Afisi S; Exuzides, Alex; Colby, Chris; Tabberer, Maggie; Muellerova, Hana; Locantore, Nicholas; Rutten van Mölken, Maureen P M H; Lomas, David A
2017-05-01
The recent joint International Society for Pharmacoeconomics and Outcomes Research / Society for Medical Decision Making Modeling Good Research Practices Task Force emphasized the importance of conceptualizing and validating models. We report a new model of chronic obstructive pulmonary disease (COPD) (part of the Galaxy project) founded on a conceptual model, implemented using a novel linked-equation approach, and internally validated. An expert panel developed a conceptual model including causal relationships between disease attributes, progression, and final outcomes. Risk equations describing these relationships were estimated using data from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) study, with costs estimated from the TOwards a Revolution in COPD Health (TORCH) study. Implementation as a linked-equation model enabled direct estimation of health service costs and quality-adjusted life years (QALYs) for COPD patients over their lifetimes. Internal validation compared 3 years of predicted cohort experience with ECLIPSE results. At 3 years, the Galaxy COPD model predictions of annual exacerbation rate and annual decline in forced expiratory volume in 1 second fell within the ECLIPSE data confidence limits, although 3-year overall survival was outside the observed confidence limits. Projections of the risk equations over time permitted extrapolation to patient lifetimes. Averaging the predicted cost/QALY outcomes for the different patients within the ECLIPSE cohort gives an estimated lifetime cost of £25,214 (undiscounted)/£20,318 (discounted) and lifetime QALYs of 6.45 (undiscounted/5.24 [discounted]) per ECLIPSE patient. A new form of model for COPD was conceptualized, implemented, and internally validated, based on a series of linked equations using epidemiological data (ECLIPSE) and cost data (TORCH). This Galaxy model predicts COPD outcomes from treatment effects on disease attributes such as lung function, exacerbations, symptoms, or exercise capacity; further external validation is required.
Daugirdas, John T; Greene, Tom; Depner, Thomas A; Chumlea, Cameron; Rocco, Michael J; Chertow, Glenn M
2003-09-01
The modeled volume of urea distribution (Vm) in intermittently hemodialyzed patients is often compared with total body water (TBW) volume predicted from population studies of patient anthropometrics (Vant). Using data from the HEMO Study, we compared Vm determined by both blood-side and dialysate-side urea kinetic models with Vant as calculated by the Watson, Hume-Weyers, and Chertow anthropometric equations. Median levels of dialysate-based Vm and blood-based Vm agreed (43% and 44% of body weight, respectively). These volumes were lower than anthropometric estimates of TBW, which had median values of 52% to 55% of body weight for the three formulas evaluated. The difference between the Watson equation for TBW and modeled urea volume was greater in Caucasians (19%) than in African Americans (13%). Correlations between Vm and Vant determined by each of the three anthropometric estimation equations were similar; but Vant derived from the Watson formula had a slightly higher correlation with Vm. The difference between Vm and the anthropometric formulas was greatest with the Chertow equation, less with the Hume-Weyers formula, and least with the Watson estimate. The age term in the Watson equation for men that adjusts Vant downward with increasing age reduced an age effect on the difference between Vant and Vm in men. The findings show that kinetically derived values for V from blood-side and dialysate-side modeling are similar, and that these modeled urea volumes are lower by a substantial amount than anthropometric estimates of TBW. The higher values for anthropometry-derived TBW in hemodialyzed patients could be due to measurement errors. However, the possibility exists that TBW space is contracted in patients with end-stage renal disease (ESRD) or that the TBW space and the urea distribution space are not identical.
NASA Astrophysics Data System (ADS)
Xu, Peiliang
2018-06-01
The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking, they are able to extract smallest possible gravitational signals from modern and future satellite tracking measurements, leading to the production of global high-precision, high-resolution gravitational models. By directly turning the nonlinear differential equations of satellite motion into the nonlinear integral equations, and recognizing the fact that satellite orbits are measured with random errors, we further reformulate the links between satellite tracking measurements and the global uniformly convergent solutions to the Newton's governing differential equations as a condition adjustment model with unknown parameters, or equivalently, the weighted least squares estimation of unknown differential equation parameters with equality constraints, for the reconstruction of global high-precision, high-resolution gravitational models from modern (and future) satellite tracking measurements.
Using exogenous variables in testing for monotonic trends in hydrologic time series
Alley, William M.
1988-01-01
One approach that has been used in performing a nonparametric test for monotonic trend in a hydrologic time series consists of a two-stage analysis. First, a regression equation is estimated for the variable being tested as a function of an exogenous variable. A nonparametric trend test such as the Kendall test is then performed on the residuals from the equation. By analogy to stagewise regression and through Monte Carlo experiments, it is demonstrated that this approach will tend to underestimate the magnitude of the trend and to result in some loss in power as a result of ignoring the interaction between the exogenous variable and time. An alternative approach, referred to as the adjusted variable Kendall test, is demonstrated to generally have increased statistical power and to provide more reliable estimates of the trend slope. In addition, the utility of including an exogenous variable in a trend test is examined under selected conditions.
Liu, Xin; Sun, Qi; Sun, Liang; Zong, Geng; Lu, Ling; Liu, Gang; Rosner, Bernard; Ye, Xingwang; Li, Huaixing; Lin, Xu
2015-05-14
Equations based on simple anthropometric measurements to predict body fat percentage (BF%) are lacking in Chinese population with increasing prevalence of obesity and related abnormalities. We aimed to develop and validate BF% equations in two independent population-based samples of Chinese men and women. The equations were developed among 960 Chinese Hans living in Shanghai (age 46.2 (SD 5.3) years; 36.7% male) using a stepwise linear regression and were subsequently validated in 1150 Shanghai residents (58.7 (SD 6.0) years; 41.7% male; 99% Chinese Hans, 1% Chinese minorities). The associations of equation-derived BF% with changes of 6-year cardiometabolic outcomes and incident type 2 diabetes (T2D) were evaluated in a sub-cohort of 780 Chinese, compared with BF% measured by dual-energy X-ray absorptiometry (DXA; BF%-DXA). Sex-specific equations were established with age, BMI and waist circumference as independent variables. The BF% calculated using new sex-specific equations (BF%-CSS) were in reasonable agreement with BF%-DXA (mean difference: 0.08 (2 SD 6.64) %, P= 0.606 in men; 0.45 (2 SD 6.88) %, P< 0.001 in women). In multivariate-adjusted models, the BF%-CSS and BF%-DXA showed comparable associations with 6-year changes in TAG, HDL-cholesterol, diastolic blood pressure, C-reactive protein and uric acid (P for comparisons ≥ 0.05). Meanwhile, the BF%-CSS and BF%-DXA had comparable areas under the receiver operating characteristic curves for associations with incident T2D (men P= 0.327; women P= 0.159). The BF% equations might be used as surrogates for DXA to estimate BF% among adult Chinese. More studies are needed to evaluate the application of our equations in different populations.
How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants.
Chapman, Simon N; Mumby, Hannah S; Crawley, Jennie A H; Mar, Khyne U; Htut, Win; Thura Soe, Aung; Aung, Htoo Htoo; Lummaa, Virpi
2016-01-01
Information on an organism's body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference) taken directly from a large population of semi-captive animals in Myanmar (n = 404). We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151). Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings.
How Big Is It Really? Assessing the Efficacy of Indirect Estimates of Body Size in Asian Elephants
Chapman, Simon N.; Mumby, Hannah S.; Crawley, Jennie A. H.; Mar, Khyne U.; Htut, Win; Thura Soe, Aung; Aung, Htoo Htoo; Lummaa, Virpi
2016-01-01
Information on an organism’s body size is pivotal in understanding its life history and fitness, as well as helping inform conservation measures. However, for many species, particularly large-bodied wild animals, taking accurate body size measurements can be a challenge. Various means to estimate body size have been employed, from more direct methods such as using photogrammetry to obtain height or length measurements, to indirect prediction of weight using other body morphometrics or even the size of dung boli. It is often unclear how accurate these measures are because they cannot be compared to objective measures. Here, we investigate how well existing estimation equations predict the actual body weight of Asian elephants Elephas maximus, using body measurements (height, chest girth, length, foot circumference and neck circumference) taken directly from a large population of semi-captive animals in Myanmar (n = 404). We then define new and better fitting formulas to predict body weight in Myanmar elephants from these readily available measures. We also investigate whether the important parameters height and chest girth can be estimated from photographs (n = 151). Our results show considerable variation in the ability of existing estimation equations to predict weight, and that the equations proposed in this paper predict weight better in almost all circumstances. We also find that measurements from standardised photographs reflect body height and chest girth after applying minor adjustments. Our results have implications for size estimation of large wild animals in the field, as well as for management in captive settings. PMID:26938085
Horlick, Mary; Berenson, Gerald S
2013-01-01
Background: Although estimation of percentage body fat with the Slaughter skinfold-thickness equations (PBFSlaughter) is widely used, the accuracy of this method has not been well studied. Objective: The objective was to determine the accuracy of the Slaughter skinfold-thickness equations. Design: We compared agreement between PBFSlaughter and estimations derived from dual-energy X-ray absorptiometry (PBFDXA) in 1169 children in the Pediatric Rosetta Body Composition Project and the relation to cardiovascular disease risk factors, as compared with body mass index (BMI), in 6725 children in the Bogalusa Heart Study. Results: PBFSlaughter was highly correlated (r = 0.90) with PBFDXA, but it markedly overestimated levels of PBFDXA in children with large skinfold thicknesses. In the 65 boys with a sum of skinfold thicknesses (subscapular- plus triceps-skinfold thicknesses) ≥50 mm, PBFSlaughter overestimated PBFDXA by 12 percentage points. The comparable overestimation in girls with a high skinfold sum was 6 percentage points. We also found that, after adjustment for sex and age, BMI showed slightly stronger associations with lipid, lipoprotein, insulin, and blood pressure values than did PBFSlaughter. Conclusions: These results indicate that PBFSlaughter, which was developed among a group of much thinner children and adolescents, is fairly accurate among nonobese children, but markedly overestimates the body fatness of children who have thick skinfold thicknesses. Furthermore, PBFSlaughter has no advantage over sex- and age-adjusted BMIs at identifying children who are at increased risk of cardiovascular disease based on lipid, lipoprotein, insulin, and blood pressure values. PMID:24153344
Meteorological adjustment of yearly mean values for air pollutant concentration comparison
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Neustadter, H. E.
1976-01-01
Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.
Yang, Eun Mi; Yoon, Bo Ae; Kim, Soo Wan; Kim, Chan Jong
2017-06-01
The spot urine protein-to-creatinine ratio (UPCR) is widely used to predict 24-h urine protein (24-h UP) excretion. In patients with low daily urine creatinine excretion (UCr), however, the UPCR may overestimate 24-h UP. The aim of this study was to predict 24-h UP using UPCR adjusted by estimated 24-h UCr in children. This study included 442 children whose 24-h UP and spot UPCR were measured concomitantly. Estimated 24-h UCr was calculated using three previously existing equations. We estimated the 24-h UP excretion from UPCR by multiplying the estimated UCr. The results were compared with the measured 24-h UP. There was a strong correlation between UPCR and 24-h UP (r = 0.801, P < 0.001), and the correlation improved after multiplying the UPCR by the measured UCr (r = 0.847, P < 0.001). Using the estimated UCr rather than the measured UCr, there was high accuracy and strong correlation between the estimated UPCR weighted by the Cockcroft-Gault equation and 24-h UP. Improvement was also observed in the subgroup (proteinuria vs. non-proteinuria) analysis, particularly in the proteinuria group. The spot UPCR multiplied by the estimated UCr improved the accuracy of prediction of the 24-h UP in children.
Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.
2016-06-27
The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.
Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio
Koltun, G.F.; Roberts, J.W.
1990-01-01
Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less surface-mined area. Analyses of residuals indicate that the equations tend to overestimate flood-peak discharges for basins having approximately 30% or more surface-mined area. (USGS)
Eash, David A.; Barnes, Kimberlee K.
2017-01-01
A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic characteristics, landform regions, and soil regions. A comparison of root mean square errors and average standard errors of prediction for the statewide, regional, and region-of-influence regressions determined that the regional regression provided the best estimates of the seven selected statistics at ungaged sites in Iowa. Because a significant number of streams in Iowa reach zero flow as their minimum flow during low-flow years, four different types of regression analyses were used: left-censored, logistic, generalized-least-squares, and weighted-least-squares regression. A total of 192 streamgages were included in the development of 27 regression equations for the three low-flow regions. For the northeast and northwest regions, a censoring threshold was used to develop 12 left-censored regression equations to estimate the 6 low-flow frequency statistics for each region. For the southern region a total of 12 regression equations were developed; 6 logistic regression equations were developed to estimate the probability of zero flow for the 6 low-flow frequency statistics and 6 generalized least-squares regression equations were developed to estimate the 6 low-flow frequency statistics, if nonzero flow is estimated first by use of the logistic equations. A weighted-least-squares regression equation was developed for each region to estimate the harmonic-mean-flow statistic. Average standard errors of estimate for the left-censored equations for the northeast region range from 64.7 to 88.1 percent and for the northwest region range from 85.8 to 111.8 percent. Misclassification percentages for the logistic equations for the southern region range from 5.6 to 14.0 percent. Average standard errors of prediction for generalized least-squares equations for the southern region range from 71.7 to 98.9 percent and pseudo coefficients of determination for the generalized-least-squares equations range from 87.7 to 91.8 percent. Average standard errors of prediction for weighted-least-squares equations developed for estimating the harmonic-mean-flow statistic for each of the three regions range from 66.4 to 80.4 percent. The regression equations are applicable only to stream sites in Iowa with low flows not significantly affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. If the equations are used at ungaged sites on regulated streams, or on streams affected by water-supply and agricultural withdrawals, then the estimates will need to be adjusted by the amount of regulation or withdrawal to estimate the actual flow conditions if that is of interest. Caution is advised when applying the equations for basins with characteristics near the applicable limits of the equations and for basins located in karst topography. A test of two drainage-area ratio methods using 31 pairs of streamgages, for the annual 7-day mean low-flow statistic for a recurrence interval of 10 years, indicates a weighted drainage-area ratio method provides better estimates than regional regression equations for an ungaged site on a gaged stream in Iowa when the drainage-area ratio is between 0.5 and 1.4. These regression equations will be implemented within the U.S. Geological Survey StreamStats web-based geographic-information-system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the seven selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these seven selected statistics are provided for the streamgage.
Estimating Flow-Duration and Low-Flow Frequency Statistics for Unregulated Streams in Oregon
Risley, John; Stonewall, Adam J.; Haluska, Tana
2008-01-01
Flow statistical datasets, basin-characteristic datasets, and regression equations were developed to provide decision makers with surface-water information needed for activities such as water-quality regulation, water-rights adjudication, biological habitat assessment, infrastructure design, and water-supply planning and management. The flow statistics, which included annual and monthly period of record flow durations (5th, 10th, 25th, 50th, and 95th percent exceedances) and annual and monthly 7-day, 10-year (7Q10) and 7-day, 2-year (7Q2) low flows, were computed at 466 streamflow-gaging stations at sites with unregulated flow conditions throughout Oregon and adjacent areas of neighboring States. Regression equations, created from the flow statistics and basin characteristics of the stations, can be used to estimate flow statistics at ungaged stream sites in Oregon. The study area was divided into 10 regression modeling regions based on ecological, topographic, geologic, hydrologic, and climatic criteria. In total, 910 annual and monthly regression equations were created to predict the 7 flow statistics in the 10 regions. Equations to predict the five flow-duration exceedance percentages and the two low-flow frequency statistics were created with Ordinary Least Squares and Generalized Least Squares regression, respectively. The standard errors of estimate of the equations created to predict the 5th and 95th percent exceedances had medians of 42.4 and 64.4 percent, respectively. The standard errors of prediction of the equations created to predict the 7Q2 and 7Q10 low-flow statistics had medians of 51.7 and 61.2 percent, respectively. Standard errors for regression equations for sites in western Oregon were smaller than those in eastern Oregon partly because of a greater density of available streamflow-gaging stations in western Oregon than eastern Oregon. High-flow regression equations (such as the 5th and 10th percent exceedances) also generally were more accurate than the low-flow regression equations (such as the 95th percent exceedance and 7Q10 low-flow statistic). The regression equations predict unregulated flow conditions in Oregon. Flow estimates need to be adjusted if they are used at ungaged sites that are regulated by reservoirs or affected by water-supply and agricultural withdrawals if actual flow conditions are of interest. The regression equations are installed in the USGS StreamStats Web-based tool (http://water.usgs.gov/osw/streamstats/index.html, accessed July 16, 2008). StreamStats provides users with a set of annual and monthly flow-duration and low-flow frequency estimates for ungaged sites in Oregon in addition to the basin characteristics for the sites. Prediction intervals at the 90-percent confidence level also are automatically computed.
Herber-Gast, Gerrie-Cor M.; Hulsegge, Gerben; Hartman, Linda; Verschuren, W. M. Monique; Stehouwer, Coen D. A.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Spijkerman, Annemieke M. W.
2015-01-01
There is debate as to whether physical inactivity is associated with reduced kidney function. We studied the prospective association of (changes in) physical activity with estimated glomerular filtration rate (eGFR) in adult men and women. We included 3,935 participants aged 26 to 65 years from the Doetinchem Cohort study, examined every 5 years for 15 years. Physical activity was assessed at each round using the Cambridge Physical Activity Index. Using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equation, GFR was estimated from routinely measured cystatin C concentrations, examining all available samples per participant in one assay run. We determined the association between 1) physical activity and eGFR and 2) 5-year changes in physical activity (becoming inactive, staying inactive, staying active, becoming active) and eGFR, using time-lagged generalized estimating equation analyses. At baseline, 3.6% of the participants were inactive, 18.5% moderately inactive, 26.0% moderately active, and 51.9% active. The mean (± SD) eGFR was 107.9 (± 14.5) mL/min per 1.73 m2. Neither physical activity nor 5-year changes in physical activity were associated with eGFR at the subsequent round. The multivariate adjusted βeGFR was 0.57 mL/min per 1.73 m2 (95% Confidence Interval (CI) -1.70, 0.56) for inactive compared to active participants. Studying changes in physical activity between rounds, the adjusted βeGFR was -1.10 mL/min per 1.73 m2 (95% CI -4.50, 2.30) for those who stayed inactive compared with participants who became active. Physical activity was not associated with eGFR in this population-based study of adults. PMID:26465150
An Estimate of Avian Mortality at Communication Towers in the United States and Canada
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G.; Sullivan, Lauren M.; Mutrie, Erin; Gauthreaux, Sidney A.; Avery, Michael L.; Crawford, Robert L.; Manville, Albert M.; Travis, Emilie R.; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action. PMID:22558082
An estimate of avian mortality at communication towers in the United States and Canada.
Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G; Sullivan, Lauren M; Mutrie, Erin; Gauthreaux, Sidney A; Avery, Michael L; Crawford, Robert L; Manville, Albert M; Travis, Emilie R; Drake, David
2012-01-01
Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, Leslie D.; Glatfelter, Dale R.
1991-01-01
Equations for estimating the 7-day, 2-year and 7oday, 10-year low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low-flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow-duration ratio, which is the 20-percent flow duration divided by the 90-percent flow duration. Flow-duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from the plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow-duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low-flow characteristics at 82 gaging stations where flow-duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-year and 7-day, 10-year low flows are 19 and 28 percent. When flow-duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46 and 61 percent. However, when stations having drainage areas of less than 10 square miles are excluded from the test, the standard errors decrease to 38 and 49 percent. Standard errors increase when stations with small basins are included, probably because some of the flow-duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow-duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and central physiographic zones of the State. Low-flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low-flow characteristic can be adjusted. The method is most accurate for sites having drainage areas ranging from 10 to 1,000 square miles and for predictions of 7-day, 10-year low flows ranging from 0.5 to 340 cubic feet per second.
Method for estimating low-flow characteristics of ungaged streams in Indiana
Arihood, L.D.; Glatfelter, D.R.
1986-01-01
Equations for estimating the 7-day, 2-yr and 7-day, 10-yr low flows at sites on ungaged streams are presented. Regression analysis was used to develop equations relating basin characteristics and low flow characteristics at 82 gaging stations. Significant basin characteristics in the equations are contributing drainage area and flow duration ratio, which is the 20% flow duration divided by the 90% flow duration. Flow duration ratio has been regionalized for Indiana on a plate. Ratios for use in the equations are obtained from this plate. Drainage areas are determined from maps or are obtained from reports. The predictive capability of the method was determined by tests of the equations and of the flow duration ratios on the plate. The accuracy of the equations alone was tested by estimating the low flow characteristics at 82 gaging stations where flow duration ratio is already known. In this case, the standard errors of estimate for 7-day, 2-yr and 7-day, 10-yr low flows are 19% and 28%. When flow duration ratios for the 82 gaging stations are obtained from the map, the standard errors are 46% and 61%. However, when stations with drainage areas < 10 sq mi are excluded from the test, the standard errors reduce to 38% and 49%. Standard errors increase when stations with small basins are included, probably because some of the flow duration ratios obtained for these small basins are incorrect. Local geology and its effect on the ratio are not adequately reflected on the plate, which shows the regional variation in flow duration ratio. In all the tests, no bias is apparent areally, with increasing drainage area or with increasing ratio. Guidelines and limitations should be considered when using the method. The method can be applied only at sites in the northern and the central physiographic zones of the state. Low flow characteristics cannot be estimated for regulated streams unless the amount of regulation is known so that the estimated low flow characteristic can be adjusted. The method is most accurate for sites with drainage areas ranging from 10 to 1,000 sq mi and for predictions of 7-day, 10-yr low flows ranging from 0.5 to 340 cu ft/sec. (Author 's abstract)
Sando, Steven K.; Morgan, Timothy J.; Dutton, DeAnn M.; McCarthy, Peter M.
2009-01-01
Charles M. Russell National Wildlife Refuge (CMR) encompasses about 1.1 million acres (including Fort Peck Reservoir on the Missouri River) in northeastern Montana. To ensure that sufficient streamflow remains in the tributary streams to maintain the riparian corridors, the U.S. Fish and Wildlife Service is negotiating water-rights issues with the Reserved Water Rights Compact Commission of Montana. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, conducted a study to gage, for a short period, selected streams that cross CMR, and analyze data to estimate long-term streamflow characteristics for CMR. The long-term streamflow characteristics of primary interest include the monthly and annual 90-, 80-, 50-, and 20-percent exceedance streamflows and mean streamflows (Q.90, Q.80, Q.50, Q.20, and QM, respectively), and the 1.5-, 2-, and 2.33- year peak flows (PK1.5, PK2, and PK2.33, respectively). The Regional Adjustment Relationship (RAR) was investigated for estimating the monthly and annual Q.90, Q.80, Q.50, Q.20, and QM, and the PK1.5, PK2, and PK2.33 for the short-term CMR gaging stations (hereinafter referred to as CMR stations). The RAR was determined to provide acceptable results for estimating the long-term Q.90, Q.80, Q.50, Q.20, and QM on a monthly basis for the months of March through June, and also on an annual basis. For the months of September through January, the RAR regression equations did not provide acceptable results for any long-term streamflow characteristic. For the month of February, the RAR regression equations provided acceptable results for the long-term Q.50 and QM, but poor results for the long-term Q.90, Q.80, and Q.20. For the months of July and August, the RAR provided acceptable results for the long-term Q.50, Q.20, and QM, but poor results for the long-term Q.90 and Q.80. Estimation coefficients were developed for estimating the long-term streamflow characteristics for which the RAR did not provide acceptable results. The RAR also was determined to provide acceptable results for estimating the PK1.5., PK2, and PK2.33 for the three CMR stations that lacked suitable peak-flow records. Methods for estimating streamflow characteristics at ungaged sites also were derived. Regression analyses that relate individual streamflow characteristics to various basin and climatic characteristics for gaging stations were performed to develop regression equations to estimate streamflow characteristics at ungaged sites. Final equations for the annual Q.50, Q.20, and QM are reported. Acceptable equations also were developed for estimating QM for the months of February, March, April, June, and July, and Q.50, Q.20, and QM on an annual basis. However, equations for QM for the months of February, March, April, June, and July were determined to be less consistent and reliable than the use of estimation coefficients applied to the regression equation results for the annual QM. Acceptable regression equations also were developed for the PK1.5, PK2, and PK2.33.
Suggestion of a Numerical Model for the Blood Glucose Adjustment with Ingesting a Food
NASA Astrophysics Data System (ADS)
Yamamoto, Naokatsu; Takai, Hiroshi
In this study, we present a numerical model of the time dependence of blood glucose value after ingesting a meal. Two numerical models are proposed in this paper to explain a digestion mechanism and an adjustment mechanism of blood glucose in the body, respectively. It is considered that models are exhibited by using simple equations with a transfer function and a block diagram. Additionally, the time dependence of blood glucose was measured, when subjects ingested a sucrose or a starch. As a result, it is clear that the calculated result of models using a computer can be fitted very well to the measured result of the time dependence of blood glucose. Therefore, it is considered that the digestion model and the adjustment model are useful models in order to estimate a blood glucose value after ingesting meals.
Baltar, Valéria Troncoso; Xun, Wei W; Johansson, Mattias; Ferrari, Pietro; Chuang, Shu-Chun; Relton, Caroline; Ueland, Per Magne; Midttun, Øivind; Slimani, Nadia; Jenab, Mazda; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fagherazzi, Guy; Kaaks, Rudolf; Rohrmann, Sabine; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, Bas; Boshuizen, Hendriek; van Gils, Carla H; Onland-Moret, N Charlotte; Agudo, Antonio; Barricarte, Aurelio; Navarro, Carmen; Rodríguez, Laudina; Castaño, José Maria Huerta; Larrañaga, Nerea; Khaw, Kay-Tee; Wareham, Nick; Allen, Naomi E; Crowe, Francesca; Gallo, Valentina; Norat, Teresa; Krogh, Vittorio; Masala, Giovanna; Panico, Salvatore; Sacerdote, Carlotta; Tumino, Rosario; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Rasmuson, Torgny; Hallmans, Göran; Roswall, Nina; Tjønneland, Anne; Riboli, Elio; Brennan, Paul; Vineis, Paolo
2013-08-01
The one-carbon metabolism (OCM) is considered key in maintaining DNA integrity and regulating gene expression, and may be involved in the process of carcinogenesis. Several B-vitamins and amino acids have been implicated in lung cancer risk, via the OCM directly as well as immune system activation. However it is unclear whether these factors act independently or through complex mechanisms. The current study applies structural equations modelling (SEM) to further disentangle the mechanisms involved in lung carcinogenesis. SEM allows simultaneous estimation of linear relations where a variable can be the outcome in one equation and the predictor in another, as well as allowing estimation using latent variables (factors estimated by correlation matrix). A large number of biomarkers have been analysed from 891 lung cancer cases and 1,747 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Four putative mechanisms in the OCM and immunity were investigated in relation to lung cancer risk: methionine-homocysteine metabolism, folate cycle, transsulfuration, and mechanisms involved in inflammation and immune activation, all adjusted for tobacco exposure. The hypothesized SEM model confirmed a direct and protective effect for factors representing methionine-homocysteine metabolism (p = 0.020) and immune activation (p = 0.021), and an indirect protective effect of folate cycle (p = 0.019), after adjustment for tobacco smoking. In conclusion, our results show that in the investigation of the involvement of the OCM, the folate cycle and immune system in lung carcinogenesis, it is important to consider complex pathways (by applying SEM) rather than the effects of single vitamins or nutrients (e.g. using traditional multiple regression). In our study SEM were able to suggest a greater role of the methionine-homocysteine metabolism and immune activation over other potential mechanisms.
On the analysis of Canadian Holstein dairy cow lactation curves using standard growth functions.
López, S; France, J; Odongo, N E; McBride, R A; Kebreab, E; AlZahal, O; McBride, B W; Dijkstra, J
2015-04-01
Six classical growth functions (monomolecular, Schumacher, Gompertz, logistic, Richards, and Morgan) were fitted to individual and average (by parity) cumulative milk production curves of Canadian Holstein dairy cows. The data analyzed consisted of approximately 91,000 daily milk yield records corresponding to 122 first, 99 second, and 92 third parity individual lactation curves. The functions were fitted using nonlinear regression procedures, and their performance was assessed using goodness-of-fit statistics (coefficient of determination, residual mean squares, Akaike information criterion, and the correlation and concordance coefficients between observed and adjusted milk yields at several days in milk). Overall, all the growth functions evaluated showed an acceptable fit to the cumulative milk production curves, with the Richards equation ranking first (smallest Akaike information criterion) followed by the Morgan equation. Differences among the functions in their goodness-of-fit were enlarged when fitted to average curves by parity, where the sigmoidal functions with a variable point of inflection (Richards and Morgan) outperformed the other 4 equations. All the functions provided satisfactory predictions of milk yield (calculated from the first derivative of the functions) at different lactation stages, from early to late lactation. The Richards and Morgan equations provided the most accurate estimates of peak yield and total milk production per 305-d lactation, whereas the least accurate estimates were obtained with the logistic equation. In conclusion, classical growth functions (especially sigmoidal functions with a variable point of inflection) proved to be feasible alternatives to fit cumulative milk production curves of dairy cows, resulting in suitable statistical performance and accurate estimates of lactation traits. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Validation of the Arizona Activity Frequency Questionnaire using doubly labeled water.
Staten, L K; Taren, D L; Howell, W H; Tobar, M; Poehlman, E T; Hill, A; Reid, P M; Ritenbaugh, C
2001-11-01
Physical activity questionnaires (PAQs) are considered the most cost-efficient method to estimate total energy expenditure (TEE) in epidemiological studies. However, relatively few PAQs have been validated using doubly labeled water (DLW) in women or in samples with diverse ethnic backgrounds. This study was conducted to validate the Arizona Activity Frequency Questionnaire (AAFQ) for estimation of TEE and physical activity energy expenditure (PAEE) over 1 month using DLW as a reference method. Thirty-five relatively sedentary women completed the AAFQ before participating in an 8-d DLW protocol to measure TEE. TEE and PAEE were estimated from the AAFQ by calculating resting metabolic rate (RMR) using the equation of Mifflin et al. (AAFQmif), by measuring RMR using indirect calorimetry (AAFQic), and using MET conversion (AAFQmet). A predictive equation for TEE was generated. The mean +/- SD for TEE and PAEE from DLW were 9847 +/- 2555 kJ x d(-1) and 5578 +/- 2084 kJ x d(-1), respectively. Formulas using RMR to calculate the TEE and PAEE from the AAFQ tended to underestimate TEE and PAEE, whereas those that included only weight tended to overestimate TEE and PAEE. On the basis of the Mifflin et al. equation, the AAFQ tends to underestimate PAEE by 13%. This underestimation may be explained by the low lean body mass of the sample population and by effectiveness of the METs/RMR ratio in the obese. The following predictive equation was calculated: TEE (kJ x d(-1)) = (86.0 * average total daily METs) + (2.23 * RMRmif) - 6726. When the predictive equation is used, TEE calculated from the AAFQ is highly correlated with DLW TEE (adjusted r(2) = 0.70, P < 0.001). The AAFQ is an effective tool for the prediction of TEE and PAEE in epidemiological studies.
Choi, Ji Ho; Jun, Young Joon; Oh, Jeong In; Jung, Jong Yoon; Hwang, Gyu Ho; Kwon, Soon Young; Lee, Heung Man; Kim, Tae Hoon; Lee, Sang Hag; Lee, Seung Hoon
2013-05-01
The aims of the present study were twofold. We sought to compare two methods of titrating the level of continuous positive airway pressure (CPAP) - auto-adjusting titration and titration using a predictive equation - with full-night manual titration used as the benchmark. We also investigated the reliability of the two methods in patients with obstructive sleep apnea syndrome (OSAS). Twenty consecutive adult patients with OSAS who had successful, full-night manual and auto-adjusting CPAP titration participated in this study. The titration pressure level was calculated with a previously developed predictive equation based on body mass index and apnea-hypopnea index. The mean titration pressure levels obtained with the manual, auto-adjusting, and predictive equation methods were 9.0 +/- 3.6, 9.4 +/- 3.0, and 8.1 +/- 1.6 cm H2O,respectively. There was a significant difference in the concordance within the range of +/- 2 cm H2O (p = 0.019) between both the auto-adjusting titration and the titration using the predictive equation compared to the full-night manual titration. However, there was no significant difference in the concordance within the range of +/- 1 cm H2O (p > 0.999). When compared to full-night manual titration as the standard method, auto-adjusting titration appears to be more reliable than using a predictive equation for determining the optimal CPAP level in patients with OSAS.
Asquith, William H.
2014-01-01
A database containing more than 16,300 discharge values and ancillary hydraulic attributes was assembled from summaries of discharge measurement records for 391 USGS streamflow-gauging stations (streamgauges) in Texas. Each discharge is between the 40th- and 60th-percentile daily mean streamflow as determined by period-of-record, streamgauge-specific, flow-duration curves. Each discharge therefore is assumed to represent a discharge measurement made for near-median streamflow conditions, and such conditions are conceptualized as representative of midrange to baseflow conditions in much of the state. The hydraulic attributes of each discharge measurement included concomitant cross-section flow area, water-surface top width, and reported mean velocity. Two regression equations are presented: (1) an expression for discharge and (2) an expression for mean velocity, both as functions of selected hydraulic attributes and watershed characteristics. Specifically, the discharge equation uses cross-sectional area, water-surface top width, contributing drainage area of the watershed, and mean annual precipitation of the location; the equation has an adjusted R-squared of approximately 0.95 and residual standard error of approximately 0.23 base-10 logarithm (cubic meters per second). The mean velocity equation uses discharge, water-surface top width, contributing drainage area, and mean annual precipitation; the equation has an adjusted R-squared of approximately 0.50 and residual standard error of approximately 0.087 third root (meters per second). Residual plots from both equations indicate that reliable estimates of discharge and mean velocity at ungauged stream sites are possible. Further, the relation between contributing drainage area and main-channel slope (a measure of whole-watershed slope) is depicted to aid analyst judgment of equation applicability for ungauged sites. Example applications and computations are provided and discussed within a real-world, discharge-measurement scenario, and an illustration of the development of a preliminary stage-discharge relation using the discharge equation is given.
Sando, Steven K.; Sando, Roy; McCarthy, Peter M.; Dutton, DeAnn M.
2016-04-05
The climatic conditions of the specific time period during which peak-flow data were collected at a given streamflow-gaging station (hereinafter referred to as gaging station) can substantially affect how well the peak-flow frequency (hereinafter referred to as frequency) results represent long-term hydrologic conditions. Differences in the timing of the periods of record can result in substantial inconsistencies in frequency estimates for hydrologically similar gaging stations. Potential for inconsistency increases with decreasing peak-flow record length. The representativeness of the frequency estimates for a short-term gaging station can be adjusted by various methods including weighting the at-site results in association with frequency estimates from regional regression equations (RREs) by using the Weighted Independent Estimates (WIE) program. Also, for gaging stations that cannot be adjusted by using the WIE program because of regulation or drainage areas too large for application of RREs, frequency estimates might be improved by using record extension procedures, including a mixed-station analysis using the maintenance of variance type I (MOVE.1) procedure. The U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources and Conservation, completed a study to provide adjusted frequency estimates for selected gaging stations through water year 2011.The purpose of Chapter D of this Scientific Investigations Report is to present adjusted frequency estimates for 504 selected streamflow-gaging stations in or near Montana based on data through water year 2011. Estimates of peak-flow magnitudes for the 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to the 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.The at-site frequency estimates were adjusted by weighting with frequency estimates from RREs using the WIE program for 438 selected gaging stations in Montana. These 438 selected gaging stations (1) had periods of record less than or equal to 40 years, (2) represented unregulated or minor regulation conditions, and (3) had drainage areas less than about 2,750 square miles.The weighted-average frequency estimates obtained by weighting with RREs generally are considered to provide improved frequency estimates. In some cases, there are substantial differences among the at-site frequency estimates, the regression-equation frequency estimates, and the weighted-average frequency estimates. In these cases, thoughtful consideration should be applied when selecting the appropriate frequency estimate. Some factors that might be considered when selecting the appropriate frequency estimate include (1) whether the specific gaging station has peak-flow characteristics that distinguish it from most other gaging stations used in developing the RREs for the hydrologic region; and (2) the length of the peak-flow record and the general climatic characteristics during the period when the peak-flow data were collected. For critical structure-design applications, a conservative approach would be to select the higher of the at-site frequency estimate and the weighted-average frequency estimate.The mixed-station MOVE.1 procedure generally was applied in cases where three or more gaging stations were located on the same large river and some of the gaging stations could not be adjusted using the weighted-average method because of regulation or drainage areas too large for application of RREs. The mixed-station MOVE.1 procedure was applied to 66 selected gaging stations on 19 large rivers.The general approach for using mixed-station record extension procedures to adjust at-site frequencies involved (1) determining appropriate base periods for the gaging stations on the large rivers, (2) synthesizing peak-flow data for the gaging stations with incomplete peak-flow records during the base periods by using the mixed-station MOVE.1 procedure, and (3) conducting frequency analysis on the combined recorded and synthesized peak-flow data for each gaging station. Frequency estimates for the combined recorded and synthesized datasets for 66 gaging stations with incomplete peak-flow records during the base periods are presented. The uncertainties in the mixed-station record extension results are difficult to directly quantify; thus, it is important to understand the intended use of the estimated frequencies based on analysis of the combined recorded and synthesized datasets. The estimated frequencies are considered general estimates of frequency relations among gaging stations on the same stream channel that might be expected if the gaging stations had been gaged during the same long-term base period. However, because the mixed-station record extension procedures involve secondary statistical analysis with accompanying errors, the uncertainty of the frequency estimates is larger than would be obtained by collecting systematic records for the same number of years in the base period.
Trommer, J.T.; Loper, J.E.; Hammett, K.M.
1996-01-01
Several traditional techniques have been used for estimating stormwater runoff from ungaged watersheds. Applying these techniques to water- sheds in west-central Florida requires that some of the empirical relationships be extrapolated beyond tested ranges. As a result, there is uncertainty as to the accuracy of these estimates. Sixty-six storms occurring in 15 west-central Florida watersheds were initially modeled using the Rational Method, the U.S. Geological Survey Regional Regression Equations, the Natural Resources Conservation Service TR-20 model, the U.S. Army Corps of Engineers Hydrologic Engineering Center-1 model, and the Environmental Protection Agency Storm Water Management Model. The techniques were applied according to the guidelines specified in the user manuals or standard engineering textbooks as though no field data were available and the selection of input parameters was not influenced by observed data. Computed estimates were compared with observed runoff to evaluate the accuracy of the techniques. One watershed was eliminated from further evaluation when it was determined that the area contributing runoff to the stream varies with the amount and intensity of rainfall. Therefore, further evaluation and modification of the input parameters were made for only 62 storms in 14 watersheds. Runoff ranged from 1.4 to 99.3 percent percent of rainfall. The average runoff for all watersheds included in this study was about 36 percent of rainfall. The average runoff for the urban, natural, and mixed land-use watersheds was about 41, 27, and 29 percent, respectively. Initial estimates of peak discharge using the rational method produced average watershed errors that ranged from an underestimation of 50.4 percent to an overestimation of 767 percent. The coefficient of runoff ranged from 0.20 to 0.60. Calibration of the technique produced average errors that ranged from an underestimation of 3.3 percent to an overestimation of 1.5 percent. The average calibrated coefficient of runoff for each watershed ranged from 0.02 to 0.72. The average values of the coefficient of runoff necessary to calibrate the urban, natural, and mixed land-use watersheds were 0.39, 0.16, and 0.08, respectively. The U.S. Geological Survey regional regression equations for determining peak discharge produced errors that ranged from an underestimation of 87.3 percent to an over- estimation of 1,140 percent. The regression equations for determining runoff volume produced errors that ranged from an underestimation of 95.6 percent to an overestimation of 324 percent. Regression equations developed from data used for this study produced errors that ranged between an underestimation of 82.8 percent and an over- estimation of 328 percent for peak discharge, and from an underestimation of 71.2 percent to an overestimation of 241 percent for runoff volume. Use of the equations developed for west-central Florida streams produced average errors for each type of watershed that were lower than errors associated with use of the U.S. Geological Survey equations. Initial estimates of peak discharges and runoff volumes using the Natural Resources Conservation Service TR-20 model, produced average errors of 44.6 and 42.7 percent respectively, for all the watersheds. Curve numbers and times of concentration were adjusted to match estimated and observed peak discharges and runoff volumes. The average change in the curve number for all the watersheds was a decrease of 2.8 percent. The average change in the time of concentration was an increase of 59.2 percent. The shape of the input dimensionless unit hydrograph also had to be adjusted to match the shape and peak time of the estimated and observed flood hydrographs. Peak rate factors for the modified input dimensionless unit hydrographs ranged from 162 to 454. The mean errors for peak discharges and runoff volumes were reduced to 18.9 and 19.5 percent, respectively, using the average calibrated input parameters for ea
40 CFR 60.2975 - What equations must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 60.2975 What equations must I use? (a) Percent oxygen. Adjust all pollutant concentrations to 7 percent oxygen using equation 1 of this section. ER16DE05.000 Where: Cadj = pollutant concentration adjusted to 7 percent oxygen Cmeas = pollutant concentration measured on a dry basis (20.9-7) = 20.9...
Three calculations of free cortisol versus measured values in the critically ill.
Molenaar, Nienke; Groeneveld, A B Johan; de Jong, Margriet F C
2015-11-01
To investigate the agreement between the calculated free cortisol levels according to widely applied Coolens and adjusted Södergård equations with measured levels in the critically ill. A prospective study in a mixed intensive care unit. We consecutively included 103 patients with treatment-insensitive hypotension in whom an adrenocorticotropic hormone (ACTH) test (250μg) was performed. Serum total and free cortisol (equilibrium dialysis), corticosteroid-binding globulin and albumin were assessed. Free cortisol was estimated by the Coolens method (C) and two adjusted Södergård (S1 and S2) equations. Bland Altman plots were made. The bias for absolute (t=0, 30 and 60min after ACTH injection) cortisol levels was 38, -24, 41nmol/L when the C, S1 and S2 equations were used, with 95% limits of agreement between -65-142, -182-135, and -57-139nmol/L and percentage errors of 66, 85, and 64%, respectively. Bias for delta (peak-baseline) cortisol was 14, -31 and 16nmol/L, with 95% limits of agreement between -80-108, -157-95, and -74-105nmol/L, and percentage errors of 107, 114, and 100% for C, S1 and S2 equations, respectively. Calculated free cortisol levels have too high bias and imprecision to allow for acceptable use in the critically ill. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Numerical modeling of solar irradiance on earth's surface
NASA Astrophysics Data System (ADS)
Mera, E.; Gutierez, L.; Da Silva, L.; Miranda, E.
2016-05-01
Modeling studies and estimation of solar radiation in base area, touch from the problems of estimating equation of time, distance equation solar space, solar declination, calculation of surface irradiance, considering that there are a lot of studies you reported the inability of these theoretical equations to be accurate estimates of radiation, many authors have proceeded to make corrections through calibrations with Pyranometers field (solarimeters) or the use of satellites, this being very poor technique last because there a differentiation between radiation and radiant kinetic effects. Because of the above and considering that there is a weather station properly calibrated ground in the Susques Salar in the Jujuy Province, Republic of Argentina, proceeded to make the following modeling of the variable in question, it proceeded to perform the following process: 1. Theoretical Modeling, 2. graphic study of the theoretical and actual data, 3. Adjust primary calibration data through data segmentation on an hourly basis, through horizontal and adding asymptotic constant, 4. Analysis of scatter plot and contrast series. Based on the above steps, the modeling data obtained: Step One: Theoretical data were generated, Step Two: The theoretical data moved 5 hours, Step Three: an asymptote of all negative emissivity values applied, Solve Excel algorithm was applied to least squares minimization between actual and modeled values, obtaining new values of asymptotes with the corresponding theoretical reformulation of data. Add a constant value by month, over time range set (4:00 pm to 6:00 pm). Step Four: The modeling equation coefficients had monthly correlation between actual and theoretical data ranging from 0.7 to 0.9.
Shaikh, Saijuddin; Schulze, Kerry J; Kurpad, Anura; Ali, Hasmot; Shamim, Abu Ahmed; Mehra, Sucheta; Wu, Lee S-F; Rashid, Mahbubar; Labrique, Alain B; Christian, Parul; West, Keith P
2013-02-28
Equations for predicting body composition from bioelectrical impedance analysis (BIA) parameters are age-, sex- and population-specific. Currently there are no equations applicable to women of reproductive age in rural South Asia. Hence, we developed equations for estimating total body water (TBW), fat-free mass (FFM) and fat mass in rural Bangladeshi women using BIA, with ²H₂O dilution as the criterion method. Women of reproductive age, participating in a community-based placebo-controlled trial of vitamin A or β-carotene supplementation, were enrolled at 19·7 (SD 9·3) weeks postpartum in a study to measure body composition by ²H₂O dilution and impedance at 50 kHz using multi-frequency BIA (n 147), and resistance at 50 kHz using single-frequency BIA (n 82). TBW (kg) by ²H2O dilution was used to derive prediction equations for body composition from BIA measures. The prediction equation was applied to resistance measures obtained at 13 weeks postpartum in a larger population of postpartum women (n 1020). TBW, FFM and fat were 22·6 (SD 2·7), 30·9 (SD 3·7) and 10·2 (SD 3·8) kg by ²H₂O dilution. Height²/impedance or height²/resistance and weight provided the best estimate of TBW, with adjusted R² 0·78 and 0·76, and with paired absolute differences in TBW of 0·02 (SD 1·33) and 0·00 (SD 1·28) kg, respectively, between BIA and ²H₂O. In the larger sample, values for TBW, FFM and fat were 23·8, 32·5 and 10·3 kg, respectively. BIA can be an important tool for assessing body composition in women of reproductive age in rural South Asia where poor maternal nutrition is common.
Savu, Anamaria; Schopflocher, Donald; Scholnick, Barry; Kaul, Padma
2016-01-13
We examined the association between personal bankruptcy filing and acute myocardial infarction (AMI) rates in Canada. Between 2002 and 2009, aggregate and yearly bankruptcy and AMI rates were estimated for 1,155 forward sortation areas of Canada. Scatter plot and correlations were used to assess the association of the aggregate rates. Cross-lagged structural equation models were used to explore the longitudinal relationship between bankruptcy and AMI after adjustment for socio-economic factors. A cross-lagged structural equation model estimated that on average, an increase of 100 in bankruptcy filing count is associated with an increase of 1.5 (p = 0.02) in AMI count in the following year, and an increase of 100 in AMI count is associated with an increase of 7 (p < 0.01) in bankruptcy filing count. We found that regions with higher rates of AMI corresponded to those with higher levels of economic and financial stress, as indicated by personal bankruptcy rate, and vice-versa.
Genetic and environmental influences on restrained eating behavior
Schur, Ellen; Noonan, Carolyn; Polivy, Janet; Goldberg, Jack; Buchwald, Dedra
2009-01-01
Objective We examined the relative contributions of genetic and environmental influences to restrained eating. Methods Restrained eating was assessed by the Restraint Scale in a survey mailed to all twins enrolled in the University of Washington Twin Registry. We used structural equation modeling to estimate genetic and non-genetic contributions to restrained eating. Results 1,196 monozygotic, 456 same-sex dizygotic twins, and 447 opposite-sex twins were included in analyses. Restraint Scale scores were more closely correlated in monozygotic twins (rmale = 0.55, rfemale = 0.55) than in same-sex dizygotic twins (rmale = 0.31, rfemale = 0.19). Based on structural equation modeling, the estimated heritability for restrained eating, adjusted for BMI and sex, was 43% (95% confidence interval 35–50%). There was little evidence for common environmental effects. Conclusion These results indicate an inherited component to restrained eating. Genes could influence restrained eating directly or through inherited mediators such as personality factors or tendencies to gain weight. PMID:19658171
Multiple imputation to evaluate the impact of an assay change in national surveys
Sternberg, Maya
2017-01-01
National health surveys, such as the National Health and Nutrition Examination Survey, are used to monitor trends of nutritional biomarkers. These surveys try to maintain the same biomarker assay over time, but there are a variety of reasons why the assay may change. In these cases, it is important to evaluate the potential impact of a change so that any observed fluctuations in concentrations over time are not confounded by changes in the assay. To this end, a subset of stored specimens previously analyzed with the old assay is retested using the new assay. These paired data are used to estimate an adjustment equation, which is then used to ‘adjust’ all the old assay results and convert them into ‘equivalent’ units of the new assay. In this paper, we present a new way of approaching this problem using modern statistical methods designed for missing data. Using simulations, we compare the proposed multiple imputation approach with the adjustment equation approach currently in use. We also compare these approaches using real National Health and Nutrition Examination Survey data for 25-hydroxyvitamin D. PMID:28419523
A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2015-01-01
A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.
Berman, A
2004-05-01
Published data were used to develop improved equations to predict tissue insulation (TI) and external insulation (EI) and their effects on maintenance requirements of Holstein cattle. These are used to calculate lower critical temperature (LCT), energy cost of exposure to temperatures below LCT, and excess heat accumulating in the body at temperatures above LCT. The National Research Council classifies TI by age groups and body condition score; and in the EI equation air velocity effects are linear and coat insulation values are derived from beef animals in cold climates. These lead to low LCT values, which are not compatible with known effects of environment on the performance of Holsteins in warm climates. Equations were developed to present TI as a function of body weight, improving prediction of TI for animals of similar age but differing in body weight. An equation was developed to predict rate of decrease of TI at ambient temperatures above LCT. Nonlinear equations were developed that account for wind effects as boundary layer insulation effects dependent on body weight and air velocity. Published data were used to develop adjustments for hair coat effects on EI in Holstein cows. While by NRC equations, wind has negligible effects on heat loss, the recalculated effects of air velocity on heat loss were consistent with published effects of forced ventilation on the responses of the Holstein cow. The derived LCT was higher by 10 to 20 degrees C than that calculated by NRC (2001) and accounted for known Holstein performance in temperate and warm climates. These equations pointed to tentative significant effects of cold (-10 degrees C) on energy requirements (7 Mcal/d) further increased by 1 m/s wind (15 Mcal/d), even in high-producing cows. Needs for increased heat dissipation and estimating heat stress development at ambient temperatures above the LCT are predicted. These equations can be used to revise NRC equations for heat exchange.
Pérez Cabeza, Alejandro Isidoro; Chinchurreta Capote, Pedro Antonio; González Correa, Jose Antonio; Ruiz Mateas, Francisco; Rosas Cervantes, Gabriel; Rivas Ruiz, Francisco; Valle Alberca, Almudena; Bravo Marqués, Rafael
2018-02-09
Direct oral anticoagulants (DOACs) require dose adjustment according to estimated clearance creatinine (eClCr) using the Cockcroft-Gault (CG) equation. There are discrepancies with the equations that estimate glomerular filtration rate (eGFR). We analyse how the use of the CKD-EPI and MDRD-4 IDMS equations affect the recommended dosage for ACODs. Retrospective study of patients with non-valvular atrial fibrillation seen at a cardiology clinic between November 2012 and August 2014. Patients were reclassified according to the recommended dosage for dabigatran, rivaroxaban, apixaban and edoxaban, based on the eGFR equation used. Other clinical factors are taken into account, according to the product label. We analysed the percentage of discordance. Four hundred and fifty-four patients, 53.3% men, with a mean age of 68.7±13.8 years were studied. The mean intra-individual differences recorded for the CG equation were 3.9ml/min/1.73m 2 with MDRD-4 IDMS (95% CI 1.4-6.4, P=.003) and 11.3ml/min/1.73m 2 with CKD-EPI (95% CI 8.9-13.7, P<.001). A gradient is observed in the discordance of the posology (apixaban 1.1%, dabigatran 3.5%, edoxaban 5.7%, rivaroxaban 8.4% with MDRD-4 IDMS). Differences were limited to patients with eClCr<60ml/min and were more evident in≥75 years in which the eGFR equations overestimate renal function. In patients with non-valvular atrial fibrillation, especially with renal failure and in the elderly, eGFR equations tend to overestimate renal function relative to CG and therefore suggest an overdose of DOACs. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Design of adaptive control systems by means of self-adjusting transversal filters
NASA Technical Reports Server (NTRS)
Merhav, S. J.
1986-01-01
The design of closed-loop adaptive control systems based on nonparametric identification was addressed. Implementation is by self-adjusting Least Mean Square (LMS) transversal filters. The design concept is Model Reference Adaptive Control (MRAC). Major issues are to preserve the linearity of the error equations of each LMS filter, and to prevent estimation bias that is due to process or measurement noise, thus providing necessary conditions for the convergence and stability of the control system. The controlled element is assumed to be asymptotically stable and minimum phase. Because of the nonparametric Finite Impulse Response (FIR) estimates provided by the LMS filters, a-priori information on the plant model is needed only in broad terms. Following a survey of control system configurations and filter design considerations, system implementation is shown here in Single Input Single Output (SISO) format which is readily extendable to multivariable forms. In extensive computer simulation studies the controlled element is represented by a second-order system with widely varying damping, natural frequency, and relative degree.
Scanlon, Kelly A; Gray, George M; Francis, Royce A; Lloyd, Shannon M; LaPuma, Peter
2013-03-06
Life cycle assessment (LCA) is a systems-based method used to determine potential impacts to the environment associated with a product throughout its life cycle. Conclusions from LCA studies can be applied to support decisions regarding product design or public policy, therefore, all relevant inputs (e.g., raw materials, energy) and outputs (e.g., emissions, waste) to the product system should be evaluated to estimate impacts. Currently, work-related impacts are not routinely considered in LCA. The objectives of this paper are: 1) introduce the work environment disability-adjusted life year (WE-DALY), one portion of a characterization factor used to express the magnitude of impacts to human health attributable to work-related exposures to workplace hazards; 2) outline the methods for calculating the WE-DALY; 3) demonstrate the calculation; and 4) highlight strengths and weaknesses of the methodological approach. The concept of the WE-DALY and the methodological approach to its calculation is grounded in the World Health Organization's disability-adjusted life year (DALY). Like the DALY, the WE-DALY equation considers the years of life lost due to premature mortality and the years of life lived with disability outcomes to estimate the total number of years of healthy life lost in a population. The equation requires input in the form of the number of fatal and nonfatal injuries and illnesses that occur in the industries relevant to the product system evaluated in the LCA study, the age of the worker at the time of the fatal or nonfatal injury or illness, the severity of the injury or illness, and the duration of time lived with the outcomes of the injury or illness. The methodological approach for the WE-DALY requires data from various sources, multi-step instructions to determine each variable used in the WE-DALY equation, and assumptions based on professional opinion. Results support the use of the WE-DALY in a characterization factor in LCA. Integrating occupational health into LCA studies will provide opportunities to prevent shifting of impacts between the work environment and the environment external to the workplace and co-optimize human health, to include worker health, and environmental health.
Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion.
Huang, Ying; Van Horn, Linda; Tinker, Lesley F; Neuhouser, Marian L; Carbone, Laura; Mossavar-Rahmani, Yasmin; Thomas, Fridtjof; Prentice, Ross L
2014-02-01
Epidemiological studies of the association of sodium and potassium intake with cardiovascular disease risk have almost exclusively relied on self-reported dietary data. Here, 24-hour urinary excretion assessments are used to correct the dietary self-report data for measurement error under the assumption that 24-hour urine recovery provides a biomarker that differs from usual intake according to a classical measurement model. Under this assumption, dietary self-reports underestimate sodium by 0% to 15%, overestimate potassium by 8% to 15%, and underestimate sodium/potassium ratio by ≈20% using food frequency questionnaires, 4-day food records, or three 24-hour dietary recalls in Women's Health Initiative studies. Calibration equations are developed by linear regression of log-transformed 24-hour urine assessments on corresponding log-transformed self-report assessments and several study subject characteristics. For each self-report method, the calibration equations turned out to depend on race and age and strongly on body mass index. After adjustment for temporal variation, calibration equations using food records or recalls explained 45% to 50% of the variation in (log-transformed) 24-hour urine assessments for sodium, 60% to 70% of the variation for potassium, and 55% to 60% of the variation for sodium/potassium ratio. These equations may be suitable for use in epidemiological disease association studies among postmenopausal women. The corresponding signals from food frequency questionnaire data were weak, but calibration equations for the ratios of sodium and potassium/total energy explained ≈35%, 50%, and 45% of log-biomarker variation for sodium, potassium, and their ratio, respectively, after the adjustment for temporal biomarker variation and may be suitable for cautious use in epidemiological studies. Clinical Trial Registration- URL: www.clinicaltrials.gov. Unique identifier: NCT00000611.
Hays, Ron D; Revicki, Dennis A; Feeny, David; Fayers, Peter; Spritzer, Karen L; Cella, David
2016-10-01
Preference-based health-related quality of life (HR-QOL) scores are useful as outcome measures in clinical studies, for monitoring the health of populations, and for estimating quality-adjusted life-years. This was a secondary analysis of data collected in an internet survey as part of the Patient-Reported Outcomes Measurement Information System (PROMIS(®)) project. To estimate Health Utilities Index Mark 3 (HUI-3) preference scores, we used the ten PROMIS(®) global health items, the PROMIS-29 V2.0 single pain intensity item and seven multi-item scales (physical functioning, fatigue, pain interference, depressive symptoms, anxiety, ability to participate in social roles and activities, sleep disturbance), and the PROMIS-29 V2.0 items. Linear regression analyses were used to identify significant predictors, followed by simple linear equating to avoid regression to the mean. The regression models explained 48 % (global health items), 61 % (PROMIS-29 V2.0 scales), and 64 % (PROMIS-29 V2.0 items) of the variance in the HUI-3 preference score. Linear equated scores were similar to observed scores, although differences tended to be larger for older study participants. HUI-3 preference scores can be estimated from the PROMIS(®) global health items or PROMIS-29 V2.0. The estimated HUI-3 scores from the PROMIS(®) health measures can be used for economic applications and as a measure of overall HR-QOL in research.
Validating Reference Equations for Impulse Oscillometry in Healthy Mexican Children.
Gochicoa-Rangel, Laura; Del Río-Hidalgo, Rodrigo; Hernández-Ruiz, Juana; Rodríguez-Moreno, Luis; Martínez-Briseño, David; Mora-Romero, Uri; Cid-Juárez, Silvia; García-Sancho, Cecilia; Torre-Bouscoulet, Luis
2017-09-01
The impulse oscillometry system (IOS) measures the impedance (Z) of the respiratory system, but proper interpretation of its results requires adequate reference values. The objectives of this work were: (1) to validate the reference equations for the IOS published previously by our group and (2) to compare the adjustment of new available reference equations for the IOS from different countries in a sample of healthy children. Subjects were healthy 4-15-y-old children from the metropolitan area of Mexico City, who performed an IOS test. The functional IOS parameters obtained were compared with the predicted values from 12 reference equations determined in studies of different ethnic groups. The validation methods applied were: analysis of the differences between measured and predicted values for each reference equation; correlation and concordance coefficients; adjustment by Z-score values; percentage of predicted value; and the percentage of patients below the lower limit of normality or above the upper limit of normality. Of the 224 participants, 117 (52.3%) were girls, and the mean age was 8.6 ± 2.3 y. The equations that showed the best adjustment for the different parameters were those from the studies by Nowowiejska et al (2008) and Gochicoa et al (2015). The equations proposed by Frei et al (2005), Hellinckx et al (1998), Kalhoff et al (2011), Klug and Bisgaard (1998), de Assumpção et al (2016), and Dencker et al (2006) overestimated the airway resistance of the children in our sample, whereas the equation of Amra et al (2008) underestimated it. In the analysis of the lower and upper limits of normality, Gochicoa et al equation was the closest, since 5% of subjects were below or above percentiles 5 and 95, respectively. The study found that, in general, all of the equations showed greater error at the extremes of the age distribution. Because of the robust adjustment of the present study reference equations for the IOS, it can be recommended for both clinical and research purposes in our population. The differential adjustment of other equations underlines the need to obtain local reference values. Copyright © 2017 by Daedalus Enterprises.
Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover
NASA Technical Reports Server (NTRS)
Ranson, K. J.; Montesano, P. M.; Nelson, R.
2011-01-01
The circumpolar taiga tundra ecotone was delineated using an image-segmentation-based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 to 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation procedure was used to group pixels representing similar tree cover into polygonal features (segmentation objects) that form the map of the transition zone. Each polygon represents an area much larger than the 500 m MODIS pixel and characterizes the patterns of sparse forest patches on a regional scale. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values from5 to 20%, or (2) mean adjusted TCC values greater than 5% but with a standard deviation less than 5% were used to identify the ecotone. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1 degree longitudinal interval in North America and Eurasia, (2) Landsat-derived Canadian proportion of forest cover for Canada, and (3) with canopy cover estimates extracted from airborne profiling lidar data that transected 1238 of the TCC polygons. The adjusted TCC from MODIS VCF shows, on average, less than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. A comparison of the 1238 TCC polygons with profiling lidar measurements yielded an overall accuracy of 67.7%.
2013-01-01
Introduction Estimation of kidney function in critically ill patients with acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but challenging due to fluctuations in kidney function, creatinine metabolism and fluid balance. Data on the agreement between estimating and gold standard methods to assess glomerular filtration rate (GFR) in early AKI are lacking. We evaluated the agreement of urinary creatinine clearance (CrCl) and three commonly used estimating equations, the Cockcroft Gault (CG), the Modification of Diet in Renal Disease (MDRD) and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations, in comparison to GFR measured by the infusion clearance of chromium-ethylenediaminetetraacetic acid (51Cr-EDTA), in critically ill patients with early AKI after complicated cardiac surgery. Methods Thirty patients with early AKI were studied in the intensive care unit, 2 to 12 days after complicated cardiac surgery. The infusion clearance for 51Cr-EDTA obtained as a measure of GFR (GFR51Cr-EDTA) was calculated from the formula: GFR (mL/min/1.73m2) = (51Cr-EDTA infusion rate × 1.73)/(arterial 51Cr-EDTA × body surface area) and compared with the urinary CrCl and the estimated GFR (eGFR) from the three estimating equations. Urine was collected in two 30-minute periods to measure urine flow and urine creatinine. Urinary CrCl was calculated from the formula: CrCl (mL/min/1.73m2) = (urine volume × urine creatinine × 1.73)/(serum creatinine × 30 min × body surface area). Results The within-group error was lower for GFR51Cr-EDTA than the urinary CrCl method, 7.2% versus 55.0%. The between-method bias was 2.6, 11.6, 11.1 and 7.39 ml/min for eGFRCrCl, eGFRMDRD, eGFRCKD-EPI and eGFRCG, respectively, when compared to GFR51Cr-EDTA. The error was 103%, 68.7%, 67.7% and 68.0% for eGFRCrCl, eGFRMDRD, eGFRCKD-EPI and eGFRCG, respectively, when compared to GFR51Cr-EDTA. Conclusions The study demonstrated poor precision of the commonly utilized urinary CrCl method for assessment of GFR in critically ill patients with early AKI, suggesting that this should not be used as a reference method when validating new methods for assessing kidney function in this patient population. The commonly used estimating equations perform poorly when estimating GFR, with high biases and unacceptably high errors. PMID:23767877
Modeling qRT-PCR dynamics with application to cancer biomarker quantification.
Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A
2017-01-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.
Static shape control for flexible structures
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
An integrated methodology is described for defining static shape control laws for large flexible structures. The techniques include modeling, identifying and estimating the control laws of distributed systems characterized in terms of infinite dimensional state and parameter spaces. The models are expressed as interconnected elliptic partial differential equations governing a range of static loads, with the capability of analyzing electromagnetic fields around antenna systems. A second-order analysis is carried out for statistical errors, and model parameters are determined by maximizing an appropriate defined likelihood functional which adjusts the model to observational data. The parameter estimates are derived from the conditional mean of the observational data, resulting in a least squares superposition of shape functions obtained from the structural model.
Senior, Lisa A.
2017-09-15
Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and White Clay Creek near Strickersville. Fecal coliform bacteria data collected by USGS in 2016 (about nine samples per site) were used to validate the equations. The best-fit regression equations included log turbidity and seasonality factors computed using Julian Day as explanatory variables to estimate log FC concentrations at all five stream sites. The adjusted coefficient of determination for the equations ranged from 0.61 to 0.76, with the strength of the regression equations likely affected in part by the limited amount and variability of FC bacteria data. During summer months, the estimated and measured FC concentrations commonly were greater than the Pennsylvania Department of Environmental Protection established standards of 200 and 400 colonies per 100 milliliters for water contact from May through September at the 5 stream sites, with concentrations typically higher at 2 sites (White Clay Creek and West Branch Brandywine Creek at Modena) than at the other 3 sites. The estimated concentrations of FC bacteria during the summer months commonly were higher than measured concentrations and therefore could be considered cautious estimates of potential human-health risk. Additional water-quality data are needed to maintain and (or) improve the ability of regression equations to estimate FC concentrations by use of surrogate data.
A frequency-duty cycle equation for the ACGIH hand activity level.
Radwin, Robert G; Azari, David P; Lindstrom, Mary J; Ulin, Sheryl S; Armstrong, Thomas J; Rempel, David
2015-01-01
A new equation for predicting the hand activity level (HAL) used in the American Conference for Government Industrial Hygienists threshold limit value®(TLV®) was based on exertion frequency (F) and percentage duty cycle (D). The TLV® includes a table for estimating HAL from F and D originating from data in Latko et al. (Latko WA, Armstrong TJ, Foulke JA, Herrin GD, Rabourn RA, Ulin SS, Development and evaluation of an observational method for assessing repetition in hand tasks. American Industrial Hygiene Association Journal, 58(4):278-285, 1997) and post hoc adjustments that include extrapolations outside of the data range. Multimedia video task analysis determined D for two additional jobs from Latko's study not in the original data-set, and a new nonlinear regression equation was developed to better fit the data and create a more accurate table. The equation, HAL = 6:56 ln D[F(1:31) /1+3:18 F(1:31), generally matches the TLV® HAL lookup table, and is a substantial improvement over the linear model, particularly for F>1.25 Hz and D>60% jobs. The equation more closely fits the data and applies the TLV® using a continuous function.
NASA Astrophysics Data System (ADS)
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s-1. Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit ( r 2 > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
Ben Shabat, Yael; Shitzer, Avraham
2012-07-01
Facial heat exchange convection coefficients were estimated from experimental data in cold and windy ambient conditions applicable to wind chill calculations. Measured facial temperature datasets, that were made available to this study, originated from 3 separate studies involving 18 male and 6 female subjects. Most of these data were for a -10°C ambient environment and wind speeds in the range of 0.2 to 6 m s(-1). Additional single experiments were for -5°C, 0°C and 10°C environments and wind speeds in the same range. Convection coefficients were estimated for all these conditions by means of a numerical facial heat exchange model, applying properties of biological tissues and a typical facial diameter of 0.18 m. Estimation was performed by adjusting the guessed convection coefficients in the computed facial temperatures, while comparing them to measured data, to obtain a satisfactory fit (r(2) > 0.98, in most cases). In one of the studies, heat flux meters were additionally used. Convection coefficients derived from these meters closely approached the estimated values for only the male subjects. They differed significantly, by about 50%, when compared to the estimated female subjects' data. Regression analysis was performed for just the -10°C ambient temperature, and the range of experimental wind speeds, due to the limited availability of data for other ambient temperatures. The regressed equation was assumed in the form of the equation underlying the "new" wind chill chart. Regressed convection coefficients, which closely duplicated the measured data, were consistently higher than those calculated by this equation, except for one single case. The estimated and currently used convection coefficients are shown to diverge exponentially from each other, as wind speed increases. This finding casts considerable doubts on the validity of the convection coefficients that are used in the computation of the "new" wind chill chart and their applicability to humans in cold and windy environments.
An Optimization Principle for Deriving Nonequilibrium Statistical Models of Hamiltonian Dynamics
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2013-08-01
A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a vector of resolved variables, selected to describe the macroscopic state of the system, a family of quasi-equilibrium probability densities on phase space corresponding to the resolved variables is employed as a statistical model, and the evolution of the mean resolved vector is estimated by optimizing over paths of these densities. Specifically, a cost function is constructed to quantify the lack-of-fit to the microscopic dynamics of any feasible path of densities from the statistical model; it is an ensemble-averaged, weighted, squared-norm of the residual that results from submitting the path of densities to the Liouville equation. The path that minimizes the time integral of the cost function determines the best-fit evolution of the mean resolved vector. The closed reduced equations satisfied by the optimal path are derived by Hamilton-Jacobi theory. When expressed in terms of the macroscopic variables, these equations have the generic structure of governing equations for nonequilibrium thermodynamics. In particular, the value function for the optimization principle coincides with the dissipation potential that defines the relation between thermodynamic forces and fluxes. The adjustable closure parameters in the best-fit reduced equations depend explicitly on the arbitrary weights that enter into the lack-of-fit cost function. Two particular model reductions are outlined to illustrate the general method. In each example the set of weights in the optimization principle contracts into a single effective closure parameter.
Spector, June T.; Navas-Acien, Ana; Fadrowski, Jeffrey; Guallar, Eliseo; Jaar, Bernard
2011-01-01
Background. Low-level lead exposure is widespread and has been implicated as a chronic kidney disease (CKD) risk factor. However, studies evaluating associations of lead dose with newer, potentially more accurate, estimates of kidney function, in participants with a wide range of glomerular filtration rates (GFRs), are scarce. Methods. We compared associations of blood lead and estimated glomerular filtration rate (eGFR) using the Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and cystatin C single variable, multivariable and combined creatinine/cystatin C equations in 3941 adults who participated in the 1999–2002 National Health and Nutrition Examination Survey cystatin C subsample. Results. Geometric mean blood lead was 1.7 μg/dL. After multivariable adjustment, differences [95% confidence interval (CI)] in mean eGFR for a doubling of blood lead were −1.9 (−3.2, −0.7), −1.7 (−3.0, −0.5) and −1.4 (−2.3, −0.5) mL/min/1.73 m2, using the cystatin C single variable, multivariable and combined creatinine/cystatin C equations, respectively, reflecting lower eGFR with increased blood lead. The corresponding differences (95% CI) were −0.9 (−1.9, 0.02) and −0.9 (−1.8, 0.01) using the creatinine-based MDRD and CKD-EPI equations, respectively. In participants aged ≥60 years, differences in mean eGFR ranged from −3.0 to −4.5 mL/min/1.73 m2, and odds of reduced eGFR (<60 mL/min/1.73 m2) were increased for all estimates of GFR. Conclusions. These results support the inclusion of cystatin C-based eGFR in future lead research and provide additional evidence for environmental lead exposure as a CKD risk factor. PMID:21248295
Modelling decremental ramps using 2- and 3-parameter "critical power" models.
Morton, R Hugh; Billat, Veronique
2013-01-01
The "Critical Power" (CP) model of human bioenergetics provides a valuable way to identify both limits of tolerance to exercise and mechanisms that underpin that tolerance. It applies principally to cycling-based exercise, but with suitable adjustments for analogous units it can be applied to other exercise modalities; in particular to incremental ramp exercise. It has not yet been applied to decremental ramps which put heavy early demand on the anaerobic energy supply system. This paper details cycling-based bioenergetics of decremental ramps using 2- and 3-parameter CP models. It derives equations that, for an individual of known CP model parameters, define those combinations of starting intensity and decremental gradient which will or will not lead to exhaustion before ramping to zero; and equations that predict time to exhaustion on those decremental ramps that will. These are further detailed with suitably chosen numerical and graphical illustrations. These equations can be used for parameter estimation from collected data, or to make predictions when parameters are known.
Return period adjustment for runoff coefficients based on analysis in undeveloped Texas watersheds
Dhakal, Nirajan; Fang, Xing; Asquith, William H.; Cleveland, Theodore G.; Thompson, David B.
2013-01-01
The rational method for peak discharge (Qp) estimation was introduced in the 1880s. The runoff coefficient (C) is a key parameter for the rational method that has an implicit meaning of rate proportionality, and the C has been declared a function of the annual return period by various researchers. Rate-based runoff coefficients as a function of the return period, C(T), were determined for 36 undeveloped watersheds in Texas using peak discharge frequency from previously published regional regression equations and rainfall intensity frequency for return periods T of 2, 5, 10, 25, 50, and 100 years. The C(T) values and return period adjustments C(T)/C(T=10 year) determined in this study are most applicable to undeveloped watersheds. The return period adjustments determined for the Texas watersheds in this study and those extracted from prior studies of non-Texas data exceed values from well-known literature such as design manuals and textbooks. Most importantly, the return period adjustments exceed values currently recognized in Texas Department of Transportation design guidance when T>10 years.
Chin, Ho Jun; Kim, Dong Ki; Park, Jung Hwan; Shin, Sung Joon; Lee, Sang Ho; Choi, Bum Soon; Kim, Suhnggwon; Lim, Chun Soo
2015-01-01
The aim of this study was to determine the role of protein intake on proteinuria in chronic kidney disease (CKD), as it is presently not conclusive. This is a subanalysis of data from an open-label, case-controlled, randomized clinical trial on education about low-salt diets (NCT01552954). We estimated the urine excretion rate of parameters in a day, adjusted by using the equation for estimating urine creatinine excretion, and analyzed the effect of urine urea nitrogen (UUN), as well as estimating protein intake on the level of albuminuria in hypertensive patients with chronic kidney disease. Among 174 participants from whom complete 24-h urine specimens were collected, the estimates from the Tanaka equation resulted in the highest accuracy for the urinary excretion rate of creatinine, sodium, albumin, and UUN. Among 227 participants, the baseline value of estimated urine albumin excretion (eUalb) was positively correlated with the estimated UUN (eUUN) or protein intake according to eUUN (P = 0.012 and P = 0.038, respectively). We were able to calculate the ratios of eUalb and eUUN in 221 participants and grouped them according to the ratio of eUUN during 16-wk trial period. The proportion of patients that achieved a decrement of eUalb ≥25% during 16 wk with an angiotensin II type I receptor blocker (ARB) medication was 80% (24 of 30) in group 1, with eUUN ratio ≤-25%; 82.2% (111 of 135) in group 2, with eUUN ratio between -25% and 25%; and 66.1% (37 and 56) in group 3, with eUUN ratio ≥25% (P = 0.048). The probability of a decrease in albuminuria with ARB treatment was lower in patients with an increase of eUUN or protein intake during the 16 wk of ARB treatment, as observed in multiple logistic regression analysis as well. The estimated urine urea excretion rate showed a positive association with the level of albuminuria in hypertensive patients with chronic kidney disease. The increase of eUUN excretion ameliorated the antiproteinuric effect of ARB. Copyright © 2015 Elsevier Inc. All rights reserved.
Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S
2013-06-01
Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.
Allan, Richard P.; Mayer, Michael; Hyder, Patrick; Loeb, Norman G.; Roberts, Chris D.; Valdivieso, Maria; Edwards, John M.; Vidale, Pier‐Luigi
2017-01-01
Abstract The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite‐derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA‐Interim reanalysis are used to estimate surface energy flux globally. To consider snowmelt and improve regional realism, land surface fluxes are adjusted through a simple energy balance approach at each grid point. This energy adjustment is redistributed over the oceans to ensure energy conservation and maintain realistic global ocean heat uptake, using a weighting function to avoid meridional discontinuities. Calculated surface energy fluxes are evaluated through comparison to ocean reanalyses. Derived turbulent energy flux variability is compared with the Objectively Analyzed air‐sea Fluxes (OAFLUX) product, and inferred meridional energy transports in the global ocean and the Atlantic are also evaluated using observations. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis products. Decadal changes in the global mean and the interhemispheric energy imbalances are quantified, and present day cross‐equator heat transports are reevaluated at 0.22 ± 0.15 PW (petawatts) southward by the atmosphere and 0.32 ± 0.16 PW northward by the ocean considering the observed ocean heat sinks. PMID:28804697
Caravaca-Arens, Esteban; de Fez, Dolores; Blanes-Mompó, Francisco J.
2017-01-01
Purpose To analyze the errors associated to corneal power calculation using the keratometric approach in keratoconus eyes after accelerated corneal collagen crosslinking (CXL) surgery and to obtain a model for the estimation of an adjusted corneal refractive index (nkadj) minimizing such errors. Methods Potential differences (ΔPc) among keratometric (Pk) and Gaussian corneal power (PcGauss) were simulated. Three algorithms based on the use of nkadj for the estimation of an adjusted keratometric corneal power (Pkadj) were developed. The agreement between Pk(1.3375) (keratometric power using the keratometric index of 1.3375), PcGauss, and Pkadj was evaluated. The validity of the algorithm developed was investigated in 21 keratoconus eyes undergoing accelerated CXL. Results P k(1.3375) overestimated corneal power between 0.3 and 3.2 D in theoretical simulations and between 0.8 and 2.9 D in the clinical study (ΔPc). Three linear equations were defined for nkadj to be used for different ranges of r1c. In the clinical study, differences between Pkadj and PcGauss did not exceed ±0.8 D nk = 1.3375. No statistically significant differences were found between Pkadj and PcGauss (p > 0.05) and Pk(1.3375) and Pkadj (p < 0.001). Conclusions The use of the keratometric approach in keratoconus eyes after accelerated CXL can lead to significant clinical errors. These errors can be minimized with an adjusted keratometric approach. PMID:29201459
Sanaka, Masaki; Yamamoto, Takatsugu; Ishii, Tarou; Kuyama, Yasushi
2004-01-01
In pharmacokinetics, the Wagner-Nelson (W-N) method can accurately estimate the rate of drug absorption from its urinary elimination rate. A stable isotope (13C) breath test attempts to estimate the rate of absorption of 13C, as an index of gastric emptying rate, from the rate of pulmonary elimination of 13CO2. The time-gastric emptying curve determined by the breath test is quite different from that determined by scintigraphy or ultrasonography. In this report, we have shown that the W-N method can adjust the difference. The W-N equation to estimate gastric emptying from breath data is as follows: the fractional cumulative amount of gastric contents emptied by time t = Abreath (t)/Abreath (infinity) + (1/0.65).d[Abreath (t)/Abreath (infinity) ]/dt, where Abreath (t) = the cumulative recovery of 13CO2 in breath by time t and Abreath ( infinity ) = the ultimate cumulative 13CO2 recovery. The emptying flow curve generated by ultrasonography was compared with that generated by the W-N method-adjusted breath test in 6 volunteers. The emptying curves by the W-N method were almost identical to those by ultrasound. The W-N method can generate an accurate emptying flow curve from 13CO2 data, and it can adjust the difference between ultrasonography and the breath test. Copyright 2004 S. Karger AG, Basel
On-demand Reporting of Risk-adjusted and Smoothed Rates for Quality Profiling in ACS NSQIP.
Cohen, Mark E; Liu, Yaoming; Huffman, Kristopher M; Ko, Clifford Y; Hall, Bruce L
2016-12-01
Surgical quality improvement depends on hospitals having accurate and timely information about comparative performance. Profiling accuracy is improved by risk adjustment and shrinkage adjustment to stabilize estimates. These adjustments are included in ACS NSQIP reports, where hospital odds ratios (OR) are estimated using hierarchical models built on contemporaneous data. However, the timeliness of feedback remains an issue. We describe an alternative, nonhierarchical approach, which yields risk- and shrinkage-adjusted rates. In contrast to our "Traditional" NSQIP method, this approach uses preexisting equations, built on historical data, which permits hospitals to have near immediate access to profiling results. We compared our traditional method to this new "on-demand" approach with respect to outlier determinations, kappa statistics, and correlations between logged OR and standardized rates, for 12 models (4 surgical groups by 3 outcomes). When both methods used the same contemporaneous data, there were similar numbers of hospital outliers and correlations between logged OR and standardized rates were high. However, larger differences were observed when the effect of contemporaneous versus historical data was added to differences in statistical methodology. The on-demand, nonhierarchical approach provides results similar to the traditional hierarchical method and offers immediacy, an "over-time" perspective, application to a broader range of models and data subsets, and reporting of more easily understood rates. Although the nonhierarchical method results are now available "on-demand" in a web-based application, the hierarchical approach has advantages, which support its continued periodic publication as the gold standard for hospital profiling in the program.
Native American ancestry, lung function, and COPD in Costa Ricans.
Chen, Wei; Brehm, John M; Boutaoui, Nadia; Soto-Quiros, Manuel; Avila, Lydiana; Celli, Bartolome R; Bruse, Shannon; Tesfaigzi, Yohannes; Celedón, Juan C
2014-04-01
Whether Native American ancestry (NAA) is associated with COPD or lung function in a racially admixed Hispanic population is unknown. We recruited 578 Costa Ricans with and without COPD into a hybrid case-control/family-based cohort, including 316 members of families of index case subjects. All participants completed questionnaires and spirometry and gave a blood sample for DNA extraction. Genome-wide genotyping was conducted with the Illumina Human610-Quad and HumanOmniExpress BeadChip kits (Illumina Inc), and individual ancestral proportions were estimated from these genotypic data and reference panels. For unrelated individuals, linear or logistic regression was used for the analysis of NAA and COPD (GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II or greater) or lung function. For extended families, linear mixed models and generalized estimating equations were used for the analysis. All models were adjusted for age, sex, educational level, and smoking behavior; models for FEV1 were also adjusted for height. The average proportion of European, Native American, and African ancestry among participants was 62%, 35%, and 3%, respectively. After adjustment for current smoking and other covariates, NAA was inversely associated with COPD (OR per 10% increment, 0.55; 95% CI, 0.41-0.75) but positively associated with FEV1, FVC, and FEV1/FVC. After additional adjustment for pack-years of smoking, the association between NAA and COPD or lung function measures was slightly attenuated. We found that about 31% of the estimated effect of NAA on COPD is mediated by pack-years of smoking. NAA is inversely associated with COPD but positively associated with FEV1 or FVC in Costa Ricans. Ancestral effects on smoking behavior partly explain the findings for COPD but not for FEV1 or FVC.
Native American Ancestry, Lung Function, and COPD in Costa Ricans
Chen, Wei; Brehm, John M.; Boutaoui, Nadia; Soto-Quiros, Manuel; Avila, Lydiana; Celli, Bartolome R.; Bruse, Shannon; Tesfaigzi, Yohannes
2014-01-01
Background: Whether Native American ancestry (NAA) is associated with COPD or lung function in a racially admixed Hispanic population is unknown. Methods: We recruited 578 Costa Ricans with and without COPD into a hybrid case-control/family-based cohort, including 316 members of families of index case subjects. All participants completed questionnaires and spirometry and gave a blood sample for DNA extraction. Genome-wide genotyping was conducted with the Illumina Human610-Quad and HumanOmniExpress BeadChip kits (Illumina Inc), and individual ancestral proportions were estimated from these genotypic data and reference panels. For unrelated individuals, linear or logistic regression was used for the analysis of NAA and COPD (GOLD [Global Initiative for Chronic Obstructive Lung Disease] stage II or greater) or lung function. For extended families, linear mixed models and generalized estimating equations were used for the analysis. All models were adjusted for age, sex, educational level, and smoking behavior; models for FEV1 were also adjusted for height. Results: The average proportion of European, Native American, and African ancestry among participants was 62%, 35%, and 3%, respectively. After adjustment for current smoking and other covariates, NAA was inversely associated with COPD (OR per 10% increment, 0.55; 95% CI, 0.41-0.75) but positively associated with FEV1, FVC, and FEV1/FVC. After additional adjustment for pack-years of smoking, the association between NAA and COPD or lung function measures was slightly attenuated. We found that about 31% of the estimated effect of NAA on COPD is mediated by pack-years of smoking. Conclusions: NAA is inversely associated with COPD but positively associated with FEV1 or FVC in Costa Ricans. Ancestral effects on smoking behavior partly explain the findings for COPD but not for FEV1 or FVC. PMID:24306962
NASA Astrophysics Data System (ADS)
Roy, Mathieu
Natural inflow is an important data for a water resource manager. In fact, Hydro-Quebec uses historical natural inflow data to perform a daily prediction of the amount of water that will be received in each of its hydroelectric reservoirs. This prediction allows the establishment of reservoir operating rules in order to optimize hydropower without compromising the safety of hydraulic structures. To obtain an accurate prediction, it follows that the system's input needs to be very well known. However, it can be very difficult to accurately measure the natural supply of a set of regulated reservoirs. Therefore, Hydro-Quebec uses an indirect method of calculation. This method consists of evaluating the reservoir's inflow using the water balance equation. Yet, this equation is not immune to errors and uncertainties. Water level measurement is an important input in order to compute the water balance equation. However, several sources of uncertainty including the effect of wind and hydraulic maneuvers can affect the readings of limnimetric gages. Fluctuations in water level caused by these effects carry over in the water balance equation. Consequently, natural inflow's signal may become noisy and affected by external errors. The main objective of this report is to evaluate the uncertainty caused by the effects of wind and hydraulic maneuvers on water balance equation. To this end, hydrodynamic models of reservoirs Outardes 4 and Gouin were prepared. According to the literature review, wind effects can be studied either by an unsteady state approach or by assuming steady state approach. Unsteady state simulation of wind effects on reservoir Gouin and Outardes 4 were performed by hydrodynamic modelling. Consideration of an unsteady state implies that the wind conditions vary throughout the simulation. This feature allows taking into account temporal effect of wind duration. In addition, it also allows the consideration of inertial forces such as seiches which are caused by wind conditions that can vary abruptly. Once the models were calibrated, unsteady state simulations were conducted in closed system where unsteady observed winds were the only forces included. From the simulated water levels obtained at each gage, water balance equation was calculated to determine the daily uncertainty of natural inflow in unsteady conditions. At Outardes 4, a maximum uncertainty of 20 m3/s was estimated during the month of October 2010. On the other hand, at the Gouin reservoir, a maximum uncertainty of 340m3/s was estimated during the month of July 2012. Steady state modelling is another approach to evaluate wind effect uncertainty in the water balance equation. This type of approach consists of assuming that the water level is instantly tilted under the influence of wind. Hence, temporal effect of wind duration and seiches cannot be taken into account. However, the advantage of steady state modelling is that it's better suited than unsteady state modelling to evaluate wind uncertainty in real time. Two steady state modelling methods were experimented to estimate water level difference between gages in function of wind characteristics: hydrodynamic modelling and non-parametric regression. It has been found that non-parametric models are more efficient when it comes to estimate water level differences between gages. However, the use of hydrodynamic model demonstrated that to study wind uncertainty in the water balance equation, it is preferable to assess wind responses individually at each gage instead of using water level differences. Finally, a combination method of water level gages observations has been developed. It allows reducing wind/hydraulic maneuvers impacts on the water balance equation. This method, which is applicable in real time, consists of assigning a variable weight at each limnimetric gages. In other words, the weights automatically adjust in order to minimize steady state modeled wind responses. The estimation of hydraulic maneuvers has also been included in the gage weight adjustment. It has been found that this new combination method allows the correction of noisy natural inflow signal under wind and hydraulic maneuvers effects. However, some fluctuations persist which reflects the complexity of correcting these effects on a real time based daily water balance equation. (Abstract shortened by UMI.).
Revised techniques for estimating peak discharges from channel width in Montana
Parrett, Charles; Hull, J.A.; Omang, R.J.
1987-01-01
This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)
Waltemeyer, Scott D.
2008-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent (mean value is 62, and median value is 59) for the 100-year flood. The 1996 investigation standard error of prediction for the flood regions ranged from 41 to 96 percent (mean value is 67, and median value is 68) for the 100-year flood that was analyzed by using generalized least-squares regression analysis. Overall, the equations based on generalized least-squares regression techniques are more reliable than those in the 1996 report because of the increased length of record and improved geographic information system (GIS) method to determine basin and climatic characteristics. Flood-frequency estimates can be made for ungaged sites upstream or downstream from gaging stations by using a method that transfers flood-frequency data at the gaging station to the ungaged site by using a drainage-area ratio adjustment equation. The peak discharge for a given recurrence interval at the gaging station, drainage-area ratio, and the drainage-area exponent from the regional regression equation of the respective region is used to transfer the peak discharge for the recurrence interval to the ungaged site. Maximum observed peak discharge as related to drainage area was determined for New Mexico. Extreme events are commonly used in the design and appraisal of bridge crossings and other structures. Bridge-scour evaluations are commonly made by using the 500-year peak discharge for these appraisals. Peak-discharge data collected at 293 gaging stations and 367 miscellaneous sites were used to develop a maximum peak-discharge relation as an alternative method of estimating peak discharge of an extreme event such as a maximum probable flood.
Van Vlaenderen, Ilse; Van Bellinghen, Laure-Anne; Meier, Genevieve; Nautrup, Barbara Poulsen
2013-01-22
Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e.g. adults and/or elderly). Two approximations provide a linear relationship between effective coverage and reduction in the risk of infection. The first is a conservative approximation, recommended as a base-case for cost-effectiveness evaluations. The second, fitted to data extracted from a structured literature review, provides a less conservative estimate of herd effect, recommended for sensitivity analyses.
NASA Technical Reports Server (NTRS)
Baker, J. R. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Least squares techniques were applied for parameter estimation of functions to predict winter wheat phenological stage with daily maximum temperature, minimum temperature, daylength, and precipitation as independent variables. After parameter estimation, tests were conducted using independent data. It may generally be concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson triquadratic form, in general use for spring wheat, yielded good results, but special techniques and care are required. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with averaged daily environmental values as independent variables.
ERIC Educational Resources Information Center
Ojerinde, Dibu; Popoola, Omokunmi; Onyeneho, Patrick; Egberongbe, Aminat
2016-01-01
Statistical procedure used in adjusting test score difficulties on test forms is known as "equating". Equating makes it possible for various test forms to be used interchangeably. In terms of where the equating method fits in the assessment cycle, there are pre-equating and post-equating methods. The major benefits of pre-equating, when…
GFR Estimation: From Physiology to Public Health
Levey, Andrew S.; Inker, Lesley A.; Coresh, Josef
2014-01-01
Estimating glomerular filtration rate (GFR) is essential for clinical practice, research, and public health. Appropriate interpretation of estimated GFR (eGFR) requires understanding the principles of physiology, laboratory medicine, epidemiology and biostatistics used in the development and validation of GFR estimating equations. Equations developed in diverse populations are less biased at higher GFR than equations developed in CKD populations and are more appropriate for general use. Equations that include multiple endogenous filtration markers are more precise than equations including a single filtration marker. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations are the most accurate GFR estimating equations that have been evaluated in large, diverse populations and are applicable for general clinical use. The 2009 CKD-EPI creatinine equation is more accurate in estimating GFR and prognosis than the 2006 Modification of Diet in Renal Disease (MDRD) Study equation and provides lower estimates of prevalence of decreased eGFR. It is useful as a “first” test for decreased eGFR and should replace the MDRD Study equation for routine reporting of serum creatinine–based eGFR by clinical laboratories. The 2012 CKD-EPI cystatin C equation is as accurate as the 2009 CKD-EPI creatinine equation in estimating eGFR, does not require specification of race, and may be more accurate in patients with decreased muscle mass. The 2012 CKD-EPI creatinine–cystatin C equation is more accurate than the 2009 CKD-EPI creatinine and 2012 CKD-EPI cystatin C equations and is useful as a confirmatory test for decreased eGFR as determined by an equation based on serum creatinine. Further improvement in GFR estimating equations will require development in more broadly representative populations, including diverse racial and ethnic groups, use of multiple filtration markers, and evaluation using statistical techniques to compare eGFR to “true GFR”. PMID:24485147
NASA Astrophysics Data System (ADS)
Soja, B.; Krasna, H.; Boehm, J.; Gross, R. S.; Abbondanza, C.; Chin, T. M.; Heflin, M. B.; Parker, J. W.; Wu, X.
2017-12-01
The most recent realizations of the ITRS include several innovations, two of which are especially relevant to this study. On the one hand, the IERS ITRS combination center at DGFI-TUM introduced a two-level approach with DTRF2014, consisting of a classical deterministic frame based on normal equations and an optional coordinate time series of non-tidal displacements calculated from geophysical loading models. On the other hand, the JTRF2014 by the combination center at JPL is a time series representation of the ITRF determined by Kalman filtering. Both the JTRF2014 and the second level of the DTRF2014 are thus able to take into account short-term variations in the station coordinates. In this study, based on VLBI data, we combine these two approaches, applying them to the determination of both terrestrial and celestial reference frames. Our product has two levels like DTRF2014, with the second level being a Kalman filter solution like JTRF2014. First, we compute a classical TRF and CRF in a global least-squares adjustment by stacking normal equations from 5446 VLBI sessions between 1979 and 2016 using the Vienna VLBI and Satellite Software VieVS (solution level 1). Next, we obtain coordinate residuals from the global adjustment by applying the level-1 TRF and CRF in the single-session analysis and estimating coordinate offsets. These residuals are fed into a Kalman filter and smoother, taking into account the stochastic properties of the individual stations and radio sources. The resulting coordinate time series (solution level 2) serve as an additional layer representing irregular variations not considered in the first level of our approach. Both levels of our solution are implemented in VieVS in order to test their individual and combined performance regarding the repeatabilities of estimated baseline lengths, EOP, and radio source coordinates.
NASA Astrophysics Data System (ADS)
Xu, Yu-Lin
The problem of computing the orbit of a visual binary from a set of observed positions is reconsidered. It is a least squares adjustment problem, if the observational errors follow a bias-free multivariate Gaussian distribution and the covariance matrix of the observations is assumed to be known. The condition equations are constructed to satisfy both the conic section equation and the area theorem, which are nonlinear in both the observations and the adjustment parameters. The traditional least squares algorithm, which employs condition equations that are solved with respect to the uncorrelated observations and either linear in the adjustment parameters or linearized by developing them in Taylor series by first-order approximation, is inadequate in our orbit problem. D.C. Brown proposed an algorithm solving a more general least squares adjustment problem in which the scalar residual function, however, is still constructed by first-order approximation. Not long ago, a completely general solution was published by W.H Jefferys, who proposed a rigorous adjustment algorithm for models in which the observations appear nonlinearly in the condition equations and may be correlated, and in which construction of the normal equations and the residual function involves no approximation. This method was successfully applied in our problem. The normal equations were first solved by Newton's scheme. Practical examples show that this converges fast if the observational errors are sufficiently small and the initial approximate solution is sufficiently accurate, and that it fails otherwise. Newton's method was modified to yield a definitive solution in the case the normal approach fails, by combination with the method of steepest descent and other sophisticated algorithms. Practical examples show that the modified Newton scheme can always lead to a final solution. The weighting of observations, the orthogonal parameters and the efficiency of a set of adjustment parameters are also considered. The definition of efficiency is revised.
2013-01-01
Background Life cycle assessment (LCA) is a systems-based method used to determine potential impacts to the environment associated with a product throughout its life cycle. Conclusions from LCA studies can be applied to support decisions regarding product design or public policy, therefore, all relevant inputs (e.g., raw materials, energy) and outputs (e.g., emissions, waste) to the product system should be evaluated to estimate impacts. Currently, work-related impacts are not routinely considered in LCA. The objectives of this paper are: 1) introduce the work environment disability-adjusted life year (WE-DALY), one portion of a characterization factor used to express the magnitude of impacts to human health attributable to work-related exposures to workplace hazards; 2) outline the methods for calculating the WE-DALY; 3) demonstrate the calculation; and 4) highlight strengths and weaknesses of the methodological approach. Methods The concept of the WE-DALY and the methodological approach to its calculation is grounded in the World Health Organization’s disability-adjusted life year (DALY). Like the DALY, the WE-DALY equation considers the years of life lost due to premature mortality and the years of life lived with disability outcomes to estimate the total number of years of healthy life lost in a population. The equation requires input in the form of the number of fatal and nonfatal injuries and illnesses that occur in the industries relevant to the product system evaluated in the LCA study, the age of the worker at the time of the fatal or nonfatal injury or illness, the severity of the injury or illness, and the duration of time lived with the outcomes of the injury or illness. Results The methodological approach for the WE-DALY requires data from various sources, multi-step instructions to determine each variable used in the WE-DALY equation, and assumptions based on professional opinion. Conclusions Results support the use of the WE-DALY in a characterization factor in LCA. Integrating occupational health into LCA studies will provide opportunities to prevent shifting of impacts between the work environment and the environment external to the workplace and co-optimize human health, to include worker health, and environmental health. PMID:23497039
Mendez, Michelle A.; Popkin, Barry M.; Buckland, Genevieve; Schroder, Helmut; Amiano, Pilar; Barricarte, Aurelio; Huerta, José-María; Quirós, José R.; Sánchez, María-José; González, Carlos A
2011-01-01
Misreporting characterized by the reporting of implausible energy intakes may undermine the valid estimation of diet-disease relations, but the methods to best identify and account for misreporting are unknown. The present study compared how alternate approaches affected associations between selected dietary factors and body mass index (BMI) by using data from the European Prospective Investigation Into Cancer and Nutrition-Spain. A total of 24,332 women and 15,061 men 29–65 years of age recruited from 1992 to 1996 for whom measured height and weight and validated diet history data were available were included. Misreporters were identified on the basis of disparities between reported energy intakes and estimated requirements calculated using the original Goldberg method and 2 alternatives: one that substituted basal metabolic rate equations that are more valid at higher BMIs and another that used doubly labeled water-predicted total energy expenditure equations. Compared with results obtained using the original method, underreporting was considerably lower and overreporting higher with alternative methods, which were highly concordant. Accounting for misreporters with all methods yielded diet-BMI relations that were more consistent with expectations; alternative methods often strengthened associations. For example, among women, multivariable-adjusted differences in BMI for the highest versus lowest vegetable intake tertile (β = 0.37 (standard error, 0.07)) were neutral after adjusting with the original method (β = 0.01 (standard error, 07)) and negative using the predicted total energy expenditure method with stringent cutoffs (β = −0.15 (standard error, 0.07)). Alternative methods may yield more valid associations between diet and obesity-related outcomes. PMID:21242302
Mendez, Michelle A; Popkin, Barry M; Buckland, Genevieve; Schroder, Helmut; Amiano, Pilar; Barricarte, Aurelio; Huerta, José-María; Quirós, José R; Sánchez, María-José; González, Carlos A
2011-02-15
Misreporting characterized by the reporting of implausible energy intakes may undermine the valid estimation of diet-disease relations, but the methods to best identify and account for misreporting are unknown. The present study compared how alternate approaches affected associations between selected dietary factors and body mass index (BMI) by using data from the European Prospective Investigation Into Cancer and Nutrition-Spain. A total of 24,332 women and 15,061 men 29-65 years of age recruited from 1992 to 1996 for whom measured height and weight and validated diet history data were available were included. Misreporters were identified on the basis of disparities between reported energy intakes and estimated requirements calculated using the original Goldberg method and 2 alternatives: one that substituted basal metabolic rate equations that are more valid at higher BMIs and another that used doubly labeled water-predicted total energy expenditure equations. Compared with results obtained using the original method, underreporting was considerably lower and overreporting higher with alternative methods, which were highly concordant. Accounting for misreporters with all methods yielded diet-BMI relations that were more consistent with expectations; alternative methods often strengthened associations. For example, among women, multivariable-adjusted differences in BMI for the highest versus lowest vegetable intake tertile (β = 0.37 (standard error, 0.07)) were neutral after adjusting with the original method (β = 0.01 (standard error, 07)) and negative using the predicted total energy expenditure method with stringent cutoffs (β = -0.15 (standard error, 0.07)). Alternative methods may yield more valid associations between diet and obesity-related outcomes.
Fighting with Siblings and with Peers among Urban High School Students
Johnson, Renee M.; Duncan, Dustin T.; Rothman, Emily F.; Gilreath, Tamika D.; Hemenway, David; Molnar, Beth E.; Azrael, Deborah
2014-01-01
Understanding the determinants of fighting is important for prevention efforts. Unfortunately, there is little research on how sibling fighting is related to peer fighting. Therefore, the aim of this study was to evaluate the association between sibling fighting and peer fighting. Data are from the Boston Youth Survey 2008, a school-based sample of youth in Boston, MA. To estimate the association between sibling fighting and peer fighting we ran four multivariate regression models and estimated adjusted prevalence ratios and 95% confidence intervals. We fit generalized estimating equation models to account for the fact that students were clustered within schools. Controlling for school clustering, race/ethnicity, sex, school failure, substance use, and caregiver aggression, youth who fought with siblings were 2.49 times more likely to have reported fighting with peers. To the extent that we can confirm that sibling violence is associated with aggressive behavior, we should incorporate it into violence prevention programming. PMID:25287411
Archer, Edward; Thomas, Diana M.; McDonald, Samantha M.; Pavela, Gregory; Lavie, Carl J.; Hill, James O.; Blair, Steven N.
2016-01-01
The purpose of this study was to examine the validity of the 1971-2010 United States Department of Agriculture's (USDA's) loss-adjusted food availability (LAFA) per capita caloric consumption estimates. Estimated total daily energy expenditure (TEE) was calculated for nationally representative samples of US adults, 20-74 years, using the Institute of Medicine's predictive equations with “low-active” (TEE L-ACT) and “sedentary” (TEE SED) physical activity values. TEE estimates were subtracted from LAFA estimates to create disparity values (kcal/d). A validated mathematical model was applied to calculate expected weight change in reference individuals resulting from the disparity. From 1971-2010, the disparity between LAFA and TEE L-ACT varied by 394 kcal/d—(P < 0.001), from −205 kcal/d (95% CI: −214, −196) to +189 kcal/d (95% CI: 168, 209). The disparity between LAFA and TEE SED varied by 412 kcal/d (P < 0.001), from −84 kcal/d (95% CI: −93, −76) to +328 kcal/d (95% CI: 309, 348). Our model suggests that if LAFA estimates were actually consumed, reference individuals would have lost ∼1-4 kg/y from 1971-1980 (an accumulated loss of ∼ 12 to ∼36kg), and gained ∼ 3-7 kg/y from 1988-2010 (an accumulated gain of ∼42 to ∼98 kg). These estimates differed from the actual measured increments of 10 kg and 9 kg in reference men and women, respectively, over the 39-year period. The USDA LAFA data provided inconsistent, divergent estimates of per capita caloric consumption over its 39-year history. The large, variable misestimation suggests that the USDA LAFA per capita caloric intake estimates lack validity and should not be used to inform public policy. PMID:27914522
Methods for Adjusting U.S. Geological Survey Rural Regression Peak Discharges in an Urban Setting
Moglen, Glenn E.; Shivers, Dorianne E.
2006-01-01
A study was conducted of 78 U.S. Geological Survey gaged streams that have been subjected to varying degrees of urbanization over the last three decades. Flood-frequency analysis coupled with nonlinear regression techniques were used to generate a set of equations for converting peak discharge estimates determined from rural regression equations to a set of peak discharge estimates that represent known urbanization. Specifically, urban regression equations for the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year return periods were calibrated as a function of the corresponding rural peak discharge and the percentage of impervious area in a watershed. The results of this study indicate that two sets of equations, one set based on imperviousness and one set based on population density, performed well. Both sets of equations are dependent on rural peak discharges, a measure of development (average percentage of imperviousness or average population density), and a measure of homogeneity of development within a watershed. Average imperviousness was readily determined by using geographic information system methods and commonly available land-cover data. Similarly, average population density was easily determined from census data. Thus, a key advantage to the equations developed in this study is that they do not require field measurements of watershed characteristics as did the U.S. Geological Survey urban equations developed in an earlier investigation. During this study, the U.S. Geological Survey PeakFQ program was used as an integral tool in the calibration of all equations. The scarcity of historical land-use data, however, made exclusive use of flow records necessary for the 30-year period from 1970 to 2000. Such relatively short-duration streamflow time series required a nonstandard treatment of the historical data function of the PeakFQ program in comparison to published guidelines. Thus, the approach used during this investigation does not fully comply with the guidelines set forth in U.S. Geological Survey Bulletin 17B, and modifications may be needed before it can be applied in practice.
Rus, David L.; Dietsch, Benjamin J.; Woodward, Brenda K.; Fry, Beth E.; Wilson, Richard C.
2007-01-01
An assessment of the 16.3-square-mile Cardwell Branch watershed characterized the hydrology, fluvial geomorphology, and stream ecology in 2003-04. The study - performed by the U.S. Geological Survey in cooperation with the City of Lincoln, Nebraska, and the Lower Platte South Natural Resources District - focused on the 7.7-square-mile drainage downstream from Yankee Hill Reservoir. Hydrologic and hydraulic models were developed using the Hydrologic Modeling System (HEC-HMS) and River Analysis System (HEC-RAS) of the U.S. Army Corps of Engineers Hydraulic Engineering Center. Estimates of streamflow and water-surface elevation were simulated for 24-hour-duration design rainstorms ranging from a 50-percent frequency to a 0.2-percent frequency. An initial HEC-HMS model was developed using the standardized parameter estimation techniques associated with the Soil Conservation Service curve number technique. An adjusted HEC-HMS model also was developed in which parameters were adjusted in order for the model output to better correspond to peak streamflows estimated from regional regression equations. Comparisons of peak streamflow from the two HEC-HMS models indicate that the initial HEC-HMS model may better agree with the regional regression equations for higher frequency storms, and the adjusted HEC-HMS model may perform more closely to regional regression equations for larger, rarer events. However, a lack of observed streamflow data, coupled with conflicting results from regional regression equations and local high-water marks, introduced considerable uncertainty into the model simulations. Using the HEC-RAS model to estimate water-surface elevations associated with the peak streamflow, the adjusted HEC-HMS model produced average increases in water-surface elevation of 0.2, 1.1, and 1.4 feet for the 50-, 1-, and 0.2-percent-frequency rainstorms, respectively, when compared to the initial HEC-HMS model. Cross-sectional surveys and field assessments conducted between November 2003 and March 2004 indicated that Cardwell Branch and its unnamed tributary appear to be undergoing incision (the process of downcutting) (with three locations showing 2 or more feet of streambed incision since 1978) that is somewhat moderated by the presence of grade controls and vegetation along the channel profile. Although streambank failures were commonly observed, 96 percent of the surveyed cross sections were classified as stable by planar and rotational failure analysis-a disconnect that may have been the result of assumed soil properties. Two process-based classification systems each indicated that the reaches within the study area were incising and widening, and the Rosgen classification system characterized the streams as either type E6 or B6c. E6 channels are hydraulically efficient with low width-depth ratios, low to moderate sinuosity, and gentle to moderately steep slopes. B6c channels typically are incised with low width-depth ratios maintained by riparian vegetation, low bedload transport, and high washload transport. No obvious nickpoints (interruption or break in slope) were observed in the thalweg profile (line of maximum streambed descent), and the most acute incision occurred immediately downstream from bridges and culverts. Nine water-quality samples were collected between August 2003 and November 2004 near the mouth of the watershed. Sediment-laden rainfall-runoff substantially affected the water quality in Cardwell Branch, leading to greater biochemical and chemical oxygen demands as well as increased concentrations of several nutrient, bacteriological, sediment, and pesticide constituents. The storage of rainfall runoff in Yankee Hill Reservoir may prolong the presence of runoff-related constituents downstream. Across the study area, there was a lack of habitat availability for aquatic biota because of low dissolved oxygen levels and low streamflows or dry channels. In August 2003, the aquatic community near the mouth of
Tortorelli, R.L.; Bergman, D.L.
1985-01-01
Statewide regression relations for Oklahoma were determined for estimating peak discharge of floods for selected recurrence intervals from 2 to 500 years. The independent variables required for estimating flood discharge for rural streams are contributing drainage area and mean annual precipitation. Main-channel slope, a variable used in previous reports, was found to contribute very little to the accuracy of the relations and was not used. The regression equations are applicable for watersheds with drainage areas less than 2,500 square miles that are not significantly affected by regulation from manmade works. These relations are presented in graphical form for easy application. Limitations on the use of the regression relations and the reliability of regression estimates for rural unregulated streams are discussed. Basin and climatic characteristics, log-Pearson Type III statistics and the flood-frequency relations for 226 gaging stations in Oklahoma and adjacent states are presented. Regression relations are investigated for estimating flood magnitude and frequency for watersheds affected by regulation from small FRS (floodwater retarding structures) built by the U.S. Soil Conservation Service in their watershed protection and flood prevention program. Gaging-station data from nine FRS regulated sites in Oklahoma and one FRS regulated site in Kansas are used. For sites regulated by FRS, an adjustment of the statewide rural regression relations can be used to estimate flood magnitude and frequency. The statewide regression equations are used by substituting the drainage area below the FRS, or drainage area that represents the percent of the basin unregulated, in the contributing drainage area parameter to obtain flood-frequency estimates. Flood-frequency curves and flow-duration curves are presented for five gaged sites to illustrate the effects of FRS regulation on peak discharge.
Adjustment technique without explicit formation of normal equations /conjugate gradient method/
NASA Technical Reports Server (NTRS)
Saxena, N. K.
1974-01-01
For a simultaneous adjustment of a large geodetic triangulation system, a semiiterative technique is modified and used successfully. In this semiiterative technique, known as the conjugate gradient (CG) method, original observation equations are used, and thus the explicit formation of normal equations is avoided, 'huge' computer storage space being saved in the case of triangulation systems. This method is suitable even for very poorly conditioned systems where solution is obtained only after more iterations. A detailed study of the CG method for its application to large geodetic triangulation systems was done that also considered constraint equations with observation equations. It was programmed and tested on systems as small as two unknowns and three equations up to those as large as 804 unknowns and 1397 equations. When real data (573 unknowns, 965 equations) from a 1858-km-long triangulation system were used, a solution vector accurate to four decimal places was obtained in 2.96 min after 1171 iterations (i.e., 2.0 times the number of unknowns).
Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G
2015-01-01
To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.
Congdon, Nathan; Broman, Karl W.; Lai, Hong; Munoz, Beatriz; Bowie, Heidi; Gilber, Donna; Wojciechowski, Robert; Alston, Christine; West, Sheila K.
2011-01-01
Purpose To quantify the association between siblings in age-related nuclear cataract, after adjusting for known environmental and personal risk factors. Methods All participants (probands) in the Salisbury Eye Evaluation (SEE) project and their locally resident siblings underwent digital slit lamp photography and were administered a questionnaire to assess risk factors for cataract including: age, gender, lifetime sun exposure, smoking and diabetes history, and use of alcohol and medications such as estrogens and steroids. In addition, blood pressure, body mass index, and serum antioxidants were measured in all participants. Lens photographs were graded by trained observers masked to the subjects' identity, using the Wilmer Cataract Grading System. The odds ratio for siblings for affectedness with nuclear cataract and the sibling correlation of nuclear cataract grade, after adjusting for covariates, were estimated with generalized estimating equations. Results Among 307 probands (mean age, 77.6 ± 4.5 years) and 434 full siblings (mean age, 72.4 ± 7.4 years), the average sibship size was 2.7 per family. After adjustment for covariates, the probability of development of nuclear cataract was significantly increased (odds ratio [OR] = 2.07, 95% confidence interval [CI], 1.30–3.30) among individuals with a sibling with nuclear cataract (nuclear grade ≥ 3.0). The final fitted model indicated a magnitude of heritability for nuclear cataract of 35.6% (95% CI: 21.0%–50.3%) after adjustment for the covariates. Conclusions Findings in this study are consistent with a genetic effect for age-related nuclear cataract, a common and clinically significant form of lens opacity. PMID:15223793
Zemski, Adam J; Broad, Elizabeth M; Slater, Gary J
2018-01-01
Body composition in elite rugby union athletes is routinely assessed using surface anthropometry, which can be utilized to provide estimates of absolute body composition using regression equations. This study aims to assess the ability of available skinfold equations to estimate body composition in elite rugby union athletes who have unique physique traits and divergent ethnicity. The development of sport-specific and ethnicity-sensitive equations was also pursued. Forty-three male international Australian rugby union athletes of Caucasian and Polynesian descent underwent surface anthropometry and dual-energy X-ray absorptiometry (DXA) assessment. Body fat percent (BF%) was estimated using five previously developed equations and compared to DXA measures. Novel sport and ethnicity-sensitive prediction equations were developed using forward selection multiple regression analysis. Existing skinfold equations provided unsatisfactory estimates of BF% in elite rugby union athletes, with all equations demonstrating a 95% prediction interval in excess of 5%. The equations tended to underestimate BF% at low levels of adiposity, whilst overestimating BF% at higher levels of adiposity, regardless of ethnicity. The novel equations created explained a similar amount of variance to those previously developed (Caucasians 75%, Polynesians 90%). The use of skinfold equations, including the created equations, cannot be supported to estimate absolute body composition. Until a population-specific equation is established that can be validated to precisely estimate body composition, it is advocated to use a proven method, such as DXA, when absolute measures of lean and fat mass are desired, and raw anthropometry data routinely to derive an estimate of body composition change.
Associations between prenatal arsenic exposure with adverse pregnancy outcome and child mortality.
Shih, Yu-Hsuan; Islam, Tariqul; Hore, Samar Kumar; Sarwar, Golam; Shahriar, Mohammad Hasan; Yunus, Mohammad; Graziano, Joseph H; Harjes, Judith; Baron, John A; Parvez, Faruque; Ahsan, Habibul; Argos, Maria
2017-10-01
Chronic arsenic exposure is a public health concern in many parts of the world, with elevated concentrations in groundwater posing a threat to millions of people. Arsenic is associated with various cancers and an array of chronic diseases; however, the relationship with adverse pregnancy outcomes and child mortality is less established. We evaluated associations between individual-level prenatal arsenic exposure with adverse pregnancy outcomes and child mortality in a pregnancy study among 498 women nested in a larger population-based cohort in rural Bangladesh. Creatinine-adjusted urinary total arsenic concentration, a comprehensive measure of exposure from water, food, and air sources, reflective of the prenatal period was available for participants. Self-reported pregnancy outcomes (livebirth, stillbirth, spontaneous/elective abortion) were ascertained. Generalized estimating equations, accounting for multiple pregnancies of participants, were used to estimate odds ratios and 95% confidence intervals in relation to adverse pregnancy outcomes. Vital status of livebirths was subsequently ascertained through November 2015. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals in relation to child mortality. We observed a significant association between prenatal arsenic exposure and the risk of stillbirth (greater than median; adjusted OR = 2.50; 95% CI = 1.04, 6.01). We also observed elevated risk of child mortality (greater than median; adjusted HR = 1.92; 95% CI = 0.78, 4.68) in relation to prenatal arsenic exposure. Prospective studies should continue to evaluate prenatal and early life health effects of arsenic exposure and arsenic remediation strategies for women of child-bearing age. Copyright © 2017 Elsevier Inc. All rights reserved.
An Energy-Aware Runtime Management of Multi-Core Sensory Swarms.
Kim, Sungchan; Yang, Hoeseok
2017-08-24
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today's sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique.
An Energy-Aware Runtime Management of Multi-Core Sensory Swarms
Kim, Sungchan
2017-01-01
In sensory swarms, minimizing energy consumption under performance constraint is one of the key objectives. One possible approach to this problem is to monitor application workload that is subject to change at runtime, and to adjust system configuration adaptively to satisfy the performance goal. As today’s sensory swarms are usually implemented using multi-core processors with adjustable clock frequency, we propose to monitor the CPU workload periodically and adjust the task-to-core allocation or clock frequency in an energy-efficient way in response to the workload variations. In doing so, we present an online heuristic that determines the most energy-efficient adjustment that satisfies the performance requirement. The proposed method is based on a simple yet effective energy model that is built upon performance prediction using IPC (instructions per cycle) measured online and power equation derived empirically. The use of IPC accounts for memory intensities of a given workload, enabling the accurate prediction of execution time. Hence, the model allows us to rapidly and accurately estimate the effect of the two control knobs, clock frequency adjustment and core allocation. The experiments show that the proposed technique delivers considerable energy saving of up to 45%compared to the state-of-the-art multi-core energy management technique. PMID:28837094
Kim, In-Wha; Moon, Yoo Jin; Ji, Eunhee; Kim, Kyung Im; Han, Nayoung; Kim, Sung Ju; Shin, Wan Gyoon; Ha, Jongwon; Yoon, Jeong-Hyun; Lee, Hye Suk; Oh, Jung Mi
2012-05-01
The purpose of this study was to characterize the effects of clinical and genetic variables on the pharmacokinetics and complications of tacrolimus during the first year after kidney transplantation. One hundred and thirty-two Korean kidney recipients who received tacrolimus were genotyped for ABCB1 (exons 12, 21, and 26) and CYP3A5 (intron 3). Tacrolimus trough levels, dose, or dose-adjusted trough levels and complications were compared among patients during the early stage (3, 7, 14, 30, and 90 days) and up to 1 year according to the genotypes. A donor source-adjusted linear mixed model with multilevel analysis adjusting for age, body weight, hematocrit, and serum creatinine showed that CYP3A5 genotype is associated with dose-adjusted level of tacrolimus (p < 0.001). The influence of ABCB1 polymorphisms on the pharmacokinetics or complications of tacrolimus was less certain in our study. The incidence of acute rejections was significantly higher in recipients of cadaveric donor kidney (p < 0.05). A generalized estimating equation model analysis showed that alopecia and hyperlipidemia were associated with dose-adjusted level of tacrolimus (p < 0.001). Genotype of CYP3A5 variants along with significant clinical covariates may be useful in individualizing tacrolimus therapy in kidney transplantation patients.
Erodibility of selected soils and estimates of sediment yields in the San Juan Basin, New Mexico
Summer, Rebecca M.
1981-01-01
Onsite rainfall-simulation experiments were conducted to derive field-erodibility indexes for rangeland soils and soils disturbed by mining in coal fields of northwestern New Mexico. Mean indexes on rangeland soils range from 0 grams (of detached soil) on dune soil to 121 grams on wash-transport zones. Mean field-erodibility-index values of soils disturbed by mining range from 16 to 32 grams; they can be extrapolted to nearby coal fields where future mining is expected. Because field-erodibility-index data allow differentiation of erodibilities across a variable landscape, these indexes were used to adjust values of K, the erodibility factor of the Universal Soil Loss Equation. Estimates of soil loss and sediment yield were then calculated for a small basin following mining. (USGS)
Development of a winter wheat adjustable crop calendar model
NASA Technical Reports Server (NTRS)
Baker, J. R. (Principal Investigator)
1978-01-01
The author has identified the following significant results. After parameter estimation, tests were conducted with variances from the fits, and on independent data. From these tests, it was generally concluded that exponential functions have little advantage over polynomials. Precipitation was not found to significantly affect the fits. The Robertson's triquadratic form, in general use for spring wheat, was found to show promise for winter wheat, but special techniques and care were required for its use. In most instances, equations with nonlinear effects were found to yield erratic results when utilized with daily environmental values as independent variables.
The Routine Fitting of Kinetic Data to Models
Berman, Mones; Shahn, Ezra; Weiss, Marjory F.
1962-01-01
A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975
NASA Astrophysics Data System (ADS)
Paredes, P.; Fontes, J. C.; Azevedo, E. B.; Pereira, L. S.
2017-11-01
Reference crop evapotranspiration (ETo) estimations using the FAO Penman-Monteith equation (PM-ETo) require a set of weather data including maximum and minimum air temperatures (T max, T min), actual vapor pressure (e a), solar radiation (R s), and wind speed (u 2). However, those data are often not available, or data sets are incomplete due to missing values. A set of procedures were proposed in FAO56 (Allen et al. 1998) to overcome these limitations, and which accuracy for estimating daily ETo in the humid climate of Azores islands is assessed in this study. Results show that after locally and seasonally calibrating the temperature adjustment factor a d used for dew point temperature (T dew) computation from mean temperature, ETo estimations shown small bias and small RMSE ranging from 0.15 to 0.53 mm day-1. When R s data are missing, their estimation from the temperature difference (T max-T min), using a locally and seasonal calibrated radiation adjustment coefficient (k Rs), yielded highly accurate ETo estimates, with RMSE averaging 0.41 mm day-1 and ranging from 0.33 to 0.58 mm day-1. If wind speed observations are missing, the use of the default u 2 = 2 m s-1, or 3 m s-1 in case of weather measurements over clipped grass in airports, revealed appropriated even for the windy locations (u 2 > 4 m s-1), with RMSE < 0.36 mm day-1. The appropriateness of procedure to estimating the missing values of e a, R s, and u 2 was confirmed.
Manyema, Mercy; Veerman, Lennert J; Tugendhaft, Aviva; Labadarios, Demetre; Hofman, Karen J
2016-05-31
Stroke poses a growing human and economic burden in South Africa. Excess sugar consumption, especially from sugar-sweetened beverages (SSBs), has been associated with increased obesity and stroke risk. Research shows that price increases for SSBs can influence consumption and modelling evidence suggests that taxing SSBs has the potential to reduce obesity and related diseases. This study estimates the potential impact of an SSB tax on stroke-related mortality, costs and health-adjusted life years in South Africa. A proportional multi-state life table-based model was constructed in Microsoft Excel (2010). We used consumption data from the 2012 South African National Health and Nutrition Examination Survey, previously published own and cross price elasticities of SSBs and energy balance equations to estimate changes in daily energy intake and BMI arising from increased SSB prices. Stroke relative risk, and prevalent years lived with disability estimates from the Global Burden of Disease Study and modelled disease epidemiology estimates from a previous study, were used to estimate the effect of the BMI changes on the burden of stroke. Our model predicts that an SSB tax may avert approximately 72 000 deaths, 550 000 stroke-related health-adjusted life years and over ZAR5 billion, (USD400 million) in health care costs over 20 years (USD296-576 million). Over 20 years, the number of incident stroke cases may be reduced by approximately 85 000 and prevalent cases by about 13 000. Fiscal policy has the potential, as part of a multi-faceted approach, to mitigate the growing burden of stroke in South Africa and contribute to the achievement of the target set by the Department of Health to reduce relative premature mortality (less than 60 years) from non-communicable diseases by the year 2020.
Gionbelli, Mateus P.; Duarte, Marcio S.; Valadares Filho, Sebastião C.; Detmann, Edenio; Chizzotti, Mario L.; Rodrigues, Felipe C.; Zanetti, Diego; Gionbelli, Tathyane R. S.; Machado, Marcelo G.
2015-01-01
Background Beef cows herd accounts for 70% of the total energy used in the beef production system. However, there are still limited studies regarding improvement of production efficiency in this category, mainly in developing countries and in tropical areas. One of the limiting factors is the difficulty to obtain reliable estimates of weight variation in mature cows. This occurs due to the interaction of weight of maternal tissues with specific physiological stages such as pregnancy. Moreover, variation in gastrointestinal contents due to feeding status in ruminant animals is a major source of error in body weight measurements. Objectives Develop approaches to estimate the individual proportion of weight from maternal tissues and from gestation in pregnant cows, adjusting for feeding status and stage of gestation. Methods and Findings Dataset of 49 multiparous non-lactating Nellore cows (32 pregnant and 17 non-pregnant) were used. To establish the relationships between the body weight, depending on the feeding status of pregnant and non-pregnant cows as a function of days of pregnancy, a set of general equations was tested, based on theoretical suppositions. We proposed the concept of pregnant compound (PREG), which represents the weight that is genuinely related to pregnancy. The PREG includes the gravid uterus minus the non-pregnant uterus plus the accretion in udder related to pregnancy. There was no accretion in udder weight up to 238 days of pregnancy. By subtracting the PREG from live weight of a pregnant cow, we obtained estimates of the weight of only maternal tissues in pregnant cows. Non-linear functions were adjusted to estimate the relationship between fasted, non-fasted and empty body weight, for pregnant and non-pregnant cows. Conclusions Our results allow for estimating the actual live weight of pregnant cows and their body constituents, and subsequent comparison as a function of days of gestation and feeding status. PMID:25793770
Poly(aspartic acid) with adjustable pH-dependent solubility.
Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András
2017-02-01
Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A multi-camera system for real-time pose estimation
NASA Astrophysics Data System (ADS)
Savakis, Andreas; Erhard, Matthew; Schimmel, James; Hnatow, Justin
2007-04-01
This paper presents a multi-camera system that performs face detection and pose estimation in real-time and may be used for intelligent computing within a visual sensor network for surveillance or human-computer interaction. The system consists of a Scene View Camera (SVC), which operates at a fixed zoom level, and an Object View Camera (OVC), which continuously adjusts its zoom level to match objects of interest. The SVC is set to survey the whole filed of view. Once a region has been identified by the SVC as a potential object of interest, e.g. a face, the OVC zooms in to locate specific features. In this system, face candidate regions are selected based on skin color and face detection is accomplished using a Support Vector Machine classifier. The locations of the eyes and mouth are detected inside the face region using neural network feature detectors. Pose estimation is performed based on a geometrical model, where the head is modeled as a spherical object that rotates upon the vertical axis. The triangle formed by the mouth and eyes defines a vertical plane that intersects the head sphere. By projecting the eyes-mouth triangle onto a two dimensional viewing plane, equations were obtained that describe the change in its angles as the yaw pose angle increases. These equations are then combined and used for efficient pose estimation. The system achieves real-time performance for live video input. Testing results assessing system performance are presented for both still images and video.
Ricci, Renato Pietro; Morichelli, Loredana; D'Onofrio, Antonio; Calò, Leonardo; Vaccari, Diego; Zanotto, Gabriele; Curnis, Antonio; Buja, Gianfranco; Rovai, Nicola; Gargaro, Alessio
2013-01-01
Aims The HomeGuide Registry was a prospective study (NCT01459874), implementing a model for remote monitoring of cardiac implantable electronic devices (CIEDs) in daily clinical practice, to estimate effectiveness in major cardiovascular event detection and management. Methods and results The workflow for remote monitoring [Biotronik Home Monitoring (HM)] was based on primary nursing: each patient was assigned to an expert nurse for management and to a responsible physician for medical decisions. In-person visits were scheduled once a year. Seventy-five Italian sites enrolled 1650 patients [27% pacemakers, 27% single-chamber implantable cardioverter defibrillators (ICDs), 22% dual-chamber ICDs, 24% ICDs with cardiac resynchronization therapy]. Population resembled the expected characteristics of CIED patients. During a 20 ± 13 month follow-up, 2471 independently adjudicated events were collected in 838 patients (51%): 2033 (82%) were detected during HM sessions; 438 (18%) during in-person visits. Sixty were classified as false-positive, with generalized estimating equation-adjusted sensitivity and positive predictive value of 84.3% [confidence interval (CI), 82.5–86.0%] and 97.4% (CI, 96.5–98.2%), respectively. Overall, 95% of asymptomatic and 73% of actionable events were detected during HM sessions. Median reaction time was 3 days [interquartile range (IQR), 1–14 days]. Generalized estimating equation-adjusted incremental utility, calculated according to four properties of major clinical interest, was in favour of the HM sessions: +0.56 (CI, 0.53–0.58%), P < 0.0001. Resource consumption: 3364 HM sessions performed (76% by nurses), median committed monthly manpower of 55.5 (IQR, 22.0–107.0) min × health personnel/100 patients. Conclusion Home Monitoring was highly effective in detecting and managing clinical events in CIED patients in daily practice with remarkably low manpower and resource consumption. PMID:23362021
Liu, Jingxia; Colditz, Graham A
2018-05-01
There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the "working correlation structure" is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two-group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs-exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Estimating Soil Hydraulic Parameters using Gradient Based Approach
NASA Astrophysics Data System (ADS)
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano
2006-11-01
In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.
Weltje, Lennart; Janz, Philipp; Sowig, Peter
2017-12-01
This paper presents a model to predict acute dermal toxicity of plant protection products (PPPs) to terrestrial amphibian life stages from (regulatory) fish data. By combining existing concepts, including interspecies correlation estimation (ICE), allometric relations, lethal body burden (LBB) and bioconcentration modelling, an equation was derived that predicts the amphibian median lethal dermal dose (LD 50 ) from standard acute toxicity values (96-h LC 50 ) for fish and bioconcentration factors (BCF) in fish. Where possible, fish BCF values were corrected to 5% lipid, and to parent compound. Then, BCF values were adjusted to an exposure duration of 96 h, in case steady state took longer to be achieved. The derived correlation equation is based on 32 LD 50 values from acute dermal toxicity experiments with 15 different species of anuran amphibians, comprising 15 different PPPs. The developed ICE model can be used in a screening approach to estimate the acute risk to amphibian terrestrial life stages from dermal exposures to PPPs with organic active substances. This has the potential to reduce unnecessary testing of vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manning’s equation and two-dimensional flow analogs
NASA Astrophysics Data System (ADS)
Hromadka, T. V., II; Whitley, R. J.; Jordan, N.; Meyer, T.
2010-07-01
SummaryTwo-dimensional (2D) flow models based on the well-known governing 2D flow equations are applied to floodplain analysis purposes. These 2D models numerically solve the governing flow equations simultaneously or explicitly on a discretization of the floodplain using grid tiles or similar tile cell geometry, called "elements". By use of automated information systems such as digital terrain modeling, digital elevation models, and GIS, large-scale topographic floodplain maps can be readily discretized into thousands of elements that densely cover the floodplain in an edge-to-edge form. However, the assumed principal flow directions of the flow model analog, as applied across an array of elements, typically do not align with the floodplain flow streamlines. This paper examines the mathematical underpinnings of a four-direction flow analog using an array of square elements with respect to floodplain flow streamlines that are not in alignment with the analog's principal flow directions. It is determined that application of Manning's equation to estimate the friction slope terms of the governing flow equations, in directions that are not coincident with the flow streamlines, may introduce a bias in modeling results, in the form of slight underestimation of flow depths. It is also determined that the maximum theoretical bias, occurs when a single square element is rotated by about 13°, and not 45° as would be intuitively thought. The bias as a function of rotation angle for an array of square elements follows approximately the bias for a single square element. For both the theoretical single square element and an array of square elements, the bias as a function of alignment angle follows a relatively constant value from about 5° to about 85°, centered at about 45°. This bias was first noted about a decade prior to the present paper, and the magnitude of this bias was estimated then to be about 20% at about 10° misalignment. An adjustment of Manning's n is investigated based on a considered steady state uniform flow problem, but the magnitude of the adjustment (about 20%) is on the order of the magnitude of the accepted ranges of friction factors. For usual cases where random streamline trajectory variability within the floodplain flow is greater than a few degrees from perfect alignment, the apparent bias appears to be implicitly included in the Manning's n values. It can be concluded that the array of square elements may be applied over the digital terrain model without respect to topographic flow directions.
Ding, A Adam; Wu, Hulin
2014-10-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.
Ding, A. Adam; Wu, Hulin
2015-01-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method. PMID:26401093
Object-based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover
NASA Technical Reports Server (NTRS)
Ransom, Kenneth J.; Montesano, Paul M.; Nelson, Ross F.
2011-01-01
The circumpolar taiga-tundra ecotone was delineated using an image segmentation based mapping approach with multi-annual MODIS Vegetation Continuous Fields (VCF) tree cover data. Circumpolar tree canopy cover (TCC) throughout the ecotone was derived by averaging MODIS VCF data from 2000 - 2005 and adjusting the averaged values using linear equations relating MODIS TCC to Quickbird-derived tree cover estimates. The adjustment helped mitigate VCF's overestimation of tree cover in lightly forested regions. An image segmentation grouped pixels representing similar tree cover into polygonal features (objects) that form the map of the transition zone. Eachfeature represents an area much larger than the 500m MODIS pixel to characterize thepatterns of sparse forest patches on a regional scale. Comparisons of the adjusted average tree cover data were made with (1) two existing tree line definitions aggregated for each 1deg longitudinal interval in North America and Eurasia and (2) Landsat-derived Canadianproportion of forest cover for Canada. The adjusted TCC from MODIS VCF shows, on average, greater than 12% TCC for all but one regional zone at the intersection with independently delineated tree lines. Adjusted values track closely with Canadian proportion of forest cover data in areas of low tree cover. Those polygons near the boreal/tundra interface with either (1) mean adjusted TCC values between 5-20% , or (2) mean adjusted TCC values <5% but with a standard deviation > 5% were used to identify the ecotone.
A method for estimating mean and low flows of streams in national forests of Montana
Parrett, Charles; Hull, J.A.
1985-01-01
Equations were developed for estimating mean annual discharge, 80-percent exceedance discharge, and 95-percent exceedance discharge for streams on national forest lands in Montana. The equations for mean annual discharge used active-channel width, drainage area and mean annual precipitation as independent variables, with active-channel width being most significant. The equations for 80-percent exceedance discharge and 95-percent exceedance discharge used only active-channel width as an independent variable. The standard error or estimate for the best equation for estimating mean annual discharge was 27 percent. The standard errors of estimate for the equations were 67 percent for estimating 80-percent exceedance discharge and 75 percent for estimating 95-percent exceedance discharge. (USGS)
David C. Chojnacky; Jennifer C. Jenkins; Amanda K. Holland
2009-01-01
Thousands of published equations purport to estimate biomass of individual trees. These equations are often based on very small samples, however, and can provide widely different estimates for trees of the same species. We addressed this issue in a previous study by devising 10 new equations that estimated total aboveground biomass for all species in North America (...
Christ, Sharon L; Lee, David J; Lam, Byron L; Zheng, D Diane; Arheart, Kristopher L
2008-08-01
To estimate the direct effects of self-reported visual impairment (VI) on health, disability, and mortality and to estimate the indirect effects of VI on mortality through health and disability mediators. The National Health Interview Survey (NHIS) is a population-based annual survey designed to be representative of the U.S. civilian noninstitutionalized population. The National Death Index of 135,581 NHIS adult participants, 18 years of age and older, from 1986 to 1996 provided the mortality linkage through 2002. A generalized linear structural equation model (GSEM) with latent variable was used to estimate the results of a system of equations with various outcomes. Standard errors and test statistics were corrected for weighting, clustering, and stratification. VI affects mortality, when direct adjustment was made for the covariates. Severe VI increases the hazard rate by a factor of 1.28 (95% CI: 1.07-1.53) compared with no VI, and some VI increases the hazard by a factor of 1.13 (95% CI: 1.07-1.20). VI also affects mortality indirectly through self-rated health and disability. The total effects (direct effects plus mediated effects) on the hazard of mortality of severe VI and some VI relative to no VI are hazard ratio (HR) 1.54 (95% CI: 1.28-1.86) and HR 1.23 (95% CI: 1.16-1.31), respectively. In addition to the direct link between VI and mortality, the effects of VI on general health and disability contribute to an increased risk of death. Ignoring the latter may lead to an underestimation of the substantive impact of VI on mortality.
Sun, Yanqing; Sun, Liuquan; Zhou, Jie
2013-07-01
This paper studies the generalized semiparametric regression model for longitudinal data where the covariate effects are constant for some and time-varying for others. Different link functions can be used to allow more flexible modelling of longitudinal data. The nonparametric components of the model are estimated using a local linear estimating equation and the parametric components are estimated through a profile estimating function. The method automatically adjusts for heterogeneity of sampling times, allowing the sampling strategy to depend on the past sampling history as well as possibly time-dependent covariates without specifically model such dependence. A [Formula: see text]-fold cross-validation bandwidth selection is proposed as a working tool for locating an appropriate bandwidth. A criteria for selecting the link function is proposed to provide better fit of the data. Large sample properties of the proposed estimators are investigated. Large sample pointwise and simultaneous confidence intervals for the regression coefficients are constructed. Formal hypothesis testing procedures are proposed to check for the covariate effects and whether the effects are time-varying. A simulation study is conducted to examine the finite sample performances of the proposed estimation and hypothesis testing procedures. The methods are illustrated with a data example.
Caris, Luis; Anthony, Christopher B; Ríos-Bedoya, Carlos F; Anthony, James C
2009-09-01
In this study we estimate suspected links between youthful behavioral problems and smoking of tobacco, cannabis, and coca paste. In the Republic of Chile, school-attending youths were sampled from all 13 regions of the country, with sample size of 46,907 youths from 8th to 12th grades. A Generalized Estimating Equations (GEE) approach to multiple logistic regression was used to address three interdependent response variables, tobacco smoking, cannabis smoking, and coca paste smoking, and to estimate associations. Drug-specific adjusted slope estimates indicate that youths at the highest levels of behavioral problems are an estimated 1.1 times more likely to have started smoking tobacco, an estimated 1.6 times more likely to have started cannabis smoking, and an estimated 2.0 times more likely to have started coca paste smoking, as compared to youths at the lowest level of behavioral problems (p<0.001). In Chile, there is an association linking behavioral problems with onsets of smoking tobacco and cannabis, as well as coca paste; strength of association is modestly greater for coca paste smoking.
2013-01-01
Background Indirect herd effect from vaccination of children offers potential for improving the effectiveness of influenza prevention in the remaining unvaccinated population. Static models used in cost-effectiveness analyses cannot dynamically capture herd effects. The objective of this study was to develop a methodology to allow herd effect associated with vaccinating children against seasonal influenza to be incorporated into static models evaluating the cost-effectiveness of influenza vaccination. Methods Two previously published linear equations for approximation of herd effects in general were compared with the results of a structured literature review undertaken using PubMed searches to identify data on herd effects specific to influenza vaccination. A linear function was fitted to point estimates from the literature using the sum of squared residuals. Results The literature review identified 21 publications on 20 studies for inclusion. Six studies provided data on a mathematical relationship between effective vaccine coverage in subgroups and reduction of influenza infection in a larger unvaccinated population. These supported a linear relationship when effective vaccine coverage in a subgroup population was between 20% and 80%. Three studies evaluating herd effect at a community level, specifically induced by vaccinating children, provided point estimates for fitting linear equations. The fitted linear equation for herd protection in the target population for vaccination (children) was slightly less conservative than a previously published equation for herd effects in general. The fitted linear equation for herd protection in the non-target population was considerably less conservative than the previously published equation. Conclusions This method of approximating herd effect requires simple adjustments to the annual baseline risk of influenza in static models: (1) for the age group targeted by the childhood vaccination strategy (i.e. children); and (2) for other age groups not targeted (e.g. adults and/or elderly). Two approximations provide a linear relationship between effective coverage and reduction in the risk of infection. The first is a conservative approximation, recommended as a base-case for cost-effectiveness evaluations. The second, fitted to data extracted from a structured literature review, provides a less conservative estimate of herd effect, recommended for sensitivity analyses. PMID:23339290
The ITSG-Grace2014 Gravity Field Model
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate
2015-04-01
The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.
Design and Optimization of the SPOT Primary Mirror Segment
NASA Technical Reports Server (NTRS)
Budinoff, Jason G.; Michaels, Gregory J.
2005-01-01
The 3m Spherical Primary Optical Telescope (SPOT) will utilize a single ring of 0.86111 point-to-point hexagonal mirror segments. The f2.85 spherical mirror blanks will be fabricated by the same replication process used for mass-produced commercial telescope mirrors. Diffraction-limited phasing will require segment-to-segment radius of curvature (ROC) variation of approx.1 micron. Low-cost, replicated segment ROC variations are estimated to be almost 1 mm, necessitating a method for segment ROC adjustment & matching. A mechanical architecture has been designed that allows segment ROC to be adjusted up to 400 microns while introducing a minimum figure error, allowing segment-to-segment ROC matching. A key feature of the architecture is the unique back profile of the mirror segments. The back profile of the mirror was developed with shape optimization in MSC.Nastran(TradeMark) using optical performance response equations written with SigFit. A candidate back profile was generated which minimized ROC-adjustment-induced surface error while meeting the constraints imposed by the fabrication method. Keywords: optimization, radius of curvature, Pyrex spherical mirror, Sigfit
EVALUATION OF A NEW MEAN SCALED AND MOMENT ADJUSTED TEST STATISTIC FOR SEM.
Tong, Xiaoxiao; Bentler, Peter M
2013-01-01
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and two well-known robust test statistics. A modification to the Satorra-Bentler scaled statistic is developed for the condition that sample size is smaller than degrees of freedom. The behavior of the four test statistics is evaluated with a Monte Carlo confirmatory factor analysis study that varies seven sample sizes and three distributional conditions obtained using Headrick's fifth-order transformation to nonnormality. The new statistic performs badly in most conditions except under the normal distribution. The goodness-of-fit χ(2) test based on maximum-likelihood estimation performed well under normal distributions as well as under a condition of asymptotic robustness. The Satorra-Bentler scaled test statistic performed best overall, while the mean scaled and variance adjusted test statistic outperformed the others at small and moderate sample sizes under certain distributional conditions.
Quasi-Newton methods for parameter estimation in functional differential equations
NASA Technical Reports Server (NTRS)
Brewer, Dennis W.
1988-01-01
A state-space approach to parameter estimation in linear functional differential equations is developed using the theory of linear evolution equations. A locally convergent quasi-Newton type algorithm is applied to distributed systems with particular emphasis on parameters that induce unbounded perturbations of the state. The algorithm is computationally implemented on several functional differential equations, including coefficient and delay estimation in linear delay-differential equations.
Mohr, Nicholas M; Harland, Karisa K; Shane, Dan M; Ahmed, Azeemuddin; Fuller, Brian M; Torner, James C
2016-12-01
The objective of this study was to evaluate the impact of regionalization on sepsis survival, to describe the role of inter-hospital transfer in rural sepsis care, and to measure the cost of inter-hospital transfer in a predominantly rural state. Observational case-control study using statewide administrative claims data from 2005 to 2014 in a predominantly rural Midwestern state. Mortality and marginal costs were estimated with multivariable generalized estimating equations models and with instrumental variables models. A total of 18 246 patients were included, of which 59% were transferred between hospitals. Transferred patients had higher mortality and longer hospital length-of-stay than non-transferred patients. Using a multivariable generalized estimating equations (GEE) model to adjust for potentially confounding factors, inter-hospital transfer was associated with increased mortality (aOR 1.7, 95% CI 1.5-1.9). Using an instrumental variables model, transfer was associated with a 9.2% increased risk of death. Transfer was associated with additional costs of $6897 (95% CI $5769-8024). Even when limiting to only those patients who received care in the largest hospitals, transfer was still associated with $5167 (95% CI $3696-6638) in additional cost. The majority of rural sepsis patients are transferred, and these transferred patients have higher mortality and significantly increased cost of care. Copyright © 2016 Elsevier Inc. All rights reserved.
Williams-Sether, Tara; Gross, Tara A.
2016-02-09
Seasonal mean daily flow data from 119 U.S. Geological Survey streamflow-gaging stations in North Dakota; the surrounding states of Montana, Minnesota, and South Dakota; and the Canadian provinces of Manitoba and Saskatchewan with 10 or more years of unregulated flow record were used to develop regression equations for flow duration, n-day high flow and n-day low flow using ordinary least-squares and Tobit regression techniques. Regression equations were developed for seasonal flow durations at the 10th, 25th, 50th, 75th, and 90th percent exceedances; the 1-, 7-, and 30-day seasonal mean high flows for the 10-, 25-, and 50-year recurrence intervals; and the 1-, 7-, and 30-day seasonal mean low flows for the 2-, 5-, and 10-year recurrence intervals. Basin and climatic characteristics determined to be significant explanatory variables in one or more regression equations included drainage area, percentage of basin drainage area that drains to isolated lakes and ponds, ruggedness number, stream length, basin compactness ratio, minimum basin elevation, precipitation, slope ratio, stream slope, and soil permeability. The adjusted coefficient of determination for the n-day high-flow regression equations ranged from 55.87 to 94.53 percent. The Chi2 values for the duration regression equations ranged from 13.49 to 117.94, whereas the Chi2 values for the n-day low-flow regression equations ranged from 4.20 to 49.68.
Comparison of skeletal muscle mass to fat-free mass ratios among different ethnic groups.
Abe, T; Bemben, M G; Kondo, M; Kawakami, Y; Fukunaga, T
2012-01-01
Asians seem to have less skeletal muscle mass (SMM) than other ethnic groups, but it is not clear whether relative SMM, i.e., SMM / height square or SMM to fat-free mass (FFM) ratio, differs among different ethnic groups at the same level of body mass index (BMI). To compare the SMM to fat-free mass (FFM) ratio as well as anthropometric variables and body composition among 3 ethnic groups. Three hundred thirty-nine Japanese, 343 Brazilian, and 183 German men and women were recruited for this cross-sectional study. Muscle thickness (MTH) and subcutaneous fat thickness (FTH) were measured by ultrasound at nine sites on the anterior and posterior aspects of the body. FTH was used to estimate the body density, from which fat mass and fat-free mass (FFM) was calculated by using Brozek equation. Total SMM was estimated from ultrasound-derived prediction equations. Percentage body fat was similar among the ethnic groups in men, while Brazilians were higher than Japanese in women. In German men and women, absolute SMM and FFM were higher than in their Japanese and Brazilians counterparts. SMM index and SMM:FFM ratios were similar among the ethnic groups in women, excluding SMM:FFM ratio in Brazilian. In men, however, these relative values (SMM index and SMM:FFM ratio) were still higher in Germans. After adjusting for age and BMI, the SMM index and SMM:FFM ratios were lower in Brazilian men and women compared with the other two ethnic groups, while the SMM index and SMM:FFM ratios were similar in Japanese and German men and women, excluding SMM:FFM ratio in women. Our results suggest that relative SMM is not lower in Asian populations compared with European populations after adjusted by age and BMI.
Zheng, D Diane; Christ, Sharon L; Lam, Byron L; Arheart, Kristopher L; Galor, Anat; Lee, David J
2012-05-14
Mechanisms by which visual impairment (VI) increases mortality risk are poorly understood. We estimated the direct and indirect effects of self-rated VI on risk of mortality through mental well-being and preventive care practice mechanisms. Using complete data from 12,987 adult participants of the 2000 Medical Expenditure Panel Survey with mortality linkage through 2006, we undertook structural equation modeling using two latent variables representing mental well-being and poor preventive care to examine multiple effect pathways of self-rated VI on all-cause mortality. Generalized linear structural equation modeling was used to simultaneously estimate pathways including the latent variables and Cox regression model, with adjustment for controls and the complex sample survey design. VI increased the risk of mortality directly after adjusting for mental well-being and other covariates (hazard ratio [HR] = 1.25 [95% confidence interval: 1.01, 1.55]). Poor preventive care practices were unrelated to VI and to mortality. Mental well-being decreased mortality risk (HR = 0.68 [0.64, 0.74], P < 0.001). VI adversely affected mental well-being (β = -0.54 [-0.65, -0.43]; P < 0.001). VI also increased mortality risk indirectly through mental well-being (HR = 1.23 [1.16, 1.30]). The total effect of VI on mortality including its influence through mental well-being was HR 1.53 [1.24, 1.90]. Similar but slightly stronger patterns of association were found when examining cardiovascular disease-related mortality, but not cancer-related mortality. VI increases the risk of mortality directly and indirectly through its adverse impact on mental well-being. Prevention of disabling ocular conditions remains a public health priority along with more aggressive diagnosis and treatment of depression and other mental health conditions in those living with VI.
Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts
Zarriello, Phillip J.; Carlson, Carl S.
2009-01-01
A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.
Stable Algorithm For Estimating Airdata From Flush Surface Pressure Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen, A. (Inventor); Cobleigh, Brent R. (Inventor); Haering, Edward A., Jr. (Inventor)
2001-01-01
An airdata estimation and evaluation system and method, including a stable algorithm for estimating airdata from nonintrusive surface pressure measurements. The airdata estimation and evaluation system is preferably implemented in a flush airdata sensing (FADS) system. The system and method of the present invention take a flow model equation and transform it into a triples formulation equation. The triples formulation equation eliminates the pressure related states from the flow model equation by strategically taking the differences of three surface pressures, known as triples. This triples formulation equation is then used to accurately estimate and compute vital airdata from nonintrusive surface pressure measurements.
Ryu, Seungho; Chang, Yoosoo; Zhang, Yiyi; Woo, Hee-Yeon; Kwon, Min-Jung; Park, Hyosoon; Lee, Kyu-Beck; Son, Hee Jung; Cho, Juhee; Guallar, Eliseo
2014-01-01
Background The association between serum bilirubin levels and incident chronic kidney disease (CKD) in the general population is unknown. We aimed to examine the association between serum bilirubin concentration (total, direct, and indirect) and the risk of incident CKD. Methods and Findings Longitudinal cohort study of 12,823 Korean male workers 30 to 59 years old without CKD or proteinuria at baseline participating in medical health checkup program in a large worksite. Study participants were followed for incident CKD from 2002 through 2011. Estimated glomerular filtration rate (eGFR) was estimated by using the CKD-EPI equation. CKD was defined as eGFR <60 mL/min per 1.73 m2. Parametric Cox models and pooled logistic regression models were used to estimate adjusted hazard ratios for incident CKD. We observed 238 incident cases of CKD during 70,515.8 person-years of follow-up. In age-adjusted models, the hazard ratios for CKD comparing quartiles 2–4 vs. quartile 1 of serum direct bilirubin were 0.93 (95% CI 0.67–1.28), 0.88 (0.60–1.27) and 0.60 (0.42–0.88), respectively. In multivariable models, the adjusted hazard ratio for CKD comparing the highest to the lowest quartile of serum direct bilirubin levels was 0.60 (95% CI 0.41–0.87; P trend = 0.01). Neither serum total nor indirect bilirubin levels were significantly associated with the incidence of CKD. Conclusions Higher serum direct bilirubin levels were significantly associated with a lower risk of developing CKD, even adjusting for a variety of cardiometabolic parameters. Further research is needed to elucidate the mechanisms underlying this association and to establish the role of serum direct bilirubin as a marker for CKD risk. PMID:24586219
Spithoven, Edwin M; Meijer, Esther; Boertien, Wendy E; Sinkeler, Steef J; Tent, Hilde; de Jong, Paul E; Navis, Gerjan; Gansevoort, Ron T
2013-09-01
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal tubular cell proliferation and dedifferentiation, which may influence tubular secretion of creatinine (CCr[TS]). Diagnostic test study. We therefore investigated CCr(TS) in patients with ADPKD and controls and studied consequences for the performance of glomerular filtration rate (GFR) estimating equations. In patients with ADPKD and healthy controls, we measured GFR as (125)I-iothalamate clearance while simultaneously determining creatinine clearance. 24-hour urinary albumin excretion. In 121 patients with ADPKD (56% men; mean age, 40 ± 11 [SD] years) and 215 controls (48% men; mean age, 53 ± 10 years), measured GFR (mGFR) was 78 ± 30 and 98 ± 17 mL/min/1.73 m(2), respectively, and CCr(TS) was 15.9 ± 10.8 and 10.9 ± 10.6 mL/min/1.73 m(2), respectively (P < 0.001). The higher CCr(TS) in patients with ADPKD remained significant after adjustment for covariates and appeared to be dependent on mGFR. Correlation and accuracy between mGFR and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) estimated GFR (eGFR) were 0.95 and 99%, respectively; between mGFR and MDRD (Modification of Diet in Renal Disease) Study eGFR, they were 0.93 and 97%, respectively. Values for bias, precision, and accuracy were similar or slightly better than in controls. In addition, change in mGFR during 3 years of follow-up in 45 patients with ADPKD correlated well with change in eGFR. Cross-sectional, single center. CCr(TS) in patients with ADPKD is higher than that in controls, but this effect is limited and observed at only high-normal mGFR. Consequently, the CKD-EPI and MDRD Study equations perform relatively well in estimating GFR and change in GFR in patients with ADPKD. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Waltemeyer, Scott D.
2006-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.
Comparison of methods for estimating carbon dioxide storage by Sacramento's urban forest
Elena Aguaron; E. Gregory McPherson
2012-01-01
Limited open-grown urban tree species biomass equations have necessitated use of forest-derived equations with diverse conclusions on the accuracy of these equations to estimate urban biomass and carbon storage. Our goal was to determine and explain variability among estimates of CO2 storage from four sets of allometric equations for the same...
Piñero, David P; Camps, Vicente J; Caravaca-Arens, Esteban; de Fez, Dolores; Blanes-Mompó, Francisco J
2017-01-01
To analyze the errors associated to corneal power calculation using the keratometric approach in keratoconus eyes after accelerated corneal collagen crosslinking (CXL) surgery and to obtain a model for the estimation of an adjusted corneal refractive index ( n k adj ) minimizing such errors. Potential differences (Δ P c ) among keratometric ( P k ) and Gaussian corneal power ( P c Gauss ) were simulated. Three algorithms based on the use of n k adj for the estimation of an adjusted keratometric corneal power ( P k adj ) were developed. The agreement between P k (1.3375) (keratometric power using the keratometric index of 1.3375), P c Gauss , and P k adj was evaluated. The validity of the algorithm developed was investigated in 21 keratoconus eyes undergoing accelerated CXL. P k (1.3375) overestimated corneal power between 0.3 and 3.2 D in theoretical simulations and between 0.8 and 2.9 D in the clinical study (Δ P c ). Three linear equations were defined for n k adj to be used for different ranges of r 1c . In the clinical study, differences between P k adj and P c Gauss did not exceed ±0.8 D n k = 1.3375. No statistically significant differences were found between P k adj and P c Gauss ( p > 0.05) and P k (1.3375) and P k adj ( p < 0.001). The use of the keratometric approach in keratoconus eyes after accelerated CXL can lead to significant clinical errors. These errors can be minimized with an adjusted keratometric approach.
Weiser, Sheri D; Palar, Kartika; Frongillo, Edward A; Tsai, Alexander C; Kumbakumba, Elias; Depee, Saskia; Hunt, Peter W; Ragland, Kathleen; Martin, Jeffrey; Bangsberg, David R
2014-01-02
Food insecurity is a potentially important barrier to the success of antiretroviral therapy (ART) programs in resource-limited settings. We undertook a longitudinal study in rural Uganda to estimate the associations between food insecurity and HIV treatment outcomes. Longitudinal cohort study. Participants were from the Uganda AIDS Rural Treatment Outcomes study and were followed quarterly for blood draws and structured interviews. We measured food insecurity with the validated Household Food Insecurity Access Scale. Our primary outcomes were: ART nonadherence (adherence <90%) measured by visual analog scale; incomplete viral load suppression (>400 copies/ml); and low CD4 T-cell count (<350 cells/μl). We used generalized estimating equations to estimate the associations, adjusting for socio-demographic and clinical variables. We followed 438 participants for a median of 33 months; 78.5% were food insecure at baseline. In adjusted analyses, food insecurity was associated with higher odds of ART nonadherence [adjusted odds ratio (AOR) 1.56, 95% confidence interval (CI) 1.10-2.20, P < 0.05], incomplete viral suppression (AOR 1.52, 95% CI 1.18-1.96, P < 0.01), and CD4 T-cell count less than 350 (AOR 1.47, 95% CI 1.24-1.74, P < 0.01). Adding adherence as a covariate to the latter two models removed the association between food insecurity and viral suppression, but not between food insecurity and CD4 T-cell count. Food insecurity is longitudinally associated with poor HIV outcomes in rural Uganda. Intervention research is needed to determine the extent to which improved food security is causally related to improved HIV outcomes and to identify the most effective policies and programs to improve food security and health.
Recirculation of the Canary Current in fall 2014
NASA Astrophysics Data System (ADS)
Hernández-Guerra, Alonso; Espino-Falcón, Elisabet; Vélez-Belchí, Pedro; Dolores Pérez-Hernández, M.; Martínez-Marrero, Antonio; Cana, Luis
2017-10-01
Hydrographic measurements together with Ship mounted Acoustic Doppler Current Profilers and Lowered Acoustic Doppler Current Profilers (LADCP) obtained in October 2014 are used to describe water masses, geostrophic circulation and mass transport of the Canary Current System, as the Eastern Boundary of the North Atlantic Subtropical Gyre. Geostrophic velocities are adjusted to velocities from LADCP data to estimate an initial velocity at the reference layer. The adjustment results in a northward circulation at the thermocline layers over the African slope from an initial convergent flow. Final reference velocities and consequently absolute circulation are estimated from an inverse box model applied to an ocean divided into 13 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport is estimated from the wind data derived from the Weather Research and Forecasting model. Ekman transport is added to the first layer and adjusted with the inverse model. The Canary Current located west of Lanzarote Island transports to the south a mass of - 1.5 ± 0.7 Sv (1 Sv = 106 m3 s- 1 ≈ 109 kg s- 1) of North Atlantic Central Water at the surface and thermocline layers ( 0-700 m). In fall 2014, hydrographic data shows that the Canary Current in the thermocline (below at about 80 m depth to 700 m) recirculates to the north over the African slope and flows through the Lanzarote Passage. At intermediate layers ( 700-1400 m), the Intermediate Poleward Undercurrent transports northward a relatively fresh Antarctic Intermediate Water in the range of 0.8 ± 0.4 Sv through the Lanzarote Passage and west of Lanzarote Island beneath the recirculation of the Canary Current.
Mindikoglu, Ayse L.; Dowling, Thomas C.; Weir, Matthew R.; Seliger, Stephen L.; Christenson, Robert H.; Magder, Laurence S.
2013-01-01
Conventional creatinine-based glomerular filtration rate (GFR) equations are insufficiently accurate for estimating GFR in cirrhosis. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) recently proposed an equation to estimate GFR in subjects without cirrhosis using both serum creatinine and cystatin C levels. Performance of the new CKD-EPI creatinine-cystatin C equation (2012) was superior to previous creatinine- or cystatin C-based GFR equations. To evaluate the performance of the CKD-EPI creatinine-cystatin C equation in subjects with cirrhosis, we compared it to GFR measured by non-radiolabeled iothalamate plasma clearance (mGFR) in 72 subjects with cirrhosis. We compared the “bias”, “precision” and “accuracy” of the new CKD-EPI creatinine-cystatin C equation to that of 24-hour urinary creatinine clearance (CrCl), Cockcroft-Gault (CG) and previously reported creatinine- and/or cystatin C-based GFR-estimating equations. Accuracy of CKD-EPI creatinine-cystatin C equation as quantified by root mean squared error of difference scores [differences between mGFR and estimated GFR (eGFR) or between mGFR and CrCl, or between mGFR and CG equation for each subject] (RMSE=23.56) was significantly better than that of CrCl (37.69, P=0.001), CG (RMSE=36.12, P=0.002) and GFR-estimating equations based on cystatin C only. Its accuracy as quantified by percentage of eGFRs that differed by greater than 30% with respect to mGFR was significantly better compared to CrCl (P=0.024), CG (P=0.0001), 4-variable MDRD (P=0.027) and CKD-EPI creatinine 2009 (P=0.012) equations. However, for 23.61% of the subjects, GFR estimated by CKD-EPI creatinine-cystatin C equation differed from the mGFR by more than 30%. CONCLUSIONS The diagnostic performance of CKD-EPI creatinine-cystatin C equation (2012) in patients with cirrhosis was superior to conventional equations in clinical practice for estimating GFR. However, its diagnostic performance was substantially worse than reported in subjects without cirrhosis. PMID:23744636
SU-E-I-95: Personalized Radiography Technical Parameters for Each Patient and Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, F; Camozzato, T; Kahl, G
Purpose: To determine exact electrical parameters (kV, mAs) a radiological technologist shall use taking account the exam and patient's structure, with guarantee of minimum dose and adequate quality image. Methods: A patient's absorbed dose equation was developed by means of Entrance Skin Dose (ESD), irradiated area and patient width for specific anatomy. ESD is calculated from a developed equation, where entrance surface air-KERMA and backscatter factor are included, with air-to-skin coefficient conversion. We developed specific Lambert-Beer attenuation equations derived from mass energy-absorption coefficients data for skin, fat, and muscle and bone as one tissue. Anatomy tissue thickness distribution at centralmore » X-ray location in anteroposterior incidence for hand and chest, was estimate by discounting constant skin and bone thickness from patient measured width, assuming the result as muscle and fat. A clinical research at a big hospital were executed when real parameters (kV, mAs, filtration, ripple) used by technologists were combined with the image quality and patient's data: anatomy width, height and weight. A correlation among the best images acquired and electrical parameters used were confronted with patient's data and dose estimation. The best combinations were used as gold standards. Results: For each anatomy, two equations were developed to calculate voltage (kV) and exposure (mAs) to reproduce and interpolate the gold standards. Patient is measured and data are input into equations, giving radiological technologists the right set of electrical parameters for that specific exam. Conclusion: This work indicates that radiological technologist can personalize the exact electrical parameters for each patient exam, instead of using standard values. It also guarantee that patients under or over-sized measures will receive the right dose for the best image. It will stop wrong empiric adjusts technologists do when examining a non-standard patient and reduce probability of radiography retaken because of over or under exposition.« less
Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
NASA Astrophysics Data System (ADS)
Finster, Felix; Smoller, Joel
2010-09-01
A method is presented for obtaining rigorous error estimates for approximate solutions of the Riccati equation, with real or complex potentials. Our main tool is to derive invariant region estimates for complex solutions of the Riccati equation. We explain the general strategy for applying these estimates and illustrate the method in typical examples, where the approximate solutions are obtained by gluing together WKB and Airy solutions of corresponding one-dimensional Schrödinger equations. Our method is motivated by, and has applications to, the analysis of linear wave equations in the geometry of a rotating black hole.
Kork, F; Balzer, F; Krannich, A; Bernardi, M H; Eltzschig, H K; Jankowski, J; Spies, C
2017-03-01
Acute kidney injury (AKI) is diagnosed by a 50% increase in creatinine. For patients without a baseline creatinine measurement, guidelines suggest estimating baseline creatinine by back-calculation. The aim of this study was to evaluate different glomerular filtration rate (GFR) equations and different GFR assumptions for back-calculating baseline creatinine as well as the effect on the diagnosis of AKI. The Modification of Diet in Renal Disease, the Chronic Kidney Disease Epidemiology (CKD-EPI) and the Mayo quadratic (MQ) equation were evaluated to estimate baseline creatinine, each under the assumption of either a fixed GFR of 75 mL min -1 1.73 m -2 or an age-adjusted GFR. Estimated baseline creatinine, diagnoses and severity stages of AKI based on estimated baseline creatinine were compared to measured baseline creatinine and corresponding diagnoses and severity stages of AKI. The data of 34 690 surgical patients were analysed. Estimating baseline creatinine overestimated baseline creatinine. Diagnosing AKI based on estimated baseline creatinine had only substantial agreement with AKI diagnoses based on measured baseline creatinine [Cohen's κ ranging from 0.66 (95% CI 0.65-0.68) to 0.77 (95% CI 0.76-0.79)] and overestimated AKI prevalence with fair sensitivity [ranging from 74.3% (95% CI 72.3-76.2) to 90.1% (95% CI 88.6-92.1)]. Staging AKI severity based on estimated baseline creatinine had moderate agreement with AKI severity based on measured baseline creatinine [Cohen's κ ranging from 0.43 (95% CI 0.42-0.44) to 0.53 (95% CI 0.51-0.55)]. Diagnosing AKI and staging AKI severity on the basis of estimated baseline creatinine in surgical patients is not feasible. Patients at risk for post-operative AKI should have a pre-operative creatinine measurement to adequately assess post-operative AKI. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Estimating dead-space fraction for secondary analyses of ARDS clinical trials
Beitler, Jeremy R.; Thompson, B. Taylor; Matthay, Michael A.; Talmor, Daniel; Liu, Kathleen D.; Zhuo, Hanjing; Hayden, Douglas; Spragg, Roger G.; Malhotra, Atul
2015-01-01
Objective Pulmonary dead-space fraction is one of few lung-specific independent predictors of mortality from acute respiratory distress syndrome (ARDS). However, it is not measured routinely in clinical trials and thus altogether ignored in secondary analyses that shape future research directions and clinical practice. This study sought to validate an estimate of dead-space fraction for use in secondary analyses of clinical trials. Design Analysis of patient-level data pooled from ARDS clinical trials. Four approaches to estimate dead-space fraction were evaluated: three required estimating metabolic rate; one estimated dead-space fraction directly. Setting U.S. academic teaching hospitals. Patients Data from 210 patients across three clinical trials were used to compare performance of estimating equations with measured dead-space fraction. A second cohort of 3,135 patients from six clinical trials without measured dead-space fraction was used to confirm whether estimates independently predicted mortality. Interventions None. Measurements and Main Results Dead-space fraction estimated using the unadjusted Harris-Benedict equation for energy expenditure was unbiased (mean ± SD Harris-Benedict 0.59 ± 0.13; measured 0.60 ± 0.12). This estimate predicted measured dead-space fraction to within ± 0.10 in 70% of patients and ± 0.20 in 95% of patients. Measured dead-space fraction independently predicted mortality (OR 1.36 per 0.05 increase in dead-space fraction, 95% CI 1.10–1.68; p < .01). The Harris-Benedict estimate closely approximated this association with mortality in the same cohort (OR 1.55, 95% CI 1.21–1.98; p < .01) and remained independently predictive of death in the larger ARDSNet cohort. Other estimates predicted measured dead-space fraction or its association with mortality less well. Conclusions Dead-space fraction should be measured in future ARDS clinical trials to facilitate incorporation into secondary analyses. For analyses where dead-space fraction was not measured, the Harris-Benedict estimate can be used to estimate dead-space fraction and adjust for its association with mortality. PMID:25738857
Hospital payroll costs, productivity, and employment under prospective reimbursement.
Kidder, D; Sullivan, D
1982-12-01
This paper reports preliminary findings from the National Hospital Rate-Setting Study regarding the effects of State prospective reimbursement (PR) programs on measures of payroll costs and employment in hospitals. PR effects were estimated through reduced-form equations, using American Hospital Association Annual Survey data on over 2,700 hospitals from 1969 through 1978. These tests suggest that hospitals responded to PR by lowering payroll expenditures. PR also seems to have been associated with reductions in full-time equivalent staff per adjusted inpatient day. However, tests did not confirm the hypothesis that hospitals reduce payroll per full-time equivalent staff as a result of PR.
Hospital Payroll Costs, Productivity, and Employment Under Prospective Reimbursement
Kidder, David; Sullivan, Daniel
1982-01-01
This paper reports preliminary findings from the National Hospital Rate-Setting Study regarding the effects of State prospective reimbursement (PR) programs on measures of payroll costs and employment in hospitals. PR effects were estimated through reduced-form equations, using American Hospital Association Annual Survey data on over 2,700 hospitals from 1969 through 1978. These tests suggest that hospitals responded to PR by lowering payroll expenditures. PR also seems to have been associated with reductions in full-time equivalent staff per adjusted inpatient day. However, tests did not confirm the hypothesis that hospitals reduce payroll per full-time equivalent staff as a result of PR. PMID:10309913
Evaluation of equations that estimate glomerular filtration rate in renal transplant recipients.
De Alencastro, M G; Veronese, F V; Vicari, A R; Gonçalves, L F; Manfro, R C
2014-03-01
The accuracy of equations that estimate the glomerular filtration rate (GFR) in renal transplant patients has not been established; thus their performance was assessed in stable renal transplant patients. Renal transplant patients (N.=213) with stable graft function were enrolled. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation was used as the reference method and compared with the Cockcroft-Gault (CG), Modification of Diet in Renal Disease (MDRD), Mayo Clinic (MC) and Nankivell equations. Bias, accuracy and concordance rates were determined for all equation relative to CKD-EPI. Mean estimated GFR values of the equations differed significantly from the CKD-EPI values, though the correlations with the reference method were significant. Values of MDRD differed from the CG, MC and Nankivell estimations. The best agreement to classify the chronic kidney disease (CKD) stages was for the MDRD (Kappa=0.649, P<0.001), and for the other equations the agreement was moderate. The MDRD had less bias and narrower agreement limits but underestimated the GFR at levels above 60 mL/min/1.73 m2. Conversely, the CG, MC and Nankivell equations overestimated the GFR, and the Nankivell equation had the worst performance. The MDRD equation P15 and P30 values were higher than those of the other equations (P<0.001). Despite their correlations, equations estimated the GFR and CKD stage differently. The MDRD equation was the most accurate, but the sub-optimal performance of all the equations precludes their accurate use in clinical practice.
Fighting With Siblings and With Peers Among Urban High School Students.
Johnson, Renee M; Duncan, Dustin T; Rothman, Emily F; Gilreath, Tamika D; Hemenway, David; Molnar, Beth E; Azrael, Deborah
2015-08-01
Understanding the determinants of fighting is important for prevention efforts. Unfortunately, there is little research on how sibling fighting is related to peer fighting. Therefore, the aim of this study was to evaluate the association between sibling fighting and peer fighting. Data are from the Boston Youth Survey 2008, a school-based sample of youth in Boston, MA. To estimate the association between sibling fighting and peer fighting, we ran four multivariate regression models and estimated adjusted prevalence ratios and 95% confidence intervals. We fit generalized estimating equation models to account for the fact that students were clustered within schools. Controlling for school clustering, race/ethnicity, sex, school failure, substance use, and caregiver aggression, youth who fought with siblings were 2.49 times more likely to have reported fighting with peers. To the extent that we can confirm that sibling violence is associated with aggressive behavior, we should incorporate it into violence prevention programming. © The Author(s) 2014.
Camps, Vicente J; Piñero, David P; Caravaca-Arens, Esteban; de Fez, Dolores; Pérez-Cambrodí, Rafael J; Artola, Alberto
2014-09-01
The aim of this study was to obtain the exact value of the keratometric index (nkexact) and to clinically validate a variable keratometric index (nkadj) that minimizes this error. The nkexact value was determined by obtaining differences (ΔPc) between keratometric corneal power (Pk) and Gaussian corneal power ((Equation is included in full-text article.)) equal to 0. The nkexact was defined as the value associated with an equivalent difference in the magnitude of ΔPc for extreme values of posterior corneal radius (r2c) for each anterior corneal radius value (r1c). This nkadj was considered for the calculation of the adjusted corneal power (Pkadj). Values of r1c ∈ (4.2, 8.5) mm and r2c ∈ (3.1, 8.2) mm were considered. Differences of True Net Power with (Equation is included in full-text article.), Pkadj, and Pk(1.3375) were calculated in a clinical sample of 44 eyes with keratoconus. nkexact ranged from 1.3153 to 1.3396 and nkadj from 1.3190 to 1.3339 depending on the eye model analyzed. All the nkadj values adjusted perfectly to 8 linear algorithms. Differences between Pkadj and (Equation is included in full-text article.)did not exceed ±0.7 D (Diopter). Clinically, nk = 1.3375 was not valid in any case. Pkadj and True Net Power and Pk(1.3375) and Pkadj were statistically different (P < 0.01), whereas no differences were found between (Equation is included in full-text article.)and Pkadj (P > 0.01). The use of a single value of nk for the calculation of the total corneal power in keratoconus has been shown to be imprecise, leading to inaccuracies in the detection and classification of this corneal condition. Furthermore, our study shows the relevance of corneal thickness in corneal power calculations in keratoconus.
Age Assessment in Children: A Novel Cameriere's Stratagem.
Attiguppe, Prabhakar Ramasetty; Yavagal, Chandrashekar; Maganti, Rekhamani; Mythri, P
2016-01-01
Age is one of the essential factors in establishing the identity of a person, especially in children. Age estimation plays an important part in treatment planning, forensic dentistry, legal issues, and paleodemographic research. The present study was an attempt to estimate the chronological age in children of Davangere population by using Cameriere's India specific formula. This was a retrospective observational study to estimate the chronological age in children of Davangere population. A total of 150 panoramic radiographs of patients aged between 6 and 15 years, including both sexes, were selected. Age was calculated by measuring open apices of seven right or left mandibular teeth using Adobe Photoshop software. Statistical analysis was performed to derive a regression equation for estimation of age, which showed that, of the variables X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 , s, N 0 , the variables N 0 and X 4 were statistically noteworthy. Hence, these two variables were used to derive the linear regression formula: Age = 10.522 + 0.712(N 0 ) - 5.040(X 4 ). The model was found to be statistically significant, F(2, 147) = 207.96, p < 0.001, and accounted for approximately 74% of the variance of age (R 2 = 0.739, adjusted R 2 = 0.735). Cameriere's method can be used for age assessment in children for forensic as well as legal contexts and based on these variables a reliable age estimation equation could be proposed specifically for Davangere population. Attiguppe PR, Yavagal C, Maganti R, Mythri P. Age Assessment in Children: A Novel Cameriere's Stratagem. Int J Clin Pediatr Dent 2016;9(4):330-334.
Age Assessment in Children: A Novel Cameriere’s Stratagem
Attiguppe, Prabhakar Ramasetty; Yavagal, Chandrashekar; Mythri, P
2016-01-01
Aim Age is one of the essential factors in establishing the identity of a person, especially in children. Age estimation plays an important part in treatment planning, forensic dentistry, legal issues, and paleodemographic research. The present study was an attempt to estimate the chronological age in children of Davangere population by using Cameriere’s India specific formula. Materials and methods This was a retrospective observational study to estimate the chronological age in children of Davangere population. A total of 150 panoramic radiographs of patients aged between 6 and 15 years, including both sexes, were selected. Age was calculated by measuring open apices of seven right or left mandibular teeth using Adobe Photoshop software. Results Statistical analysis was performed to derive a regression equation for estimation of age, which showed that, of the variables X1, X2, X3, X4, X5, X6, X7, s, N0, the variables N0 and X4 were statistically noteworthy. Hence, these two variables were used to derive the linear regression formula: Age = 10.522 + 0.712(N0) - 5.040(X4). The model was found to be statistically significant, F(2, 147) = 207.96, p < 0.001, and accounted for approximately 74% of the variance of age (R2 = 0.739, adjusted R2 = 0.735). Conclusion Cameriere’s method can be used for age assessment in children for forensic as well as legal contexts and based on these variables a reliable age estimation equation could be proposed specifically for Davangere population. How to cite this article Attiguppe PR, Yavagal C, Maganti R, Mythri P. Age Assessment in Children: A Novel Cameriere’s Stratagem. Int J Clin Pediatr Dent 2016;9(4):330-334. PMID:28127165
Low Ankle Brachial Index and the Development of Rapid Estimated GFR Decline and CKD
Foster, Meredith C.; Ghuman, Nimrta; Hwang, Shih-Jen; Murabito, Joanne M.; Fox, Caroline S.
2012-01-01
Background Low ankle brachial index (ABI) is associated with increases in serum creatinine. Whether low ABI is associated with the development of rapid estimated glomerular filtration rate (eGFR) decline, stage 3 chronic kidney disease (CKD), or microalbuminuria is uncertain. Study Design Prospective cohort study. Setting & Participants Framingham Offspring cohort participants who attended the sixth (1995-98) and eighth (2005-08) exams. Predictor ABI, categorized as normal (>1.1 to <1.4), low-normal (>0.9 to 1.1), and low (≤0.9). Outcomes Rapid eGFR decline (eGFR decline ≥3mL/min/1.73m2 per year), incident stage 3 CKD (eGFR<60mL/min/1.73m2), incident microalbuminuria. Measurements GFR was estimated using the serum creatinine-based CKD-EPI (CKD Epidemiology Collaboration) equation. Urinary albumin-creatinine ratio (UACR) was determined based on spot urine samples. Results Over 9.5 years, 9.0% (232 of 2592) experienced rapid eGFR decline and 11.1% (270 of 2426) developed stage 3 CKD. Compared to a normal ABI, low ABI was associated with a 5.73-fold increased odds of rapid eGFR decline (95% CI, 2.77-11.85; p<0.001) after age, sex, and baseline eGFR adjustment; this persisted after multivariable adjustment for standard CKD risk factors (OR, 3.60; 95% CI, 1.65-7.87; p=0.001). After adjustment for age, sex, and baseline eGFR, low ABI was associated with a 2.51-fold increased odds of stage 3 CKD (OR, 2.51; 95% CI, 1.16-5.44; p=0.02), although this was attenuated after multivariable adjustment (OR, 1.68; 95% CI, 0.75-3.76; p=0.2). Among 1902 free of baseline microalbuminuria, low ABI was associated with an increased odds of microalbuminuria after adjustment for age, sex, and baseline UACR (OR, 2.81; 95% CI, 1.07-7.37; p=0.04), with attenuation upon further adjustment (OR, 1.88; p=0.1). Limitations Limited number of events with a low ABI. Outcomes based on single serum creatinine and UACR measurements at each exam. Conclusions Low ABI is associated with an increased risk of rapid eGFR decline, suggesting that systemic atherosclerosis predicts decline in kidney function. PMID:22901770
Stable boundary conditions and difference schemes for Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Dutt, P.
1985-01-01
The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.
Pedroza, Claudia; Truong, Van Thi Thanh
2017-11-02
Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios. We conducted a simulation study with few centers (≤30) and 50 or fewer subjects per center, using both a randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error (RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment effects that are almost never observed in studies of medical interventions. All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% CIs. The Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for both study designs. For the analyses of multicenter studies with a binary outcome and few centers, we recommend adjustment for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial GLMM with informative priors.
A method for analyzing clustered interval-censored data based on Cox's model.
Kor, Chew-Teng; Cheng, Kuang-Fu; Chen, Yi-Hau
2013-02-28
Methods for analyzing interval-censored data are well established. Unfortunately, these methods are inappropriate for the studies with correlated data. In this paper, we focus on developing a method for analyzing clustered interval-censored data. Our method is based on Cox's proportional hazard model with piecewise-constant baseline hazard function. The correlation structure of the data can be modeled by using Clayton's copula or independence model with proper adjustment in the covariance estimation. We establish estimating equations for the regression parameters and baseline hazards (and a parameter in copula) simultaneously. Simulation results confirm that the point estimators follow a multivariate normal distribution, and our proposed variance estimations are reliable. In particular, we found that the approach with independence model worked well even when the true correlation model was derived from Clayton's copula. We applied our method to a family-based cohort study of pandemic H1N1 influenza in Taiwan during 2009-2010. Using the proposed method, we investigate the impact of vaccination and family contacts on the incidence of pH1N1 influenza. Copyright © 2012 John Wiley & Sons, Ltd.
Accounting for estimated IQ in neuropsychological test performance with regression-based techniques.
Testa, S Marc; Winicki, Jessica M; Pearlson, Godfrey D; Gordon, Barry; Schretlen, David J
2009-11-01
Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.
Komura, Keisuke; Nakae, Satoshi; Hirakawa, Kazufumi; Ebine, Naoyuki; Suzuki, Kazuhiro; Ozawa, Haruo; Yamada, Yosuke; Kimura, Misaka; Ishii, Kojiro
2017-01-01
To establish Japanese children's estimated energy requirements, total energy expenditure (TEE) data measured using the doubly labeled water (DLW) method is needed. This study aimed to 1) obtain basic TEE data from Japanese children measured using DLW (TEE DLW ), 2) compare TEE DLW with TEE estimated by various estimation formulas to calculate their accuracy, and 3) develop a new equation to estimate TEE using body composition and pedometers. TEE was measured using DLW in 56 10- to 12-year-old Japanese children (33 boys, 23 girls). Physical activity level (PAL) was calculated by dividing TEE DLW by estimated resting energy expenditure. To assess their physical activity, participants wore pedometers during the 7-d DLW period. Total body water was calculated from 2 H and 18 O; fat-free mass (FFM) and fat mass (FM) were then determined. In boys and girls of normal weight, TEE DLW was 2067 ± 230 kcal/d and 1830 ± 262 kcal/d, respectively. Average PAL was 1.58 ± 0.17. FFM was strongly related to TEE ( r = 0.702, p < 0.01). After adjusting for FFM and FM, step count was significantly associated with TEE ( r = 0.707, p < 0.01). The TEE estimation formula used in the Dietary Reference Intakes (DRI) for the United States and Canada estimated TEE DLW with high accuracy (bias: 2.0%) in both sexes. We developed new equations for TEE consisting of FFM and step count, which accounted for 68% and 65% of TEE variance in boys and girls, respectively: boys, 47.1 × FFM (kg) + 0.0568 × step count (steps/d) - 122, and girls, 55.5 × FFM (kg) + 0.0315 × step count (steps/d) - 117. The TEE in 10- to 12-year-old Japanese children measured using DLW was approximately 7% lower for boys and 12% lower for girls compared to the current Japanese DRI. If PAL can be accurately determined, the equation in the DRI for the United States and Canada may be applicable to Japanese children. In addition, TEE could be predicted using FFM and step count.
Cochrane, T T; Cochrane, T A
2016-01-01
To demonstrate that the authors' new "aqueous solution vs pure water" equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of "free" water molecules per unit volume of solution, "Nf," and (c) the "t" factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate Nf was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors' equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. The provisional equations formulated to calculate Nf, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of Nf using recorded relative density data at 20 °C. They were subsequently used to estimate Nf values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors' equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Following work to measure the relative densities of aqueous solutions for the calculation of Nf values and the determination of definitive t values up to and beyond bodily temperatures, the authors' equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.
Improved Conjugate Gradient Bundle Adjustment of Dunhuang Wall Painting Images
NASA Astrophysics Data System (ADS)
Hu, K.; Huang, X.; You, H.
2017-09-01
Bundle adjustment with additional parameters is identified as a critical step for precise orthoimage generation and 3D reconstruction of Dunhuang wall paintings. Due to the introduction of self-calibration parameters and quasi-planar constraints, the structure of coefficient matrix of the reduced normal equation is banded-bordered, making the solving process of bundle adjustment complex. In this paper, Conjugate Gradient Bundle Adjustment (CGBA) method is deduced by calculus of variations. A preconditioning method based on improved incomplete Cholesky factorization is adopt to reduce the condition number of coefficient matrix, as well as to accelerate the iteration rate of CGBA. Both theoretical analysis and experimental results comparison with conventional method indicate that, the proposed method can effectively conquer the ill-conditioned problem of normal equation and improve the calculation efficiency of bundle adjustment with additional parameters considerably, while maintaining the actual accuracy.
Novel Equations for Estimating Lean Body Mass in Patients With Chronic Kidney Disease.
Tian, Xue; Chen, Yuan; Yang, Zhi-Kai; Qu, Zhen; Dong, Jie
2018-05-01
Simplified methods to estimate lean body mass (LBM), an important nutritional measure representing muscle mass and somatic protein, are lacking in nondialyzed patients with chronic kidney disease (CKD). We developed and tested 2 reliable equations for estimation of LBM in daily clinical practice. The development and validation groups both included 150 nondialyzed patients with CKD Stages 3 to 5. Two equations for estimating LBM based on mid-arm muscle circumference (MAMC) or handgrip strength (HGS) were developed and validated in CKD patients with dual-energy x-ray absorptiometry as referenced gold method. We developed and validated 2 equations for estimating LBM based on HGS and MAMC. These equations, which also incorporated sex, height, and weight, were developed and validated in CKD patients. The new equations were found to exhibit only small biases when compared with dual-energy x-ray absorptiometry, with median differences of 0.94 and 0.46 kg observed in the HGS and MAMC equations, respectively. Good precision and accuracy were achieved for both equations, as reflected by small interquartile ranges in the differences and in the percentages of estimates that were 20% of measured LBM. The bias, precision, and accuracy of each equation were found to be similar when it was applied to groups of patients divided by the median measured LBM, the median ratio of extracellular to total body water, and the stages of CKD. LBM estimated from MAMC or HGS were found to provide accurate estimates of LBM in nondialyzed patients with CKD. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Regularity estimates up to the boundary for elliptic systems of difference equations
NASA Technical Reports Server (NTRS)
Strikwerda, J. C.; Wade, B. A.; Bube, K. P.
1986-01-01
Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations.
The applicability of eGFR equations to different populations.
Delanaye, Pierre; Mariat, Christophe
2013-09-01
The Cockcroft-Gault equation for estimating glomerular filtration rate has been learnt by every generation of medical students over the decades. Since the publication of the Modification of Diet in Renal Disease (MDRD) study equation in 1999, however, the supremacy of the Cockcroft-Gault equation has been relentlessly disputed. More recently, the Chronic Kidney Disease Epidemiology (CKD-EPI) consortium has proposed a group of novel equations for estimating glomerular filtration rate (GFR). The MDRD and CKD-EPI equations were developed following a rigorous process, are expressed in a way in which they can be used with standardized biomarkers of GFR (serum creatinine and/or serum cystatin C) and have been evaluated in different populations of patients. Today, the MDRD Study equation and the CKD-EPI equation based on serum creatinine level have supplanted the Cockcroft-Gault equation. In many regards, these equations are superior to the Cockcroft-Gault equation and are now specifically recommended by international guidelines. With their generalized use, however, it has become apparent that those equations are not infallible and that they fail to provide an accurate estimate of GFR in certain situations frequently encountered in clinical practice. After describing the processes that led to the development of the new GFR-estimating equations, this Review discusses the clinical situations in which the applicability of these equations is questioned.
Reynolds, Timothy M; Twomey, Patrick J
2007-01-01
Aims To evaluate the impact of different equations for calculation of estimated glomerular filtration rate (eGFR) on general practitioner (GP) workload. Methods Retrospective evaluation of routine workload data from a district general hospital chemical pathology laboratory serving a GP patient population of approximately 250 000. The most recent serum creatinine result from 80 583 patients was identified and used for the evaluation. eGFR was calculated using one of three different variants of the four‐parameter Modification of Diet in Renal Disease (MDRD) equation. Results The original MDRD equation (eGFR186) and the modified equation with assay‐specific data (eGFR175corrected) both identified similar numbers of patients with stage 4 and stage 5 chronic kidney disease (ChKD), but the modified equation without assay specific data (eGFR175) resulted in a significant increase in stage 4 ChKD. For stage 3 ChKD the eGFR175 identified 28.69% of the population, the eGFR186 identified 21.35% of the population and the eGFR175corrected identified 13.6% of the population. Conclusions Depending on the choice of equation there can be very large changes in the proportions of patients identified with the different stages of ChKD. Given that according to the General Medical Services Quality Framework, all patients with ChKD stages 3–5 should be included on a practice renal registry, and receive relevant drug therapy, this could have significant impacts on practice workload and drug budgets. It is essential that practices work with their local laboratories. PMID:17761741
Urine sodium excretion increased slightly among U.S. adults between 1988 and 2010.
Pfeiffer, Christine M; Hughes, Jeffery P; Cogswell, Mary E; Burt, Vicki L; Lacher, David A; Lavoie, Donna J; Rabinowitz, Daniel J; Johnson, Clifford L; Pirkle, James L
2014-05-01
Little information is available on temporal trends in sodium intake in the U.S. population using urine sodium excretion as a biomarker. Our aim was to assess 1988-2010 trends in estimated 24-h urine sodium (24hUNa) excretion among U.S. adults (age 20-59 y) participating in the cross-sectional NHANES. We used subsamples from a 1988-1994 convenience sample, a 2003-2006 one-third random sample, and a 2010 one-third random sample to comply with resource constraints. We estimated 24hUNa excretion from measured sodium concentrations in spot urine samples by use of calibration equations (for men and women) derived from the International Cooperative Study on Salt, Other Factors, and Blood Pressure study. Estimated 24hUNa excretion increased over the 20-y period [1988-1994, 2003-2006, and 2010; means ± SEMs (n): 3160 ± 38.4 mg/d (1249), 3290 ± 29.4 mg/d (1235), and 3290 ± 44.4 mg/d (525), respectively; P-trend = 0.022]. We observed significantly higher mean estimated 24hUNa excretion in each survey period (P < 0.001) for men compared with women (31-33%) and for persons with a higher body mass index (BMI; 32-35% for obese vs. normal weight) or blood pressure (17-26% for hypertensive vs. normal blood pressure). After adjusting for age, sex, and race-ethnicity, temporal trends in mean estimated 24hUNa excretion remained significant (P-trend = 0.004). We observed no temporal trends in mean estimated 24hUNa excretion among BMI subgroups, nor after adjusting for BMI. Although several limitations apply to this analysis (the use of a convenience sample in 1988-1994 and using estimated 24hUNa excretion as a biomarker of sodium intake), these first NHANES data suggest that mean estimated 24hUNa excretion increased slightly in U.S. adults over the past 2 decades, and this increase may be explained by a shift in the distribution of BMI.
Observed-Score Equating with a Heterogeneous Target Population
ERIC Educational Resources Information Center
Duong, Minh Q.; von Davier, Alina A.
2012-01-01
Test equating is a statistical procedure for adjusting for test form differences in difficulty in a standardized assessment. Equating results are supposed to hold for a specified target population (Kolen & Brennan, 2004; von Davier, Holland, & Thayer, 2004) and to be (relatively) independent of the subpopulations from the target population (see…
Boden, Joseph M; Fergusson, David M; Horwood, L John
2014-09-01
To examine associations between measures of stressful life events exposure and alcohol abuse/dependence (AAD) from ages 18 to 30 using data from a longitudinal birth cohort (n=987 to 1011). Outcome measures included DSM-IV (American Psychiatric Association, 1994) AAD symptoms and AAD, at ages 20-21, 24-25, and 29-30 years. Exposure to a range of stressful life events was measured during the periods 18-21, 21-25, and 25-30 years using items adapted from the social readjustment rating scale (Holmes and Rahe, 1967). Data were analysed using Generalised Estimating Equation models, adjusted for non-observed sources of confounding using conditional fixed effects regression. Further analyses examined: gender×life events exposure interactions, structural equation modelling of possible reciprocal causal pathways linking stressful life events and AAD symptoms, and an alternative conceptualization of the stressful life events measure. After adjustment, those with the highest exposure to stressful life events had rates of AAD symptoms that were 2.24 (p<.0001) times higher, and odds of AAD that were 2.24 times higher(p<.01), than those at the lowest level of exposure. Associations between life events exposure and AAD symptoms were stronger for females than for males (p<.05), with results consistent using a count measure of stressful life events. Structural equation modelling showed that the best-fitting model was one in which life events influenced AAD symptoms. The results suggest that there were persistent linkages between stressful life events and AAD, providing support for a stress-reduction model of alcohol consumption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Application of perturbation theory to lattice calculations based on method of cyclic characteristics
NASA Astrophysics Data System (ADS)
Assawaroongruengchot, Monchai
Perturbation theory is a technique used for the estimation of changes in performance functionals, such as linear reaction rate ratio and eigenvalue affected by small variations in reactor core compositions. Here the algorithm of perturbation theory is developed for the multigroup integral neutron transport problems in 2D fuel assemblies with isotropic scattering. The integral transport equation is used in the perturbative formulation because it represents the interconnecting neutronic systems of the lattice assemblies via the tracking lines. When the integral neutron transport equation is used in the formulation, one needs to solve the resulting integral transport equations for the flux importance and generalized flux importance functions. The relationship between the generalized flux importance and generalized source importance functions is defined in order to transform the generalized flux importance transport equations into the integro-differential equations for the generalized adjoints. Next we develop the adjoint and generalized adjoint transport solution algorithms based on the method of cyclic characteristics (MOCC) in DRAGON code. In the MOCC method, the adjoint characteristics equations associated with a cyclic tracking line are formulated in such a way that a closed form for the adjoint angular function can be obtained. The MOCC method then requires only one cycle of scanning over the cyclic tracking lines in each spatial iteration. We also show that the source importance function by CP method is mathematically equivalent to the adjoint function by MOCC method. In order to speed up the MOCC solution algorithm, a group-reduction and group-splitting techniques based on the structure of the adjoint scattering matrix are implemented. A combined forward flux/adjoint function iteration scheme, based on the group-splitting technique and the common use of a large number of variables storing tracking-line data and exponential values, is proposed to reduce the computing time when both direct and adjoint solutions are required. A problem that arises for the generalized adjoint problem is that the direct use of the negative external generalized adjoint sources in the adjoint solution algorithm results in negative generalized adjoint functions. A coupled flux biasing/decontamination scheme is applied to make the generalized adjoint functions positive using the adjoint functions in such a way that it can be used for the multigroup rebalance technique. Next we consider the application of the perturbation theory to the reactor problems. Since the coolant void reactivity (CVR) is a important factor in reactor safety analysis, we have decided to select this parameter for optimization studies. We consider the optimization and adjoint sensitivity techniques for the adjustments of CVR at beginning of burnup cycle (BOC) and k eff at end of burnup cycle (EOC) for a 2D Advanced CANDU Reactor (ACR) lattice. The sensitivity coefficients are evaluated using the perturbation theory based on the integral transport equations. Three sets of parameters for CVR-BOC and keff-EOC adjustments are studied: (1) Dysprosium density in the central pin with Uranium enrichment in the outer fuel rings, (2) Dysprosium density and Uranium enrichment both in the central pin, and (3) the same parameters as in the first case but the objective is to obtain a negative checkerboard CVR at beginning of cycle (CBCVR-BOC). To approximate the sensitivity coefficient at EOC, we perform constant-power burnup/depletion calculations for 600 full power days (FPD) using a slightly perturbed nuclear library and the unperturbed neutron fluxes to estimate the variation of nuclide densities at EOC. Sensitivity analyses of CVR and eigenvalue are included in the study. In addition the optimization and adjoint sensitivity techniques are applied to the CBCVR-BOC and keff-EOC adjustment of the ACR lattices with Gadolinium in the central pin. Finally we apply these techniques to the CVR-BOC, CVR-EOC and keff-EOC adjustment of a CANDU lattice of which the burnup period is extended from 300 to 450 FPDs. The cases with the central pin containing either Dysprosium or Gadolinium in the natural Uranium are considered in our study. (Abstract shortened by UMI.)
Do group-specific equations provide the best estimates of stature?
Albanese, John; Osley, Stephanie E; Tuck, Andrew
2016-04-01
An estimate of stature can be used by a forensic anthropologist with the preliminary identification of an unknown individual when human skeletal remains are recovered. Fordisc is a computer application that can be used to estimate stature; like many other methods it requires the user to assign an unknown individual to a specific group defined by sex, race/ancestry, and century of birth before an equation is applied. The assumption is that a group-specific equation controls for group differences and should provide the best results most often. In this paper we assess the utility and benefits of using group-specific equations to estimate stature using Fordisc. Using the maximum length of the humerus and the maximum length of the femur from individuals with documented stature, we address the question: Do sex-, race/ancestry- and century-specific stature equations provide the best results when estimating stature? The data for our sample of 19th Century White males (n=28) were entered into Fordisc and stature was estimated using 22 different equation options for a total of 616 trials: 19th and 20th Century Black males, 19th and 20th Century Black females, 19th and 20th Century White females, 19th and 20th Century White males, 19th and 20th Century any, and 20th Century Hispanic males. The equations were assessed for utility in any one case (how many times the estimated range bracketed the documented stature) and in aggregate using 1-way ANOVA and other approaches. This group-specific equation that should have provided the best results was outperformed by several other equations for both the femur and humerus. These results suggest that group-specific equations do not provide better results for estimating stature while at the same time are more difficult to apply because an unknown must be allocated to a given group before stature can be estimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Block, H C; Klopfenstein, T J; Erickson, G E
2006-04-01
Two data sets were developed to evaluate and refine feed energy predictions with the beef National Research Council (NRC, 1996) model level 1. The first data set included pen means of group-fed cattle from 31 growing trials (201 observations) and 17 finishing trials (154 observations) representing over 7,700 animals fed outside in dirt lots. The second data set consisted of 15 studies with individually fed cattle (916 observations) fed in a barn. In each data set, actual ADG was compared with ADG predicted with the NRC model level 1, assuming thermoneutral environmental conditions. Next, the observed ADG (kg), TDN intake (kg/d), and TDN concentration (kg/kg of DM) were used to develop equations to adjust the level 1 predicted diet NEm and NEg (diet NE adjusters) to be applied to more accurately predict ADG. In both data sets, the NRC (1996) model level 1 inaccurately predicted ADG (P < 0.001 for slope = 1; intercept = 0 when observed ADG was regressed on predicted ADG). The following nonlinear relationships to adjust NE based on observed ADG, TDN intake, and TDN concentration were all significant (P < 0.001): NE adjuster = 0.7011 x 10(-0.8562 x ADG) + 0.8042, R2 = 0.325, s(y.x) = 0.136 kg; NE adjuster = 4.795 10(-0.3689 x TDN intake) + 0.8233, R2 x = 0.714, s(y.x) = 0.157 kg; and NE adjuster = 357 x 10(-5.449 x TDN concentration) + 0.8138, R2 = 0.754, s(y.x) = 0.127 kg. An NE adjuster < 1 indicates overprediction of ADG. The average NE adjustment required for the pen-fed finishing trials was 0.820, whereas the (P < 0.001) adjustment of 0.906 for individually fed cattle indicates that the pen-fed environment increased NE requirements. The use of these equations should improve ADG prediction by the NRC (1996) model level 1, although the equations reflect limitations of the data from which they were developed and are appropriate only over the range of the developmental data set. There is a need for independent evaluation of the ability of the equations to improve ADG prediction by the NRC (1996) model level 1.
Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.
Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T
2018-05-03
Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.
Genetic progress estimation strategy for upright common bean plants using recurrent selection.
Pereira, L A; Abreu, A F B; Júnior, I C Vieira; Pires, L P M; Ramalho, M A P
2017-03-22
Common bean producers in Brazil tend to grow plants as upright as possible. Because the control of this trait involves a large number of genes, recurrent selection (RS) is the best approach for successful plant improvement. Because plant architecture (PA) is evaluated using scores and usually has high heritability, RS for PA is performed through visual selection in generation S 0 . The aim of the present study was to evaluate selection progress and investigate whether this progress varies with the number of selected progenies or the generation evaluated. In addition, the effect of RS for the upright (PA) trait on progeny grain yield (GY) was investigated. Data of progenies S 0:3 and S 0:4 of the fifth, eighth, and twelfth cycles were used. A combined analysis of variance was performed using the adjusted means of the 47 best progenies from each generation and cycle, using two control cultivars as reference. A joint analysis of the two generations used during the evaluation of progenies for the different cycles was also performed. The genetic progress (GP) was estimated by fitting a linear regression equation to the relationship between the adjusted mean of each cycle and the number of cycles. We found that RS was efficient and the estimated GP of the evaluated progenies was 4.5%. Based on the GY heritability estimates, in more advanced generation selection for GY can be successfully performed on progenies. Thus, the selection already done for PA in F 2 could be associated to the most productive progenies.
Marginal Hospital Cost of Surgery-related Hospital-acquired Pressure Ulcers.
Spector, William D; Limcangco, Rhona; Owens, Pamela L; Steiner, Claudia A
2016-09-01
Patients who develop hospital-acquired pressure ulcers (HAPUs) are more likely to die, have longer hospital stays, and are at greater risk of infections. Patients undergoing surgery are prone to developing pressure ulcers (PUs). To estimate the hospital marginal cost of a HAPU for adults patients who were hospitalized for major surgeries, adjusted for patient characteristics, comorbidities, procedures, and hospital characteristics. Data are from the Healthcare Cost and Utilization Project (HCUP) State Inpatient Databases and the Medicare Patient Safety Monitoring System for 2011 and 2012. PU information was obtained using retrospective structured record review from trained MPMS data abstractors. Costs are derived using HCUP hospital-specific cost-to-charge ratios. Marginal cost estimates were made using Extended Estimating Equations. We estimated the marginal cost at the 25th, 50th, and 75th percentiles of the cost distribution using Simultaneous Quantile Regression. We find that 3.5% of major surgical patients developed HAPUs and that the HAPUs added ∼$8200 to the cost of a surgical stay after adjusting for comorbidities, patient characteristics, procedures, and hospital characteristics. This is an ∼44% addition to the cost of a major surgical stay but less than half of the unadjusted cost difference. In addition, we find that for high-cost stays (75th percentile) HAPUs added ∼$12,100, whereas for low-cost stays (25th percentile) HAPUs added ∼$3900. This paper suggests that HAPUs add ∼44% to the cost of major surgical hospital stays, but the amount varies depending on the total cost of the visit.
Rokicki, Slawa; Cohen, Jessica; Fink, Günther; Salomon, Joshua A; Landrum, Mary Beth
2018-01-01
Difference-in-differences (DID) estimation has become increasingly popular as an approach to evaluate the effect of a group-level policy on individual-level outcomes. Several statistical methodologies have been proposed to correct for the within-group correlation of model errors resulting from the clustering of data. Little is known about how well these corrections perform with the often small number of groups observed in health research using longitudinal data. First, we review the most commonly used modeling solutions in DID estimation for panel data, including generalized estimating equations (GEE), permutation tests, clustered standard errors (CSE), wild cluster bootstrapping, and aggregation. Second, we compare the empirical coverage rates and power of these methods using a Monte Carlo simulation study in scenarios in which we vary the degree of error correlation, the group size balance, and the proportion of treated groups. Third, we provide an empirical example using the Survey of Health, Ageing, and Retirement in Europe. When the number of groups is small, CSE are systematically biased downwards in scenarios when data are unbalanced or when there is a low proportion of treated groups. This can result in over-rejection of the null even when data are composed of up to 50 groups. Aggregation, permutation tests, bias-adjusted GEE, and wild cluster bootstrap produce coverage rates close to the nominal rate for almost all scenarios, though GEE may suffer from low power. In DID estimation with a small number of groups, analysis using aggregation, permutation tests, wild cluster bootstrap, or bias-adjusted GEE is recommended.
ERIC Educational Resources Information Center
Choi, Sae Il
2009-01-01
This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…
Novel Equations for Estimating Lean Body Mass in Peritoneal Dialysis Patients
Dong, Jie; Li, Yan-Jun; Xu, Rong; Yang, Zhi-Kai; Zheng, Ying-Dong
2015-01-01
♦ Objectives: To develop and validate equations for estimating lean body mass (LBM) in peritoneal dialysis (PD) patients. ♦ Methods: Two equations for estimating LBM, one based on mid-arm muscle circumference (MAMC) and hand grip strength (HGS), i.e., LBM-M-H, and the other based on HGS, i.e., LBM-H, were developed and validated with LBM obtained by dual-energy X-ray absorptiometry (DEXA). The developed equations were compared to LBM estimated from creatinine kinetics (LBM-CK) and anthropometry (LBM-A) in terms of bias, precision, and accuracy. The prognostic values of LBM estimated from the equations in all-cause mortality risk were assessed. ♦ Results: The developed equations incorporated gender, height, weight, and dialysis duration. Compared to LBM-DEXA, the bias of the developed equations was lower than that of LBM-CK and LBM-A. Additionally, LBM-M-H and LBM-H had better accuracy and precision. The prognostic values of LBM in all-cause mortality risk based on LBM-M-H, LBM-H, LBM-CK, and LBM-A were similar. ♦ Conclusions: Lean body mass estimated by the new equations based on MAMC and HGS was correlated with LBM obtained by DEXA and may serve as practical surrogate markers of LBM in PD patients. PMID:26293839
Novel Equations for Estimating Lean Body Mass in Peritoneal Dialysis Patients.
Dong, Jie; Li, Yan-Jun; Xu, Rong; Yang, Zhi-Kai; Zheng, Ying-Dong
2015-12-01
♦ To develop and validate equations for estimating lean body mass (LBM) in peritoneal dialysis (PD) patients. ♦ Two equations for estimating LBM, one based on mid-arm muscle circumference (MAMC) and hand grip strength (HGS), i.e., LBM-M-H, and the other based on HGS, i.e., LBM-H, were developed and validated with LBM obtained by dual-energy X-ray absorptiometry (DEXA). The developed equations were compared to LBM estimated from creatinine kinetics (LBM-CK) and anthropometry (LBM-A) in terms of bias, precision, and accuracy. The prognostic values of LBM estimated from the equations in all-cause mortality risk were assessed. ♦ The developed equations incorporated gender, height, weight, and dialysis duration. Compared to LBM-DEXA, the bias of the developed equations was lower than that of LBM-CK and LBM-A. Additionally, LBM-M-H and LBM-H had better accuracy and precision. The prognostic values of LBM in all-cause mortality risk based on LBM-M-H, LBM-H, LBM-CK, and LBM-A were similar. ♦ Lean body mass estimated by the new equations based on MAMC and HGS was correlated with LBM obtained by DEXA and may serve as practical surrogate markers of LBM in PD patients. Copyright © 2015 International Society for Peritoneal Dialysis.
Comparison of CKD-EPI and MDRD to estimate baseline renal function in HIV-positive patients.
Ibrahim, Fowzia; Hamzah, Lisa; Jones, Rachael; Nitsch, Dorothea; Sabin, Caroline; Post, Frank A
2012-06-01
Renal dysfunction is common in HIV-positive patients, and guidelines suggest regular monitoring of renal function with estimated glomerular filtration rate (eGFR) and urinalysis. It is unknown whether Chronic Kidney Disease Epidemiological Collaboration (CKD-EPI) or Modification of Diet in Renal Disease (MDRD) provide better estimates of glomerular filtration rate (GFR) in this population. We compared the CKD-EPI and MDRD equations to estimate GFR at baseline in 20,132 HIV-positive individuals in the UK CHIC cohort. Kappa statistics and Bland-Altman plots were used to assess agreement between the two estimates and Kaplan-Meier plots and Cox regression analysis to describe mortality patterns. At baseline, median eGFR was 100 (87, 112) (CKD-EPI) and 94 (83, 108) (MDRD) (mL/min/1.73 m(2)). Good overall agreement between CKD-EPI- and MDRD-defined eGFR bands was observed (Kappa = 0.71, 95% confidence interval: 0.70-0.72). Of the 367 patients with eGFR MDRD 30-59, 57 (15.5%) were categorized as eGFR 60-89 by CKD-EPI. After adjustment for covariates, eGFR <60 (CKD-EPI), eGFR <30 (MDRD) and eGFR ≥105 (both formulae) were significantly associated with an increased risk of death. Mortality in patients classified as having eGFR 60-89 by CKD-EPI and eGFR 30-59 by MDRD more closely resembled mortality of patients who had eGFR 60-89 by both formulae. MDRD and CKD-EPI equations showed a high degree of agreement in stratifying patients by baseline eGFR. CKD-EPI estimates of GFR <60 at baseline are more strongly associated with mortality than MDRD estimates of GFR <60, supporting the concept that MDRD may have overestimated the severity of renal impairment in these patients. Our findings support the use of CKD-EPI in HIV-positive individuals.
Effect of renal impairment on the pharmacokinetics, pharmacodynamics, and safety of apixaban.
Chang, Ming; Yu, Zhigang; Shenker, Andrew; Wang, Jessie; Pursley, Janice; Byon, Wonkyung; Boyd, Rebecca A; LaCreta, Frank; Frost, Charles E
2016-05-01
This open-label study evaluated apixaban pharmacokinetics, pharmacodynamics, and safety in subjects with mild, moderate, or severe renal impairment and in healthy subjects following a single 10-mg oral dose. The primary analysis determined the relationship between apixaban AUC∞ and 24-hour creatinine clearance (CLcr ) as a measure of renal function. The relationships between 24-hour CLcr and iohexol clearance, estimated CLcr (Cockcroft-Gault equation), and estimated glomerular filtration rate (modification of diet in renal disease [MDRD] equation) were also assessed. Secondary objectives included assessment of safety and tolerability as well as international normalized ratio (INR) and anti-factor Xa activity as pharmacodynamic endpoints. The regression analysis showed that decreasing renal function resulted in modestly increased apixaban exposure (AUC∞ increased by 44% in severe impairment with a 24-hour CLcr of 15 mL/min, compared with subjects with normal renal function), but it did not affect Cmax or the direct relationship between apixaban plasma concentration and anti-factor Xa activity or INR. The assessment of renal function measured by iohexol clearance, Cockcroft-Gault, and MDRD was consistent with that determined by 24-hour CLcr . Apixaban was well tolerated in this study. These results suggest that dose adjustment of apixaban is not required on the basis of renal function alone. © 2015, The American College of Clinical Pharmacology.
ONODA, Tomoaki; YAMAMOTO, Ryuta; SAWAMURA, Kyohei; MURASE, Harutaka; NAMBO, Yasuo; INOUE, Yoshinobu; MATSUI, Akira; MIYAKE, Takeshi; HIRAI, Nobuhiro
2014-01-01
ABSTRACT We propose an approach of estimating individual growth curves based on the birthday information of Japanese Thoroughbred horses, with considerations of the seasonal compensatory growth that is a typical characteristic of seasonal breeding animals. The compensatory growth patterns appear during only the winter and spring seasons in the life of growing horses, and the meeting point between winter and spring depends on the birthday of each horse. We previously developed new growth curve equations for Japanese Thoroughbreds adjusting for compensatory growth. Based on the equations, a parameter denoting the birthday information was added for the modeling of the individual growth curves for each horse by shifting the meeting points in the compensatory growth periods. A total of 5,594 and 5,680 body weight and age measurements of Thoroughbred colts and fillies, respectively, and 3,770 withers height and age measurements of both sexes were used in the analyses. The results of predicted error difference and Akaike Information Criterion showed that the individual growth curves using birthday information better fit to the body weight and withers height data than not using them. The individual growth curve for each horse would be a useful tool for the feeding managements of young Japanese Thoroughbreds in compensatory growth periods. PMID:25013356
Mass predictions from the Garvey-Kelson mass relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaenecke, J.; Masson, P.J.
Part A: The transverse Garvey-Kelson mass relation represents a homogeneous third-order partial difference equation. Procedures are described for estimating masses of nuclei with Ngreater than or equal toZ from the most general solution of this difference equation subject to a chi/sup 2/ minimization, using the recent atomic mass adjustment of Wapstra, Audi, and Hoekstra as a boundary condition. A judicious division of the input data in subsets of neutron-rich and proton-rich nuclei had to be introduced to reduce systematic errors in long-range extrapolations. Approximately 5600 mass-excess values for nuclei with 2less than or equal toZless than or equal to103, 4lessmore » than or equal toNless than or equal to157, and Ngreater than or equal toZ (except N = Z odd for A<40) have been calculated. The standard deviation for reproducing the known mass-excess values is sigma/sub m/approx. =103 keV.« less
Neufeld, Howard S; Chappelka, Arthur H; Somers, Greg L; Burkey, Kent O; Davison, Alan W; Finkelstein, Peter L
2006-03-01
The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.
NASA Astrophysics Data System (ADS)
Mahmood, H.; Siddique, M. R. H.; Akhter, M.
2016-08-01
Estimations of biomass, volume and carbon stock are important in the decision making process for the sustainable management of a forest. These estimations can be conducted by using available allometric equations of biomass and volume. Present study aims to: i. develop a compilation with verified allometric equations of biomass, volume, and carbon for trees and shrubs of Bangladesh, ii. find out the gaps and scope for further development of allometric equations for different trees and shrubs of Bangladesh. Key stakeholders (government departments, research organizations, academic institutions, and potential individual researchers) were identified considering their involvement in use and development of allometric equations. A list of documents containing allometric equations was prepared from secondary sources. The documents were collected, examined, and sorted to avoid repetition, yielding 50 documents. These equations were tested through a quality control scheme involving operational verification, conceptual verification, applicability, and statistical credibility. A total of 517 allometric equations for 80 species of trees, shrubs, palm, and bamboo were recorded. In addition, 222 allometric equations for 39 species were validated through the quality control scheme. Among the verified equations, 20%, 12% and 62% of equations were for green-biomass, oven-dried biomass, and volume respectively and 4 tree species contributed 37% of the total verified equations. Five gaps have been pinpointed for the existing allometric equations of Bangladesh: a. little work on allometric equation of common tree and shrub species, b. most of the works were concentrated on certain species, c. very little proportion of allometric equations for biomass estimation, d. no allometric equation for belowground biomass and carbon estimation, and d. lower proportion of valid allometric equations. It is recommended that site and species specific allometric equations should be developed and consistency in field sampling, sample processing, data recording and selection of allometric equations should be maintained to ensure accuracy in estimation of biomass, volume, and carbon stock in different forest types of Bangladesh.
NASA Astrophysics Data System (ADS)
Kompany-Zareh, Mohsen; Khoshkam, Maryam
2013-02-01
This paper describes estimation of reaction rate constants and pure ultraviolet/visible (UV-vis) spectra of the component involved in a second order consecutive reaction between Ortho-Amino benzoeic acid (o-ABA) and Diazoniom ions (DIAZO), with one intermediate. In the described system, o-ABA was not absorbing in the visible region of interest and thus, closure rank deficiency problem did not exist. Concentration profiles were determined by solving differential equations of the corresponding kinetic model. In that sense, three types of model-based procedures were applied to estimate the rate constants of the kinetic system, according to Levenberg/Marquardt (NGL/M) algorithm. Original data-based, Score-based and concentration-based objective functions were included in these nonlinear fitting procedures. Results showed that when there is error in initial concentrations, accuracy of estimated rate constants strongly depends on the type of applied objective function in fitting procedure. Moreover, flexibility in application of different constraints and optimization of the initial concentrations estimation during the fitting procedure were investigated. Results showed a considerable decrease in ambiguity of obtained parameters by applying appropriate constraints and adjustable initial concentrations of reagents.
Terluin, Berend; Eekhout, Iris; Terwee, Caroline B
2017-03-01
Patients have their individual minimal important changes (iMICs) as their personal benchmarks to determine whether a perceived health-related quality of life (HRQOL) change constitutes a (minimally) important change for them. We denote the mean iMIC in a group of patients as the "genuine MIC" (gMIC). The aims of this paper are (1) to examine the relationship between the gMIC and the anchor-based minimal important change (MIC), determined by receiver operating characteristic analysis or by predictive modeling; (2) to examine the impact of the proportion of improved patients on these MICs; and (3) to explore the possibility to adjust the MIC for the influence of the proportion of improved patients. Multiple simulations of patient samples involved in anchor-based MIC studies with different characteristics of HRQOL (change) scores and distributions of iMICs. In addition, a real data set is analyzed for illustration. The receiver operating characteristic-based and predictive modeling MICs equal the gMIC when the proportion of improved patients equals 0.5. The MIC is estimated higher than the gMIC when the proportion improved is greater than 0.5, and the MIC is estimated lower than the gMIC when the proportion improved is less than 0.5. Using an equation including the predictive modeling MIC, the log-odds of improvement, the standard deviation of the HRQOL change score, and the correlation between the HRQOL change score and the anchor results in an adjusted MIC reflecting the gMIC irrespective of the proportion of improved patients. Adjusting the predictive modeling MIC for the proportion of improved patients assures that the adjusted MIC reflects the gMIC. We assumed normal distributions and global perceived change scores that were independent on the follow-up score. Additionally, floor and ceiling effects were not taken into account. Copyright © 2017 Elsevier Inc. All rights reserved.
Anderson, S.C.; Kupfer, J.A.; Wilson, R.R.; Cooper, R.J.
2000-01-01
The purpose of this research was to develop a model that could be used to provide a spatial representation of uneven-aged silvicultural treatments on forest crown area. We began by developing species-specific linear regression equations relating tree DBH to crown area for eight bottomland tree species at White River National Wildlife Refuge, Arkansas, USA. The relationships were highly significant for all species, with coefficients of determination (r(2)) ranging from 0.37 for Ulmus crassifolia to nearly 0.80 for Quercus nuttalliii and Taxodium distichum. We next located and measured the diameters of more than 4000 stumps from a single tree-group selection timber harvest. Stump locations were recorded with respect to an established gl id point system and entered into a Geographic Information System (ARC/INFO). The area occupied by the crown of each logged individual was then estimated by using the stump dimensions (adjusted to DBHs) and the regression equations relating tree DBH to crown area. Our model projected that the selection cuts removed roughly 300 m(2) of basal area from the logged sites resulting in the loss of approximate to 55 000 m(2) of crown area. The model developed in this research represents a tool that can be used in conjunction with remote sensing applications to assist in forest inventory and management, as well as to estimate the impacts of selective timber harvest on wildlife.
Technical insight on the requirements for CO2-saturated growth of microalgae in photobioreactors.
Yuvraj; Padmanabhan, Padmini
2017-06-01
Microalgal cultures are usually sparged with CO 2 -enriched air to preclude CO 2 limitation during photoautotrophic growth. However, the CO 2 vol% specifically required at operating conditions to meet the carbon requirement of algal cells in photobioreactor is never determined and 1-10% v/v CO 2 -enriched air is arbitrarily used. A scheme is proposed and experimentally validated for Chlorella vulgaris that allows computing CO 2 -saturated growth feasible at given CO 2 vol% and volumetric O 2 mass-transfer coefficient (k L a) O . CO 2 sufficiency in an experiment can be theoretically established to adjust conditions for CO 2 -saturated growth. The methodology completely eliminates the requirement of CO 2 electrode for online estimation of dissolved CO 2 to determine critical CO 2 concentration (C crit ), specific CO 2 uptake rate (SCUR), and volumetric CO 2 mass-transfer coefficient (k L a) C required for the governing CO 2 mass-transfer equation. C crit was estimated from specific O 2 production rate (SOPR) measurements at different dissolved CO 2 concentrations. SCUR was calculated from SOPR and photosynthetic quotient (PQ) determined from the balanced stoichiometric equation of growth. Effect of light attenuation and nutrient depletion on biomass estimate is also discussed. Furthermore, a simple design of photosynthetic activity measurement system was used, which minimizes light attenuation by hanging a low depth (ca. 10 mm) culture over the light source.
Use of geophysical logs to estimate the quality of ground water and the permeability of aquifers
Hudson, J.D.
1996-01-01
The relation of formation factor to resistivity of formation water and intergranular permeability has often been investigated, and the general consensus is that this relation is closest when established in a clean-sand aquifer in which water quality does not vary substantially. When these restrictions are applied, the following standard equation is a useful tool in estimating the resistance of the formation water: F = Ro/Rw, where F is the formation factor, which is a function of the effective porosity; Ro is the resistivity of a formation that is 100 percent saturated with interstitial water; and Rw is the resistivity of the water in the saturated zone. However, arenaceous aquifers can have electrical resistivities that are not directly related to resistivity of water or porosity. Surface conductivity and ion exchange are significant factors when the sediments are clay bearing. The solid constituents are a major component of the parameters needed to solve the equation for formation-water resistivity and estimates of aquifer permeability. A correction process needs to be applied to adjust the variables, Ro and F, to the equivalent of clean sand. This report presents an empirical method of using the neutron log and the electrical-resistivity values from long- and short-normal resistivity logs to correct for fine-grained material and the subsequent effects of low impedance to electrical flow that are not related to the resistance of formation water.
Technique for estimating depth of floods in Tennessee
Gamble, C.R.
1983-01-01
Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)
Moriarty, James P; Branda, Megan E; Olsen, Kerry D; Shah, Nilay D; Borah, Bijan J; Wagie, Amy E; Egginton, Jason S; Naessens, James M
2012-03-01
To provide the simultaneous 7-year estimates of incremental costs of smoking and obesity among employees and dependents in a large health care system. We used a retrospective cohort aged 18 years or older with continuous enrollment during the study period. Longitudinal multivariate cost analyses were performed using generalized estimating equations with demographic adjustments. The annual incremental mean costs of smoking by age group ranged from $1274 to $1401. The incremental costs of morbid obesity II by age group ranged from $5467 to $5530. These incremental costs drop substantially when comorbidities are included. Obesity and smoking have large long-term impacts on health care costs of working-age adults. Controlling comorbidities impacted incremental costs of obesity but may lead to underestimation of the true incremental costs because obesity is a risk factor for developing chronic conditions.
Does employee resistance during a robbery increase the risk of customer injury?
Yau, Rebecca K; Casteel, Carri; Nocera, Maryalice; Bishop, Stephanie F; Peek-Asa, Corinne
2015-04-01
Retail business robberies can lead to employee and customer injury. Previous work demonstrates that employee resistance increases employee injury risk; limited research has investigated customer injuries. This study examines associations between employee resistance against perpetrators and the risk of customer injury. Retail and service robbery reports were obtained from a metropolitan police department. Generalized estimating equations estimated risk ratios and 95% confidence intervals (CIs). Customers were injured in 75 out of 697 robberies. Employees resisted the perpetrator in 32 out of 697 robberies. Customers had higher injury risk when employees resisted the perpetrator, compared with robberies where employees did not resist (adjusted risk ratio [95% CI], 2.6 [1.5 to 4.5]). Employee resistance against a perpetrator during a robbery increased customer injury risk. Businesses can train employees to not resist during a robbery, providing benefits for both customers and the business itself.
p-Euler equations and p-Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Jian-Guo
2018-04-01
We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.
Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.
2016-09-19
A statewide study was led to develop regression equations for estimating three selected spring and three selected fall low-flow frequency statistics for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include spring (April through June) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and fall (October through December) 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years. Estimates of the three selected spring statistics are provided for 241 U.S. Geological Survey continuous-record streamgages, and estimates of the three selected fall statistics are provided for 238 of these streamgages, using data through June 2014. Because only 9 years of fall streamflow record were available, three streamgages included in the development of the spring regression equations were not included in the development of the fall regression equations. Because of regulation, diversion, or urbanization, 30 of the 241 streamgages were not included in the development of the regression equations. The study area includes Iowa and adjacent areas within 50 miles of the Iowa border. Because trend analyses indicated statistically significant positive trends when considering the period of record for most of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. Geographic information system software was used to measure 63 selected basin characteristics for each of the 211streamgages used to develop the regional regression equations. The study area was divided into three low-flow regions that were defined in a previous study for the development of regional regression equations.Because several streamgages included in the development of regional regression equations have estimates of zero flow calculated from observed streamflow for selected spring and fall low-flow frequency statistics, the final equations for the three low-flow regions were developed using two types of regression analyses—left-censored and generalized-least-squares regression analyses. A total of 211 streamgages were included in the development of nine spring regression equations—three equations for each of the three low-flow regions. A total of 208 streamgages were included in the development of nine fall regression equations—three equations for each of the three low-flow regions. A censoring threshold was used to develop 15 left-censored regression equations to estimate the three fall low-flow frequency statistics for each of the three low-flow regions and to estimate the three spring low-flow frequency statistics for the southern and northwest regions. For the northeast region, generalized-least-squares regression was used to develop three equations to estimate the three spring low-flow frequency statistics. For the northeast region, average standard errors of prediction range from 32.4 to 48.4 percent for the spring equations and average standard errors of estimate range from 56.4 to 73.8 percent for the fall equations. For the northwest region, average standard errors of estimate range from 58.9 to 62.1 percent for the spring equations and from 83.2 to 109.4 percent for the fall equations. For the southern region, average standard errors of estimate range from 43.2 to 64.0 percent for the spring equations and from 78.1 to 78.7 percent for the fall equations.The regression equations are applicable only to stream sites in Iowa with low flows not substantially affected by regulation, diversion, or urbanization and with basin characteristics within the range of those used to develop the equations. The regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system application. StreamStats allows users to click on any ungaged stream site and compute estimates of the six selected spring and fall low-flow statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged site are provided. StreamStats also allows users to click on any Iowa streamgage to obtain computed estimates for the six selected spring and fall low-flow statistics.
Estimating population salt intake in India using spot urine samples.
Petersen, Kristina S; Johnson, Claire; Mohan, Sailesh; Rogers, Kris; Shivashankar, Roopa; Thout, Sudhir Raj; Gupta, Priti; He, Feng J; MacGregor, Graham A; Webster, Jacqui; Santos, Joseph Alvin; Krishnan, Anand; Maulik, Pallab K; Reddy, K Srinath; Gupta, Ruby; Prabhakaran, Dorairaj; Neal, Bruce
2017-11-01
To compare estimates of mean population salt intake in North and South India derived from spot urine samples versus 24-h urine collections. In a cross-sectional survey, participants were sampled from slum, urban and rural communities in North and in South India. Participants provided 24-h urine collections, and random morning spot urine samples. Salt intake was estimated from the spot urine samples using a series of established estimating equations. Salt intake data from the 24-h urine collections and spot urine equations were weighted to provide estimates of salt intake for Delhi and Haryana, and Andhra Pradesh. A total of 957 individuals provided a complete 24-h urine collection and a spot urine sample. Weighted mean salt intake based on the 24-h urine collection, was 8.59 (95% confidence interval 7.73-9.45) and 9.46 g/day (8.95-9.96) in Delhi and Haryana, and Andhra Pradesh, respectively. Corresponding estimates based on the Tanaka equation [9.04 (8.63-9.45) and 9.79 g/day (9.62-9.96) for Delhi and Haryana, and Andhra Pradesh, respectively], the Mage equation [8.80 (7.67-9.94) and 10.19 g/day (95% CI 9.59-10.79)], the INTERSALT equation [7.99 (7.61-8.37) and 8.64 g/day (8.04-9.23)] and the INTERSALT equation with potassium [8.13 (7.74-8.52) and 8.81 g/day (8.16-9.46)] were all within 1 g/day of the estimate based upon 24-h collections. For the Toft equation, estimates were 1-2 g/day higher [9.94 (9.24-10.64) and 10.69 g/day (9.44-11.93)] and for the Kawasaki equation they were 3-4 g/day higher [12.14 (11.30-12.97) and 13.64 g/day (13.15-14.12)]. In urban and rural areas in North and South India, most spot urine-based equations provided reasonable estimates of mean population salt intake. Equations that did not provide good estimates may have failed because specimen collection was not aligned with the original method.
Bell, Kristie L; Boyd, Roslyn N; Walker, Jacqueline L; Stevenson, Richard D; Davies, Peter S W
2013-08-01
Body composition assessment is an essential component of nutritional evaluation in children with cerebral palsy. This study aimed to validate bioelectrical impedance to estimate total body water in young children with cerebral palsy and determine best electrode placement in unilateral impairment. 55 young children with cerebral palsy across all functional ability levels were included. Height/length was measured or estimated from knee height. Total body water was estimated using a Bodystat 1500MDD and three equations, and measured using the gold standard, deuterium dilution technique. Comparisons were made using Bland Altman analysis. For children with bilateral impairment, the Fjeld equation estimated total body water with the least bias (limits of agreement): 0.0 L (-1.4 L to 1.5 L); the Pencharz equation produced the greatest: 2.7 L (0.6 L-4.8 L). For children with unilateral impairment, differences between measured and estimated total body water were lowest on the unimpaired side using the Fjeld equation 0.1 L (-1.5 L to 1.6 L)) and greatest for the Pencharz equation. The ability of bioelectrical impedance to estimate total body water depends on the equation chosen. The Fjeld equation was the most accurate for the group, however, individual results varied by up to 18%. A population specific equation was developed and may enhance the accuracy of estimates. Australian New Zealand Clinical Trials Registry (ANZCTR) number: ACTRN12611000616976. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Jolly, Stacey E; Mete, Mihriye; Wang, Hong; Zhu, Jianhui; Ebbesson, Sven O E; Voruganti, V Saroja; Comuzzie, Anthony G; Howard, Barbara V; Umans, Jason G
2012-02-01
It is unknown what role uric acid (UA) may play in the increasing rates of cardiovascular disease (CVD) among Alaska Eskimos. UA is associated with both hypertension (HTN) and chronic kidney disease (CKD). The authors analyzed 1078 Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) participants. Estimated glomerular filtration rate (eGFR) was calculated from serum creatinine measures using the Modification of Diet in Renal Disease equation. CKD was defined by an eGFR of <60 mL/min/1.73 m(2) . The authors adjusted for age, sex, education, diabetes, hypertension (or eGFR), obesity, lipids, and smoking status; 7% (n=75) had prevalent CKD. eGFR decreased with increasing tertiles of serum UA (P<.001). UA was independently associated with prevalent CKD (adjusted odds ratio [OR] and 95% confidence interval [CI] of 2.04 (1.62-2.56), respectively). Twenty-one percent (n=230) had prevalent HTN and UA was independently associated with prevalent HTN (adjusted OR, 1.2; 95% CI, 1.1-1.5). UA is independently associated with prevalent CKD and HTN in this population. © 2011 Wiley Periodicals, Inc.
Nestler, Steffen
2014-05-01
Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.
Item Response Theory Equating Using Bayesian Informative Priors.
ERIC Educational Resources Information Center
de la Torre, Jimmy; Patz, Richard J.
This paper seeks to extend the application of Markov chain Monte Carlo (MCMC) methods in item response theory (IRT) to include the estimation of equating relationships along with the estimation of test item parameters. A method is proposed that incorporates estimation of the equating relationship in the item calibration phase. Item parameters from…
Parrett, Charles; Omang, R.J.; Hull, J.A.
1983-01-01
Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)
Enhancing Condom Use Among Black Male Youths: A Randomized Controlled Trial
Charnigo, Richard J.; Salazar, Laura F.; Pasternak, Ryan; Terrell, Ivy W.; Ricks, JaNelle; Smith, Rachel V.; Taylor, Stephanie N.
2014-01-01
Objectives. We tested the efficacy of a brief intervention to promote correct and consistent use of condoms among Black male youths attending sexually transmitted infection (STI) clinics in 3 southern US cities. Methods. In 2010 to 2012, we screened (n = 1102) and enrolled (n = 702) youths aged 15 to 23 years who identified as Black and reported recent (past 2 months) sexual activity and randomized them to a private, brief, interactive intervention (n = 349) or an attention-equivalent control condition (n = 353). Assessments occurred at baseline and 2 and 6 months after the intervention. Results. At 6 months, with adjustment for age and pretest nonequivalence of the outcome variable, an estimated odds ratio (EOR) of 1.63 (95% confidence interval [CI] = 1.07, 2.49; P = .02) indicated efficacy for correct condom use. An adjusted generalized estimating equations model with both 2- and 6-month condom use variables produced an EOR of 1.49 (95% CI = 1.06, 2.08; P = .02). We did not observe significant effects on chlamydia and gonorrhea incidence. Conclusions. This brief intervention, delivered as part of STI clinical care, could help alleviate the disproportionate STI–HIV burden among young Black men. PMID:25211749
Clark, Cheryl R; Ommerborn, Mark J; Hickson, DeMarc A; Grooms, Kya N; Sims, Mario; Taylor, Herman A; Albert, Michelle A
2013-01-01
We examined associations between neighborhood socioeconomic disadvantage, perceived neighborhood safety and cardiometabolic risk factors, adjusting for health behaviors and socioeconomic status (SES) among African Americans. Study participants were non-diabetic African Americans (n = 3,909) in the baseline examination (2000-2004) of the Jackson Heart Study. We measured eight risk factors: the metabolic syndrome, its five components, insulin resistance and cardiovascular inflammation. We assessed neighborhood socioeconomic disadvantage with US Census 2000 data. We assessed perceived neighborhood safety, health behaviors and SES via survey. We used generalized estimating equations to estimate associations with a random intercept model for neighborhood effects. After adjustment for health behaviors and SES, neighborhood socioeconomic disadvantage was associated with the metabolic syndrome in women (PR 1.13, 95% CI 1.01, 1.27). Lack of perceived safety was associated with elevated glucose (OR 1.36, 95% CI 1.03, 1.80) and waist circumference (PR 1.06, 95% CI 1.02, 1.11) among women, and with elevated glucose (PR 1.30, 95% CI 1.02, 1.66) and insulin resistance (PR 1.25, 95% CI 1.08, 1.46) among men. Neighborhood socioeconomic disadvantage and perceived safety should be considered as targets for intervention to reduce cardiometabolic risks among African Americans.
Clark, Cheryl R.; Ommerborn, Mark J.; Hickson, DeMarc A.; Grooms, Kya N.; Sims, Mario; Taylor, Herman A.; Albert, Michelle A.
2013-01-01
Objective We examined associations between neighborhood socioeconomic disadvantage, perceived neighborhood safety and cardiometabolic risk factors, adjusting for health behaviors and socioeconomic status (SES) among African Americans. Methods Study participants were non-diabetic African Americans (n = 3,909) in the baseline examination (2000–2004) of the Jackson Heart Study. We measured eight risk factors: the metabolic syndrome, its five components, insulin resistance and cardiovascular inflammation. We assessed neighborhood socioeconomic disadvantage with US Census 2000 data. We assessed perceived neighborhood safety, health behaviors and SES via survey. We used generalized estimating equations to estimate associations with a random intercept model for neighborhood effects. Results After adjustment for health behaviors and SES, neighborhood socioeconomic disadvantage was associated with the metabolic syndrome in women (PR 1.13, 95% CI 1.01, 1.27). Lack of perceived safety was associated with elevated glucose (OR 1.36, 95% CI 1.03, 1.80) and waist circumference (PR 1.06, 95% CI 1.02, 1.11) among women, and with elevated glucose (PR 1.30, 95% CI 1.02, 1.66) and insulin resistance (PR 1.25, 95% CI 1.08, 1.46) among men. Conclusions Neighborhood socioeconomic disadvantage and perceived safety should be considered as targets for intervention to reduce cardiometabolic risks among African Americans. PMID:23691005
Ries(compiler), Kernell G.; With sections by Atkins, J. B.; Hummel, P.R.; Gray, Matthew J.; Dusenbury, R.; Jennings, M.E.; Kirby, W.H.; Riggs, H.C.; Sauer, V.B.; Thomas, W.O.
2007-01-01
The National Streamflow Statistics (NSS) Program is a computer program that should be useful to engineers, hydrologists, and others for planning, management, and design applications. NSS compiles all current U.S. Geological Survey (USGS) regional regression equations for estimating streamflow statistics at ungaged sites in an easy-to-use interface that operates on computers with Microsoft Windows operating systems. NSS expands on the functionality of the USGS National Flood Frequency Program, and replaces it. The regression equations included in NSS are used to transfer streamflow statistics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, the equations were developed on a statewide or metropolitan-area basis as part of cooperative study programs. Equations are available for estimating rural and urban flood-frequency statistics, such as the 1 00-year flood, for every state, for Puerto Rico, and for the island of Tutuila, American Samoa. Equations are available for estimating other statistics, such as the mean annual flow, monthly mean flows, flow-duration percentiles, and low-flow frequencies (such as the 7-day, 0-year low flow) for less than half of the states. All equations available for estimating streamflow statistics other than flood-frequency statistics assume rural (non-regulated, non-urbanized) conditions. The NSS output provides indicators of the accuracy of the estimated streamflow statistics. The indicators may include any combination of the standard error of estimate, the standard error of prediction, the equivalent years of record, or 90 percent prediction intervals, depending on what was provided by the authors of the equations. The program includes several other features that can be used only for flood-frequency estimation. These include the ability to generate flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals, estimates of the probable maximum flood, extrapolation of the 500-year flood when an equation for estimating it is not available, and weighting techniques to improve flood-frequency estimates for gaging stations and ungaged sites on gaged streams. This report describes the regionalization techniques used to develop the equations in NSS and provides guidance on the applicability and limitations of the techniques. The report also includes a users manual and a summary of equations available for estimating basin lagtime, which is needed by the program to generate flood hydrographs. The NSS software and accompanying database, and the documentation for the regression equations included in NSS, are available on the Web at http://water.usgs.gov/software/.
Bayesian parameter estimation for nonlinear modelling of biological pathways.
Ghasemi, Omid; Lindsey, Merry L; Yang, Tianyi; Nguyen, Nguyen; Huang, Yufei; Jin, Yu-Fang
2011-01-01
The availability of temporal measurements on biological experiments has significantly promoted research areas in systems biology. To gain insight into the interaction and regulation of biological systems, mathematical frameworks such as ordinary differential equations have been widely applied to model biological pathways and interpret the temporal data. Hill equations are the preferred formats to represent the reaction rate in differential equation frameworks, due to their simple structures and their capabilities for easy fitting to saturated experimental measurements. However, Hill equations are highly nonlinearly parameterized functions, and parameters in these functions cannot be measured easily. Additionally, because of its high nonlinearity, adaptive parameter estimation algorithms developed for linear parameterized differential equations cannot be applied. Therefore, parameter estimation in nonlinearly parameterized differential equation models for biological pathways is both challenging and rewarding. In this study, we propose a Bayesian parameter estimation algorithm to estimate parameters in nonlinear mathematical models for biological pathways using time series data. We used the Runge-Kutta method to transform differential equations to difference equations assuming a known structure of the differential equations. This transformation allowed us to generate predictions dependent on previous states and to apply a Bayesian approach, namely, the Markov chain Monte Carlo (MCMC) method. We applied this approach to the biological pathways involved in the left ventricle (LV) response to myocardial infarction (MI) and verified our algorithm by estimating two parameters in a Hill equation embedded in the nonlinear model. We further evaluated our estimation performance with different parameter settings and signal to noise ratios. Our results demonstrated the effectiveness of the algorithm for both linearly and nonlinearly parameterized dynamic systems. Our proposed Bayesian algorithm successfully estimated parameters in nonlinear mathematical models for biological pathways. This method can be further extended to high order systems and thus provides a useful tool to analyze biological dynamics and extract information using temporal data.
Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets.
Langer, Raquel D; Borges, Juliano H; Pascoa, Mauro A; Cirolini, Vagner X; Guerra-Júnior, Gil; Gonçalves, Ezequiel M
2016-03-11
Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. A total of 396 males, Brazilian Army cadets, aged 17-24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student's t-test (for paired sample), linear regression analysis, and Bland-Altman method were used to test the validity of the BIA equations. Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland-Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM.
This dataset represents the adjusted soil erodibility factor within individual, local NHDPlusV2 catchments and upstream, contributing watersheds. Attributes of the landscape layer were calculated for every local NHDPlusV2 catchment and accumulated to provide watershed-level metrics. (See Supplementary Info for Glossary of Terms) The STATSGO Layer table specifies two soil erodibility factors for each component layer, KFFACT and KFACT. The STATSGO documentation describes KFFACT as a soil erodibility factor which quanitifies the susceptibility of soil particles to detachment and movement by water. This factor is used in the Universal Soil Loss Equation to caluculate soil loss by water. KFACT is described as a soil erodibility factor which is adjusted for the effect of rock fragments. The average value of each of these soil erodibility factors was determined for the top (surface) layer for each map unit of each state.The base-flow index (BFI) grid for the conterminous United States was developed to estimate (1) BFI values for ungaged streams, and (2) ground-water recharge throughout the conterminous United States (see Data Source). Estimates of BFI values at ungaged streams and BFI-based ground-water recharge estimates are useful for interpreting relations between land use and water quality in surface and ground water. The soil erodibility factor was summarized by local catchment and by watershed to produce local catchment-level and watershed-level metri
Age Estimation of Infants Through Metric Analysis of Developing Anterior Deciduous Teeth.
Viciano, Joan; De Luca, Stefano; Irurita, Javier; Alemán, Inmaculada
2018-01-01
This study provides regression equations for estimation of age of infants from the dimensions of their developing deciduous teeth. The sample comprises 97 individuals of known sex and age (62 boys, 35 girls), aged between 2 days and 1,081 days. The age-estimation equations were obtained for the sexes combined, as well as for each sex separately, thus including "sex" as an independent variable. The values of the correlations and determination coefficients obtained for each regression equation indicate good fits for most of the equations obtained. The "sex" factor was statistically significant when included as an independent variable in seven of the regression equations. However, the "sex" factor provided an advantage for age estimation in only three of the equations, compared to those that did not include "sex" as a factor. These data suggest that the ages of infants can be accurately estimated from measurements of their developing deciduous teeth. © 2017 American Academy of Forensic Sciences.
Asquith, William H.; Thompson, David B.
2008-01-01
The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.
Earley, Amy; Miskulin, Dana; Lamb, Edmund J; Levey, Andrew S; Uhlig, Katrin
2012-06-05
Clinical laboratories are increasingly reporting estimated glomerular filtration rate (GFR) by using serum creatinine assays traceable to a standard reference material. To review the performance of GFR estimating equations to inform the selection of a single equation by laboratories and the interpretation of estimated GFR by clinicians. A systematic search of MEDLINE, without language restriction, between 1999 and 21 October 2011. Cross-sectional studies in adults that compared the performance of 2 or more creatinine-based GFR estimating equations with a reference GFR measurement. Eligible equations were derived or reexpressed and validated by using creatinine measurements traceable to the standard reference material. Reviewers extracted data on study population characteristics, measured GFR, creatinine assay, and equation performance. Eligible studies compared the MDRD (Modification of Diet in Renal Disease) Study and CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) equations or modifications thereof. In 12 studies in North America, Europe, and Australia, the CKD-EPI equation performed better at higher GFRs (approximately >60 mL/min per 1.73 m(2)) and the MDRD Study equation performed better at lower GFRs. In 5 of 8 studies in Asia and Africa, the equations were modified to improve their performance by adding a coefficient derived in the local population or removing a coefficient. Methods of GFR measurement and study populations were heterogeneous. Neither the CKD-EPI nor the MDRD Study equation is optimal for all populations and GFR ranges. Using a single equation for reporting requires a tradeoff to optimize performance at either higher or lower GFR ranges. A general practice and public health perspective favors the CKD-EPI equation. Kidney Disease: Improving Global Outcomes.
Estimating Slash Quantity from Standing Loblolly Pine
Dale D. Wade
1969-01-01
No significant difference were found between variances of two prediction equations for estimating loblolly pine crown weight from diameter breast height (d.b.h). One equation was developed from trees on the Georgia Piedmont and the other from tress on the South Carolina Coastal Plain. An equation and table are presented for estimating loblolly pine slash weights from...
Parameter Estimates in Differential Equation Models for Chemical Kinetics
ERIC Educational Resources Information Center
Winkel, Brian
2011-01-01
We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…
van Deventer, Hendrick E; George, Jaya A; Paiker, Janice E; Becker, Piet J; Katz, Ivor J
2008-07-01
The 4-variable Modification of Diet in Renal Disease (4-v MDRD) and Cockcroft-Gault (CG) equations are commonly used for estimating glomerular filtration rate (GFR); however, neither of these equations has been validated in an indigenous African population. The aim of this study was to evaluate the performance of the 4-v MDRD and CG equations for estimating GFR in black South Africans against measured GFR and to assess the appropriateness for the local population of the ethnicity factor established for African Americans in the 4-v MDRD equation. We enrolled 100 patients in the study. The plasma clearance of chromium-51-EDTA ((51)Cr-EDTA) was used to measure GFR, and serum creatinine was measured using an isotope dilution mass spectrometry (IDMS) traceable assay. We estimated GFR using both the reexpressed 4-v MDRD and CG equations and compared it to measured GFR using 4 modalities: correlation coefficient, weighted Deming regression analysis, percentage bias, and proportion of estimated GFR within 30% of measured GFR (P(30)). The Spearman correlation coefficient between measured and estimated GFR for both equations was similar (4-v MDRD R(2) = 0.80 and CG R(2) = 0.79). Using the 4-v MDRD equation with the ethnicity factor of 1.212 as established for African Americans resulted in a median positive bias of 13.1 (95% CI 5.5 to 18.3) mL/min/1.73 m(2). Without the ethnicity factor, median bias was 1.9 (95% CI -0.8 to 4.5) mL/min/1.73 m(2). The 4-v MDRD equation, without the ethnicity factor of 1.212, can be used for estimating GFR in black South Africans.
Temple, Derry; Denis, Romain; Walsh, Marianne C; Dicker, Patrick; Byrne, Annette T
2015-02-01
To evaluate the accuracy of the most commonly used anthropometric-based equations in the estimation of percentage body fat (%BF) in both normal-weight and overweight women using air-displacement plethysmography (ADP) as the criterion measure. A comparative study in which the equations of Durnin and Womersley (1974; DW) and Jackson, Pollock and Ward (1980) at three, four and seven sites (JPW₃, JPW₄ and JPW₇) were validated against ADP in three groups. Group 1 included all participants, group 2 included participants with a BMI <25·0 kg/m² and group 3 included participants with a BMI ≥25·0 kg/m². Human Performance Laboratory, Institute for Sport and Health, University College Dublin, Republic of Ireland. Forty-three female participants aged between 18 and 55 years. In all three groups, the %BF values estimated from the DW equation were closer to the criterion measure (i.e. ADP) than those estimated from the other equations. Of the three JPW equations, JPW₃ provided the most accurate estimation of %BF when compared with ADP in all three groups. In comparison to ADP, these findings suggest that the DW equation is the most accurate anthropometric method for the estimation of %BF in both normal-weight and overweight females.
Computing Robust, Bootstrap-Adjusted Fit Indices for Use with Nonnormal Data
ERIC Educational Resources Information Center
Walker, David A.; Smith, Thomas J.
2017-01-01
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
ERIC Educational Resources Information Center
Mattanah, Jonathan F.; Hancock, Gregory R.; Brand, Bethany L.
2004-01-01
Secure parental attachment and healthy levels of separation-individuation have been consistently linked to greater college student adjustment. The present study proposes that the relation between parental attachment and college adjustment is mediated by healthy separation-individuation. The authors gathered data on maternal and paternal…
Tooth loss associated with physical and cognitive decline in older adults.
Tsakos, Georgios; Watt, Richard G; Rouxel, Patrick L; de Oliveira, Cesar; Demakakos, Panayotes
2015-01-01
To examine the effect of total tooth loss (edentulousness) on decline in physical and cognitive functioning over 10 years in older adults in England. Secondary data analysis. English Longitudinal Study of Ageing, a national prospective cohort study of community-dwelling people aged 50 and older. Individuals aged 60 and older (N = 3,166). Cognitive function (memory) was measured using a 10-word recall test. Physical function was assessed using gait speed (m/s). Generalized estimating equations were used to model associations between baseline edentulousness and six repeated measurements of gait speed and memory from 2002-03 to 2012-13. Models were sequentially adjusted for time, demographic characteristics, socioeconomic status, comorbidities, health behaviors, depressive symptoms, and anthropometric measurements and mutually adjusted for gait speed or memory. Edentulous participants recalled 0.88 fewer words and were 0.09 m/s slower than dentate participants after adjusting for time and demographics. Only the latter association remained significant after full adjustment, with edentulous participants being 0.02 m/s slower than dentate participants. In age-stratified analyses, baseline edentulousness was associated with both outcomes in fully adjusted models in participants aged 60 to 74 but not in those aged 75 and older. Supplementary analysis indicated significant associations between baseline edentulousness and 4-year change in gait speed and memory in participants aged 60 to 74; the former was fully explained in the fully adjusted model and the latter after adjusting for socioeconomic status. Total tooth loss was independently associated with physical and cognitive decline in older adults in England. Tooth loss is a potential early marker of decline in older age. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Impact of Accumulated Error on Item Response Theory Pre-Equating with Mixed Format Tests
ERIC Educational Resources Information Center
Keller, Lisa A.; Keller, Robert; Cook, Robert J.; Colvin, Kimberly F.
2016-01-01
The equating of tests is an essential process in high-stakes, large-scale testing conducted over multiple forms or administrations. By adjusting for differences in difficulty and placing scores from different administrations of a test on a common scale, equating allows scores from these different forms and administrations to be directly compared…
A General Linear Method for Equating with Small Samples
ERIC Educational Resources Information Center
Albano, Anthony D.
2015-01-01
Research on equating with small samples has shown that methods with stronger assumptions and fewer statistical estimates can lead to decreased error in the estimated equating function. This article introduces a new approach to linear observed-score equating, one which provides flexible control over how form difficulty is assumed versus estimated…
NASA Astrophysics Data System (ADS)
Castellarin, A.; Montanari, A.; Brath, A.
2002-12-01
The study derives Regional Depth-Duration-Frequency (RDDF) equations for a wide region of northern-central Italy (37,200 km 2) by following an adaptation of the approach originally proposed by Alila [WRR, 36(7), 2000]. The proposed RDDF equations have a rather simple structure and allow an estimation of the design storm, defined as the rainfall depth expected for a given storm duration and recurrence interval, in any location of the study area for storm durations from 1 to 24 hours and for recurrence intervals up to 100 years. The reliability of the proposed RDDF equations represents the main concern of the study and it is assessed at two different levels. The first level considers the gauged sites and compares estimates of the design storm obtained with the RDDF equations with at-site estimates based upon the observed annual maximum series of rainfall depth and with design storm estimates resulting from a regional estimator recently developed for the study area through a Hierarchical Regional Approach (HRA) [Gabriele and Arnell, WRR, 27(6), 1991]. The second level performs a reliability assessment of the RDDF equations for ungauged sites by means of a jack-knife procedure. Using the HRA estimator as a reference term, the jack-knife procedure assesses the reliability of design storm estimates provided by the RDDF equations for a given location when dealing with the complete absence of pluviometric information. The results of the analysis show that the proposed RDDF equations represent practical and effective computational means for producing a first guess of the design storm at the available raingauges and reliable design storm estimates for ungauged locations. The first author gratefully acknowledges D.H. Burn for sponsoring the submission of the present abstract.
Leion, Felicia; Hegbrant, Josefine; den Bakker, Emil; Jonsson, Magnus; Abrahamson, Magnus; Nyman, Ulf; Björk, Jonas; Lindström, Veronica; Larsson, Anders; Bökenkamp, Arend; Grubb, Anders
2017-09-01
Estimating glomerular filtration rate (GFR) in adults by using the average of values obtained by a cystatin C- (eGFR cystatin C ) and a creatinine-based (eGFR creatinine ) equation shows at least the same diagnostic performance as GFR estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparison of eGFR cystatin C and eGFR creatinine plays a pivotal role in the diagnosis of Shrunken Pore Syndrome, where low eGFR cystatin C compared to eGFR creatinine has been associated with higher mortality in adults. The present study was undertaken to elucidate if this concept can also be applied in children. Using iohexol and inulin clearance as gold standard in 702 children, we studied the diagnostic performance of 10 creatinine-based, 5 cystatin C-based and 3 combined cystatin C-creatinine eGFR equations and compared them to the result of the average of 9 pairs of a eGFR cystatin C and a eGFR creatinine estimate. While creatinine-based GFR estimations are unsuitable in children unless calibrated in a pediatric or mixed pediatric-adult population, cystatin C-based estimations in general performed well in children. The average of a suitable creatinine-based and a cystatin C-based equation generally displayed a better diagnostic performance than estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparing eGFR cystatin and eGFR creatinine may help identify pediatric patients with Shrunken Pore Syndrome.
Estimating value and volume of ponderosa pine trees by equations.
Martin E. Plank
1981-01-01
Equations for estimating the selling value and tally volume for ponderosa pine lumber from the standing trees are described. Only five characteristics are required for the equations. Development and application of the system are described.
First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity
NASA Technical Reports Server (NTRS)
Cai, Z.; Manteuffel, T. A.; McCormick, S. F.
1996-01-01
Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.
Beyond SaGMRotI: Conversion to SaArb, SaSN, and SaMaxRot
Watson-Lamprey, J. A.; Boore, D.M.
2007-01-01
In the seismic design of structures, estimates of design forces are usually provided to the engineer in the form of elastic response spectra. Predictive equations for elastic response spectra are derived from empirical recordings of ground motion. The geometric mean of the two orthogonal horizontal components of motion is often used as the response value in these predictive equations, although it is not necessarily the most relevant estimate of forces within the structure. For some applications it is desirable to estimate the response value on a randomly chosen single component of ground motion, and in other applications the maximum response in a single direction is required. We give adjustment factors that allow converting the predictions of geometric-mean ground-motion predictions into either of these other two measures of seismic ground-motion intensity. In addition, we investigate the relation of the strike-normal component of ground motion to the maximum response values. We show that the strike-normal component of ground motion seldom corresponds to the maximum horizontal-component response value (in particular, at distances greater than about 3 km from faults), and that focusing on this case in exclusion of others can result in the underestimation of the maximum component. This research provides estimates of the maximum response value of a single component for all cases, not just near-fault strike-normal components. We provide modification factors that can be used to convert predictions of ground motions in terms of the geometric mean to the maximum spectral acceleration (SaMaxRot) and the random component of spectral acceleration (SaArb). Included are modification factors for both the mean and the aleatory standard deviation of the logarithm of the motions.
Regional ground-water evapotranspiration and ground-water budgets, Great Basin, Nevada
Nichols, William D.
2000-01-01
PART A: Ground-water evapotranspiration data from five sites in Nevada and seven sites in Owens Valley, California, were used to develop equations for estimating ground-water evapotranspiration as a function of phreatophyte plant cover or as a function of the depth to ground water. Equations are given for estimating mean daily seasonal and annual ground-water evapotranspiration. The equations that estimate ground-water evapotranspiration as a function of plant cover can be used to estimate regional-scale ground-water evapotranspiration using vegetation indices derived from satellite data for areas where the depth to ground water is poorly known. Equations that estimate ground-water evapotranspiration as a function of the depth to ground water can be used where the depth to ground water is known, but for which information on plant cover is lacking. PART B: Previous ground-water studies estimated groundwater evapotranspiration by phreatophytes and bare soil in Nevada on the basis of results of field studies published in 1912 and 1932. More recent studies of evapotranspiration by rangeland phreatophytes, using micrometeorological methods as discussed in Chapter A of this report, provide new data on which to base estimates of ground-water evapotranspiration. An approach correlating ground-water evapotranspiration with plant cover is used in conjunction with a modified soil-adjusted vegetation index derived from Landsat data to develop a method for estimating the magnitude and distribution of ground-water evapotranspiration at a regional scale. Large areas of phreatophytes near Duckwater and Lockes in Railroad Valley are believed to subsist on ground water discharged from nearby regional springs. Ground-water evapotranspiration by the Duckwater phreatophytes of about 11,500 acre-feet estimated by the method described in this report compares well with measured discharge of about 13,500 acre-feet from the springs near Duckwater. Measured discharge from springs near Lockes was about 2,400 acre-feet; estimated ground-water evapotranspiration using the proposed method was about 2,450 acre-feet. PART C: Previous estimates of ground-water budgets in Nevada were based on methods and data that now are more than 60 years old. Newer methods, data, and technologies were used in the present study to estimate ground-water recharge from precipitation and ground-water discharge by evapotranspiration by phreatophytes for 16 contiguous valleys in eastern Nevada. Annual ground-water recharge to these valleys was estimated to be about 855,000 acre-feet and annual ground-water evapotranspiration was estimated to be about 790,000 acrefeet; both are a little more than two times greater than previous estimates. The imbalance of recharge over evapotranspiration represents recharge that either (1) leaves the area as interbasin flow or (2) is derived from precipitation that falls on terrain within the topographic boundary of the study area but contributes to discharge from hydrologic systems that lie outside these topographic limits. A vegetation index derived from Landsat-satellite data was used to estimate phreatophyte plant cover on the floors of the 16 valleys. The estimated phreatophyte plant cover then was used to estimate annual ground-water evapotranspiration. Detailed estimates of summer, winter, and annual ground-water evapotranspiration for areas with different ranges of phreatophyte plant cover were prepared for each valley. The estimated ground-water discharge from 15 valleys, combined with independent estimates of interbasin ground-water flow into or from a valley, were used to calculate the percentage of recharge derived from precipitation within the topographic boundary of each valley. These percentages then were used to estimate ground-water recharge from precipitation within each valley. Ground-water budgets for all 16 valleys were based on the estimated recharge from precipitation and estimated evapotranspiration. Any imba
Surkan, P J; Shankar, M; Katz, J; Siegel, E H; Leclerq, S C; Khatry, S K; Stoltzfus, R J; Tielsch, J M
2012-07-01
To assess the effects of micronutrient supplementation on head circumference of rural Nepali infants and children. We used a randomized controlled trial to assess the effects of micronutrient supplementation on head circumference in 569 rural Nepali infants and children aged 4-17 months. Children were randomized to: (1) zinc, (2) iron-folic acid, (3) zinc plus iron-folic acid or (4) a placebo group. Data on head circumference were collected during five visits at ∼3 month intervals over the course of a year. We calculated change in head circumference in treatment groups receiving zinc and iron comparing the first and fifth visits as well as used generalized estimating equations (GEE) to take advantage of data from all points in time. Models were adjusted for covariates unbalanced in the randomization and for baseline head circumference. Estimating differences in head circumference between baseline and visit 5, children in the zinc treatment group showed smaller decreases in head circumference z-score compared with placebo (adjusted β=0.13, 95% confidence interval (CI): 0.03 to 0.23). Using GEE, zinc treatment was associated with 0.11 (95% CI: 0.05 to 0.17) decrease in the rate of decline in head circumference z-score across visits as compared with placebo. Iron-folic acid supplementation was not associated with head circumference z-scores when comparing visits 1 with 5 or including data across all visits in adjusted models. Our results suggest that zinc supplementation confers a beneficial effect on the rate of head growth in Nepali infants.
Women's Reproductive History Before the Diagnosis of Incident Endometriosis
Backonja, Uba; Schliep, Karen C.; Sun, Liping; Peterson, C. Matthew; Chen, Zhen
2016-01-01
Abstract Background: Endometriosis is a gynecologic disease reported to be associated with infertility and, possibly, adverse pregnancy outcomes. While considerable research focuses on pregnancy outcomes following diagnosis and/or treatment, few data actually describe women's reproductive history before diagnosis for a more complete understanding of endometriosis and reproduction. Materials and Methods: The study sample comprised 473 women (aged 18–44 years) undergoing laparoscopies or laparotomies, irrespective of surgical indication at 14 clinical sites, during the period 2007–2009. Upon enrollment and before surgery, women were queried about pregnancy intentions and the time required to become pregnant for planned pregnancies. Endometriosis was defined as surgically visualized disease. Using discrete time survival analysis, we estimated fecundability odds ratios (FORs) and 95% confidence intervals (CIs) to assess time to pregnancy (TTP) after adjusting for potential confounders (age, body composition, cigarette smoking, site). Generalized estimating equations accounted for multiple pregnancy attempts per woman. FORs <1.0 denote a longer TTP or diminished fecundity. Results: Approximately 66% and 69% of women with and without endometriosis, respectively, reported having a planned pregnancy before surgery, respectively. After adjustment, an endometriosis diagnosis was associated with ≈29% reduction in fecundity or a longer TTP across all pregnancy-trying attempts (adjusted FOR = 0.71; 95% CI 0.46–1.10). While FORs were consistently <1.0, irrespective of endometriosis staging, CIs included 1. Conclusions: Women with endometriosis had a longer TTP than unaffected women, irrespective of disease severity, although the findings did not achieve significance. Prior reproductive history may be informative for predicting fecundity and pregnancy outcomes following diagnosis/treatment. PMID:27379997
Free geometric adjustment of the SECOR Equatorial Network (Solution SECOR-27)
NASA Technical Reports Server (NTRS)
Mueller, I. I.; Kumar, M.; Soler, T.
1973-01-01
The basic purpose of this experiment is to compute reduced normal equations from the observational data of the SECOR Equatorial Network obtained from DMA/Topographic Center, D/Geodesy, Geosciences Div. Washington, D.C. These reduced normal equations are to be combined with reduced normal equations of other satellite networks of the National Geodetic Satellite Program to provide station coordinates from a single least square adjustment. An individual SECOR solution was also obtained and is presented in this report, using direction constraints computed from BC-4 optical data from stations collocated with SECOR stations. Due to the critical configuration present in the range observations, weighted height constraints were also applied in order to break the near coplanarity of the observing stations.
Hagel, B E; Romanow, N T R; Morgunov, N; Embree, T; Couperthwaite, A B; Voaklander, D; Rowe, B H
2014-04-01
Little is known about the effectiveness of visibility aids (VAs; e.g., reflectors, lights, fluorescent clothing) in reducing the risk of a bicyclist-motor-vehicle (MV) collision. To determine if VAs reduce the risk of a bicyclist-MV collision. Cases were bicyclists struck by a MV and assessed at Calgary and Edmonton, Alberta, Canada, emergency departments (EDs) from May 2008 to October 2010. Controls were bicyclists with non-MV injuries. Participants were interviewed about their personal and injury characteristics, including use of VAs. Injury information was collected from charts. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated for VAs during daylight and dark conditions, and adjusted for confounders using logistic regression. Missing values were imputed using chained equations and adjusted OR estimates from the imputed data were calculated. There were 2403 injured bicyclists including 278 cases. After adjusting for age, sex, type of bicycling (commuting vs. recreational) and bicyclist speed, white compared with black (OR 0.52; 95% CI 0.28, 0.95), and bicyclist self-reported light compared with dark coloured (OR 0.67; 95% CI 0.49, 0.92) upper body clothing reduced the odds of a MV collision during daylight. After imputing missing values, white compared with black (OR 0.57; 95% CI: 0.32, 0.99) and bicyclist self-reported light compared with dark coloured (OR 0.71; 95% CI 0.52, 0.97) upper body clothing remained protective against MV collision in daylight conditions. During dark conditions, crude estimates indicated that reflective clothing or other items, red/orange/yellow front upper body clothing compared with black, fluorescent clothing, headlights and tail lights were estimated to increase the odds of a MV collision. An imputed adjusted analysis revealed that red/orange/yellow front upper body clothing colour (OR 4.11; 95% CI 1.06, 15.99) and tail lights (OR 2.54; 95% CI: 1.06, 6.07) remained the only significant risk factors for MV collisions. One or more visibility aids reduced the odds of a bicyclist MV collision resulting in hospitalization. Bicyclist clothing choice may be important in reducing the risk of MV collision. The protective effect of visibility aids varies based on light conditions, and non-bicyclist risk factors also need to be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Predicting the reference evapotranspiration based on tensor decomposition
NASA Astrophysics Data System (ADS)
Misaghian, Negin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Mohammadi, Kasra
2017-11-01
Most of the available models for reference evapotranspiration (ET0) estimation are based upon only an empirical equation for ET0. Thus, one of the main issues in ET0 estimation is the appropriate integration of time information and different empirical ET0 equations to determine ET0 and boost the precision. The FAO-56 Penman-Monteith, adjusted Hargreaves, Blaney-Criddle, Priestley-Taylor, and Jensen-Haise equations were utilized in this study for estimating ET0 for two stations of Belgrade and Nis in Serbia using collected data for the period of 1980 to 2010. Three-order tensor is used to capture three-way correlations among months, years, and ET0 information. Afterward, the latent correlations among ET0 parameters were found by the multiway analysis to enhance the quality of the prediction. The suggested method is valuable as it takes into account simultaneous relations between elements, boosts the prediction precision, and determines latent associations. Models are compared with respect to coefficient of determination ( R 2), mean absolute error (MAE), and root-mean-square error (RMSE). The proposed tensor approach has a R 2 value of greater than 0.9 for all selected ET0 methods at both selected stations, which is acceptable for the ET0 prediction. RMSE is ranged between 0.247 and 0.485 mm day-1 at Nis station and between 0.277 and 0.451 mm day-1 at Belgrade station, while MAE is between 0.140 and 0.337 mm day-1 at Nis and between 0.208 and 0.360 mm day-1 at Belgrade station. The best performances are achieved by Priestley-Taylor model at Nis station ( R 2 = 0.985, MAE = 0.140 mm day-1, RMSE = 0.247 mm day-1) and FAO-56 Penman-Monteith model at Belgrade station (MAE = 0.208 mm day-1, RMSE = 0.277 mm day-1, R 2 = 0.975).
Chang, Ke-Vin; Hsu, Tsai-Hsuan; Wu, Wei-Ting; Huang, Kuo-Chin; Han, Der-Sheng
2017-09-01
to explore whether sarcopenia is associated with depression. electronic literature databases from PubMed, Scopus, Embase and Google Scholar were searched. A systematic review and meta-analysis of observational studies was conducted. community and outpatient clinic. people with and without diagnoses of sarcopenia. outcome measures of depression. about 15 articles were included, 5 of which were retrieved for narrative review. The crude odds ratios (ORs) between sarcopenia and depression were extracted from the remaining 10 studies, 6 of which also included adjusted ORs. Sarcopenia was associated with depression without adjusting covariates (crude OR, 1.640; 95% confidence interval (CI), 1.247-2.155). After adjusting for potential confounders such as age, gender, cognitive performance and physical activity, sarcopenia still demonstrated a significant positive association with depression (adjusted OR, 1.821; 95% CI, 1.160-2.859). A stratified analysis showed that the studies that used bioelectrical impedance analysis for measurement of body composition tended to have an elevated association between sarcopenia and depression compared with those that used dual-energy X-ray absorptiometry or equation estimation. sarcopenia was independently associated with depression. The causal relationship between the two clinical conditions requires future validation with cohort studies. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com
Gurka, Matthew J; Kuperminc, Michelle N; Busby, Marjorie G; Bennis, Jacey A; Grossberg, Richard I; Houlihan, Christine M; Stevenson, Richard D; Henderson, Richard C
2010-02-01
To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I-V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. Slaughter's equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat -9.6/100 [SD 6.2]; 95% confidence interval [CI] -11.0 to -8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI -1.0 to 1.3) than existing equations. A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP.
Validation of Core Temperature Estimation Algorithm
2016-01-29
plot of observed versus estimated core temperature with the line of identity (dashed) and the least squares regression line (solid) and line equation...estimated PSI with the line of identity (dashed) and the least squares regression line (solid) and line equation in the top left corner. (b) Bland...for comparison. The root mean squared error (RMSE) was also computed, as given by Equation 2.
Gradient estimates on the weighted p-Laplace heat equation
NASA Astrophysics Data System (ADS)
Wang, Lin Feng
2018-01-01
In this paper, by a regularization process we derive new gradient estimates for positive solutions to the weighted p-Laplace heat equation when the m-Bakry-Émery curvature is bounded from below by -K for some constant K ≥ 0. When the potential function is constant, which reduce to the gradient estimate established by Ni and Kotschwar for positive solutions to the p-Laplace heat equation on closed manifolds with nonnegative Ricci curvature if K ↘ 0, and reduce to the Davies, Hamilton and Li-Xu's gradient estimates for positive solutions to the heat equation on closed manifolds with Ricci curvature bounded from below if p = 2.
NASA Astrophysics Data System (ADS)
Yamaguchi, Makoto; Midorikawa, Saburoh
The empirical equation for estimating the site amplification factor of ground motion by the average shear-wave velocity of ground (AVS) is examined. In the existing equations, the coefficient on dependence of the amplification factor on the AVS was treated as constant. The analysis showed that the coefficient varies with change of the AVS for short periods. A new estimation equation was proposed considering the dependence on the AVS. The new equation can represent soil characteristics that the softer soil has the longer predominant period, and can make better estimations for short periods than the existing method.
Ohlsson, Claes; Nethander, Maria; Karlsson, Magnus K; Rosengren, Björn E; Ribom, Eva; Mellström, Dan; Vandenput, Liesbeth
2018-03-12
The adrenal-derived hormones dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are the most abundant circulating hormones and their levels decline substantially with age. Many of the actions of DHEAS are considered to be mediated through metabolism into androgens and estrogens in peripheral target tissues. The predictive value of serum DHEA and DHEAS for the likelihood of falling is unknown. The aim of this study was, therefore, to assess the associations between baseline DHEA and DHEAS levels and incident fall risk in a large cohort of older men. Serum DHEA and DHEAS levels were analyzed with mass spectrometry in the population-based Osteoporotic Fractures in Men study in Sweden (n = 2516, age 69 to 81 years). Falls were ascertained every 4 months by mailed questionnaires. Associations between steroid hormones and falls were estimated by generalized estimating equations. During a mean follow-up of 2.7 years, 968 (38.5%) participants experienced a fall. High serum levels of both DHEA (odds ratio [OR] per SD increase 0.85; 95% CI, 0.78 to 0.92) and DHEAS (OR 0.88, 95% CI, 0.81 to 0.95) were associated with a lower incident fall risk in models adjusted for age, BMI, and prevalent falls. Further adjustment for serum sex steroids or age-related comorbidities only marginally attenuated the associations between DHEA or DHEAS and the likelihood of falling. Moreover, the point estimates for DHEA and DHEAS were only slightly reduced after adjustment for lean mass and/or grip strength. Also, the addition of the narrow walk test did not substantially alter the associations between serum DHEA or DHEAS and fall risk. Finally, the association with incident fall risk remained significant for DHEA but not for DHEAS after simultaneous adjustment for lean mass, grip strength, and the narrow walk test. This suggests that the associations between DHEA and DHEAS and falls are only partially mediated via muscle mass, muscle strength, and/or balance. In conclusion, older men with high DHEA or DHEAS levels have a lesser likelihood of a fall. © 2018 American Society for Bone and Mineral Research. © 2018 American Society for Bone and Mineral Research.
Yang, Kun; Tao, Lixin; Mahara, Gehendra; Yan, Yan; Cao, Kai; Liu, Xiangtong; Chen, Sipeng; Xu, Qin; Liu, Long; Wang, Chao; Huang, Fangfang; Zhang, Jie; Yan, Aoshuang; Ping, Zhao; Guo, Xiuhua
2016-09-01
The quadratic inference function (QIF) method becomes more acceptable for correlated data because of its advantages over generalized estimating equations (GEE). This study aimed to evaluate the relationship between platelet indices and blood pressure using QIF method, which has not been studied extensively in real data settings.A population-based longitudinal study was conducted in Beijing from 2007 to 2012, and the median of follow-up was 6 years. A total of 6515 cases, who were aged between 20 and 65 years at baseline and underwent routine physical examinations every year from 3 Beijing hospitals were enrolled to explore the association between platelet indices and blood pressure by QIF method. The original continuous platelet indices were categorized into 4 levels (Q1-Q4) using the 3 quartiles of P25, P50, and P75 as a critical value. GEE was performed to make a comparison with QIF.After adjusting for age, usage of drugs, and other confounding factors, mean platelet volume was negatively associated with diastolic blood pressure (DBP) (Equation is included in full-text article.)in males and positively linked with systolic blood pressure (SBP) (Equation is included in full-text article.). Platelet distribution width was negatively associated with SBP (Equation is included in full-text article.). Blood platelet count was associated with DBP (Equation is included in full-text article.)in males.Adults in Beijing with prolonged exposure to extreme value of platelet indices have elevated risk for future hypertension and evidence suggesting using some platelet indices for early diagnosis of high blood pressure was provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochrane, T. T., E-mail: agteca@hotmail.com; Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz
Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their newmore » equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f} using recorded relative density data at 20 °C. They were subsequently used to estimate N{sub f} values at temperatures up to and excess of body temperatures. Those values, together with t values at temperatures up to and in excess of body temperatures recorded in the literature, were substituted in the authors’ equation for the provisional calculation of osmotic potentials. The calculations indicated that solution temperatures and solute concentrations have a marked effect on osmotic potentials. Conclusions: Following work to measure the relative densities of aqueous solutions for the calculation of N{sub f} values and the determination of definitive t values up to and beyond bodily temperatures, the authors’ equation would enable the accurate estimations of the osmotic potentials of wide concentrations of aqueous solutions of inorganic and organic solutes over the temperature range. The study illustrates that not only solute concentrations but also temperatures have a marked effect on osmotic potentials, an observation of medical and biological significance.« less
van der Velde-Koerts, Trijntje; Breysse, Nicolas; Pattingre, Lauriane; Hamey, Paul Y; Lutze, Jason; Mahieu, Karin; Margerison, Sam; Ossendorp, Bernadette C; Reich, Hermine; Rietveld, Anton; Sarda, Xavier; Vial, Gaelle; Sieke, Christian
2018-06-03
In 2015 a scientific workshop was held in Geneva, where updating the International Estimate of Short-Term Intake (IESTI) equations was suggested. This paper studies the effects of the proposed changes in residue inputs, large portions, variability factors and unit weights on the overall short-term dietary exposure estimate. Depending on the IESTI case equation, a median increase in estimated overall exposure by a factor of 1.0-6.8 was observed when the current IESTI equations are replaced by the proposed IESTI equations. The highest increase in the estimated exposure arises from the replacement of the median residue (STMR) by the maximum residue limit (MRL) for bulked and blended commodities (case 3 equations). The change in large portion parameter does not have a significant impact on the estimated exposure. The use of large portions derived from the general population covering all age groups and bodyweights should be avoided when large portions are not expressed on an individual bodyweight basis. Replacement of the highest residue (HR) by the MRL and removal of the unit weight each increase the estimated exposure for small-, medium- and large-sized commodities (case 1, case 2a or case 2b equations). However, within the EU framework lowering of the variability factor from 7 or 5 to 3 counterbalances the effect of changes in other parameters, resulting in an estimated overall exposure change for the EU situation of a factor of 0.87-1.7 and 0.6-1.4 for IESTI case 2a and case 2b equations, respectively.
Lombard, Pamela J.; Hodgkins, Glenn A.
2015-01-01
Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.
Association between GFR Estimated by Multiple Methods at Dialysis Commencement and Patient Survival
Wong, Muh Geot; Pollock, Carol A.; Cooper, Bruce A.; Branley, Pauline; Collins, John F.; Craig, Jonathan C.; Kesselhut, Joan; Luxton, Grant; Pilmore, Andrew; Harris, David C.
2014-01-01
Summary Background and objectives The Initiating Dialysis Early and Late study showed that planned early or late initiation of dialysis, based on the Cockcroft and Gault estimation of GFR, was associated with identical clinical outcomes. This study examined the association of all-cause mortality with estimated GFR at dialysis commencement, which was determined using multiple formulas. Design, setting, participants, & measurements Initiating Dialysis Early and Late trial participants were stratified into tertiles according to the estimated GFR measured by Cockcroft and Gault, Modification of Diet in Renal Disease, or Chronic Kidney Disease-Epidemiology Collaboration formula at dialysis commencement. Patient survival was determined using multivariable Cox proportional hazards model regression. Results Only Initiating Dialysis Early and Late trial participants who commenced on dialysis were included in this study (n=768). A total of 275 patients died during the study. After adjustment for age, sex, racial origin, body mass index, diabetes, and cardiovascular disease, no significant differences in survival were observed between estimated GFR tertiles determined by Cockcroft and Gault (lowest tertile adjusted hazard ratio, 1.11; 95% confidence interval, 0.82 to 1.49; middle tertile hazard ratio, 1.29; 95% confidence interval, 0.96 to 1.74; highest tertile reference), Modification of Diet in Renal Disease (lowest tertile hazard ratio, 0.88; 95% confidence interval, 0.63 to 1.24; middle tertile hazard ratio, 1.20; 95% confidence interval, 0.90 to 1.61; highest tertile reference), and Chronic Kidney Disease-Epidemiology Collaboration equations (lowest tertile hazard ratio, 0.93; 95% confidence interval, 0.67 to 1.27; middle tertile hazard ratio, 1.15; 95% confidence interval, 0.86 to 1.54; highest tertile reference). Conclusion Estimated GFR at dialysis commencement was not significantly associated with patient survival, regardless of the formula used. However, a clinically important association cannot be excluded, because observed confidence intervals were wide. PMID:24178976
The Estimated Health and Economic Benefits of Three Decades of Polio Elimination Efforts in India.
Nandi, Arindam; Barter, Devra M; Prinja, Shankar; John, T Jacob
2016-08-07
In March 2014, India, the country with historically the highest burden of polio, was declared polio free, with no reported cases since January 2011. We estimate the health and economic benefits of polio elimination in India with the oral polio vaccine (OPV) during 1982-2012. Based on a pre-vaccine incidence rate, we estimate the counterfactual burden of polio in the hypothetical absence of the national polio elimination program in India. We attribute differences in outcomes between the actual (adjusted for under-reporting) and hypothetical counterfactual scenarios in our model to the national polio program. We measure health benefits as averted polio incidence, deaths, and disability adjusted life years (DALYs). We consider two methods to measure economic benefits: the value of statistical life approach, and equating one DALY to the Gross National Income (GNI) per capita. We estimate that the National Program against Polio averted 3.94 million (95% confidence interval [CI]: 3.89-3.99 million) paralytic polio cases, 393,918 polio deaths (95% CI: 388,897- 398,939), and 1.48 billion DALYs (95% CI: 1.46-1.50 billion). We also estimate that the program contributed to a $1.71 trillion (INR 76.91 trillion) gain (95% CI: $1.69-$1.73 trillion [INR 75.93-77.89 trillion]) in economic productivity between 1982 and 2012 in our base case analysis. Using the GNI and DALY method, the economic gain from the program is estimated to be $1.11 trillion (INR 50.13 trillion) (95% CI: $1.10-$1.13 trillion [INR 49.50-50.76 trillion]) over the same period. India accrued large health and economic benefits from investing in polio elimination efforts. Other programs to control/eliminate more vaccine-preventable diseases are likely to contribute to large health and economic benefits in India.
McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy
2016-04-05
The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana StreamStats application and the datasets, streamflow-gaging stations, streamflow characteristics, and regression equations (as described fully in Chapters B through G of this report) that are used for development of the StreamStats application for Montana.
Nitsch, Dorothea; Grams, Morgan; Sang, Yingying; Black, Corri; Cirillo, Massimo; Djurdjev, Ognjenka; Iseki, Kunitoshi; Jassal, Simerjot K; Kimm, Heejin; Kronenberg, Florian; Oien, Cecilia M; Levey, Andrew S; Levin, Adeera; Woodward, Mark; Hemmelgarn, Brenda R
2013-01-29
To assess for the presence of a sex interaction in the associations of estimated glomerular filtration rate and albuminuria with all-cause mortality, cardiovascular mortality, and end stage renal disease. Random effects meta-analysis using pooled individual participant data. 46 cohorts from Europe, North and South America, Asia, and Australasia. 2,051,158 participants (54% women) from general population cohorts (n=1,861,052), high risk cohorts (n=151,494), and chronic kidney disease cohorts (n=38,612). Eligible cohorts (except chronic kidney disease cohorts) had at least 1000 participants, outcomes of either mortality or end stage renal disease of ≥ 50 events, and baseline measurements of estimated glomerular filtration rate according to the Chronic Kidney Disease Epidemiology Collaboration equation (mL/min/1.73 m(2)) and urinary albumin-creatinine ratio (mg/g). Risks of all-cause mortality and cardiovascular mortality were higher in men at all levels of estimated glomerular filtration rate and albumin-creatinine ratio. While higher risk was associated with lower estimated glomerular filtration rate and higher albumin-creatinine ratio in both sexes, the slope of the risk relationship for all-cause mortality and for cardiovascular mortality were steeper in women than in men. Compared with an estimated glomerular filtration rate of 95, the adjusted hazard ratio for all-cause mortality at estimated glomerular filtration rate 45 was 1.32 (95% CI 1.08 to 1.61) in women and 1.22 (1.00 to 1.48) in men (P(interaction)<0.01). Compared with a urinary albumin-creatinine ratio of 5, the adjusted hazard ratio for all-cause mortality at urinary albumin-creatinine ratio 30 was 1.69 (1.54 to 1.84) in women and 1.43 (1.31 to 1.57) in men (P(interaction)<0.01). Conversely, there was no evidence of a sex difference in associations of estimated glomerular filtration rate and urinary albumin-creatinine ratio with end stage renal disease risk. Both sexes face increased risk of all-cause mortality, cardiovascular mortality, and end stage renal disease with lower estimated glomerular filtration rates and higher albuminuria. These findings were robust across a large global consortium.
Camps, Vicente J; Piñero, David P; Mateo, Veronica; Ribera, David; de Fez, Dolores; Blanes-Mompó, Francisco J; Alzamora-Rodríguez, Antonio
2013-11-01
To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, -1.00 to -6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (Pc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj = -0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = -0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and Pc was 0.00 D, with limits of agreement of -0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = -0.94, P < 0.01). The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.
Lawrence, T E; Elam, N A; Miller, M F; Brooks, J C; Hilton, G G; VanOverbeke, D L; McKeith, F K; Killefer, J; Montgomery, T H; Allen, D M; Griffin, D B; Delmore, R J; Nichols, W T; Streeter, M N; Yates, D A; Hutcheson, J P
2010-06-01
Analyses were conducted to evaluate the ability of the USDA yield grade equation to detect differences in subprimal yield of beef-type steers and calf-fed Holstein steers that had been fed zilpaterol hydrochloride (ZH; Intervet Inc., Millsboro, DE) as well as those that had not been fed ZH. Beef-type steer (n = 801) and calf-fed Holstein steer (n = 235) carcasses were fabricated into subprimal cuts and trim. Simple correlations between calculated yield grades and total red meat yields ranged from -0.56 to -0.62 for beef-type steers. Reliable correlations from calf-fed Holstein steers were unobtainable; the probability of a type I error met or exceeded 0.39. Linear models were developed for the beef-type steers to predict total red meat yield based on calculated USDA yield grade within each ZH duration. At an average calculated USDA yield grade of 2.9, beef-type steer carcasses that had not been fed ZH had an estimated 69.4% red meat yield, whereas those fed ZH had an estimated 70.7% red meat yield. These results indicate that feeding ZH increased red meat yield by 1.3% at a constant calculated yield grade. However, these data also suggest that the calculated USDA yield grade score is a poor and variable estimator (adjusted R(2) of 0.31 to 0.38) of total red meat yield of beef-type steer carcasses, regardless of ZH feeding. Moreover, no relationship existed (adjusted R(2) of 0.00 to 0.01) for calf-fed Holstein steer carcasses, suggesting the USDA yield grade is not a valid estimate of calf-fed Holstein red meat yield.
Estimating rupture distances without a rupture
Thompson, Eric M.; Worden, Charles
2017-01-01
Most ground motion prediction equations (GMPEs) require distances that are defined relative to a rupture model, such as the distance to the surface projection of the rupture (RJB) or the closest distance to the rupture plane (RRUP). There are a number of situations in which GMPEs are used where it is either necessary or advantageous to derive rupture distances from point-source distance metrics, such as hypocentral (RHYP) or epicentral (REPI) distance. For ShakeMap, it is necessary to provide an estimate of the shaking levels for events without rupture models, and before rupture models are available for events that eventually do have rupture models. In probabilistic seismic hazard analysis, it is often convenient to use point-source distances for gridded seismicity sources, particularly if a preferred orientation is unknown. This avoids the computationally cumbersome task of computing rupture-based distances for virtual rupture planes across all strikes and dips for each source. We derive average rupture distances conditioned on REPI, magnitude, and (optionally) back azimuth, for a variety of assumed seismological constraints. Additionally, we derive adjustment factors for GMPE standard deviations that reflect the added uncertainty in the ground motion estimation when point-source distances are used to estimate rupture distances.
THE ABSOLUTE RATE OF LGRB FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, J. F.; Schady, P.
2016-06-01
We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate ofmore » the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.« less
The Absolute Rate of LGRB Formation
NASA Astrophysics Data System (ADS)
Graham, J. F.; Schady, P.
2016-06-01
We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.
ERIC Educational Resources Information Center
Wang, Tianyou
2008-01-01
Von Davier, Holland, and Thayer (2004) laid out a five-step framework of test equating that can be applied to various data collection designs and equating methods. In the continuization step, they presented an adjusted Gaussian kernel method that preserves the first two moments. This article proposes an alternative continuization method that…
Krishna P. Poudel; Temesgen Hailemariam
2016-01-01
Using data from destructively sampled Douglas-fir and lodgepole pine trees, we evaluated the performance of regional volume and component biomass equations in terms of bias and RMSE. The volume and component biomass equations were calibrated using three different adjustment methods that used: (a) a correction factor based on ordinary least square regression through...
Numerical solution of distributed order fractional differential equations
NASA Astrophysics Data System (ADS)
Katsikadelis, John T.
2014-02-01
In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.
A Stochastic Fractional Dynamics Model of Space-time Variability of Rain
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Travis, James E.
2013-01-01
Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment.
Rapid estimation of aquifer salinity structure from oil and gas geophysical logs
NASA Astrophysics Data System (ADS)
Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.
2016-12-01
We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity maps for the region of interest. We present results for select well fields in the Southern San Joaquin Valley, California.
Dallaglio, Paolo Domenico; Anguera, Ignasi; Martínez Ferrer, José B; Pérez, Luisa; Viñolas, Xavier; Porres, Jose Manuel; Fontenla, Adolfo; Alzueta, Javier; Martínez, Juan Gabriel; Rodríguez, Aníbal; Basterra, Nuria; Sabaté, Xavier
2017-12-11
Fast ventricular tachycardias in the ventricular fibrillation zone in patients with an implantable cardioverter-defibrillator are susceptible to antitachycardia pacing (ATP) termination. Some manufacturers allow programming 2 ATP bursts: before charging (BC) and during (DC) charging. The aim of this study was to describe the safety and effectiveness of ATP BC and DC for fast ventricular tachycardias in the ventricular fibrillation zone in patients with an implantable cardioverter-defibrillator in daily clinical practice. Data proceeded from the multicenter UMBRELLA trial, including implantable cardioverter-defibrillator patients followed up by the CareLink monitoring system. Fast ventricular tachycardias in the ventricular fibrillation zone until a cycle length of 200ms with ATP BC and/or ATP DC were included. We reviewed 542 episodes in 240 patients. Two ATP bursts (BC/DC) were programmed in 291 episodes (53.7%, 87 patients), while 251 episodes (46.3%, 153 patients) had 1 ATP burst only DC. The number of episodes terminated by 1 ATP DC was 139, representing 55.4% effectiveness (generalized estimating equation-adjusted 60.4%). There were 256 episodes terminated by 1 or 2 ATP (BC/DC), representing 88% effectiveness (generalized estimating equation-adjusted 79.3%); the OR for ATP effectiveness BC/DC vs DC was 2.5, 95%CI, 1.5-4.1; P <.001. Shocked episodes were 112 (45%) for ATP DC vs 35 (12%) for ATP BC/DC, representing an absolute reduction of 73%. The mean shocked episode duration was 16seconds for ATP DC vs 19seconds for ATP BC/DC (P=.07). The ATP DC in the ventricular fibrillation zone for fast ventricular tachycardia is moderately effective. Adding an ATP burst BC increases the overall effectiveness, reduces the need for shocks, and does not prolong episode duration. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Estimating Dynamical Systems: Derivative Estimation Hints From Sir Ronald A. Fisher.
Deboeck, Pascal R
2010-08-06
The fitting of dynamical systems to psychological data offers the promise of addressing new and innovative questions about how people change over time. One method of fitting dynamical systems is to estimate the derivatives of a time series and then examine the relationships between derivatives using a differential equation model. One common approach for estimating derivatives, Local Linear Approximation (LLA), produces estimates with correlated errors. Depending on the specific differential equation model used, such correlated errors can lead to severely biased estimates of differential equation model parameters. This article shows that the fitting of dynamical systems can be improved by estimating derivatives in a manner similar to that used to fit orthogonal polynomials. Two applications using simulated data compare the proposed method and a generalized form of LLA when used to estimate derivatives and when used to estimate differential equation model parameters. A third application estimates the frequency of oscillation in observations of the monthly deaths from bronchitis, emphysema, and asthma in the United Kingdom. These data are publicly available in the statistical program R, and functions in R for the method presented are provided.
Schuck, P
2000-03-01
A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.
Reaeration equations derived from U.S. geological survey database
Melching, C.S.; Flores, H.E.
1999-01-01
Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the date set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the data set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.
Characterization and simulation of cDNA microarray spots using a novel mathematical model
Kim, Hye Young; Lee, Seo Eun; Kim, Min Jung; Han, Jin Il; Kim, Bo Kyung; Lee, Yong Sung; Lee, Young Seek; Kim, Jin Hyuk
2007-01-01
Background The quality of cDNA microarray data is crucial for expanding its application to other research areas, such as the study of gene regulatory networks. Despite the fact that a number of algorithms have been suggested to increase the accuracy of microarray gene expression data, it is necessary to obtain reliable microarray images by improving wet-lab experiments. As the first step of a cDNA microarray experiment, spotting cDNA probes is critical to determining the quality of spot images. Results We developed a governing equation of cDNA deposition during evaporation of a drop in the microarray spotting process. The governing equation included four parameters: the surface site density on the support, the extrapolated equilibrium constant for the binding of cDNA molecules with surface sites on glass slides, the macromolecular interaction factor, and the volume constant of a drop of cDNA solution. We simulated cDNA deposition from the single model equation by varying the value of the parameters. The morphology of the resulting cDNA deposit can be classified into three types: a doughnut shape, a peak shape, and a volcano shape. The spot morphology can be changed into a flat shape by varying the experimental conditions while considering the parameters of the governing equation of cDNA deposition. The four parameters were estimated by fitting the governing equation to the real microarray images. With the results of the simulation and the parameter estimation, the phenomenon of the formation of cDNA deposits in each type was investigated. Conclusion This study explains how various spot shapes can exist and suggests which parameters are to be adjusted for obtaining a good spot. This system is able to explore the cDNA microarray spotting process in a predictable, manageable and descriptive manner. We hope it can provide a way to predict the incidents that can occur during a real cDNA microarray experiment, and produce useful data for several research applications involving cDNA microarrays. PMID:18096047
Efficacy of generic allometric equations for estimating biomass: a test in Japanese natural forests.
Ishihara, Masae I; Utsugi, Hajime; Tanouchi, Hiroyuki; Aiba, Masahiro; Kurokawa, Hiroko; Onoda, Yusuke; Nagano, Masahiro; Umehara, Toru; Ando, Makoto; Miyata, Rie; Hiura, Tsutom
2015-07-01
Accurate estimation of tree and forest biomass is key to evaluating forest ecosystem functions and the global carbon cycle. Allometric equations that estimate tree biomass from a set of predictors, such as stem diameter and tree height, are commonly used. Most allometric equations are site specific, usually developed from a small number of trees harvested in a small area, and are either species specific or ignore interspecific differences in allometry. Due to lack of site-specific allometries, local equations are often applied to sites for which they were not originally developed (foreign sites), sometimes leading to large errors in biomass estimates. In this study, we developed generic allometric equations for aboveground biomass and component (stem, branch, leaf, and root) biomass using large, compiled data sets of 1203 harvested trees belonging to 102 species (60 deciduous angiosperm, 32 evergreen angiosperm, and 10 evergreen gymnosperm species) from 70 boreal, temperate, and subtropical natural forests in Japan. The best generic equations provided better biomass estimates than did local equations that were applied to foreign sites. The best generic equations included explanatory variables that represent interspecific differences in allometry in addition to stem diameter, reducing error by 4-12% compared to the generic equations that did not include the interspecific difference. Different explanatory variables were selected for different components. For aboveground and stem biomass, the best generic equations had species-specific wood specific gravity as an explanatory variable. For branch, leaf, and root biomass, the best equations had functional types (deciduous angiosperm, evergreen angiosperm, and evergreen gymnosperm) instead of functional traits (wood specific gravity or leaf mass per area), suggesting importance of other traits in addition to these traits, such as canopy and root architecture. Inclusion of tree height in addition to stem diameter improved the performance of the generic equation only for stem biomass and had no apparent effect on aboveground, branch, leaf, and root biomass at the site level. The development of a generic allometric equation taking account of interspecific differences is an effective approach for accurately estimating aboveground and component biomass in boreal, temperate, and subtropical natural forests.
Estimating residual kidney function in dialysis patients without urine collection
Shafi, Tariq; Michels, Wieneke M.; Levey, Andrew S.; Inker, Lesley A.; Dekker, Friedo W.; Krediet, Raymond T.; Hoekstra, Tiny; Schwartz, George J.; Eckfeldt, John H.; Coresh, Josef
2016-01-01
Residual kidney function contributes substantially to solute clearance in dialysis patients but cannot be assessed without urine collection. We used serum filtration markers to develop dialysis-specific equations to estimate urinary urea clearance without the need for urine collection. In our development cohort, we measured 24-hour urine clearances under close supervision in 44 patients and validated these equations in 826 patients from the Netherlands Cooperative Study on the Adequacy of Dialysis. For the development and validation cohorts, median urinary urea clearance was 2.6 and 2.4 mL/min, respectively. During the 24-hour visit in the development cohort, serum β-trace protein concentrations remained in steady state but concentrations of all other markers increased. In the validation cohort, bias (median measured minus estimated clearance) was low for all equations. Precision was significantly better for β-trace protein and β2-microglobulin equations and the accuracy was significantly greater for β-trace protein, β2-microglobulin and cystatin C equations, compared with the urea plus creatinine equation. Area under the receiver operator characteristic curve for detecting measured urinary urea clearance by equation-estimated urinary urea clearance (both 2 mL/min or more) were 0.821, 0.850 and 0.796 for β-trace protein, β2-microglobulin and cystatin C equations, respectively; significantly greater than the 0.663 for the urea plus creatinine equation. Thus, residual renal function can be estimated in dialysis patients without urine collections. PMID:26924062
Estimating residual kidney function in dialysis patients without urine collection.
Shafi, Tariq; Michels, Wieneke M; Levey, Andrew S; Inker, Lesley A; Dekker, Friedo W; Krediet, Raymond T; Hoekstra, Tiny; Schwartz, George J; Eckfeldt, John H; Coresh, Josef
2016-05-01
Residual kidney function contributes substantially to solute clearance in dialysis patients but cannot be assessed without urine collection. We used serum filtration markers to develop dialysis-specific equations to estimate urinary urea clearance without the need for urine collection. In our development cohort, we measured 24-hour urine clearances under close supervision in 44 patients and validated these equations in 826 patients from the Netherlands Cooperative Study on the Adequacy of Dialysis. For the development and validation cohorts, median urinary urea clearance was 2.6 and 2.4 ml/min, respectively. During the 24-hour visit in the development cohort, serum β-trace protein concentrations remained in steady state but concentrations of all other markers increased. In the validation cohort, bias (median measured minus estimated clearance) was low for all equations. Precision was significantly better for β-trace protein and β2-microglobulin equations and the accuracy was significantly greater for β-trace protein, β2-microglobulin, and cystatin C equations, compared with the urea plus creatinine equation. Area under the receiver operator characteristic curve for detecting measured urinary urea clearance by equation-estimated urinary urea clearance (both 2 ml/min or more) were 0.821, 0.850, and 0.796 for β-trace protein, β2-microglobulin, and cystatin C equations, respectively; significantly greater than the 0.663 for the urea plus creatinine equation. Thus, residual renal function can be estimated in dialysis patients without urine collections. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
A new modified CKD-EPI equation for Chinese patients with type 2 diabetes.
Liu, Xun; Gan, Xiaoliang; Chen, Jinxia; Lv, Linsheng; Li, Ming; Lou, Tanqi
2014-01-01
To improve the performance of glomerular filtration rate (GFR) estimating equation in Chinese type 2 diabetic patients by modification of the CKD-EPI equation. A total of 1196 subjects were enrolled. Measured GFR was calibrated to the dual plasma sample 99mTc-DTPA-GFR. GFRs estimated by the re-expressed 4-variable MDRD equation, the CKD-EPI equation and the Asian modified CKD-EPI equation were compared in 351 diabetic/non-diabetic pairs. And a new modified CKD-EPI equation was reconstructed in a total of 589 type 2 diabetic patients. In terms of both precision and accuracy, GFR estimating equations all achieved better results in the non-diabetic cohort comparing with those in the type 2 diabetic cohort (30% accuracy, P≤0.01 for all comparisons). In the validation data set, the new modified equation showed less bias (median difference, 2.3 ml/min/1.73 m2 for the new modified equation vs. ranged from -3.8 to -7.9 ml/min/1.73 m2 for the other 3 equations [P<0.001 for all comparisons]), as was precision (IQR of the difference, 24.5 ml/min/1.73 m2 vs. ranged from 27.3 to 30.7 ml/min/1.73 m2), leading to a greater accuracy (30% accuracy, 71.4% vs. 55.2% for the re-expressed 4 variable MDRD equation and 61.0% for the Asian modified CKD-EPI equation [P = 0.001 and P = 0.02]). A new modified CKD-EPI equation for type 2 diabetic patients was developed and validated. The new modified equation improves the performance of GFR estimation.
INKER, Lesley A; WYATT, Christina; CREAMER, Rebecca; HELLINGER, James; HOTTA, Matthew; LEPPO, Maia; LEVEY, Andrew S; OKPARAVERO, Aghogho; GRAHAM, Hiba; SAVAGE, Karen; SCHMID, Christopher H; TIGHIOUART, Hocine; WALLACH, Fran; KRISHNASAMI, Zipporah
2013-01-01
Objective To evaluate the performance of CKD-EPI creatinine, cystatin C and creatinine-cystatin C estimating equations in HIV-positive patients. Methods We evaluated the performance of the MDRD Study and CKD-EPI creatinine 2009, CKD-EPI cystatin C 2012 and CKD-EPI creatinine-cystatin C 2012 glomerular filtration rate (GFR) estimating equations compared to GFR measured using plasma clearance of iohexol in 200 HIV-positive patients on stable antiretroviral therapy. Creatinine and cystatin C assays were standardized to certified reference materials. Results Of the 200 participants, median (IQR) CD4 count was 536 (421) and 61% had an undetectable HIV-viral load. Mean (SD) measured GFR (mGFR) was 87 (26) ml/min/1.73m2. All CKD-EPI equations performed better than the MDRD Study equation. All three CKD-EPI equations had similar bias and precision. The cystatin C equation was not more accurate than the creatinine equation. The creatinine-cystatin C equation was significantly more accurate than the cystatin C equation and there was a trend toward greater accuracy than the creatinine equation. Accuracy was equal or better in most subgroups with the combined equation compared to either alone. Conclusions The CKD-EPI cystatin C equation does not appear to be more accurate than the CKD-EPI creatinine equation in patients who are HIV-positive, supporting the use of the CKD-EPI creatinine equation for routine clinical care for use in North American populations with HIV. The use of both filtration markers together as a confirmatory test for decreased estimated GFR based on creatinine in individuals who are HIV-positive requires further study. PMID:22842844
Biomass equations for major tree species of the Northeast
Louise M. Tritton; James W. Hornbeck
1982-01-01
Regression equations are used in both forestry and ecosystem studies to estimate tree biomass from field measurements of dbh (diameter at breast height) or a combination of dbh and height. Literature on biomass is reviewed, and 178 sets of publish equation for 25 species common to the Northeastern Unites States are listed. On the basis of these equations, estimates of...
New body fat prediction equations for severely obese patients.
Horie, Lilian Mika; Barbosa-Silva, Maria Cristina Gonzalez; Torrinhas, Raquel Susana; de Mello, Marco Túlio; Cecconello, Ivan; Waitzberg, Dan Linetzky
2008-06-01
Severe obesity imposes physical limitations to body composition assessment. Our aim was to compare body fat (BF) estimations of severely obese patients obtained by bioelectrical impedance (BIA) and air displacement plethysmography (ADP) for development of new equations for BF prediction. Severely obese subjects (83 female/36 male, mean age=41.6+/-11.6 years) had BF estimated by BIA and ADP. The agreement of the data was evaluated using Bland-Altman's graphic and concordance correlation coefficient (CCC). A multivariate regression analysis was performed to develop and validate new predictive equations. BF estimations from BIA (64.8+/-15 kg) and ADP (65.6+/-16.4 kg) did not differ (p>0.05, with good accuracy, precision, and CCC), but the Bland- Altman graphic showed a wide limit of agreement (-10.4; 8.8). The standard BIA equation overestimated BF in women (-1.3 kg) and underestimated BF in men (5.6 kg; p<0.05). Two BF new predictive equations were generated after BIA measurement, which predicted BF with higher accuracy, precision, CCC, and limits of agreement than the standard BIA equation. Standard BIA equations were inadequate for estimating BF in severely obese patients. Equations developed especially for this population provide more accurate BF assessment.
López-Taylor, Juan R.; Jiménez-Alvarado, Juan Antonio; Villegas-Balcázar, Marisol; Jáuregui-Ulloa, Edtna E.; Torres-Naranjo, Francisco
2018-01-01
Background There are several published anthropometric equations to estimate body fat percentage (BF%), and this may prompt uncertainty about their application. Purpose To analyze the accuracy of several anthropometric equations (developed in athletic [AT] and nonathletic [NAT] populations) that estimate BF% comparing them with DXA. Methods We evaluated 131 professional male soccer players (body mass: 73.2 ± 8.0 kg; height: 177.5 ± 5.8 cm; DXA BF% [median, 25th–75th percentile]: 14.0, 11.9–16.4%) aged 18 to 37 years. All subjects were evaluated with anthropometric measurements and a whole body DXA scan. BF% was estimated through 14 AT and 17 NAT anthropometric equations and compared with the measured DXA BF%. Mean differences and 95% limits of agreement were calculated for those anthropometric equations without significant differences with DXA. Results Five AT and seven NAT anthropometric equations did not differ significantly with DXA. From these, Oliver's and Civar's (AT) and Ball's and Wilmore's (NAT) equations showed the highest agreement with DXA. Their 95% limits of agreement ranged from −3.9 to 2.3%, −4.8 to 1.8%, −3.4 to 3.1%, and −3.9 to 3.0%, respectively. Conclusion Oliver's, Ball's, Civar's, and Wilmore's equations were the best to estimate BF% accurately compared with DXA in professional male soccer players. PMID:29736402
Noumegni, Steve Raoul; Ama, Vicky Jocelyne Moor; Assah, Felix K; Bigna, Jean Joel; Nansseu, Jobert Richie; Kameni, Jenny Arielle M; Katte, Jean-Claude; Dehayem, Mesmin Y; Kengne, Andre Pascal; Sobngwi, Eugene
2017-01-01
The Absolute cardiovascular disease (CVD) risk evaluation using multivariable CVD risk models is increasingly advocated in people with HIV, in whom existing models remain largely untested. We assessed the agreement between the general population derived Framingham CVD risk equation and the HIV-specific Data collection on Adverse effects of anti-HIV Drugs (DAD) CVD risk equation in HIV-infected adult Cameroonians. This cross-sectional study involved 452 HIV infected adults recruited at the HIV day-care unit of the Yaoundé Central Hospital, Cameroon. The 5-year projected CVD risk was estimated for each participant using the DAD and Framingham CVD risk equations. Agreement between estimates from these equations was assessed using the spearman correlation and Cohen's kappa coefficient. The mean age of participants (80% females) was 44.4 ± 9.8 years. Most participants (88.5%) were on antiretroviral treatment with 93.3% of them receiving first-line regimen. The most frequent cardiovascular risk factors were abdominal obesity (43.1%) and dyslipidemia (33.8%). The median estimated 5-year CVD risk was 0.6% (25th-75th percentiles: 0.3-1.3) using the DAD equation and 0.7% (0.2-2.0) with the Framingham equation. The Spearman correlation between the two estimates was 0.93 ( p < 0.001). The kappa statistic was 0.61 (95% confident interval: 0.54-0.67) for the agreement between the two equations in classifying participants across risk categories defined as low, moderate, high and very high. Most participants had a low-to-moderate estimated CVD risk, with acceptable level of agreement between the general and HIV-specific equations in ranking CVD risk.
Tavares, Óscar M; Valente-Dos-Santos, João; Duarte, João P; Póvoas, Susana C; Gobbo, Luís A; Fernandes, Rômulo A; Marinho, Daniel A; Casanova, José M; Sherar, Lauren B; Courteix, Daniel; Coelho-E-Silva, Manuel J
2016-11-24
A variety of performance outputs are strongly determined by lower limbs volume and composition in children and adolescents. The current study aimed to examine the validity of thigh volume (TV) estimated by anthropometry in late adolescent female volleyball players. Dual-energy X-ray absorptiometry (DXA) measures were used as the reference method. Total and regional body composition was assessed with a Lunar DPX NT/Pro/MD+/Duo/Bravo scanner in a cross-sectional sample of 42 Portuguese female volleyball players aged 14-18 years (165.2 ± 0.9 cm; 61.1 ± 1.4 kg). TV was estimated with the reference method (TV-DXA) and with the anthropometric method (TV-ANTH). Agreement between procedures was assessed with Deming regression. The analysis also considered a calibration of the anthropometric approach. The equation that best predicted TV-DXA was: -0.899 + 0.876 × log 10 (body mass) + 0.113 × log 10 (TV-ANTH). This new model (NM) was validated using the predicted residual sum of squares (PRESS) method (R 2 PRESS = 0.838). Correlation between the reference method and the NM was 0.934 (95%CI: 0.880-0.964, S y∙x = 0.325 L). A new and accurate anthropometric method to estimate TV in adolescent female volleyball players was obtained from the equation of Jones and Pearson alongside with adjustments for body mass.
Addressing the unemployment-mortality conundrum: non-linearity is the answer.
Bonamore, Giorgio; Carmignani, Fabrizio; Colombo, Emilio
2015-02-01
The effect of unemployment on mortality is the object of a lively literature. However, this literature is characterized by sharply conflicting results. We revisit this issue and suggest that the relationship might be non-linear. We use data for 265 territorial units (regions) within 23 European countries over the period 2000-2012 to estimate a multivariate regression of mortality. The estimating equation allows for a quadratic relationship between unemployment and mortality. We control for various other determinants of mortality at regional and national level and we include region-specific and time-specific fixed effects. The model is also extended to account for the dynamic adjustment of mortality and possible lagged effects of unemployment. We find that the relationship between mortality and unemployment is U shaped. In the benchmark regression, when the unemployment rate is low, at 3%, an increase by one percentage point decreases average mortality by 0.7%. As unemployment increases, the effect decays: when the unemployment rate is 8% (sample average) a further increase by one percentage point decreases average mortality by 0.4%. The effect changes sign, turning from negative to positive, when unemployment is around 17%. When the unemployment rate is 25%, a further increase by one percentage point raises average mortality by 0.4%. Results hold for different causes of death and across different specifications of the estimating equation. We argue that the non-linearity arises because the level of unemployment affects the psychological and behavioural response of individuals to worsening economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cai, W; Cai, Q; Xiong, N; Qin, Y; Lai, L; Sun, X; Hu, Y
2018-06-01
To assess the pharmacokinetic properties of mycophenolate mofetil (MMF) dispersible tablets and capsules by the enzyme multiplied immunoassay technique (EMIT) in Chinese kidney transplant recipients in the early post-transplantation phase and to develop the equations to predict mycophenolic acid (MPA) area under the 12-hour concentration-time curve (AUC 0-12h ) using a limited sampling strategy (LSS). Forty patients who underwent renal transplantation from brain-dead donors were randomly divided into dispersible tablets (Sai KE Ping; Hangzhou Zhongmei Huadong Pharma) and capsules (Cellcept; Roche Pharma, Why, NSW, Australia) groups, and treated with MMF combined with combination tacrolimus and prednisone as a basic immunosuppressive regimen. Blood samples were collected before treatment (0) and at 0.5,1, 1.5, 2, 4, 6, 8, 10, and 12 hours post-treatment and 7 days after renal transplantation. Plasma MPA concentrations were measured using EMIT. LSS equations were identified using multiple stepwise linear regression analysis. The peak concentration (C max ) in the MMF dispersible tablets (MMFdt) group (7.0 ± 2.8) mg/L was reduced compared with that in the MMF capsules (MMFc) group (10.8 ± 6.2 mg/L; P = .012); time to peak concentration in the MMFdt group was 3.2 ± 2.3 hours, which was nonsignificantly elevated compared with that of the MMFc group (2.2 ± 1.7 hours). Three-point estimation formulas were generated by multiple linear regression for both groups: MPA-AUC MMFdt = 3.542 + 3.332C 0.5h + 1.117C 1.5h + 3.946C 4h (adjusted r 2 = 0.90, P < .001); MPA-AUC MMFc = 8.149 + 1.442C 2h + 1.056C 4h + 7.133C 6h (adjusted r 2 = 0.88, P < .001). Both predicted and measured AUCs showed good consistency. After treatment with MMF dispersible tables or MMF capsules, the C max of MPA for the MMFdt group was significantly lower than that of the MMFc group; there was no significant difference in other pharmacokinetic parameters. Three-time point equations can be used as a predictable measure of the AUC 0-12h of MPA. Copyright © 2018. Published by Elsevier Inc.
Alternatives for the Bedside Schwartz Equation to Estimate Glomerular Filtration Rate in Children.
Pottel, Hans; Dubourg, Laurence; Goffin, Karolien; Delanaye, Pierre
2018-01-01
The bedside Schwartz equation has long been and still is the recommended equation to estimate glomerular filtration rate (GFR) in children. However, this equation is probably best suited to estimate GFR in children with chronic kidney disease (reduced GFR) but is not optimal for children with GFR >75 mL/min/1.73 m 2 . Moreover, the Schwartz equation requires the height of the child, information that is usually not available in the clinical laboratory. This makes automatic reporting of estimated glomerular filtration rate (eGFR) along with serum creatinine impossible. As the majority of children (even children referred to nephrology clinics) have GFR >75 mL/min/1.73 m 2 , it might be interesting to evaluate possible alternatives to the bedside Schwartz equation. The pediatric form of the Full Age Spectrum (FAS) equation offers an alternative to Schwartz, allowing automatic reporting of eGFR since height is not necessary. However, when height is involved in the FAS equation, the equation is essentially equal to the Schwartz equation for children, but there are large differences for adolescents. Combining standardized biomarkers increases the prediction performance of eGFR equations for children, reaching P10 ≈ 45% and P30 ≈ 90%. There are currently good and simple alternatives to the bedside Schwartz equation, but the more complex equations combining serum creatinine, serum cystatin C, and height show the highest accuracy and precision. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Park, K. C.; Alvin, K. F.; Belvin, W. Keith
1991-01-01
A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.
Eash, D.A.
1993-01-01
Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.
Bible, Joe; Beck, James D.; Datta, Somnath
2016-01-01
Summary Ignorance of the mechanisms responsible for the availability of information presents an unusual problem for analysts. It is often the case that the availability of information is dependent on the outcome. In the analysis of cluster data we say that a condition for informative cluster size (ICS) exists when the inference drawn from analysis of hypothetical balanced data varies from that of inference drawn on observed data. Much work has been done in order to address the analysis of clustered data with informative cluster size; examples include Inverse Probability Weighting (IPW), Cluster Weighted Generalized Estimating Equations (CWGEE), and Doubly Weighted Generalized Estimating Equations (DWGEE). When cluster size changes with time, i.e., the data set possess temporally varying cluster sizes (TVCS), these methods may produce biased inference for the underlying marginal distribution of interest. We propose a new marginalization that may be appropriate for addressing clustered longitudinal data with TVCS. The principal motivation for our present work is to analyze the periodontal data collected by Beck et al. (1997, Journal of Periodontal Research 6, 497–505). Longitudinal periodontal data often exhibits both ICS and TVCS as the number of teeth possessed by participants at the onset of study is not constant and teeth as well as individuals may be displaced throughout the study. PMID:26682911
Axial and Centrifugal Compressor Mean Line Flow Analysis Method
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
2009-01-01
This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.
Cherepanov, Dasha; Palta, Mari; Fryback, Dennis G; Robert, Stephanie A; Hays, Ron D; Kaplan, Robert M
2011-11-01
The purpose of the study was to examine whether gender differences in summary health-related quality of life (HRQoL) are due to differences in specific dimensions of health, and whether they are explained by sociodemographic and socioeconomic (SES) variation. The National Health Measurement Study collected cross-sectional data on a national sample of 3648 black and white noninstitutionalized adults ages 35 to 89 years. Data included the Short Form 36-Item survey, which yielded separate Mental and Physical Component Summary scores (MCS and PCS, respectively), and five HRQoL indexes: Short Form 6 dimension, EuroQol 5 dimension, the Health Utilities Indexes Mark 2 and 3, and the Quality of Well-Being Scale Self-Administered form. Structural equation models were used to explore gender differences in physical, psychosocial, and pain latent dimensions of the 5 indexes, adjusting for sociodemographic and SES indicators. Observed MCS and PCS scores were examined in regression models to judge robustness of latent results. Men had better estimated physical and psychosocial health and less pain than women with similar trends on the MCS and PCS scores. Adjustments for marital status or income reduced gender differences more than did other indicators. Adjusting results for partial factorial invariance of HRQoL attributes supported the presence of gender differentials, but also indicated that these differences are impacted by dimensions being related to some HRQoL attributes differently by gender. Men have better estimated health on 3 latent dimensions of HRQoL-physical, psychosocial, and pain-comparable to gender differences on the observed MCS and PCS scores. Gender differences are partly explained by sociodemographic and SES factors, highlighting the role of socioeconomic inequalities in perpetuating gender differences in health outcomes across multiple domains. These results also emphasize the importance of accounting for measurement invariance for meaningful comparison of group differences in estimated means of self-reported measures of health.
Pathways of soil moisture controls on boundary layer dynamics
NASA Astrophysics Data System (ADS)
Siqueira, M.; Katul, G.; Porporato, A.
2007-12-01
Soil moisture controls on precipitation are now receiving significant attention in climate systems because the memory of their variability is much slower than the memory of the fast atmospheric processes. We propose a new model that integrates soil water dynamics, plant hydraulics and stomatal responses to water availability to estimate root water uptake and available energy partitioning, as well as feedbacks to boundary layer dynamics (in terms of water vapor and heat input to the atmospheric system). Using a simplified homogenization technique, the model solves the intrinsically 3-D soil water movement equations by two 1-D coupled Richards' equations. The first resolves the radial water flow from bulk soil to soil-root interface to estimate root uptake (assuming the vertical gradients in moisture persist during the rapid lateral flow), and then it solves vertical water movement through the soil following the radial moisture adjustments. The coupling between these two equations is obtained by area averaging the soil moisture in the radial domain (i.e. homogenization) to calculate the vertical fluxes. For each vertical layer, the domain is discretized in axi-symmetrical grid with constant soil properties. This is deemed to be appropriate given the fact that the root uptake occurs on much shorter time scales closely following diurnal cycles, while the vertical water movement is more relevant to the inter-storm time scale. We show that this approach was able to explicitly simulate known features of root uptake such as diurnal hysteresis of canopy conductance, water redistribution by roots (hydraulic lift) and downward shift of root uptake during drying cycles. The model is then coupled with an atmospheric boundary layer (ABL) growth model thereby permitting us to explore low-dimensional elements of the interaction between soil moisture and ABL states commensurate with the lifting condensation level.
Borcherdt, Roger D.
2014-01-01
Proposals are developed to update Tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7-10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight-line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30-m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic-uncertainty limits implied by the NGA estimates with the exceptions being the mid-period site coefficient, Fv, for site class D and the short-period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein.
Estimate of body composition by Hume's equation: validation with DXA.
Carnevale, Vincenzo; Piscitelli, Pamela Angela; Minonne, Rita; Castriotta, Valeria; Cipriani, Cristiana; Guglielmi, Giuseppe; Scillitani, Alfredo; Romagnoli, Elisabetta
2015-05-01
We investigated how the Hume's equation, using the antipyrine space, could perform in estimating fat mass (FM) and lean body mass (LBM). In 100 (40 male ad 60 female) subjects, we estimated FM and LBM by the equation and compared these values with those measured by a last generation DXA device. The correlation coefficients between measured and estimated FM were r = 0.940 (p < 0.0001) and between measured and estimated LBM were r = 0.913 (p < 0.0001). The Bland-Altman plots demonstrated a fair agreement between estimated and measured FM and LBM, though the equation underestimated FM and overestimated LBM in respect to DXA. The mean difference for FM was 1.40 kg (limits of agreement of -6.54 and 8.37 kg). For LBM, the mean difference in respect to DXA was 1.36 kg (limits of agreement -8.26 and 6.52 kg). The root mean square error was 3.61 kg for FM and 3.56 kg for LBM. Our results show that in clinically stable subjects the Hume's equation could reliably assess body composition, and the estimated FM and LBM approached those measured by a modern DXA device.
GURKA, MATTHEW J; KUPERMINC, MICHELLE N; BUSBY, MARJORIE G; BENNIS, JACEY A; GROSSBERG, RICHARD I; HOULIHAN, CHRISTINE M; STEVENSON, RICHARD D; HENDERSON, RICHARD C
2010-01-01
AIM To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). METHOD Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I–V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. RESULTS Slaughter’s equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat −9.6/100 [SD 6.2]; 95% confidence interval [CI] −11.0 to −8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI −1.0 to 1.3) than existing equations. INTERPRETATION A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP. PMID:19811518
Sabounchi, Nasim S.; Rahmandad, Hazhir; Ammerman, Alice
2014-01-01
Basal Metabolic Rate (BMR) represents the largest component of total energy expenditure and is a major contributor to energy balance. Therefore, accurately estimating BMR is critical for developing rigorous obesity prevention and control strategies. Over the past several decades, numerous BMR formulas have been developed targeted to different population groups. A comprehensive literature search revealed 248 BMR estimation equations developed using diverse ranges of age, gender, race, fat free mass, fat mass, height, waist-to-hip ratio, body mass index, and weight. A subset of 47 studies included enough detail to allow for development of meta-regression equations. Utilizing these studies, meta-equations were developed targeted to twenty specific population groups. This review provides a comprehensive summary of available BMR equations and an estimate of their accuracy. An accompanying online BMR prediction tool (available at http://www.sdl.ise.vt.edu/tutorials.html) was developed to automatically estimate BMR based on the most appropriate equation after user-entry of individual age, race, gender, and weight. PMID:23318720
Validation of equations for pleural effusion volume estimation by ultrasonography.
Hassan, Maged; Rizk, Rana; Essam, Hatem; Abouelnour, Ahmed
2017-12-01
To validate the accuracy of previously published equations that estimate pleural effusion volume using ultrasonography. Only equations using simple measurements were tested. Three measurements were taken at the posterior axillary line for each case with effusion: lateral height of effusion ( H ), distance between collapsed lung and chest wall ( C ) and distance between lung and diaphragm ( D ). Cases whose effusion was aspirated to dryness were included and drained volume was recorded. Intra-class correlation coefficient (ICC) was used to determine the predictive accuracy of five equations against the actual volume of aspirated effusion. 46 cases with effusion were included. The most accurate equation in predicting effusion volume was ( H + D ) × 70 (ICC 0.83). The simplest and yet accurate equation was H × 100 (ICC 0.79). Pleural effusion height measured by ultrasonography gives a reasonable estimate of effusion volume. Incorporating distance between lung base and diaphragm into estimation improves accuracy from 79% with the first method to 83% with the latter.
Van Houtven, George; Powers, John; Jessup, Amber; Yang, Jui-Chen
2006-08-01
Many economists argue that willingness-to-pay (WTP) measures are most appropriate for assessing the welfare effects of health changes. Nevertheless, the health evaluation literature is still dominated by studies estimating nonmonetary health status measures (HSMs), which are often used to assess changes in quality-adjusted life years (QALYs). Using meta-regression analysis, this paper combines results from both WTP and HSM studies applied to acute morbidity, and it tests whether a systematic relationship exists between HSM and WTP estimates. We analyze over 230 WTP estimates from 17 different studies and find evidence that QALY-based estimates of illness severity--as measured by the Quality of Well-Being (QWB) Scale--are significant factors in explaining variation in WTP, as are changes in the duration of illness and the average income and age of the study populations. In addition, we test and reject the assumption of a constant WTP per QALY gain. We also demonstrate how the estimated meta-regression equations can serve as benefit transfer functions for policy analysis. By specifying the change in duration and severity of the acute illness and the characteristics of the affected population, we apply the regression functions to predict average WTP per case avoided. Copyright 2006 John Wiley & Sons, Ltd.
Comparison of total body water estimates from O-18 and bioelectrical response prediction equations
NASA Technical Reports Server (NTRS)
Barrows, Linda H.; Inners, L. Daniel; Stricklin, Marcella D.; Klein, Peter D.; Wong, William W.; Siconolfi, Steven F.
1993-01-01
Identification of an indirect, rapid means to measure total body water (TBW) during space flight may aid in quantifying hydration status and assist in countermeasure development. Bioelectrical response testing and hydrostatic weighing were performed on 27 subjects who ingested O-18, a naturally occurring isotope of oxygen, to measure true TBW. TBW estimates from three bioelectrical response prediction equations and fat-free mass (FFM) were compared to TBW measured from O-18. A repeated measures MANOVA with post-hoc Dunnett's Test indicated a significant (p less than 0.05) difference between TBW estimates from two of the three bioelectrical response prediction equations and O-18. TBW estimates from FFM and the Kushner & Schoeller (1986) equation yielded results that were similar to those given by O-18. Strong correlations existed between each prediction method and O-18; however, standard errors, identified through regression analyses, were higher for the bioelectrical response prediction equations compared to those derived from FFM. These findings suggest (1) the Kushner & Schoeller (1986) equation may provide a valid measure of TBW, (2) other TBW prediction equations need to be identified that have variability similar to that of FFM, and (3) bioelectrical estimates of TBW may prove valuable in quantifying hydration status during space flight.
Verochana, Karune; Prapayasatok, Sangsom; Mahasantipiya, Phattaranant May; Korwanich, Narumanas
2016-01-01
Purpose This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. Materials and Methods The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Results Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. Conclusion The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age. PMID:27051633
Verochana, Karune; Prapayasatok, Sangsom; Janhom, Apirum; Mahasantipiya, Phattaranant May; Korwanich, Narumanas
2016-03-01
This study assessed the accuracy of age estimates produced by a regression equation derived from lower third molar development in a Thai population. The first part of this study relied on measurements taken from panoramic radiographs of 614 Thai patients aged from 9 to 20. The stage of lower left and right third molar development was observed in each radiograph and a modified Gat score was assigned. Linear regression on this data produced the following equation: Y=9.309+1.673 mG+0.303S (Y=age; mG=modified Gat score; S=sex). In the second part of this study, the predictive accuracy of this equation was evaluated using data from a second set of panoramic radiographs (539 Thai subjects, 9 to 24 years old). Each subject's age was estimated using the above equation and compared against age calculated from a provided date of birth. Estimated and known age data were analyzed using the Pearson correlation coefficient and descriptive statistics. Ages estimated from lower left and lower right third molar development stage were significantly correlated with the known ages (r=0.818, 0.808, respectively, P≤0.01). 50% of age estimates in the second part of the study fell within a range of error of ±1 year, while 75% fell within a range of error of ±2 years. The study found that the equation tends to estimate age accurately when individuals are 9 to 20 years of age. The equation can be used for age estimation for Thai populations when the individuals are 9 to 20 years of age.
Shikanov, Sergey; Clark, Melanie A; Raman, Jay D; Smith, Benjamin; Kaag, Matthew; Russo, Paul; Wheat, Jeffrey C; Wolf, J Stuart; Huang, William C; Shalhav, Arieh L; Eggener, Scott E
2010-11-01
A novel equation, the Chronic Kidney Disease Epidemiology Collaboration, has been proposed to replace the Modification of Diet in Renal Disease for estimated glomerular filtration rate due to higher accuracy, particularly in the setting of normal renal function. We compared these equations in patients with 2 functioning kidneys undergoing partial nephrectomy. We assembled a cohort of 1,158 patients from 5 institutions who underwent partial nephrectomy between 1991 and 2009. Only subjects with 2 functioning kidneys were included in the study. The end points were baseline estimated glomerular filtration rate, last followup estimated glomerular filtration rate (3 to 18 months), absolute and percent change estimated glomerular filtration rate ([absolute change/baseline] × 100%), and proportion of newly developed chronic kidney disease stage III. The agreement between the equations was evaluated using Bland-Altman plots and the McNemar test for paired observations. Mean baseline estimated glomerular filtration rate derived from the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations were 73 and 77 ml/minute/1.73 m(2), respectively, and following surgery were 63 and 67 ml/minute/1.73 m(2), respectively. Mean percent change estimated glomerular filtration rate was -12% for both equations (p = 0.2). The proportion of patients with newly developed chronic kidney disease stage III following surgery was 32% and 25%, according to the Modification of Diet in Renal Disease and Chronic Kidney Disease Epidemiology Collaboration equations, respectively (p = 0.001). For patients with 2 functioning kidneys undergoing partial nephrectomy the Chronic Kidney Disease Epidemiology Collaboration equation provides slightly higher glomerular filtration rate estimates compared to the Modification of Diet in Renal Disease equation, with 7% fewer patients categorized as having chronic kidney disease stage III or worse. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
National scale biomass estimators for United States tree species
Jennifer C. Jenkins; David C. Chojnacky; Linda S. Heath; Richard A. Birdsey
2003-01-01
Estimates of national-scale forest carbon (C) stocks and fluxes are typically based on allometric regression equations developed using dimensional analysis techniques. However, the literature is inconsistent and incomplete with respect to large-scale forest C estimation. We compiled all available diameter-based allometric regression equations for estimating total...
John Yarie; Bert R. Mead
1988-01-01
Equations are presented for estimating the twig, foliage, and combined biomass for 58 plant species in interior Alaska. The equations can be used for estimating biomass from percentage of foliar cover of 10-centimeter layers in a vertical profile from 0 to 6 meters. Few differences were found in regressions of the same species between layers except when the ratio of...
Weight estimation techniques for composite airplanes in general aviation industry
NASA Technical Reports Server (NTRS)
Paramasivam, T.; Horn, W. J.; Ritter, J.
1986-01-01
Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes.
Journal: A Review of Some Tracer-Test Design Equations for ...
Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-
A one-step method for modelling longitudinal data with differential equations.
Hu, Yueqin; Treinen, Raymond
2018-04-06
Differential equation models are frequently used to describe non-linear trajectories of longitudinal data. This study proposes a new approach to estimate the parameters in differential equation models. Instead of estimating derivatives from the observed data first and then fitting a differential equation to the derivatives, our new approach directly fits the analytic solution of a differential equation to the observed data, and therefore simplifies the procedure and avoids bias from derivative estimations. A simulation study indicates that the analytic solutions of differential equations (ASDE) approach obtains unbiased estimates of parameters and their standard errors. Compared with other approaches that estimate derivatives first, ASDE has smaller standard error, larger statistical power and accurate Type I error. Although ASDE obtains biased estimation when the system has sudden phase change, the bias is not serious and a solution is also provided to solve the phase problem. The ASDE method is illustrated and applied to a two-week study on consumers' shopping behaviour after a sale promotion, and to a set of public data tracking participants' grammatical facial expression in sign language. R codes for ASDE, recommendations for sample size and starting values are provided. Limitations and several possible expansions of ASDE are also discussed. © 2018 The British Psychological Society.
Salvador, Cathrin L.; Hartmann, Anders; Åsberg, Anders; Bergan, Stein; Rowe, Alexander D.; Mørkrid, Lars
2017-01-01
Background Assessment of glomerular filtration rate (GFR) is important in kidney transplantation. The aim was to develop a kidney transplant specific equation for estimating GFR and evaluate against published equations commonly used for GFR estimation in these patients. Methods Adult kidney recipients (n = 594) were included, and blood samples were collected 10 weeks posttransplant. GFR was measured by 51Cr-ethylenediaminetetraacetic acid clearance. Patients were randomized into a reference group (n = 297) to generate a new equation and a test group (n = 297) for comparing it with 7 alternative equations. Results Two thirds of the test group were males. The median (2.5-97.5 percentile) age was 52 (23-75) years, cystatin C, 1.63 (1.00-3.04) mg/L; creatinine, 117 (63-220) μmol/L; and measured GFR, 51 (29-78) mL/min per 1.73 m2. We also performed external evaluation in 133 recipients without the use of trimethoprim, using iohexol clearance for measured GFR. The Modification of Diet in Renal Disease equation was the most accurate of the creatinine-equations. The new equation, estimated GFR (eGFR) = 991.15 × (1.120sex/([age0.097] × [cystatin C0.306] × [creatinine0.527]); where sex is denoted: 0, female; 1, male, demonstrating a better accuracy with a low bias as well as good precision compared with reference equations. Trimethoprim did not influence the performance of the new equation. Conclusions The new equation demonstrated superior accuracy, precision, and low bias. The Modification of Diet in Renal Disease equation was the most accurate of the creatinine-based equations. PMID:29536033
Using DMSP/OLS nighttime imagery to estimate carbon dioxide emission
NASA Astrophysics Data System (ADS)
Desheng, B.; Letu, H.; Bao, Y.; Naizhuo, Z.; Hara, M.; Nishio, F.
2012-12-01
This study highlighted a method for estimating CO2 emission from electric power plants using the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) stable light image product for 1999. CO2 emissions from power plants account for a high percentage of CO2 emissions from fossil fuel consumptions. Thermal power plants generate the electricity by burning fossil fuels, so they emit CO2 directly. In many Asian countries such as China, Japan, India, and South Korea, the amounts of electric power generated by thermal power accounts over 58% in the total amount of electric power in 1999. So far, figures of the CO2 emission were obtained mainly by traditional statistical methods. Moreover, the statistical data were summarized as administrative regions, so it is difficult to examine the spatial distribution of non-administrative division. In some countries the reliability of such CO2 emission data is relatively low. However, satellite remote sensing can observe the earth surface without limitation of administrative regions. Thus, it is important to estimate CO2 using satellite remote sensing. In this study, we estimated the CO2 emission by fossil fuel consumption from electric power plant using stable light image of the DMSP/OLS satellite data for 1999 after correction for saturation effect in Japan. Digital number (DN) values of the stable light images in center areas of cities are saturated due to the large nighttime light intensities and characteristics of the OLS satellite sensors. To more accurately estimate the CO2 emission using the stable light images, a saturation correction method was developed by using the DMSP radiance calibration image, which does not include any saturation pixels. A regression equation was developed by the relationship between DN values of non-saturated pixels in the stable light image and those in the radiance calibration image. And, regression equation was used to adjust the DNs of the radiance calibration image. Then, saturated DNs of the stable light image was corrected using adjusted radiance calibration image. After that, regression analysis was performed with cumulative DNs of the corrected stable light image, electric power consumption, electric power generation and CO2 emission by fossil fuel consumption from electric power plant each other. Results indicated that there are good relationships (R2>90%) between DNs of the corrected stable light image and other parameters. Based on the above results, we estimated the CO2 emission from electric power plant using corrected stable light image. Keywords: DMSP/OLS, stable light, saturation light correction method, regression analysis Acknowledgment: The research was financially supported by the Sasakawa Scientific Research Grant from the Japan Science Society.
Estimating mean change in population salt intake using spot urine samples.
Petersen, Kristina S; Wu, Jason H Y; Webster, Jacqui; Grimes, Carley; Woodward, Mark; Nowson, Caryl A; Neal, Bruce
2017-10-01
Spot urine samples are easier to collect than 24-h urine samples and have been used with estimating equations to derive the mean daily salt intake of a population. Whether equations using data from spot urine samples can also be used to estimate change in mean daily population salt intake over time is unknown. We compared estimates of change in mean daily population salt intake based upon 24-h urine collections with estimates derived using equations based on spot urine samples. Paired and unpaired 24-h urine samples and spot urine samples were collected from individuals in two Australian populations, in 2011 and 2014. Estimates of change in daily mean population salt intake between 2011 and 2014 were obtained directly from the 24-h urine samples and by applying established estimating equations (Kawasaki, Tanaka, Mage, Toft, INTERSALT) to the data from spot urine samples. Differences between 2011 and 2014 were calculated using mixed models. A total of 1000 participants provided a 24-h urine sample and a spot urine sample in 2011, and 1012 did so in 2014 (paired samples n = 870; unpaired samples n = 1142). The participants were community-dwelling individuals living in the State of Victoria or the town of Lithgow in the State of New South Wales, Australia, with a mean age of 55 years in 2011. The mean (95% confidence interval) difference in population salt intake between 2011 and 2014 determined from the 24-h urine samples was -0.48g/day (-0.74 to -0.21; P < 0.001). The corresponding result estimated from the spot urine samples was -0.24 g/day (-0.42 to -0.06; P = 0.01) using the Tanaka equation, -0.42 g/day (-0.70 to -0.13; p = 0.004) using the Kawasaki equation, -0.51 g/day (-1.00 to -0.01; P = 0.046) using the Mage equation, -0.26 g/day (-0.42 to -0.10; P = 0.001) using the Toft equation, -0.20 g/day (-0.32 to -0.09; P = 0.001) using the INTERSALT equation and -0.27 g/day (-0.39 to -0.15; P < 0.001) using the INTERSALT equation with potassium. There was no evidence that the changes detected by the 24-h collections and estimating equations were different (all P > 0.058). Separate analysis of the unpaired and paired data showed that detection of change by the estimating equations was observed only in the paired data. All the estimating equations based upon spot urine samples identified a similar change in daily salt intake to that detected by the 24-h urine samples. Methods based upon spot urine samples may provide an approach to measuring change in mean population salt intake, although further investigation in larger and more diverse population groups is required. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association
Herrera López, Mauricio; Romera Félix, Eva M; Ortega Ruiz, Rosario; Gómez Ortiz, Olga
2016-01-01
The first objective of this study was to adapt and test the psychometric properties of the Social Achievement Goal Scale (Ryan & Shim, 2006) in Spanish adolescent students. The second objective sought to analyse the influence of social goals, normative adjustment and self-perception of social efficacy on social adjustment among peers. A total of 492 adolescents (54.1% females) attending secondary school (12-17 years; M = 13.8, SD = 1.16) participated in the study. Confirmatory factor analysis and structural equation modelling were performed. The validation confirmed the three-factor structure of the original scale: social development goals, social demonstration-approach goals and social demonstration-avoidance goals. The structural equation model indicated that social development goals and normative adjustment have a direct bearing on social adjustment, whereas the social demonstration-approach goals (popularity) and self-perception of social efficacy with peers and teachers exert an indirect influence. The Spanish version of the Social Achievement Goal Scale (Ryan & Shim, 2006) yielded optimal psychometric properties. Having a positive motivational pattern, engaging in norm-adjusted behaviours and perceiving social efficacy with peers is essential to improving the quality of interpersonal relationships.
Comparative evaluation of urban storm water quality models
NASA Astrophysics Data System (ADS)
Vaze, J.; Chiew, Francis H. S.
2003-10-01
The estimation of urban storm water pollutant loads is required for the development of mitigation and management strategies to minimize impacts to receiving environments. Event pollutant loads are typically estimated using either regression equations or "process-based" water quality models. The relative merit of using regression models compared to process-based models is not clear. A modeling study is carried out here to evaluate the comparative ability of the regression equations and process-based water quality models to estimate event diffuse pollutant loads from impervious surfaces. The results indicate that, once calibrated, both the regression equations and the process-based model can estimate event pollutant loads satisfactorily. In fact, the loads estimated using the regression equation as a function of rainfall intensity and runoff rate are better than the loads estimated using the process-based model. Therefore, if only estimates of event loads are required, regression models should be used because they are simpler and require less data compared to process-based models.
ERIC Educational Resources Information Center
Michaelides, Michalis P.; Haertel, Edward H.
2014-01-01
The standard error of equating quantifies the variability in the estimation of an equating function. Because common items for deriving equated scores are treated as fixed, the only source of variability typically considered arises from the estimation of common-item parameters from responses of samples of examinees. Use of alternative, equally…
Modeling animal movements using stochastic differential equations
Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie
2004-01-01
We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...
Maneuver Estimation Model for Geostationary Orbit Determination
2006-06-01
create a more robust model which would reduce the amount of data needed to make accurate maneuver estimations. The Clohessy - Wiltshire equations were...Applications to Geostationary Satellites...........................................7 2.3.2 Clohessy - Wiltshire Equations...15 3.1.1 Application of Clohessy - Wiltshire Equations ................................15 3.1.2
Estimating equations estimates of trends
Link, W.A.; Sauer, J.R.
1994-01-01
The North American Breeding Bird Survey monitors changes in bird populations through time using annual counts at fixed survey sites. The usual method of estimating trends has been to use the logarithm of the counts in a regression analysis. It is contended that this procedure is reasonably satisfactory for more abundant species, but produces biased estimates for less abundant species. An alternative estimation procedure based on estimating equations is presented.
Body mass and stature estimation based on the first metatarsal in humans.
De Groote, Isabelle; Humphrey, Louise T
2011-04-01
Archaeological assemblages often lack the complete long bones needed to estimate stature and body mass. The most accurate estimates of body mass and stature are produced using femoral head diameter and femur length. Foot bones including the first metatarsal preserve relatively well in a range of archaeological contexts. In this article we present regression equations using the first metatarsal to estimate femoral head diameter, femoral length, and body mass in a diverse human sample. The skeletal sample comprised 87 individuals (Andamanese, Australasians, Africans, Native Americans, and British). Results show that all first metatarsal measurements correlate moderately to highly (r = 0.62-0.91) with femoral head diameter and length. The proximal articular dorsoplantar diameter is the best single measurement to predict both femoral dimensions. Percent standard errors of the estimate are below 5%. Equations using two metatarsal measurements show a small increase in accuracy. Direct estimations of body mass (calculated from measured femoral head diameter using previously published equations) have an error of just over 7%. No direct stature estimation equations were derived due to the varied linear body proportions represented in the sample. The equations were tested on a sample of 35 individuals from Christ Church Spitalfields. Percentage differences in estimated and measured femoral head diameter and length were less than 1%. This study demonstrates that it is feasible to use the first metatarsal in the estimation of body mass and stature. The equations presented here are particularly useful for assemblages where the long bones are either missing or fragmented, and enable estimation of these fundamental population parameters in poorly preserved assemblages. Copyright © 2011 Wiley-Liss, Inc.
Stuckey, Marla H.
2016-06-09
The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.
Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation
NASA Astrophysics Data System (ADS)
Li, C.
2012-07-01
POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.
Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials
NASA Astrophysics Data System (ADS)
D'Ancona, Piero
2015-04-01
Let H be a selfadjoint operator and A a closed operator on a Hilbert space . If A is H-(super)smooth in the sense of Kato-Yajima, we prove that is -(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations. We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687-722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on , n ≥ 3.
Environmental liability and redevelopment of old industrial land.
Sigman, Hilary
2010-01-01
Many communities are concerned about the reuse of potentially contaminated land (brownfields) and believe that environmental liability is a hindrance to redevelopment. However, with land price adjustments, liability might not impede the reuse of this land. This article studies state liability rules-specifically, strict liability and joint and several liability-that affect the level and distribution of expected costs of private cleanup. It explores the effects of this variation on industrial land prices and vacancy rates and on reported brownfields in a panel of cities across the United States. In the estimated equations, joint and several liability reduces land prices and increases vacancy rates in central cities. The results suggest that liability is at least partly capitalized but does still deter redevelopment.
Developing a generalized allometric equation for aboveground biomass estimation
NASA Astrophysics Data System (ADS)
Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.
2015-12-01
A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species < genus). This approach provides estimation under incomplete tree information (e.g. missing species) or blurred information (e.g. conjecture of species), plus the biophysical environment. The GAE allowed us to quantify contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how much the error could be contributed to the original equations, the plant's taxonomy, and their biophysical environment.
Kim-Godwin, Yeoun Soo; Maume, Michael O; Fox, Jane A
2014-12-01
The purpose of the study is to identify the predictors of depression and intimate partner violence (IPV) among Latinos in rural Southeastern North Carolina. A sample of 291 migrant and seasonal farmworkers was interviewed to complete the demographic questionnaire, HITS (intimate violence tendency), Migrant Farmworker Stress Inventory, Center for Epidemiologic Studies Depression Scale (depression), and CAGE/4M (alcohol abuse). OLS regression and structural equation modeling were used to test the hypothesized relations between predictors of IPV and depression. The findings indicated that respondents reporting higher levels of stress also reported higher levels of IPV and depression. The goodness-of-fit statistics for the overall model again indicated a moderate fit of the model to the data (χ2 = 5,612, p < .001; root mean square error for approximation = 0.09; adjusted goodness-of-fit index = 0.44; comparative fit index = 0.52). Although the findings were not robust to estimation in the structural equation models, the OLS regression models indicated direct associations between IPV and depression.
Organisational justice and smoking: the Finnish Public Sector Study.
Kouvonen, Anne; Vahtera, Jussi; Elovainio, Marko; Cox, Sara J; Cox, Tom; Linna, Anne; Virtanen, Marianna; Kivimäki, Mika
2007-05-01
To examine the extent to which the justice of decision-making procedures and interpersonal relationships is associated with smoking. 10 municipalities and 21 hospitals in Finland. Cross-sectional data derived from the Finnish Public Sector Study were analysed with logistic regression analysis models with generalised estimating equations. Analyses of smoking status were based on data provided by 34,021 employees. Separate models for heavy smoking (> or = 20 cigarettes/day) were calculated for 6295 current smokers. After adjustment for age, education, socioeconomic position, marital status, job contract and negative affectivity, smokers who reported low procedural justice were about 1.4 times more likely to smoke > or = 20 cigarettes/day compared with their counterparts who reported high levels of justice. In a similar way, after adjustments, low levels of justice in interpersonal treatment was significantly associated with an increased prevalence of heavy smoking (OR 1.35, 95% CI 1.03 to 1.77 for men and OR 1.41, 95% CI 1.09 to 1.83 for women). Further adjustment for job strain and effort-reward imbalance had little effect on these results. No associations were observed between justice components and smoking status or ex-smoking. The extent to which employees are treated with justice in the workplace seems to be associated with smoking intensity independently of established stressors at work.
Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.
Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana
2012-02-01
In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P < 0.05 and P < 0.01) between the parameters of wheat dough studied by the Mixolab and its rheological properties measured with the Alveograph. A number of six predictive linear equations were obtained. Linear regression models gave multiple regression coefficients with R²(adjusted) > 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.
An analysis of bedload and suspended load interactions
NASA Astrophysics Data System (ADS)
Recking, alain; Navratil, Oldrich
2013-04-01
Several approaches were used to develop suspension equations. It includes semi-theoretical equations based on the convection diffusion equation (Einstein 1950; Van Rijn 1984; Camenen and Larson 2008; Julien 2010), semi-empirical tools based on energy concept (Velikanov 1954; Bagnold 1966), empirical adjustments (Prosser and Rusttomji 2000). One essential characteristic of all these equations is that most of them were developed by considering continuity between bedload and suspended load, and that the partitioning between these two modes of transport evolves progressively with increasing shear stress, which is the case for fine bed materials. The use of these equations is thus likely to be welcome in estuaries or lowland sandy rivers, but may be questionable in gravel-bed rivers and headwater streams where the bed is usually structured vertically and fine sediments potentially contributing to suspension are stored under a poorly mobile surface armour comprising coarse sediments. Thus one question this work aimed to answer is does the presence of an armour at the bed surface influence suspended load? This was investigated through a large field data set comprising instantaneous measurements of both bedload and suspension. We also considered the river characteristics, distinguishing between lowland rivers, gravel bed rivers and headwater streams. The results showed that a correlation exist between bedload and suspension for lowland and gravel bed rivers. This suggests that in gravel bed rivers a large part of the suspended load is fed by subsurface material, and depends on the remobilization of the surface material. No correlation was observed for head water streams where the sediment production is more likely related to hillslope processes. These results were used with a bedload transport equation for proposing a method for suspended load estimate. The method is rough, but especially for gravel bed rivers, it predicts suspended load reasonably well when compared to standard convection diffusion equations.
Driver seat belt use indicates decreased risk for child passengers in a motor vehicle crash.
Olsen, Cody S; Cook, Lawrence J; Keenan, Heather T; Olson, Lenora M
2010-03-01
We examined the association between driver restraint use and child emergency department (ED) evaluation following a motor vehicle crash (MVC). This cohort study included child passengers aged 0-12 years riding with an adult driver aged 21 years or older involved in a MVC in Utah from 1999 to 2004. The 6 years of Utah MVC records were probabilistically linked to statewide Utah ED records. We estimated the relative risk of ED evaluation following a MVC for children riding with restrained versus unrestrained drivers. Generalized estimating equations were used to calculate relative risks adjusted for child, driver, and crash characteristics. Six percent (6%) of children riding with restrained adult drivers were evaluated in the ED compared to twenty-two percent (22%) of children riding with unrestrained adult drivers following a MVC (relative risk 0.29, 95% confidence interval 0.26-0.32). After adjusting for child, vehicle, and crash characteristics, the relative risk of child ED evaluation associated with driver restraint remained significant (relative risk 0.82, 95% confidence interval 0.72-0.94). Driver restraint use was associated with child restraint use, less alcohol/drug involvement, and lower relative risk of severe collision types (head-on, rollover). Driver seat belt use is associated with decreased risk of ED evaluation for child passengers in the event of a MVC. Copyright 2009 Elsevier Ltd. All rights reserved.
Montgomery, Brooke E E; Frew, Paula M; Hughes, James P; Wang, Jing; Adimora, Adaora A; Haley, Danielle F; Kuo, Irene; Jennings, Larissa; El-Bassel, Nabila; Hodder, Sally L
2018-06-15
Using data from HIV Prevention Trials Network 064, a multisite, observational cohort study conducted to estimate HIV incidence rates among women living in areas of high poverty and HIV prevalence in the United States, we examined the use of HIV risk characteristics to predict emotional abuse, physical violence, and forced sex. Participants included 2099 women, 18-44 years of age, who reported unprotected vaginal or anal sex with a male partner and an additional personal or perceived male partner HIV risk characteristic in the past 6 months. Adjusting for time-varying covariates, generalized estimating equations were used to assess the ability of HIV risk characteristics to predict violence 6 months later. Reported analyses were limited to the 1980 study participants who reported having a male sex partner at that assessment. Exchanging sex, perceived partner concurrency, and perceived partner incarceration were significantly predictive of emotional abuse 6 months later (adjusted odds ratio [AOR]: 1.60; 1.59; 1.34, respectively). Prior sexually transmitted infection diagnosis, exchanging sex, and binge drinking were significantly predictive of physical violence 6 months later (AOR: 1.62; 1.71; 1.47, respectively). None of the variables measured was significantly predictive of forced sex. Strategies that address reducing violence against women should be studied further in the context of HIV prevention programs.
Pharmacokinetic model analysis of interaction between phenytoin and capecitabine.
Miyazaki, Shohei; Satoh, Hiroki; Ikenishi, Masayuki; Sakurai, Miyuki; Ueda, Mutsuaki; Kawahara, Kaori; Ueda, Rie; Ohtori, Tohru; Matsuyama, Kenji; Miki, Akiko; Hori, Satoko; Fukui, Eiji; Nakatsuka, Eitaro; Sawada, Yasufumi
2016-09-01
Recent reports have shbown an increase in serum phenytoin levels resulting in phenytoin toxicity after initiation of luoropyrimidine chemotherapy. To prevent phenytoin intoxication, phenytoin dosage must be adjusted. We sought to develop a pharmacokinetic model of the interaction between phenytoin and capecitabine. We developed the phenytoin-capecitabine interaction model on the assumption that fluorouracil (5-FU) inhibits cytochrome P450 (CYP) 2C9 synthesis in a concentration- dependent manner. The plasma 5-FU concentration after oral administration of capecitabine was estimated using a conventional compartment model. Nonlinear pharmacokinetics of phenytoin was modeled by incorporating the Michaelis-Menten equation to represent the saturation of phenytoin metabolism. The resulting model was fitted to data from our previously-reported cases. The developed phenytoincapecitabine interaction model successfully described the profiles of serum phenytoin concentration in patients who received phenytoin and capecitabine concomitantly. The 50% inhibitory 5-FU concentration for CYP2C9 synthesis and the degradation rate constant of CYP2C9 were estimated to be 0.00310 ng/mL and 0.0768 day-1, respectively. This model and these parameters allow us to predict the appropriate phenytoin dosage schedule when capecitabine is administered concomitantly. This newly-developed model accurately describes changes in phenytoin concentration during concomitant capecitabine chemotherapy, and it may be clinically useful for predicting appropriate phenytoin dosage adjustments for maintaining serum phenytoin levels within the therapeutic range.
Recirculation of the Canary Current in Fall
NASA Astrophysics Data System (ADS)
Hernandez-Guerra, A.; Espino-Falcón, E.; Vélez-Belchí, P.; Pérez-Hernández, M. D.; Martínez, A.; Cana, L.
2015-12-01
CTD and LADCP data measured in October 2014 are used to describe water masses, geostrophic circulation and mass transport in the Eastern Boundary of the North Atlantic Subtropical Gyre. Initial geostrophic velocities are adjusted to velocities from the LADCP data to estimate an initial velocity at the reference layer. Final reference velocities and consequently circulation is estimated from an inverse box model applied to an ocean divided into 12 neutral density layers. This allows us to evaluate mass fluxes consistent with the thermal wind equation and mass conservation. Ekman transport derived from the Weather Research and Forecasting (WRF) model is added to the first layer and adjusted with the inverse model. The Canary Current (CC) transports southward a net mass of 3.8±0.7 Sv (1 Sv=106 m3/s≈109 kg/s) of North Atlantic Central Water (NACW) at the thermocline layers (~0-700 m) and 1.9±0.6 Sv of a mixture of Mediterranean Water (MW) and Antarctic Intermediate Water (AAIW) at intermediate layers (~800-1400 m). The CC recirculates northward at a rate of 4.8±0.8 Sv at the thermocline layers between the Lanzarote Island and the African coast (Lanzarote Passage) on this occasion. Separately, at intermediate layers, AAIW flows northward at a rate of 2.4±0.6 Sv through the Lanzarote Passage transported by the Intermediate Poleward Undercurrent (IPUC).
Roder, D; Davy, M; Selva-Nayagam, S; Gowda, R; Paramasivam, S; Adams, J; Keefe, D; Eckert, M; Powell, K; Fusco, K; Buranyi-Trevarton, D; Oehler, M K
2018-01-01
Registry data on invasive cervical cancers (n = 1,274) from four major hospitals (1984-2012) were analysed to determine their value for informing local service delivery in Australia. The methodology comprised disease-specific survival analyses using Kaplan-Meier product-limit estimates and Cox proportional hazards models and treatment analyses using logistic regression. Five- and 10-year survivals were 72% and 68%, respectively, equating with relative survival estimates for Australia and the USA. Most common treatments were surgery and radiotherapy. Systemic therapies increased in recent years, generally with radiotherapy, but were less common for residents from less accessible areas. Surgery was more common for younger women and early-stage disease, and radiotherapy for older women and regional and more advanced disease. The proportion of glandular cancers increased in-step with national trends. Little evidence of variation in risk-adjusted survival presented over time or by Local Health District. The study illustrates the value of local registry data for describing local treatment and outcomes. They show the lower use of systemic therapies among residents of less accessible areas which warrants further investigation. Risk-adjusted treatment and outcomes did not vary by socio-economic status, suggesting equity in service delivery. These data are important for local evaluation and were not available from other sources. © 2017 John Wiley & Sons Ltd.
Glucose-6-Phosphate Dehydrogenase Deficiency and Physical and Mental Health until Adolescence.
Kwok, Man Ki; Leung, Gabriel M; Schooling, C Mary
2016-01-01
To examine the association of glucose-6-phosphate dehydrogenase (G6PD) deficiency with adolescent physical and mental health, as effects of G6PD deficiency on health are rarely reported. In a population-representative Chinese birth cohort: "Children of 1997" (n = 8,327), we estimated the adjusted associations of G6PD deficiency with growth using generalized estimating equations, with pubertal onset using interval censored regression, with hospitalization using Cox proportional hazards regression and with size, blood pressure, pubertal maturation and mental health using linear regression with multiple imputation and inverse probability weighting. Among 5,520 screened adolescents (66% follow-up), 4.8% boys and 0.5% girls had G6PD deficiency. G6PD-deficiency was not associated with birth weight-for-gestational age or length/height gain into adolescence, but was associated with lower childhood body mass index (BMI) gain (-0.38 z-score, 95% confidence interval (CI) -0.57, -0.20), adjusted for sex and parental education, and later onset of pubic hair development (time ratio = 1.029, 95% CI 1.007, 1.050). G6PD deficiency was not associated with blood pressure, height, BMI or mental health in adolescence, nor with serious infectious morbidity until adolescence. G6PD deficient adolescents had broadly similar physical and mental health indicators, but transiently lower BMI gain and later pubic hair development, whose long-term implications warrant investigation.
Complicated asymptotic behavior of solutions for porous medium equation in unbounded space
NASA Astrophysics Data System (ADS)
Wang, Liangwei; Yin, Jingxue; Zhou, Yong
2018-05-01
In this paper, we find that the unbounded spaces Yσ (RN) (0 < σ <2/m-1 ) can provide the work spaces where complicated asymptotic behavior appears in the solutions of the Cauchy problem of the porous medium equation. To overcome the difficulties caused by the nonlinearity of the equation and the unbounded solutions, we establish the propagation estimates, the growth estimates and the weighted L1-L∞ estimates for the solutions.
Using VS30 to Estimate Station ML Adjustments (dML)
NASA Astrophysics Data System (ADS)
Yong, A.; Herrick, J.; Cochran, E. S.; Andrews, J. R.; Yu, E.
2017-12-01
Currently, new seismic stations added to a regional seismic network cannot be used to calculate local or Richter magnitude (ML) until a revised region-wide amplitude decay function is developed. The new station must record a minimum number of local and regional events that meet specific amplitude requirements prior to re-calibration of the amplitude decay function. Therefore, there can be significant delay between when a new station starts contributing real-time waveform packets and when the data can be included in magnitude estimation. The station component adjustments (dML; Uhrhammer et al., 2011) are calculated after first inverting for a new regional amplitude decay function, constrained by the sum of dML for long-running stations. Here, we propose a method to calculate an initial dML using known or proxy values of seismic site conditions. For site conditions, we use the time-averaged shear-wave velocity (VS) of the upper 30 m (VS30). We solve for dML as described in Equation (1) by Uhrhammer et al. (2011): ML = log (A) - log A0 (r) + dML, where A is the maximum Wood and Anderson (1925) trace amplitude (mm), r is the distance (km), and dML is the station adjustment. Measured VS30 and estimated dML data are comprised of records from 887 horizontal components (east-west and north-south orientations) from 93 seismic monitoring stations in the California Integrated Seismic Network. VS30 values range from 202 m/s to 1464 m/s and dML range from -1.10 to 0.39. VS30 and dML exhibit a positive correlation coefficient (R = 0.72), indicating that as VS30 increases, dML increases. This implies that greater site amplification (i.e., lower VS30) results in smaller ML. When we restrict VS30 < 760 m/s to focus on dML at soft soil to soft rock sites, R increases to 0.80. In locations where measured VS30 data are unavailable, we evaluate the use of proxy-based VS30 estimates based on geology, topographic slope and terrain classification, as well as other hybridized methods. Measured VS30 data or proxy-based VS30 estimates can be used for initial dML estimates that allow new stations to contribute to regional network ML estimates immediately without the need to wait until a minimum set of earthquake data has been recorded.
A Note on Structural Equation Modeling Estimates of Reliability
ERIC Educational Resources Information Center
Yang, Yanyun; Green, Samuel B.
2010-01-01
Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…
ERIC Educational Resources Information Center
Bollen, Kenneth A.; Maydeu-Olivares, Albert
2007-01-01
This paper presents a new polychoric instrumental variable (PIV) estimator to use in structural equation models (SEMs) with categorical observed variables. The PIV estimator is a generalization of Bollen's (Psychometrika 61:109-121, 1996) 2SLS/IV estimator for continuous variables to categorical endogenous variables. We derive the PIV estimator…
Wu, Hulin; Xue, Hongqi; Kumar, Arun
2012-06-01
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.
Kudo, Shin'ichi; Ishida, Jun'ichi; Yoshimoto, Keiko; Mizuno, Shoichi; Ohshima, Sumio; Furuta, Hiroshige; Kasagi, Fumiyoshi
2018-05-30
We found some trivial errors which might confuse reader. The errors can be identified as the following two types. (1) The one is that misuse of "ERR" and "ERR/Sv". We denoted "Table 4 shows ERRs/Sv and 90% CIs ..." in line 7 of page 366. While we denoted "ERR and 90% CI for all cancers, excluding leukaemia, by dose category ..." in title of Table 4. The values described in Table 4 were ERR by dose category and not ERR/Sv. In addition, the explanation about the model that derived ERR by dose category is better to be added. Therefore, the description mentioned above should be changed as follows. (Misprinted) Table 4 shows ERRs/Sv and 90% CIs for all cancers excluding leukaemia by dose category. (Corrected) Table 4 shows ERRs which were defined as follow equation and 90% CIs for all cancers excluding leukaemia by dose category. λ=λ0 (a,c,y,r,s)exp(α1z1+α2z2+α3z3) (1+βi di) where di is the dose category, and βi is the ERR by dose category. The lowest dose category was set as reference. (2) The other were errors in surface caput of several tables. We described "ERR without adjustment for smoking" and "ERR with adjustment for smoking" in Table 4. These are correct description. However, "ERR with adjustment for smoking" was described as "For smoking" in Table 2. In addition, "Without adjustment" and "With adjustment" denoted in the surface caput of Table 5, 6, 7 should be denoted as "Without adjustment for smoking" and "With adjustment for smoking". The author wishes to apologies for the errors. . Creative Commons Attribution license.
2011-01-01
Background This study investigates the relationship between parental drinking and school adjustment in a total population sample of adolescents, with independent reports from mothers, fathers, and adolescents. As a group, children of alcohol abusers have previously been found to exhibit lowered academic achievement. However, few studies address which parts of school adjustment that may be impaired. Both a genetic approach and social strains predict elevated problem scores in these children. Previous research has had limitations such as only recruiting cases from clinics, relying on single responders for all measures, or incomplete control for comorbid psychopathology. The specific effects of maternal and paternal alcohol use are also understudied. Methods In a Norwegian county, 88% of the population aged 13-19 years participated in a health survey (N = 8984). Among other variables, adolescents reported on four dimensions of school adjustment, while mothers and fathers reported their own drinking behaviour. Mental distress and other control variables were adjusted for. Multivariate analysis including generalized estimation equations was applied to investigate associations. Results Compared to children of light drinkers, children of alcohol abusers had moderately elevated attention and conduct problem scores. Maternal alcohol abuse was particularly predictive of such problems. Children of abstainers did significantly better than children of light drinkers. Controlling for adolescent mental distress reduced the association between maternal abuse and attention problems. The associations between parental reported drinking and school adjustment were further reduced when controlling for the children's report of seeing their parents drunk, which itself predicted school adjustment. Controlling for parental mental distress did not reduce the associations. Conclusions Parental alcohol abuse is an independent risk factor for attention and conduct problems at school. Some of the risk associated with mothers' drinking is likely to be mediated by adolescent mental distress. Despite lowered adjustment on the externalizing dimensions, children of alcohol abusers report that they enjoy being at school as much as other children. PMID:21929803
Fifty-year flood-inundation maps for Choluteca, Honduras
Kresch, David L.; Mastin, Mark C.; Olsen, T.D.
2002-01-01
After the devastating floods caused by Hurricane Mitch in 1998, maps of the areas and depths of 50-year-flood inundation at 15 municipalities in Honduras were prepared as a tool for agencies involved in reconstruction and planning. This report, which is one in a series of 15, presents maps of areas in the municipality of Choluteca that would be inundated by 50-year floods on Rio Choluteca and Rio Iztoca. Geographic Information System (GIS) coverages of the flood inundation are available on a computer in the municipality of Choluteca as part of the Municipal GIS project and on the Internet at the Flood Hazard Mapping Web page (http://mitchnts1.cr.usgs.gov/projects/floodhazard.html). These coverages allow users to view the flood inundation in much more detail than is possible using the maps in this report. Water-surface elevations for 50-year-floods on Rio Choluteca and Rio Iztoca at Choluteca were estimated using HEC-RAS, a one-dimensional, steady-flow, step-backwater computer program. The channel and floodplain cross sections used in HEC-RAS were developed from an airborne light-detection-and-ranging (LIDAR) topographic survey of the area. The estimated 50-year-flood discharge for Rio Choluteca at Choluteca is 4,620 cubic meters per second, which is the drainage-area-adjusted weighted-average of two independently estimated 50-year-flood discharges for the gaging station Rio Choluteca en Puente Choluteca. One discharge, 4,913 cubic meters per second, was estimated from a frequency analysis of the 17 years of peak discharge record for the gage, and the other, 2,650 cubic meters per second, was estimated from a regression equation that relates the 50-year-flood discharge to drainage area and mean annual precipitation. The weighted-average of the two discharges at the gage is 4,530 cubic meters per second. The 50-year-flood discharge for the study area reach of Rio Choluteca was estimated by multiplying the weighted discharge at the gage by the ratio of the drainage areas upstream from the two locations. The 50-year-flood discharge for Rio Iztoca, which was estimated from the regression equation, is 430 cubic meters per second.
Thein, Hla-Hla; Jembere, Nathaniel; Thavorn, Kednapa; Chan, Kelvin K W; Coyte, Peter C; de Oliveira, Claire; Hur, Chin; Earle, Craig C
2018-06-27
Esophageal adenocarcinoma (EAC) incidence is increasing rapidly. Esophageal cancer has the second lowest 5-year survival rate of people diagnosed with cancer in Canada. Given the poor survival and the potential for further increases in incidence, phase-specific cost estimates constitute an important input for economic evaluation of prevention, screening, and treatment interventions. The study aims to estimate phase-specific net direct medical costs of care attributable to EAC, costs stratified by cancer stage and treatment, and predictors of total net costs of care for EAC. A population-based retrospective cohort study was conducted using Ontario Cancer Registry-linked administrative health data from 2003 to 2011. The mean net costs of EAC care per 30 patient-days (2016 CAD) were estimated from the payer perspective using phase of care approach and generalized estimating equations. Predictors of net cost by phase of care were based on a generalized estimating equations model with a logarithmic link and gamma distribution adjusting for sociodemographic and clinical factors. The mean net costs of EAC care per 30 patient-days were $1016 (95% CI, $955-$1078) in the initial phase, $669 (95% CI, $594-$743) in the continuing care phase, and $8678 (95% CI, $8217-$9139) in the terminal phase. Overall, stage IV at diagnosis and surgery plus radiotherapy for EAC incurred the highest cost, particularly in the terminal phase. Strong predictors of higher net costs were receipt of chemotherapy plus radiotherapy, surgery plus chemotherapy, radiotherapy alone, surgery alone, and chemotherapy alone in the initial and continuing care phases, stage III-IV disease and patients diagnosed with EAC later in a calendar year (2007-2011) in the initial and terminal phases, comorbidity in the continuing care phase, and older age at diagnosis (70-74 years), and geographic region in the terminal phase. Costs of care vary by phase of care, stage at diagnosis, and type of treatment for EAC. These cost estimates provide information to guide future resource allocation decisions, and clinical and policy interventions to reduce the burden of EAC.
Maine StreamStats: a water-resources web application
Lombard, Pamela J.
2015-01-01
Reports referenced in this fact sheet present the regression equations used to estimate the flow statistics, describe the errors associated with the estimates, and describe the methods used to develop the equations and to measure the basin characteristics used in the equations. Limitations of the methods are also described in the reports; for example, all of the equations are appropriate only for ungaged, unregulated, rural streams in Maine.
Estimation of traveltime and longitudinal dispersion in streams in West Virginia
Wiley, Jeffrey B.; Messinger, Terence
2013-01-01
Traveltime and dispersion data are important for understanding and responding to spills of contaminants in waterways. The U.S. Geological Survey (USGS), in cooperation with West Virginia Bureau for Public Health, Office of Environmental Health Services, compiled and evaluated traveltime and longitudinal dispersion data representative of many West Virginia waterways. Traveltime and dispersion data were not available for streams in the northwestern part of the State. Compiled data were compared with estimates determined from national equations previously published by the USGS. The evaluation summarized procedures and examples for estimating traveltime and dispersion on streams in West Virginia. National equations developed by the USGS can be used to predict traveltime and dispersion for streams located in West Virginia, but the predictions will be less accurate than those made with graphical interpolation between measurements. National equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge had root mean square errors (RMSE) of 0.426 log units (127 percent), 0.505 feet per second (ft/s), and 3.78 hours (h). West Virginia data fit the national equations for peak concentration, velocity of the peak concentration, and traveltime of the leading edge with RMSE of 0.139 log units (38 percent), 0.630 ft/s, and 3.38 h, respectively. The national equation for maximum possible velocity of the peak concentration exceeded 99 percent and 100 percent of observed values from the national data set and West Virginia-only data set, respectively. No RMSE was reported for time of passage of a dye cloud, as estimated using the national equation; however, the estimates made using the national equations had a root mean square error of 3.82 h when compared to data gathered for this study. Traveltime and dispersion estimates can be made from the plots of traveltime as a function of streamflow and location for streams with plots available, but estimates can be made using the national equations for streams without plots. The estimating procedures are not valid for regulated stream reaches that were not individually studied or streamflows outside the limits studied. Rapidly changing streamflow and inadequate mixing across the stream channel affect traveltime and dispersion, and reduce the accuracy of estimates. Increases in streamflow typically result in decreases in the peak concentration and traveltime of the peak concentration. Decreases in streamflow typically result in increases in the peak concentration and traveltime of the peak concentration. Traveltimes will likely be less than those determined using the estimating equations and procedures if the spill is in the center of the stream, and traveltimes will likely be greater than those determined using the estimating equations and procedures if the spill is near the streambank.
Clark-Reyna, Stephanie E.; Grineski, Sara E.; Collins, Timothy W.
2015-01-01
Children in low-income neighborhoods tend to be disproportionately exposed to environmental toxicants. This is cause for concern because exposure to environmental toxicants negatively affect health, which can impair academic success. To date, it is unknown if associations between air toxics and academic performance found in previous school-level studies persist when studying individual children. In pairing the National Air Toxics Assessment (NATA) risk estimates for respiratory and diesel particulate matter risk disaggregated by source, with individual-level data collected through a mail survey, this paper examines the effects of exposure to residential environmental toxics on academic performance for individual children for the first time and adjusts for school-level effects using generalized estimating equations. We find that higher levels of residential air toxics, especially those from non-road mobile sources, are statistically significantly associated with lower grade point averages among fourth and fifth grade school children in El Paso (Texas, USA). PMID:27034529
Esserman, Denise A.; Moore, Charity G.; Roth, Mary T.
2009-01-01
Older community dwelling adults often take multiple medications for numerous chronic diseases. Non-adherence to these medications can have a large public health impact. Therefore, the measurement and modeling of medication adherence in the setting of polypharmacy is an important area of research. We apply a variety of different modeling techniques (standard linear regression; weighted linear regression; adjusted linear regression; naïve logistic regression; beta-binomial (BB) regression; generalized estimating equations (GEE)) to binary medication adherence data from a study in a North Carolina based population of older adults, where each medication an individual was taking was classified as adherent or non-adherent. In addition, through simulation we compare these different methods based on Type I error rates, bias, power, empirical 95% coverage, and goodness of fit. We find that estimation and inference using GEE is robust to a wide variety of scenarios and we recommend using this in the setting of polypharmacy when adherence is dichotomously measured for multiple medications per person. PMID:20414358
Gas-film coefficients for streams
Rathbun, R.E.; Tai, D.Y.
1983-01-01
Equations for predicting the gas-film coefficient for the volatilization of organic solutes from streams are developed. The film coefficient is a function of windspeed and water temperature. The dependence of the coefficient on windspeed is determined from published information on the evaporation of water from a canal. The dependence of the coefficient on temperature is determined from laboratory studies on the evaporation of water. Procedures for adjusting the coefficients for different organic solutes are based on the molecular diffusion coefficient and the molecular weight. The molecular weight procedure is easiest to use because of the availability of molecular weights. However, the theoretical basis of the procedure is questionable. The diffusion coefficient procedure is supported by considerable data. Questions, however, remain regarding the exact dependence of the film coefficint on the diffusion coefficient. It is suggested that the diffusion coefficient procedure with a 0.68-power dependence be used when precise estimate of the gas-film coefficient are needed and that the molecular weight procedure be used when only approximate estimates are needed.
Model Calibration in Watershed Hydrology
NASA Technical Reports Server (NTRS)
Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh
2009-01-01
Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.
Espinoza, Sara E.; Jung, Inkyung; Hazuda, Helen
2010-01-01
OBJECTIVES to directly compare frailty incidence between Mexican American (MA) and European American (EA) older adults. DESIGN longitudinal, observational cohort study. SETTING socioeconomically diverse neighborhoods in San Antonio, TX. PARTICIPANTS 301 MAs and 305 EAs in the San Antonio Longitudinal Study of Aging (SALSA) who were non-frail at baseline. MEASUREMENTS Frailty was assessed at baseline and three follow-ups conducted over an average of 9.9 years using well-established criteria from the Cardiovascular Health Study. Covariates included baseline age, sex, socioeconomic status (SES), pre-frailty status, diabetes, and comorbidity. The adjusted ethnic odds (MA vs. EA) of incident frailty were estimated using generalized estimating equations. RESULTS There was no ethnic difference in the unadjusted incidence of frailty over the three follow-up examinations (OR=0.97, 95%CI: 0.62–1.52), even though baseline SES was significantly lower among MAs than among EAs. After covariate adjustment, the odds of incident frailty were significantly lower in MAs compared to EAs (OR=0.40, 95%CI: 0.23–0.72). Other significant predictors of frailty in the adjusted model were pre-frailty (ORpresent vs. absent = 3.19, 95%CI: 1.86–5.47), education (OR1-year increment = 0.89, 95%CI: 0.83–0.96), and income (OR1-year increment = 0.88, 95%CI: 0.79–2.04). CONCLUSION These findings lend support to the Hispanic Paradox and suggest that MAs who live to older ages compared with similarly aged EAs are less likely to become frail. Further research is needed to identify the underlying biological and social mechanisms which explain this finding in order to enhance the development of interventions for the prevention and treatment of this clinical geriatric syndrome. PMID:21054295
Hallux Valgus, By Nature or Nurture? A Twin Study.
Munteanu, Shannon E; Menz, Hylton B; Wark, John D; Christie, Jemma J; Scurrah, Katrina J; Bui, Minh; Erbas, Bircan; Hopper, John L; Wluka, Anita E
2017-09-01
To evaluate the contributions of shared but unmeasured genetic and environmental factors to hallux valgus (HV). Between 2011 and 2012, 74 monozygotic (MZ) and 56 dizygotic (DZ) female twin pairs self-reported HV and putative risk factors, including footwear use across their lifespan. Estimates of casewise concordance (P C ), correlation (ρ), and odds ratios (ORs) were calculated, adjusting for age and other risk factors, and compared between MZ and DZ pairs using logistic regression, generalized estimating equations, and a maximum likelihood-based method, respectively. A total of 70 participants (27%) reported HV, with 12 MZ and 7 DZ pairs being concordant. After adjusting for age, twins were correlated (ρ = 0.27 [95% confidence interval (95% CI) 0.08, 0.46]) and concordant (P C = 0.45 [95% CI 0.29, 0.61]; mean age 58 years), with no difference between MZ and DZ pairs (P = 0.7). HV was associated with regularly wearing footwear with a constrictive toe-box during the fourth decade (adjusted OR 2.73 [95% CI 1.12, 6.67]). This risk factor was correlated in MZ (ρ = 0.38 [95% CI 0.15, 0.60]) but not DZ (ρ = -0.20 [95% CI -0.43, 0.03]) pairs. These correlations were significantly different (P = 0.002). Twins are correlated for HV, but we found no evidence that correlation was due to shared genetic factors. We identified an environmental risk factor, footwear with a constrictive toe-box, that is not shared to the same extent by MZ and DZ pairs, contrary to the assumption of the classic twin model. Footwear, and possibly genetic factors and unknown shared environmental factors, could contribute to developing HV. © 2016, American College of Rheumatology.
Depression and cognitive impairment among newly admitted nursing home residents in the USA.
Ulbricht, Christine M; Rothschild, Anthony J; Hunnicutt, Jacob N; Lapane, Kate L
2017-11-01
The objective of this study is to describe the prevalence of depression and cognitive impairment among newly admitted nursing home residents in the USA and to describe the treatment of depression by level of cognitive impairment. We identified 1,088,619 newly admitted older residents between 2011 and 2013 with an active diagnosis of depression documented on the Minimum Data Set 3.0. The prevalence of receiving psychiatric treatment was estimated by cognitive impairment status and depression symptoms. Binary logistic regression using generalized estimating equations provided adjusted odds ratios and 95% confidence intervals for the association between level of cognitive impairment and receipt of psychiatric treatment, adjusted for clustering of residents within nursing homes and resident characteristics. Twenty-six percent of newly admitted residents had depression; 47% of these residents also had cognitive impairment. Of those who had staff assessments of depression, anhedonia, impaired concentration, psychomotor disturbances, and irritability were more commonly experienced by residents with cognitive impairment than residents without cognitive impairment. Forty-eight percent of all residents with depression did not receive any psychiatric treatment. Approximately one-fifth of residents received a combination of treatment. Residents with severe cognitive impairment were less likely than those with intact cognition to receive psychiatric treatment (adjusted odds ratio = 0.95; 95% confidence interval: 0.93-0.98). Many newly admitted residents with an active diagnosis of depression are untreated, potentially missing an important window to improve symptoms. The extent of comorbid cognitive impairment and depression and lack of treatment suggest opportunities for improved quality of care in this increasingly important healthcare setting. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Van den Heede, Koen; Sermeus, Walter; Diya, Luwis; Clarke, Sean P; Lesaffre, Emmanuel; Vleugels, Arthur; Aiken, Linda H
2009-07-01
Studies have linked nurse staffing levels (number and skill mix) to several nurse-sensitive patient outcomes. However, evidence from European countries has been limited. This study examines the association between nurse staffing levels (i.e. acuity-adjusted Nursing Hours per Patient Day, the proportion of registered nurses with a Bachelor's degree) and 10 different patient outcomes potentially sensitive to nursing care. DESIGN-SETTING-PARTICIPANTS: Cross-sectional analyses of linked data from the Belgian Nursing Minimum Dataset (general acute care and intensive care nursing units: n=1403) and Belgian Hospital Discharge Dataset (general, orthopedic and vascular surgery patients: n=260,923) of the year 2003 from all acute hospitals (n=115). Logistic regression analyses, estimated by using a Generalized Estimation Equation Model, were used to study the association between nurse staffing and patient outcomes. The mean acuity-adjusted Nursing Hours per Patient Day in Belgian hospitals was 2.62 (S.D.=0.29). The variability in patient outcome rates between hospitals is considerable. The inter-quartile ranges for the 10 patient outcomes go from 0.35 for Deep Venous Thrombosis to 3.77 for failure-to-rescue. No significant association was found between the acuity-adjusted Nursing Hours per Patient Day, proportion of registered nurses with a Bachelor's degree and the selected patient outcomes. The absence of associations between hospital-level nurse staffing measures and patient outcomes should not be inferred as implying that nurse staffing does not have an impact on patient outcomes in Belgian hospitals. To better understand the dynamics of the nurse staffing and patient outcomes relationship in acute hospitals, further analyses (i.e. nursing unit level analyses) of these and other outcomes are recommended, in addition to inclusion of other study variables, including data about nursing practice environments in hospitals.
Chang, Ta C.; Congdon, Nathan G.; Wojciechowski, Robert; Muñoz, Beatriz; Gilbert, Donna; Chen, Ping; Friedman, David S.; West, Sheila K.
2011-01-01
Purpose To investigate the heritability of intraocular pressure (IOP) and cup-to-disc ratio (CDR) in an older well-defined population. Design Family-based cohort study. Participants Through the population-based Salisbury Eye Evaluation study, we recruited 726 siblings (mean age, 74.7 years) in 284 sibships. Methods Intraocular pressure and CDR were measured bilaterally for all participants. The presence or absence of glaucoma was determined by a glacuoma specialist for all probands on the basis of visual field, optic nerve appearance, and history. The heritability of IOP was calculated as twice the residual between-sibling correlation of IOP using linear regression and generalized estimating equations after adjusting for age, gender, mean arterial pressure, race, self-reported diabetes status, and history of systemic steroid use. The heritability of CDR was calculated using the same model and adjustments as above, while also adjusting for IOP. Main Outcome Measures Heritability and determinants of IOP and CDR, and impact of siblings’ glaucoma status on IOP and CDR. Results We estimated the heritability to be 0.29 (95% confidence interval [CI], 0.12–0.46) for IOP and 0.56 (95% CI, 0.35–0.76) for CDR in this population. Mean IOP in siblings of glaucomatous probands was statistically significantly higher than in siblings of normal probands (mean difference, 1.02 mmHg; P = 0.017). The mean CDR in siblings of glaucomatous probands was 0.07 (or 19%) larger than in siblings of glaucoma suspect referrals (P = 0.045) and siblings of normal probands (P = 0.004). Conclusions In this elderly population, we found CDR to be highly heritable and IOP to be moderately heritable. On average, siblings of glaucoma patients had higher IOPs and larger CDRs than siblings of nonglaucomatous probands. PMID:15939473
Coté, Michele L.; Liu, Mei; Bonassi, Stefano; Neri, Monica; Schwartz, Ann G.; Christiani, David C.; Spitz, Margaret R.; Muscat, Joshua E.; Rennert, Gad; Aben, Katja K.; Andrew, Angeline S.; Bencko, Vladimir; Bickeböller, Heike; Boffetta, Paolo; Brennan, Paul; Brenner, Hermann; Duell, Eric J.; Fabianova, Eleonora; Field, John K.; Foretova, Lenka; Friis, Søren; Harris, Curtis C.; Holcatova, Ivana; Hong, Yun-Chul; Isla, Dolores; Janout, Vladimir; Kiemeney, Lambertus A.; Kiyohara, Chikako; Lan, Qing; Lazarus, Philip; Lissowska, Jolanta; Marchand, Loic Le; Mates, Dana; Matsuo, Keitaro; Mayordomo, Jose I.; McLaughlin, John R.; Morgenstern, Hal; Müeller, Heiko; Orlow, Irene; Park, Bernard J.; Pinchev, Mila; Raji, Olaide Y.; Rennert, Hedy S.; Rudnai, Peter; Seow, Adeline; Stucker, Isabelle; Szeszenia-Dabrowska, Neonila; Teare, M. Dawn; Tjønnelan, Anne; Ugolini, Donatella; van der Heijden, Henricus F.M.; Wichmann, Erich; Wiencke, John K.; Woll, Penella J.; Yang, Ping; Zaridze, David; Zhang, Zuo-Feng; Etzel, Carol J.; Hung, Rayjean J.
2012-01-01
Background and Methods Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analyzed. Unconditional logistic regression models and generalized estimating equations were used to estimate odds ratios and 95% confidence intervals. Results Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in risk of lung cancer, after adjustment for smoking and other potential confounders(95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (OR=1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR=1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR=1.44, 95% CI: 1.07, 1.93), after adjustment. Conclusions The increased risk among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those associated with cigarette smoking. While the role of genetic variation in the etiology of lung cancer remains to be fully characterized, family history assessment is immediately available and those with a positive history represent a higher risk group. PMID:22436981
ConvAn: a convergence analyzing tool for optimization of biochemical networks.
Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils
2012-01-01
Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Chen, W-Y; Lee, C-Y; Lin, P-Y; Hsieh, C-E; Ko, C-J; Lin, K-H; Lin, C-C; Ming, Y-Z; Chen, Y-L
2017-03-01
Studies have shown that arecoline, the major alkaloid component of betel nuts, alters the activity of enzymes in the cytochrome P450 (CYP-450) family. Tacrolimus, an immunosuppressant that protects against organ rejection in transplant recipients, not only is mainly metabolized by CYP3A enzymes but also has a narrow therapeutic range. We aimed to investigate whether dose-adjusted blood trough levels of tacrolimus differed over time between betel nut-chewing and non-betel nut-chewing liver transplant recipients. In this retrospective case-control study, 14 active betel nut-using liver recipients were matched at a 1:2 ratio to 28 non-betel nut-using liver recipients by sex, age, graft source, duration of follow-up after liver transplantation, and estimated glomerular filtration rate. Differences in liver function index, renal function index, and dose-adjusted blood trough levels of tacrolimus over an 18-month period were compared between the 2 groups by using the Generalized Estimating Equation approach. Dose-adjusted blood trough levels of tacrolimus tended to be significantly (P = .04) lower in betel nut chewers (mean = 0.81, medium = 0.7, 95% confidence interval [CI] = 0.73 to 0.90) than in nonchewers (mean = 1.12, medium = 0.88, 95% CI = 1.03 to 1.22) during the 18-month study period. However, there was no significant difference in renal and liver function index between the 2 groups. Liver transplant recipients receiving tacrolimus tend to have lower blood trough levels of the drug over time if they chew betel nuts. Copyright © 2016 Elsevier Inc. All rights reserved.
Vaughan-Sarrazin, Mary S; Wakefield, Bonnie; Rosenthal, Gary E
2007-10-01
A limitation of studies comparing outcomes of Veterans Affairs (VA) and private sector hospitals is uncertainty about the methods of accounting for risk factors in VA populations. This study estimates whether use of VA services is a marker for increased risk by comparing outcomes of VA users and other patients undergoing coronary revascularization in private sector hospitals. Males 67 years and older undergoing coronary artery bypass graft (CABG; n=687,936) surgery or percutaneous coronary intervention (PCI; n=664,124) during 1996-2002 were identified from Medicare administrative data. Patients using VA services during the 2 years preceding the Medicare admission were identified using VA administrative files. Thirty-, 90-, and 365-day mortality were compared in patients who did and did not use VA services, adjusting for demographic and clinical risk factors using generalized estimating equations and propensity score analysis. Adjusted mortality after CABG was higher (p<.001) in VA users compared with nonusers at 30, 90, and 365 days: odds ratio (OR)=1.07 (95 percent confidence interval [CI], 1.03-1.11), 1.07 (95 percent CI, 1.04-1.10), and 1.09 (95 percent CI, 1.06-1.12), respectively. For PCI, mortality at 30 and 90 days was similar (p>.05) for VA users and nonusers, but was higher at 365 days (OR=1.09; 95 percent CI, 1.06-1.12). The increased risk of death in VA users was limited to patients with service-connected disabilities or low incomes. Odds of death for VA users were slightly lower using samples matched by propensity scores. A small difference in risk-adjusted outcomes for VA users and nonusers undergoing revascularization in private sector hospitals was found. This difference reflects unmeasured severity in VA users undergoing revascularization in private sector hospitals.
Risk of Human Papillomavirus (HPV) Infection and Cervical Neoplasia after Pregnancy.
Trottier, Helen; Mayrand, Marie-Hélène; Baggio, Maria Luiza; Galan, Lenice; Ferenczy, Alex; Villa, Luisa L; Franco, Eduardo L
2015-10-07
Parity is well established as a risk factor for cervical cancer. It is not clear, however, how pregnancy influences the natural history of HPV infection and cervical neoplasia. Our objective was to study the risk of HPV infection and cervical squamous intraepithelial lesions (SIL) after pregnancy. We used the Ludwig-McGill cohort study which includes 2462 women recruited in Sao Paulo, Brazil in 1993-97 and followed for up to 10 years. Cellular specimens were collected every 4-6 months for Pap cytology and HPV detection and genotyping by a polymerase chain reaction protocol. Study nurses recorded pregnancy occurrence during follow-up. HPV and Pap results from pregnant women were available before and after, but not during pregnancy. The associations between pregnancy and post-partum HPV infection/SIL were studied using generalized estimating equation models with logistic link. Adjusted odds ratios (OR) were estimated with empirical adjustment for confounding. We recorded 122 women with a history of pregnancy during follow-up. Of these, 29 reintegrated the cohort study after delivery. No association between HPV and pregnancy was found. A single SIL case (high grade SIL) occurred post-partum. Likewise, there was no association between pregnancy and risk of low grade SIL or any-grade SIL at the next visit (adjusted OR = 0.84, 95 % CI: 0.46-15.33) after controlling for confounders. No associations were found between pregnancy and HPV or LSIL. The single observed case of HSIL post-partum was more than would be expected based on the rate of these abnormalities among non-pregnant women. As this association was found with only one case, caution is required in the interpretation of these results.
Effects of heat waves on mortality: effect modification and confounding by air pollutants.
Analitis, Antonis; Michelozzi, Paola; D'Ippoliti, Daniela; De'Donato, Francesca; Menne, Bettina; Matthies, Franziska; Atkinson, Richard W; Iñiguez, Carmen; Basagaña, Xavier; Schneider, Alexandra; Lefranc, Agnès; Paldy, Anna; Bisanti, Luigi; Katsouyanni, Klea
2014-01-01
Heat waves and air pollution are both associated with increased mortality. Their joint effects are less well understood. We explored the role of air pollution in modifying the effects of heat waves on mortality, within the EuroHEAT project. Daily mortality, meteorologic, and air pollution data from nine European cities for the years 1990-2004 were assembled. We defined heat waves by taking both intensity and duration into account. The city-specific effects of heat wave episodes were estimated using generalized estimating equation models, adjusting for potential confounders with and without inclusion of air pollutants (particles, ozone, nitrogen dioxide, sulphur dioxide, carbon monoxide). To investigate effect modification, we introduced an interaction term between heat waves and each single pollutant in the models. Random effects meta-analysis was used to summarize the city-specific results. The increase in the number of daily deaths during heat wave episodes was 54% higher on high ozone days compared with low, among people age 75-84 years. The heat wave effect on high PM10 days was increased by 36% and 106% in the 75-84 year and 85+ year age groups, respectively. A similar pattern was observed for effects on cardiovascular mortality. Effect modification was less evident for respiratory mortality, although the heat wave effect itself was greater for this cause of death. The heat wave effect was smaller (15-30%) after adjustment for ozone or PM10. The heat wave effect on mortality was larger during high ozone or high PM10 days. When assessing the effect of heat waves on mortality, lack of adjustment for ozone and especially PM10 overestimates effect parameters. This bias has implications for public health policy.
Carrieri, M Patrizia; Lions, Caroline; Sogni, Philippe; Winnock, Maria; Roux, Perrine; Mora, Marion; Bonnard, Philippe; Salmon, Dominique; Dabis, François; Spire, Bruno
2014-01-01
We used longitudinal data from the ANRS CO13 HEPAVIH cohort study of HIV-HCV co-infected individuals to investigate whether polyphenol rich food intake through coffee and/or daily chocolate consumption could play a role in reducing liver enzymes levels. Longitudinal data collection included self-administered questionnaires and medical data (aspartate aminotransferase (AST) and alanine aminotransferase (ALT) liver enzymes). Two analyses were performed to assess the association between coffee (≥3 cups a day) and daily chocolate intake and abnormal values of AST and ALT (AST or ALT >2.5 × upper normal limit (UNL)) (N=990) over time, after adjustment for known correlates. Logistic regression models based on generalized estimating equations were used to take into account the correlations between repeated measures and estimate adjusted odds ratio. After adjustment, patients reporting elevated coffee consumption and daily chocolate intake were less likely to present abnormal ALT (OR=0.65; p=0.04 and OR=0.57; p=0.04, for coffee and chocolate respectively), while only patients reporting elevated coffee consumption were less likely to have abnormal AST values (p=0.05). Nevertheless, the combined indicator of coffee and chocolate intake was most significantly associated with approximately 40% reduced risk of abnormal liver enzymes (p=0.003 for AST; p=0.002 for ALT). Elevated coffee consumption and daily chocolate intake appear to be associated with reduced levels of liver enzymes in HIV-HCV co-infected patients. Further experimental and observational research is needed to better understand the role that polyphenol intake or supplementation can play on liver disease and liver injury. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.
2016-09-06
Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.
Estimation of GFR in South Asians: A Study From the General Population in Pakistan
Jessani, Saleem; Levey, Andrew S.; Bux, Rasool; Inker, Lesley A.; Islam, Muhammad; Chaturvedi, Nish; Mariat, Christophe; Schmid, Christopher H.; Jafar, Tazeen H.
2015-01-01
Background South Asians are at high risk for chronic kidney disease. However, unlike those in the United States and United Kingdom, laboratories in South Asian countries do not routinely report estimated glomerular filtration rate (eGFR) when serum creatinine is measured. The objectives of the study were to: (1) evaluate the performance of existing GFR estimating equations in South Asians, and (2) modify the existing equations or develop a new equation for use in this population. Study Design Cross-sectional population-based study. Setting & Participants 581 participants 40 years or older were enrolled from 10 randomly selected communities and renal clinics in Karachi. Predictors eGFR, age, sex, serum creatinine level. Outcomes Bias (the median difference between measured GFR [mGFR] and eGFR), precision (the IQR of the difference), accuracy (P30; percentage of participants with eGFR within 30% of mGFR), and the root mean squared error reported as cross-validated estimates along with bootstrapped 95% CIs based on 1,000 replications. Results The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine equation performed better than the MDRD (Modification of Diet in Renal Disease) Study equation in terms of greater accuracy at P30 (76.1% [95% CI, 72.7%–79.5%] vs 68.0% [95% CI, 64.3%–71.7%]; P <0.001) and improved precision (IQR, 22.6 [95% CI, 19.9–25.3] vs 28.6 [95% CI, 25.8–31.5] mL/min/1.73 m2; P < 0.001). However, both equations overestimated mGFR. Applying modification factors for slope and intercept to the CKD-EPI equation to create a CKD-EPI Pakistan equation (such that eGFRCKD-EPI(PK) = 0.686 × eGFRCKD-EPI1.059) in order to eliminate bias improved accuracy (P30, 81.6% [95% CI, 78.4%–84.8%]; P < 0.001) comparably to new estimating equations developed using creatinine level and additional variables. Limitations Lack of external validation data set and few participants with low GFR. Conclusions The CKD-EPI creatinine equation is more accurate and precise than the MDRD Study equation in estimating GFR in a South Asian population in Karachi. The CKD-EPI Pakistan equation further improves the performance of the CKD-EPI equation in South Asians and could be used for eGFR reporting. PMID:24074822
ERIC Educational Resources Information Center
Smith, Gregory C.; Palmieri, Patrick A.; Hancock, Gregory R.; Richardson, Rhonda A.
2008-01-01
An adaptation of the Family Stress Model (FSM) with hypothesized linkages between family contextual factors, custodial grandmothers' psychological distress, parenting practices, and grandchildren's adjustment was tested with structural equation modeling. Interview data from 733 custodial grandmothers of grandchildren between ages 4-17 revealed…
Spatial variability in water-balance model performance in the conterminous United States
Hay, L.E.; McCabe, G.J.
2002-01-01
A monthly water-balance (WB) model was tested in 44 river basins from diverse physiographic and climatic regions across the conterminous United States (U.S.). The WB model includes the concepts of climatic water supply and climatic water demand, seasonality in climatic water supply and demand, and soil-moisture storage. Exhaustive search techniques were employed to determine the optimal set of precipitation and temperature stations, and the optimal set of WB model parameters to use for each basin. It was found that the WB model worked best for basins with: (1) a mean elevation less than 450 meters or greater than 2000 meters, and/or (2) monthly runoff that is greater than 5 millimeters (mm) more than 80 percent of the time. In a separate analysis, a multiple linear regression (MLR) was computed using the adjusted R-square values obtained by comparing measured and estimated monthly runoff of the original 44 river basins as the dependent variable, and combinations of various independent variables [streamflow gauge latitude, longitude, and elevation; basin area, the long-term mean and standard deviation of annual precipitation; temperature and runoff; and low-flow statistics (i.e., the percentage of months with monthly runoff that is less than 5 mm)]. Results from the MLR study showed that the reliability of a WB model for application in a specific region can be estimated from mean basin elevation and the percentage of months with gauged runoff less than 5 mm. The MLR equations were subsequently used to estimate adjusted R-square values for 1,646 gauging stations across the conterminous U.S. Results of this study indicate that WB models can be used reliably to estimate monthly runoff in the eastern U.S., mountainous areas of the western U.S., and the Pacific Northwest. Applications of monthly WB models in the central U.S. can lead to uncertain estimates of runoff.
Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model
Patricia L. Andrews
2012-01-01
Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...
NASA Technical Reports Server (NTRS)
Dardner, B. R.; Blad, B. L.; Thompson, D. R.; Henderson, K. E.
1985-01-01
Reflectance and agronomic Thematic Mapper (TM) data were analyzed to determine possible data transformations for evaluating several plant parameters of corn. Three transformation forms were used: the ratio of two TM bands, logarithms of two-band ratios, and normalized differences of two bands. Normalized differences and logarithms of two-band ratios responsed similarly in the equations for estimating the plant growth parameters evaluated in this study. Two-term equations were required to obtain the maximum predictability of percent ground cover, canopy moisture content, and total wet phytomass. Standard error of estimate values were 15-26 percent lower for two-term estimates of these parameters than for one-term estimates. The terms log(TM4/TM2) and (TM4/TM5) produced the maximum predictability for leaf area and dry green leaf weight, respectively. The middle infrared bands TM5 and TM7 are essential for maximizing predictability for all measured plant parameters except leaf area index. The estimating models were evaluated over bare soil to discriminate between equations which are statistically similar. Qualitative interpretations of the resulting prediction equations are consistent with general agronomic and remote sensing theory.
Assimilation of GOES-Derived Cloud Fields Into MM5
NASA Astrophysics Data System (ADS)
Biazar, A. P.; Doty, K. G.; McNider, R.
2007-12-01
This approach for the assimilation of GOES-derived cloud data into an atmospheric model (the Fifth-Generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model, or MM5) was performed in two steps. In the first step, multiple linear regression equations were developed using a control MM5 simulation to develop relationships for several dependent variables in model columns that had one or more layers of clouds. In the second step, the regression equations were applied during an MM5 simulation with assimilation in which the hourly GOES satellite data were used to determine the cloud locations and some of the cloud properties, but with all the other variables being determined by the model data. The satellite-derived fields used were shortwave cloud albedo and cloud top pressure. Ten multiple linear regression equations were developed for the following dependent variables: total cloud depth, number of cloud layers, depth of the layer that contains the maximum vertical velocity, the maximum vertical velocity, the height of the maximum vertical velocity, the estimated 1-h stable (i.e., grid scale) precipitation rate, the estimated 1-h convective precipitation rate, the height of the level with the maximum positive diabatic heating, the magnitude of the maximum positive diabatic heating, and the largest continuous layer of upward motion. The horizontal components of the divergent wind were adjusted to be consistent with the regression estimate of the maximum vertical velocity. The new total horizontal wind field with these new divergent components was then used to nudge an ongoing MM5 model simulation towards the target vertical velocity. Other adjustments included diabatic heating and moistening at specified levels. Where the model simulation had clouds when the satellite data indicated clear conditions, procedures were taken to remove or diminish the errant clouds. The results for the period of 0000 UTC 28 June - 0000 UTC 16 July 1999 for both a continental 32-km grid and an 8-km grid over the Southeastern United States indicate a significant improvement in the cloud bias statistics. The main improvement was the reduction of high bias values that indicated times and locations in the control run when there were model clouds but when the satellite indicated clear conditions. The importance of this technique is that it has been able to assimilate the observed clouds in the model in a dynamically sustainable manner. Acknowledgments. This work was partially funded by the following grants: a GEWEX grant from NASA , the Cooperative Agreement between the University of Alabama in Huntsville and the Minerals Management Service on Gulf of Mexico Issues, a NASA applications grant, and a NSF grant.
Estimation of height and body mass index from demi-span in elderly individuals.
Weinbrenner, Tanja; Vioque, Jesús; Barber, Xavier; Asensio, Laura
2006-01-01
Obtaining accurate height and, consequently, body mass index (BMI) measurements in elderly subjects can be difficult due to changes in posture and loss of height during ageing. Measurements of other body segments can be used as an alternative to estimate standing height, but population- and age-specific equations are necessary. Our objectives were to validate existing equations, to develop new simple equations to predict height in an elderly Spanish population and to assess the accuracy of the BMI calculated by estimated height from the new equations. We measured height and demi-span in a representative sample of 592 individuals, 271 men and 321 women, 65 years and older (mean +/- SD, 73.8 +/- 6.3 years). We suggested equations to predict height from demi-span by multiple regression analyses and performed an agreement analysis between measured and estimated indices. Height estimated from demi-span correlated significantly (p < 0.001) with measured height (men: r = 0.708, women: r = 0.625). The best prediction equations were as follows: men, height (in cm) = 77.821 + (1.132 x demi-span in cm) + (-0.215 x 5-year age category); women: height (in cm) = 88.854 + (0.899 x demi-span in cm) + (-0.692 x 5-year age category). No significant differences between the mean values of estimated and measured heights were found for men (-0.03 +/- 4.6 cm) or women (-0.02 +/- 4.1 cm). The BMI derived from measured height did not differ significantly from the BMI derived from estimated height either. Predicted height values from equations based on demi-span and age may be acceptable surrogates to derive accurate nutritional indices such as the BMI, particularly in elderly populations, where height may be difficult to measure accurately.
Family-oriented cardiac risk estimator: a Java web-based applet.
Crouch, Michael A; Jadhav, Ashwin
2003-01-01
We developed a Java applet that calculates four different estimates of a person's 10-year risk for heart attack: (1) Estimate based on Framingham equation (2) Framingham equation estimate modified by C-reactive protein (CRP) level (3) Framingham estimate modified by family history of heart disease in parents or siblings (4) Framingham estimate modified by both CRP and family heart disease history. This web-based, family-oriented cardiac risk estimator uniquely considers family history and CRP while estimating risk.
Pose-free structure from motion using depth from motion constraints.
Zhang, Ji; Boutin, Mireille; Aliaga, Daniel G
2011-10-01
Structure from motion (SFM) is the problem of recovering the geometry of a scene from a stream of images taken from unknown viewpoints. One popular approach to estimate the geometry of a scene is to track scene features on several images and reconstruct their position in 3-D. During this process, the unknown camera pose must also be recovered. Unfortunately, recovering the pose can be an ill-conditioned problem which, in turn, can make the SFM problem difficult to solve accurately. We propose an alternative formulation of the SFM problem with fixed internal camera parameters known a priori. In this formulation, obtained by algebraic variable elimination, the external camera pose parameters do not appear. As a result, the problem is better conditioned in addition to involving much fewer variables. Variable elimination is done in three steps. First, we take the standard SFM equations in projective coordinates and eliminate the camera orientations from the equations. We then further eliminate the camera center positions. Finally, we also eliminate all 3-D point positions coordinates, except for their depths with respect to the camera center, thus obtaining a set of simple polynomial equations of degree two and three. We show that, when there are merely a few points and pictures, these "depth-only equations" can be solved in a global fashion using homotopy methods. We also show that, in general, these same equations can be used to formulate a pose-free cost function to refine SFM solutions in a way that is more accurate than by minimizing the total reprojection error, as done when using the bundle adjustment method. The generalization of our approach to the case of varying internal camera parameters is briefly discussed. © 2011 IEEE
NASA Astrophysics Data System (ADS)
Osczevski, Randall J.
2014-08-01
Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.
Cook, Nancy R.; Ridker, Paul M
2015-01-01
Importance While the Pooled Cohort Equations from the recent ACC/AHA Guideline on the Assessment of Cardiovascular Risk have over-estimated cardiovascular risk in multiple external cohorts, the reasons for the discrepancy are unclear. Objective To determine whether increased use of statins over time, incident coronary revascularization procedures, or under-ascertainment of vascular events explain over-estimation of risk in a more contemporary population. Design, Setting, and Participants 27,542 women aged 45-79 with complete ascertainment of plasma lipids and other risk factors from the Women's Health Study (WHS), a nationwide cohort of US women free of cardiovascular disease, cancer or other major illness at baseline in 1992-95. Women were followed for a median of 10 years. Main Outcomes and Measures Atherosclerotic cardiovascular disease (ASCVD), defined as any myocardial infarction, any stroke, or death due to cardiovascular cause. Results 632 women experienced an ASCVD event over follow-up. The average predicted risk from the Pooled Cohort Equations was 3.6% over 10 years, compared to an actual observed risk of 2.2%. Predicted rates were 90% higher than the observed rates in the 0-<5% and 5-<7.5% risk groups and 40% higher in the 7.5-<10% and 10%+ risk groups. Rates of statin use and revascularizations increased over follow-up time and by risk group, and in sensitivity analyses, we estimated the hypothetical rates if no women were on statins or underwent revascularization procedures. After adjustment for intervention effects of statins and revascularization as well as hypothetical confounding by indication, predicted rates remained 80% higher than observed rates in the lower two risk groups and 30% higher in the upper two risk groups. Under-ascertainment is unlikely since follow-up rates in the WHS were 97%, and overall we would need 60% more events to match the numbers predicted using the Pooled Cohort Equations. Conclusions and Relevance Neither statin use, revascularization procedures, nor under-ascertainment of events explain the discrepancy between observed rates of ASCVD in the WHS and those predicted by the ACC/AHA Pooled Cohort Equations. Other explanations include changing patterns of risk within more contemporary populations. PMID:25285455
Wallby, Thomas; Lagerberg, Dagmar; Magnusson, Margaretha
To study a potential link between breastfeeding in infancy and obesity at age 4. A total of 30,508 infants born during 2002-2007 from the databases of the Preventive Child Health Services in two Swedish counties and from national registers were studied. The outcome variable was obesity at age 4. Analyses were conducted by logistic regression models using the methodology of generalized estimating equations. Analyses were adjusted for child sex and maternal anthropometric and sociodemographic variables. In unadjusted analyses, any breastfeeding up to 9 months was linked to successively decreasing odds ratios (ORs) for obesity at age 4 (ORs 0.78-0.33), however, not significantly for 1 week and 2 months of breastfeeding. In adjusted analyses, the same pattern remained statistically significant for breastfeeding for 4 (OR 0.51), 6 (OR 0.55), and 9 (OR 0.47) months. Child sex, maternal education, maternal body mass index, and maternal smoking additionally influenced child obesity. Breastfeeding duration for at least 4 months may contribute independently to a reduced risk for childhood obesity at 4 years.
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
ERIC Educational Resources Information Center
Maslowsky, Julie; Jager, Justin; Hemken, Douglas
2015-01-01
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
Bjerklie, David M.; Dingman, S. Lawrence; Bolster, Carl H.
2005-01-01
A set of conceptually derived in‐bank river discharge–estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site‐specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope‐area discharge estimates, and (3) large‐scale river modeling.
Body composition in elderly people: effect of criterion estimates on predictive equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, R.N.; Heymsfield, S.B.; Lichtman, S.
1991-06-01
The purposes of this study were to determine whether there are significant differences between two- and four-compartment model estimates of body composition, whether these differences are associated with aqueous and mineral fractions of the fat-free mass (FFM); and whether the differences are retained in equations for predicting body composition from anthropometry and bioelectric resistance. Body composition was estimated in 98 men and women aged 65-94 y by using a four-compartment model based on hydrodensitometry, {sup 3}H{sub 2}O dilution, and dual-photon absorptiometry. These estimates were significantly different from those obtained by using Siri's two-compartment model. The differences were associated significantly (Pmore » less than 0.0001) with variation in the aqueous fraction of FFM. Equations for predicting body composition from anthropometry and resistance, when calibrated against two-compartment model estimates, retained these systematic errors. Equations predicting body composition in elderly people should be calibrated against estimates from multicompartment models that consider variability in FFM composition.« less
Estimating Selected Streamflow Statistics Representative of 1930-2002 in West Virginia
Wiley, Jeffrey B.
2008-01-01
Regional equations and procedures were developed for estimating 1-, 3-, 7-, 14-, and 30-day 2-year; 1-, 3-, 7-, 14-, and 30-day 5-year; and 1-, 3-, 7-, 14-, and 30-day 10-year hydrologically based low-flow frequency values for unregulated streams in West Virginia. Regional equations and procedures also were developed for estimating the 1-day, 3-year and 4-day, 3-year biologically based low-flow frequency values; the U.S. Environmental Protection Agency harmonic-mean flows; and the 10-, 25-, 50-, 75-, and 90-percent flow-duration values. Regional equations were developed using ordinary least-squares regression using statistics from 117 U.S. Geological Survey continuous streamflow-gaging stations as dependent variables and basin characteristics as independent variables. Equations for three regions in West Virginia - North, South-Central, and Eastern Panhandle - were determined. Drainage area, precipitation, and longitude of the basin centroid are significant independent variables in one or more of the equations. Estimating procedures are presented for determining statistics at a gaging station, a partial-record station, and an ungaged location. Examples of some estimating procedures are presented.
NASA Technical Reports Server (NTRS)
Grove, R. D.; Bowles, R. L.; Mayhew, S. C.
1972-01-01
A maximum likelihood parameter estimation procedure and program were developed for the extraction of the stability and control derivatives of aircraft from flight test data. Nonlinear six-degree-of-freedom equations describing aircraft dynamics were used to derive sensitivity equations for quasilinearization. The maximum likelihood function with quasilinearization was used to derive the parameter change equations, the covariance matrices for the parameters and measurement noise, and the performance index function. The maximum likelihood estimator was mechanized into an iterative estimation procedure utilizing a real time digital computer and graphic display system. This program was developed for 8 measured state variables and 40 parameters. Test cases were conducted with simulated data for validation of the estimation procedure and program. The program was applied to a V/STOL tilt wing aircraft, a military fighter airplane, and a light single engine airplane. The particular nonlinear equations of motion, derivation of the sensitivity equations, addition of accelerations into the algorithm, operational features of the real time digital system, and test cases are described.
Wang, Elyn H; Yu, James B; Gross, Cary P; Abouassaly, Robert; Cherullo, Edward E; Smaldone, Marc C; Shah, Nilay D; Kiechle, Jonathon; Trinh, Quoc-Dien; Sun, Maxine; Kim, Simon P
2015-04-01
To assess whether surgical approach and hospital characteristics independently determine the number of lymph nodes (LNs) removed from prostate cancer patients undergoing radical prostatectomy (RP) and pelvic LN dissection (PLND). Using the National Cancer Database, we identified all surgically treated patients diagnosed with pretreatment intermediate- or high-risk prostate cancer from 2010 to 2011. The primary outcome was the number of LNs retrieved at the time of RP. Generalized estimating equations were used to assess for differences in the adjusted number of LNs retrieved after accounting for patient and hospital characteristics and surgical approach. Overall, 35,876 patients were diagnosed with intermediate-risk (61.2%) and high-risk (38.8%) prostate cancer and underwent RP and PLND.On multivariate analysis, open RP and high-volume and academic hospitals were independently associated with greater LN counts compared with robotic-assisted RP and medium or low and community hospitals, respectively (all P <.001). After adjusting for patient and hospital variables, higher adjusted LN counts were observed for open RP compared with robotic-assisted RP (7.1 vs 6.1; P <.001). Adjusted counts were also higher for high-volume hospitals compared with medium- or low-volume hospitals (7.8 vs 5.9; P <.001), and academic compared with community hospitals (7.3 vs 5.6; P <.001). Among patients with aggressive prostate cancer treated with RP and PLND, retrieval of LN counts varied by surgical approach and hospital characteristics. Copyright © 2015 Elsevier Inc. All rights reserved.
Male-Female Wage Differentials in the United States.
ERIC Educational Resources Information Center
Kiker, B. F.; Crouch, Henry L.
The primary objective of this paper is to describe a method of estimating female-male wage ratios. The estimating technique presented is two stage least squares (2SLS), in which equations are estimated for both men and women. After specifying and estimating the wage equations, the male-female wage differential is calculated that would remain if…
ERIC Educational Resources Information Center
Zu, Jiyun; Yuan, Ke-Hai
2012-01-01
In the nonequivalent groups with anchor test (NEAT) design, the standard error of linear observed-score equating is commonly estimated by an estimator derived assuming multivariate normality. However, real data are seldom normally distributed, causing this normal estimator to be inconsistent. A general estimator, which does not rely on the…
Nonlinear Theory of The Geostrophic Adjustment
NASA Astrophysics Data System (ADS)
Zeitlin, V.
Nonlinear geostrophic adjustment and splitting of the fast and slow dynamical vari- ables are analysed in the framework of multi-layer and continuously stratified prim- itive equations by means of the multi-scale perturbation theory in the Rossby num- ber applied to localized initial disturbances. Two basic dynamical regimes: the quasi- geostrophic (QG) and the frontal geostrophic (FG) with small and large deviations of the isopycnal surfaces, respectively, are considered and differences in corresponding adjustment scenarios are displayed. Decoupling of the fast component of the flow is proven up to the third order in Rossby number and long-time corrections to the stan- dard balanced QG and FG models are found. Peculiarities of splitting in the FG regime due to the quasi-inertial oscillations are displayed and a Schrodinger-like modulation equations for the envelope of these latter are derived.
Huang, Qi; Chen, Yunshuang; Zhang, Min; Wang, Sihe; Zhang, Weiguang; Cai, Guangyan; Chen, Xiangmei; Sun, Xuefeng
2018-04-01
We compared the performance of technetium-99m-diethylenetriaminepentaacetic acid ( 99m Tc-DTPA) renal dynamic imaging (RDI), the MDRD equation, and the CKD EPI equation to estimate glomerular filtration rate (GFR). A total of 551 subjects, including CKD patients and healthy individuals, were enrolled in this study. Dual plasma sample clearance method of 99m Tc-DTPA was used as the true value for GFR (tGFR). RDI and the MDRD and CKD EPI equations for estimating GFR were compared and evaluated. Data indicate that RDI and the MDRD equation underestimated GFR and CKD EPI overestimated GFR. RDI was associated with significantly higher bias than the MDRD and CKD EPI equations. The regression coefficient, diagnostic precision, and consistency of RDI were significantly lower than either equation. RDI and the MDRD equation underestimated GFR to a greater degree in subjects with tGFR ≥ 90 ml/min/1.73 m 2 compared with the results obtained from all subjects. In the tGFR60-89 ml/min/1.73 m 2 group, the precision of RDI was significantly lower than that of both equations. In the tGFR30-59 ml/min/1.73 m 2 group, RDI had the least bias, the most precision, and significantly higher accuracy compared with either equation. In tGFR < 30 ml/min/1.73 m 2 , the three methods had similar performance and were not significantly different. RDI significantly underestimates GFR and performs no better than MDRD and CKD EPI equations for GFR estimation; thus, it should not be recommended as a reference standard against which other GFR measurement methods are assessed. However, RDI better estimates GFR than either equation for individuals in the tGFR30-59 ml/min/1.73 m 2 group and thus may be helpful to distinguish stage 3a and 3b CKD.
Improving estimates of streamflow characteristics by using Landsat-1 imagery
Hollyday, Este F.
1976-01-01
Imagery from the first Earth Resources Technology Satellite (renamed Landsat-1) was used to discriminate physical features of drainage basins in an effort to improve equations used to estimate streamflow characteristics at gaged and ungaged sites. Records of 20 gaged basins in the Delmarva Peninsula of Maryland, Delaware, and Virginia were analyzed for 40 statistical streamflow characteristics. Equations relating these characteristics to basin characteristics were obtained by a technique of multiple linear regression. A control group of equations contains basin characteristics derived from maps. An experimental group of equations contains basin characteristics derived from maps and imagery. Characteristics from imagery were forest, riparian (streambank) vegetation, water, and combined agricultural and urban land use. These basin characteristics were isolated photographically by techniques of film-density discrimination. The area of each characteristic in each basin was measured photometrically. Comparison of equations in the control group with corresponding equations in the experimental group reveals that for 12 out of 40 equations the standard error of estimate was reduced by more than 10 percent. As an example, the standard error of estimate of the equation for the 5-year recurrence-interval flood peak was reduced from 46 to 32 percent. Similarly, the standard error of the equation for the mean monthly flow for September was reduced from 32 to 24 percent, the standard error for the 7-day, 2-year recurrence low flow was reduced from 136 to 102 percent, and the standard error for the 3-day, 2-year flood volume was reduced from 30 to 12 percent. It is concluded that data from Landsat imagery can substantially improve the accuracy of estimates of some streamflow characteristics at sites in the Delmarva Peninsula.
Work-Family Balance and Psychosocial Adjustment of Married International Students
ERIC Educational Resources Information Center
Bulgan, Gökçe; Çiftçi, Ayse
2018-01-01
The authors investigated how work-family balance mediated the relationship between personality traits, gender roles, social support, and psychosocial adjustment. Data were collected from 243 married international graduate students (MIGSs) studying in the United States. Results of structural equation modeling indicated that personality traits…
Using structural equation modeling for network meta-analysis.
Tu, Yu-Kang; Wu, Yun-Chun
2017-07-14
Network meta-analysis overcomes the limitations of traditional pair-wise meta-analysis by incorporating all available evidence into a general statistical framework for simultaneous comparisons of several treatments. Currently, network meta-analyses are undertaken either within the Bayesian hierarchical linear models or frequentist generalized linear mixed models. Structural equation modeling (SEM) is a statistical method originally developed for modeling causal relations among observed and latent variables. As random effect is explicitly modeled as a latent variable in SEM, it is very flexible for analysts to specify complex random effect structure and to make linear and nonlinear constraints on parameters. The aim of this article is to show how to undertake a network meta-analysis within the statistical framework of SEM. We used an example dataset to demonstrate the standard fixed and random effect network meta-analysis models can be easily implemented in SEM. It contains results of 26 studies that directly compared three treatment groups A, B and C for prevention of first bleeding in patients with liver cirrhosis. We also showed that a new approach to network meta-analysis based on the technique of unrestricted weighted least squares (UWLS) method can also be undertaken using SEM. For both the fixed and random effect network meta-analysis, SEM yielded similar coefficients and confidence intervals to those reported in the previous literature. The point estimates of two UWLS models were identical to those in the fixed effect model but the confidence intervals were greater. This is consistent with results from the traditional pairwise meta-analyses. Comparing to UWLS model with common variance adjusted factor, UWLS model with unique variance adjusted factor has greater confidence intervals when the heterogeneity was larger in the pairwise comparison. The UWLS model with unique variance adjusted factor reflects the difference in heterogeneity within each comparison. SEM provides a very flexible framework for univariate and multivariate meta-analysis, and its potential as a powerful tool for advanced meta-analysis is still to be explored.
Estimation of selected flow and water-quality characteristics of Alaskan streams
Parks, Bruce; Madison, R.J.
1985-01-01
Although hydrologic data are either sparse or nonexistent for large areas of Alaska, the drainage area, area of lakes, glacier and forest cover, and average precipitation in a hydrologic basin of interest can be measured or estimated from existing maps. Application of multiple linear regression techniques indicates that statistically significant correlations exist between properties of basins determined from maps and measured streamflow characteristics. This suggests that corresponding characteristics of ungaged basins can be estimated. Streamflow frequency characteristics can be estimated from regional equations developed for southeast, south-central and Yukon regions. Statewide or modified regional equations must be used, however, for the southwest, northwest, and Arctic Slope regions where there is a paucity of data. Equations developed from basin characteristics are given to estimate suspended-sediment values for glacial streams and, with less reliability, for nonglacial streams. Equations developed from available specific conductance data are given to estimate concentrations of major dissolved inorganic constituents. Suggestions are made for expanding the existing data base and thus improving the ability to estimate hydrologic characteristics for Alaskan streams. (USGS)
Challenges in Collating Spirometry Reference Data for South-Asian Children: An Observational Study
Lum, Sooky; Bountziouka, Vassiliki; Quanjer, Philip; Sonnappa, Samatha; Wade, Angela; Beardsmore, Caroline; Chhabra, Sunil K.; Chudasama, Rajesh K.; Cook, Derek G.; Harding, Seeromanie; Kuehni, Claudia E.; Prasad, K. V. V.; Whincup, Peter H.; Lee, Simon; Stocks, Janet
2016-01-01
Availability of sophisticated statistical modelling for developing robust reference equations has improved interpretation of lung function results. In 2012, the Global Lung function Initiative(GLI) published the first global all-age, multi-ethnic reference equations for spirometry but these lacked equations for those originating from the Indian subcontinent (South-Asians). The aims of this study were to assess the extent to which existing GLI-ethnic adjustments might fit South-Asian paediatric spirometry data, assess any similarities and discrepancies between South-Asian datasets and explore the feasibility of deriving a suitable South-Asian GLI-adjustment. Methods Spirometry datasets from South-Asian children were collated from four centres in India and five within the UK. Records with transcription errors, missing values for height or spirometry, and implausible values were excluded(n = 110). Results Following exclusions, cross-sectional data were available from 8,124 children (56.3% male; 5–17 years). When compared with GLI-predicted values from White Europeans, forced expired volume in 1s (FEV1) and forced vital capacity (FVC) in South-Asian children were on average 15% lower, ranging from 4–19% between centres. By contrast, proportional reductions in FEV1 and FVC within all but two datasets meant that the FEV1/FVC ratio remained independent of ethnicity. The ‘GLI-Other’ equation fitted data from North India reasonably well while ‘GLI-Black’ equations provided a better approximation for South-Asian data than the ‘GLI-White’ equation. However, marked discrepancies in the mean lung function z-scores between centres especially when examined according to socio-economic conditions precluded derivation of a single South-Asian GLI-adjustment. Conclusion Until improved and more robust prediction equations can be derived, we recommend the use of ‘GLI-Black’ equations for interpreting most South-Asian data, although ‘GLI-Other’ may be more appropriate for North Indian data. Prospective data collection using standardised protocols to explore potential sources of variation due to socio-economic circumstances, secular changes in growth/predictors of lung function and ethnicities within the South-Asian classification are urgently required. PMID:27119342
Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed
2016-03-01
This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky
Martin, Gary R.; Arihood, Leslie D.
2010-01-01
This report provides estimates of, and presents methods for estimating, selected low-flow frequency statistics for unregulated streams in Kentucky including the 30-day mean low flows for recurrence intervals of 2 and 5 years (30Q2 and 30Q5) and the 7-day mean low flows for recurrence intervals of 5, 10, and 20 years (7Q2, 7Q10, and 7Q20). Estimates of these statistics are provided for 121 U.S. Geological Survey streamflow-gaging stations with data through the 2006 climate year, which is the 12-month period ending March 31 of each year. Data were screened to identify the periods of homogeneous, unregulated flows for use in the analyses. Logistic-regression equations are presented for estimating the annual probability of the selected low-flow frequency statistics being equal to zero. Weighted-least-squares regression equations were developed for estimating the magnitude of the nonzero 30Q2, 30Q5, 7Q2, 7Q10, and 7Q20 low flows. Three low-flow regions were defined for estimating the 7-day low-flow frequency statistics. The explicit explanatory variables in the regression equations include total drainage area and the mapped streamflow-variability index measured from a revised statewide coverage of this characteristic. The percentage of the station low-flow statistics correctly classified as zero or nonzero by use of the logistic-regression equations ranged from 87.5 to 93.8 percent. The average standard errors of prediction of the weighted-least-squares regression equations ranged from 108 to 226 percent. The 30Q2 regression equations have the smallest standard errors of prediction, and the 7Q20 regression equations have the largest standard errors of prediction. The regression equations are applicable only to stream sites with low flows unaffected by regulation from reservoirs and local diversions of flow and to drainage basins in specified ranges of basin characteristics. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features.
Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl AM; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H
2016-01-01
Background: Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. Objective: We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. Design: We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3–4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. Results: The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min–1 · 1.73 m–2. The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: −8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. Conclusion: These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this study come from a clinical trial that was registered at clinicaltrials.gov as NCT00785629. PMID:27357090
Dougher, Carly E; Rifkin, Dena E; Anderson, Cheryl Am; Smits, Gerard; Persky, Martha S; Block, Geoffrey A; Ix, Joachim H
2016-08-01
Sodium intake influences blood pressure and proteinuria, yet the impact on long-term outcomes is uncertain in chronic kidney disease (CKD). Accurate assessment is essential for clinical and public policy recommendations, but few large-scale studies use 24-h urine collections. Recent studies that used spot urine sodium and associated estimating equations suggest that they may provide a suitable alternative, but their accuracy in patients with CKD is unknown. We compared the accuracy of 4 equations [the Nerbass, INTERSALT (International Cooperative Study on Salt, Other Factors, and Blood Pressure), Tanaka, and Kawasaki equations] that use spot urine sodium to estimate 24-h sodium excretion in patients with moderate to advanced CKD. We evaluated the accuracy of spot urine sodium to predict mean 24-h urine sodium excretion over 9 mo in 129 participants with stage 3-4 CKD. Spot morning urine sodium was used in 4 estimating equations. Bias, precision, and accuracy were assessed and compared across each equation. The mean age of the participants was 67 y, 52% were female, and the mean estimated glomerular filtration rate was 31 ± 9 mL · min(-1) · 1.73 m(-2) The mean ± SD number of 24-h urine collections was 3.5 ± 0.8/participant, and the mean 24-h sodium excretion was 168.2 ± 67.5 mmol/d. Although the Tanaka equation demonstrated the least bias (mean: -8.2 mmol/d), all 4 equations had poor precision and accuracy. The INTERSALT equation demonstrated the highest accuracy but derived an estimate only within 30% of mean measured sodium excretion in only 57% of observations. Bland-Altman plots revealed systematic bias with the Nerbass, INTERSALT, and Tanaka equations, underestimating sodium excretion when intake was high. These findings do not support the use of spot urine specimens to estimate dietary sodium intake in patients with CKD and research studies enriched with patients with CKD. The parent data for this study come from a clinical trial that was registered at clinicaltrials.gov as NCT00785629. © 2016 American Society for Nutrition.
Singer, Donald A.; Kouda, Ryoichi
2011-01-01
Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.
Parameter estimation problems for distributed systems using a multigrid method
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo; Dutt, Pravir
1990-01-01
The problem of estimating spatially varying coefficients of partial differential equations is considered from observation of the solution and of the right hand side of the equation. It is assumed that the observations are distributed in the domain and that enough observations are given. A method of discretization and an efficient multigrid method for solving the resulting discrete systems are described. Numerical results are presented for estimation of coefficients in an elliptic and a parabolic partial differential equation.
June and August median streamflows estimated for ungaged streams in southern Maine
Lombard, Pamela J.
2010-01-01
Methods for estimating June and August median streamflows were developed for ungaged, unregulated streams in southern Maine. The methods apply to streams with drainage areas ranging in size from 0.4 to 74 square miles, with percentage of basin underlain by a sand and gravel aquifer ranging from 0 to 84 percent, and with distance from the centroid of the basin to a Gulf of Maine line paralleling the coast ranging from 14 to 94 miles. Equations were developed with data from 4 long-term continuous-record streamgage stations and 27 partial-record streamgage stations. Estimates of median streamflows at the continuous-record and partial-record stations are presented. A mathematical technique for estimating standard low-flow statistics, such as June and August median streamflows, at partial-record streamgage stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term (at least 10 years of record) continuous-record streamgage stations (index stations). Weighted least-squares regression analysis (WLS) was used to relate estimates of June and August median streamflows at streamgage stations to basin characteristics at these same stations to develop equations that can be used to estimate June and August median streamflows on ungaged streams. WLS accounts for different periods of record at the gaging stations. Three basin characteristics-drainage area, percentage of basin underlain by a sand and gravel aquifer, and distance from the centroid of the basin to a Gulf of Maine line paralleling the coast-are used in the final regression equation to estimate June and August median streamflows for ungaged streams. The three-variable equation to estimate June median streamflow has an average standard error of prediction from -35 to 54 percent. The three-variable equation to estimate August median streamflow has an average standard error of prediction from -45 to 83 percent. Simpler one-variable equations that use only drainage area to estimate June and August median streamflows were developed for use when less accuracy is acceptable. These equations have average standard errors of prediction from -46 to 87 percent and from -57 to 133 percent, respectively.
Otsuka, R; Kato, Y; Nishita, Y; Tange, C; Nakamoto, M; Tomida, M; Imai, T; Ando, F; Shimokata, H
2014-01-01
If cognitive decline can be prevented through changes in daily diet with no medical intervention, it will be highly significant for dementia prevention. This longitudinal study examined the associations of different food intakes on cognitive decline among Japanese subjects. Prospective cohort study. The National Institute for Longevity Sciences - Longitudinal Study of Aging, a community-based study. Participants included 298 males and 272 females aged 60 to 81 years at baseline who participated in the follow-up study (third to seventh wave) at least one time. Cognitive function was assessed with the Mini-Mental State Examination (MMSE) in all study waves. Nutritional intake was assessed using a 3-day dietary record in the second wave. Cumulative data among participants with an MMSE >27 in the second wave were analyzed using a generalized estimating equation. Multivariate adjusted odds ratios (OR) and 95% confidence intervals (CI) for an MMSE score ≤27 in each study wave according to a 1 standard deviation (SD) increase of each food intake at baseline were estimated, after adjusting for age, follow-up time, MMSE score at baseline, education, body mass index, annual household income, current smoking status, energy intake, and history of diseases. In men, after adjusting for age, and follow-up period, MMSE score at baseline, the adjusted OR for a decline in MMSE score was 1.20 (95% CI, 1.02-1.42; p=0.032) with a 1-SD increase in cereal intake. After adjusting for education and other confounding variables, the OR for a decrease in MMSE score did not reach statistical significance for this variable. In women, multivariate adjusted OR for MMSE decline was 1.43 (95% CI, 1.15-1.77; p=0.001) with a 1-SD increase in cereal intake and 0.80 (95% CI, 0.65-0.98; p=0.034) with a 1-SD increase in milk and dairy product intake. This study indicates that a 1-SD (108 g/day) decrease in cereal intake and a 1-SD (128 g/day) increase in milk and dairy product intake may have an influence of cognitive decline in community-dwelling Japanese women aged 60 years and older. Further studies are needed in order to explore the potential causal relationship.
1986-10-01
organic acids using the Hammett equation , has been called the hydrophobic effect.’ Water adjusts its geometry to maximize the number of intact hydrogen...understanding both structural stability with respect to the underlying equations (not initial values) and phase transitions in these dynamical hierarchies...for quantitative characterization. Although the complicated behavior is gen- erated by deterministic equations , its description in entropies leads to
A stockability equation for forest land in Siskiyou County, California.
Neil. McKay
1985-01-01
An equation is presented that estimates the relative stocking capacity of forest land in Siskiyou County, California, from the amount of precipitation and the presence of significant indicator plants. The equation is a toot for identifying sites incapable of supporting normal stocking. Estimated relative stocking capacity may be used to discount normal yields to levels...
Comparison of estimated and experimental subaqueous seed transport.
Scott Markwith; David Leigh
2011-01-01
We compare the estimates from the relative bed stability (RBS) equation that indicates incipient bed movement, and the inertial settling (âImpactâ) law and Wu and Wang (2006) settling velocity equations that indicate suspended particle movement, to flume and settling velocity observations to confirm the utility of the equations for subaqueous hydrochory analyses, and...
ERIC Educational Resources Information Center
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.
2018-01-01
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Estimating leaf area and leaf biomass of open-grown deciduous urban trees
David J. Nowak
1996-01-01
Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.
Biomass estimators for thinned second-growth ponderosa pine trees.
P.H. Cochran; J.W. Jennings; C.T. Youngberg
1984-01-01
Usable estimates of the mass of live foliage and limbs of sapling and pole-sized ponderosa pine in managed stands in central Oregon can be obtained with equations using the logarithm of diameter as the only independent variable. These equations produce only slightly higher root mean square deviations than equations that include additional independent variables. A...
A stochastic fractional dynamics model of space-time variability of rain
NASA Astrophysics Data System (ADS)
Kundu, Prasun K.; Travis, James E.
2013-09-01
varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.
Estimated Satellite Cluster Elements in Near Circular Orbit
1988-12-01
cluster is investigated. TheAon-board estimator is the U-D covariance factor’xzatiion’filter with dynamics based on the Clohessy - Wiltshire equations...Appropriate values for the velocity vector vi can be found irom the Clohessy - Wiltshire equations [9] (these equations will be explained in detail in the...explained in this text is the f matrix. The state transition matrix was developed from the Clohessy - Wiltshire equations of motion [9:page 3] as i - 2qý
Roland, Mark A.; Stuckey, Marla H.
2008-01-01
Regression equations were developed for estimating flood flows at selected recurrence intervals for ungaged streams in Pennsylvania with drainage areas less than 2,000 square miles. These equations were developed utilizing peak-flow data from 322 streamflow-gaging stations within Pennsylvania and surrounding states. All stations used in the development of the equations had 10 or more years of record and included active and discontinued continuous-record as well as crest-stage partial-record stations. The state was divided into four regions, and regional regression equations were developed to estimate the 2-, 5-, 10-, 50-, 100-, and 500-year recurrence-interval flood flows. The equations were developed by means of a regression analysis that utilized basin characteristics and flow data associated with the stations. Significant explanatory variables at the 95-percent confidence level for one or more regression equations included the following basin characteristics: drainage area; mean basin elevation; and the percentages of carbonate bedrock, urban area, and storage within a basin. The regression equations can be used to predict the magnitude of flood flows for specified recurrence intervals for most streams in the state; however, they are not valid for streams with drainage areas generally greater than 2,000 square miles or with substantial regulation, diversion, or mining activity within the basin. Estimates of flood-flow magnitude and frequency for streamflow-gaging stations substantially affected by upstream regulation are also presented.
Jalalonmuhali, Maisarah; Elagel, Salma Mohamed Abouzriba; Tan, Maw Pin; Lim, Soo Kun; Ng, Kok Peng
2018-01-01
To assess the performance of different GFR estimating equations, test the diagnostic value of serum cystatin-C, and compare the applicability of cystatin-C based equation with serum creatinine based equation for estimating GFR (eGFR) in comparison with measured GFR in the elderly Malaysian patients. A cross-sectional study recruiting volunteered patients 65 years and older attending medical outpatient clinic. 51 chromium EDTA ( 51 Cr-EDTA) was used as measured GFR. The predictive capabilities of Cockcroft-Gault equation corrected for body surface area (CGBSA), four-variable Modification of Diet in Renal Disease (4-MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations using serum creatinine (CKD-EPIcr) as well as serum cystatin-C (CKD-EPIcys) were calculated. A total of 40 patients, 77.5% male, with mean measured GFR 41.2 ± 18.9 ml/min/1.73 m 2 were enrolled. Mean bias was the smallest for 4-MDRD; meanwhile, CKD-EPIcr had the highest precision and accuracy with lower limit of agreement among other equations. CKD-EPIcys equation did not show any improvement in GFR estimation in comparison to CKD-EPIcr and MDRD. The CKD-EPIcr formula appears to be more accurate and correlates better with measured GFR in this cohort of elderly patients.
Jennings, M.E.; Thomas, W.O.; Riggs, H.C.
1994-01-01
For many years, the U.S. Geological Survey (USGS) has been involved in the development of regional regression equations for estimating flood magnitude and frequency at ungaged sites. These regression equations are used to transfer flood characteristics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally these equations have been developed on a statewide or metropolitan area basis as part of cooperative study programs with specific State Departments of Transportation or specific cities. The USGS, in cooperation with the Federal Highway Administration and the Federal Emergency Management Agency, has compiled all the current (as of September 1993) statewide and metropolitan area regression equations into a micro-computer program titled the National Flood Frequency Program.This program includes regression equations for estimating flood-peak discharges and techniques for estimating a typical flood hydrograph for a given recurrence interval peak discharge for unregulated rural and urban watersheds. These techniques should be useful to engineers and hydrologists for planning and design applications. This report summarizes the statewide regression equations for rural watersheds in each State, summarizes the applicable metropolitan area or statewide regression equations for urban watersheds, describes the National Flood Frequency Program for making these computations, and provides much of the reference information on the extrapolation variables needed to run the program.
Melching, C.S.; Marquardt, J.S.
1997-01-01
Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area had multiple correlation coefficients of 0.873, 0.961, 0.968, and 0.963 for TC, R, UL, and TL, respectively, and the estimation equations utilizing main channel length had multiple correlation coefficients of 0.845, 0.957, 0.961, and 0.963 for TC, R, UL, and TL, respectively. Simulation of the measured hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results without calibration. The peak discharge for 8 of the 11 storms was estimated within 25 percent and the time-to-peak discharge for 10 of the 11 storms was estimated within 20 percent. Thus, application of the estimation equations to determine synthetic unit-hydrograph parameters for design-storm simulation may result in reliable design hydrographs; as long as the physical characteristics of the watersheds under consideration are within the range of those for the watersheds in this study (area: 0.06-37 mi2, main channel length: 0.33-16.6 miles, main channel slope: 3.13-55.3 feet per mile, and percentage of impervious cover: 7.32-40.6 percent). The estimation equations are most reliable when applied to watersheds with areas less than 25 mi2.
Generalized equations for estimating DXA percent fat of diverse young women and men: The Tiger Study
USDA-ARS?s Scientific Manuscript database
Popular generalized equations for estimating percent body fat (BF%) developed with cross-sectional data are biased when applied to racially/ethnically diverse populations. We developed accurate anthropometric models to estimate dual-energy x-ray absorptiometry BF% (DXA-BF%) that can be generalized t...
Estimating air drying times of lumber with multiple regression
William T. Simpson
2004-01-01
In this study, the applicability of a multiple regression equation for estimating air drying times of red oak, sugar maple, and ponderosa pine lumber was evaluated. The equation allows prediction of estimated air drying times from historic weather records of temperature and relative humidity at any desired location.
Estimating total forest biomass in Maine, 1995
Eric H. Wharton; Douglas M. Griffith; Douglas M. Griffith
1998-01-01
Presents methods for synthesizing information from existing biomass literature for estimating biomass over extensive forest areas with specific applications to Maine. Tables of appropriate regression equations and the tree and shrub species to which these equations can be applied are presented as well as biomass estimates at the county and state level.
Estimating northern red oak crown component weights in the Northeastern United States.
Robert M. Loomis; Richard W. Blank
1981-01-01
Equations are described for estimating crown weights for northern red oak trees. These estimates are for foliage and branchwood weights. Branchwood (wood plus bark) amounts are subdivided by living and dead material into four size groups. Applicability of the equations for other species is examined.
Estimating restricted mean treatment effects with stacked survival models
Wey, Andrew; Vock, David M.; Connett, John; Rudser, Kyle
2016-01-01
The difference in restricted mean survival times between two groups is a clinically relevant summary measure. With observational data, there may be imbalances in confounding variables between the two groups. One approach to account for such imbalances is estimating a covariate-adjusted restricted mean difference by modeling the covariate-adjusted survival distribution, and then marginalizing over the covariate distribution. Since the estimator for the restricted mean difference is defined by the estimator for the covariate-adjusted survival distribution, it is natural to expect that a better estimator of the covariate-adjusted survival distribution is associated with a better estimator of the restricted mean difference. We therefore propose estimating restricted mean differences with stacked survival models. Stacked survival models estimate a weighted average of several survival models by minimizing predicted error. By including a range of parametric, semi-parametric, and non-parametric models, stacked survival models can robustly estimate a covariate-adjusted survival distribution and, therefore, the restricted mean treatment effect in a wide range of scenarios. We demonstrate through a simulation study that better performance of the covariate-adjusted survival distribution often leads to better mean-squared error of the restricted mean difference although there are notable exceptions. In addition, we demonstrate that the proposed estimator can perform nearly as well as Cox regression when the proportional hazards assumption is satisfied and significantly better when proportional hazards is violated. Finally, the proposed estimator is illustrated with data from the United Network for Organ Sharing to evaluate post-lung transplant survival between large and small-volume centers. PMID:26934835
Ziegeweid, Jeffrey R.; Magdalene, Suzanne
2015-01-01
The new regression equations were used to calculate revised estimates of historical streamflows for Stillwater and Prescott starting in 1910 and ending when index-velocity streamgages were installed. Monthly, annual, 30-year, and period of record statistics were examined between previous and revised estimates of historical streamflows. The abilities of the new regression equations to estimate historical streamflows were evaluated by using percent differences to compare new estimates of historical daily streamflows to discrete streamflow measurements made at Stillwater and Prescott before the installation of index-velocity streamgages. Although less variability was observed between estimated and measured streamflows at Stillwater compared to Prescott, the percent difference data indicated that the new estimates closely approximated measured streamflows at both locations.
Hollyday, E.F.; Hansen, G.R.
1983-01-01
Streamflow may be estimated with regression equations that relate streamflow characteristics to characteristics of the drainage basin. A statistical experiment was performed to compare the accuracy of equations using basin characteristics derived from maps and climatological records (control group equations) with the accuracy of equations using basin characteristics derived from Landsat data as well as maps and climatological records (experimental group equations). Results show that when the equations in both groups are arranged into six flow categories, there is no substantial difference in accuracy between control group equations and experimental group equations for this particular site where drainage area accounts for more than 90 percent of the variance in all streamflow characteristics (except low flows and most annual peak logarithms). (USGS)
Punekar, Yogesh Suresh; Roberts, Graeme; Ismaila, Afisi; O'Leary, Martin
2015-01-01
The cost-effectiveness of umeclidinium bromide-vilanterol (UMEC/VI) versus tiotropium monotherapy in the UK was assessed using a UMEC/VI treatment-specific economic model based on a chronic obstructive pulmonary disease (COPD) disease-progression model. The model was implemented as a linked-equation model to estimate COPD progression and associated health service costs, and its impact on quality-adjusted life years (QALYs) and survival. Statistical risk equations for clinical endpoints and resource use were derived from the ECLIPSE and TORCH studies, respectively. For the selected timeframe (1-40 years) and probabilistic analysis, model outputs included disaggregated costs, total costs, exacerbations, life-years and QALYs gained, and incremental cost-effectiveness ratios (ICERs). Random-effects meta-analysis of tiotropium comparator trials estimated treatment effect of UMEC/VI as 92.17 mL (95 % confidence interval: 61.52, 122.82) in forced expiratory volume in 1 s. With this benefit, UMEC/VI resulted in an estimated annual exacerbation reduction of 0.04 exacerbations/patient and 0.36 life years gained compared to tiotropium over patient lifetime. With an additional 0.18 QALYs/patient and an additional lifetime cost of £372/patient at price parity, the incremental cost effectiveness ratio (ICER) of UMEC/VI compared to tiotropium was £2088/QALY. This ICER increased to £17,541/QALY when price of UMEC/VI was increased to that of indacaterol plus tiotropium in separate inhalers. The ICER improved when model duration was reduced from patient lifetime to 1 or 5 years, or when treatment effect was assumed to last for 12 months following treatment initiation. UMEC/VI can be considered a cost-effective alternative to tiotropium at a certain price.
NASA Technical Reports Server (NTRS)
Chen, Fang-Jenq
1997-01-01
Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.
Frankenfield, David; Roth-Yousey, Lori; Compher, Charlene
2005-05-01
An assessment of energy needs is a necessary component in the development and evaluation of a nutrition care plan. The metabolic rate can be measured or estimated by equations, but estimation is by far the more common method. However, predictive equations might generate errors large enough to impact outcome. Therefore, a systematic review of the literature was undertaken to document the accuracy of predictive equations preliminary to deciding on the imperative to measure metabolic rate. As part of a larger project to determine the role of indirect calorimetry in clinical practice, an evidence team identified published articles that examined the validity of various predictive equations for resting metabolic rate (RMR) in nonobese and obese people and also in individuals of various ethnic and age groups. Articles were accepted based on defined criteria and abstracted using evidence analysis tools developed by the American Dietetic Association. Because these equations are applied by dietetics practitioners to individuals, a key inclusion criterion was research reports of individual data. The evidence was systematically evaluated, and a conclusion statement and grade were developed. Four prediction equations were identified as the most commonly used in clinical practice (Harris-Benedict, Mifflin-St Jeor, Owen, and World Health Organization/Food and Agriculture Organization/United Nations University [WHO/FAO/UNU]). Of these equations, the Mifflin-St Jeor equation was the most reliable, predicting RMR within 10% of measured in more nonobese and obese individuals than any other equation, and it also had the narrowest error range. No validation work concentrating on individual errors was found for the WHO/FAO/UNU equation. Older adults and US-residing ethnic minorities were underrepresented both in the development of predictive equations and in validation studies. The Mifflin-St Jeor equation is more likely than the other equations tested to estimate RMR to within 10% of that measured, but noteworthy errors and limitations exist when it is applied to individuals and possibly when it is generalized to certain age and ethnic groups. RMR estimation errors would be eliminated by valid measurement of RMR with indirect calorimetry, using an evidence-based protocol to minimize measurement error. The Expert Panel advises clinical judgment regarding when to accept estimated RMR using predictive equations in any given individual. Indirect calorimetry may be an important tool when, in the judgment of the clinician, the predictive methods fail an individual in a clinically relevant way. For members of groups that are greatly underrepresented by existing validation studies of predictive equations, a high level of suspicion regarding the accuracy of the equations is warranted.
Ham, Joo-ho; Park, Hun-Young; Kim, Youn-ho; Bae, Sang-kon; Ko, Byung-hoon
2017-01-01
[Purpose] The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. [Methods] We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20–59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. [Results] Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. [Conclusion] These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. PMID:29036765
Ham, Joo-Ho; Park, Hun-Young; Kim, Youn-Ho; Bae, Sang-Kon; Ko, Byung-Hoon; Nam, Sang-Seok
2017-09-30
The purpose of this study was to develop a regression model to estimate the heart rate at the lactate threshold (HRLT) and the heart rate at the ventilatory threshold (HRVT) using the heart rate threshold (HRT), and to test the validity of the regression model. We performed a graded exercise test with a treadmill in 220 normal individuals (men: 112, women: 108) aged 20-59 years. HRT, HRLT, and HRVT were measured in all subjects. A regression model was developed to estimate HRLT and HRVT using HRT with 70% of the data (men: 79, women: 76) through randomization (7:3), with the Bernoulli trial. The validity of the regression model developed with the remaining 30% of the data (men: 33, women: 32) was also examined. Based on the regression coefficient, we found that the independent variable HRT was a significant variable in all regression models. The adjusted R2 of the developed regression models averaged about 70%, and the standard error of estimation of the validity test results was 11 bpm, which is similar to that of the developed model. These results suggest that HRT is a useful parameter for predicting HRLT and HRVT. ©2017 The Korean Society for Exercise Nutrition
Ahearn, Elizabeth A.
2004-01-01
Multiple linear-regression equations were developed to estimate the magnitudes of floods in Connecticut for recurrence intervals ranging from 2 to 500 years. The equations can be used for nonurban, unregulated stream sites in Connecticut with drainage areas ranging from about 2 to 715 square miles. Flood-frequency data and hydrologic characteristics from 70 streamflow-gaging stations and the upstream drainage basins were used to develop the equations. The hydrologic characteristics?drainage area, mean basin elevation, and 24-hour rainfall?are used in the equations to estimate the magnitude of floods. Average standard errors of prediction for the equations are 31.8, 32.7, 34.4, 35.9, 37.6 and 45.0 percent for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals, respectively. Simplified equations using only one hydrologic characteristic?drainage area?also were developed. The regression analysis is based on generalized least-squares regression techniques. Observed flows (log-Pearson Type III analysis of the annual maximum flows) from five streamflow-gaging stations in urban basins in Connecticut were compared to flows estimated from national three-parameter and seven-parameter urban regression equations. The comparison shows that the three- and seven- parameter equations used in conjunction with the new statewide equations generally provide reasonable estimates of flood flows for urban sites in Connecticut, although a national urban flood-frequency study indicated that the three-parameter equations significantly underestimated flood flows in many regions of the country. Verification of the accuracy of the three-parameter or seven-parameter national regression equations using new data from Connecticut stations was beyond the scope of this study. A technique for calculating flood flows at streamflow-gaging stations using a weighted average also is described. Two estimates of flood flows?one estimate based on the log-Pearson Type III analyses of the annual maximum flows at the gaging station, and the other estimate from the regression equation?are weighted together based on the years of record at the gaging station and the equivalent years of record value determined from the regression. Weighted averages of flood flows for the 2-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are tabulated for the 70 streamflow-gaging stations used in the regression analysis. Generally, weighted averages give the most accurate estimate of flood flows at gaging stations. An evaluation of the Connecticut's streamflow-gaging network was performed to determine whether the spatial coverage and range of geographic and hydrologic conditions are adequately represented for transferring flood characteristics from gaged to ungaged sites. Fifty-one of 54 stations in the current (2004) network support one or more flood needs of federal, state, and local agencies. Twenty-five of 54 stations in the current network are considered high-priority stations by the U.S. Geological Survey because of their contribution to the longterm understanding of floods, and their application for regionalflood analysis. Enhancements to the network to improve overall effectiveness for regionalization can be made by increasing the spatial coverage of gaging stations, establishing stations in regions of the state that are not well-represented, and adding stations in basins with drainage area sizes not represented. Additionally, the usefulness of the network for characterizing floods can be maintained and improved by continuing operation at the current stations because flood flows can be more accurately estimated at stations with continuous, long-term record.
NASA Technical Reports Server (NTRS)
Hall, R. M.; Kramer, S. A.
1979-01-01
Droplet growth equations are reviewed in the free-molecular, transition, and continuum flow regimes with the assumption that the droplets are at rest with respect to the vapor. As comparison calculations showed, it was important to use a growth equation designed for the flow regime of interest. Otherwise, a serious over-prediction of droplet growth may result. The growth equation by Gyarmathy appeared to be applicable throughout the flow regimes and involved no iteration. His expression also avoided the uncertainty associated with selecting a mass accommodation coefficient and consequently involved less uncertainty in specifying adjustable parameters than many of the other growth equations.
The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands
NASA Astrophysics Data System (ADS)
Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.
2017-11-01
In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.
2012-01-01
Background Therapeutic drug monitoring of phenytoin by measurement of plasma concentrations is often employed to optimize clinical efficacy while avoiding adverse effects. This is most commonly accomplished by measurement of total phenytoin plasma concentrations. However, total phenytoin levels can be misleading in patients with factors such as low plasma albumin that alter the free (unbound) concentrations of phenytoin. Direct measurement of free phenytoin concentrations in plasma is more costly and time-consuming than determination of total phenytoin concentrations. An alternative to direct measurement of free phenytoin concentrations is use of the Sheiner-Tozer equation to calculate an adjusted phenytoin that corrects for the plasma albumin concentration. Innovative medical informatics tools to identify patients who would benefit from adjusted phenytoin calculations or from laboratory measurement of free phenytoin are needed to improve safety and efficacy of phenytoin pharmacotherapy. The electronic medical record for an academic medical center was searched for the time period from August 1, 1996 to November 30, 2010 for patients who had total phenytoin and free phenytoin determined on the same blood draw, and also a plasma albumin measurement within 7 days of the phenytoin measurements. The measured free phenytoin plasma concentration was used as the gold standard. Results In this study, the standard Sheiner-Tozer formula for calculating an estimated (adjusted) phenytoin level more frequently underestimates than overestimates the measured free phenytoin relative to the respective therapeutic ranges. Adjusted phenytoin concentrations provided superior classification of patients than total phenytoin measurements, particularly at low albumin concentrations. Albumin plasma concentrations up to 7 days prior to total phenytoin measurements can be used for adjusted phenytoin concentrations. Conclusions The results suggest that a measured free phenytoin should be obtained where possible to guide phenytoin dosing. If this is not feasible, then an adjusted phenytoin can supplement a total phenytoin concentration, particularly for patients with low plasma albumin. PMID:22333264
Peak-flow characteristics of Virginia streams
Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute
2011-01-01
Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.
Modeling thermionic emission from laser-heated nanoparticles
Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; ...
2016-02-01
An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less